
WebSphere Message Broker

Message Models

Version 6 Release 1

���

WebSphere Message Broker

Message Models

Version 6 Release 1

���

Note

Before you use this information and the product that it supports, read the information in the Notices appendix.

This edition applies to version 6, release 1, modification 0, fix pack 2 of IBM WebSphere Message Broker and to all

subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2000, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this topic collection v

Part 1. Developing message models 1

Developing message models 3

Message modeling 3

Working with a message set project 81

Working with a message set 82

Working with a message definition file 93

Working with message model objects 96

Creating a multipart message 121

Linking from one message definition file to another 122

Working with a message category file 123

Importing data structures 127

Generating documentation from message sets and

message flows 141

Generating an XML Schema 141

Generating a WSDL definition from a message set 143

Part 2. Reference 145

Message model reference information 147

Message set preferences 147

Message set properties 149

Message definition file properties 181

Message category properties 183

Message model object properties 184

Deprecated message model object properties . . . 598

Additional MRM domain information 727

Additional MIME domain information 772

Additional IDOC domain information 776

Message model task list errors that have a quick fix 780

Generated model representations 782

Import formats 787

Message model wizards 797

Part 3. Appendixes 817

Appendix. Notices for WebSphere

Message Broker 819

Trademarks in the WebSphere Message Broker

information center 821

Index 823

© Copyright IBM Corp. 2000, 2008 iii

iv Message Models

About this topic collection

This PDF has been created from the WebSphere Message Broker Version 6.1 (June

2008) information center topics. Always refer to the WebSphere Message Broker

online information center to access the most current information. The information

center is periodically updated on the document update site and this PDF and

others that you can download from that Web site might not contain the most

current information.

The topic content included in the PDF does not include the ″Related Links″

sections provided in the online topics. Links within the topic content itself are

included, but are active only if they link to another topic in the same PDF

collection. Links to topics outside this topic collection are also shown, but these

attempt to link to a PDF that is called after the topic identifier (for example,

ac12340_.pdf) and therefore fail. Use the online information to navigate freely

between topics.

Feedback: do not provide feedback on this PDF. Refer to the online information to

ensure that you have access to the most current information, and use the Feedback

link that appears at the end of each topic to report any errors or suggestions for

improvement. Using the Feedback link provides precise information about the

location of your comment.

The content of these topics is created for viewing online; you might find that the

formatting and presentation of some figures, tables, examples, and so on are not

optimized for the printed page. Text highlighting might also have a different

appearance.

© Copyright IBM Corp. 2000, 2008 v

ftp://ftp.software.ibm.com/software/integration/wbibrokers/docs

vi Message Models

Part 1. Developing message models

Developing message models 3

Message modeling 3

Message modeling concepts 4

Why model messages? 6

Message domains and parsers 7

The message model 7

Physical formats in the MRM domain 38

Ways to create message definitions 66

Generate model representations 77

Working with a message set project 81

Deleting a message set project 81

Working with a message set 82

Configuring message set preferences 82

Opening an existing message set 82

Creating a message set 83

Configuring logical properties: Message sets . . 85

Working with physical formats 86

Observing 2007 U.S. changes to Daylight Savings

Time 91

Configuring documentation properties: Message

sets 92

Deleting a message set 92

Applying a Quick Fix to a task list error 92

Working with a message definition file 93

Opening an existing message definition file . . . 93

Creating a message definition file 94

Deleting a message definition file 95

Working with message model objects 96

Adding message model objects 96

Configuring message model objects 107

Deleting objects 120

Creating a multipart message 121

Linking from one message definition file to another 122

Include 122

Import 123

Working with a message category file 123

Creating a message category file 123

Opening an existing message category file . . . 124

Adding a message to a message category . . . 125

Deleting a message from a message category 126

Viewing or configuring message category file

properties 126

Deleting a message category file 126

Importing data structures 127

Importing file systems into the workbench . . 127

Importing from C 129

Importing from COBOL copybooks 131

Importing from IBM supplied messages . . . 133

Importing from WSDL 134

Importing from XML DTD 136

Importing from XML Schema 138

Generating documentation from message sets and

message flows 141

Generating an XML Schema 141

Generating a WSDL definition from a message set 143

© Copyright IBM Corp. 2000, 2008 1

2 Message Models

Developing message models

This topic area describes the concepts behind message modeling, and the tasks that

are involved in working with message models.

If you are unfamiliar with message models, read the topics that describe the

concepts, starting with “Message modeling.” These topics explain why you need to

model messages, and describe the message modeling objects that you will use,

such as message sets and message definition files.

The WebSphere® Message Broker message model is based on XML Schema. For

more information about XML Schema, see XML Schema Part 0: Primer.

The tasks that are involved in developing message models are:

v “Working with a message set project” on page 81

v “Working with a message set” on page 82

v “Working with a message definition file” on page 93

v “Working with message model objects” on page 96

v “Creating a multipart message” on page 121

v “Linking from one message definition file to another” on page 122

v “Working with a message category file” on page 123

v “Importing data structures” on page 127

v “Generating documentation from message sets and message flows” on page 141

Tip: The workbench provides a set of toolbar icons that invoke wizards that you

can use to create many of the resources that are associated with message

models; for example, a new message set. Hover your mouse pointer over a

toolbar icon to see its function.

Notice that the workbench lets you open resource files with other editors.

However, use only the workbench to edit resource files that are associated with

message models because this editor correctly validates all changes that you make

to these files.

Message modeling

Much of the business world relies on the exchange of information between

applications. The information is contained in messages that have a defined

structure that is known and agreed by the sender and the receiver.

Applications typically use a combination of messages, including those that are

defined by the following structures or standards:

v C and COBOL data structures

v Industry standards such as SWIFT or EDIFACT

v XML DTD or Schema

You can model a wide variety of message formats so that they can be understood

by WebSphere Message Broker message flows.

© Copyright IBM Corp. 2000, 2008 3

http://www.w3.org/TR/xmlschema-0/

When the message format is known, the broker can parse an incoming message bit

stream and convert it into a logical message tree for manipulation by a message

flow. After the message has been processed by the message flow, the broker

converts the message tree back into a message bit stream.

The following topics together give an overview of Message modeling:

v “Message modeling concepts”

v “Why model messages?” on page 6

v “Message domains and parsers” on page 7

v “The message model” on page 7

v “Physical formats in the MRM domain” on page 38

v “Ways to create message definitions” on page 66

v “Generate model representations” on page 77

You can import either of the following samples to explore message set projects to

understand how the sample’s messages are modeled in different formats.

v Video Rental sample

v Comma Separated Value (CSV) sample

The following samples from the Samples Gallery also have message sets supplied:

v EDIFACT sample

v FIX sample

v SWIFT sample

v X12 sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Message modeling concepts

Message modeling is a way of predefining the message formats that are used by

your applications.

When you have modeled your messages, WebSphere Message Broker can use your

message models to automatically parse and write your message formats.

When you model messages you need to understand the following concepts:

v Message set projects

v Message sets

v Message definition files

v Web Services Description Language (WSDL) files

v Message categories

v Model importers

v Model editors

v Model generators

v Model validator

v Domains and parsers

4 Message Models

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.video.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.csv.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.edifact.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.fix.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.swift.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.x12.doc/doc/overview.htm

A message set project is a specialized project (container) in which you create and

maintain all the resources that are associated with exactly one message set.

A message set is a logical grouping of your messages and the objects that comprise

them (elements, types, groups). A message set contains the following files:

v Exactly one message set file

v Zero or more message definition files

v Zero or more WSDL files

v Zero or more message category files

Model
Validator

Message Category
Editor

WSDL editor

Message Definition
Editor

Message Set
Editor

.mxsd
files

.category
files

.wsdl
files

messageSet.mset
file

Importers

XML
DTD

Repository

Message Set

XML
Schema

COBOL
copybookC header WSDL EIS

Generators

Documentation
XML

Schema

XML
application

Message
Dictionary

WBIMB
broker

WSDL

Web Services
client

M
e

s
s
a

g
e

B
ro

k
e

rs
T
o

o
lk

it

Developing message models 5

The message set file provides message model information that is common to all the

messages in the message set. You can create this information using the message set

editor.

When you have created a message set, you typically import application message

formats described by XML DTD, XML Schema, WSDL Files, C structures, COBOL

structures, or EIS systems, creating and populating message definition files. You can

then edit the logical structure of your messages, and create and edit physical

formats that describe the precise appearance of your message bit stream during

transmission, using the message definition editor. Alternatively, you can create an

empty message definition file and create your messages using just the editor.

When your message definition files are complete, you can then generate the

message set in a form that can be used by a broker, parser, or application. This

might be in one of the following forms:

v A message dictionary for deployment to a broker

v An XML Schema for use by an application to validate XML messages, or for

deployment to a broker

v Web Services Description Language (WSDL) for a web services client, or for

deployment to a broker

v Documentation to give to programmers or business analysts

Messages can be optionally grouped into message categories for convenience . You

can add messages to message categories using the message category editor.

Each time you save a message set file, message definition file or message category

file, the content is validated to ensure that the message model that you are creating

follows certain rules. There are rules for both the logical structure and the physical

formats. This ’model validation’ ensures the integrity of your model, but does not

necessarily prevent you from saving a message model file that is not valid.

WebSphere Message Broker supplies a range of parsers to parse and write message

formats. Each parser is suited to a particular class of messages (for example,

fixed-length binary, delimited text, or XML) known as a message domain. When you

create a message set, you specify which domains the message set supports. This

determines which parsers can be used when you parse and write messages that are

defined within that message set.

Why model messages?

WebSphere Message Broker supplies a range of parsers to parse and write message

formats. Some message formats are self-defining and can be parsed without

reference to a model. Most message formats, however, are not self-defining, and

the parser must have access to a predefined model that describes the message, if it

is to parse it correctly.

An example of a self-defining message format is XML. In XML the message itself

contains metadata as well as data values, enabling an XML parser to understand

an XML message even if no model is available.

Examples of messages that do not have a self-defining format are binary messages

that originate from a COBOL program, and from SWIFT formatted text messages.

Neither contain sufficient metadata to enable a parser to understand the messages.

6 Message Models

Even if your messages are self-defining and do not require modeling, there are still

advantages in modeling them:

v Runtime validation of messages. Without a model, a parser cannot check

whether input and output messages have the correct structure and data values.

v Enhanced parsing of XML messages. Although XML is self-defining, without a

model, all data values are treated as strings. If a model is used, the parser

knows the data type of data values, and can cast the data accordingly.

v Improved productivity when writing ESQL. When you are creating ESQL

programs for WebSphere Message Broker message flows, the ESQL editor can

use message models to provide code completion assistance.

v Drag-and-drop message maps. When you are creating message maps for

WebSphere Message Broker message flows, the Mapping editor uses the message

model to populate its source and target views. Without message models, you

cannot use the Mapping editor.

v Reuse of message models, in whole or in part, by creating new messages that

are based on existing messages.

v Generation of documentation.

v Provision of version control and access control for message models by storing

them in a central repository.

To make full use of the facilities that are offered by WebSphere Message Broker,

model your message formats.

To speed up the creation of message models, importers are provided that take

metadata such as C header files, COBOL copybooks, XML Schema and DTDs,

WSDL files, and EIS metadata, and create message models from that metadata.

Alternatively, IBM has predefined models for common industry standard message

formats such as SWIFT, EDIFACT, X12, FIX, HL7 and TLOG.

Message domains and parsers

WebSphere Message Broker supplies a range of parsers to parse and write message

formats.

A parser is invoked when the bit stream that represents an input message is

converted to the internal form that can be handled by the broker. The internal

form, a logical tree structure, is described in Logical tree structure. Similarly, a

parser is invoked to convert a logical tree back into a bit stream.

Each parser is suited to a particular class of messages (for example, fixed-length

binary, delimited text, or XML) known as a message domain.

When you create a message set, you specify which message domains the message

set supports. This determines which parsers are used when you parse and write

messages that are defined within that message set.

The parsers that are supplied with WebSphere Message Broker are described in

Parsers.

The message model

The message model consists of the following components.

v Message set projects

v Message sets

Developing message models 7

v Message definition files

v WSDL files

v Message categories

See “Message modeling concepts” on page 4 for a summary of these components,

and the relationship between them. See Related Concepts below for a detailed

description of each component.

The majority of your model content is described by message definition files. These

files use XML Schema to represent your messages. XML Schema is an international

standard that defines a language for describing the structure of XML documents. It

is ideally suited to describing the messages that flow between business

applications, and it is widely used in the business community for this purpose.

WebSphere Message Broker uses XML Schema to describe the structure of all kinds

of message format, not just XML.

Each message definition file describes both the logical structure of your messages,

and the physical formats that describe the appearance of your message bit stream

during transmission. If you are using the MRM or IDOC domains, you must

provide physical format information. This tells the parser exactly how to parse the

message bit stream. If you are not using the MRM or IDOC domains, physical

format information is not needed

To understand the different ways that you create and populate message definition

files, see “Ways to create message definitions” on page 66. See “Physical formats in

the MRM domain” on page 38 for a description of the physical formats that are

available to you.

Message set projects

A message set project is a specialized container in which you create and maintain all

the resources associated with one message set.

The content of a message set project is a single message set folder, the name of

which provides the name of the message set, and optionally, a single Adapters

folder, if the message set is modeling messages from EIS systems. You can create a

message set project using the following methods:

v The New Message Set wizard.

v The Quick Start wizards.

These restrictions apply to message set projects:

v A message set project must contain just one message set.

v A message set project cannot refer to any other message set.

Import either of the following samples from the Samples Gallery to see how

message set resources are stored in a message set project. The sample’s message

flow resources are stored separately in a Message Flow project.

v Video Rental sample

v Comma Separated Value (CSV) sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Message sets overview

A message set is a container for grouping messages and associated message

resources (elements, types, groups).

8 Message Models

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.video.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.csv.doc/doc/overview.htm

A message set is a folder in a message set project that contains a messageSet.mset

file. The name of the folder is the name of the message set. A message set project

can contain just one message set.

When you create a new message set, a new message set project is automatically

created with a name that is the same as that of the message set.

You can base your new message set on an existing message set. In this case, all the

definitions in the existing message set are copied into the new message set.

When you have created your message set, you must specify the following key

properties:

Supported message domains

The message domains that are supported by the message set. The

supported domains determine what is generated for deployment to a

broker, and are used when parsing and writing the messages that are

defined within the message set.

Default message domain

The default domain of the message set.

Use namespaces

Indicates whether the message definitions that you create within the

message set are XML namespace aware.

Message set resources:

Resources within a message set are created as files, and are displayed under the

message set folder in the Broker Development view.

v Message set file messageSet.mset

There is always one, and only one, messageSet.mset file in a message set. This

file contains message model properties that are common to all the content of the

message set. It is also where you define the physical formats that you want for

this message set. These can be Custom Wire Format (CWF), Tagged Delimited

String Format (TDS), and XML Wire Format (XML).

The file is created for you when a new message set is created, and you

manipulate its content with the Message Set Editor.

v Message definition files that have the suffix .mxsd

You can have many message definition files in a message set. Each file contains

the logical model and the associated physical model, in XML Schema form, for a

group of related messages.

v WSDL files that have the suffix .wsdl

These files are used by the SOAP domain. You can have many WSDL files in a

message set.

v Message category files that have the suffix .category

These files are optional. You can have many message category files in a message

set. A message category provides another way of grouping your messages,

perhaps for documentation purposes, or to assist with generating Web Services

Description Language (WSDL) files.

When you have completed the resources in your message set, you can generate the

content of the message set in a form that can be used by a broker parser or an

application. This might be:

v a message dictionary for deployment to a broker

Developing message models 9

v XML Schema for use by an application building XML messages, or for

deployment to a broker

v Web Services Description Language (WSDL) for a web services client, or for

deployment to a broker

v documentation to give to programmers or business analysts

Message set identification:

A message set is identified by the name of the message set folder in the message

set.

 When you need to refer to a message set from a message flow (for example, when

setting the Message Set property of an input node), use the message set name.

A message set also has a 13-character identifier that is guaranteed to be unique.

You can use this identifier, instead of the message set name, to refer to a message

set, but only if you are using the MRM or IDOC domains. Other domains do not

recognize the identifier.

A message set also has an alias. An alias can only be used with MRM multipart

messages.

Message set recommendations:

You can have as many message definition files as you want within one message

set, but you should limit your message sets to a few related message definition

files that share the same physical formats.

 There are several reasons for this:

v Generation of a message dictionary and other representations is quicker.

v Generated documentation is more manageable.

v MRM physical formats apply to all objects within the message set.

Therefore, for example, if you are using the MRM domain and have an XML

message and an unrelated CWF message modeled in the same message set, CWF

physical format properties are present for all objects. But the CWF properties are

of no interest to the XML message and therefore take default values in those

objects. This can result in unwanted task list warnings.

v Recursion is not permitted for MRM CWF and TDS physical formats.

Therefore, if you are modeling XML messages that have a recursive structure,

you must ensure that recursive XML messages do not share a message set with

MRM CWF or TDS physical formats.

Message set version and keywords:

When you are developing a message set, you can define the version of the message

set and any other key information that must be associated with it.

 After the message set has been deployed, the Configuration Manager can be used

to display the properties of the message set. These include the deployment and

modification dates and times (the default information that is displayed) and any

additional version or keyword information that you have set.

You can define information to give details of the message set that has been

deployed; therefore, you can check that it is the message set that you expect.

10 Message Models

Version

You can set the version of the message set in the Version property.

You can also define a default message set version in the Default version tag of the

message set preferences. All new message sets that are created after this has been

set have this default applied to the Version property at the message set level.

Keywords

Keywords must be defined in the Documentation property of the message set.

These follow certain rules to ensure that the information can be parsed. The

following is an example of what you can define in the Documentation property:

$MQSI Author=John Smith MQSI$

The following table contains the information that the Configuration Manager

shows:

 Message set name

Deployment Time 28-Aug-2004 15:04

Modification Time 28-Aug-2004 14:27

Version v1.0

Author John Smith

In this display, the version information has been defined using the Version

property of the object. If the version information has not been defined using the

Version property, it is omitted from this display.

Restrictions within keywords

Do not use the following characters within keywords because they cause

unpredictable behavior:

^$.|\<>?+*=&[]

You can use these characters in the values that are associated with keywords; for

example:

v $MQSI RCSVER=$id$ MQSI$ is acceptable

v $MQSI $name=Fred MQSI$ is not acceptable

Message definition files

A message definition file contains the messages, elements, types and groups which

make up a message set.

Every message set requires at least one message definition file to describe its

messages. Message definition files use the XML Schema language to describe the

logical format of one or more messages. Extra information in the form of XML

Schema annotations is used to describe any physical formats that you define for the

messages.

Large message sets can contain several message definition files. This keeps the

individual files to a manageable size, making them faster and easier to work with.

Developing message models 11

Message definition files can be created using the Message Definition Editor, or can

be imported from a range of different file formats as described in “Importing from

other model representations to create message definitions” on page 66.

A message definition file can be associated with a namespace, so that all message

model objects that are declared within the file belong to that namespace.

Namespaces provide a means of avoiding name clashes among similarly named

global objects. They are described in detail in “Namespaces in the message model”

on page 33.

One message definition file can reuse message model objects that are defined in

another message definition file. XML Schema provides two mechanisms to do this:

import and include. For more information, see “Reusing message definition files”

on page 37.

XML Schema and the message model:

XML Schema is an international standard that defines a language for describing the

structure of XML documents.

 The XML Schema language is ideally suited to describing the messages that flow

between business applications, and it is widely used in the business community for

this purpose.

WebSphere Message Broker uses XML Schema 1.0 to describe the logical structure

of messages. At a simple level, the types and elements in the message are modeled

using XML Schema types and elements. However, when the need arises, most of

the advanced modeling features of XML Schema are available for modeling

messages.

Some important restrictions and extensions of XML Schema exist. These are

documented in “Schema restrictions in the message model” and “Schema

extensions in the message model.”

Further information about XML Schema: For details about XML Schema, see XML

Schema Part 0: Primer on the World Wide Web Consortium (W3C) Web site.

Schema restrictions in the message model:

Some XML Schema 1.0 features are not supported in the message model.

Unsupported XML Schema features: The following feature is accepted, but not

supported, and causes validation errors if it is used in your message model:

v Redefines

Further information about XML Schema: For details about XML Schema, see XML

Schema Part 0: Primer on the World Wide Web Consortium (W3C) Web site.

Schema extensions in the message model:

The message model provides some facilities that are not specified in the XML

Schema 1.0 specification.

12 Message Models

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/

Messages: A message is a global element that represents an entire message (rather

than a structure within a message). Within a message definition file, a message is

represented by a special global element that carries the extra information required

by WebSphere Message Broker.

Composition: The message model adds the following compositions that are beyond

the XML Schema 1.0 specification:

message

A refinement of choice that is allowed to contain only a set of references to

messages within the same message set. Groups and complex types with

composition of message are used when modeling multipart messages.

orderedSet

A set of elements that must appear in the order that they are listed. Groups

are not allowed within an orderedSet. Elements can repeat, but duplicate

elements are not allowed.

unorderedSet

A set of elements that can appear in any order. Groups are not allowed

within an unorderedSet. Unlike an all group, elements within an

unorderedSet are allowed to repeat. However, duplicate elements are not

allowed.

 Compositions orderedSet and unorderedSet allow message models that were

produced in earlier versions of the product to be supported.

Physical format information: If one or more physical formats are defined for a

message set, the XML Schema objects within the message set can hold extra

information about how they should be parsed and serialized.

Further information about XML Schema: For details about XML Schema, see XML

Schema Part 0: Primer on the World Wide Web Consortium (W3C) Web site.

Message model objects:

This is an introduction to the objects that make up a message model.

 Message

A message describes the structure and content of a set of data that is

exchanged between applications that send and receive the data. A message

is a special kind of complex element.

Simple element

A simple element describes one or more named data fields in a message. It

is based on a simple type (for example, string, integer or float). A simple

element can repeat, and it can define a default or a fixed value.

Simple type

A simple type describes a class of data within a message. It describes the

type of data (for example, string, integer or float) and it can have value

constraints which place limits on the values of any simple elements based

on that simple type.

Complex element

A complex element describes a named complex structure within the message.

The content of a complex element is defined by a complex type. A complex

element can repeat.

Developing message models 13

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/

Complex type

A complex type describes a complex structure within a message. It contains

elements (simple or complex), attributes, and groups that are organized into a

tree-like hierarchy.

Group A group describes a list of elements with information about how those

elements can appear in a message. Groups can be ordered (sequence or

orderedSet), unordered (all or unorderedSet), or selective (choice or

message). A group can repeat.

Attribute

An attribute describes an XML attribute. Attributes are very similar to

simple elements, but they require special treatment when used with XML

messages. In messages that are not XML messages, attributes are typically

not used, but if they do appear they are treated exactly like a simple

element based on the same simple type.

Global and local objects: Most objects in the message model can be either global or

local. A global object must have a unique name, which is used to refer to the object

from one or more places in the message model. Local objects are defined and used

in only one place in the message model.

Make objects local unless they need to be used in more than one place. This

reduces the probability of name clashes among the global objects in the message

model, and makes the message set easier to work with.

Properties of message model objects: The properties of all message model objects are

listed on the ’properties’ pane of the message definition editor. The properties fall

into three categories:

Logical

The logical properties of an object relate to the format-independent

description of the object called the ’logical model’. Logical properties

describe what data the object contains without saying anything about how it

is written down.

Physical

The physical properties of an object describe how the object is written

down. These properties control the parsing and writing of the object. There

is one set of physical properties for an object for each physical format in

your message set.

Documentation

This field is present for all message model objects. It provides a standard

place for any description of the object that you might require. Text entered

here does not affect the processing of messages in any way.

Message model objects: messages:

A message describes the structure and content of a set of data that is passed from

one application to another.

 A message consists of elements that are organized into a logical structure agreed

by the sending and receiving applications. This logical structure can be modeled

using the Message Definition editor, so that message data can be parsed into a

logical tree and manipulated easily by the broker.

14 Message Models

In the message model, a message is always based on a global element. The global

element’s complex type describes the contents of the global element, and therefore

describes all of the content of the message.

Multipart messages: If necessary, a message can contain other messages. This is

necessary for modeling certain large and complex messaging standards such as

SWIFT and EDIFACT. Such a message is known as a multipart message. The

contained messages are known as embedded messages.

Message identification: Messages are identified by their name or an alias. The alias

is an optional user-specified string that identifies the (multipart) message. The

name and alias of a message must be unique within a message set.

XML Schema model: In the message definition file, a message is modeled as an

XML Schema global element declaration. Extra information is provided by XML

Schema annotations on the element declaration.

Message model objects: elements:

An element is a named piece of information (a field) within a message, with a

meaning that is agreed by the applications that create and process the message.

 An element has a specific meaning that is agreed by the applications that create

and process the message. For example, a message might include a string that your

applications have agreed is a ’Customer Name’. An element is always based on a

type, either simple or complex.

An element:

v Has a business meaning.

v Is an instantiation of a simple or complex type.

v Can be accessed by name from ESQL or Java in a message flow node.

v Is further defined by its type; for example, the type defines the range of values

that an element can have.

v Can be defined globally or locally.

Simple and complex elements: Elements can be simple or complex. A simple element

is a single, named piece of information such as ’Age’ or ’Customer Name’. A

simple element is based on a simple type that defines its content.

A complex element is a named structure that contains other elements. A complex

element named ’Customer Details’ might contain the simple elements ’Age’ and

’Customer Name’. A complex element can also contain other complex elements. A

complex element is based on a complex type that defines its content and structure.

Global and local elements: Elements can be global or local. A global element can be

used in several different messages, or even in several places within the same

message. It must be given a unique name by which it can be referenced. A local

element is defined in one position within one complex type or group, and is not

available for reuse elsewhere in the message model.

Optional and repeating elements: Elements can be defined as optional, mandatory,

and repeating, using the properties Min Occurs and Max Occurs. For further

information, see “Cardinality: optional, repeating and mandatory elements” on

page 30.

Developing message models 15

Default and fixed values: An element can be given a default value, so that if no

value is supplied by the message, the default value is used. Alternatively, a fixed

value can be defined, and the element always takes that value. The precise use of

default and fixed values is dependent on the message domain.

Value constraints: An element’s value can be constrained using value constraints

which define the range of legal values for the element. The value constraints are

actually associated with the simple type on which the element is based. For further

information, see “Message model objects: simple types” on page 17. The XML

Schema term for a value constraint is a facet.

Defining substitution groups: If you are modeling XML messages, an element can be

marked as a valid substitute for another element by using the substitution group

property on the element. In this way, groups of elements can be assembled where

any of the elements in the group can substitute for one element, the head element.

For further information, see “Substitution groups in the message model” on page

31.

Message model objects: types:

Types describe the data content of elements.

 Simple types describe simple elements with data types such as string, integer or

dateTime.

Complex types describe complex elements - elements that contain a hierarchy of

other elements.

For more information, see:

v “Message model objects: simple types” on page 17

v “Message model objects: complex types”

v “Message model objects: type inheritance” on page 19

Message model objects: complex types:

A complex type describes the structure of one or more complex elements.

 Complex types are an essential part of every message model because they define

the logical structure of the messages and elements in the model.

What is a complex type for?: Complex types define the structure of the messages

and elements in the message model. By combining elements, attributes, groups and

wild cards, almost any message structure can be modeled.

Contents of a complex type:

Elements

 Most complex types contain some elements, and some contain a large

hierarchy of complex elements. The elements within a complex type are

always contained within a group. This group can be local to the complex

type, in which case the Message Definition Editor hides it from view. This

is the usual case.

Alternatively, the group that contains the elements can be a global group,

and this group defines the element content, the composition, and the

content validation for the complex type.

16 Message Models

If a complex type is derived from a simple type, it is not allowed to

contain any element content.

Attributes

If you are modeling XML messages, your complex types can contain

attributes. The attributes for a complex type can be local or global, and

they can be contained within an attribute group.

Groups

Groups allow sets of elements to be included in a complex type. The

members of the group are included as peers of the other elements. For

more information about their use, see “Message model objects: groups” on

page 20.

Wild cards

Complex types can contain wildcard elements, which allow unmodeled

elements to appear within any elements that are based on the complex

type. Any such elements must appear at the same position within the

message as the wild card. Complex types can also contain wildcard

attributes, which allow unmodeled attributes to appear within any

elements that are based on the complex type.

Global and local complex types: Complex types can be global or local. A global

complex type can be used as the basis for more than one complex element. It must

be given a unique name by which it can be referenced. A local complex type is

associated with a single complex element, and is not available for reuse elsewhere

in the message model. Local types do not have a name, and are displayed as

{Local complexType} by the message definition editor.

Composition: The composition of a complex type describes how the members of

the type are organized. For more information, see “Message model objects: groups”

on page 20.

Controlling validation of type content: The Content validation parameter on a complex

type specifies how strictly the contents of the type should be validated. For more

information, see “Message model objects: groups” on page 20.

Substitution settings: A complex type has parameters that control whether other

types can be derived from it (final) and whether other types can substitute for it

(block). For more information, see “Substitution groups in the message model” on

page 31 and “Message model objects: type inheritance” on page 19.

Message model objects: simple types:

A simple type is an abstract definition of an item of data such as a number, a string

or a date.

 The purpose of a simple type is to define the content of one or more simple

elements. Simple types (and any elements that are based on simple types) cannot

contain attributes or child elements. Simple types stand in contrast to complex

types, which define the structure of an element, but typically do not define any

simple data.

Global and local simple types

Simple types can be global or local. A global simple type can be used as the basis

for more than one element. It must be given a unique name by which it can be

referenced. A local simple type is associated with a single element, and is not

Developing message models 17

available for reuse elsewhere in the message model. Local types do not have a

name.

Variations of simple types

Built-in

 XML Schema defines a large number of simple types for you to use,

covering all the standard data types such as strings, integers, decimals, and

floats.

Restriction

 You can define your own simple types by deriving from another simple

type (the base type) by restriction. A restriction type can have value

constraints applied to it.

A restriction type can derive from a built-in simple type or a user-defined

simple type.

List

 A list type is a way of rendering a repeating simple value. The notation is

more compact than the notation for a repeating element, and offers a way

to have multi-valued attributes.

A list type can be based on a union type (see below). This can describe a

space-separated list of items in which each item can be based on any of the

simple types in the union.

A list of lists is not legal. The item type of a list cannot be a list itself, or

derived at any level from another list type, and results in a task list error

in the editor.

A list type can have the facets of minLength, maxLength and length

applied to it. These facets restrict the number of items in the list. To restrict

the values of each item in the list, facets should be applied to the item type

and not to the list itself. The message definition editor provides additional

support for enumeration and pattern facets directly on a List type, to

enable the import of any schema that uses them, but issues a warning that

enumeration and pattern facets are ignored by the broker.

Union

 A union type is a union of two or more other simple types.

A union type allows a value to conform to any one of several different

simple types. The simple types that comprise a union type are known as

its member types. There is no upper limit on how many member types can

exist, but there must be at least one. A member type can be defined as a

built-in simple type, a user defined simple type, or a local simple type

defined anonymously within the union type.

A union type can also include list, union, and restricted simple types,

among its members.

MRM domain

The MRM parser does not apply value constraints until the data is in the logical

tree. This means that it is not possible to choose between two simple types that are

derived from the same fundamental type, but have different value constraints (for

example, an integer in the range 1-10 and an integer in the range 11-20). A warning

appears in the task list if this is attempted, and the parser ignores the value

18 Message Models

constraints when it resolves the union. The message definition editor provides

additional support for enumeration and pattern facets directly on a Union type, to

enable the import of any schema that uses them, but the editor issues a warning

that enumeration and pattern facets are ignored by the MRM parser.

Value constraints

Any value constraints that are applied to the derived type must further restrict the

base type (and any elements based on it). It is not valid for a derived type to

weaken or remove a value constraint that its base type has defined. If no value

constraints are applied to the derived type, the derived type is almost identical to

its base type, but it is treated as a restriction of the base type in situations where

that is relevant (type inheritance and element substitution).

Message model objects: type inheritance:

The XML Schema language allows a type definition to be based on another type

definition. In this way, a hierarchy of types can be constructed.

 This topic outlines the concepts of type inheritance, and highlights some important

issues relating to substitution.

A full discussion of XML Schema type inheritance can be found on the World Wide

Web Consortium (W3C) Web site, or in numerous books about XML Schema.

Restriction and extension: A type is a restriction of its base type, if elements of the

derived type have a smaller range of valid values (or valid type members) than

elements of the base type.

v

For example, a restriction of a complex type might reduce the number of

occurrences of one of its type members, or might omit that type member

completely.

v

Similarly, a restriction of a simple type might lower the Max Inclusive facet

value, or raise the Min Inclusive facet value.

A type is an extension of its base type if elements of the derived type have a wider

range of valid values (or valid type members) than elements of the base type.

v

For example, an extension of a complex type might add type members that were

not present in the base type, or might allow a type member to repeat.

v

Similarly, an extension of a simple type must always be a complex type that is

based on the simple type; you cannot extend a simple type by widening its

range of valid values.

Special rules apply to the derivation of simple types. A simple type cannot extend

another simple type. This ensures that restrictions that are imposed by a simple

type cannot be removed by deriving another simple type from it.

However, a complex type can extend a simple type. This does not affect the range

of valid values of the simple type, but it does allow attributes to be added. The

result of extending a simple type is always a complex type that contains zero or

more attributes.

Developing message models 19

http://www.w3.org/
http://www.w3.org/

Controlling type inheritance: The final attribute on a complex type can take three

values, with the following effects:

v restriction: It is not valid to derive another complex type from this type by

restriction.

v extension: It is not valid to derive another complex type from this type by

extension.

v all: It is not valid to derive another complex type from this type by either

extension or restriction

Type inheritance and substitution: XML Schema provides two different substitution

mechanisms, both of which use type inheritance information to allow or disallow

substitutions.

Element substitution is controlled by substitution groups, and element substitution

can be blocked or allowed for extension and restriction by settings on either the

element itself or the element’s type.

Type substitution allows the type of the element to be defined within the instance

document, using the xsi:type attribute on the element, so that the element’s real

type is not known until the element has been partly parsed. This mechanism can

also be blocked or allowed based on the derivation method of the types involved.

Message model objects: groups:

A group is a list of elements that defines how those elements can appear in a

message.

 Groups can be ordered (sequence or orderedSet) unordered (all or unorderedSet),

or selective (choice or message). Groups define the composition and content

validation of a set of type members.

What are groups for?: Groups can be used for any of the following purposes:

v To define the entire content of a complex type.

A complex type can refer to a global group that completely defines its content.

(If it does not, the content of the complex type is defined by an anonymous local

group, which is hidden within the Message Definition Editor.)

v To represent a common substructure within more than one type.

Two or more complex types can refer to the same global group, if they both

contain the same subset of elements.

v To change the composition midway through a complex type.

You might have a complex type that is a sequence of three members, but the

second member is a choice of two elements. To model this, a group with

composition set to choice can be inserted as the second member of the sequence.

Contents of a group: Groups can contain complex elements, simple elements,

wildcard elements and groups.

By combining these components, the structure of any message can be modelled.

Wildcard elements can be included to allow unmodelled elements to appear, thus

making the message model robust and flexible.

Global and local groups: Groups can be global or local.

20 Message Models

A global group can be used in more than one place in the message model. It

represents a structure that appears in more than one place in the message model. A

global group must be given a unique name by which it can be referenced.

A local group is defined in one position within one group, and is not available for

reuse elsewhere in the message model. Local groups do not have a name, and are

displayed using the group’s composition by the message definition editor.

Composition: In XML Schema, a group can have its composition set to sequence,

all, or choice.

v A sequence is a set of elements that must appear in the same order as they are

listed.

v An all group is a set of elements that can appear in any order, and cannot

repeat.

v A choice is a set of elements, only one of which can appear in any given

message.

The message model also allows other compositions: orderedSet, unorderedSet, and

message. For more information, see “Schema extensions in the message model” on

page 12.

Content validation: The Content validation property is applied only if the domain

is MRM or IDOC, and if validation is enabled.

Content validation determines how strictly the content of the group should be

validated. See “MRM content validation” on page 189 for more details.

Allowable values of the Content validation property are:

Closed

The contents of the group are validated strictly against the model. Only

elements that are defined as children of the group can appear as children.

Open Defined

Elements that are declared within the same message set can appear as

children of the group, even if they are not defined as children.

Open Any elements can appear as children of the group.

The Content validation property does not affect validation in the XMLNSC or

SOAP domains. Validation in these domains follows the rules of XML Schema 1.0.

Message model objects: attributes:

An attribute describes an XML attribute.

 Attributes are provided to simplify the modeling of XML messages; if none of your

messages use the XML physical format, use simple elements instead.

Attributes and XML: The most common use for an attribute is to model an XML

attribute within an XML message. In this scenario, each attribute that can appear in

the XML message has a corresponding attribute in the logical message definition.

Attributes in other physical formats: Sometimes a message needs to be parsed as

XML, but written in another physical format (Custom Wire Format or Tagged

Delimited String Format). In this case, any attributes in the message are treated in

exactly the same way as simple elements with the same properties.

Developing message models 21

Global and local attributes: Attributes can be global or local.

A global attribute can be used in more than one place in the message model. It must

be given a unique name by which it can be referenced.

A local attribute is defined in one position within one complex type, and cannot be

used elsewhere in the message model.

Optional attributes: Attributes can be defined as optional, required or prohibited.

Attributes are not allowed to repeat. For further information, see “Cardinality:

optional, repeating and mandatory elements” on page 30.

Default and fixed values: An attribute can be given a default value so that, if the

attribute is missing from the message, the default is used. Alternatively, a fixed

value can be defined, and the attribute always takes that value. The precise use of

default and fixed values is domain dependent.

Value constraints: An attribute’s value can be constrained by using value constraints,

which define the range of legal values for the attribute. Value constraints are

associated with the simple type on which the attribute is based. For more details,

see “Message model objects: simple types” on page 17. In XML Schema, the term

for value constraint is facet.

Message model objects: wildcard elements:

A wildcard element represents an element that does not appear in the message

model, but which could appear at the same position as the wildcard element in the

message.

 Wildcard elements provide a means of adding flexibility to the message model, so

that messages can be parsed even if they do not exactly match the message model.

Wildcard elements can only appear within a complex type or group with

Composition of sequence and Content Validation of closed. Wildcard elements

provide a similar capability to setting the Content Validation property of a complex

type or group to Open or Open Defined.

The Process Content and Namespace properties control the namespace to which

elements appearing in place of the wildcard element must belong.

MRM domain

 If you enable validation in your message flow, and your message is in the

MRM domain, wildcard elements are validated against the model

according to the following rules:

v If Process Content is set to strict, only elements that are declared in the

same message set are allowed to appear in place of the wildcard

element.

v If Process Content is set to lax or skip, any element is allowed to appear

in place of the wildcard element.

If the broker is prior to WebSphere Message Broker Version 6.0, the

number of elements permitted to match against the wildcard element is

unpredictable (Min Occurs and Max Occurs are ignored).

Message model objects: wildcard attributes:

22 Message Models

A wildcard attribute allows unmodelled attributes to appear in a message.

 The Process Content and Namespace properties control the namespace to which

attributes that appear in place of the wild card must belong.

MRM domain

 If you enable validation in your message flow, and your message is in the

MRM domain, wildcard attributes are validated against the model

according to the following rules:

v If Process Content is set to strict, only attributes which are declared in

the same message set will be allowed to appear in place of the wildcard

attribute.

v If Process Content is set to lax or skip, any attribute will be allowed to

appear in place of the wildcard attribute.

Tip: If the namespace property is set to the namespace of the message set,

these rules are then similar to the behavior of the XMLNSC domain in

validating mode.

Message model objects: attribute groups:

An attribute group defines a set of attributes that can appear in a complex type.

 An attribute group provides a way to include the same set of attributes in more

than one complex type, without duplicating the definitions.

For example, if most of the elements in your message model have the attributes

’amount’, ’currency’ and ’date’, these could be put into a single attribute group,

which is referenced by all the complex types that use them.

Message model objects: simple type value constraints:

Value constraints refine a simple type by defining limits on the values that it can

represent.

 It is often useful to be able to constrain the values that an element can take,

perhaps to ensure that messages conform to business rules. This topic describes

how value constraints can be added to a simple type in order to constrain the

values of all elements that are based on the simple type.

The value constraints that are discussed here are modeled by XML Schema facets,

and are associated with a simple type.

Tip: If the message set is deployed to WebSphere Message Broker, all value

constraints can be validated, so that any violations will be reported as errors

or warnings.

Types of value constraint:

Length Constraints : Length, Min Length, Max Length

Using length constraints, the length of all elements based on the simple

type can be constrained, or even limited to a single value.

 Length constraints can be applied to simple types that are derived from

xsd:hexBinary, xsd:base64Binary or xsd:string (including built in schema

types such as xsd:normalisedString).

Developing message models 23

Length constraints are inherited from ancestor types, and any length

constraints that are defined for a simple type must not relax the constraints

that are imposed by any of its ancestor types. For example, a type

’longString’ (Max Length=100) cannot be derived from a type ’shortString’

(Max Length=10).

Note: For the MRM domain, by default, Length value constraints are

converted to Max Length constraints when a message set is added

to a BAR file. This avoids WebSphere Message Broker raising

spurious validation errors for fixed-length data structures, where the

strings tend to be padded to fit a fixed-width field. If strict length

validation is required, this default can be changed in the message set

properties by changing the flag Broker treats Length facet as

MaxLength.

Range constraints : Min Inclusive, Max Inclusive, Min Exclusive, Max Exclusive

Range constraints specify the allowable range of values for all elements

that are based on the simple type. Inclusive constraints include the

specified endpoints in the allowed range, whereas exclusive constraints do

not. Range constraints can be applied to simple types that are numerical,

or that relate to calendar and time values. They cannot be applied to

strings, because the ordering of string values depends on the character set

that is used.

 Range constraints are inherited from ancestor types, and any range

constraints that are defined for a simple type must not relax the constraints

that are imposed by any of its ancestor types. For example, a type

’largeNumber’ (Max Inclusive=100) cannot be derived from a type

’smallNumber’ (Max Inclusive=10).

The message model does not allow exclusive constraints to be applied to

non-integral types (float, decimal, double, dateTime, and so on).

Enumeration constraints

An enumeration constraint specifies a single allowed value for all elements

that are based on the simple type. A list of allowed values can be specified

by defining more than one enumeration constraint for the same simple

type. Enumeration constraints can be applied to all simple types.

 Enumeration constraints are inherited from ancestor types, and any set of

enumeration constraints that are defined for a simple type must not

increase the range of allowed values. For example, a type ’AllColors’ (with

enumerations for all colors of the rainbow) cannot be derived from a type

’MonoColors’ (with enumerations for ’black’ and ’white’ only).

Precision constraints : Total Digits and Fraction Digits

Precision constraints relate only to decimal values. They limit the number

of significant digits (total digits) and the number of decimal places

(fraction digits) for all elements that are based on the simple type.

Precision constraints can be applied to simple types that are derived from

xsd:decimal, but note that, at run time, the broker applies these constraints

only to xsd:decimal and user types that are derived from it; any precision

constraint that is applied to an integer simple type is ignored.

 Precision constraints are inherited from ancestor types, and any precision

constraints that are defined for a simple type must not relax the constraints

that are imposed by any of its ancestor types. For example, a type

’veryPrecise’ (Fraction Digits=10) cannot be derived from a type

’notVeryPrecise’ (Fraction Digits=1).

24 Message Models

Pattern constraints

A pattern constraint is a regular expression that specifies a set of allowed

values for all elements that are based on the simple type. Multiple patterns

can be defined for the same simple type, allowing complex validation rules

to be expressed in logically separate parts. Each pattern constraint on a

simple type contributes to the set of allowed values for elements that are

based on the simple type. In other words, all the patterns are combined

using Boolean OR.

 As with all value constraints, a simple type can inherit pattern constraints

from the simple type on which it is based. In this case, the set of pattern

constraints that are contributed by each ancestor type must be satisfied, as

well as the set that is contributed by the simple type itself. In other words,

the sets of pattern constraints from each level in the type hierarchy are

combined using Boolean AND.

Pattern constraints can only be applied to simple types that are derived

from xsd:string.

Whitespace constraints

A whitespace constraint specifies how a parser should treat whitespace for

all elements that are based on the simple type.

Note: For the MRM domain, the MRM physical formats allow whitespace

to be controlled very precisely for each physical format that is

defined for the message, but these physical properties are separate

from the whitespace constraint in the logical model.

Message model object identification:

Objects in the message model (elements, attributes, types, groups) are identified by

their name only.

 This means that no two objects in the same scope are allowed to have the same

name. Name clashes can be avoided more easily if global objects are used only

when necessary. Local objects are not visible outside of the scope of their parent

object, so their names can be re-used without causing a name clash.

Namespaces

If namespaces are enabled for a message set, each message definition file

within the message set can specify a namespace. Namespaces are an XML

Schema mechanism for organizing groups of related objects into a named

’module’.

 Global objects in different namespaces are allowed to share the same name.

Therefore, namespaces offer another means of avoiding name clashes

among global objects.

Valid names

Since the message model is based on the XML Schema language, the name

of every message model object must be a valid XML Schema identifier. For

information on what constitutes a valid XML Schema identifier, see XML

Schema Part 0: Primer.

 For details about XML Schema, see XML Schema Part 0: Primer on the World Wide

Web Consortium (W3C) Web site.

Multipart messages:

Developing message models 25

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/

A multipart message contains one or more other messages within its structure. The

contained message is sometimes referred to as an embedded message.

 A multipart message must contain a group, or a complex type, with its

Composition property set to Message. This group or complex type can contain a

list of references to messages that are allowed to appear at that location in the

message structure, or it might be empty, allowing any message to appear. When a

message is parsed, only one message can appear in that position as an embedded

message.

An embedded message can be from the same message set as the multipart

message, or it can be from a different message set.

Message envelopes: A common use of multipart messages is to define an outer

message with a fixed structure. This outer message is called the message envelope.

Within the message envelope a group or complex type is included, as described

above. Examples of message standards that can be modeled using this technique

are X12, SWIFT, SOAP XML and SAP IDoc.

Identifying the embedded message: When a multipart message is parsed, the parser

must be able to identify the embedded message (it might be any of the messages

that are referenced by the group or complex type, or it might be a message that is

not referenced by the group or complex type, perhaps from a different message

set). This is achieved using one of three techniques, Automatic, Message Identity, or

Message Path.

Automatic

For XML messages only, the parser automatically identifies embedded

messages using the tag in the XML document.

Message Identity

See “Identifying an embedded message using a Message Identity”

Message Path

See “Identifying an embedded message using a Message Path” on page 28

Restrictions: When a multipart message is received or generated by a broker, all

embedded messages must be of the same physical format as the outermost

message, and have the same character set and encoding.

Identifying an embedded message using a Message Identity:

This describes how you can identify an embedded message using the Message

Identity. Using the Message Identity to identify an embedded message is the

technique that replaces the use of the Message Key.

 This technique is used by the MRM domain.

The Message Identity technique for identifying embedded messages is useful when

a multipart message has a format such as that shown in the diagram:

26 Message Models

In this example, the Message Header and Message Trailer act as an envelope for

the message body. They typically have a fixed structure, although the Message

Body can be defined with many different structures.

A place holder for an embedded message is created by setting the Composition

property of the complex type or group of the Message Body element to Message.

This allows an embedded message to be added at this point within the outer

Message, thus creating a multipart message.

When using the Message Identity technique to parse such a multipart message, the

embedded message must be identified earlier in the Message Header using a

Message Identity element. This is a string element (or attribute) that precedes the

embedded message in the model and whose Interpret Value As property is set to

Message Identity.

When a multipart message is input to a message flow, the Message Identity

element should have a value that corresponds to either the Name or the Message

Alias of the next embedded message in the bit stream. This enables the MRM

parser to correctly identify the embedded message in the model.

For cases where the Message Identity element value does not match the Name of

the message, use the Message Alias property to specify this value. The MRM

parser tries to match on Name first, and if that fails, it tries to match on Message

Alias.

Once the MRM parser has encountered a Message Identity element, its value

applies to all embedded messages that are contained immediately within the

current message. This does not apply to embedded messages within embedded

messages; any embedded message must have its identity provided by a Message

Identity element within its immediate parent message.

If a second Message Identity element is encountered within the current message,

its value overrides any previously held. This enables different peer embedded

messages to exist within a given message.

Message Identity takes priority over Message Path. If both are specified then

Message Identity is used. You should only use one of these techniques for a given

multipart message.

Embedded messages defined in different message sets

By default an embedded message is assumed to be defined within the same

message set as the current message. This can be overridden using a Message Set

Identity, which works in a very similar manner to a Message Identity.

An embedded message that is defined within a different message set must have its

message set identified earlier in the message using a Message Set Identity element.

Message Body

Message Identity

Message

Message Trailer

Message Header

Developing message models 27

This is a string element (or attribute) that precedes the embedded message in the

model and whose Interpret Value As property is set to Message Set Identity.

When a multipart message is input to a message flow, the Message Set Identity

element should have a value which corresponds to either the Identifier, Name, or

Message Set Alias of the message set that defines the next embedded message in

the bit stream. This enables the MRM parser to correctly identify the message set

to use.

If the Message Set Identity element value does not match the Identifier or Name of

the message set, use the Message Set Alias property to specify this value. The

MRM parser tries to match on Identifier first, then on Name, and finally on

Message Set Alias.

Once the MRM parser has encountered a Message Set Identity element, its value

applies to all embedded messages that are contained within the current message. It

also applies to embedded messages within embedded messages, unless an

embedded message also contains a Message Set Identity element.

If a second Message Set Identity element is encountered within the current

message, its value overrides any previously held. This enables peer embedded

messages to reside within different message sets.

The following example of an X12 message shows the use of both Message Identity

and Message Set Identity. The field that contains 004010X092 within the GS

segment on line 0002 holds the Message Set Identity as a Message Set Alias. The

207 on line 0003 in the ST segment is the Message Identity held as a Message

Alias. The embedded message is from line 0004 to 0015 inclusive.

Note: The line numbers and spaces at the beginning of each line are for illustrative

purposes only and do not exist in the actual message.
0001 ISA*00* *00* *30*12-3456789 *ZZ

 *9876543-21 *000104*1820*U*00401*000000001*0*T*:!

0002 GS*HS*HOSP CLAIM*PAYER ADJDEPT*20000104*1820*1*X*004010X092!

0003 ST*270*1234!

0004 BHT*0022*13*10001234*19990501*1319!

0005 HL*1**20*1!

0006 NM1*PR*2*ABCCOMPANY*****PI*842610001!

0007 HL*2*1*21*1!

0008 NM1*1P*2*BONE AND JOINT CINIC*****SV*2000035!REF*N7*234899!

0009 N3*55*HIGH STREET!

0010 N4*SEATTLE*WA*98123!

0011 HL*3*2*22*0!TRN*1*93175-12547*9877281234!

0012 NM1*IL*1*SMITH*ROBERT*B***MI*11122333301!

0013 REF*1L*599119!

0014 DMG*D8*19430519*M!

0015 DTP*472*RD8*19990501-19990515!EQ*30**FAM!SE*17*1234!

0016 GE*1*1!IEA*1*000000001!

Physical format considerations

Both Message Identity and Message Set Identity are applicable to all physical

formats. Versions of the TDS physical format prior to Version 6.0 included

embedded message identification by Message Key which worked in a similar

manner to Message Identity. Message Key has been deprecated and is superseded

by Message Identity.

Identifying an embedded message using a Message Path:

28 Message Models

The Message Path technique for identifying embedded messages is useful when

the multipart message contains no information about the identity of an embedded

message.

 This technique is used by the MRM domain.

In the diagram, the Message Header and Message Trailer act as an envelope for the

message body. Typically they have a fixed structure, but the Message Body can be

defined with many different structures.

 A place holder for an embedded message is created by setting the Composition

property of the complex type or group of the Message Body element to Message.

This allows an embedded message to be added at this point within the outer

Message, thus creating a multipart message.

When using the Message Path technique to parse such a multipart message, the

embedded message must be identified by a fixed path to the innermost message

from the outermost message. For this example, this would be:

Message/Message Body

If the path to the innermost message contains intermediate elements, these

intermediate elements must also be included in the path. In the following example,

these elements are shown in bold:

Message/Data1/Data12/Message Body

This technique can be used to identify nested embedded messages as well, by

simply extending the path. For example:

Message/Data1/Data12/Message Body/Data2/Inner Message

The path is specified using one or both of two properties, the Message Type

property of a WebSphere Message Broker input node (or MQRFH2 header) and the

Message Type Prefix property of the containing message set. These two properties

are combined together to produce a final path that is used to locate embedded

messages.

Message Identity takes priority over Message Path. If both are specified, Message

Identity is used. Only use one of these techniques for a given multipart message.

Note: It is not possible to use the Message Path technique to identify multiple peer

embedded messages.

Embedded messages defined in different message sets

This is not supported by the Message Path technique.

Message Body

Message

Message Trailer

Message Header

Developing message models 29

Physical format considerations

The Message Path technique is applicable to all physical formats.

Cardinality: optional, repeating and mandatory elements:

The number of occurrences of an element can be controlled using the properties

Min Occurs and Max Occurs. Using these properties, an element can be defined as

mandatory, optional or repeating.

Elements: A mandatory element has Min Occurs>= 1. A mandatory element must

occur at least once in an input message.

An optional element has Min Occurs = 0. An optional element can be omitted from

the input message.

A repeating element has Max Occurs> 1 or Max Occurs=-1, which indicates that an

unlimited number of repeats are allowed. A repeating element can occur more than

once in the input message, and all the occurrences must appear together without

any other elements between them.

If a complex type or a group contains two, or more, members that refer to the

same element, the second reference is a duplicate. This is different from a repeating

element, because the two references are typically separated by other members of

the type or group. In the input message, the second occurrence typically does not

appear immediately after the first occurrence. Duplicate element references are not

allowed within types and groups that have compositions of Choice, OrderedSet, or

UnorderedSet.

Attributes: The number of occurrences of an attribute can be controlled by setting

it to required, optional or prohibited.

A required attribute is similar to a mandatory element - it must occur in the input

message.

An optional attribute is similar to an optional element - it can be omitted from the

input message.

A prohibited attribute must not appear in the input message.

An attribute is not allowed to repeat, and duplicate attribute references are not

allowed within an attribute group.

Predefined and self-defining elements and messages:

An instance element is predefined if it is possible for the parser to find a matching

element definition in the message model with an appropriate set of properties and

in the correct context. Otherwise, it is self-defining. Similarly, an entire message is

self-defining if no corresponding message is present in the message model.

 Self-defining elements can only be used when the physical format of the message

is a tagged format such as XML or TDS. If your physical format is fixed-length (C

or COBOL records) or untagged delimited (for example, comma separated), you

must ensure that your message model defines every message and every element

that needs to be parsed.

30 Message Models

If you have chosen not to model your messages, or if no message sets have been

deployed to the broker, all messages and elements are self-defining. In this

situation, you cannot use message definitions to influence the parsing and writing

of elements; the self-defining elements are parsed and written according to the

default behavior of the parser and writer.

Self-defining elements, and all elements within a self-defining message, are not

validated against value constraints, and any missing fields are not assigned default

or fixed values, and all data is assumed to be string type.

However, if an element can be matched against the message model, the parsing

and the writing of the element is guided by the logical and physical formats that

have been defined. This provides a range of benefits, all of which arise from the

information that is provided to the broker through the message model.

Substitution groups in the message model:

Substitution groups are an XML Schema feature that provides a way of substituting

one element for another in an XML message.

 A substitution group is a list of global elements that can appear in place of another

global element, called the head element.

A substitution group is defined by setting the substitution group property on one

global element (the member element) to point at another global element (the head

element). This adds the member element to the substitution group of the head

element.

Tip: If your messages are never rendered as XML, or if you have a simple message

model, use a complex type or a group with Composition set to Choice,

instead of using substitution groups.

Elements

Head elements

A head element is simply an element that can be substituted. When a

message is parsed, one of its member elements can appear in place of the

head element without causing a validation error.

Abstract elements

An abstract element is a head element which must be substituted. The

’abstract’ attribute on the element indicates this. Typically, abstract

elements have other elements in their substitution group - otherwise they

are of little use. Wherever an abstract element appears in a message

definition, a member of its substitution group must appear instead.

Attributes

The block attribute on elements

The block attribute on an element limits the set of global elements that can

substitute for the element. The block attribute can take any subset of the

values restriction, extension, substitution, or all.

v If the block attribute contains restriction, an element that is based on a

restriction of the element’s type cannot substitute for the element.

v If the block attribute contains extension, an element that is based on an

extension of the element’s type cannot substitute for the element.

Developing message models 31

v If the block attribute contains substitution, an element that is a member

of the element’s substitution group cannot substitute for the element.

v If the block attribute contains all, all of the above limits apply.

The final attribute on elements

The final attribute on an element limits the set of global elements that can

be a member of the element’s substitution group. The final attribute can

take any subset of the values restriction, extension, or all.

v If the final attribute contains restriction, an element that is based on a

restriction of the element’s type cannot be in the substitution group of

the element.

v If the final attribute contains extension, an element that is based on an

extension of the element’s type cannot be in the substitution group of

the element.

v If the final attribute contains all, both of the above limits apply.

The block attribute on complex types

The block attribute on a complex type limits the set of other types that can

substitute for that type. The block attribute can take values restriction,

extension, or all. The meanings for these values are the same as those

shown for the block attribute on an element above. An element that is a

member of a substitution group can only substitute for the head element if

its type is compatible with the block attribute on the type of the head

element.

Default block and final attributes

A default for the block and final attributes can be set at the message

definition file level. If a default for one or both of these attributes has been

set and the relevant block or final attribute has not been set at the object

level, the default setting is used for that object. You can override the

default setting at the object level.

Message categories

Message category files have the suffix .category. These files are optional. You can

have many message category files in a message set.

A message category provides another way of grouping your messages, perhaps for

documentation or convenience purposes, or for assisting in the generation of Web

Services Description Language (WSDL) files.

A message set category file is created using the New Message Category File

wizard.

When you have created your message category file, you must specify one key

property.

Message Category Kind

This indicates whether the message category is to participate in the

generation of WSDL files. See “Generate WSDL” on page 79.

 You can then add messages to the message category file. If the message category is

to participate in WSDL generation, you should assign appropriate values to the

Role Name and Role Type properties of each member message.

Message category identification: The name of a message category is provided by

the name of the .category file. You can change the message category name by

renaming the file.

32 Message Models

Namespaces in the message model

Namespaces provide a method to qualify object names.

XML instance documents and XML Schemas can make use of namespaces.

A single XML instance document can contain elements and attributes that are

defined for, and possibly used by, multiple applications. Two different elements or

attributes within the same document might require the same name. Individual

applications need to be able to recognize the elements and attributes that they are

designed to process. In circumstances such as this, the definitions can be

distinguished from each other by qualifying each element with a different

namespace. This avoids problems of name collision and mistaken recognition.

XML Schemas can define a target namespace. Global elements, attributes, groups

and types that are defined within an XML Schema are qualified by the target

namespace, if it has been defined. Optionally, local elements and attributes can also

be qualified by the target namespace. Therefore, namespaces assist in the

development of a library of XML Schemas that can be developed independently. If

the namespace name that is used for an XML Schema is unique, you do not have

to be concerned about name clashes with objects that are defined within other

XML Schemas.

The scope of a namespace extends beyond that of its containing document and is

identified by a Uniform Resource Identifier (URI). In order to serve its purpose, a

URI must be unique. You might be more familiar with the concept of a Universal

Resource Locator (URL). URIs often use the same syntax as URLs, but the URI

definition is broader than the specification of a URL. This is an example of a URI:

http://mycompany.com/xml_schema

A namespace prefix is declared as a shorthand for the full URI name and this is

used to qualify all elements that belong to that namespace. The prefix to be

substituted for a namespace in an XML instance document or XML Schema is

specified using an xmlns attribute. A default namespace can also be defined using

an xmlns attribute. If a default namespace is defined, any element or attribute with

no prefix is qualified with the default namespace. If no default namespace is

defined, any element or attribute with no prefix is not qualified by a namespace.

The message model

The message model provides the ability to support namespaces within

message sets. However, you can choose whether you want to enable or

disable namespaces for your message set. If you choose to disable

namespaces when you create your message set, you can enable namespaces

later. However, when you have enabled namespaces for a message set you

cannot disable namespaces.

 A single message set which has namespaces enabled can contain a number

of different namespaces. Each namespace is represented by a different

Message Definition File. When you create a Message Definition File, you

can choose whether it is to have an associated namespace, or whether it is

be in the notarget namespace. If you choose to associate a namespace with

a Message Definition File, you must also choose a prefix.

If the Message Definition File has an associated namespace, the following

global objects are qualified with the namespace:

v Elements

v Attributes

v Simple Types

Developing message models 33

v Complex Types

v Groups

v Attribute Groups

Optionally, local elements and attributes can be qualified with the

namespace.

Objects that are defined within a Message Definition File can reference

objects in other Message Definition Files within the same message set. To

do this, import or include one Message Definition file within another

Message Definition File.

Message parsing and message flows

WebSphere Message Broker parsers that are namespace aware recognize

prefixed names in the XML messages that they parse, and internally map

these to the correct namespace. Elements and attributes can be either

qualified or not qualified with a namespace, as discussed in the message

model section.

 If you are using XML format in the MRM domain, elements or attributes

are matched, based on the namespace in the dictionary when the parsed

message is matched against the dictionary that is generated from the

message model. Therefore, for an element or attribute in a message to

match with the dictionary, both its name and its namespace must match.

If you are using the DataObject domain, the SOAP domain, or the

XMLNSC domain (in validating mode), elements or attributes are matched,

based on the namespace in the XML Schema when the parsed message is

matched againt the XML Schema that is generated from the message

model. Therefore, for an element or attribute in a message to match the

XML Schema, both its name and its namespace must match.

Support is provided that allows you to specify namespaces when writing

ESQL or Java. It is not necessary to write ESQL or Java that is namespace

aware if you are not using namespaces. However, if you decide to use

namespaces, your message definition files can target any namespace that

you choose, and it is necessary to write namespace-aware ESQL or Java.

The namespace in which an element resides is stored in the message tree

when parsed. This is a logical property and it is held regardless of the

physical wire format in which messages are parsed and written. Syntax has

been added to ESQL to make it easy to reference element’s namespaces

using defined prefixes. In Java, XPath expressions are used to reference

elements.

Importing from other formats

The message model allows you to create Message Definition files from

other formats by importing them into the Message Broker Toolkit.

v If you import an XML DTD file, the Message Definition File that is

created is in the notarget namespace.

v If you import an XML Schema file, the target namespace of the created

Message Definition File depends on whether namespaces have been

enabled for the message set.

– If namespaces are enabled, the target namespace of the Message

Definition File that is created is the target namespace of the XML

Schema that is being imported.

– If namespaces are disabled for the message set, the created Message

Definition File is in the notarget namespace. This type of import does

not provide full namespace support. If you are using WebSphere

34 Message Models

Message Broker, you do not have to write namespace-aware ESQL or

Java to process an XML message that is parsed against the dictionary

that is generated from this message model. For reasons why you

might want to do this, see “Importing XML Schema into message sets

with namespaces disabled” on page 69
v If you import a COBOL Copybook or a C Header file, the target

namespace of the created Message Definition File depends on whether

namespaces have been enabled for the message set.

– If namespaces are enabled, the target namespace of the Message

Definition File that is created is the notarget namespace. This default

namespace can be overridden by specifying a target namespace in the

New Message Definition File wizard. For reasons why you might

want to do this, see “Namespaces with MRM non-XML messages” on

page 36.

– If namespaces are disabled for the message set, the Message

Definition File that is created is in the notarget namespace

Further information about XML: On the World Wide Web Consortium (W3C)

Web site, see:

v Extensible Markup Language (XML)

v XML Schema Part 0: Primer

v Namespaces in XML

Namespaces with MRM XML messages:

The namespace that is associated with a message definition file is part of the

logical layer of the message model.

 Therefore, it is not dependent on an XML Wire Format being present. However, if

you have an XML Wire Format, the namespace information from the logical layer

is used to populate some of the properties of the XML Wire Format. If namespaces

are enabled for a Message Set, in the XML Wire Format, a table of namespace

URI/prefix pairs is maintained. This table is initially populated with the

namespaces of all of the Message Definition Files with their prefixes when they

were created.

If your message set has namespaces enabled, the broker does not store the values

of any xmlns attributes in the tree when it parses an XML instance document. It

also does not store the values of any Schema Location and No Namespace Schema

Location attributes. When an XML document is written out, the broker regenerates

this information from the properties of the XML Wire Format of the message set.

The table of namespace URI/prefix pairs is used by the MRM Domain when it

outputs an XML message. Elements and attributes that are qualified by a

namespace are prefixed with the corresponding prefix from the table. The broker

also manages the output of the corresponding xmlns attributes that map the

prefixes to namespaces. You can choose whether xmlns attributes for all of the

entries in the namespace URI/prefix table are output at the start of the document,

or whether they are only output in the document when required.

If namespaces are enabled for a Message Set, in the XML Wire Format there is a

table of schema locations that map namespace URIs to file names. You can add

entries to this table and you can map a file name to the notarget namespace. If you

are using WebSphere Message Broker, this table is used to output schemaLocation

and No Namespace Schema Location attributes at the start of the XML document.

Developing message models 35

http://www.w3.org/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/REC-xml-names/

Namespaces with MRM non-XML messages:

The use of namespaces by WebSphere Message Broker is not necessarily limited to

XML message models.

 There is one scenario where the use of namespaces by non-XML message models

can simplify the ESQL or Java code that you write. But before describing this

scenario, it is important to understand that the MRM parser, when parsing

messages that are defined in a Message Definition File that has a target namespace,

produces a logical message tree that contains both name and namespace

information. It does this regardless of the physical format of the message. For

non-XML (CWF or TDS) messages, the namespace is obtained from the Message

Definition file.

Consider a transformation scenario where a message from a COBOL application

requires to be transformed into namespace-aware XML; for example, a SOAP XML

message. The transform must map the logical message tree that was created for the

COBOL message to a logical message tree that matches the XML message. If the

COBOL message tree does not contain namespace information, each mapping from

a COBOL field to an XML element must set the namespace for the XML element.

However, if the COBOL message tree already contains the required namespace

information, this mapping is much simpler.

To enable the MRM parser to create namespace information in a message tree that

was created from a CWF or TDS message, you need to specify a target namespace

for the Message Definition File. This must be done as part of the Message

Definition File creation process; you cannot do this after the file has been created.

There are two ways to specify a target namespace. For each of these, make the

target namespace of the Message Definition File the same as the target namespace

of the XML message into which the non-XML message is being transformed.

v If you are creating your non-XML message model by hand in the message editor,

use the New Message Definition File wizard to specify a target namespace.

v If you are importing from COBOL or C, use the New Message Definition File

wizard, or the mqsicreatemsgdefs command options file, to specify a target

namespace.

When dealing with both the message tree for the non-XML message and the

message tree for the XML message, the ESQL or Java code that you write to

perform the transformation must be namespace aware.

Specifying namespaces in the Message Type property:

When using the MRM domain, the Message Type property is used to specify the

name of the message.

 The format of a simple message type is {namespace-uri}:name where name is the

name of the message, and namespace-uri. identifies the namespace. The namespace

must be the full URI specification and must be enclosed in braces.

The format {namespace-uri}name (that is, with no colon) is also valid. This

maintains compatibility with previous versions of the broker product.

If you omit {namespace-uri}, the first match for the name that is found in the

model is used. You can do this if namespaces are not enabled for the message set,

or if a name is unique within a message set. However, if a name is not unique, you

must specify the namespace to be sure that the correct match is made in the model.

36 Message Models

The following are examples of message types:

v A simple message type for a message in a real target namespace:

{http://www.ibm.com/space}:name

v A simple message type for a message in the notarget namespace: {}:name

v A simple message type for a message in a message set that does not support

namespaces: name

When identifying an embedded message using a message path, a message type

path would be entered as A simple message type for a message in a real target

namespace: {http://www.ibm.com/space}:name

The same name can occur in more than one namespace. To specify that a name is

to be qualified with a specific namespace, the name must be prefixed with the

namespace within the Message Type.

For example a Message Type with a single name would be entered as:

{http://www.ibm.com/space}:id/.../{http://www.ibm.com/space}:name

Reusing message definition files:

One Message Definition File can reuse message model objects defined in another

Message Definition File.

 There are two mechanisms that XML Schema provides to do this: import and

include. The namespaces of the two files determine which of import or include

should be used:

 Target file has a target

namespace

Target file has notarget

namespace

Parent file has a target

namespace

xsd:import xsd:include1

Parent file has notarget

namespace

xsd:import xsd:include

Note: When a target namespace file includes a notarget namespace file, referencing

an object in the target file from the parent file causes the object to appear in

the namespace of the parent file.

When import or include are used, global objects from the target file can be used in

the parent file. For example, an element in the parent file can be given a complex

type defined in the target file.

The namespace of objects in the target file is preserved in the parent file, with the

exception noted in the previous table of a target namespace file that includes a

notarget namespace file. This exception is sometimes called the chameleon

namespace effect.

Chameleon namespaces have limited support when used with the MRM domain.

When referenced in the parent file, the objects in the target file appear in the

namespace of the parent file, but they are assigned default physical format

information. In other words, physical format information defined in the target file

is not available for use in the parent file. Only use Chameleon Namespaces in the

MRM domain to model XML messages if physical format information has not

changed from the default.

Developing message models 37

XML Schema provides a variation of xsd:include called xsd:redefine, which is not

supported by WebSphere Message Broker. Using xsd:redefine gives a task list error.

A Quick Fix is offered to convert occurrences of xsd:redefine into xsd:include.

Message model integrity

When you create your model, it is important that it is internally consistent and is

capable of being generated into the form that you want; for example, a message

dictionary or an XML Schema document.

To assist with this, whenever you save a message set file, it is validated as follows:

Logical validation

This validation ensures that the logical model is correct. For message

definition files, this involves ensuring that the rules of XML Schema have

been correctly followed.

Physical validation

This validation ensures that any physical formats that you have specified

for your model have been correctly populated. There is a set of checks for

each of the MRM domain physical formats - CWF, XML and TDS. This

ensures that the MRM parser can parse and write messages that conform

to your model.

 Once validation has taken place, any errors or warnings are shown in the

task list. Double clicking on a task list entry opens the file and positions

the editor at the object in error. Organize the task list so that errors are

shown before warnings. In this way, errors are not hidden. The task list

provides a comprehensive filtering capability if you want to hide low

priority warnings, or warnings that you are know about and are

comfortable with.

The generation of a message dictionary or an XML Schema is prevented if

any errors are present. The presence of warnings alone does not prevent

generation, but high priority warnings must be reviewed because a model

that generates such warnings might be incomplete.

 Where task list warnings or errors occur, these are listed in the Problems view of

the Broker Application Development perspective. While a majority of these require

you to manually investigate and resolve them, a number of warnings and errors

that meet specific criteria can be repaired using a quick fix process.

Physical formats in the MRM domain

Each message definition file describes both the logical structure of your messages,

and the physical formats that describe the precise appearance of your message bit

stream during transmission.

If you are using the MRM domain or the IDOC domain, physical format

information must be provided, as it tells the parser exactly how to parse the

message bit stream.

You can think of a message as a packet of data that is sent from one place to

another. The sender and receiver of the message will have agreed the structure of

the message and what each field in the message means. This is the platform and

protocol independent logical structure.

The sender and receiver will have also agreed on the physical representation of the

message, how the data is physically laid out on the wire. For example, if you

define a message that conveys information about a debit of an individual’s bank

38 Message Models

account, it can be represented in different physical forms (examples are XML, or a

fixed structure such as a COBOL copybook). The meaning and data is the same in

both cases: only the physical layout has changed.

If you are using the MRM domain, you can model a variety of different physical

representations using named physical formats.

v Use the Custom Wire Format (CWF) physical format to model fixed format

messages from applications that are written in C, COBOL, PL/1 and other

languages. This support includes the ability to create a message model directly

from a C header file or COBOL copybook.

v Use the Tagged Delimited String Format (TDS) physical format to model

formatted text messages, perhaps with field content identified by tags or

separated by specific delimiters or both. This support is rich enough to model

industry standards such as SWIFT, EDIFACT and X12.

v Use the XML physical format to model XML messages, including those that

exploit XML namespaces. This support includes the ability to create a message

model directly from an XML DTD or XML Schema file.

Different physical representations

The following example shows how a very simple logical message can have

different physical representations.

The logical model defines the structure and order of the message. In the following

example, the three fields are simple integers, and C follows B, which follows A:

int A;

int B;

int C;

v A typical Custom Wire Format representation for this logical message would be

12 bytes of data, with each of A, B and C occupying 4 bytes. Alternatively,

perhaps A is 4 bytes long, but B and C are only 2 bytes long. You supply the

precise physical information for each field in the message as CWF properties.

v TDS allows several different representations to be modeled. Each integer could

be preceded by a tag to identify it and a delimiter to terminate it, as follows:

{A_tag:xxxxxxxx;B_tag:xxxxxxxx;C_tag:xxxxxxxx}

An alternative might rely on the data being ordered so only the terminating

delimiter needs to be specified, as follows:

[xxxxxxxx;xxxxxxxx;xxxxxxxx]

You supply the precise identification regime as TDS properties.

v A typical XML representation of this model is as follows:

<Msg><A>xxxxxxxxxxxxxxxx<C>xxxxxxxx</C></Msg>

where xxxxxxxx is the value of the integer represented as a string (XML deals

only with strings). An alternative representation might be:

<Msg A="xxxxxxxx" B="xxxxxxxx" C="xxxxxxxx"/>

where the values of the integers are stored as XML attributes rather than XML

elements. You supply the precise XML rendering for each field in the message as

XML properties.

This shows that the logical model is unchanged. It is constant, regardless of the

physical representation that you choose to model on top of it, using the physical

format support provided by the MRM domain. The MRM parser is able to

Developing message models 39

transform the message from the input physical representation to any number of

output representations, based on the physical format layers that you have defined.

Creating physical formats

Once you have created your message set, you can create physical formats. You do

this using the Message Set Editor. When you next save the messageSet.mset file,

any new physical formats are added to all the objects in all the message definition

files in that message set.

The next time you edit an object in a message definition file, you will see the

physical formats in the properties hierarchy pane of the Properties tab. If you click

on a physical format for an object, you will be presented with a property sheet

where you can enter the information for that physical format for that object.

Note that not all objects have properties in all physical formats. For example:

v CWF properties only apply to local elements and attributes, and element and

attribute references.

v Complex types and groups only have TDS properties.

v Messages only have XML properties.

This is due to the different nature of each physical format, and these differences

are explained in more detail in the section for each physical format.

There is no limit to the number of physical formats you can create in a given

message set. However there are some recommendations that apply if you want to

mix physical formats of different kinds in the same message set.

Physical formats can be deleted if no longer required.

MRM Custom Wire Format

Custom Wire Format (CWF) is the physical representation of a message that is

composed of a number of fixed format data structures or elements, which are not

separated by delimiters.

Within a CWF messaging environment, it is not possible to distinguish one element

from the next without knowledge of the message structure. To correctly determine

the values of individual elements, the following information must be made

available to the message parser:

v The order (this is defined in the logical properties)

v The length (can be specified in bytes, characters or character units)

v The cardinality (that is, the number of repeats)

v The type of data contained in each element (this is partly defined in the logical

properties but can be further qualified in the CWF physical format)

v A number of characteristics based upon the logical type of the data

A CWF physical format is typically used to describe messages which are mapped

to a C structure, a COBOL copybook or other programming language data

structure definition.

You can add more than one CWF physical format to a message set, but within that

message set, each physical format must have a unique name. When parsing a CWF

message using the MRM parser, the physical format name specifies the physical

properties that are to be used by the parser.

40 Message Models

Adding a CWF physical format to a message set allows you to process input

messages and construct output messages in this format. Messages can be

transformed between CWF and the other physical representations (for example

TDS or XML). Note that while the other physical representations support

self-defining elements (that is elements which do not have a definition in the

logical model) within the MRM domain, the parsing of a CWF message does not.

Consequently, any such self-defining elements are discarded during the output of

messages in CWF format.

Custom wire format: Message model integrity: When you save a message

definition file, the definitions that it contains are checked to ensure that they make

sense and provide sufficient information about the message. This action is called

model validation.

The CWF physical format depends on fixed format data structures, so the majority

of tests applied to a CWF message confirm that each fragment of a message (and

therefore the message as a whole) has a well defined length. Thus, these tests

examine properties such as Length, Length Reference and Length Units.

Typically, one or other of Length and Length Reference must be set. If Length

Reference is set, then it must refer to an element that is of simple type integer and

that appears earlier in the message than the current item.

Tests other than these tend to be both simple and obvious so that, for example, the

message set property First Day of Week has to be the name of a day in the week.

The fact that CWF relies on fixed format data structures also imposes some

limitations on the messages that can be represented:

v CWF cannot represent a message that includes the use of XML Schema wild

cards. (This is a consequence of its inability to handle undefined content).

v CWF cannot represent a message that includes recursive definitions.

v CWF cannot represent a message that includes the use of substitution groups,

since there is no way to recognize the substituted element.

Custom wire format: NULL handling:

CWF supports the handling of explicit NULL values within messages, provided

that the logical Nillable property of the element is set.

 An explicit null is identified by a specific value that identifies an element as being

null.

The Boolean Null Value can be specified at the message set level and applies to the

Boolean elements of all messages defined in that message set. The null value for all

other element types can be specified individually for each element.

CWF supports the representation of null values using the Encoding Null and

Encoding Null Value element properties. Together this information controls how

null values are handled by the MRM parser.

The Encoding Null property can be set to one of four values:

NullLogicalValue

Developing message models 41

The Encoding Null Value property is interpreted as a logical value. Thus, if

its value is set to 0 for example then both 0 and 0.00 are interpreted as

null values.

NullLiteralValue

 The Encoding Null Value property is interpreted as a string value. Thus,

the value of the element in the bit stream must match exactly the value

specified to be interpreted as a null value.

NullPadFill

 This should be used for fixed length elements. On output, any element

with a null value will be padded to the appropriate length with the

specified padding character.

NullLiteralFill

 The Encoding Null Value property is interpreted as a single character

string value. Therefore, each character of the value of the element in the bit

stream must match exactly the character value specified, to be interpreted

as a null value.

Custom wire format: Multipart messages: The Custom Wire Format (CWF)

supports both the Message Identity technique and the Message Path technique of

identifying embedded messages within a multipart message.

Alternatively an embedded message may be resolved by using ESQL or Java to

identify the message. The first message that you reference in this way is assumed

to be the selected message. This works in an identical manner to unresolved choice

handling.

Custom wire format: Data Conversion: The Custom Wire Format supports the

conversion of data to a different code page (for string simple types) or encoding

(for numeric simple types), or both.

A message set contains properties to enable the character (CCSID) and numeric

encoding (Byte Order / Float Format) information to be specified. If you generate a

message dictionary for deployment to a WebSphere Message Broker, then this

information can be overridden using the appropriate fields of the WebSphere MQ

message header, or other transport header.

Custom wire format: relationship to the logical model:

There are some restrictions in relation to the logical model for messages that are

defined using the CWF.

Composition: A CWF message is always written with the elements in the sequence

that is specified in the logical message model definition. However, you do not

always have to specify the ESQL or Java that builds the elements in that sequence.

The following rules for coding ESQL are given for each value of the type

Composition property.

Sequence

You must build the output message to match the sequence of the elements

or groups in the message. You can normally do this using ESQL SET

statements to assign a value to each element or type. The first SET

statement sets the value of the first element or type in the message, the

42 Message Models

second SET statement sets the value for the second element or type, and so

on. You can vary this sequence of statements using ESQL ATTACH,

CREATE, and MOVE statements.

 If the elements or types have default values, and you do not build the

message in the correct sequence, those elements that are built out of

sequence contain their default values, not the values that you set. This is

because elements that are built out of sequence are assumed to be

self-defining and, for CWF, these are discarded when the message is

written to the bit stream.

Ordered Set

You must build the output message to match the sequence of the elements

in the message. You can normally do this using ESQL SET statements to

assign a value to each element. The first SET statement sets the value of

the first element in the message, the next SET statement sets the value for

the second element, and so on. You can vary this sequence of statements

using ESQL ATTACH, CREATE, and MOVE statements.

 If the elements have default values, and you do not build the message in

the correct sequence, those elements that are built out of sequence contain

their default values, not the values that you set. This is because elements

that are built out of sequence are assumed to be self-defining and, for

CWF, these are discarded when the message is written to the bit stream.

Unordered Set

You can build elements of the output message in any sequence. On output,

the elements are written in the order that is specified in the logical

message model definition.

All You can build elements of the output message in any sequence. Each

element must only be present once (that is, it must not repeat). On output,

the elements are written in the order that is specified in the logical

message model definition.

Choice

A choice cannot be resolved purely from the data. The receiving program

must interpret the data and decide which option of the choice the message

instance contains. This process is known as unresolved choice handling. The

first reference in the application to any one of the choice elements resolves

the choice to the option that contains that element.

Message

Mechanisms for the resolution of embedded messages are discussed in the

“Custom wire format: Multipart messages” on page 42 topic.

Content validation: CWF is a fixed format, and all elements must be present in a

message. Therefore, content validation is ignored. On output, all elements must be

set explicitly (for example, using ESQL SET), set implicitly (using a tree copy

function), or must have a default value defined.

Default values: On output of a CWF message in the MRM domain, any element, or

occurrence of an element for which a value has not been set (either explicitly or

implicitly), inherits the element’s specified default value. If no default value has

been specified then an exception is thrown.

Min Occurs and Max Occurs: The logical properties Min Occurs and Max Occurs

specify the permitted number of occurrences of an element, or group, in a message.

These properties are used when parsing and writing messages, and when

validating the content of a message.

Developing message models 43

In CWF, Max Occurs occurrences are expected when parsing, and Max Occurs

occurrences are output when writing. Default values are used for missing elements,

and any excess elements are discarded.

v A varying number of occurrences (Min Occurs <> Max Occurs) is ignored, Max

Occurs is assumed.

v Optional occurrence (Min Occurs = 0) is ignored, Max Occurs is assumed.

v Always absent (Max Occurs = 0) is allowed.

v An unbounded number of occurrences (Max Occurs = -1) is allowed if the

element or group is the last child in its parent group, and the group is

terminated by the end of the message bit stream. On writing, the writer outputs

all occurrences in the message tree, if this number is less than Min Occurs then

additional default values are written.

These rules arise because, in a CWF message format, there are no tags or other

markup that can be used to determine the end of a variable number of repeats.

However this behavior is overridden if the CWF property Repeat Reference is set,

which indicates that the number of occurrences is given instead by an integer

element that occurs earlier in the message. In this case Max Occurs is ignored.

When validating, Min Occurs and Max Occurs are both used to check that the

content of the message tree matches the model.

Simple types – lists and unions: Lists and unions are XML-specific concepts. An

element or attribute of a simple type that is a list or a union will cause a task list

warning if a CWF physical format is present in the message set. The user can

choose whether to make this an error, warning, or information by editing the

Validation preferences. The dictionary generator will omit messages defined to

contain such elements or attributes from the CWF section of the dictionary.

MRM TDS format

The Tagged/Delimited String format (TDS) is the physical representation of a

message that has a number of data elements separated by tags and delimiters.

The TDS physical format is designed to model messages that consist of text strings,

but it can also handle binary data. Examples of TDS messages are those that

conform to the ACORD AL3, EDIFACT, HL7, SWIFT, or X12 standards. The TDS

physical format allows a high degree of flexibility when defining message formats,

and is not restricted to modeling specific industry standards; therefore, you can use

the TDS format to model your own messages.

TDS message characteristics: There are a number of features of text string

messages that are common to many formats. This is an overview of the main

features that are supported by the TDS physical format:

Tags The text strings in the message can have a tag or a label preceding the data

value. The tag is a string that uniquely identifies the data value. The TDS

format allows you to associate a tag with each element when you define

the element.

Delimiters and tagged data separators

The message can contain various special characters or strings in addition to

the tags and text string data values. The TDS format supports a number of

different types of special characters or strings.

 Some messages have a special character or string that separates each data

value from the next. In the TDS format this is a known as a delimiter.

44 Message Models

In formats that have a tag before each data value, the tag can be separated

from its data value by a special character or string. In the TDS format this

is known as a tag data separator.

Group indicators and terminators

A message can be split into a number of substructures in a similar manner

to a COBOL or C structure. You can model each of these substructures

separately by defining groups, complex types or elements for each one.

 A substructure can have a special character or string that indicates its start

within the data. This is known in the TDS format as a group indicator.

A substructure can also have a special character or string that indicates its

end in the data. In the TDS format, this is known as a group terminator.

A group indicator and group terminator can also be defined for the whole

message. Group indicators and group terminators are optional for the

message and each substructure.

Fixed length strings

Some text strings within a message can be of fixed length; therefore, a

delimiter between each data value is not necessary. This is supported by

the TDS format.

Fixed length tags

Some tags can be defined as fixed length; therefore, a tag data separator is

not necessary.

Separation types

The TDS property that controls the way text strings are separated is Data

Element Separation. It has several options that let you choose, for example,

whether tags are used, whether strings lengths are fixed or variable, and

what types of text strings are permitted.

 The substructures within a message can use different types of data element

separation and use different special characters. Therefore the TDS format

allows you to define different types of data element separation and special

characters for each complex type within the message.

Regular Expressions

If you choose the Use data pattern option for Data Element Separation,

you can use regular expressions to identify parts of the message data to be

assigned to sub-fields. This is done by setting the regular expression in the

Data Pattern property.

 The diagram below shows an example data message with each of its components

labeled.

Developing message models 45

v At the top level, each data value has a tag associated with it, each tag is

separated from its data value using a tag data separator of colon (:), and the data

values are separated from each other using the asterisk delimiter (*).

v The group indicator for the message is the left brace ({) and the group terminator is

the right brace (}).

v The data values Data2 and Data3 are in a substructure in which there are no

tags, and each data element is separated from the next using the plus delimiter

(+). The group indicator for this substructure is the left bracket ([) and the group

terminator is the right bracket (]).

v The data values Data4 and Data5 are in a substructure in which the values are

fixed length, and are therefore not separated by a delimiter. The group indicator

for this substructure is the less than symbol (<) and the group terminator is the

greater than symbol (>).

TDS format: Determining the length of simple data values:

The TDS format supports two categories of simple data types: textual and

non-textual.

 The Physical Type of an element determines whether it is categorized as textual or

non-textual.

Textual data

Physical Type is either Text or TLOG Specific. For textual data, the Data

Element Separation of the parent complex type or group determines how

the length of the data is determined. See “TDS format: Data element

separation” on page 47 and its subtopics.

Non-textual data

Elements of all other Physical Types are non-textual. The length of

non-textual data is determined by the Physical Type of the element. For

non-textual data, the Data Element Separation property of the parent

complex type or group does not determine the length, unless Data Element

Separation is Use Data Pattern. See “TDS format: Data pattern separation

types” on page 56 for more information.

 The following table describes how the length of data is determined for

each Physical Type.

{Tag1:Data1*Tag2:[Data2+Data3]*Tag3:<Data4Data5>}

Tag
Separator

Data Tag
Separator

Data Tag
Separator

Data

Delimiter DelimiterDelimiter

Tag TagTag

Group
Indicator

Group
Indicator

Group
Indicator

Group
Terminator

Group
Terminator

Group
Terminator

46 Message Models

Physical Type Determination of Length

Text

TLOG Specific

The Data Element Separation of the parent

complex type or group determines how the

length of the data is determined.

External Decimal

Integer

Packed Decimal

Float

Time Seconds

Time Milliseconds

Uses the value of the Length property of the

element.

If Physical Type is Time Seconds, the Length

property is set to 4. If Physical Type is Time

Milliseconds, the Length property is set to 8.

In neither case can this value be changed.

Length Encoded String 1

Length Encoded String 2

Uses the encoded length value in the data.

Null Terminated String Uses the null terminator at the end of the

data.

Binary Uses the value of the Length Reference or

Length property of the element.

TDS format: Data element separation:

Data element separation defines how a TDS message is to be parsed.

 Data element separation defines which method of identifying data elements is to

be used and how the data elements are constructed. The different methods vary

from full flexibility to fixed format, depending on how they are defined.

The four main types of data element separation are:

Fixed length types

Fixed length types are dependent on each element having a length. See

“TDS format: Fixed length separation types.”

Tagged separation types

Tagged separation types are dependent on each element having tag prefix

to identify it. See “TDS format: Tagged separation types” on page 49.

Delimited separation types

Delimited separation types use delimiters to identify the end of one data

elements and the beginning of the next. See “TDS format: Delimited

separation types” on page 51.

Data pattern types

Data pattern types use a regular expression to identify each element. See

“TDS format: Data pattern separation types” on page 56.

 There is a fifth category, which is different from the four described above:

Undefined separation types

Undefined separation types contain no data elements. They are applicable

to embedded messages only, and should not be used for anything else.

They use none of the TDS type-specific parameters other than Data

Element Separation. See “Multipart messages” on page 25.

TDS format: Fixed length separation types:

For fixed length separation types, each data value is a fixed length.

Developing message models 47

For fixed length data element separation types, all textual elements have a length

or length reference, and are padded out to their full length in the bit stream. No

tags or delimiters are used, and each data value directly follows the preceding data

value.

For example:

data1data200data30

The first element is length 5, the second is length 7 and the third is length 6. The

padding character is ″0″.

For non-textual elements, the length is determined by the Physical Type of the

element. See “TDS format: Determining the length of simple data values” on page

46.

Fixed length type: In fixed length type, all textual elements must have a length or

length reference, and must be written out to that full length. The elements must be

presented in the correct order, and all elements must be written in the bit stream.

This includes all repeats of any repeating element (that is, the Maximum

Occurrences must be written out for each element).

For non-textual elements, the length is determined by the Physical Type of the

element. See “TDS format: Determining the length of simple data values” on page

46.

For example:

data10data2data2data2data300

The first element is length 6, the second is length 5 and repeats three times, and

the third element is length 7. The padding character is ″0″.

Applicable parameters: The main parameters for this format are the Length or

Length Reference of the element. All fields must be padded out to their full length

for the bit stream to be correctly specified to the parser.

Tag and delimiter parameters are ignored. Group indicators and terminators are

observed, because they are of fixed length.

Default values are required for each field that might not be set, because then every

field can be output, even if it is not filled with data from the message.

Fixed length AL3 type (Deprecated): This separation type has been deprecated.

ACORD AL3 support will be provided by a different method in a future release, at

which time this separation type will be removed from service.

Fixed length AL3 types are similar to fixed length types, but follow extra rules that

are specified by the ACORD AL3 format regarding truncation and missing

elements. If elements are missing from the end of an AL3 type, they can be

truncated. They cannot be omitted from the middle of a bit stream. If a field is

missing from the middle of the bit stream, that field is output as the appropriate

length string of the ″?″ character.

Applicable parameters: The main parameters for this format are the Length or

Length Reference of the element. All fields must be padded out to their full length

for the bit stream to be correctly specified to a parser.

48 Message Models

Tag and delimiter parameters are ignored. Group Indicators and Terminators are

observed, because they are of fixed length.

TDS format: Tagged separation types:

For tagged separation types, each data value is preceded by a tag that is specified

as an element property.

 The Tag Data Separator, or specific Length of Tag parameter is used to determine

where the tag ends and the data starts. Different methods are used by each

separation type to determine the end of the data.

After considering these two parameters, this topic describes the following

supported tagged separation types:

v “Tagged Delimited separation”

v “Tagged Fixed Length separation” on page 50

v “Tagged Encoded Length separation” on page 50

Tagged separation is a flexible format. The elements do not have to occur in a

specific order. They do not all need to be present, and can be absent from any

point in the message.

Tag Data Separator and Tag Lengths: Either Tag Data Separator and Length of Tag

are used by all tagged separation types. But only one of these parameters can be

set at the same time.

The point at which a tag ends and data starts can be determined by one of two

methods. If the Tag Data Separator is set, then this character indicates where the

data ends. For example, the string might be:

tag1:data1

where Tag Data Separator is :

However if the Tag Data Separator is not set and the Length of Tag field is set,

then the tag is the specified length, and is immediately followed by the data. No

separating character is required. For example, the string might be:

tag1data1

where Length of Tag is 4

Tagged Delimited separation: Tagged Delimited separation is a completely flexible

format. Elements are separated by a predefined delimiter. The textual elements are

not of specific lengths. For non-textual elements, the length is determined by the

Physical Type of the element. See “TDS format: Determining the length of simple

data values” on page 46.

Applicable parameters: These parameters are used:

v Group Indicator indicates the start of a group or complex type.

v Group Terminator indicates the end of a group or complex type.

v Delimiter separates the data elements within a group or complex type.

v Tag for each element, indicates the tag needed to precede the data in that field.

v Either Tag Data Separator or Tag Length as described above.

Examples: If Tag Data Separator is set to :

Developing message models 49

{tag1:data1*tag2222222:data2*tag333:data3}

where:

v Group Indicator is {.

v Group Terminator is }.

v Delimiter is *.

v Tag defined for each element, is tag1 (for data1), tag2222222 (for data2), and

tag333 (for data3).

or, for example, if Length of Tag is set to 5

{tag11data1*tag22data2*tag33data3}

where parameters are as above, except:

v Tag, defined for each element (fixed at 5 characters), is tag11 (for data1), tag22

(for data2), and tag33 (for data3).

Tagged Fixed Length separation: Although Tagged Fixed Length separation is a

flexible format, the data must be a specific length. This means that a delimiter is

not needed to determine the end of each element.

Applicable parameters: These parameters are used:

v Group Indicator indicates the start of a group or complex type.

v Group Terminator indicates the end of a group or complex type.

v Tag for each element, indicates the tag needed to precede the data in that field.

v For each textual element, Length or Length Reference indicates the length of the

data (this value does not include the length of the tag). For non-textual elements,

the length is determined by the Physical Type of the element. See “TDS format:

Determining the length of simple data values” on page 46.

v Either Tag Data Separator or Tag Length as described above.

Examples: If Tag Data Separator is set to :

{tag1:data1tag22222222:data2000tag333:data300}

where:

v Group Indicator is {.

v Group Terminator is }.

v Delimiter is *.

v Tag, defined for each element, is tag1 (for data1), tag22222222 (for data2000), and

tag333 (for data300).

v Length, defined for each element, is 5 (data1), 8 (data2000), and 7 (data300).

or, for example, if Length of Tag is set to 5

{tag11data1tag22data2000tag33data300}

where parameters are as above, except:

v Tag, defined for each element (fixed at 5 characters), is tag11 (data1), tag22

(data2000), and tag33 (data300).

Tagged Encoded Length separation: This method has both a tag and a length field

before the data. The length field indicates to the parser the length of the data

following it.

50 Message Models

The length of this length field is itself defined in the Length of Encoded Length

parameter. Extra lengths to be added in this, such as the length of the field itself, is

set in the Extra Chars in Encoded Length parameter.

Only textual elements and elements with a Binary logical and physical type are

supported within a Tagged Encoded Length separation.

These examples show how the values set in these parameters are applied:

v tagA007dataAAAtagB006dataBBtagC009dataCCCCC

If Length of Tag is 4, Length of Encoded Length is 3, Extra Chars in Encoded

Length is 0, then in this bit stream, TagA is followed by the 3 character long

length field. This indicates that the following data (dataAAA) is 7 characters long.

The next field, tagB is then considered, and so on.

v tagA012dataAAAAAtagB010dataBBBtagC016dataCCCCCCCCC

If Length of Tag is 4, Length of Encoded Length is 3, Extra Chars in Encoded

Length is 3, then in this bit stream, TagA is followed by the 3-character length

field. This indicates that the following data, plus extra characters, is 12

characters long: length of the length field (3) + length of data (9) = 12. Therefore

the length of the actual data is only 12-3 = 9. The next field, tagB is then

considered, and so on. In each case the length given in the bit stream is 3 greater

than the actual length of the data.

Applicable parameters: These parameters are used:

v Group Indicator indicates the start of a group or complex type.

v Group Terminator indicates the end of a group or complex type.

v Tag for each element, indicates the tag needed to precede the data in that field.

v Length of Encoded Length indicates the length of the length field in the bit

stream.

v Extra Chars in Encoded Length indicates how many extra characters should be

included in calculating the value for the length field in the bit stream.

v Either Tag Data Separator or Tag Length as described above.

Examples: If Tag Data Separator is set to :

{tag1111:008data1tag222222222:010data2AAtag3333:009data3A}

where:

v Group Indicator is {

v Group Terminator is }

v Length of Encoded Length is 3

v Extra Chars in Encoded Length is 3

v Tag, defined for each element, is tag1111, tag222222222, tag3333 respectively

or, for example, if Length of Tag is set to 5

{tag11008data1tag22010data2AAtag33009data3A}

where parameters are as above, except:

v Tag, defined for each element (fixed at 5 characters), is tag11, tag22, tag33

respectively

TDS format: Delimited separation types:

Developing message models 51

For delimited separation types, a delimiter is used to separate data fields, but there

are no tags present. The data fields need to be given in the correct order in the bit

stream and elements cannot be omitted from the middle of the bit stream.

 The All Elements Delimited separation type means that data fields are delimited by

a pre-specified character or string. In this example, four data fields are separated

by an asterisk (*) delimiter:

data1*data2*data3*data4

Delimited separation types are restrictive in the ordering and presence of elements:

v The elements must be given in the order specified.

v No element can be omitted in the middle of a group or complex type, because

the parser cannot determine this from the resulting bit stream.

v Elements can sometimes be absent from the end of a complex type or group.

After considering “Delimiter suppression and truncation rules,” this topic describes

the following delimited separation types:

v “All Elements Delimited” on page 53

v “Variable Length Elements Delimited” on page 54

Delimiter suppression and truncation rules:

v Elements cannot be omitted from the middle of a group or complex type. An

absent element results in the inclusion of a zero-length string.

For example, with all elements present, the string might be:

data1*data2*data3*data4

where Delimiter is *

If data2 is missing, then the string would read:

data1**data3*data4

v It is possible to suppress the delimiters at the end of a string for absent

elements. The Suppress Absent Element Delimiter property determines whether

this is done. If this property is set to End of Type, this can be done (with one

exception, shown below).

In this case, for the above example with data3 and data4 missing, the string

would read:

data1*data2

That is, the delimiters have been suppressed from the end of this group or

complex type.

v If the Suppress Absent Element Delimiter property is set to Never, delimiter

suppression never takes place. The string would read:

data1*data2**

That is, the delimiters have to be present to indicate absent (zero-length)

elements.

An exception to the above rule occurs in the case where the same delimiters are

used at multiple levels in the model.

For example, you have a complex type or group with delimiter * and this

contains an element of another complex type (indicated by the element3 prefix

on data fields in the example below), which also has delimiter *. If both types

use a delimited separation type, with all elements present, you might have:

data1*data2*element3Data1*element3Data2*element3Data3*data4

52 Message Models

If element3Data2 and element3Data3 are missing, and the delimiters are

suppressed, it is not possible for the parser to determine which elements are

missing.

Therefore, in this case, you must override the Suppress Absent Element

Delimiter property, and write out all the delimiters to clearly define the message

to the parser. Therefore, the string must be:

data1*data2*element3Data1***data4

This restriction also applies where Group Indicators and Group Terminators use

the same character strings as delimiters; otherwise, the bit stream is not clear to

the parser.

All Elements Delimited: In an All Elements Delimited separation type, all elements

are separated by a delimiter; for example:

data1*data2*data3*data4*data5

where Delimiter is *.

An All Elements Delimited separation type does not use tags or their associated

parameters.

For textual elements, the length is determined by the delimiter, and the Length

property is ignored unless the Observe Element Length property is set.

For non-textual elements, the length is determined by the Physical Type of the

element. See “TDS format: Determining the length of simple data values” on page

46.

Applicable properties: These properties are used:

v Group Indicator indicates the start of a group or complex type.

v Group Terminator indicates the end of a group or complex type.

v Delimiter indicates the separator between the data elements within a group or

complex type.

v Suppress Absent Element Delimiters indicates whether delimiter suppression is

permitted (see below).

For example:

{data1*data22222*data3}

where:

v Group Indicator is {

v Group Terminator is }

v Delimiter is *

Repeating element rules: If an element needs to be repeated when the separation

type is All Elements Delimited, the Repeating Element Delimiter (RED), is used to

separate the repeated elements.

For example if data2 repeats 5 times:

data1*data2:data2:data2:data2:data2*data3*data4

where:

v Delimiter is *

v Repeating Element Delimiter is :

Developing message models 53

If the Suppress Absent Element Delimiters property is set to End of Type, you can

use delimiter suppression. Therefore, if only the first data2 element was present in

the previous example, the bit stream reads:

data1*data2*data3*data4

However, if the Suppress Absent Element Delimiters property is set to Never, the

bit stream reads:

data1*data2::::*data3*data4

If Delimiter and RED match, two delimiters are output to indicate that the repeat is

ending. Therefore, if the delimiter and RED are *, the bit stream reads:

data1*data2**data3*data4

Variable Length Elements Delimited: In a complex type with Variable Length

Elements Delimited separation, some elements are determined by their length, and

other elements are delimited. This combination of a delimited and a fixed length

format follows rules that are associated with both formats. Lengths can be given

and used, but they are not mandatory.

v If a length is present for a textual element, it is used, and a delimiter is not

needed to terminate that element. The element must be padded to the correct

length, and cannot exceed that length.

v If no length is given for a textual element, the delimiter is required.

v For non-textual elements, the length is determined by the Physical Type of the

element. See “TDS format: Determining the length of simple data values” on

page 46.

A complex type with Variable Length Elements Delimited separation that contains

only variable length elements resembles a acomplex type with All Elements

Delimited separation. If it contains only fixed length elements, it resembles a Fixed

Length type.

For example:

data1*data2*data3*data4000data5

where:

v Delimiter is *

v data4 has a length of 8

Applicable properties: The following properties are used:

v Group Indicator indicates the start of a group or complex type.

v Group Terminator indicates the end of a group or complex type.

v Delimiter indicates the separator between the data elements within a group or

complex type.

v Suppress Absent Element Delimiters indicates whether delimiter suppression is

permitted.

v (Optionally) Length or Length Reference indicates the length of a textual

element. If a textual element has a length, this length is used. Because the length

of this element is known, it is not necessary to output a delimiter after it. If the

length is not known, a delimiter is required. A delimiter is never required for a

non-textual element.

In this example, the fourth field (containing data4) is of fixed length 8 and its

padding character is 0:

54 Message Models

{data1*data22222*data3*data4000data5}

where:

v Group Indicator is {

v Group Terminator is }

v Delimiter is *

Repeating element rules: The action of a repeating element in a Variable Length

Elements Delimited environment is dependent on the minimum and maximum

number of repeats and whether the element has a length.

Delimited Element Repeating: If a delimited element (that is, an element with no

length) is repeated, then a Repeating Element Delimiter (RED) is required and the

rules for All Elements Delimited are followed. A delimiter is therefore required

after the last repeat. Delimiter suppression of this repeat can also occur.

For example, if data2 is repeating:

data1*data2:data2:data2:data2:data2:data2*data3*data4000data5

where:

v Delimiter is *

v Repeating Element Delimiter is :

v data4 has a fixed length of 8

If the Suppress Absent Element Delimiters field is set to End of Type then you can

use delimiter suppression.

If in the above example only the first data2 is present:

data1*data2*data3*data4000data5

However, if Suppress Absent Element Delimiters is set to Never, then the bit

stream reads:

data1*data2:::::*data3*data4000data5

If the delimiter and RED match, then two delimiters are output to indicate that the

repeat is ending. So if the delimiter and RED are both *, then the bit stream reads:

data1*data2**data3*data4

This also applies for a non-fixed length complex type or group inside a Variable

Length Elements Delimited environment.

Fixed Length Element Repeating: If an element with a defined length (a fixed length

element) is repeating and the minimum occurrences is not the same as maximum

occurrences, then an RED is not required, but a delimiter is required after the last

repeat. Delimiter suppression of this repeat can occur.

For example, if data4 (with a fixed length of 8) is repeating, and its minimum

occurrences is 2, maximum occurrences is 4:

data1*data2*data3*data400data400data400data400*data5

where Delimiter is *

Or, if there are only two occurrences of data4:

data1*data2*data3*data4000data4000*data5

Developing message models 55

If an element with a defined length (a fixed length element) is repeated, and the

minimum occurrences is the same as maximum occurrences, then an RED is not

required. A delimiter is also not required after the last repeat. Truncation of this

repeat cannot occur and all elements need to be present.

For example, if data4 (with a fixed length of 8) repeats four times:

data1*data2*data3*data4000data4000data4000data4000data5

where Delimiter is *

Or, if there are only two occurrences of data4:

data1*data2*data3*data4000data40000000000000000000data5

This also applies for a non-fixed length complex type or group inside a Variable

Length Elements Delimited environment.

If a complex type has Variable Length Elements Delimited separation, a delimiter

is always output between an included (’child’) complex element and the next

element even if the separation of the ’child’ complex element is Fixed Length. On

input, the parser accepts the bit stream with or without such a delimiter.

TDS format: Data pattern separation types:

For a data pattern separation type, each data value is matched with a regular

expression that is specified as a property of each element.

 The length of both textual and non-textual data is determined by the Data Pattern

property of the element. If the Physical Type of the element is Length Encoded

String 1 or Length Encoded String 2, the regular expression must match both the

encoded length and the following data. The length in the encoded length must be

consistent with the length matched by the regular expression. If the Physical Type

of the element is Null Terminated String, the regular expression must match both

the data and the following null terminator.

The Data Pattern separation type uses a regular expression that is specified for

each element to match the data. The parser matches the data with the regular

expression in the Data Pattern property for that element. TDS parsing in the MRM

parser uses the regular expression in Data Pattern to determine the length of the

element, whether it is repeating, and whether it is present in the bit stream.

No delimiters or tags, other than those coded as part of the regular expression

pattern, are used in the bit stream. See “Using regular expressions to parse data

elements” on page 757 for an explanation of pattern matching.

For example, if the first three Data Pattern properties are, respectively:

v [A-Z]{1,3}

v [0-9]+

v [a-z]*

and the message data is:

DT31758934information for you

Then, in this example:

v First data element = DT

v Second data element = 31758934

56 Message Models

v Third data element = information

The first data pattern means ″from one to three characters in the range A to Z″, the

second means ″one or more characters in the range 0 to 9″, and the third means

″zero or more characters in the range a to z″. Note how each element’s data was

terminated by the first character that did not match the element’s Data Pattern.

If the TDS message that is being parsed is encoded in a single-byte code page, the

Data Pattern property can include hexadecimal values. A hexidecimal value is

specified as \xNN, where N is a hexadecimal digit in the range 0 to F. Note,

however, that the value \x00 is not valid.

Performance issues

The parsing required in Data Pattern separation type is the slowest of all the

different separation types because of its complexity.

Therefore, use Data Pattern separation type only when no other separation type

models the message. Do not use it, for example, when you can use Fixed Length

separation type.

Applicable parameters: Only one parameter is used:

Data Pattern for each element, indicates the regular expression that is used for

string matching.

TDS format: Message model integrity: When you use the TDS wire format, you

must conform to a number of rules that apply to the setting of values of properties.

This is necessary to avoid any discrepancies when processing a message within the

specified model.

Rules of TDS physical format properties: Restrictions to message formats are checked.

These will follow the rules specified in “TDS message model integrity” on page

753. The majority of rules are applied for at least one of these reasons:

Rules for message definition

Some rules are necessary for the message to be completely defined.

 For example, in a Fixed Length separation type all elements must have

some length defined, either directly or by using a Length Reference.

Without this information, it is impossible to tell in the message bit stream

where one data element ends and the next starts.

Rules for nesting

Nesting rules relate to which separation types can be nested inside each

other.

 Such rules are applied when an element of a complex type is present

inside another complex type. An example of this would be that it is not

possible to have a Tagged Delimited separation type inside a Fixed Length

type. Since a Tagged Delimited separation type is of variable length, the

parent Fixed Length type would be unable to tell where that particular

element ended, as there would be no length provided. Therefore the

message could not be processed.

Rules linking to the logical model

There are also rules linking TDS to the logical model.

Developing message models 57

These occur where a group composition or group content validation cannot

be used in conjunction with a particular separation type. Again this is for

message integrity. For example, a separation type of All Elements

Delimited cannot have a group composition of Open, as there is no

information as to what the extra elements represent and where they are in

the bit stream.

TDS format: NULL handling:

NULL handling dictates the way in which the MRM parser for TDS messages

handles elements that have been set to Null.

 Null handling only takes place if the logical Nillable property of the element is set.

The rules for whether nulls are permitted are described in “TDS Null handling

options” on page 751.

Null properties: The element properties Encoding Null and Encoding Null Value

control how null handling is represented for individual elements.

You can select the Encoding Null property from the enumerated values

NULLPadFill, NULLLogicalValue, NULLLiteralValue, and NULLLiteralFill. The use

of the Encoding Null Value property is dependent on the value that you select for

the Encoding Null property.

NULL values are not defined for schema xsd:hexBinary simple types. The

properties Encoding Null and Encoding Null Value are therefore not set for

xsd:hexBinary types.

NULL values for schema Boolean simple types are defined at the message set level.

The message set property Boolean Null Representation specifies the value to be

used for Boolean Null representation.

TDS format: Multipart messages:

The Tagged/Delimited String Format (TDS) supports both the Message Identity

technique and the Message Path technique of identifying embedded messages

within a multipart message.

 The SWIFT, X12 and EDIFACT messaging standards can all be modeled using the

Message Identity technique.

Versions of the TDS physical format prior to Version 6.0 included embedded

message identification by Message Key which worked in a similar manner to

Message Identity, but which applied to TDS only. The Message Key technique has

been deprecated and is superseded by Message Identity. Warning task list

messages are issued if the use of Message Key is detected, and a task list Quick Fix

may be selected to create the equivalent Message Identity automatically. You must

continue to use Message Key if the MRM parser that you are deploying to is

Version 5.0.

TDS format: Data conversion: All TDS message data apart from binary types are

handled as strings. All string data is therefore subject to CCSID conversion only.

This includes the special characters used as delimiters, data separators, and so on.

TDS format: Relationship to the logical model:

58 Message Models

There are some restrictions between TDS separation types and logical model

properties such as group composition and group content validation.

 The rules that govern these options are explained in “Restrictions for nesting

complex types” on page 755.

These rules exist to ensure the integrity of the message. A combination of

separation type and group composition or group content validation must not lead

to a message that is unclear to a TDS parser.

Default values

In TDS, Default values are only observed by fixed length elements:

 Separation Type Use of Default values

Tagged Delimited

Tagged Fixed Length

Tagged Encoded Length

All Elements Delimited

Data Pattern

Default values are never observed.

Fixed Length

Fixed Length AL3

Default values are observed on output by all elements.

An absent element that has no Default value defined,

will cause an error on writing.

Variable Length Elements Delimited Default values are only observed by fixed length

elements on output. Absent fixed length values must

have a Default value available to them. An absent

element that has no Default value defined, will cause an

error on writing.

Simple types – lists and unions

Lists and unions are XML-specific concepts. An element or attribute of a simple

type that is a list or a union will cause a task list warning if a TDS physical format

is present in the message set. The user can choose whether to make this an error,

warning, or information by editing the Validation preferences. If a dictionary is

generated from the message set, and an attempt is made to parse a TDS message

defined to contain such elements or attributes, a runtime error will occur.

Min Occurs and Max Occurs

The logical properties Min Occurs and Max Occurs specify the permitted number

of occurrences of an element or group in a message. They are used when parsing

and writing messages, and when validating the content of a message.

When parsing and writing, the exact interpretation of these properties depends on

the Data Element Separation property of the parent complex type or group as

shown in the table below.

However, this behavior is overridden if the TDS Repeat Reference property is set,

which indicates that the number of occurrences is given instead by an integer

element that occurs earlier in the message. See “Repeat reference” on page 61 for

more information.

When validating, Min Occurs and Max Occurs are both used to check that the

content of the message tree matches the model.

Developing message models 59

Separation type Interpretation of Min Occurs and Max Occurs

Tagged Delimited

Tagged Fixed Length

Tagged Encoded Length

Min Occurs and Max Occurs are effectively ignored when parsing and writing. When

parsing, the number of occurrences is identified by the tags in the message. When

writing, the writer outputs all occurrences in the message tree.

v A varying number of occurrences (Min Occurs <> Max Occurs) is allowed.

v Optional occurrence (Min Occurs = 0) is allowed.

v Always absent (Max Occurs = 0) is allowed.

v An unbounded number of occurrences (Max Occurs = -1) is allowed.

All Elements Delimited Max Occurs only is used when parsing and writing, in conjunction with the element’s

Repeating Element Delimiter property, and the parent type’s Suppress Absent Element

Delimiters property.

A varying number of occurrences (Min Occurs <> Max Occurs) is allowed if Suppress

Absent Element Delimiters is set to End of Type.

v If the Delimiter is different to the Repeating Element Delimiter then the Delimiter

will signify the end of the occurrences.

v If the Delimiter is the same as the Repeating Element Delimiter then an empty

repeat signifies the end of the occurrences.

v In both these cases, Max Occurs is the maximum number of repeats that are

expected.

If Suppress Absent Element Delimiters is Never, then all occurrences are expected

when parsing, and output when writing, although parsing will accept elements being

absent.

Optional occurrence (Min Occurs = 0) is ignored and a delimiter is still expected

when parsing, and output when writing.

Always absent (Max Occurs = 0) is allowed. No delimiter is expected when parsing,

nor output when writing.

An unbounded number of occurrences (Max Occurs = -1) is only allowed if the

Repeating Element Delimiter is different from the Delimiter. The repeats must be

terminated by the delimiter, or a containing group’s Group Terminator or Delimiter,

or by the end of the message bit stream. On writing, the writer outputs all

occurrences in the message tree.

Fixed Length

Fixed Length AL3

Max Occurs only is used when parsing and writing. In general, Max Occurs

occurrences are expected when parsing, and Max Occurs occurrences are output when

writing; default values are used for missing elements, and any excess elements are

discarded.

A varying number of occurrences (Min Occurs <> Max Occurs) is ignored, Max

Occurs is assumed.

Optional occurrence (Min Occurs = 0) is ignored, Max Occurs is assumed.

Always absent (Max Occurs = 0) is allowed.

Fixed Length only. An unbounded number of occurrences (Max Occurs = -1) is

allowed if the element or group is the last child in its parent group, and the group is

terminated by a Group Terminator or a containing group’s Group Terminator or

Delimiter or by the end of the message bit stream. On writing, the writer outputs all

occurrences in the message tree, if this number is less than Min Occurs then

additional default values are written.

60 Message Models

Separation type Interpretation of Min Occurs and Max Occurs

Variable Length Elements

Delimited

For fixed length simple elements, the rules for Fixed Length separation above are

followed with two differences.

1. A varying number of occurrences (Min Occurs <> Max Occurs) is allowed, the

end of the occurrences being signified by an extra delimiter.

2. An unbounded number of occurrences (Max Occurs = -1) is allowed, the end of

the occurrences being signified by an extra delimiter. On writing, the writer

outputs all occurrences in the message tree, followed by an extra delimiter.

For variable length simple elements, all complex elements and groups, the rules for

All Elements Delimited above are followed.

Data Pattern Min Occurs and Max Occurs are effectively ignored when parsing and writing. When

parsing, the pattern is matched as many times as possible. When writing, the writer

outputs all occurrences in the message tree. Note that on parsing, if the data pattern

permits a zero length match, and a zero length match occurs, an element is added to

the message tree and the matching terminates to prevent an infinite loop.

A varying number of occurrences (Min Occurs <> Max Occurs) is allowed.

Optional occurrence (Min Occurs = 0) is allowed. Always absent (Max Occurs = 0) is

allowed.

An unbounded number of occurrences (Max Occurs = -1) is allowed.

Repeat reference

The TDS property Repeat reference specifies a field that holds the number of

repeats of an object (Element or Group) within a message. The field that holds the

number of repeats must be within the message before the object that it refers to.

From a parsing perspective, the Repeat reference property replaces the role of the

minOccurs and maxOccurs properties.

If a value for the Repeat reference property is specified for an object, values that

are specified for minOccurs and maxOccurs are ignored when parsing and writing.

However, values that are specified for minOccurs and maxOccurs are used by

logical validation.

When parsing and writing, the exact interpretation of the Repeat reference

property depends on the Data Element Separation property of the parent complex

type or group as shown in the table below.

 Separation type Interpretation of Repeat reference

Tagged Delimited

Tagged Fixed Length

Tagged Encoded Length

Repeat reference is effectively ignored when parsing and writing. When parsing, the

number of occurrences is identified by the tags in the message. When writing, the

writer outputs all occurrences in the message tree.

Developing message models 61

Separation type Interpretation of Repeat reference

All Elements Delimited Repeat reference is used when parsing and writing, in conjunction with the element’s

Repeating Element Delimiter property, and the parent type’s Suppress Absent Element

Delimiters property.

A Repeat reference is allowed only if the parent complex type or group has Suppress

Absent Element Delimiters set to Never. All Repeat reference occurrences are expected

when parsing, and output when writing. However, parsing accepts elements being

absent.

Repeat reference = 0 is allowed. No delimiter is expected when parsing, nor output

when writing.

Fixed Length

Fixed Length AL3

Repeat reference is used when parsing and writing. Repeat reference occurrences are

expected when parsing, and are output when writing, with default values used for

missing elements.

Repeat reference = 0 is allowed.

Variable Length Elements

Delimited

For fixed length simple elements, the rules for Fixed Length separation above are

followed.

For variable length simple elements, all complex elements and groups, the rules for

All Elements Delimited that are listed above are followed.

Data Pattern Repeat reference is effectively ignored when parsing and writing. When parsing, the

pattern is matched as many times as possible. When writing, the writer outputs all

occurrences in the message tree. Note that, on parsing, if the data pattern permits a

zero length match, and a zero length match occurs, an element is added to the

message tree and the matching terminates to prevent an infinite loop.

MRM XML physical format

The MRM XML physical format describes the physical representation of an XML

message for use by the MRM parser.

An XML wire format describes the physical representation of a message that is

written according to the standards given in the W3C Extensible Markup Language

(XML) specification. The wire format defines information that is used to parse or

write XML messages in a runtime environment such as a broker. XML versions 1.0

and 1.1 are both supported.

You can add more than one XML physical format to a message set, but within that

message set, each physical format must have a unique name. The default name for

an XML wire format is XML1. The physical format name identifies the definitions

that are to be used by the message broker at runtime.

After adding an XML physical format, all XML properties for all existing objects in

the message set will be set to default values. Thus, immediately after adding the

format and deploying the message set to a runtime environment, it is possible to

process XML messages using MRM features.

You can configure XML properties for the message set, and for objects within the

message set. Objects that can have XML properties are messages, elements, and

attributes. For example, a message object can be customized to define a specific

DTD declaration on output; an element can have a tag name assigned to it which

is different from its element name in the model.

62 Message Models

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml

Adding an XML wire format to a message set allows you to both process input

messages, and to construct output messages in this format. You can also transform

messages between XML and either CWF or TDS.

XML messages are, by their nature, self-describing: each piece of data is prefixed

by a tag name or an attribute name. Therefore, it is possible for an XML message

instance to contain elements which are not in the definition for that message.

v If such an element exists in the message set, the model objects for that element

are used in parsing or writing the message.

v If the element does not exist in the message set, it is treated as a self-defining

element and its data type is set to string.

Although it is possible to define an XML message, ’by hand’, using the Message

Definition Editor, WebSphere Message Broker also provides importers for both

XML Schema and DTD, and these are often quicker and easier than manual

definition.

XML wire format: Message model integrity: When you save a message definition

file, the definitions that it contains are checked to ensure that they make sense and

provide sufficient information about the message. This action is called model

validation.

For XML, these checks mostly concern the uniqueness and validity of XML names

in global elements and attributes, and also for elements and attributes within

complex types or groups.

Tests other than these tend to be both simple and obvious so that, for example, the

message set property First Day of Week has to be the name of a day in the week.

MRM XML physical format: NULL handling:

The purpose of null handling is to specify how messages will deal with null

values; that is, the absence of a meaningful value for an element.

 Null properties for the MRM XML physical format are set for the message set only,

and apply to all the defined objects within the message set, using the four

properties Encoding Null Num, Encoding Null Non-Num, Encoding Null Num Val

and Encoding Null Non-Num Val.

Null handling only takes place if the logical Nillable property of the element is set.

The purpose of these parameters is to specify how messages deal with null values.

In an XML message there are several options. Most obviously an element could

simply omit a value, for example:

<element1></element1>

Or, the element could include a distinctive value that means that no real value is

present, for example.

<element1>null</element1>

Or, the element could follow XML Schema instance rules:

<element1 xsi:nil="true"/>

The properties Encoding Null Num and Encoding Null Non-Num specify the style

of null handling, for example, that null is represented by an empty element.

Developing message models 63

The properties Encoding Null Num Val and Encoding Null Non-Num Val provide

a value (if needed) to represent a null value. For an element of type string, this

might be null or unspecified while for a number it might be 0 or 0.0.

MRM XML physical format: Multipart messages: If you are using the MRM

XML physical format, an embedded message can be identified in any of the

following ways:

v Message Identity

See “Identifying an embedded message using a Message Identity” on page 26.

v Message Path

See “Identifying an embedded message using a Message Path” on page 28.

v Automatic

The MRM parser identifies the message by matching the next XML tag in the bit

stream against the XML Name of a message definition.

If you choose the Message Identity or Message Path technique, the MRM parser

still checks that the next XML tag name matches the XML Name of the message

that was identified. If the XML Name does not match, an exception is thrown.

Where you have defined the embedded message in a different message set, you

need to use a Message Set Identity element or attribute value to specify the target

message set.Note that the message sets within which the root and subsequent

embedded messages are defined must be consistent in their use of the ’Use

Namespace’ property of the message set. That is, embedded messages that are

defined in a namespace-aware message set and that are contained within a parent

message that is defined in a message set that is not namespace-aware, are not

supported. Similarly, embedded messages that are defined in a message set that is

not namespace-aware and that are contained within a parent message that is

defined in a namespace-aware message set, are not supported.

If the embedded message definition is a complex type, the message definition will

contain a complex element based on that complex type. This complex element will

have its own tag, which will appear in the bit stream before the tag for the

embedded message. If you want to avoid this extra tag, you can create the

embedded message definition from a group, and insert the group at the

appropriate position in the message model.

Tip: Note that the root tag property of an embedded message is not applicable.

MRM XML physical format: relationship to the logical model: The MRM XML

physical format generally respects all of the setting in the logical model, but shares

certain restrictions in common with the other physical formats. These restrictions

are documented in “MRM restrictions” on page 727.

Default values

The MRM XML physical format ignores default and fixed values on elements and

attributes. If validation is enabled in WebSphere Message Broker, this can lead to

unexpected validation errors for missing elements, even though they have default

or fixed values.

Simple types – unions and lists

The XML properties of an element or attribute of a simple type that is a union or

list vary depending on the members of the union or the itemType of the list. If the

64 Message Models

union or list includes a dateTime type (or other date/time related type) the Date

Format field will be displayed. If the union includes a binary type, the Encoding

field will be displayed.

Min Occurs and Max Occurs

The logical properties Min Occurs and Max Occurs specify the permitted number

of occurrences of an element or group in a message. They are used when

validating the content of a message.

When parsing and writing, using the MRM XML physical format, Min Occurs and

Max Occurs are effectively ignored. When parsing, the number of occurrences is

identified by the tags in the message. When writing, the writer outputs all

occurrences in the message tree.

v A varying number of occurrences (Min Occurs <> Max Occurs) is allowed.

v Optional occurrence (Min Occurs = 0) is allowed.

v Always absent (Max Occurs = 0) is allowed

v An unbounded number of occurrences (Max Occurs = -1) is allowed.

When validating, Min Occurs and Max Occurs are both used to check that the

content of the message tree matches the model.

MRM XML physical format: Handling xsi:type attributes: The prefix ″xsi″ is the

namespace prefix used by convention for the XML Schema instance namespace.

XML documents can contain elements that have an xsi:type attribute. This provides

an explicit data type for the element.

The MRM XML parser in sensitive to xsi:type attributes in the XML document. It

modifies the data type of the element accordingly and adds the xsi:type attribute

into the message tree.

The MRM XML writer is sensitive to xsi:type attributes in the message tree. It

outputs xsi:type attributes according to XML Wire Format message set property

Output policy for xsi:type attributes. For example, xsi:type attributes can be

removed, output on all elements or output according to rules specified in the

SOAP standard.

If validation is enabled for a WebSphere Message Broker message flow, the

validation logic is sensitive to xsi:type attributes and uses them to modify the

validation of the element. It will also validate the values of xsi:type attributes

using the rules described in XML Schema Part 1: Structures on the World Wide

Web Consortium (W3C) Web site.

There are several important points to remember when parsing and writing XML

documents that contain xsi:type attributes.

v In order to detect and use xsi:type attributes, the message set must be

namespace-enabled. To make a message set namespace-enabled, check the

message set property Use namespaces.

v If the value of the xsi:type attribute contains a namespace prefix, the prefix will

be expanded into a fully-qualified URI by the MRM XML parser. If the same

xsi:type attribute is output later by the MRM XML writer, the same prefix will

not automatically be used for the value. You can control the prefixes used on

output using the Namespace settings list in the XML Wire Format message set

properties. If no prefix is supplied, the XML writer will assign a default prefix.

Developing message models 65

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/TR/xmlschema-1/

v If the xsi:type attribute of an element does not resolve to a type in the model,

then the behaviour depends on whether MRM validation is enabled. If not

validating, the MRM will assume the type of the element is that declared in the

model, and continue. If validating, a validation exception will be thrown.

v If MRM validation is enabled, any required xsi:type attributes must be present in

the message tree at the point when validation is performed. An xsi:type attribute

is required when its value is different from the data type of the element as

defined in the message model (this most commonly occurs when using XML

Schema type derivation).

– If validation is being performed on an input message, then the MRM XML

parser ensures that xsi:type attributes appear in the message tree, as described

above.

– If validation is being performed on an output message you must ensure that

the correct xsi:type attributes appear in the message tree. You should ensure

that any required xsi:type attributes are copied from input message tree to

output message tree, or are explicitly created in the output message tree.
v If you are using simple types that are xsd:unions then an xsi:type attribute can

be used to direct the MRM XML parser when resolving the union.

v If you have migrated from an earlier version of WebSphere Message Broker that

was not sensitive to xsi:type attributes, you might notice some changes of

behavior. For example, xsi:type attributes are no longer treated as self-defining

attributes, so they appear in the message tree with the name ‘type’ instead of

‘@type’. If your message flow logic is sensitive to xsi:type attributes in the

message tree, change your message flow to comply with the current behavior. If

you want to retain logic from an earlier version of WebSphere Message Broker in

your message flows, this is described in Message flow migration notes.

For more information about xsi:type attributes, see XML Schema Part 0: Primer on

the World Wide Web Consortium (W3C) Web site.

Ways to create message definitions

When you have created a message set, you need to populate your message set

with message definitions.

You can do this in one of the following ways:

v By importing application message formats that are described by XML Schema,

IBM supplied messages, XML DTD, C structures, COBOL structures, or WSDL

definitions; use the wizards that are invoked from the New Message Definition

File From ... wizard to do this.

v By creating empty message definition files and then creating your messages

using the Message Definition Editor; use the New Message Definition File

wizard to do this.

v By importing EIS metadata using the Adapter Connection wizard.

Additionally, you can import application message formats using the

mqsicreatemsgdefs or mqsicreatemsgdefsfromwsdl command line utilities.

The mqsicreatemsgdefs command has a bulk import capability, but

mqsicreatemsgdefsfromwsdl imports only one WSDL definition at a time.

Importing from other model representations to create message

definitions

One way to add message definitions to your message set is to import existing

application message formats.

66 Message Models

http://www.w3.org/TR/xmlschema-0/

You can import the following message formats into a message set:

v XML Schema files

v IBM supplied messages

v XML DTD files

v C header files

v COBOL copybooks

v WSDL definitions

v EIS metadata

When you import one of these formats, a new message model is created that

consists of the elements, attributes, groups and types that are needed to represent

your message format. You choose the name of the message definition file; if it

already exists, the content is deleted and recreated as part of the import operation.

The new message model that is created can consist of both logical and physical

information, if appropriate physical formats exist in the message set at the time of

the import.

“Ways to create message definitions” on page 66 describes the wizards that you

can use.

You can also import C header files, COBOL copybooks, XML DTD files, or XML

Schema files using the mqsicreatemsgdefs command line utility. The

mqsicreatemsgdefs command allows you to import several message format files in

a single operation, and allows you to create a new message set (based on an

existing message set) into which the message definition files are placed.

WSDL definitions can be imported using the mqsicreatemsgdefsfromwsdl

command line utility. This imports only one WSDL definition at a time.

Client application access to messages: Client applications need access to message

definitions to be able to construct the messages that they send, and to interpret the

messages that they receive.

v If the message formats have been imported from C or COBOL structures using

the workbench, your applications can continue to use the same C and COBOL

data structures that were imported to create the message dictionary that will be

used by the brokers.

v If the messages are self-defining XML, the client applications must construct

valid messages using the structures that can be understood by the recipients of

the message.

Importing from XML Schemas to create message definitions: You can populate a

message set with message definitions by importing XML Schema files, using the

New Message Definition File From XML Schema file wizard, the Start from

WSDL and/or XSD files quick start wizard, or the mqsicreatemsgdefs command

line utility.

Each XML Schema file that you import results in a new message definition file

within the message set. The root name of the message definition file defaults to the

root name of the XML Schema file, but the New Message Definition File From

XML Schema file wizard allows you to choose a different root file name.

Developing message models 67

If the message definition file already exists, you must have permitted overwriting

to occur for the import to proceed, in which case the existing content is deleted

and recreated.

The namespace to which the message definition file created belongs depends on

whether namespaces have been enabled for the message set.

v If namespaces have been enabled, the message definition file belongs to the

target namespace of the XML Schema file that is imported.

v If namespaces have not been enabled for the message set, the message definition

file belongs to the noTarget XML namespace irrespective of the target namespace

of the imported XML Schema file and therefore resides in the (default) location

in your workspace. The implications of importing into a message set with

namespaces disabled are described in “Importing XML Schema into message sets

with namespaces disabled” on page 69.

A report file is created during the import operation. This is located by default in

the log folder of the message set. By default it takes the name of the message

definition file, with .report.txt appended.

Import using the New Message Definition File From XML Schema file wizard: When

you import using the New Message Definition File From XML Schema file

wizard, you can specify which of the global elements or global complex types

within the imported XML Schema file are to be messages within the message

definition file.

You can only import one XML Schema file with each import operation. If your

XML Schema file references other XML Schema files, with import or include

elements, these XML Schema files must be imported into the same message set

using a separate import operation.

Import using the command line: When you import using the command line you

have the option of either creating no messages or creating a message for each

global element and global complex type within the imported XML Schema file. The

import operation creates a message and corresponding global element in the

message definition file for each global element you specify. If you do not specify

that messages are to be created, you must create them manually using the message

definition editor after the import has completed.

You can import several XML Schema files in each import operation.

Physical information: As well as creating logical information, the import can also

create physical information. If the message set contains any XML wire format

physical formats, then the physical format properties for all XML Wire Format

layers is populated. If the message set does not contain any XML physical formats,

only logical information is created. Also, if you import from the command line,

only logical information is created in the new message set by default. If you want

physical information created as well, see “Importing from the command line” on

page 130 for details.

MRM CWF and TDS physical format properties are not populated and so take

default values.

If you have one or more CWF or TDS layers, the import can cause entries in the

task list, warning you that certain CWF or TDS properties must be set if the XML

structures you have imported are to appear in a CWF or TDS message.

68 Message Models

If the CWF or TDS physical formats are not applicable to your XML structures, you

can ignore these task list entries because they are just warnings, they do not

prevent your model being generated in another form; for example, as a message

dictionary.

Command line invocation: The mqsicreatemsgdefs command line utility allows you

to import several XML Schema files in a single operation. All the XML Schema files

must be in single directory, and the directory location must be passed as a

parameter to the utility.

When you import into a message set for which namespaces are not enabled, the

action to take for unsupported constructs can be specified using an XML options

file. This must contain an XML element called <XSD_NO_NS> that holds a set of

information that applies to all XML Schema files that are imported during an

invocation of the utility. A default XML options file, called mqsicreatemsgdefs.xml,

is supplied. If you want to apply different sets of information to different XML

Schema files, you must create multiple XML files and run the utility multiple

times.

When you are importing into a message set for which namespaces are not enabled,

there are two other options that you can specify in the <XSD_NO_NS> element in the

XML options file:

v The prefix to use for the http://www.w3.org/2001/XMLSchema-instance

namespace; the default is xsi.

v Additional namespace URI and prefix pairs.

The mqsicreatemsgdefs utility also allows you to create a new message set into

which the message definition files are placed, as part of the import operation. You

can also choose to base the message set created on an existing message set. This

facility enables you to prepare an empty message set that contains a XML physical

format and pre-populated message set level XML properties, which are then copied

into the message set that is created by the import.

Further information about XML Schema: For details about XML Schema, see XML

Schema Part 0: Primer on the World Wide Web Consortium (W3C) Web site.

Importing XML Schema into message sets with namespaces disabled:

You can import an XML Schema file with a target namespace even if the message

set does not have namespaces enabled.

 When you import an XML Schema file with a target namespace into a message set

for which namespaces have not been enabled, the created message definition file is

placed in the XML no target namespace. In some cases, this action can lead to

name conflicts if global constructs have the same name in different namespaces in

the XML Schema files imported into the same message set. These conflicts cause

error entries in the task list that you must resolve before generating the model in

another format, such as a message dictionary.

Because all the message definition files are in the XML no target namespace, the

namespace information associated with the XML Schema file is lost. However, the

importer provides a limited form of namespace support by prefixing the XML

names in the XML Wire Format layers with a namespace prefix. To allow this

namespace support to work, an imported XML Schema file must specify an xmlns

attribute with a non-empty prefix for the target namespace of the XML Schema file.

This prefix is used in the XML names in the XML Wire Format layers.

Developing message models 69

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/

Therefore you cannot specify the target namespace of the XML file as the default

namespace. Each namespace in the XML Schema files must use a unique prefix

and the same namespace must always use the same prefix. Any XML instance

documents against which you match any of the forms generated from the model,

must also use the same prefixes for the namespaces.

The XML Schema importer creates a number of optional attributes in an attribute

group to represent namespace information. This attribute group is referenced by

the type of any message. An attribute is created to represent the location of the

XML Schema file, and an attribute is created to represent the mapping of the prefix

to the http://www.w3.org/2001/XMLSchema-instance namespace. An attribute is

also created for each xmlns attribute in the XML Schema document.

When importing using the Message Definition File wizard the prefix

http://www.w3.org/2001/XMLSchema-instance namespace can be changed and

additional namespace URI/prefix pairs added using the last panel of the Message

Definition File wizard. When you use the mqsicreatemsgdefs command line utility,

the same modifications can be made using the XML options file.

Further information about XML Schema: For details about XML Schema, see XML

Schema Part 0: Primer on the World Wide Web Consortium (W3C) Web site.

Importing from IBM supplied messages to create message definitions:

You can add messages to a message set by importing IBM supplied messages

using the New Message Definition File From IBM supplied messages wizard.

 Each IBM supplied message that you import results in a new message definition

file within the message set. The name of the message definition file defaults to the

name of the IBM supplied message, but the New Message Definition File From

IBM supplied messages wizard allows you to choose a different file name.

See “Importing from the command line” on page 130 for information about what

IBM supplied messages can be imported.

When you import using the New Message Definition File From IBM supplied

messages wizard, you can specify only one IBM supplied message definition for

each import operation.

If the message definition file already exists, you must have permitted overwriting

to occur for the import to proceed, in which case the existing content is deleted

and recreated.

A report file is generated during the import operation that allows you to examine

what occurred during the import process and check any errors that resulted.

Importing from DTDs to create message definitions: You can populate a

message set with message definitions by importing DTD files, using either the

New Message Definition File From XML DTD file wizard or the

mqsicreatemsgdefs command line utility.

Each XML DTD file that you import results in a new message definition file within

the message set. The root name of the message definition file defaults to the root

name of the XML DTD file, but the New Message Definition File From XML

DTD file wizard allows you to choose a different root file name.

70 Message Models

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/

If the message definition file already exists, you must have permitted overwriting

to occur for the import to proceed, in which case the existing content is deleted

and recreated.

All message definition files that are created as a result of DTD file import belong

to the noTarget XML namespace and so reside in the (default) location in your

workspace.

A report file is created during the import operation. This is located by default in

the log folder of the message set. By default, it takes the name of the message

definition file, with .report.txt appended.

Import using the New Message Definition File From XML DTD file wizard: When you

import using the New Message Definition File From XML DTD file wizard, you

can specify which of the elements within the imported XML DTD file are to be

messages within the message definition file.

You can import only one XML DTD file with each import operation.

Import using the command line: When you import using the command line you

have the option of either creating no messages or creating a message for each

element within the imported XML DTD file. The import operation creates a

message and a corresponding element in the message definition file for each

element that you specify. If you do not specify that messages are to be created, you

must create them manually using the message definition editor after the import

has completed.

You can import several XML DTD files in each import operation.

Physical information: As well as creating logical information, the import can also

create physical information. If the message set contains any XML wire format

physical formats, the physical format properties for all XML Wire Format layers is

populated. If the message set does not contain any XML physical formats, only

logical information is created. Also, if you import from the command line, only

logical information is created in the new message set by default. If you want

physical information created as well, see “Importing from the command line” on

page 130 for details.

MRM CWF and TDS physical format properties are not populated and therefore

take default values.

If you have one or more CWF or TDS layers, the import can cause entries in the

task list, warning you that certain CWF or TDS properties must be set if the XML

structures that you have imported are to appear in a CWF or TDS message.

If the CWF or TDS physical formats are not applicable to your XML structures, you

can ignore these task list entries because they are just warnings; they do not

prevent your model being generated in another form, such as a message dictionary.

Command line invocation: The mqsicreatemsgdefs command line utility allows you

to import several XML DTD files in a single operation. All the XML DTD files

must be in single directory, and the directory location must be passed as a

parameter to the utility.

The mqsicreatemsgdefs utility also allows you to create a new message set into

which the message definition files are placed, as part of the import operation. You

Developing message models 71

can also choose to base the message set created on an existing message set. This

facility enables you to prepare an empty message set that contains a XML physical

format and pre-populated message set level XML properties, which are then copied

into the message set that is created by the import.

Further information about XML DTDs: For details about XML DTDs, see the World

Wide Web Consortium (W3C) Web site.

Importing from C header files to create message definitions:

You can populate your message set with message definitions by importing C

header files, using either the New Message Definition File From C header file

wizard or the mqsicreatemsgdefs command line utility.

 Each C header file that you import results in a new message definition file. The

root name of the message definition file defaults to the root name of the C header

file, but the New Message Definition File From C header file wizard allows you

to choose a different root file name.

If the message definition file already exists, you must have permitted overwriting

to occur for the import to proceed, in which case the existing content is deleted

and recreated.

By default, all message definition files that are created as a result of an import

from a C header file belong to the noTarget XML namespace and therefore reside

in the (default) location in your workspace. This default namespace can be

overridden by specifying a target namespace. See “Namespaces with MRM

non-XML messages” on page 36 for reasons why you might want to do this.

In your C header file there are typically one or more C structures. You can select

which of these structures to import. The import operation then imports those

structures, plus any others that they require. All imported structures are converted

into the equivalent elements, groups and types in the message definition file.

You can also specify which of the selected structures are to be messages in the

message definition file. The import operation creates a message and a

corresponding global element in the message definition file for each structure that

you specify. If you do not specify that messages are to be created, you must create

them manually using the Message Definition editor after the import has

completed.

If you import using the New Message Definition File From C header file wizard

you can import only one C header file with each import operation. But, if you

import using the command line utility, you can import several C header files in

each import operation.

If your C header file needs any other header files for a successful compilation, you

must provide these and specify their location, because a compilation of your

header file is performed as part of the import operation.

A report file is created during the import operation. This is located by default in

the log folder of the message set. By default, it takes the name of the message

definition file, with .report.txt appended.

Physical information: As well as creating logical information, the import can also

create physical information.

72 Message Models

http://www.w3.org/
http://www.w3.org/

If the message set contains any Custom Wire Format (CWF) physical formats, the

physical format properties for all CWF layers are populated.

If the message set does not contain any CWF physical formats, only logical

information is created. Also, if you import from the command line, only logical

information is created in the new message set by default.

XML and TDS physical format properties are not populated and so take default

values.

If you have one or more TDS layers, the import can cause entries in the task list,

warning you that certain TDS properties must be set if the C structures you have

imported were to appear in a TDS message.

If the TDS physical format is not applicable to your C structures, you can ignore

these task list entries because they are just warnings; they will not prevent your

model being generated in another form, such as a message dictionary.

Because physical information is created, the application target environment

(platform and compiler) is important because it governs the way that, for example,

integers appear in the message. You can specify environment specific information

as part of the import operation, and the necessary properties will be set

accordingly. There is a range of environments supported; if your environment is

not shown, choose the closest match and review the created physical information

using the Message Definition Editor after the import has completed.

Command line invocation: The mqsicreatemsgdefs command line utility allows you

to import several C header files in a single operation. All the C header files must

be placed in the same directory and the directory location passed as a parameter to

the utility.

You provide the necessary environment-specific information, and include file

location information using an XML file. This must contain an XML element called

<C> which holds one set of information that applies to all C header files imported

during an invocation of the utility. A default XML file called

mqsicreatemsgdefs.xml is supplied. If you want to apply different sets of

information to different header files, you must create multiple XML files and run

the utility multiple times.

The mqsicreatemsgdefs utility also allows you to create a new message set into

which the message definition files are placed, as part of the import operation. You

can also choose to base this new message set on an existing message set. This

facility enables you to prepare an empty message set containing a CWF physical

format and message set level CWF properties already populated, which then gets

copied into the message set created by the import.

Importing from COBOL copybooks to create message definitions:

You can populate your message set with message definitions by importing COBOL

copybook files, using either the New Message Definition File From COBOL file

wizard or the mqsicreatemsgdefs command line utility.

 Each COBOL copybook that you import results in a new message definition file.

The root name of the message definition file defaults to the root name of the

COBOL copybook file, but the New Message Definition File From COBOL file

wizard allows you to choose a different root file name.

Developing message models 73

If the message definition file already exists, you must have permitted overwriting

to occur for the import to proceed, in which case the existing content is deleted

and recreated.

By default, all message definition files that are created as a result of COBOL

copybook file import belong to the noTarget XML namespace and therefore reside

in the (default) location in your workspace. This default namespace can be

overridden by specifying a target namespace. See “Namespaces with MRM

non-XML messages” on page 36 for reasons why you might want to do this.

In your COBOL copybook file there are typically one or more level 01 structures.

You can select which of these structures to import. The import operation then

imports those structures, plus any others that they require. All imported structures

are converted into the equivalent elements, groups and types in the message

definition file.

You can also specify which of the selected level 01 structures are to be messages in

the message definition file. The import operation creates a message and

corresponding global element in the message definition file for each structure that

you specify. If you do not specify that messages are to be created, you must create

them manually using the Message Definition Editor after the import has

completed.

If you import using the New Message Definition File From COBOL file wizard,

you can only import one COBOL copybook file with each import operation. If you

use the command line utility, you can import several COBOL copybook files in

each import operation.

If your COBOL copybook file needs any other copybooks in order to compile

successfully, you must provide these in the same directory, because a compilation

of your copybook is performed as part of the import operation.

A report file is created during the import operation. This is located by default in

the log folder of the message set. By default it takes the name of the message

definition file, with .report.txt appended.

Physical information: As well as creating logical information, the import can also

create physical information. If the message set contains any Custom Wire Format

(CWF) physical formats, the physical format properties for all CWF layers are

populated. If the message set does not contain any CWF physical formats, only

logical information is created. If you import from the command line, only logical

information is created in the new message set by default. If you want physical

information created as well, see “Importing from the command line” on page 130

for details.

XML and TDS physical format properties are not populated and therefore take

default values.

If you have one or more TDS layers, the import can cause entries in the task list,

warning you that certain TDS properties must be set if the COBOL structures that

you have imported were to appear in a TDS message.

If the TDS physical format is not applicable to your COBOL structures, you can

ignore these task list entries because they are just warnings, they will not prevent

your model being generated in another form, such as a message dictionary.

74 Message Models

Because physical information is created, the application target environment

(platform and compiler) is important because it governs the way that, for example,

integers appear in the message. You can specify environment specific information

as part of the import operation, and the necessary properties are set accordingly.

There is a range of environments supported; if your environment is not shown,

choose the closest match and review the created physical information using the

Message Definition Editor after the import has completed.

Command line invocation: The mqsicreatemsgdefs command line utility allows you

to import several COBOL files in a single operation. All the COBOL copybook files

must be in single directory, and the directory location passed as a parameter to the

utility.

You provide the necessary environment specific information using an XML file.

This must contain an XML element called <COBOL> that holds one set of

environment specific information that applies to all COBOL copybook files that are

imported during an invocation of the utility. A default XML file called

mqsicreatemsgdefs.xml is supplied. If you want to apply different sets of

information to different copybooks, you must create multiple XML files and run

the utility multiple times.

The mqsicreatemsgdefs utility also allows you to create a new message set into

which the message definition files are placed, as part of the import operation. You

can also choose to base the message set created on an existing message set. This

facility enables you to prepare an empty message set that contains a CWF physical

format and pre-populated message set level CWF properties, which are then

copied into the message set that is created by the import.

Importing from WSDL files to create message definitions: You can add

messages to a message set by importing WSDL files, using the New Message

Definition File From WSDL file wizard, the Start from WSDL and/or XSD files

Quick Start wizard, or the mqsicreatemsgdefsfromwsdl command line utility.

Each WSDL file that you import results in one or more new message definition

files within the message set. A new message definition file is created for each

namespace that is defined for the message set. The name of the message definition

file defaults to the name of the WSDL file, but the New Message Definition File

From WSDL file wizard allows you to choose a different file name.

If the message definition file already exists, you must have permitted overwriting

to occur for the import to proceed, in which case the existing content is deleted

and recreated.

The message set that you are importing the WSDL file into must be namespace

enabled and, if it uses the MRM domain, must have an XML physical format so

that the message set is suitable for the runtime parsing of XML messages such as

SOAP.

A report file is generated during the import operation which allows you to

examine what occurred during the import process and to check any errors that

have resulted.

You specify a single WSDL definition for each import operation. If the WSDL

definition consists of a hierarchy of files, you must supply the name of the file that

Developing message models 75

contains the WSDL service or binding definitions. The WSDL definition that is

being imported must contain one or more WSDL bindings for the import to

proceed.

Importing using the New Message Definition File wizard

When you import using the New Message Definition File wizard, you can specify

only one WSDL definition for each import operation. A WSDL definition could be

held as one or more WSDL files and these will all be imported as a result of

importing the definition. The WSDL definition being imported must contain one or

more WSDL bindings for the import to proceed.

Importing using the command line

The WSDL command line importer (mqsicreatemsgdefsfromwsdl) can create a new

message set or update an existing one. If the message set project exists, it must be

namespace-enabled and have an XML physical format layer. If the project does not

exist, a new namespace-enabled project is created. If the import succeeds, new

message definition files are added to the message set.

The mqsicreatemsgdefsfromwsdl command allows you to import one WSDL

definition in a single operation.

The mqsicreatemsgdefsfromwsdl command copies the WSDL files it needs into the

workspace before the import runs. These are the top level WSDL files and any

imports are resolved using an absolute or relative location. The files are copied

under the specified message set in a folder called importFiles and are not removed

after the import, allowing the user to subsequently update or run validation on

them in the workbench.

Physical information

An XML physical format layer is required for the MRM domain, and must be

added to an existing message set prior to importing the WSDL definition.

Relationship of WSDL to Message Model:

If a broker is to communicate with an existing web service, it typically needs to

send and receive SOAP messages. To use this approach you should use the MRM

domain. You will need to ensure that the broker’s message model and the WSDL

definition used by the web service describe the same messages. In general this is

achieved by importing the WSDL for the existing web service using the broker

tooling. Currently only WSDL version 1.1 is supported.

Only the WSDL operation, message and part definitions will be represented in the

resulting broker model. Starting with the lowest level, a WSDL definition describes:

v a number of logical messages and their constituent parts which are themselves

defined in terms of XML Schema. The part definitions are imported directly into

the message model to create the corresponding element and type definitions.

The definitions are allocated to message definition files according to the target

namespace of their schema definition. If there is no targetNamespace defined on

the <xsd:schema> element, then the resulting elements and types have no

namespace.

v a number of operations comprising the WSDL portType or interface. The

operations define the business payload for the SOAP messages at runtime.

Broker messages are created for each possible payload. In the case of rpc-style

76 Message Models

WSDL this means that the message model needs message definitions

corresponding to the WSDL operations themselves. The names of these message

definitions are derived from the WSDL operation name and their namespace is

given by the namespace attribute on the WSDL <soap:body> definition.

v a SOAP version and encoding style. Message definitions for the SOAP envelope

and if necessary the SOAP encoding scheme are imported into the message set.

Currently the WSDL importer assumes the use of SOAP version 1.1. There is no

reason that WSDL version 1.1 cannot define a web service that uses SOAP

version 1.2 - it is simply that there isn’t a standard way of doing this. If your

web service does use SOAP version 1.2 then you may need to manually remove

the SOAP version 1.1 definitions and import the SOAP version 1.2 definitions.

Resulting message model

The resulting model allows the user to parse incoming SOAP messages using the

MRM XML parser where the message type would be Envelope. The message

model for the SOAP envelope defines the outer SOAP wrapper with its constituent

Header and Body sections and a number of attachment points where the various

business payloads can appear. These attachment points are defined with

composition message, allowing the broker messages created by the WSDL importer

to appear at these points.

The allowed attachment points are Envelope.Body, Envelope.Header and

Envelope.Body.Fault.detail. A message from the user’s message model may appear

at each point (in the case of the Envelope.Header, multiple messages may appear).

In the case of rpc-style WSDL, the message expected at Envelope.Body is the

automatically generated message corresponding to the WSDL operation. In all

other cases the messages expected are those defined by the WSDL message parts

for each operation.

Generate model representations

After you have created and populated a message set, you can generate a message

model in several different representations for use by a broker, a parser, or your

applications:

v A message dictionary for deployment to a broker.

v A W3C XML Schema for use by an application building or processing XML

messages, or for deployment to a broker.

v Web Services Description Language (WSDL) for a web services client

application, or for deployment to a broker.

v Documentation to give to programmers or business analysts.

Generation for deployment to a broker takes place automatically when you add

your message set to a Broker Archive (BAR) file.

Generation for other purposes is achieved using the Generate menu actions.

Generate message dictionaries

A message dictionary is data structure that describes all of the messages in a

message set in a form suitable for deployment to the MRM parser.

Purpose of a message dictionary: A dictionary describes the logical structure and

content of a set of messages, and typically contains one or more physical formats

that describe how those messages are serialized in a bit stream. The MRM parser

Developing message models 77

within WebSphere Message Broker uses this information to parse an incoming

message bit stream into a message tree, or to write a message tree into a physical

bit stream.

Contents of a message dictionary: A message dictionary contains the same

information as the message set from which it was created, but in a compressed

form that the MRM parser within WebSphere Message Broker can understand and

use. A message dictionary contains all the elements in the message set, the

structure of the messages, and all the value constraints. A message dictionary also

contains any physical formats that were defined in the message set.

Generating a message dictionary: Before a message dictionary can be used, it

must be deployed to WebSphere Message Broker. To do this, add the message set

to a BAR file, and then deploy the BAR file to a message broker. The generation of

the message dictionary is performed automatically when a message set is added to

a BAR file, if the message set supports the MRM domain.

Before adding a message set to a BAR file, the Message Broker Toolkit performs a

full validation of the message set. If this validation finds any errors, the message

set is not added to the BAR file, and therefore no message dictionary is generated.

Dictionary generation report files: Whenever a message dictionary is generated,

a user log file is also generated and added to the same BAR file. This file contains

informational messages and warnings that relate to the use of the generated

dictionary. Always check this file after generating a message dictionary.

Generate XML Schema

XML Schema is a standard way of describing complex message models.

You can generate a schema file from a message definition file. When selecting the

input message definition file, if any XML physical formats have been defined for

the message set, you can select which of these XML wire formats are to be

included.

v If an XML format has been selected, the physical format information will also be

included.

v If no XML format is selected, the generated schema file only contains

information about the logical message model.

You can choose whether ’strict’ or ’lax’ schema generation is to be performed. This

is necessary because the logical extensions to the XML Schema model provided by

the message definition file cannot be represented in XML Schema. So you can

choose either to generate a Schema with more strict or more lax validation than the

equivalent validation performed by the message model parser. The affected model

extensions are:

v Content Validation = open

v Content Validation = open defined

v Composition = unordered set

Further information about XML Schema: For details about XML Schema, see

XML Schema Part 0: Primer on the World Wide Web Consortium (W3C) Web site.

Validating an XML message against a schema:

The XMLNSC parser can validate an XML message against any deployed XML

schema.

78 Message Models

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/

You can validate an XML message against an XML schema when the message is

parsed, when the message is serialized, or at any point within a message flow.

To construct a message flow for schema validation, you must perform the

following tasks:

1. Enable validation at the appropriate point within the message flow. See

Validating messages.

2. Ensure that you have deployed all XML Schema files that are required. See

“Deploying an XML Schema.”

3. Specify the message set in which the schema was deployed; this is done using

the MessageSet property of the message. See Accessing the Properties tree.

Schemas are deployed within a message set, and are identified by supplying the

message set name in the message properties.

Deploying an XML Schema:

XML Schemas are created as Message Definition Files within a message set that is

then deployed.

 To create and deploy a message set for schema validation you must:

1. Create or locate a message set that will contain the schemas.

2. Set the Message Domain property of the message set to XMLNSC.

3. Use the New Message Definition File wizard to create a message definition file

(mxsd) from the XML Schema file (.xsd).

4. Add the message set to a BAR file and deploy the BAR file.

Repeat step 3 for each XML Schema file that you want to deploy.

If your XML Schema imports or includes other XML Schema files, you can use the

mqsicreatemsgdefs command to create all the message definition files in a single

operation.

Generate WSDL

A Web Services Description Language (WSDL) document specifies the interface to a

Web service, and enables a Web service client to invoke it. A WSDL document that

is generated from a message set defines Web service requests and responses in

terms of the messages that you have defined in that message set.

Use message definition files with target namespaces when you generate WSDL. If

you do not, WebSphere Message Broker defaults the target namespace to the

WSDL target namespace.

If the WSDL uses a message from the message definition file, one XML Schema file

is generated for each message definition file in the message set. Within the main

WSDL document, operations are defined in terms of logical messages, which are

themselves defined in terms of the elements and types that are defined in these

XML Schema files.

WSDL operations are grouped into a logical interface or portType, and are then

associated with a binding which defines the physical format of the messages. You

can select only one of the following bindings when you generate WSDL:

v SOAP (over JMS)

v SOAP (over HTTP)

Developing message models 79

A WSDL service definition specifies the endpoint where the service is available.

You can elect to have the service, binding, and portType definitions generated as a

single file or as separate files, but the XML Schema files are always generated

separately. Tools that consume WSDL are typically more tolerant of the single-file

format.

Relationship to the message model when generating WSDL: If a broker is to

communicate with a web service client, it typically needs to accept SOAP

messages. Using this approach you should use the MRM domain, in which case

the broker’s message model and the WSDL definition used by the web service

client must describe the same messages.

If the broker has an existing message model (possibly created by importing a C

header file or COBOL copybook), this can be exported to create a corresponding

WSDL definition for use by the client. At the same time, your message model

needs to be enhanced with appropriate definitions for the SOAP envelope and (for

rpc-style) the WSDL operations. Currently only WSDL version 1.1 is supported.

In order to generate WSDL you need:

1. a way of representing the WSDL operations. This is the role of the message

category.

2. a way of representing the data for these operations. This is the message model.

3. a way of soliciting the web service end-point and binding details. This is the

role of the WSDL Generator wizard.

A message category is required for each WSDL operation. The category specifies a

set of messages from the broker model and associates them with the required

WSDL qualifiers for the specified WSDL operation type.

At runtime, the format of the SOAP messages depends on the WSDL style

specified in the wizard. If the user selects rpc-style then the SOAP Envelope will

contain a message corresponding to a WSDL operation. The WSDL generator will

then add an appropriate message definition that corresponds to the WSDL

operation to your message set. If you select document-style then the SOAP

envelope will simply contain messages specified in the category, so no additional

message definitions need to be added to your message set.

Message definitions for the SOAP envelope and (if necessary) the SOAP encoding

scheme are imported into the message set.

Resulting message model

The resulting model allows you to parse incoming SOAP messages using the MRM

XML parser where the message type would be Envelope. The message model for

the SOAP envelope defines the outer SOAP wrapper with its constituent header

and body sections and a number of attachment points where the various business

payloads can appear. These attachment points are defined with composition of

type message, allowing broker messages to appear at these points.

The allowed attachment points are Envelope.Body, Envelope.Header and

Envelope.Body.Fault.detail. A message from your message model may appear at

each point (in the case of the Envelope.Header, multiple messages may appear). In

the case of rpc-style WSDL, the message expected at Envelope.Body is the

automatically generated message corresponding to the WSDL operation (for

80 Message Models

example, the message category). In all other cases the messages expected are those

referenced by the message categories.

Generating message set documentation

Message set documentation describes, in a human-readable format, message

definitions which you have created.

When you have created one or more message definitions, it can be useful to

generate message set documentation for business analysis and for developers who

are involved with the messages.

Message definition files contain both logical and physical definitions for the

message model. The generated documentation describes the logical format only.

The documentation exists as a self-consistent set of HTML pages.

Working with a message set project

Before you begin to develop your message model, you must create a message set.

A message set project is automatically created when you create a message set.

This topic area describes the tasks that are involved in working with a message set.

v “Creating a message set” on page 83

v “Deleting a message set project”

Deleting a message set project

Before you start:

You must have completed the following task:

v “Creating a message set” on page 83

Tip: Close all open windows within the workbench that relate to the message set

project or associated files that you want to delete. If you do not do this, errors

might occur when you try to process objects that no longer exist your

workspace.

This task topic describes how to delete a message set project and, optionally, the

contents of the associated project directory.

To delete a message set project:

1. Switch to the Broker Application Development perspective.

2. In the Broker Development view, right-click the message set project that you

want to delete, then click Delete on the pop-up menu. The Confirm Project

Delete window opens.

3. Choose whether to delete or retain the contents of the project directory. By

default, project directory contents are not deleted. To delete the contents of the

project directory, click Also delete contents; all files and directories that are

associated with the project are deleted.

4. Click Yes to delete the message set project. Alternatively, click No or press Esc

to cancel the deletion.

Developing message models 81

Working with a message set

This topic area describes the tasks that are involved in working with a message set:

v “Configuring message set preferences”

v “Opening an existing message set”

v “Creating a message set” on page 83

v “Configuring logical properties: Message sets” on page 85

v “Working with physical formats” on page 86

v “Configuring documentation properties: Message sets” on page 92

v “Deleting a message set” on page 92

v “Applying a Quick Fix to a task list error” on page 92

Configuring message set preferences

This task topic explains how to make changes to preferences that relate to message

set processing. These preferences are for message set editors, message set model

validation, and importing XML Schema.

To configure message set preferences:

1. Open the Preferences window by clicking Window > Preferences.

2. In the left hand pane, expand Broker Development > Message Sets by clicking

+. This displays the following options:

v Editors

v Validation

v XML Schema Importer
3. View or make any necessary changes to the preferences for message set

processing. These preferences are shown in the right hand area of the window.

4. When you have finished, click Apply. Alternatively, click Restore Defaults to

return to the default settings for the displayed fields.

5. Close the Preferences window by clicking OK.

Opening an existing message set

Open an existing message set in the Message Set editor so that you can view or

edit its contents.

Before you start:

Create a message set by following the instructions in “Creating a message set” on

page 83.

Tip: Although you can open resource files with other editors you are advised to

only use the workbench Message Set editor to work with message set files

because this editor correctly validates changes made to the messageSet.mset

files when they are saved. Other editors might not do this.

To open a message set so that you can view or edit its contents:

1. Switch to the Broker Application Development perspective.

2. In the Broker Development view, right-click the messageSet.mset file of the

message set that you are opening then click Open on the pop-up menu. This

launches the Message Set editor for the selected file.

82 Message Models

You can now view or edit the file as required.

Creating a message set

Use the New Message Set wizard to create a message set.

The New Message Set wizard also creates a new message set project.

Note: You can also use a Quick Start wizard to create a message set, a message set

project, and other resource files that you need to create a new application.

The New Message Set wizard allows you to select what kinds of message format

you want to model in your message set. The message domain and the physical

format created is inferred from the selection that you make. Note, however, that

you can change the inferred domain using the message set editor.

The options are:

v XML documents (general)

v Web services (SOAP)

v Binary data (for example, C or COBOL structures)

v Text data (for example, CSV, SWIFT, or HL7)

v MIME documents other than Web services

v Data for WebSphere Adapters

The default value is XML documents (general).

Below the list of message formats there are check boxes corresponding to each of

the message formats. The check box corresponding to the message format that you

selected is not available, but you can select any of the other check boxes to add

other message formats to your message set.

If you later select a different default message domain, the checked state for the

domain that you originally selected as the default does not change, but the check

box is enabled.

As you can now select more than one message domain you can, for example, use

the default value of XML documents (general) together with Binary data (for

example, C or COBOL structures) and Text data (for example, CSV, SWIFT or

HL7). This results in the selection of the XMLNSC and MRM domains (to handle

non-XML documents) within the same message set if you require this functionality.

The mapping between the selection, the domain, and the wire format created is

described in the following table:

 Selection Inferred message domain Physical format created

XML documents (general) XMLNSC XML

Web services (SOAP) SOAP and XMLNSC XML

Binary data (for example, C

or COBOL structures)

MRM CWF

Text data (for example, CSV,

SWIFT, or HL7)

MRM TDS

MIME documents other than

Web services

MIME None

Developing message models 83

Selection Inferred message domain Physical format created

Data for WebSphere

Adapters

DataObject None

Depending on your selection, an appropriate IBM supplied message will be

imported into the message set.

Note: The XML physical format is created only in case the user switches to MRM

XML.

If you click Finish on the second page of the New Message Set wizard, the

message set that is created has the following default property values:

 Property Default value

Message Domain XML documents (general)

Physical Format XML Wire Format (XML1)

Namespace support Enabled

To create a new message set:

1. Switch to the Broker Application Development perspective.

2. Open the New Message Set wizard. To do this, right-click anywhere in the

Broker Development view then click New> Message Set on the pop-up menu.

3. Type the Message set name for the message set that you are creating. The

name that you type is also displayed in the Message set project name field.

4. Optional: You can choose a different message set project name; to do this, type

this name into the Message set project name field.

5. Optional: You can specify a directory in which you want to store the project

contents. If you do not specify a directory, the default workspace is used. To

specify a directory, first clear the Use default check box and then either type

into the Directory field the location of the directory, or click Browse to see a

list of the folders that you can choose from for the location of the directory.

6. Optional: If you want to create a new message set whose definition is based on

existing message set, click Message Set in the Copy message set contents from

another message set pane and choose from the list of message set definitions

that are shown; then click Finish. The new message set (and the message set

project that contains it) is created immediately and the New Message Set

wizard automatically closes.

7. Optional: If you want to create a message set whose definition is not based on

an existing message set, click Next>. You are presented with the next pane

which allows you to choose the type of message data that you want to process.

a. Expand the list shown under Select the type of message data that you will

be working with most often and choose a value from the list shown. The

value that you choose determines the default message domain of the

message set. If you choose XML Documents (general), the default message

domain XMLNSC is used.

b. Optional: You can now select additional types of message data. Under

Select any other types of message data that you will be working with

there are check boxes for each of the following message data types:

v XML documents (general)

v Web services SOAP

84 Message Models

v Binary data (for example, C or COBOL structures)

v Text data (for example, CSV, SWIFT or HL7)

v MIME documents other than Web services

v Data for WebSphere Adapters

Note: These check boxes correspond to the list of data types from which

you chose the data type that you will be working with most often,

but the check box that corresponds to the data type that you chose

from that list is not available.
By default, all these check boxes are cleared. You can select any, or all of

these check boxes, to add the corresponding data types to your message set.

If you select the check box for text data, either for the type of message data

that you will be working with most often or as another type of message

data that you will be working with, you can additionally choose from the

displayed list of text messaging standards. This list is the same as that given

in the description of the Messaging Standard property in “TDS Format

message set properties” on page 157.

c. Click Next A new panel is displayed that summarizes some information

about the message set that you have created. Specifically, it lists:

 Supported message domains

 Physical formats to be created

 IBM supplied messages to be imported
8. Click Finish on this page to create the message set, and the message set project

that contains it. The New Message Set wizard closes.

After the New Message Set wizard finishes, the message set editor is opened.

You can now create some message definitions in the new message set. You can

either create new message definitions from scratch, or create them based on

existing artifacts such as WSDL, XSD, DTD, C, COBOL files, or EIS metadata. Use

the Message Definition File wizard and the Message Definition File From wizard to

help you with this.

Configuring logical properties: Message sets

Before you start:

You must have completed the following task:

v “Creating a message set” on page 83

If the messageSet.mset file for the appropriate message set is not already open in

the Message Set editor, you must first open it as described in “Opening an existing

message set” on page 82.

This task topic describes how to configure the logical properties of a message set

using the Message Set editor.

To configure the logical properties of a message set:

1. Switch to the Broker Application Development perspective.

2. In the Message Set editor, in the Properties Hierarchy, click Message Set. This

displays the logical properties of the selected message set in the Details view.

Developing message models 85

3. Configure to your requirements the logical properties that are shown in the

Details view.

Note: Property fields that are disabled cannot be altered. For example, the

Message Set ID field is disabled because the message set ID is generated

automatically when the message set is created; the Message Set ID must

not then be altered.

4. Save your changes by clicking File> Save or by pressing Ctrl+S. Alternatively

click File> Save All or press Ctrl+Shift+S.

Working with physical formats

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Opening an existing message set” on page 82

If you are using the MRM domain to parse and write your messages, when you

are developing your message model you might want to add one or more physical

format layers to a message set and then configure the properties of these physical

formats. This topic area covers the following tasks that relate to working with the

physical properties of a message set:

v “Adding a Custom Wire Format (CWF)”

v “Configuring Custom Wire Format (CWF) properties: Message sets” on page 87

v “Adding a TDS physical format” on page 87

v “Configuring TDS properties: Message sets” on page 88

v “Adding an XML wire format” on page 88

v “Configuring XML Wire Format properties: Message sets” on page 89

v “Renaming a physical format” on page 89

v “Applying default physical format settings: Message sets” on page 90

v “Removing a physical format” on page 90

v “Observing 2007 U.S. changes to Daylight Savings Time” on page 91

Adding a Custom Wire Format (CWF)

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Opening an existing message set” on page 82

This task topic describes how to add a Custom Wire Format (CWF) physical format

layer to a message set using the Message Set editor.

To add a CWF physical format layer to a message set:

1. Switch to the Broker Application Development perspective.

2. In the Message Set editor, in the Properties Hierarchy, open the Add Custom

Wire Format window by right-clicking Custom Wire Formats and then clicking

Add Custom Wire Format on the pop-up menu.

86 Message Models

3. On the Add Custom Wire Format window, specify the name that you want to

use for the new CWF physical format. The default name is ’Binary1’.

Tip: Physical format names must be unique across a message set. You are

recommended to start the name of your new CWF physical format with

’CWF’ or ’Binary’, because this clearly identifies the type of the physical

format that you are adding in relation to any of the other types.

4. Click OK to add the physical format layer to the message set. Alternatively, if

you decide to cancel the process, click Cancel or press Esc on the keyboard.

Tip: The new physical format layer is added with the relevant default property

values. You can configure the message set properties according to your

requirements, using the appropriate editor.

5. Save your changes either by clicking File> Save or by pressing Ctrl+S.

Configuring Custom Wire Format (CWF) properties: Message

sets

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Opening an existing message set” on page 82

v “Adding a Custom Wire Format (CWF)” on page 86

This task topic describes how to configure the Custom Wire Format (CWF)

properties of a message set using the Message Set editor.

To configure the CWF properties of a message set:

1. Switch to the Broker Application Development perspective.

2. In the Message Set editor, the Custom Wire Formats node of the Properties

Hierarchy shows the name of each of the CWF physical formats that have been

added to the message set. If the physical format names are not in view, expand

Custom Wire Formats by clicking +.

3. Click the chosen CWF physical format so that the properties of this format

appear in the Details view of the Message Set editor.

4. Configure the CWF properties shown in the Details view according to your

requirements.

5. Save your changes either by clicking File> Save or by pressing Ctrl+S.

Alternatively click File> Save All or press Ctrl+Shift+S.

Adding a TDS physical format

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Opening an existing message set” on page 82

This task topic describes how to add a Tagged/Delimited String (TDS) physical

format layer to a message set using the Message Set editor.

To add a TDS physical format layer to a message set:

Developing message models 87

1. Switch to the Broker Application Development perspective.

2. In the Message Set editor, in the Properties Hierarchy, open the Add

Tagged/Delimited String Format window by right-clicking Tagged/Delimited

String Formats then clicking Add Tagged/Delimited String Format on the

pop-up menu.

3. In the Add Tagged/Delimited String Format window, specify the name that

you want to use for the new TDS format. The default name is ’Text1’.

Tip: Physical format names must be unique across a message set. You are

recommended to start the name of your new TDS physical format with

’TDS’ or ’Text’, because this clearly identifies the type of the physical

format that you are adding in relation to any of the other types.

4. Click OK to add the physical format to the message set. Alternatively, if you

decide to cancel the process, click Cancel or press Esc on the keyboard.

Tip: The new physical format layer is added with the relevant default property

values. You can configure the message set properties according to your

requirements, using the Message Set editor.

5. Save your changes either by clicking File> Save or by pressing Ctrl+S.

Configuring TDS properties: Message sets

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Opening an existing message set” on page 82

v “Adding a TDS physical format” on page 87

This task topic describes how to use the Message Set editor to configure the TDS

physical format properties of a message set.

To configure the TDS physical format properties of a message set, do the following:

1. Switch to the Broker Application Development perspective.

2. In the Message Set editor, the Tagged/Delimited String Formats node of the

Properties Hierarchy shows the name of each of the TDS physical formats that

have been added to the message set. If the physical format names are not in

view, expand Tagged/Delimited String Formats by clicking +.

3. Click the chosen TDS physical format so that the properties of this format

appear in the Details view of the Message Set editor.

4. Configure the TDS properties shown in the Details view according to your

requirements.

5. Save your changes either by clicking File> Save or by pressing Ctrl+S.

Alternatively click File> Save All or press Ctrl+Shift+S.

Adding an XML wire format

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Opening an existing message set” on page 82

88 Message Models

This task topic describes how to add an XML wire format physical format layer to

a message set using the Message Set editor.

To add an XML physical format layer to a message set:

1. Switch to the Broker Application Development perspective.

2. In the Message Set editor, in the Properties Hierarchy, open the Add XML Wire

Format window by right-clicking XML Wire Formats and then clicking Add

XML Wire Format on the pop-up menu.

3. On the Add XML Wire Format window, specify the name that you want to use

for the new XML wire format. The default name is ’XML1’.

Tip: Physical format names must be unique across a message set. You are

recommended to start the name of your new XML physical format with

’XML’, because this clearly identifies the type of the physical format that

you are adding in relation to any of the other types.

4. Click OK to add the physical format layer. Alternatively, if you decide to cancel

the process, click Cancel or press Esc on the keyboard.

Tip: The new physical format layer is added with the relevant default property

values. You can configure the message set properties according to your

requirements, using the appropriate editor.

5. Save your changes either by clicking File> Save or by pressing Ctrl+S.

Configuring XML Wire Format properties: Message sets

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Opening an existing message set” on page 82

v “Adding an XML wire format” on page 88

This task topic describes how to configure the XML Wire Format properties of a

message set using the Message Set editor.

To configure the XML wire format properties of a message set:

1. Switch to the Broker Application Development perspective.

2. In the Message Set editor, the XML Wire Formats node of the Properties

Hierarchy shows the name of each of the XML physical formats that have been

added to the message set. If the physical format names are not in view, expand

XML Wire Formats by clicking +.

3. Click the chosen XML physical format so that the properties of this format

appear in the Details view of the Message Set editor.

4. Configure the XML wire format properties shown in the Details view according

to your requirements.

5. Save your changes either by clicking File> Save or by pressing Ctrl+S.

Alternatively click File> Save All or press Ctrl+Shift+S.

Renaming a physical format

Before you start:

You must have completed the following tasks:

Developing message models 89

v “Creating a message set” on page 83

v “Opening an existing message set” on page 82

This task assumes that you have added one or more physical formats to the

message set that you are working with. For further information see “Adding a

Custom Wire Format (CWF)” on page 86 or “Adding an XML wire format” on

page 88 or “Adding a TDS physical format” on page 87.

This task topic describes how to rename a physical format using the Message Set

editor.

To rename a physical format previously added to the message model:

1. Close all message definition (.mxsd) files that are currently open in the Message

Definition editor, otherwise you will not be able to rename the physical format.

2. Switch to the Broker Application Development perspective.

3. In the Message Set editor, the Properties Hierarchy shows the name of each of

the physical formats that have been added to the message set. If the physical

format names are not in view, expand XML Wire Formats, Custom Wire

Formats, or Tagged/Delimited String Formats by clicking +.

4. Right-click the physical format that you want to rename then click Rename on

the pop-up menu to open the “Rename wire format” window.

5. In the “Rename wire format” window, type the new name for the physical

format. The renaming operation modifies all of the message definition files in

the message set and saves the amended message set file.

6. Click Finish to rename the physical format and save the message set file.

Applying default physical format settings: Message sets

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Opening an existing message set” on page 82

The tasks in this topic area assume that you have added one or more physical

formats to the relevant message set. For further information see “Adding a Custom

Wire Format (CWF)” on page 86 or “Adding an XML wire format” on page 88 or

“Adding a TDS physical format” on page 87.

To apply the default settings to a physical format that has previously been added

to a message set:

1. Switch to the Broker Application Development perspective.

2. In the Message Set editor, in the Properties Hierarchy, right-click the physical

format to which you want to apply the default settings then click Apply

default physical format settings on the pop-up menu.

The default settings are applied to the physical format that you have selected. No

warning appears beforehand.

Removing a physical format

Before you start:

You must have completed the following tasks:

90 Message Models

v “Creating a message set” on page 83

v “Opening an existing message set” on page 82

The tasks in this topic area assume that you have added one or more physical

formats to a message set. For further information see “Adding a Custom Wire

Format (CWF)” on page 86 or “Adding an XML wire format” on page 88 or

“Adding a TDS physical format” on page 87.

To remove a physical format layer from your message set:

1. Close any message definition files that are currently open in the Message

Definition editor, otherwise you will not be able to remove the physical format.

2. Switch to the Broker Application Development perspective.

3. In the Message Set editor, the Properties Hierarchy shows the name of each of

the physical formats that have been added to the message set. If the physical

format names are not in view, expand XML Wire Formats, Custom Wire

Formats, or Tagged/Delimited Wire Formats, by clicking +.

4. Right-click the physical format that you want to remove, and then click Delete

on the pop-up menu.

Tip: If you decide to proceed with deleting the physical format, all of the

message definition files under the current message set are modified and

the amended message set file is saved.

5. Click Finish to remove the physical format, or click Cancel to return to the

Broker Application Development perspective without making any changes.

Pressing Esc also returns you to the Broker Application Development

perspective without making any changes.

Observing 2007 U.S. changes to Daylight Savings Time

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Opening an existing message set” on page 82

This task assumes that you have added and configured one or more physical

formats to existing message sets. For further information see: “Working with

physical formats” on page 86.

This task describes how to ensure that the message sets observe daylight savings

time (DST) in line with the 2007 U.S. changes.

If your message sets use a named time zone that is not changing DST in line with

the 2007 U.S. changes, you do not need to do anything.

If you are using a GMT-04:00, GMT-05:00, GMT-06:00, GMT-07:00, or GMT-08:00

named time zone with DST, that must observe DST in line with the 2007 U.S.

changes, do the following on every computer on which the broker is running:

1. Set the environment variable MQSI_USE_NEW_US_DST to an initial value: Y,

for example.

2. Restart the broker to use the changed DST.

Developing message models 91

Configuring documentation properties: Message sets

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Opening an existing message set” on page 82

This task topic describes how to document a message set within the workbench.

To configure the documentation for a message set:

1. Switch to the Broker Application Development perspective.

2. In the Message Set editor Properties Hierarchy, click Message set. The

documentation text field appears in the Details view along with all the other

logical properties of the message set.

3. Configure the documentation properties shown in the Details view to your

requirements.

Tip: The Documentation property can be used to set user defined keywords

and their value. These are propagated to the Configuration Manager when

the message set is deployed to the broker. These keywords are used to

give additional information about the message set when the Configuration

Manager is used to display deployed message set properties. See

“Message set version and keywords” on page 10 for more information.

4. Save your changes either by clicking File> Save, or by pressing Ctrl+S.

Alternatively click File> Save All, or press Ctrl+Shift+S.

Deleting a message set

If you want to delete a message set from your message model, you must delete the

message set project that contains the message set.

1. Switch to the Broker Application Development perspective.

2. In the Broker Development view, right-click the message set project folder that

contains the message set that you want to delete and click Delete on the

pop-up menu. This opens the Confirm Project Delete window, which asks

whether you want to delete the message set project that you have specified.

3. Click Also delete contents to delete the contents of the message set project,

or click Do not delete contents to cancel the deletion of the message set

project. Pressing the Esc key on your keyboard also cancels the deletion of the

message set project.

Important: When you delete a message set project, the action cannot be undone

after you have confirmed the deletion. All folders and associated files

for the message set project are deleted.

Applying a Quick Fix to a task list error

During the creation, migration and manipulation of message definition files,

warnings or errors might occur; these are listed in the Problems view of the Broker

Application Development perspective. Some of these warnings or errors can be

cleared by applying a Quick Fix.

Before you start:

92 Message Models

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

The types of warnings or errors that can be cleared using a Quick Fix are those

where the construct has a broken link, where the construct has a facet that is not

legal, or where the construct has been imported, and where a warning or error has

occurred, but has been kept to ensure the integrity of structure that is being

imported. This allows you to fix the problem in the most appropriate way.

To apply a Quick Fix:

1. Switch to the Broker Application Development perspective.

2. Ensure that the Problems view is visible in the Broker Application

Development perspective of the workbench. If the Problems view is not visible,

from the workbench menu, click Window → Show View → Problems.

3. In the Problems view, right-click the task list warning or error that you want to

apply the Quick Fix to, and then click Quick Fix. Note that Quick Fix might

not be available for the problem that you are trying to fix.

4. Step through the windows that are displayed, making the selections that are

required to ensure that the fix is applied in the appropriate way.

When the Quick Fix has successfully been applied to the task list warning or error,

it is removed from the Problems view.

Working with a message definition file

Before you start:

You must have completed the following task:

v “Creating a message set” on page 83

This topic area describes the tasks that are involved in working with a message

definition file:

v “Opening an existing message definition file”

v “Creating a message definition file” on page 94

v “Deleting a message definition file” on page 95

Opening an existing message definition file

This task topic describes how to open an existing message definition file in the

Message Definition editor; you can then view and edit the contents of the file.

To open an existing message definition file:

1. Switch to the Broker Application Development perspective.

2. In the Broker Development view, right-click the message definition file (file

extension *.mxsd) that you want to open, and select Open. This launches the

Message Definition editor for the message definition file that you have

specified.

Tip: The Eclipse framework lets you open resource files with other editors.

However, you are advised to use only the workbench Message Definition

Developing message models 93

editor to work with message definition files, because this editor correctly

validates any changes that are made to the message definition files. Other

editors might not do this.

3. View or edit the data in the file as required.

Creating a message definition file

Before you start:

You must have completed the following task:

v “Creating a message set” on page 83

You must create a message definition file before you can create the message model

objects. The message definition file contains the logical and physical model

definitions of the objects in XML Schema form.

Either create the message definition file from scratch, or base your message

definition file on an existing resource (an XML Schema file, an IBM-supplied

message, an XML DTD file, a C header file, a COBOL file, or a WSDL file).

How to do this is described in:

v “Creating a message definition file from scratch”

v “Creating a message definition file from an existing resource” on page 95

Creating a message definition file from scratch

Before you start:

You must have completed the following task:

v “Creating a message set” on page 83

You must create a message definition file before you can create the message model

objects. The message definition file contains the logical and physical model

definitions of the objects in XML Schema form.

To create an empty message definition file from scratch:

1. Switch to the Broker Application Development perspective.

2. Open the New Message Definition File wizard.

To do this, right-click on the message set project in the Broker Development

view that you are adding the message definition file to, and click New>

Message Definition File on the pop-up menu. The Message Definition File

panel of the wizard is displayed. The target message set list is filtered to only

show artifacts in the active working set.

3. Click on the message set, type a name into the File name field, and click Next.

4. Step through the remainder of the wizard, filling in the details as required.

The new empty message definition file, with the name that you have specified and

a file extension of *.mxsd, opens in the Message Definition editor; you can use the

editor to create your own message definitions. If you have chosen to use a target

namespace, a directory structure that is based on the URI that you have supplied is

created. The new message definition file is placed within this directory structure,

which appears in the Broker Development view.

94 Message Models

Creating a message definition file from an existing resource

Before you start:

You must have completed the following task:

v “Creating a message set” on page 83

You must create a message definition file before you can create the message model

objects. The message definition file contains the logical and physical model

definitions of the objects in XML schema form.

To create a new message definition file that is based on an existing resource:

1. Switch to the Broker Application Development perspective.

2. Open the appropriate New Message Definition File From wizard.

To do this, right-click on the message set project in the Broker Development

view that you are adding the message definition file to, and click New>

Message Definition File From on the pop-up menu. A submenu shows the list

of resources that you can choose from.

3. Choose the resource on which you want to base your new message definition.

Click XML Schema File, IBM Supplied Message, XML DTD File, C Header

File, COBOL File, or WSDL File. The first panel of the corresponding wizard

is displayed.

4. Step through the remainder of the wizard filling in the details as required.

The new message definition file, with the name that you have specified and a file

extension of *.mxsd, opens in the Message Definition editor; you can use the editor

to create your own message definitions. If you have chosen to use a target

namespace, a directory structure that is based on the URI that you have supplied is

created. The new message definition file is placed within this directory structure,

which appears in the Broker Development view.

Deleting a message definition file

To delete a message definition file from your message model:

1. Switch to the Broker Application Development perspective.

2. In the Broker Development view, right-click the message definition file (file

extension *.mxsd) that you want to delete, then click Delete on the pop-up

menu. Alternatively, select the message definition file that you want to delete in

the Broker Development view, then, from the menu bar, click Edit> Delete, or

press the Delete key.

3. In the Confirm Resource Delete window, click Yes to delete the message

definition file. Click No, or press the Esc key, to cancel the deletion of the

message definition file.

Important: All files and objects that are associated with the message definition file

are deleted. This action cannot be undone.

Developing message models 95

Working with message model objects

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

This topic area describes the tasks that are involved in working with message

model objects:

v “Adding message model objects”

v “Configuring message model objects” on page 107

v “Deleting objects” on page 120

Adding message model objects

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

Before starting any of the tasks in this topic area, you must first open the message

definition file to which you want to add message model objects in the Message

Definition editor. See “Opening an existing message definition file” on page 93 for

further details.

This topic area describes the tasks that are involved in adding message model

objects to a message definition file:

v “Adding a message” on page 97

v “Adding a message from a global element” on page 97

v “Adding a global element” on page 98

v “Adding a local element” on page 99

v “Adding an element reference” on page 99

v “Adding a wildcard element” on page 100

v “Adding a global attribute” on page 100

v “Adding a local attribute” on page 101

v “Adding an attribute reference” on page 101

v “Adding a wildcard attribute” on page 102

v “Adding a simple type” on page 102

v “Adding a complex type” on page 104

v “Adding a simple type to an element or attribute” on page 111

v “Adding a complex type to an element” on page 111

v “Adding a global group” on page 104

v “Adding an attribute group” on page 105

v “Adding a group reference” on page 106

96 Message Models

Adding a message

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

v “Opening an existing message definition file” on page 93

To add a message to your message definition file:

1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the

workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click Messages then click Add Message on the

pop-up menu. A simple message is immediately added to your message model

and is assigned a default name.

4. Either type a new name for the message or press Enter to accept the default.

Tip: When you add a message to your message model, an associated complex

type and global element with the same name as the message are also

created. The global element and the message cannot have different names

and changing the name of one changes the names of both. The complex

type can be renamed.

You can now configure the properties of the message to your exact requirements.

For further information on configuring message model objects see “Configuring

message model objects” on page 107.

Adding a message from a global element

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

v “Opening an existing message definition file” on page 93

v “Adding a global element” on page 98 (This must be a global element of

complex type)

To add a message from a global element to your message model:

1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the

workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click Messages then click Add Message From Global

Element on the pop-up menu to open the Add Message From Global Element

window. This window lists all the global elements of a complex type that are

not already associated with a message.

4. In the Select a global element of complex type that is not already used for a

message list, click the global element that you want to use to create your

message.

Developing message models 97

5. Click OK. This immediately adds a message with the same name as the

selected global element to your message model.

You can now configure the properties of the message to your exact requirements.

For further information on configuring message model objects see “Configuring

message model objects” on page 107.

Adding a message from a global type

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

v “Opening an existing message definition file” on page 93

v “Adding a global element” (This must be a global element of complex type)

To add a message from a global type to your message model:

1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the

workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click Messages then click Add Message From Global

Type on the pop-up menu to open the Add Message From Global Type

window. This window lists all the global complex types that are not already

associated with a message.

4. In the Select a global complex type list, click the global complex type that you

want to use to create your message.

5. Click OK. This immediately adds a message with the same name as the

selected global complex type to your message model.

You can now configure the properties of the message to your exact requirements.

For further information on configuring message model objects see “Configuring

message model objects” on page 107.

Adding a global element

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

v “Opening an existing message definition file” on page 93

To add a global element to your message model:

1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the

workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click Elements and Attributes then click Add Global

Element on the pop-up menu. This adds a global element of type string to

your message model, and assigns a default name.

98 Message Models

4. Either type a new name for the global element or press Enter to accept the

default.

You can now configure the global element to your requirements. For further

information on configuring message model objects see “Configuring message

model objects” on page 107.

Adding a local element

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

v “Opening an existing message definition file” on page 93

This task assumes that you have previously added the relevant message, type,

group or complex element to your message model.

To add a local element to a message, type, group or complex element:

1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the

workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click the object (message, complex type, group or

complex element) to which you are adding a local element then click Add

Local Element on the pop-up menu. A local element of type string is added to

the message model and is assigned a default name.

4. Either type a new name for the local element or press Enter to accept the

default.

You can now configure the local element to your exact requirements. For further

information on configuring message model objects see “Configuring message

model objects” on page 107.

Adding an element reference

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

v “Opening an existing message definition file” on page 93

This task assumes that you have previously added the relevant message, type,

global group or complex element to your message model.

To add an element reference to a message, type, global group or complex element:

1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the

workbench menu, click Window > Show View> Outline.

Developing message models 99

3. In the Outline view, right-click the object (message, complex type, group or

complex element) to which you are adding the element reference, then click

Add Element Reference on the pop-up menu. This adds a default element

reference to the message model object that points to an existing global element.

This existing global element may be in the current message definition file or in

a message definition file defined under Includes or Imports for the current

message definition file. For further information on Imports and Includes see

“Linking from one message definition file to another” on page 122.

You can now configure the element reference to your exact requirements. For

further information on configuring message model objects see “Configuring

message model objects” on page 107.

Adding a wildcard element

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

v “Opening an existing message definition file” on page 93

You can add a wildcard element to a message, type, group or complex element.

This task assumes that you have previously added the relevant message, type,

group or complex element to your message model.

To add a wildcard element to a message, type, group or complex element:

1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the

workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click the message model object (message, complex

type, group or complex element) to which you are adding the wildcard element

then click Add Wildcard Element on the pop-up menu. A wildcard element is

added and appears in the Outline view.

You can now configure the wildcard element to your exact requirements. For

further information on configuring message model objects see “Configuring

message model objects” on page 107.

Adding a global attribute

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

v “Opening an existing message definition file” on page 93

To add a global attribute to your message model:

1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the

workbench menu, click Window > Show View> Outline.

100 Message Models

3. In the Outline view, right-click Elements and attributes then click Add Global

Attribute on the pop-up menu. A global attribute of type string is immediately

added and is assigned a default name.

4. Either type a new name for the global attribute or press Enter to accept the

default.

You can now configure the global attribute to your requirements. For more

information on configuring message model objects see “Configuring message

model objects” on page 107.

Adding a local attribute

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

v “Opening an existing message definition file” on page 93

You can add a local attribute to a message, complex type or complex element. This

task assumes that you have previously added the relevant message, complex type

or complex element to your message model.

To add a local attribute to a message, complex type or complex element:

1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the

workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click the object (message, complex type, complex

element, or attribute group) to which you are adding the local attribute then

click Add Local Attribute on the pop-up menu. A local attribute of type string

is immediately added to the message model object and is assigned a default

name.

4. Either type a new name for the local attribute or press Enter to accept the

default.

You can now configure the local attribute to your requirements. For further

information on configuring message model objects see “Configuring message

model objects” on page 107.

Adding an attribute reference

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

v “Opening an existing message definition file” on page 93

You can add an attribute reference to a message, complex type or complex element.

This task assumes that you have previously added the relevant message, complex

type or complex element to your message model.

To add an attribute reference to a message, complex type or complex element:

Developing message models 101

1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the

workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click the message model object (message, complex

type, complex element, or attribute group) to which you are adding the

attribute reference then click Add Attribute Reference on the pop-up menu.

This adds a default attribute reference to the message model object that points

to an existing global attribute.

You can now configure the attribute reference to your exact requirements. For

further information on configuring message model objects see “Configuring

message model objects” on page 107.

Adding a wildcard attribute

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

v “Opening an existing message definition file” on page 93

You can add a wildcard attribute to a message, complex type or complex element.

This task assumes that you have previously added the relevant message, complex

type or complex element to your message model.

To add a wildcard attribute to a message, complex type or complex element:

1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the

workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click the object (message, complex type, complex

element, or attribute group) to which you are adding the wildcard attribute

then click Add Wildcard Attribute on the pop-up menu. A wildcard attribute

of type string is immediately added to the message model object and is

assigned a default name.

4. Either type a new name for the wildcard attribute or press Enter to accept the

default.

You can now configure the wildcard attribute to your requirements. For further

information on configuring message model objects see “Configuring message

model objects” on page 107.

Adding a simple type

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

v “Opening an existing message definition file” on page 93

102 Message Models

To add a simple type to your message model:

1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the

workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click Types then click either Add Simple Type

Restriction, Add Simple Type List, or Add Simple Type Union on the pop-up

menu.

v For a restriction, a simple type of base type string is added, and assigned a

default name.

v For a list, a simple type of item type string is added, and assigned a default

name.

v For a union, a simple type with a single member type of string is added, and

assigned a default name.
4. Either type a new name for the simple type or press Enter to accept the default.

You can now configure the simple type to your exact requirements.

If the simple type is a restriction:

v You can change the base type using the editor Properties view.

v You can set the value constraints associated with the simple type. See “Setting

value constraints” on page 112.

v You can replace the base type with a new local simple type. In the Outline view

right-click on the simple type and click one of:

– Add Simple Type Restriction. This replaces the base type with a new simple

type restriction, with a base type of string. You can configure the restriction as

described in ’If the simple type is a restriction’. The result is that the original

simple type becomes a restriction of a restriction.

– Add Simple Type List. This replaces the base type with a new simple type

list, with an item type of string. You can configure the list as described in ’If

the simple type is a list’. The result is that the original simple type becomes a

restriction of a list. Note that this appears as a list in the editor, because a

restriction of a list is itself a list, but you can also set certain value constraints.

If the simple type is a list:

v You can change the item type using the editor Properties view.

v You can replace the item type with a new local simple type. In the Outline view

right-click on the simple type and click one of:

– Add Simple Type Restriction. This replaces the item type with a new simple

type restriction, with a base type of string. You can configure the restriction as

described in ’If the simple type is a restriction’. The result is that the original

simple type becomes a list of a restriction.

– Add Simple Type Union. This replaces the item type with a new simple type

union, with a single member type of string. You can configure the union as

described in ’If the simple type is a union’. The result is that the original

simple type becomes a list of a union.

If the simple type is a union:

v If the member type of string is not required, in the Outline view right-click on

the string and click Delete.

Developing message models 103

v You can add further members to the union. In the Outline view right-click on

the simple type and click one of:

– Add Union Member Type. This adds a union member that is an existing

simple type. Use the type selection dialog to select the simple type required.

– Add Local Member Type Restriction. This adds a union member that is a

new simple type restriction, with a base type of string. You can configure the

restriction as described in ’If the simple type is a restriction’ above.

– Add Local Member Type List. This adds a union member that is a new

simple type list, with an item type of string. You can configure the list as

described in ’If the simple type is a list’ above.

– Add Local Member Type Union. This adds a union member that is a new

simple type union, with a single member type of string. You can configure the

new union as described in ’If the simple type is a union’.
v New members are added to the end of the union. To change the order of a

member, in the Outline view select the member and drag it to the desired

position within the union. Note that all union members that are existing simple

types must occur ahead of all members that are local restrictions, lists and

unions, so reordering is subject to this rule.

For further information on configuring message model objects see “Configuring

message model objects” on page 107.

Adding a complex type

Before you start:

You must already have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

v “Opening an existing message definition file” on page 93

To add a complex type to your message model:

1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the

workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click Types then click Add Complex Type on the

pop-up menu. A complex type is added and is assigned a default name.

4. Either type a new name for the complex type or press Enter to accept the

default.

You can now configure the complex type to your requirements. For further

information on configuring message model objects see “Configuring message

model objects” on page 107.

Adding a global group

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

v “Opening an existing message definition file” on page 93

104 Message Models

To add a global group to your message model:

1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the

workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click Groups then click Add Group on the pop-up

menu. A global group is added to your message model and is assigned a

default name.

4. Either type a new name for the global group or press Enter to accept the

default.

You can now configure the global group to your requirements. For further

information on configuring the properties of message model objects see

“Configuring message model objects” on page 107.

Adding a local group

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

v “Opening an existing message definition file” on page 93

You can add a local group to a message, complex type, group, or complex element.

This task assumes that you have previously added the relevant message, complex

type, group, or complex element to your message model.

To add a local group to a message, complex type, group, or complex element:

1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the

workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click the object (message, complex type, group, or

complex element) to which you are adding the local group then click Add

Local Group on the pop-up menu. A local group is immediately added to the

message model with type composition set to sequence by default.

You can now configure the local group to your requirements. For further

information on configuring message model objects see “Configuring message

model objects” on page 107.

Adding an attribute group

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

v “Opening an existing message definition file” on page 93

To add an attribute group to your message model:

1. Switch to the Broker Application Development perspective.

Developing message models 105

2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the

workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click Groups then click Add Attribute Group on the

pop-up menu. A global attribute group is added to your message model and is

assigned a default name.

4. Either type a new name for the attribute group or press Enter to accept the

default.

You can now configure the attribute group to your requirements. For further

information on configuring the properties of message model objects see

“Configuring message model objects” on page 107.

Adding a group reference

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

v “Opening an existing message definition file” on page 93

You can add a group reference to a message, complex type, group, or complex

element. This task assumes that you have previously added the relevant message,

complex type, group, or complex element to your message model.

To add a group reference to a message, complex type, group or complex element:

1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the

workbench menu, click Window > Show View> Outline.

3. In the Outline view, right click the object (message, complex type, group, or

complex element) to which you want to add a group reference then click Add

Group Reference on the pop-up menu. A group reference is immediately

added to your message model.

You can now configure the group reference to your requirements. For further

information on configuring the properties of message model objects see

“Configuring message model objects” on page 107.

Adding an attribute group

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

v “Opening an existing message definition file” on page 93

To add an attribute group to your message model:

1. Switch to the Broker Application Development perspective.

106 Message Models

2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the

workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click Groups then click Add Attribute Group on the

pop-up menu. An attribute group is added to your message model and is

assigned a default name.

4. Either type a new name for the attribute group reference or press Enter to

accept the default.

You can now configure the attribute group to your requirements using the Message

Definition editor. For further information on configuring the properties of message

model objects see “Configuring message model objects.”

Configuring message model objects

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

v “Adding message model objects” on page 96 (You must have added one or more

objects to your message model)

Before starting any of the tasks in this topic area, you must first open the message

definition file for which you want to configure message model objects in the

Message Definition editor. See “Opening an existing message definition file” on

page 93 for further details.

This topic area describes the tasks that are involved in configuring message model

objects:

v “Renaming objects” on page 108

v “Reordering objects” on page 108

v “Copying objects” on page 109

v “Pasting objects” on page 109

v “Changing the type of an element or attribute” on page 110

v “Setting value constraints” on page 112

v “Configuring logical properties: Message model objects” on page 114

v “Configuring documentation properties: Message model objects” on page 115

v “Configuring physical properties” on page 116

– “Configuring Custom Wire Format (CWF) properties: Message model objects”

on page 116

– “Configuring XML Wire Format properties: Message model objects” on page

118

– “Configuring TDS properties: Message model objects” on page 117

– “Applying default physical format settings: Message model objects” on page

119
v “Deleting objects” on page 120

Developing message models 107

Renaming objects

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

v “Opening an existing message definition file” on page 93

v “Adding message model objects” on page 96 (You must have added one or more

objects to your message model)

Objects in the workbench such as files, messages and elements can have different

physical representations. Eclipse handles renaming differently depending on the

object.

Tip: Not all objects can be renamed. For example, you cannot rename wildcards,

local groups, or local types, because they do not have a name.

If an object can be renamed the usual way to do it is as follows:

1. Switch to the Broker Application Development perspective.

2. In the Outline view, right-click the object that you want to rename then click

Rename on the pop-up menu. Alternatively, right-click the object in the

Message Definition editor Overview tab then click Rename on the pop-up

menu. In both cases, depending on the object, either a renaming dialog opens

or you will now be able to edit the name of the object directly.

3. Type the new name for the object.

4. If the renaming dialog is open, either press Enter or click OK.

Reordering objects

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

v “Opening an existing message definition file” on page 93

v “Adding message model objects” on page 96 (You must have added one or more

objects to your message model)

To reorder objects within a message definition file:

1. Switch to the Broker Application Development perspective.

2. Click the object that you want to move. For example, you could select a local

element within a message in either the Outline view or Properties Hierarchy.

3. Use the mouse to drag the object to its new location.

Tip: As you drag the object and the mouse cursor passes between objects, a

black line appears, showing where the current focus is. If you try to drag

the object to a location that it cannot be moved to (including objects that

are highlighted as the cursor passes over them), the object remains in its

original position when you release it.

108 Message Models

Copying objects

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

v “Opening an existing message definition file” on page 93

v “Adding message model objects” on page 96 (You must have added one or more

objects to your message model)

You can copy an object within a message definition file, such as a message for a

local element object, or types for a complex type object. To copy an object:

1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development

perspective. If the Outline view is not visible, from the workbench menu click

Window> Show View> Outline.

3. In the Outline view, right-click the message model object that you want to copy

then click Copy on the pop-up menu. Alternatively, right-click the object in the

Message Definition editor Overview tab then click Copy on the pop-up menu.

The object is now copied.

Pasting objects

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

v “Opening an existing message definition file” on page 93

v “Adding message model objects” on page 96 (You must have added one or more

objects to your message model)

v “Copying objects”

You can paste objects that you have previously copied within the same message

definition file.

You can only copy and paste an object within the same message definition. You

cannot copy an object and paste it into another message definition, either within

the same message set or in a different message set.

To paste an object in the message definition from which you copied it:

1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the

workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click the location where you are going to paste the

object then click Paste on the pop-up menu. Alternatively, right-click the object

in the Message Definition editor Overview tab then click Paste on the pop-up

menu. The object appears in the new location with a default name which you

can change if you want to.

Developing message models 109

4. Either type a new name for the object or press Enter to accept the default.

Note: When you copy and paste objects within the message set, where physical

properties exist for that object, these settings are not pasted, but are set to

default values.

Tip: If you cannot select Paste from either menu, this indicates that you are

attempting to paste the object into a location that is not valid; for example, if

you try to paste a complex type into a local element.

Changing the type of an element or attribute

You can change the type to a local element, global element, local attribute, or

global attribute.

Before you start:

You must already completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

v “Opening an existing message definition file” on page 93

v “Adding message model objects” on page 96 (You must have added one or more

objects to your message model)

You can change the type of an element or attribute in your message model to

another existing type, or you can create a new simple type or a new complex type.

To change the type of an element or attribute to an existing type:

1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the

workbench menu, click Window > Show View> Outline.

3. In the Outline view, click the element for which you want to change the type.

4. Display the Properties tab of the Message Definition editor by clicking

Properties in the bottom left corner of the editor area.

5. In the Properties Hierarchy click Logical Properties > Global Element (or

Logical Properties > Local Element, Logical Properties > Global Attribute, or

Logical Properties > Local Attribute). If necessary, expand Logical Properties

by clicking +.

6. In the Details view, in the Type property, click the new type that you require.

Tip: If the type you require is not displayed, you can find it by clicking

(More...) in the list. This displays the Type Selection window with

additional options. If you know which type you require, specify the first

letter in the text box at the top of the Type Selection window. Matching

types are then displayed, making the selection process easier.

7. When you have selected the type that you require, click OK.

The change to the type is applied wherever the element or attribute occurs.

The task above explains how to switch to an existing type. If you want to create a

new simple type or a new complex type, select (New Simple Type Restriction),

(New Simple Type List), (New Simple Type Union), or (New Complex Type) in

the Type list (see step 6 above). For information on how to create a new simple

110 Message Models

type or a new complex type see “Adding a simple type to an element or attribute”

or “Adding a complex type to an element.”

Adding a simple type to an element or attribute:

You can add a simple type to a local element, global element, local attribute, or

global attribute.

 Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

v “Opening an existing message definition file” on page 93

This task assumes that you have previously added the relevant element or attribute

to your message model.

To add a new simple type:

1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the

workbench menu, click Window > Show View> Outline.

3. In the Outline view, click the element to which you want to add a new simple

type.

4. In the Message Definition editor, click the Properties tab.

5. In the Properties Hierarchy, click Logical Properties > Global Element (or

Logical Properties > Local ElementLogical Properties > Global Attribute, or

Logical Properties > Local Attribute).

6. In the Details view, in the Type property, select (New Simple Type

Restriction), (New Simple Type List), or (New Simple Type Union) to open

the relevant New Simple Type window to create a simple type of the type that

you specify.

7. In the New Simple Type window, in the Base Type list, click the type that you

want to use.

8. Optional: If you want to add the new simple type as a global simple type,

select the Create as Global Simple Type check box and specify the name for

your new simple type in the Name field.

9. Click OK. A simple type is immediately added to your message model.

Any changes that you make are reflected throughout where the element to which

you have added a new simple type occurs.

Adding a complex type to an element:

You can add a complex type to a local element, global element, local attribute, or

global attribute.

 Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

Developing message models 111

v “Opening an existing message definition file” on page 93

This task assumes that you have previously added the relevant element or attribute

to your message model.

When you add a complex type to an element or attribute, you can either create a

new complex type or derive a new complex type from an existing base type.

To add a new complex type:

 1. Switch to the Broker Application Development perspective.

 2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the

workbench menu, click Window > Show View> Outline.

 3. In the Outline view, click the element to which you want to add a new

complex type.

 4. In the Message Definition editor, click the Properties tab.

 5. In the Properties Hierarchy, click Logical Properties > Global Element (or

Logical Properties > Local ElementLogical Properties > Global Attribute, or

Logical Properties > Local Attribute).

 6. In the Details view, in the Type list, click (New Complex Type) to display the

New Complex Type window.

 7. If you want to create a new local complex type, click Create a Local Complex

Type then, in the Composition list, click the option that you require.

 8. If you want to derive a new local complex type from an existing base type:

a. Click Derive a new Local Complex Type from existing base type.

b. In the Base Type list, click the base type that you want to use. Depending

on the base type you select, the Composition and Derived By lists might

become active.

c. If the Composition and Derived By lists are active, click the options that

you require in both lists.
 9. If you want to add the new complex type as a global complex type, select the

Create as Global Complex Type check box, and specify a name for your new

complex type in the Name field.

10. Click OK to close the New Complex Type window and add the new complex

type to your message model.

Any changes that you make are reflected throughout where the element to which

you are adding the complex type occurs.

Setting value constraints

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

v “Opening an existing message definition file” on page 93

v “Adding a simple type” on page 102 or “Adding a simple type to an element or

attribute” on page 111 (You must have added one or more global or local simple

types to your message model)

112 Message Models

Value constraints are usually associated with a simple type; they refine a simple

type by defining limits on the values which the simple type can represent. To set

the value constraints associated with a simple type:

1. Switch to the Broker Application Development perspective.

2. In the Outline view, click the simple type you are updating. If the Outline view

is not visible, from the workbench menu, click Window> Show View> Outline.

3. Display the Properties tab of the Message Definition Editor by clicking

Properties in the bottom left corner of the editor area. The Properties Hierarchy

displays the following nodes:

v Logical Properties

v Physical Properties

v Documentation
4. In the Properties Hierarchy under Logical Properties click Value Constraints.

This displays the current value constraints settings for the selected simple type

in the Details pane.

Tip: If Value Constraints is not in view, expand Logical Properties by clicking

+.

5. Set the value constraints for the selected simple type by making the appropriate

changes to the information shown in the Details pane.

Setting an enumeration:

An enumeration restricts which values can be set for the value constraint. For

example, ″ABC″ and ″123″. Use this section to create a list of fixed values that the

associated type must match.

To set an enumeration:

1. Click Add to the right of the Enumerations field. This adds an enumeration

that has a default enumeration (for example enumeration1).

2. Type the data that you want to set for this value constraint.

3. Press Enter on your keyboard.

4. Repeat the above steps for each enumeration that you are adding.

Setting a pattern:

Set a pattern to indicate that the value constraint defines a string used as a regular

expression that must be matched by the data in the associated type. The regular

expression syntax supported is XML Schema regular expressions.

See “Regular expression syntax” on page 759 for a list of supported regular

expression syntax elements.

To set a pattern:

1. Select Add to the right of the Patterns field. This adds a pattern that has a

default pattern (for example pattern1) and is in update mode.

2. Type the data that you want to set for this value constraint.

3. Press Enter on your keyboard.

4. Repeat the above steps for each pattern that you are adding.

Developing message models 113

Configuring logical properties: Message model objects

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

v “Opening an existing message definition file” on page 93

v “Adding message model objects” on page 96 (You must have added one or more

objects to your message model)

To configure the logical properties of an object that is part of the message model:

1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench and is displaying the following information:

v The name of the message definition file

v Messages

v Types

v Groups

v Elements and Attributes

If the Outline view is not visible, from the workbench menu, click Window>

Show View> Outline. If the information listed above is not displayed, ensure

that the message definition file is open in the Message Definition editor.

Message definition files have an .mxsd file extension.

3. In the Outline view, select the message model object for which you want to

configure the logical properties:

a. Depending on the type of the object that you are selecting, expand

Messages, Types, Groups or Elements and Attributes as appropriate by

clicking +.

b. Click the object that you want to select within the expanded node.
4. Display the Properties tab of the Message Definition editor by clicking

Properties in the bottom left corner of the editor area. The Properties Hierarchy

displays the following nodes:

v Logical Properties

v Physical Properties

v Documentation

The type (for example, Local Element or Global Element) of the message model

object that you selected in the Outline view is displayed under each of these

nodes.

If the items under Logical Properties are not in view, expand Logical

Properties by clicking +.

5. Display the logical properties of the selected object in the Details view of the

Message Definition editor, by clicking the appropriate item under Logical

Properties.

6. Configure the logical properties of the selected item to your requirements by

making the appropriate changes to the information shown in the Details view.

7. Save your changes by clicking File> Save message_definition_file.mxsd or by

pressing Ctrl+S. Alternatively click File> Save All or press Ctrl+Shift+S.

114 Message Models

Configuring documentation properties: Message model objects

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

v “Opening an existing message definition file” on page 93

v “Adding message model objects” on page 96 (You must have added one or more

objects to your message model)

To configure the documentation properties of an object contained within a message

definition file:

1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench and is displaying the following information:

v The name of the message definition file

v Messages

v Types

v Groups

v Elements and Attributes

If the Outline view is not visible, from the workbench menu, click Window>

Show View> Outline. If the information listed above is not displayed, ensure

that the message definition file is open in the Message Definition editor.

Message definition files have an .mxsd file extension.

3. In the Outline view, select the message model object for which you want to

configure the documentation properties by doing the following:

a. Depending on the type of the object that you are selecting, expand

Messages, Types, Groups or Elements and Attributes as appropriate by

clicking +.

b. Click the object you want to select within the expanded node.
4. Display the Properties tab of the Message Definition editor by clicking

Properties in the bottom left corner of the editor area. The Properties Hierarchy

displays the following nodes:

v Logical Properties

v Physical Properties

v Documentation

The type (for example, Local Element or Global Element) of the message model

object that you selected in the Outline view is displayed under each of these

nodes.

Tip: If the items under Documentation are not in view, expand

Documentation by clicking +.

5. Display the logical properties of the selected object in the Details view by

clicking the appropriate item under Documentation.

6. Configure the documentation properties of the selected item to your

requirements by typing text into the Documentation text field. Right-clicking in

the text field allows you to select options for undoing changes you have made,

cutting or copying text from the text field, pasting text into the text field,

deleting highlighted text or selecting all text in the field.

Developing message models 115

7. Save your changes by clicking File> Save message_definition_file.mxsd from

the menu or pressing Ctrl+S. Alternatively, from the menu, click File > Save

All or press Ctrl+Shift+S.

Configuring physical properties

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

v “Opening an existing message definition file” on page 93

v “Adding message model objects” on page 96 (You must have added one or more

objects to your message model)

The tasks in this topic area assume that you have added one or more physical

formats to a message set. For further information see “Adding a Custom Wire

Format (CWF)” on page 86 or “Adding an XML wire format” on page 88 or

“Adding a TDS physical format” on page 87.

When you have added objects to your message model it is likely that you will

want to configure the physical properties of these objects. The following tasks

relate to configuring the physical properties of message model objects:

v “Configuring Custom Wire Format (CWF) properties: Message model objects”

v “Configuring XML Wire Format properties: Message model objects” on page 118

v “Configuring TDS properties: Message model objects” on page 117

v “Applying default physical format settings: Message model objects” on page 119

Configuring Custom Wire Format (CWF) properties: Message model objects:

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

v “Opening an existing message definition file” on page 93

v “Adding a Custom Wire Format (CWF)” on page 86

v “Adding message model objects” on page 96 (You must have added one or more

objects to your message model)

To configure the CWF properties of a message model object:

1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench and is displaying the following information:

v The name of the message definition file

v Messages

v Types

v Groups

v Elements and Attributes

If the Outline view is not visible, from the workbench menu, click Window>

Show View> Outline. If the above hierarchy is not displayed, ensure that the

116 Message Models

message definition file is open in the Message Definition editor. Message

definition files have an .mxsd file extension.

3. In the Outline view, select the object for which you want to configure the CWF

properties by doing the following.

a. Depending on the type of the object that you are selecting, expand

Messages, Types, Groups or Elements and Attributes by clicking +.

b. Click the object you that want to select within the expanded node.
4. Display the Properties tab of the Message Definition editor by clicking

Properties in the bottom left corner of the editor area. In the Message

Definition editor, in the Properties Hierarchy, the name of each of the physical

formats that have been added to the message set appears under Physical

Properties. The object type (for example, Local Element or Global Element) of

the message model object that you selected in the Outline view is displayed

under each physical format shown.

Tip: If the physical formats are not in view in the Properties Hierarchy, expand

Physical Properties by clicking +. By default the CWF physical format is

called Binary1 but could have a user defined name instead.

5. Under Physical Properties, click the object type for the message model object

that you have chosen to configure under the CWF physical format. The CWF

properties of your selected message model object appear in the Details view.

6. Configure the CWF properties of the selected object to your requirements by

making the appropriate changes to the information shown in the Details view.

Note: It is not possible to configure disabled fields.

7. Save your changes by clicking File> Save message_definition_file.mxsd or

pressing Ctrl+S. Alternatively click File> Save All or press Ctrl+Shift+S.

Configuring TDS properties: Message model objects:

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

v “Opening an existing message definition file” on page 93

v “Adding a TDS physical format” on page 87

v “Adding message model objects” on page 96 (Adding one or more objects to

your message model)

To configure the TDS properties of a message model object:

1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench and is displaying the following information:

v The name of the message definition file

v Messages

v Types

v Groups

v Elements and Attributes

If the Outline view is not visible, from the workbench menu, click Window>

Show View> Outline. If the above hierarchy is not displayed, ensure that the

Developing message models 117

message definition file is open in the Message Definition editor. Message

definition files have an .mxsd file extension.

3. In the Outline view, select the object for which you want to configure the TDS

properties by doing the following:

a. Depending on the type of the object that you are selecting, expand

Messages, Types, Groups or Elements and Attributes by clicking +.

b. Click the object that you want to select within the expanded node.
4. Display the Properties tab of the Message Definition editor by clicking

Properties in the bottom left corner of the editor area. In the Message

Definition editor, in the Properties Hierarchy, the name of each of the physical

formats that have been added to the message set appears under Physical

Properties. The object type (for example, Local Element or Global Element) of

the message model object that you selected in the Outline view is displayed

under each physical format shown.

Tip: If the physical formats are not in view in the Properties Hierarchy, expand

Physical Properties by clicking +. By default the TDS physical format is

called Text1 but could have a user defined name instead.

5. Select the Properties tab located in the bottom left corner of the Message

Definition editor.

6. Under Physical Properties, under the TDS physical format, click the object type

for the message model object that you have chosen to configure. The TDS

physical format properties of your selected message model object appear in the

Details view.

7. Configure the TDS physical format properties of the selected object to your

requirements by making the appropriate changes to the information shown in

the Details view.

Note: It is not possible to configure disabled fields.

8. Save your changes by selecting File> Save message_definition_file.mxsd from

the menu or press Ctrl+S. Alternatively, from the menu, select File > Save All,

or press Ctrl+Shift+S.

Configuring XML Wire Format properties: Message model objects:

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

v “Opening an existing message definition file” on page 93

v “Adding an XML wire format” on page 88

v “Adding message model objects” on page 96 (You must have added one or more

objects to your message model)

To configure the XML Wire Format properties of a message model object:

1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench and is displaying the following information:

v The name of the message definition file

v Messages

v Types

118 Message Models

v Groups

v Elements and Attributes

If the Outline view is not visible, from the workbench menu, click Window>

Show View> Outline. If the above hierarchy is not displayed, ensure that the

message definition file is open in the Message Definition Editor. Message

definition files have an .mxsd file extension.

3. In the Outline view, select the object for which you want to configure the XML

Wire Format properties by doing the following:

a. Depending on the type of the object that you are selecting, expand

Messages, Types, Groups or Elements and Attributes by clicking +.

b. Click the object that you want to select within the expanded node.
4. Display the Properties tab of the Message Definition editor by clicking

Properties in the bottom left corner of the editor area. In the Message

Definition editor, in the Properties Hierarchy, the name of each of the physical

formats that have been added to the message set appears under Physical

Properties. The object type (for example, Local Element or Global Element) of

the message model object that you selected in the Outline view is displayed

under each physical format shown.

Tip: If the physical formats are not in view in the Properties Hierarchy, expand

Physical Properties by clicking +. By default the XML Wire Format is

called XML1 but could have a user defined name instead.

5. Under Physical Properties, under the XML Wire Format, click the object type

for the message model object that you have chosen to configure. The XML Wire

Format properties of your selected message model object appear in the Details

view of the Message Definition editor.

6. Configure the XML Wire Format properties of the selected object to your

requirements by making the appropriate changes to the information shown in

the Details view.

Note: It is not possible to configure disabled fields.

7. Save your changes by clicking File> Save message_definition_file.mxsd or

pressing Ctrl+S. Alternatively select File> Save All from the menu or press

Ctrl+Shift+S.

Applying default physical format settings: Message model objects:

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

v “Opening an existing message definition file” on page 93

v “Adding message model objects” on page 96 (You must have added one or more

objects to your message model)

This task assumes that you have added one or more physical formats to the

relevant message set. For further information see “Adding a Custom Wire Format

(CWF)” on page 86 or “Adding an XML wire format” on page 88 or “Adding a

TDS physical format” on page 87.

To apply the default physical format setting to a message model object previously

added to a message definition file:

Developing message models 119

1. Switch to the Broker Application Development perspective.

2. In the Outline view, click the object to which you want to apply default

physical format settings.

3. Click the Properties tab located in the bottom left corner of the Message

Definition editor.

4. Check that the Message Definition editor Properties Hierarchy displays the

following information:

v Logical Properties

v Physical Properties (For each of the physical formats that have been added to

the message set, the name of the physical format appears under Physical

Properties. Under each physical format the type of message model object

that you selected is displayed as a child.)

v Documentation

Ensure that Physical Properties in the Properties Hierarchy is fully expanded

by clicking +.

5. Right click on the message model object type underneath the physical format to

which you want to apply the default settings then click Apply default physical

format settings. The default physical format settings for the message model

object that you selected are applied without warning.

6. Save your changes by clicking File> Save message_definition_file.mxsd from

the menu or pressing Ctrl+S. Alternatively, from the menu, click File > Save

All, or press Ctrl+Shift+S.

Deleting objects

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

v “Opening an existing message definition file” on page 93

v “Adding message model objects” on page 96 (You must have added one or more

objects to your message model)

To remove objects contained within a message definition file:

1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the

workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click the object that you wish to remove then click

Delete on the pop-up menu. Alternatively right-click the object in the Message

Definition editor Overview tab then click Delete on the pop-up menu.

The type of object and the relationship that it has with other objects determines

whether the object is now deleted without a confirmation window appearing,

or whether a confirmation window opens with a list of all the objects that will

be deleted along with the one that you have selected.

4. If a confirmation window opens, click OK to delete the objects.

Tip: You can undo a deletion by selecting Edit> Undo, as long as you have not

saved the changes that you have made.

120 Message Models

Creating a multipart message

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

v “Opening an existing message definition file” on page 93

A multipart message occurs when you embed a message within another message.

To create a multipart (embedded) message:

1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the

workbench menu, click Window > Show View> Outline.

3. In the Outline view, add one of the following objects to your message model:

v A complex type (for further information on completing this task see “Adding

a complex type” on page 104)

v A global group (for further information on completing this task see “Adding

a global group” on page 104)

v A local group (for further information on completing this task see “Adding a

local group” on page 105)

Tip: You can also use a local ANONYMOUS complex type when creating a

multipart message. For further information see “Adding a complex type to

an element” on page 111.

4. Display the Properties tab of the Message Definition editor by clicking

Properties in the bottom left corner of the editor area.

5. In the Properties Hierarchy, under Logical properties, click one of the

following, depending on which of these you added in step 3:

v Complex Type

v Global Group

v Local Group

6. In the Details view, make the following changes to the displayed logical

properties:

a. In the Composition drop-down list, click message.

b. In the Content validation drop-down list, click Open, Closed or Open

Defined, depending on your requirements. Note that if the embedded

message is defined in a different message set, then you must click Open.

For further information about using these three options see “MRM content

validation” on page 189.

Note: There are a number of different ways for the parser to identify an embedded

message within a message bit stream. For further information on identifying

a message within another message see the concept topics listed below.

Developing message models 121

Linking from one message definition file to another

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Creating a message definition file” on page 94

v “Opening an existing message definition file” on page 93

There are two ways to link one message definition file to another: either you can

add an ’include’, or you can add an ’import’, for the file that you want to

reference.

When you are working with a message definition file, you can check which other

message definition files this file currently includes or imports by carrying out the

steps listed below:

1. Open the message definition file in the Message Definition editor.

2. In the Outline view, in the displayed hierarchy, select the .mxsd file.

3. In the Properties Hierarchy, expand Imports or Includes as appropriate to

display a list of the other files that the currently selected file includes or

imports.

Include

You use the include option if you want to link to a message definition file with the

same namespace, or if you want to link to a message definition file with no target

namespace from a message definition file with a target namespace (chameleon

behavior). You must also choose to add an include rather than an import if you

want to link a message definition file with no target namespace to another message

definition file that also has no target namespace.

Note: A message definition file can only reference objects in another message

definition file if this other file has been included directly, so you might have

a problem if you try to use the include option to include message definition

files that are themselves included within other message definition files. For

information about ways of resolving this situation, see Resolving problems

when developing message models.

This task assumes that you have opened an existing message definition file.

To add an include to a message definition file:

1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the

workbench menu, click Window > Show View> Outline.

3. In the Outline view, click the message definition (.mxsd) file name.

4. Display the Properties tab of the Message Definition Editor by clicking

Properties in the bottom left corner of the editor area.

5. In the Properties Hierarchy, right-click Includes then click Add Include on the

pop-up menu. The “Select Message Definition file to include” window opens.

122 Message Models

6. In the Message Sets pane, select the message definition file that you want to

include. If the message definition files within your project are not visible in this

pane, expand the project hierarchy by clicking +.

7. Click Finish. The message definition file that you selected in step 4 is included

within the message definition file that you opened before beginning this task.

Import

You use the import option if you want to link a message definition file to another

message definition file in a different namespace. You cannot add an import from

the same namespace; this includes linking from a message definition file with no

target namespace to another message definition file with no target namespace.

To add an import to a message definition file:

1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the

workbench menu, click Window > Show View> Outline.

3. In the Outline view, click the message definition (.mxsd) file name.

4. Display the Properties tab of the Message Definition editor by clicking

Properties in the bottom left corner of the editor area.

5. In the Properties Hierarchy, right-click Imports then click Add Import on the

pop-up menu. The “Select Message Definition file to import” window opens.

6. In the Message Sets pane, select the message definition file that you want to

import from the workspace. If the message definition files within your project

are not visible in this pane, expand the project hierarchy by clicking +.

7. Click Finish. The message definition file that you selected in step 4 is imported

into the schema of the message definition file that you opened before beginning

this task.

Working with a message category file

This topic area lists the tasks that are involved when working with a message

category file.

v “Creating a message category file”

v “Opening an existing message category file” on page 124

v “Adding a message to a message category” on page 125

v “Deleting a message from a message category” on page 126

v “Viewing or configuring message category file properties” on page 126

v “Deleting a message category file” on page 126

Creating a message category file

This topic describes how you would create a message category file.

Before you start:

You must have completed the following task:

v “Creating a message set” on page 83

To create a new message category file:

1. Switch to the Broker Application Development perspective.

Developing message models 123

2. Open the New Message Category File wizard by right-clicking in the Broker

Development view then clicking New> Message Category File on the pop-up

menu.

Tip: To preselect the message set when the wizard opens, either right-click the

message set to which you are adding the message category file, or select

the message set, before opening the wizard as just described.

3. In the first pane, select the Category Kind for the type of category that you are

creating.

v other. Indicates that this Message Category represents a generic grouping of

messages. The Category Usage field is disabled.

v wsdl. Indicates that this Message Category represents a WSDL operation. The

specified Category Name will become the WSDL operation name.

Note: This use of categories is only for compatibility with WebSphere

Message Broker Version 6.0.
4. If the Category Kind has been set to wsdl, specify the WSDL operation type by

selecting one of the following values for the Category Usage field:

v wsdl:request-response

v wsdl:solicit-response

v wsdl:one-way

v wsdl:notification
5. Click Next. In the Message Set Folder field, select a folder under the target

message set for the new message category file to be saved. The message set

folder view is filtered to only show artifacts in the active working set.

6. In the File name field, type a name for the new message category file (It will

automatically be given the file extension of .category).

7. Click Next. Select any messages that you want to add to the new category. Use

Shift-click to select a range of messages and Ctrl-click to select or deselect

individual messages. You cannot complete the creation of the category file

without adding one or more messages and setting the Role Type and Role

Usage values of each message correctly.

8. Click Finish. A message category file is created within the message set folder

that you selected, with the name that you specified and a file extension of

.category.

The new message category file opens in the Message Category editor so that you

can view and edit it as required.

Opening an existing message category file

This describes how to open an existing message category file in the Message

Category editor so that you can view or edit it.

Before you start:

To complete this task, you must have completed the following task:

v “Creating a message category file” on page 123

To open an existing message category file:

1. Switch to the Broker Application Development perspective.

124 Message Models

|
|
|

2. In the Broker Development view, right-click the message category file (with a

file extension of .category) that you want to open, then click Open on the

pop-up menu. This opens the message category file that you have selected in

the Message Category editor.

3. View and edit the message category file as required.

Tip: The Eclipse framework lets you open resource files with other editors. You are

advised to only use the workbench Message Category editor to work with the

message category files because this editor correctly validates changes made to

the files. Other editors might not do this.

Adding a message to a message category

Before you start:

You must have completed the following tasks:

v “Creating a message category file” on page 123

v “Opening an existing message category file” on page 124

Important: This topic assumes that you have already added one or more messages

to your message model.

To add a message to a message category file:

1. Switch to the Message Category editor, in the Broker Application Development

perspective.

2. In the Properties Hierarchy, open the Add Messages window by right-clicking

Message Category and then clicking Add Messages on the pop-up menu. The

Add Messages window lists all the messages that are available for adding to

the message category file. Any message that is in the message set but has not

already been added to the category is displayed.

3. Select the message or messages that you would like to add. Use Shift-click to

select a range of messages and Ctrl-click to select or deselect individual

messages.

4. Click OK. The selected message or messages are added to the message category

and now appear in the Properties Hierarchy.

Tip: Until you save the message category file, you can undo any additions that

you make. To undo a change, right-click Message Category in the

Properties Hierarchy then click Undo on the pop-up menu. If you have

added multiple messages, this removes all the messages that you have

added. If you want to remove a single message, right click this message

then click Undo. To redo an addition after undoing it, use the Redo

option.

5. Save and validate the additions that you have made to the message category

file by clicking File> Save or pressing Ctrl+S.

Note: When you have saved the message category file after adding a message, you

can no longer undo the addition of this message using the Undo option. To

remove a message after saving your changes, you can do so by deleting the

message from the message category file.

When you have added a message to a message category file, you can configure its

properties according to your requirements in the Message Category editor Details

view.

Developing message models 125

Deleting a message from a message category

Before you start:

To complete this task, you must have completed the following tasks:

v “Creating a message category file” on page 123

v “Opening an existing message category file” on page 124

v “Adding a message to a message category” on page 125

To delete a message from a message category file:

1. Switch to the Broker Application Development perspective.

2. In the Message Category editor, in the Properties Hierarchy, right-click the

message that you want to delete, then click Delete on the pop-up menu.

Tip: The message is deleted from the message category file immediately,

without a warning appearing first.

Viewing or configuring message category file properties

This topic describes how to view or configure the properties of a message category

file and associated messages using the Message Category editor.

Before you start:

To complete this task, you must have completed the following tasks:

v “Creating a message category file” on page 123

v “Opening an existing message category file” on page 124

v “Adding a message to a message category” on page 125 (You must have added

one or more messages to your message category file)

To configure the properties of a message category file:

1. Switch to the Message Category editor in the Broker Application Development

perspective.

2. To view or configure the properties of a message category, click Message

Category in the Properties Hierarchy. From the Details section of the Message

Category editor you can now view the properties of the message category and

make any changes to the properties that are necessary.

3. To view or configure the properties of a message in the message category file,

click the name of the message in the Properties Hierarchy. From the Details

section of the Message Category editor you can now view the properties of the

message and make any changes to the properties that are necessary.

4. If you have changed any of the properties in the message category or messages,

you can save those changes by selecting File → Save from the menu.

Note: Note that some combinations of Message Category Usage, Role Type and

Role Usage are not valid for WSDL and will result in task list errors being

generated.

Deleting a message category file

Before you start:

To complete this task, you must have completed the following task:

126 Message Models

v “Creating a message category file” on page 123

To delete a message category file:

1. Switch to the Broker Application Development perspective.

2. In the Broker Development view, right-click the message category file

(*.category file extension) that you want to delete, then click Delete on the

pop-up menu. Alternatively select the message category file in the Broker

Development view and then either click Edit> Delete, or press the Delete key

on your keyboard.

3. On the Confirm Resource Delete window, click Yes to delete the message

category file. Alternatively, to cancel the message category file deletion, either

click No or press the Esc key.

Tip: Once you have deleted a message category file, the action cannot be undone.

Importing data structures

This describes how to create a message definition file by importing from a number

of different data structures.

You can create a message definition file in a message set by importing from XML

Schema, XML DTD, IBM supplied messages, WSDL definitions, C header files, and

COBOL copybooks. This topic area describes how to import from these data

structures using the command line or the workbench.

Before you attempt to create a message definition from a data structure, using the

workbench, you advised to read “Importing file systems into the workbench.”

The following tasks topics relate to importing using the workbench:

v “Importing from C” on page 129

v “Importing from COBOL copybooks” on page 131

v “Importing from IBM supplied messages” on page 133

v “Importing from WSDL” on page 134

v “Importing from XML DTD” on page 136

v “Importing from XML Schema” on page 138

The following tasks relate to importing using the command line:

v “Importing from the command line” on page 130 for C header files, COBOL

Copybooks, XML DTDs and XML Schemas.

v “Importing WSDL definitions from the command line” on page 135

Importing file systems into the workbench

Before the workbench can use files to create a message definition that is based on a

WSDL definition, XML Schema, XML DTD, C header file, or COBOL copybook, the

files must be imported or copied into the workbench’s file structure. This topic

explains the three ways in which you can do this:

v “Using the Import wizard” on page 128

v “Dragging and dropping” on page 129

v “Copying and pasting” on page 129

Developing message models 127

Use any of these import methods to ensure that a file is available for use by your

selected message set project. You can then select the imported file in the New

Message Definition File wizard to create a message definition that is based on this

file.

Using the Import wizard

Use the Import wizard to import all the files, or a selection of files, from the

specified source.

To import files using the Import wizard:

 1. Switch to the Broker Application Development perspective.

 2. In the Broker Development view, click the project folder into which you are

going to import the files.

 3. Open the Import wizard by clicking File → Import on the workbench menu.

 4. On the Select page of the Import wizard, click either File System or Zip file,

depending on the type of resource that you are importing.

 5. Click Next.

 6. On the File System page, in the Directory field, specify the import source.

Either type the source name in the field, or click Browse and select the parent

directory, or compressed file that contains the file or files that you want to

import; then click OK (directory) or Open (compressed file).

Tip: Directories from which you have recently imported files, are shown in

the drop-down list in the Directory field.

 7. Using the left and right panes that appear under the Directory field, specify

the folders or files, or both, that you want to import. Note the following

points when you are making your selections:

v To import the entire contents of a folder into the workbench, select the

check box for this folder in the left pane. To view any secondary folders

within a folder, expand the folder by clicking the plus sign (+).

v To import a specific file or files within a folder, use the right pane to select

the individual files that you want to import. If you select a file or files in

the right pane, the check box for the folder containing these files is greyed

in the left pane to indicate that only some of the files in the folder will be

imported into the workbench.

v To restrict the type of files that you are importing, click Filter Types and

then, on the Select Types window, select the check boxes for the file types

that you want to include, and click OK. If you want to include files with

extensions that are not shown in the list, type these extensions in the Other

Extensions field.

v To select all the folders and files that are shown on the File System page,

click Select All.

v To deselect all the folders and files that are currently selected on the File

System page, click Deselect All.

Note: The Select the destination for imported resources field should already

be filled in with the name of the project folder that you selected in step

2.

 8. Optional: To change the destination project or folder, click Browse to open the

Folder Selection window. Select an alternative project folder by clicking the

folder then clicking OK.

128 Message Models

9. Optional: To overwrite existing resources and not have a warning displayed,

select the Overwrite existing resources without warning check box. This

check box applies to both compressed files and file systems.

10. File system import only: Select one of the following options, depending on the

folder structure that you want to create:

v Create complete folder structure

v Create selected folders only

11. Click Finish.

The files that you selected are imported and are shown in the Broker Development

view under the project folder that you selected.

Dragging and dropping

You can use the drag-and-drop method to import files from your file system into

the workbench. Drag the resources that you are importing to the exact location in

the Broker Development view where you want the resources to be. Do not drag

them onto a blank area in the Broker Development view.

To import files by dragging and dropping:

1. In your file system, locate the file or folder that you want to import into the

workbench.

2. Drag the file or folder to a specific location in the Broker Development view.

When you are dragging resources into the Broker Development view, the

project or folder into which you are trying to drop the resource is selected.

3. Ensure that the file or folder is copied into the workbench.

Copying and pasting

You can use your operating system’s copy and paste function as a method of

importing a file system into the workbench.

To import files by copying and pasting:

1. Locate the file or directory that you want to import into the workbench.

2. Using your operating system’s copy and paste function, copy the file or

directory to your system’s clipboard.

3. Select the destination for the file or directory in the Broker Development view.

4. From the workbench menu, click Edit → Paste.

The files or directories are copied into the workbench and placed into the location

that you selected.

Importing from C

This topic describes how to create a new message definition from a C header file

using the New Message Definition File wizard in the workbench.

Before you start:

Complete the following tasks:

v “Creating a message set” on page 83

v “Importing file systems into the workbench” on page 127

Be aware of the following points:

Developing message models 129

v To create a new message definition file from a C header file, the header file must

already be present in the workbench, for example in your message set project.

This allows you to select the header file in the New Message Definition File

wizard.

v The wizard can import C header files with .h, .c and .css extensions. If your

source file has a different extension you must rename it before attempting to

import it.

v If the message set to which you are adding the new message definition file does

not have an Custom Wire Format (CWF) layer only the logical information

appears in the model. You can add the physical layer to the message set before

or after importing a C header file, but you should add the physical layer before

importing it to ensure that it is populated with settings from the C header file.

v You can import a C header file from the command line using

mqsicreatemsgdefs.

The following steps cover both creating a completely new message definition file

and overwriting the contents of an existing file.

To create a message definition file from a C header file:

1. Switch to the Broker Application Development perspective.

2. Open the New Message Definition File wizard by clicking File → New →

Message Definition File from the workbench menu. Alternatively, you can

open the wizard by right-clicking a C header file previously imported into the

workbench and clicking New → Message Definition File on the menu.

3. In the displayed list of options, click C header file then click Next.

4. Step through the remainder of the wizard filling in the details as required.

When you have completed importing the C header file using the wizard:

v Carefully check for any errors in the report that is created when the file is

imported. You can find this report in the log directory within the project

containing the message definition that you have attempted to create. The report

has a .c.report.txt file extension, prefixed with the name that you specified for

the new message definition file.

v Review the messages shown in the workbench task list to check whether any

new warnings or errors have appeared.

Importing from the command line

This describes how to use the command line importer mqsicreatemsgdefs to

import C, COBOL copybooks, XML DTD or XML Schema in order to populate a

message set with message definitions.

Before you start:

Before you attempt this task, you should read the following information:

v mqsicreatemsgdefs command

The command line importer allows you to create a new message set, into which

the message definition files will be placed. When you create a new message set

from the command line, only the logical information is created by default.

However, the command line importer allows you to create a new message set

based on an existing message set. The physical format information from the base

message set is also created in the new message set. If you want physical format

information to be created as well, you must do the following before you invoke the

mqsicreatemsgdefs command:

130 Message Models

1. Using the workbench, create a message set in your workspace that is to be used

as a base message set.

2. To this base message set, add the physical formats that you want to be created

in your new message set.

To import C, COBOL copybooks, XML DTD or XML Schema using the command

line:

1. Close the workbench. This must not be running when you use the command

line importer.

2. Invoke the mqsicreatemsgdefs command from a command prompt specifying

the message set project name, path name of the source files folder, and any

other optional parameters that you require. If you want to add physical formats

to the new message set that the mqsicreatemsgdefs command creates, specify

the base message set that contains these physical formats as the -base

parameter on the import command line.

3. When the command has completed, open mqsicreatemsgdefs.report.txt. This

report is created when you invoke the mqsicreatemsgdefs command and by

default is written to the directory from which you invoked the command. The

report provides you with the following information:

v Details of the parameters that were used when mqsicreatemsgdefs was

invoked.

v The message set level action.

v The name of the file or files that have been imported.

v Details of the import process (for example, any warnings that have been

generated and message model objects that have been created).

v The number of files imported.
4. Start the workbench and switch to the Broker Application Development

perspective. The message definition file that was created when you invoked

mqsicreatemsgdefs is visible in the project that you specified.

If an error occurs during the import of a C, COBOL copybook, XML DTD, or XML

Schema file, carefully check any errors that the importer reports. By default, all

errors are written to the screen and to the log file described above. To gather

additional information about the import, specify the -v (Verbose) command line

parameter. This parameter displays more detailed information as the import

proceeds.

Importing from COBOL copybooks

This topic describes how to create a new message definition from a COBOL data

structure using the New Message Definition File wizard in the workbench.

Before you start:

Complete the following tasks:

v “Creating a message set” on page 83

v “Importing file systems into the workbench” on page 127

Be aware of the following points:

v To create a new message definition file from a COBOL data structure, the

COBOL file must already be present in the workbench, for example in your

message set project. This allows you to select the file in the New Message

Definition File wizard.

Developing message models 131

v The wizard can import COBOL files with .cbl, .ccp, .cob and .cpy extensions. If

your source file has a different extension, you must rename it before attempting

to import it.

v If the message set to which you are adding the new message definition file does

not have an Custom Wire Format (CWF) layer, only the logical information

appears in the model. You can add the physical layer to the message set before

or after importing a COBOL data structure but you should add the physical

layer before you import the data structure to ensure that it is populated with

settings from the COBOL copybook.

v You can import a COBOL data structure from the command line using

mqsicreatemsgdefs.

The steps below cover creating a completely new message definition file and

overwriting the contents of an existing file.

To create a message definition file from a COBOL data structure:

1. Switch to the Broker Application Development perspective.

2. Open the New Message Definition File wizard by clicking File → New →

Message Definition File from the workbench menu. Alternatively, you can

open the wizard by right-clicking a COBOL copybook previously imported into

the workbench and clicking New → Message Definition File on the menu.

3. In the displayed list of options, click COBOL file then click Next.

4. Step through the remainder of the wizard filling in the details as required.

When you have completed importing the COBOL file using the wizard:

v Carefully check for any errors in the report that is created when the file is

imported. You can find this report in the log directory within the project

containing the message definition that you have attempted to create. The report

has a .cobol.report.txt file extension, prefixed with the name that you specified

for the new message definition file.

v Review the messages shown in the workbench task list to check whether any

new warnings or errors have appeared.

Importing from the command line

This describes how to use the command line importer mqsicreatemsgdefs to

import C, COBOL copybooks, XML DTD or XML Schema in order to populate a

message set with message definitions.

Before you start:

Before you attempt this task, you should read the following information:

v mqsicreatemsgdefs command

The command line importer allows you to create a new message set, into which

the message definition files will be placed. When you create a new message set

from the command line, only the logical information is created by default.

However, the command line importer allows you to create a new message set

based on an existing message set. The physical format information from the base

message set is also created in the new message set. If you want physical format

information to be created as well, you must do the following before you invoke the

mqsicreatemsgdefs command:

1. Using the workbench, create a message set in your workspace that is to be used

as a base message set.

132 Message Models

2. To this base message set, add the physical formats that you want to be created

in your new message set.

To import C, COBOL copybooks, XML DTD or XML Schema using the command

line:

1. Close the workbench. This must not be running when you use the command

line importer.

2. Invoke the mqsicreatemsgdefs command from a command prompt specifying

the message set project name, path name of the source files folder, and any

other optional parameters that you require. If you want to add physical formats

to the new message set that the mqsicreatemsgdefs command creates, specify

the base message set that contains these physical formats as the -base

parameter on the import command line.

3. When the command has completed, open mqsicreatemsgdefs.report.txt. This

report is created when you invoke the mqsicreatemsgdefs command and by

default is written to the directory from which you invoked the command. The

report provides you with the following information:

v Details of the parameters that were used when mqsicreatemsgdefs was

invoked.

v The message set level action.

v The name of the file or files that have been imported.

v Details of the import process (for example, any warnings that have been

generated and message model objects that have been created).

v The number of files imported.
4. Start the workbench and switch to the Broker Application Development

perspective. The message definition file that was created when you invoked

mqsicreatemsgdefs is visible in the project that you specified.

If an error occurs during the import of a C, COBOL copybook, XML DTD, or XML

Schema file, carefully check any errors that the importer reports. By default, all

errors are written to the screen and to the log file described above. To gather

additional information about the import, specify the -v (Verbose) command line

parameter. This parameter displays more detailed information as the import

proceeds.

Importing from IBM supplied messages

You can create a new message definition file from an IBM supplied message.

Before you start:

You must have completed the following task:

v “Creating a message set” on page 83

The following steps describe how to create a new message definition file, and how

to overwrite the contents of an existing file.

To create a message definition from an IBM supplied message:

1. Switch to the Broker Application Development perspective.

2. Open the New Message Definition File wizard by clicking File → New →

Message Definition File From ... on the workbench menu.

3. In the displayed list of options, select IBM supplied message and click Next.

Developing message models 133

4. Fill in the fields of the panel that is displayed by the wizard. See “New

message definition file wizard: IBM supplied message” on page 800 for more

details.

When you have completed the IBM-supplied message import using the wizard:

v Carefully check for any errors in the report that is created when the file is

imported. You can find this report in the log directory within the project

containing the message definition that you have attempted to create. The report

has a .xsd.report.txt file extension, prefixed with the name that you specified

for the new message definition file.

v Review the messages shown in the workbench task list to check whether any

new warnings or errors have appeared.

Importing from WSDL

You can use the New Message Definition File wizard in the workbench to create a

new message definition from WSDL.

There are two methods for importing from WSDL:

v Create a message set and use the New Message Definition File wizard. This

method is described here.

v Use the Start from WSDL and/or XSD files Quick Start wizard. See Creating an

application based on WSDL or XSD files.

If you choose the first of these options, before you start you must have completed

the following tasks:

v “Creating a message set” on page 83

v “Importing file systems into the workbench” on page 127

The following steps are required to create a completely new message definition

file, or to overwrite the contents of an existing file.

To create a message definition from a WSDL file (or files):

1. Switch to the Broker Application Development perspective.

2. Open the New Message Definition File From ... wizard by clicking File> New>

Message Definition File From ... on the workbench menu.

3. In the displayed list of options, selectWSDL file and click Next. Alternatively,

open the wizard by right-clicking a .wsdl file that was previously imported

into the workbench and clicking New> Message Definition File From ... on the

menu.

4. Step through the remainder of the wizard filling in the details as required.

You must choose whether the WSDL file, or files, that you want to import are

in the current workspace in the workbench or are outside the workspace.

Check boxes provide options to:

v Copy the source file (or files) into a directory of the message set project. By

default, this check box is cleared.

v Add the SOAP and XMLNSC domains to your message set so that you can

use the SOAP nodes. By default, this check box is selected.

Note:

v The panels and options available in the wizard are dependant on the

settings that you select.

134 Message Models

v Some fields in the wizard might not be available. This might be

because the field has a mandatory setting, or because the field has

only one possible value, or because the field is not being used as a

result of other settings that have been made.

When you have finished importing the WSDL file (or files) using the wizard:

v Check carefully for any errors in the report that is created when the file is

imported. You can find this report in the log directory within the project that

contains the message definition that you have tried to create. The report has a

<wsdl-file-name>.wsdl.report.txt file descriptor, where <wsdl-file-name> is the

name of the WSDL definition that you are importing.

v Review the messages that are shown in the workbench task list to check whether

any new warnings or errors have appeared.

Note: Any required SOAP Envelope and SOAP encoding message definitions are

automatically added to your message set during the import. If required, you

can also import these manually using the New Message Definition File

wizard by selecting the new option IBM supplied message.

Importing WSDL definitions from the command line

WSDL definitions can be imported using the (mqsicreatemsgdefsfromwsdl)

command.

Before you start:

Before you attempt this task, read the following information:

v mqsicreatemsgdefsfromwsdl command.

The WSDL command line importer allows you to create a new namespace enabled

message set into which the message definition files will be placed. It also allows

you to add message definition files to an existing message set that is namespace

enabled.

If you are adding new message definition files to an existing message set, the

message set must have an XML physical format layer. To improve web services

interoperability, avoid unnecessary customization of the XML physical format layer

for messages that participate in web services processes.

When you create a new message set from the command line, only the logical

information is created by default. If you require physical formats in the message

set you have two options:

v Create a new message set based on an existing message set. The physical format

information from the base message set is also created in the new message set.

v Use the workbench to create or open the message set and directly add the

physical formats to the message set prior to importing the WSDL definitions into

it.

Before starting the import, the mqsicreatemsgdefsfromwsdl command copies the

WSDL files that it needs into the workspace. These are the top level WSDL file and

any further files that might be imported by it. The files are copied under the

specified message set in a folder called importFiles and are not removed after the

import finishes. This allows you to update them, or run validation on them, in the

workbench at a later time.

To import WSDL definitions using the command line:

Developing message models 135

1. Close the workbench. The workbench must not be running when you use the

command line importer.

2. Invoke the mqsicreatemsgdefsfromwsdl command from a command prompt;

you must specify the message set project name, the path name of the directory

where the top level WSDL file is located, the name of that file, the location of

the workspace, and any other optional parameters that you require. If you want

to add physical formats to the new message set that the

mqsicreatemsgdefsfromwsdl command creates, specify the base message set

that contains these physical formats as the -base parameter on the import

command line.

3. When the command has completed, check the log file. The name of the log file

is the name that you specified in the command, and it has the file extension

*.wsdl.report.txt. This report is created when you invoke the

mqsicreatemsgdefsfromwsdl command and, by default, it is written to the

directory from which you invoked the command. The report provides you with

the following information:

v Details of the parameters that were used when mqsicreatemsgdefsfromwsdl

was invoked.

v The name of the file that has been imported.

v Details of the import process (for example, any warnings that have been

generated and message model objects that have been created).
4. Start the workbench and switch to the Broker Application Development

perspective. The message definition file that was created by the

mqsicreatemsgdefsfromwsdl command is visible in the project that you

specified.

If an error occurs during the import of a WSDL definition, carefully check any

errors that are reported. By default, all errors are written both to the screen and to

the file described above. To gather additional information about the import, specify

the -v (Verbose) command line parameter. This parameter displays more detailed

information as the import proceeds.

Importing from XML DTD

This describes how to create a new message definition from an XML DTD using

the New Message Definition File wizard in the workbench.

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Importing file systems into the workbench” on page 127

Before you begin this task, you should be aware of the points listed below:

v To create a new message definition file from an XML DTD, the DTD file must

already be present in the workbench, for example in your message set project.

This allows you to select the DTD file in the New Message Definition File

wizard.

v If the message set to which you are adding the new message definition file does

not have an XML wire format (XML) layer only the logical information appears

in the model. You can add the physical layer to the message set before or after

importing from a XML DTD, but you should add the physical layer before

importing it to ensure that it is populated with settings from the XML DTD.

136 Message Models

v It is also possible to import an XML DTD from the command line using

mqsicreatemsgdefs.

v The file extension must be .dtd in lower case.

The following steps cover both creating a completely new message definition file

and overwriting the contents of an existing file.

To create a message definition from an XML DTD:

1. Switch to the Broker Application Development perspective.

2. Open the New Message Definition File wizard by clicking File> New>

Message Definition File from the workbench menu.

3. In the displayed list of options, click XML DTD file to select it then click Next.

4. Step through the remainder of the wizard filling in the details as required.

When you have completed importing the XML DTD using the wizard:

v Carefully check for any errors in the report that is created when the file is

imported. You can find this report in the log directory within the project

containing the message definition that you have attempted to create. The report

has a .dtd.report.txt file extension, prefixed with the name that you specified

for the new message definition file.

v Review the messages shown in the workbench task list to check whether any

new warnings or errors have appeared.

The message definition file is created from the XML DTD and is opened in the

Message Definition editor so that you can check the imported information and

make any required changes. While you are checking the newly created message

definition file, review any messages that appear in the workbench task list to see

whether you need to make any corrections to resolve errors or warnings relating to

the new file.

Importing from the command line

This describes how to use the command line importer mqsicreatemsgdefs to

import C, COBOL copybooks, XML DTD or XML Schema in order to populate a

message set with message definitions.

Before you start:

Before you attempt this task, you should read the following information:

v mqsicreatemsgdefs command

The command line importer allows you to create a new message set, into which

the message definition files will be placed. When you create a new message set

from the command line, only the logical information is created by default.

However, the command line importer allows you to create a new message set

based on an existing message set. The physical format information from the base

message set is also created in the new message set. If you want physical format

information to be created as well, you must do the following before you invoke the

mqsicreatemsgdefs command:

1. Using the workbench, create a message set in your workspace that is to be used

as a base message set.

2. To this base message set, add the physical formats that you want to be created

in your new message set.

Developing message models 137

To import C, COBOL copybooks, XML DTD or XML Schema using the command

line:

1. Close the workbench. This must not be running when you use the command

line importer.

2. Invoke the mqsicreatemsgdefs command from a command prompt specifying

the message set project name, path name of the source files folder, and any

other optional parameters that you require. If you want to add physical formats

to the new message set that the mqsicreatemsgdefs command creates, specify

the base message set that contains these physical formats as the -base

parameter on the import command line.

3. When the command has completed, open mqsicreatemsgdefs.report.txt. This

report is created when you invoke the mqsicreatemsgdefs command and by

default is written to the directory from which you invoked the command. The

report provides you with the following information:

v Details of the parameters that were used when mqsicreatemsgdefs was

invoked.

v The message set level action.

v The name of the file or files that have been imported.

v Details of the import process (for example, any warnings that have been

generated and message model objects that have been created).

v The number of files imported.
4. Start the workbench and switch to the Broker Application Development

perspective. The message definition file that was created when you invoked

mqsicreatemsgdefs is visible in the project that you specified.

If an error occurs during the import of a C, COBOL copybook, XML DTD, or XML

Schema file, carefully check any errors that the importer reports. By default, all

errors are written to the screen and to the log file described above. To gather

additional information about the import, specify the -v (Verbose) command line

parameter. This parameter displays more detailed information as the import

proceeds.

Importing from XML Schema

This describes how to create a new message definition from an XML Schema using

the New Message Definition File wizard in the workbench.

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Importing file systems into the workbench” on page 127

Before you begin this task, you should be aware of the points listed below:

v To create a new message definition file from an XML Schema, the schema file

must already be present in the workbench, for example in your message set

project. This allows you to select the schema file in the New Message Definition

File wizard.

v If the message set to which you are adding the new message definition file does

have an XML wire format layer, but no namespace support, the imported schema

is modified to remove namespaces. For this reason, you should enable

namespace support before importing a schema.

138 Message Models

v If the message set to which you are adding the new message definition file does

not have an XML wire format layer, but does have namespace support, only the

logical information appears in the model. For this reason, you should add the

physical layer to the message set prior to importing the schema. This will ensure

that it is populated with the settings and values from the schema. The XML

Schema is not modified to remove namespaces.

v If the message set to which you are adding the new message definition file does

not have an XML wire format layer, and does not have namespace support, only

the logical information appears in the model and the imported schema is

modified to remove namespaces.

v If you are working with a message set that does not have namespace support,

you must specify the preferences that apply when you import a schema into the

message set. These preferences allow you to specify how the importer treats

certain individual schema constructs. You can either reject the schema if any

occurrences of the construct are encountered or modify occurrences of the

construct. If you choose modify, the importer modifies all occurrences of the

construct.

v The extension to the XML Schema file must be .xsd in lower case.

The following steps cover creating a completely new message definition file and

also overwriting the contents of an existing file.

To create a message definition from an XML Schema file:

1. Switch to the Broker Application Development perspective.

2. Open the New Message Definition File wizard by clicking File> New>

Message Definition File on the workbench menu. Alternatively, you can open

the wizard by right-clicking an *.xsd file previously imported into the

workbench and clicking New> Message Definition File on the menu.

3. In the displayed list of options, click XML Schema file to select it then click

Next.

4. Step through the remainder of the wizard filling in the details as required. The

processing time for importing the XML Schema will vary depending on the size

and complexity of that schema. In a large and complex schema, it can take

some time to import the file, generate the log file and display any task list

warnings or errors.

When you have completed importing the XML Schema using the wizard:

v Carefully check the log file for any warnings or errors in the report that is

created when the file is imported. These give information in relation to whether

the schema failed to import or needed to be modified to enable it to be

successfully imported. You can find this report in the log directory structure

within the project containing the message definition that you have attempted to

create. The report has a .xsd.report.txt file extension, prefixed with the name

that you specified for the new message definition file.

v Review the messages shown in the workbench task list to check whether any

new warnings or errors have appeared. While you could have imported a

perfectly valid schema, the task list will display any warnings or errors that exist

in the message definition file. Some examples of situations where messages

appear are given below:

– If the XML Schema that you are importing contains xsd:key, xsd:keyref and

xsd:unique constructs, warning messages appear in the task list to tell you

that these constructs are unsupported and will be ignored by the broker. If

you prefer to delete these constructs, open the message definition file in the

Developing message models 139

Message Definition editor, and delete the constructs as described in “Deleting

objects” on page 120. Deleting the constructs also removes the warning

messages from the task list. If you decide not to delete the constructs, they

will remain in the message model but will not be deployed to the broker, or

be used for any other purpose. The warning messages in the task list will

remain, but you will be able to use the message model normally.

– If the XML Schema that you are importing contains xsd:redefine constructs,

error messages appear in task list to tell you that this construct is

unsupported. If you right-click on the error messages and select Quick Fix

you can choose to convert the xsd:redefine constructs into xsd:include

constructs. This also removes the error messages.

– If you are importing a collection of related XML Schema files and the

Message Definition Editor is unable to resolve the links between two of the

imported files, messages appear in the task list to say that referenced types or

other objects cannot be found. If this occurs, refer to Resolving problems

when developing message models for further information.

Importing from the command line

This describes how to use the command line importer mqsicreatemsgdefs to

import C, COBOL copybooks, XML DTD or XML Schema in order to populate a

message set with message definitions.

Before you start:

Before you attempt this task, you should read the following information:

v mqsicreatemsgdefs command

The command line importer allows you to create a new message set, into which

the message definition files will be placed. When you create a new message set

from the command line, only the logical information is created by default.

However, the command line importer allows you to create a new message set

based on an existing message set. The physical format information from the base

message set is also created in the new message set. If you want physical format

information to be created as well, you must do the following before you invoke the

mqsicreatemsgdefs command:

1. Using the workbench, create a message set in your workspace that is to be used

as a base message set.

2. To this base message set, add the physical formats that you want to be created

in your new message set.

To import C, COBOL copybooks, XML DTD or XML Schema using the command

line:

1. Close the workbench. This must not be running when you use the command

line importer.

2. Invoke the mqsicreatemsgdefs command from a command prompt specifying

the message set project name, path name of the source files folder, and any

other optional parameters that you require. If you want to add physical formats

to the new message set that the mqsicreatemsgdefs command creates, specify

the base message set that contains these physical formats as the -base

parameter on the import command line.

3. When the command has completed, open mqsicreatemsgdefs.report.txt. This

report is created when you invoke the mqsicreatemsgdefs command and by

default is written to the directory from which you invoked the command. The

report provides you with the following information:

140 Message Models

v Details of the parameters that were used when mqsicreatemsgdefs was

invoked.

v The message set level action.

v The name of the file or files that have been imported.

v Details of the import process (for example, any warnings that have been

generated and message model objects that have been created).

v The number of files imported.
4. Start the workbench and switch to the Broker Application Development

perspective. The message definition file that was created when you invoked

mqsicreatemsgdefs is visible in the project that you specified.

If an error occurs during the import of a C, COBOL copybook, XML DTD, or XML

Schema file, carefully check any errors that the importer reports. By default, all

errors are written to the screen and to the log file described above. To gather

additional information about the import, specify the -v (Verbose) command line

parameter. This parameter displays more detailed information as the import

proceeds.

Generating documentation from message sets and message flows

You can generate documentation from your message sets, message flows, message

definition files, message maps, Java™ files, ESQL files, and deployable WSDL files.

To generate documentation that describes your message sets, message flows,

message definition files, message maps, Java files, ESQL files, and deployable

WSDL files:

1. Switch to the Broker Application Development perspective.

2. In the context menu of the Broker Development view, right-click a message set

project, a message set, a message flow, a message definition file, a Java file, an

ESQL file, or a deployable WSDL file, and select the action Generate

Documentation. The Documentation Generation wizard opens.

3. Provide the information that is requested to describe the documentation report

that you want, and click Next to move to the next panel of the wizard.

4. Step through the wizard, clicking Next to move to a new panel, and clicking

Finish when you have described all the information that you want your report

to document.

Generating an XML Schema

Before you start:

You must have completed the following tasks:

v “Creating a message set” on page 83

v “Working with a message definition file” on page 93

v “Working with message model objects” on page 96

Tip: You should replace any deprecated constructs before generating XML Schema

representations of your models.

This task topic describes how to generate an XML Schema from a message

definition file:

1. Switch to the Broker Application Development perspective.

Developing message models 141

2. In the Broker Development view, right-click the message definition file (*.msxd

file extension) from which you want to generate an XML Schema, and then

click Generate> XML Schema on the menu.

3. The Generate XML Schema window is displayed, and the message definition

file that you selected is highlighted. The message definition file list is filtered to

only show artifacts in the active working set. If this is not the message

definition file from which you want to generate an XML Schema, select the

correct message definition file.

4. Optional: From the drop down list at the bottom of the Generate XML Schema

window, select the XML Wire Format that you want to use to generate the XML

Schema.

Tip: You must have previously added one or more XML Wire Format layers to

a message set if you want to use an XML physical format when you

generate XML Schema. For further information see “Adding an XML wire

format” on page 88.

5. If you do not want strict generation of an XML Schema, clear the Strict

generation check box at the bottom of the Generate XML Schema page. By

default, this check box is selected.

Tip: For further information on strict and lax generation of XML Schema, see

“Generate XML Schema” on page 78.

6. Click Next to move to the next page of the wizard.

7. Select a destination folder for the XML Schema. You can choose a location

either inside or outside the workspace:

v Click Create in a workspace directory and select the required destination

folder from the expanded workspace directory. The contents of the folder

that you select are overwritten.

If you want to create a new folder:

a. Click on the desired location.

b. Click Create New Folder.

c. Click OK
v Click Export to an external directory and click Browse to expand the

directory. Select a folder from the expanded directory. The contents of the

folder that you select are overwritten.

If you want to create a new folder:

a. Click on the desired location.

b. Click Make New Folder and type the name of the new folder into the

directory tree.

c. Click OK
8. Click Finish. Your XML Schema is generated.

9. Use the Broker Development view to locate the destination folder that you

specified for the generated XML Schema. This folder contains a file with exactly

the same name as your message definition file with the file extension *.xsd.

This is the generated XML Schema. To view this file, right-click it then click

Open on the menu. This launches the schema editor.

Tip: The Design, Source or Graph tabs located in bottom left corner of the

schema editor provide you with different views of generated XML

Schema.

142 Message Models

|
|
|
|
|

Generating a WSDL definition from a message set

Before you start you must already have completed the following tasks:

v “Creating a message set” on page 83

To ensure the highest interoperability of your web services, use the document style

of WSDL whenever possible. If rpc style WSDL is necessary, use literal encoding.

Replace any deprecated constructs before generating WSDL representations of your

message models.

To generate a WSDL definition:

1. Switch to the Broker Application Development perspective.

2. In the Broker Development view, right-click the folder that contains the

message set file from which you want to generate a web service definition, and

select Generate → WSDL Definition. This starts the Generate WSDL wizard.

3. Step through the wizard filling in the details as required. Some of the panels

and options are subject to settings that you make within the wizard and might

not always be shown. Also, some fields in the wizard might be greyed out. This

happens when a field has a mandatory setting, or when the field is not used

because of settings that have already been made in other fields.

By default, the wizard creates the WSDL in the message set project. If you are

going to use the WSDL to configure a SOAP node, create the WSDL in the

message set, not the message set project.

On completion of the Generate WSDL wizard, you have generated a WSDL

definition. The file extension for WSDL files is .wsdl, and the file extension for any

imported schema files in multi-file mode (where the WSDL definition is split over

a number of files) is .xsd.

This following is an example of the WSDL that is generated for a JMS binding:

<wsdl:service name=’HTTP’>

 <wsdl:port binding=’tns:JMSSoapBinding’ name=’HTTP’>

 <wsdlsoap:address

 location=’jms:/queue?destination=jms/MyQueue&

 connectionFactory=jms/MyCF&

 priority=5&

 targetService=GetQuote’/>

 </wsdl:port>

</wsdl:service>

Note: The various parts of the location string are broken over separate lines for

clarity, but are actually generated as a continuous string without additional

white space.

Developing message models 143

|
|
|

144 Message Models

Part 2. Reference

Message model reference information 147

Message set preferences 147

Message Set Editor and Message Definition

Editor preferences 147

Validation of the message model 148

XML Schema Importer 149

Message set properties 149

Custom Wire Format message set properties . . 152

TDS Format message set properties 157

XML Wire Format message set properties . . . 173

Documentation properties for a message set . . 181

Message definition file properties 181

Message definition file includes properties . . 182

Message definition file imports properties . . . 182

Message definition file redefines properties . . 182

Documentation properties for all message set

objects 183

Message category properties 183

Message category member properties 183

Message model object properties 184

Logical properties for message model objects 185

Physical properties for message model objects 214

Documentation properties for all message set

objects 245

Message model object properties by object . . . 245

Deprecated message model object properties . . . 598

Logical properties for deprecated message

model objects 598

Physical properties for deprecated message

model objects 602

Documentation properties for all message set

objects 605

Deprecated message model object properties by

object 605

Additional MRM domain information 727

MRM restrictions 727

Data types for elements in an MRM message 729

Additional CWF information 730

Additional XML information 731

Additional TDS information 734

DateTime formats 763

Additional MIME domain information 772

MIME standard header fields 772

MIME parser use and restrictions 775

Additional IDOC domain information 776

Building the message model for the IDOC

parser 776

Field names of the IDOC parser structures . . 778

Message model task list errors that have a quick fix 780

Generated model representations 782

Document generation 782

WSDL generation 782

XML Schema generation 784

Import formats 787

Importing from C: supported features 787

Importing from COBOL: supported features . . 789

Importing from WSDL: generated objects and

restrictions 794

Importing from XML Schema: unsupported

features 797

Message model wizards 797

New message definition file wizards 798

Generate WSDL wizard 805

Export WSDL wizard 813

Configure New Web Service Usage wizard . . 814

© Copyright IBM Corp. 2000, 2008 145

146 Message Models

Message model reference information

Message model reference information is available for:

v “Message set preferences”

v “Message set properties” on page 149

v “Message definition file properties” on page 181

v “Message category properties” on page 183

v “Message model object properties” on page 184

v “Deprecated message model object properties” on page 598

v “Additional MRM domain information” on page 727

v “Additional MIME domain information” on page 772

v “Generated model representations” on page 782

v “Import formats” on page 787

v “Message model wizards” on page 797

Message set preferences

 Property Type Meaning

Default version

tag

String Provide the default version information you would like to be set in the message

set Version property when you create a new message set.

You can alter a number of the preferences that affect the way certain areas of

message set processing are handled. The areas are:

v “Message Set Editor and Message Definition Editor preferences”

v “Validation of the message model” on page 148

v “XML Schema Importer” on page 149

Message Set Editor and Message Definition Editor preferences

Message set editor settings

While looking at a large message set that contains a number of message definition

files that have different namespaces, or multiple message definition files that have

the same namespace, you might want to view the information in alternative ways

to make it easier for you to visualize the structure of the message set. If you

double click on the global construct, you open the message definition file in which

the global construct is defined.

 Property Type Meaning

Group by

namespace and

then by

collections

Button Selecting this view groups the global constructs by namespace and then by

collection (for example, Messages, Types, Groups, or Elements and Attributes).

Using this view you can visualize all of the constructs that belong to each of the

defined namespaces.

Group by

collections and

then by

namespace

Button Selecting this view groups the global constructs by collection (for example,

Messages, Types, Groups, or Elements and Attributes) and then by namespace.

Using this view you can visualize which global construct in the message set is

defined in which namespace.

© Copyright IBM Corp. 2000, 2008 147

Message definition editor settings

 Property Type Meaning

Show base

complex types

Check box Where your complex type is based on another complex type that is derived by

an extension, selecting this will display the base complex type in the outline

view.

Prefix for

created

messages

String This property allows you to specify a prefix to precede the name of the initial

complex type in the name of the created message. This prefix applies only to

messages created from C or COBOL files. The default value is msg_.

Note, however, that no prefix is applied when a message is created from a C file,

and the selected preprocessing option is SAP ALE IDoc or SAP File IDoc.

Tab Extensions

Click Tab Extensions to display check boxes that allow you to determine what tabs

are enabled for the Message Set Editor, the Message Definition Editor, and the

Message Category Editor. All these check boxes are always selected and cannot be

cleared.

 Editor Tab Extensions

Message Set Editor

 Properties

Message Definition Editor

 Overview

 Properties

Message Category Editor

 Properties

A control is provided that allows you to choose the order in which the tab

extensions for each of the editors are displayed.

Validation of the message model

You can customize some of the warning messages that are generated by message

set validation. Use the Message Set Validation Preference page to do this.

Any warning or error that falls into any of the categories that are listed below can

be customized according to the relevant category. The customization can affect

both severity and priority.

The severity can be one of the following values:

v Error

v Warning

v Info

v Ignore

If the severity is not Ignore, the priority can be one of the following values:

v High

v Normal

v Low

If the severity is Ignore, you cannot change the priority.

148 Message Models

|
|

Message set validation settings

The following is a list of the categories that you can customize:

v Use of deprecated constructs

v Messages with abstract global elements

v Facet runtime validation differences

v Type/Element substitution runtime validation differences

v Mixed content runtime validation differences

v Wildcard runtime validation differences

v Unique Particle Attribution checks

v Tagged/Delimited String group content

v Zero Custom Wire Format length count

v Zero Tagged/Delimited String Format length count

v Empty Tagged/Delimited String Format tag

v List or Union with Custom Wire Format

v List or Union with Tagged/Delimited String Format

v Unbounded max occurs with Custom Wire Format

v Unbounded max occurs with Tagged/Delimited String Format

XML Schema Importer

You can customize the following categories that affect the way in which an XML

Schema is imported into a message set that does not support namespaces.

 Category Modify Reject Accept

Import Converts Import to Include Import fails if it sees an

Import

Not applicable

Redefine Removes the Redefine

statements

Import fails if it sees a

Redefine

Redefine imported (gives

task list error)

List Changes type base to

xsd:string

Import fails if it sees a List List imported

Union Changes type base to

xsd:string

Import fails if it sees a

Union

Union imported

Abstract Complex Type Sets abstract to false Import fails if it sees an

Abstract Complex Type

Abstract Complex Type

imported

Abstract Element Sets abstract to false Import fails if it sees an

Abstract Element

Abstract Element imported

Message set properties

Message sets have properties that you can set to define their characteristics and the

way in which they are processed.

General message set properties

The table below defines the properties that you can set to customize the message

set.

Message model reference information 149

Property Type Meaning

Default

message

domain and

Supported

message

domains

String and

check boxes

The message parser name must match the Message Domain property of any input

node that processes messages from the message set, or the <Msd> element value

of any MQRFH2 header that precedes a message from the message set.

Choose a value from the list offered for the Default Message Domain property, and

select check boxes (from Supported Message Domains) to choose other domains.

You can select as many of these check boxes as you want.

Use the message parser name when you write ESQL field references for

messages in the message set; for example, InputRoot.MRM.Document. The

Mapping editor and the content assist feature of the ESQL editor use the

message parser name when they generate ESQL field references.

You can choose from the following names:

v XMLNSC (the default if you select Finish from page two of the New Message

Set wizard). Choose this domain if you want to model XML messages. You

can deploy the message set to brokers if you want, because the XMLNSC

parser optionally uses the message set at run time.

v MRM. Choose this domain for binary or text messages. You can also use this

domain for XML messages. You must deploy the message set to the brokers

that receive these messages. The deploy action creates a runtime dictionary

against which the MRM parser checks the received message.

v SOAP. Choose this domain for SOAP Web Services.

v DataObject. Choose this domain for data from WebSphere Adapters.

v XMLNS. You might need to choose this domain for some kinds of XML

messages. You do not have to deploy the message set to brokers, because the

XMLNS parser does not use the message set at run time.

v JMSMap. Choose this domain if you want to model a JMS MapMessage

message. You do not have to deploy the message set to brokers, because this

parser does not use the message set at run time.

v JMSStream. Choose this domain if you want to model a JMS StreamMessage

message. You do not have to deploy the message set to brokers, because this

parser does not use the message set at run time.

v MIME. Choose this domain if you want to model a MIME message. You do

not have to deploy the message set to brokers, because the MIME parser does

not use the message set at run time.

v XML. This domain is deprecated. Use the XMLNSC domain instead.

v IDOC. This domain is deprecated. Use the MRM domain instead.

Use namespaces Check box Select this property if you want to use namespaces within the message set.

Namespaces provide a method of avoiding naming conflicts where different

document definitions have elements of the same name. For further information

see Namespaces.

By default, this check box is selected.

Using namespaces affects how elements are created in the logical message tree.

Each element in the message tree has both a name and a namespace, so an ESQL

or Java reference to one of these elements has to specify both name and

namespace. Therefore, using namespaces has an effect on the ESQL or the Java

that you write.

Always select this property if you want to use the message set to model XML

messages.

150 Message Models

MRM domain

 Property Type Meaning

Default wire

format

String (Optional) Specify the default wire format used, only if you select MRM as the

default message domain, or MRM is selected in the list of supported message

domains. The default value is <no default specified>.

If you do not select MRM, either as the default message domain or as one of the

supported message domains, the Default Wire Format property is unavailable.

Message set ID String This property is a unique identifier that is automatically generated for you when

you create the message set. You cannot change this property.

Message set

alias

String Specify an alternative unique value that identifies the message set. This property

is only required if you are using the Message Identity technique to identify

embedded messages. Using this technique, the embedded messages are defined

in this message set but the parent message is defined in a different message set,

and the bit stream does not contain the actual message set name or identifier.

Message type

prefix

String This property is used when you define multipart messages, specifically when

using the Message Path technique to identify embedded messages.

The value that you specify is used as an absolute or relative path to the

innermost message from the outermost, and is used as a prefix to the value of

the Message Type property that is specified for the outermost message (specified

either in the MQRFH2 header of the message, or in the input node of the

message flow).

If you set a value, it must be in the form id1/id2/.../idnu where id1 is the

identifier of the outermost message, id2 is the identifier of the next element or

message, and idn is the identifier of the innermost message. The default value is

blank (not set).

The table below, describing the use of the message set property Message Type

Prefix, shows how this value is combined with the Message Type property of an

input message.

Broker will treat

Length facet as

MaxLength

Check box Select this property if you want the COBOL importer to create a maxLength

facet, rather than a length facet, for a fixed length string element.

By default, this check box is selected.

Use of the Message type prefix property

The table below shows the implications of using the property Message type prefix.

The message type or message prefix can describe either elements or messages.

 Message Type property example Message type prefix not set Message type prefix set

Simple Message Type:msg_type Results in the simple Message

Type:msg_type

Results in the path Message Type:

/msg_prefix_1/.../msg_prefix_n/

msg_type

Path Message Type:msg_type_1/.../
msg_type_m

Results in the path Message

Type:/msg_type_1/.../msg_type_m

Results in the combined path

Message Type: /msg_prefix_1.../
msg_prefix_n /msg_type_1/.../
msg_type_m

Simple absolute Message

Type:/msg_type

Results in the simple Message

Type:msg_type

Results in the simple Message

Type:msg_type

An error is raised if Message Type

Prefix is set to any value other than

msg_type.

Message model reference information 151

Message Type property example Message type prefix not set Message type prefix set

Path absolute Message

Type:/msg_type_1/.../msg_type_m

Results in the path Message

Type:/msg_type_1/.../msg_type_m

Results in the path Message

Type:/msg_type_1/.../msg_type_m

An error is raised if all identifiers in

Message Type Prefix do not match

the corresponding identifiers in the

resulting path.

If you are using MRM or IDOC domains, in addition to the main message set

properties, you can update message set properties that are specific to each of the

physical formats. Links to reference topics that describe these properties are given

below.

Custom Wire Format message set properties

The tables define the properties that you can set for a Custom Wire Format

message set.

Some of the message set properties (marked with an asterisk (*)) are relevant only

if the message being processed is not using WebSphere MQ as the transport

protocol.

If the transport protocol is WebSphere MQ, values are derived from the message

headers (for example, MQMD), and the message set properties, if set, are ignored.

Binary representation of boolean values

 Property Type Meaning

Boolean True

Value

String Enter up to eight hexadecimal digits. Do not include the hexadecimal indicator

(0x) preceding this number. Each digit is a half byte. The maximum length is 4

bytes. You must enter an even number of digits (a whole number of bytes). This

value must be different from, but the same length as, the Boolean False Value.

The default value is 00000001.

Boolean False

Value

String Enter up to eight hexadecimal digits. Do not include the hexadecimal indicator

(0x) preceding this number. Each digit is a half byte. The maximum length is 4

bytes. You must enter an even number of digits (a whole number of bytes). This

value must be different from, but the same length as, the Boolean True Value.

The default value is 00000000.

Boolean Null

Value

String Enter up to eight hexadecimal digits. Do not include the hexadecimal indicator

(0x) preceding this number. Each digit is a half byte. The maximum length is 4

bytes. You must enter an even number of digits (a whole number of bytes). This

value can be the same as either Boolean True Value or Boolean False Value, or

different. The default value is 00000000.

Output settings

Use these settings when messages are being output.

152 Message Models

Property Type Meaning

Byte Alignment

Pad

String If the xsd:element Custom Wire Format properties Byte Alignment, Leading Skip

Count, and Trailing Skip Count cause bytes to be skipped in the bit stream

when the message is serialized, this property supplies the character to be used in

the skipped positions. Set this character in one of the following ways:

v Select SPACE, NUL, or 0 (the default) from the list of values shown.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a hexadecimal character code in the form 0xYY where YY is a

hexadecimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal format.

Policy for

Missing

Elements

Enumerated This property determines the action that is taken by the broker when fields are

missing from the message tree when the message is serialized (for output):

v Use Default Value (the default). If a Default Value exists for the element, output

it; otherwise, throw an exception.

v Use Null Value. If the Nillable property of the element is selected, and an

Encoding Null Value is specified for the element, output the Encoding Null Value

according to the rules that are defined by the Encoding Null property;

otherwise, throw an exception.

Truncate fixed

length strings

Check box This property applies only to output strings.

If this check box is selected, and the element or attribute is a fixed length string

(that is, the logical type is xsd:string and the physical type is Fixed Length

String) that is longer than either the length that is specified in the model or the

length reference, the string is truncated to this length. No exception is raised on

output, unless validation (see Validating messages) is active.

The end from which data is truncated is determined by the value of the

Justification property. If the value of the Justification property is Left justify, data

is truncated from the right; if the value of the Justification property is Right

justify, data is truncated from the left. However, if the value of the Justification

property is Not applicable, truncation does not occur and an exception occurs if

the string is too long.

If this check box is cleared, an exception occurs if the element or attribute is a

fixed length string (that is, the logical type is xsd:string and the physical type is

Fixed Length String) that is longer than either the length that is specified in the

model, or the length reference. This behavior occurs in releases of the WebSphere

Message Broker earlier than Version 6.1.

By default, this check box is cleared.

Binary representation of decimal values

 Property Type Meaning

Packed Decimal

Positive Code

Enumerated Select, from the list, the positive sign that is used for packed decimal numbers.

The default value is C, which indicates that 0x0C is used as the positive sign; this

value is used in most systems. You can also select F, which indicates that 0x0F is

used as the positive sign; this value is used in some systems.

Message model reference information 153

Datetime settings

 Property Type Meaning

Derive default

dateTime

format from

logical type

Button Select this option if you want the default dateTime format to be determined by

the logical type of the element or attribute.

You can override this property for an element or attribute within a complex

type.

Use default

dateTime

format

Button and

String

Select this option if you want to specify a default dateTime format that is fixed

for all elements or attributes of logical type dateTime, date, time, gYear,

gYearMonth, gMonth, gMonthDay, and gDay.

You can override this property for an element or attribute within a complex

type.

For more information, see “DateTime formats” on page 763.

Start of century

for 2 digit years

Integer This property determines how two-digit years are interpreted. Specify the two

digits that start a 100-year window that contains the current year. For example, if

you specify 89, and the current year is 2002, all two-digit dates are interpreted as

being in the range 1989 to 2088.

Days in First

Week of Year

Enumerated Specify the number of days of the new year that must fall within the first week.

The start of a year typically falls in the middle of a week. If the number of days

in that week is less than the value specified here, the week is considered to be

the last week of the previous year; therefore, week 1 starts some days into the

new year. Otherwise, it is considered to be the first week of the new year; in this

case, week 1 starts some days before the new year.

Select Use Broker Locale, which causes the broker to get the information from

the underlying platform, or select a number from the list that is displayed.

First Day Of

Week

Enumerated Specify the day on which each new week starts.

Select Use Broker Locale, which causes the broker to get the information from

the underlying platform, or select a value from the list that is displayed.

154 Message Models

Property Type Meaning

Strict DateTime

Checking

Check box Select this option if you want to restrict dateTimes to a valid dateTime format. If

Strict DateTime Checking is selected, receiving an incorrect dateTime causes an

error.

Strict dateTime checking

Examples of strict dateTime checking are:

v DateTimes are restricted to valid dateTimes only. When you use this

option, a date such as the 35th March is not processed as 4th April,

and 10:79 is not processed as 11:19. Receiving an out-of-band

dateTime, such as these examples, causes an error to occur.

v The number of characters for a numeric dateTime component must

be within the bounds of the corresponding formatting symbols.

Repeat the symbol to specify the minimum number of digits that you

require. The maximum number of digits that are permitted becomes

the upper bound for a particular symbol. For example, day in month

has an upper bound of 31; therefore, a format string of ’d’ allows the

values 2 and 21 to be parsed, but does not allow the values 32 and

210. On output, numbers are padded with zeros to the specified

length. A year is a special case; see the message set property Start of

century for 2 digit years. For fractional seconds, the length must

implicitly match the number of format symbols on input. The output

is rounded to the specified length.

v White space is not skipped over. The white space in the input string

must correspond with the same number and position of white space

in the formatting string.

v If there is still data to be parsed in the input string after all of the

symbols in the formatting string have been matched, an error occurs.

Lenient dateTime checking

Examples of lenient dateTime checking are:

v The parser converts out-of-band dateTime values to the appropriate

in-band value. For example, a date of 2005-05-32 is converted to

2005-06-01.

v Output of dateTimes always adheres to the symbol count. For

example, a formatting string of yyyy-MM-dd (where ’-’ is the field

separator) allows one or more characters to be parsed against MM

and dd. Therefore, dates that are not valid - for example, 2005-1-123

and 2005-011-12 - can be input. The first value of 2005-1-123 is output

as the date 2005-05-03, and the second value of 2005-011-12 is output

as the date 2005-11-12.

v The number of the timezone formatting symbol Z is only applicable

to the output dateTime format.

v White space is skipped over.

Time Zone Enumerated The value that you set for this property is used if the value that you specified

for the Default DateTime Format property does not include Time Zone

information.

The initial value is Use Broker Locale, which causes the broker to get the

information from the underlying platform.

You can change this property by selecting from the list of values.

Daylight

Savings Time

Check box Select this option if the area in the Time Zone property observes Daylight Saving

Time. If it does not observe Daylight Saving Time, do not select this option.

For example, if an area is selected in Time Zone and this option is not selected,

the value passed represents the time zone without the Daylight Saving Time.

Message model reference information 155

Property Type Meaning

Use input UTC

format on

output

Check box This property applies to elements and attributes of logical type xsd:dateTime or

xsd:time that contain a dateTime as a string and that have a dateTime format of

I, IU, T, or TU, or that include ZZZ or ZZZU.

Such elements and attributes can specify Coordinated Universal Time (UTC) by

using either the Z character or timezone +00:00 in the value. On input, the MRM

parser remembers the way that UTC was specified.

If this property is selected, and the element or attribute is copied to an output

message, the UTC format is preserved into the output message and overrides the

format that is implied by the dateTime format property.

If this property is cleared, or if the element or attribute was not copied from an

input message, the UTC format in the output message is controlled solely by the

dateTime format property.

Character and numeric encoding for non-WebSphere MQ

messages

Use these settings only for messages with no MQMD.

 Property Type Meaning

Default CCSID* Integer Enter a numeric value for the default Coded Character Set Identifier. The default

is 500.

If the input message is a WebSphere MQ message, the equivalent attribute that

is set for the queue manager is used, and this property is ignored.

Default Byte

Order*

Enumerated Select either Big Endian (the default) or Little Endian from the list to specify the

byte order of numbers that are represented as binary integers.

In C, this is equivalent to data type short or long. In COBOL, this is equivalent

to a PIC 9, COMP, COMP-4, COMP-5, or BINARY data type.

Your choice must match the encoding with which messages are created.

Typically, Big Endian is the correct option for messages that are created on

UNIX® or z/OS®; Little Endian is the correct option for messages that are created

on Windows®.

Do not use this property if the message is received across the WebSphere MQ

transport protocol; in this case, the property is deduced from the MQMD of the

message, or from the encoding of the broker queue manager.

Default Packed

Decimal Byte

Order*

Enumerated Select Big Endian (the default) or Little Endian from the displayed list to specify

the byte order of numbers that are represented as packed decimal. In COBOL,

this is equivalent to PIC 9 COMP-3 data type. There is no equivalent data type

in C.

Your choice must match the encoding with which messages are created.

Typically, Big Endian is the correct option for messages that are created on UNIX

or z/OS; Little Endian is the correct option for messages that are created on

Windows.

Default Float

Format*

Enumerated Select one of S390 (the default), IEEE, or Reverse IEEE from the displayed list to

specify the byte order of numbers in the message that are represented as floating

point.

156 Message Models

TDS Format message set properties

The following tables show the properties that you can set for a TDS format

message set.

See “Default TDS message set properties” on page 167 for the default settings of

these properties for each of the industry standards.

Messaging Standard

 Property Type Meaning

Messaging

Standard

Enumerated Specify the standard to be used for this wire format. Select one of the following

values:

v User Defined Text - for text data not based on a standard

v SWIFT

v ACORD AL3

v EDIFACT

v X12

v TLOG

v HL7

v CSV - Comma Separated Values

v User Defined Mixed - for mixed text and binary data

If you are defining your own tagged/delimited messages, or are using a

standard that is not included in the list of values shown, select either User

Defined Text, if all your data is text, or User Defined Mixed, if not all your data

is text.

The value that you select for this property determines the default values of some

of the other properties.

The default is User Defined Text.

Data element separation settings

 Property Type Meaning

Group Indicator String Specify the default value of a special character or string that precedes the data

that belongs to a group or complex type within the bit stream.

Group

Terminator

String Specify the default value of a special character or string that terminates data that

belongs to a group or a complex type within the bit stream.

Delimiter String Specify the default value of a special character or string that specifies the

delimiter that is used between data elements.

This property applies only to the delimited Data Element Separation methods

(Tagged Delimited, All Elements Delimited, and Variable Length Elements

Delimited).

Message model reference information 157

Property Type Meaning

Suppress

Absent Element

Delimiters

Enumerated Use this property to select whether you want delimiters to be suppressed for

elements that are missing within a message. Select from:

v End Of Type. Use this option to suppress the delimiter when an element is

missing. For example, if the model has been defined to have up to three

elements and only two are present, the last delimiter can be omitted from the

message.

v Never. Use this option to ensure that even if optional elements are not

present, all delimiters are written out. This option must be used when the

same delimiter is used to delimit parent objects and child objects. For

example, if an optional child element is missing and all the delimiters are the

same, message processing applications cannot tell where the child elements in

a message ends and where the next parent element starts.

Tag Data

Separator

String Specify the default value of a special character or string that separates the tag

from the data.

If you set the property Tag Data Separator, the Length of Tag property is

ignored.

This property applies only to the tagged Data Element Separation methods

(Tagged Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Length of Tag Integer Specify the default length of a tag value. When the message is parsed, this

property allows tags to be extracted from the bit stream.

The Tag Data Separator and Length of Tag properties are mutually exclusive. If

you set the property Tag Data Separator, the Length of Tag property is ignored.

This property applies only to the tagged Data Element Separation methods

(Tagged Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Note: Any value that you set for a group or complex type property overrides the

value that you set for the corresponding message set property.

Character data settings

 Property Type Meaning

Default CCSID Integer CCSID (Coded Character Set Identification) specifies the mapping between

character codes and symbols. You must specify a code set that is supported by

WebSphere Message Broker.

This property stores the default CCSID for the message bit stream, but this value

can be overridden when the message is processed (for example, by the CCSID in

the header of a WebSphere MQ input message).

158 Message Models

Property Type Meaning

Trim on input Enumerated This property applies only to elements and attributes with a physical type of

Text. This property specifies whether a simple element or attribute value is to be

trimmed when it is parsed. The property does not apply to a simple element, or

attribute, with a logical type of Boolean or Binary. All trimming is applied to

element or attribute values before the conversion of the value to its logical type.

This property does not apply when writing elements or attributes.

This property only applies to a simple element, or attribute, that is contained

within a complex type or group that has the Justification property set to Left

Justify or Right Justify, and that satisfies one of the following conditions:

v The Data Element Separation property is set to Fixed Length, Fixed Length

AL3, Tagged Fixed Length, Use Data Pattern, or Tagged Encoded Length.

v The Data Element Separation property is set to Variable Length Elements

Delimited, and the element or attribute has a value set for its model length or

length reference.

v The Data Element Separation property is set to Tagged Delimited or All

Elements Delimited, and the Observe Element Length property is set. The

element or attribute has a model length or length reference value set.

This property can be set to one of the following values:

v No Trim. No characters are trimmed from the element or attribute value.

v Leading White Spaces. White space characters are trimmed from the left of the

element or attribute value.

v Trailing White Spaces. White space characters are trimmed from the right of

the element or attribute value.

v Trim Both. White space characters are trimmed from both the left and the

right of the element or attribute value.

v Trim Padding Chars. Padding characters are trimmed from the element or

attribute value. The padding character is set by the Padding Character

property of the element or attribute. If the Justification property of the element

or attribute is set to Left Justify, the padding characters are trimmed from the

right. If the Justification property of the element or attribute is set to Right

Justify, the padding characters are trimmed from the left. If the Justification

property of the element or attribute is set to Not Applicable, no trimming

takes place.

White space characters include control characters that are in the range from

U+0000 to U+001f and from U+007f to U+009f.

You might need to use this property if you have data input that is mapped to a

numeric simple type. For example, if the input data has leading spaces, you can

set this property to Leading White Spaces to avoid data conversion problems

when you process these fields.

Message model reference information 159

Property Type Meaning

Truncate on

output

Check box This property applies only to output strings that have a physical type of Text.

The property applies to elements or attributes that have a logical type of

xsd:string and that are contained within a structure with a Data Element

Separation of Fixed Length, Fixed Length AL3, Tagged Fixed Length, Use Data

Pattern, or Variable Length Elements Delimited where a length has been

specified.

If this check box is selected, and the element or attribute has a length that is

longer than the length that is specified in the model or the length reference, the

string is truncated to this length. No exception is raised on output, unless

validation (see Validating messages) is active.

The end from which data is truncated is determined by the value of the

Justification property. If the value of the Justification property is Left justify, data

is truncated from the right; if the value of the Justification property is Right

justify, data is truncated from the left. However, if the value of the Justification

property is Not applicable, truncation does not occur and an exception occurs if

the string is too long.

If this check box is cleared, an exception occurs if the element or attribute is a

fixed length string (that is, the physical type is Text and a length has been

specified) that is longer than either the length that is specified in the model or

the length reference. This behavior occurs in releases of the WebSphere Message

Broker earlier than Version 6.1.

Escape

Character

Button and

String

Specify the escape character that is used to allow special reserved characters

(such as delimiters) to be included as part of data. You must specify a single

character only, or a mnemonic that represents a single character.

Escape characters apply only in variable length fields.

Escape characters, on parsing, always escape the next character, and are always

removed.

Escape characters, on writing, are inserted in front of all the characters that are

listed in Reserved Characters.

You can specify either an escape character or a quote character, but not both, for

a given message set.

Quote

Character

Button and

String

Specify the quote character that is used to allow special reserved characters

(such as delimiters) to be included as part of data. You must specify a single

character only, or a mnemonic that represents a single character.

Quote characters apply only to variable length fields.

Quote characters, on parsing, must be present at both the start and the end of

the data, and are always removed.

Quote characters, on writing, are added to both the start and end of the data, if

the data contains any character that is listed in the Reserved Characters property.

You can specify either an Escape Character or a Quote Character, but not both,

for a given message set.

160 Message Models

Property Type Meaning

Reserved

Characters

String Specify any special reserved characters. Either these reserve characters must be

preceded by the Escape Character, or the data field that contains them must be

delimited by a pair of Quote Characters, if they are to be included as part of the

data. The Escape Character, Quote Character, delimiters, and group indicators

must be included in this list.

If the set of reserved characters is to be updated dynamically (in the case of

EDIFACT and X12 when reserved characters, such as delimiters, are specified in

service strings), you must use the supplied mnemonics to specify characters in

this list.

If you have specified Reserved Characters, an Escape Character or a Quote

Character must also be specified.

Reserved characters apply only in variable length fields.

Reserved characters are not used when parsing.

Numeric settings

 Property Type Meaning

Decimal Point String Specify the character that is used to separate the whole part of a number from

its fraction.

Packed decimal

positive code

String Controls the positive sign that is used for packed decimal fields.

Valid values are C or F.Specify the character that is used to separate the whole

part of a number from its fraction.

Strict Numeric

Checking

Check box Use this property in conjunction with the Messaging Standard property, the

Virtual Decimal Point property and the Precision property of an element. Using

this property allows you to apply stricter rules for the checking of numbers.

The rules for Strict Numeric Checking are:

v If the Precision property of an element is set to All Significant Digits , a

decimal separator is present only if the value has a fractional part.

v If the Precision property of an element is set to Explicit Decimal Point, the

decimal separator must always be present, even if the fractional part is

missing.

v If the Precision property of an element is set to Exponential Notation, the

incoming value must be in exponential notation. Exponential notation is only

allowed for floating numbers.

v If the Precision property of an element is set to a specific value, the specific

number of digits after the decimal separator must be present.

v All values must contain at least one digit in the integer part of the number.

v If a Virtual Decimal Point of an element has been set, the number must not

have a decimal point.

v Except for EDIFACT, the decimal separator can be only the specified value,

and ’.’ is not permitted. For EDIFACT, both ’.’ and the specified separator are

permitted. In this case, the decimal separator must be specified as ’,’ and the

code permits ’.’ to be used.

v Except for exponential functions, only digits 0-9, the decimal separator, the

positive sign, and the negative sign are permitted. For exponential functions

the characters ’e’ and ’E’ are also permitted. Padding characters are permitted

only if they are in a position to be stripped from the number.

Message model reference information 161

Property Type Meaning

Derive sign

from logical

type

Check box If this property is selected, an unset TDS Signed property attempts to derive its

value from the simple type of the element (integer and decimal simple logical

types only). For these logical types it applies only to the Integer, External

Decimal, and Packed Decimal physical types.

Default byte

order

Enumerated Controls the byte order of numbers that are represented as binary integers for

messages with no MQMD.

Valid values are Big Endian or Little Endian.

This property stores the default byte order for numbers that are represented as

binary integers for messages with no MQMD, but this value can be overridden

when the message is processed.

Default packed

decimal byte

order

Enumerated Controls the byte order of numbers that are represented as packed decimal for

messages with no MQMD.

Valid values are Big Endian or Little Endian.

This property stores the default byte order of numbers that are represented as

packed decimal for messages with no MQMD, but this value can be overridden

when the message is processed.

Default float

format

Enumerated Controls the format of numbers that are represented as float for messages with

no MQMD.

Valid values are S390, IEEE, or Reverse IEEE.

This property stores the default format of numbers that are represented as float

for messages with no MQMD, but this value can be overridden when the

message is processed.

Representation of boolean values

 Property Type Meaning

Text boolean

true value

String Specifies the character that represents the text Boolean true value.

Text boolean

false value

String Specifies the character that represents the text Boolean false value.

Text boolean

null value

String Specifies the character that represents the text Boolean null value.

Binary boolean

true value

String Specifies a hexadecimal value that represents the binary Boolean true value.

Binary boolean

false value

String Specifies a hexadecimal value that represents the binary Boolean false value.

Binary boolean

null value

String Specifies a hexadecimal value that represents the binary Boolean null value.

Datetime settings

 Property Type Meaning

Derive default

dateTime

format from

logical type

Button Select this option if you want the default dateTime format to be determined by

the logical type of the element or attribute.

You can override this property for an element or attribute within a complex

type.

162 Message Models

Property Type Meaning

Use default

dateTime

format

Button and

String

Select this option if you want to specify a default dateTime format that is fixed

for all elements or attributes of logical type dateTime, date, time, gYear,

gYearMonth, gMonth, gMonthDay, and gDay.

You can override this property for an element or attribute within a complex

type.

For more information, see “DateTime formats” on page 763.

Start of century

for 2 digit years

Integer This property determines how two-digit years are interpreted. Specify the two

digits that start a 100-year window that contains the current year. For example, if

you specify 89, and the current year is 2002, all two-digit dates are interpreted as

being in the range 1989 to 2088.

Days in First

Week of Year

Enumerated Specify the number of days of the new year that must fall within the first week.

The start of a year typically falls in the middle of a week. If the number of days

in that week is less than the value specified here, the week is considered to be

the last week of the previous year; therefore, week 1 starts some days into the

new year. Otherwise, it is considered to be the first week of the new year; in this

case, week 1 starts some days before the new year.

Select Use Broker Locale, which causes the broker to get the information from

the underlying platform, or select a number from the list that is displayed.

First Day Of

Week

Enumerated Specify the day on which each new week starts.

Select Use Broker Locale, which causes the broker to get the information from

the underlying platform, or select a value from the list that is displayed.

Message model reference information 163

Property Type Meaning

Strict DateTime

Checking

Check box Select this option if you want to restrict dateTimes to a valid dateTime format. If

Strict DateTime Checking is selected, receiving an incorrect dateTime causes an

error.

Strict dateTime checking

Examples of strict dateTime checking are:

v DateTimes are restricted to valid dateTimes only. When you use this

option, a date such as the 35th March is not processed as 4th April,

and 10:79 is not processed as 11:19. Receiving an out-of-band

dateTime, such as these examples, causes an error to occur.

v The number of characters for a numeric dateTime component must

be within the bounds of the corresponding formatting symbols.

Repeat the symbol to specify the minimum number of digits that you

require. The maximum number of digits that are permitted becomes

the upper bound for a particular symbol. For example, day in month

has an upper bound of 31; therefore, a format string of ’d’ allows the

values 2 and 21 to be parsed, but does not allow the values 32 and

210. On output, numbers are padded with zeros to the specified

length. A year is a special case; see the message set property Start of

century for 2 digit years. For fractional seconds, the length must

implicitly match the number of format symbols on input. The output

is rounded to the specified length.

v White space is not skipped over. The white space in the input string

must correspond with the same number and position of white space

in the formatting string.

v If there is still data to be parsed in the input string after all of the

symbols in the formatting string have been matched, an error occurs.

Lenient dateTime checking

Examples of lenient dateTime checking are:

v The parser converts out-of-band dateTime values to the appropriate

in-band value. For example, a date of 2005-05-32 is converted to

2005-06-01.

v Output of dateTimes always adheres to the symbol count. For

example, a formatting string of yyyy-MM-dd (where ’-’ is the field

separator) allows one or more characters to be parsed against MM

and dd. Therefore, dates that are not valid - for example, 2005-1-123

and 2005-011-12 - can be input. The first value of 2005-1-123 is output

as the date 2005-05-03, and the second value of 2005-011-12 is output

as the date 2005-11-12.

v The number of the timezone formatting symbol Z is only applicable

to the output dateTime format.

v White space is skipped over.

Time Zone Enumerated The value that you set for this property is used if the value that you specified

for the Default DateTime Format property does not include Time Zone

information.

The initial value is Use Broker Locale, which causes the broker to get the

information from the underlying platform.

You can change this property by selecting from the list of values.

Daylight

Savings Time

Check box Select this option if the area in the Time Zone property observes Daylight Saving

Time. If it does not observe Daylight Saving Time, do not select this option.

For example, if an area is selected in Time Zone and this option is not selected,

the value passed represents the time zone without the Daylight Saving Time.

164 Message Models

Property Type Meaning

Use input UTC

format on

output

Check box This property applies to elements and attributes of logical type xsd:dateTime or

xsd:time that have a dateTime format of I, IU, T, or TU, or that include ZZZ or

ZZZU.

Such elements and attributes can specify Coordinated Universal Time (UTC) by

using either the Z character or timezone +00:00 in the value. On input, the MRM

parser remembers the way that UTC was specified.

If this property is selected, and the element or attribute is copied to an output

message, the UTC format is preserved into the output message and overrides the

format that is implied by the dateTime format property.

If this property is cleared, or the element or attribute was not copied from an

input message, the UTC format in the output message is controlled solely by the

dateTime format property.

General settings

 Property Type Meaning

Output policy

for missing

elements

Enumerated Controls whether the default value or null value is used on output for missing

elements.

Valid values are UseDefaultValue or UseNullValue.

Derive default

length from

logical type

Check box If this property is selected, an unset TDS Length property attempts to derive its

default value from the simple type of the element (string, binary, integer, and

decimal simple logical types only). For these logical types, it applies only to the

Binary, Text, Integer, External Decimal, and Packed Decimal physical types.

TDS Mnemonics

The Tagged/Delimited String Format (TDS) uses mnemonics for a number of

properties for a message set, complex type, or both. These TDS mnemonics and

their associated properties are listed in the table below.

 Mnemonic string Meaning Default value Associated property

<EDIFACT_CS> Component separator in

EDIFACT

: Message set and complex

type/group, Delimiter

<EDIFACT_DS> Data element separator in

EDIFACT

+ Message set and complex

type/group, Delimiter

<EDIFACT_TAGDATA_SEP> Tag data separator in EDIFACT

This is overridden with the

same value as that which

overrides <EDIFACT_DS>

+ Message set and complex

type/group, Tag Data Separator

<EDIFACT_DEC_NOTATION> Decimal notation in EDIFACT . Message set, Decimal Point

<EDIFACT_ESC_CHAR> Escape character in EDIFACT ? Message set, Escape Character

<EDIFACT_GROUP_TERM> Tag terminator in EDIFACT ’ Message set, Group Terminator

<X12_GROUP_TERM> Tag terminator in X12 ! Message set level, Group

Terminator

<X12_DS> Data element separator for X12 * Message set and complex

type/group, Delimiter

Message model reference information 165

Mnemonic string Meaning Default value Associated property

<X12_CS> Component separator for X12 : Message set and complex

type/group, Delimiter

<HL7_CS> Component separator in HL7 ^ Message set and complex

type/group, Delimiter

<HL7_FS> Data element separator in HL7 | Message set and complex

type/group, Delimiter

<HL7_RS> Repeating element delimiter in

HL7

~ Local element and element

reference, Repeating Element

Delimiter

<HL7_SCS> Sub-component separator in

HL7

& Message set and complex

type/group, Delimiter

<0xNN> Byte of two hexadecimal digits,

where N is a hexadecimal digit

in the range 0 to F.

Group Indicator, Group

Terminator, Delimiter, Repeating

Element Delimiter, Tag Data

Separator, and Tag.

<0XNN> Byte of two hexadecimal digits,

where N is a hexadecimal digit

in the range 0 to F.

Group Indicator, Group

Terminator, Delimiter, Repeating

Element Delimiter, Tag Data

Separator, and Tag.

Mnemonics for control characters are shown in the following table.

 Mnemonic Hex

value

Unicode Description

<ACK> X’06’ <U+0006> Acknowledge

<BEL> X’07’ <U+0007> Bell

<BS> X’08’ <U+0008> Backspace

<CAN> X’18’ <U+0018> Cancel

<CR> X’0D’ <U+000D> Carriage Return

<DC1> X’11’ <U+0011> Device Control One

<DC2> X’12’ <U+0012> Device Control Two

<DC3> X’13’ <U+0013> Device Control Three

<DC4> X’14’ <U+0014> Device Control Four

<DLE> X’10’ <U+0010> Data Link Escape

 X’19’ <U+0019> End of Medium

<ENQ> X’05’ <U+0005> Enquiry

<EOT> X’04’ <U+0004> End of Transmission

<ESC> X’1B’ <U+001B> Escape

<ETB> X’17’ <U+0017> End of Transmission Block

<ETX> X’03’ <U+0003> End of Text

<FF> X’0C’ <U+000C> Form Feed

<FS> X’1C’ <U+001C> File Separator

<GS> X’1D’ <U+001D> Group Separator

<GT> X’3E’ <U+003E> Greater Than

<HT> X’09’ <U+0009> Horizontal Tabulation

166 Message Models

Mnemonic Hex

value

Unicode Description

<LF> X’0A’ <U+000A> Line Feed

<LT> X’3C’ <U+003C> Less Than

<NAK> X’15’ <U+0015> Negative Acknowledge

<NUL> X’00’ <U+0000> Null-

<RS> X’1E’ <U+001E> Record Separator

<SI> X’0F’ <U+000F> Locking Shift Zero (Shift In)

<SO> X’0E’ <U+000E> Locking Shift One (Shift Out)

<SOH> X’01’ <U+0001> Start of Heading

<SP> X’20’ <U+0020> Space

<STX> X’02’ <U+0002> Start of Text

<SUB> X’1A’ <U+001A> Substitute

<SYN> X’16’ <U+0016> Synchronous Idle

<US> X’1F’ <U+001F> Unit Separator

<VT> X’0B’ <U+000B> Vertical Tabulation

These mnemonics were created for characters that cannot be entered into the

message editor.

You can enter a mnemonic in the form <U+xxxx> where xxxx are hexadecimal

digits. None of the characters in this structure are case sensitive. Do not enclose

spaces inside the angle brackets.

These numbers represent a Unicode character, not a character in the code page of

the input message.

For example, if you have an input message in which MQMD.CodedCharSetId has

the value 437 and there was a separator of X’1A’, you might specify <SUB> as the

mnemonic. This is not correct. X’1A’ in code page 437 is a file separator character

and this maps to the unicode codepoint of X’001C’. Therefore, you should use the

mnemonic for X’1C’ which is <FS> (File Separator).

Default TDS message set properties

The following tables define the defaults for the message set properties for the TDS

Format for each of the industry standard messages that you can define.

For more information about the TDS Format, see “TDS Format message set

properties” on page 157 and “TDS Mnemonics” on page 165.

Default message set property values for TDS (part 1 of 3)

 Property Messaging standard = User

Defined Text

Messaging Standard =

SWIFT

Messaging standard =

ACORD AL3

Group Indicator Empty <CR><LF>: Empty

Group Terminator Empty <CR><LF>- Empty

Delimiter Empty <CR><LF>: Empty

Suppress Absent

Element Delimiters

End of Type End of Type End of Type

Message model reference information 167

Property Messaging standard = User

Defined Text

Messaging Standard =

SWIFT

Messaging standard =

ACORD AL3

Tag Data Separator Empty : Empty

Length of Tag Empty Empty Empty

Default CCSID 367 37 367

Trim on input No Trim Trim Both No Trim

Truncate on output Cleared Cleared Cleared

Escape Character Chosen - empty Chosen - empty Chosen - empty

Quote character Not chosen Not chosen Not chosen

Reserved Characters Empty Empty Empty

Decimal Point . , .

Packed decimal

positive code

C Not applicable Not applicable

Strict Numeric

Checking

Cleared Selected Selected

Derive sign from

logical type

Selected Not applicable Not applicable

Default byte order Big Endian Not applicable Not applicable

Default packed

decimal byte order

Big Endian Not applicable Not applicable

Default float format S390 Not applicable Not applicable

Text boolean true

value

1 1 Y

Text boolean false

value

0 0 N

Text boolean null

value

0 0 N

Binary boolean true

value

00000001 Not applicable Not applicable

Binary boolean false

value

00000000 Not applicable Not applicable

Binary boolean null

value

00000000 Not applicable Not applicable

Derive default

dateTime format

from logical type

Chosen Chosen Chosen

Use default

DateTime Format1

Not chosen, but

yyyy-MM-
dd’T’HH:mm:ssZZZ if chosen

Not chosen, but

yyyy-MM-
dd’T’HH:mm:ssZZZ if chosen

Not chosen, but

yyyy-MM-
dd’T’HH:mm:ssZZZ if chosen

Start of century for

2 digit years

53 80 53

Days in First Week

of Year

Use Broker Locale Use Broker Locale Use Broker Locale

First Day of Week Use Broker Locale Use Broker Locale Use Broker Locale

Strict Datetime

Checking

Selected Selected Selected

Time Zone Use Broker Locale Use Broker Locale Use Broker Locale

168 Message Models

Property Messaging standard = User

Defined Text

Messaging Standard =

SWIFT

Messaging standard =

ACORD AL3

Daylight Savings

Time

Cleared Cleared Cleared

Use input UTC

format on output

Cleared Cleared Cleared

Output policy for

missing elements

UseDefaultValue UseDefaultValue UseDefaultValue

Derive default

length from logical

type

Selected Selected Selected

Default message set property values for TDS (part 2 of 3)

 Property Messaging standard =

EDIFACT

Messaging Standard = X12 Messaging standard = TLOG

Group Indicator Empty Empty Empty

Group Terminator <EDIFACT_GROUP_TERM> <X12_GROUP_TERM> Empty

Delimiter <EDIFACT_CS> <X12_CS> :

Suppress Absent

Element Delimiters

End of Type End of Type End of Type

Tag Data Separator <EDIFACT_TAGDATA_SEP> Empty Empty

Length of Tag Empty Empty Empty

Default CCSID 367 367 367

Trim on input Trim Both Trim Both No Trim

Truncate on output Cleared Cleared Cleared

Escape Character Chosen -

<EDIFACT_ESC_CHAR>

Chosen - empty Chosen - empty

Quote character Not chosen Not chosen Not chosen

Reserved Characters <EDIFACT_ESC_CHAR>

<EDIFACT_TAGDATA_SEP>

<EDIFACT_GROUP_TERM>

<EDIFACT_CS>

Empty Empty

Decimal Point <EDIFACT_DEC_NOTATION> . .

Packed decimal

positive code

Not applicable Not applicable Not applicable

Strict Numeric

Checking

Selected Selected Cleared

Derive sign from

logical type

Not applicable Not applicable Not applicable

Default byte order Not applicable Not applicable Not applicable

Default packed

decimal byte order

Not applicable Not applicable Not applicable

Default float format Not applicable Not applicable Not applicable

Text boolean true

value

1 1 1

Text boolean false

value

0 0 0

Message model reference information 169

Property Messaging standard =

EDIFACT

Messaging Standard = X12 Messaging standard = TLOG

Text boolean null

value

0 0 0

Binary boolean true

value

Not applicable Not applicable Not applicable

Binary boolean false

value

Not applicable Not applicable Not applicable

Binary boolean null

value

Not applicable Not applicable Not applicable

Derive default

dateTime format

from logical type

Chosen Chosen Chosen

Use default

DateTime Format1

Not chosen, but

yyyy-MM-
dd’T’HH:mm:ssZZZ if chosen

Not chosen, but

yyyy-MM-
dd’T’HH:mm:ssZZZ if chosen

Not chosen, but

yyyy-MM-
dd’T’HH:mm:ssZZZ if chosen

Start of century for

2 digit years

53 53 53

Days in First Week

of Year

Use Broker Locale Use Broker Locale Use Broker Locale

First Day of Week Use Broker Locale Use Broker Locale Use Broker Locale

Strict Datetime

Checking

Selected Selected Selected

Time Zone Use Broker Locale Use Broker Locale Use Broker Locale

Daylight Savings

Time

Cleared Cleared Cleared

Use input UTC

format on output

Cleared Cleared Cleared

Output policy for

missing elements

UseDefaultValue UseDefaultValue UseDefaultValue

Derive default

length from logical

type

Selected Selected Selected

Default message set property values for TDS (part 3 of 3)

 Property Messaging standard = HL7 Messaging Standard = CSV Messaging standard = User

Defined Mixed

Group Indicator Empty Empty Empty

Group Terminator <CR> Empty Empty

Delimiter <HL7_FS> , Empty

Suppress Absent

Element Delimiters

End of Type Never End of Type

Tag Data Separator <HL7_FS> Empty Empty

Length of Tag Empty Empty Empty

Default CCSID 367 367 850

Trim on input No Trim No Trim Trim Padding Chars

Truncate on output Cleared Cleared Cleared

170 Message Models

Property Messaging standard = HL7 Messaging Standard = CSV Messaging standard = User

Defined Mixed

Escape Character Chosen - empty Not chosen Chosen - empty

Quote character Not chosen Chosen - ″ Not chosen

Reserved Characters Empty ,

<CR>

<LF>

″

Empty

Decimal Point . . .

Packed decimal

positive code

Not applicable C C

Strict Numeric

Checking

Cleared Cleared Cleared

Derive sign from

logical type

Not applicable Selected Selected

Default byte order Not applicable Big Endian Big Endian

Default packed

decimal byte order

Not applicable Big Endian Big Endian

Default float format Not applicable S390 S390

Text boolean true

value

1 1 1

Text boolean false

value

0 0 0

Text boolean null

value

0 0 0

Binary boolean true

value

Not applicable 00000001 00000001

Binary boolean false

value

Not applicable 00000000 00000000

Binary boolean null

value

Not applicable 00000000 00000000

Derive default

dateTime format

from logical type

Not chosen Chosen Chosen

Use default

DateTime Format1

Chosen - yyyy-MM-
dd’T’HH:mm:ssZZZ

Not chosen - but

yyyy-MM-
dd’T’HH:mm:ssZZZ if chosen

Not chosen - but

yyyy-MM-
dd’T’HH:mm:ssZZZ if chosen

Start of century for

2 digit years

53 53 53

Days in First Week

of Year

Use Broker Locale Use Broker Locale Use Broker Locale

First Day of Week Use Broker Locale Use Broker Locale Use Broker Locale

Strict Datetime

Checking

Selected Selected Selected

Time Zone Use Broker Locale Use Broker Locale Use Broker Locale

Daylight Savings

Time

Cleared Cleared Cleared

Use input UTC

format on output

Cleared Cleared Cleared

Message model reference information 171

Property Messaging standard = HL7 Messaging Standard = CSV Messaging standard = User

Defined Mixed

Output policy for

missing elements

UseDefaultValue UseDefaultValue UseDefaultValue

Derive default

length from logical

type

Selected Selected Selected

Default complex type/group property values for TDS (part 1 of 3)

 Property Messaging standard = User

Defined Text

Messaging standard = SWIFT Messaging standard =

ACORD AL3

Data Element

Separation

Fixed Length Tagged Delimited Fixed Length AL3

Group Indicator Empty <CR><LF>: Empty

Group Terminator Empty <CR><LF>- Empty

Delimiter Empty <CR><LF>: not applicable

Suppress Absent

Element Delimiters

End of Type End of Type End of Type

Observe Element

Length

Selected Cleared Selected

Tag Data Separator Empty : Empty

Length of Tag Empty Empty Empty

Length of Encoded

Length

not applicable not applicable not applicable

Extra Chars in

Encoded Length

not applicable not applicable not applicable

Default complex type/group property values for TDS (part 2 of 3)

 Property Messaging standard =

EDIFACT

Messaging standard = X12 Messaging standard = TLOG

Data Element

Separation

All Elements Delimited All Elements Delimited Fixed length

Group Indicator Empty Empty Empty

Group Terminator <EDIFACT_GROUP_TERM> <X12_GROUP_TERM> Empty

Delimiter <EDIFACT_CS> <X12_CS> :

Suppress Absent

Element Delimiters

End of Type End of Type End of Type

Observe Element

Length

Cleared Cleared Cleared

Tag Data Separator <EDIFACT_TAGDATA_SEP> Empty Empty

Length of Tag Empty Empty Empty

Length of Encoded

Length

not applicable not applicable not applicable

Extra Chars in

Encoded Length

not applicable not applicable not applicable

172 Message Models

Default complex type/group property values for TDS (part 3 of 3)

 Property Messaging standard = HL7 Messaging standard = CSV Messaging standard = User

Defined Mixed

Data Element

Separation

All Elements Delimited All Elements Delimited Fixed Length

Group Indicator Empty Empty Empty

Group Terminator <CR> Empty Empty

Delimiter <HL7_FS> , Empty

Suppress Absent

Element Delimiters

End of Type Never End of Type

Observe Element

Length

Cleared Cleared Selected

Tag Data Separator <HL7_FS> not applicable Empty

Length of Tag Empty not applicable Empty

Length of Encoded

Length

not applicable not applicable not applicable

Extra Chars in

Encoded Length

not applicable not applicable not applicable

XML Wire Format message set properties

The tables below define the properties for the XML Wire Format for the message

set.

Namespace settings

 Property Type Meaning

Namespace URI String Enter the namespace name that will identify which namespace you are using for

the associated prefix.

Prefix String Enter the prefix to associate the element and attribute names you use it with to

the namespace name.

Namespace schema locations

 Property Type Meaning

Namespace URI String Enter the namespace name that will identify which namespace you are using.

Schema location String Enter the location of the schema for the associated namespace name that will be

used to validate objects within the namespace.

XML declaration

 Property Type Meaning

Suppress XML

Declaration

Check box Select the check box to suppress the XML declaration. If selected, the declaration

(for example, <?xml version=’1.0’>) is suppressed.

The default value is cleared.

Message model reference information 173

Property Type Meaning

XML Version Enumerated

type

This controls the value of the version in the generated XML declaration.

The default is 1.0.

If you set Suppress XML Declaration to Yes, this property is ignored.

XML Encoding Enumerated

type

This controls whether an encoding attribute is written in the generated XML

declaration.

If Null is selected, no encoding attribute is written in the XML declaration of the

output XML document.

If As document text is selected, an encoding attribute will be generated which is

consistent with the text in the XML document.

The default is Null.

If the Suppress XML Declaration check box is selected, this property is ignored.

Standalone

Document

Enumerated

type

Select Yes, No, or Null from the drop-down list. If Null is selected, no standalone

declaration is present in the XML declaration. If you select Yes or No, the

declaration standalone = ″yes″ or standalone = ″no″ is added to the XML

declaration when the output message is written. The default value is Null.

The setting of this property does not determine whether an external DTD subset

is loaded: external DTD subsets are never loaded in this release.

If the Suppress XML Declaration check box is selected, this property is ignored.

Output

Namespace

Declaration

Enumerated

type

The Output Namespace Declaration property controls where the namespace

declarations are placed in the output XML document. Select from:

v At start of document. Declarations for all of the entries in the Namespace

schema locations table above are output as attributes of the message in the

output XML document. The disadvantage of this option is that in some cases

unnecessary declarations may be output.

v As required. Declarations are output only when required by an element or

attribute that is in that namespace. The disadvantage of this option is that the

same namespace declaration may need to be output more than once in the

output XML document.

The default option is At start of document.

This property is only active if namespaces are enabled for this message set.

XML document type settings

 Property Type Meaning

Suppress

DOCTYPE

Check box If you select the check box, the DOCTYPE (DTD) declaration is suppressed.

The default value is checked.

DOCTYPE

System ID

String Specify the System ID for DOCTYPE external DTD subset (if DOCTYPE is

present). This is normally set to the name of the generated (or imported) DTD

for a message set.

If Suppress DOCTYPE is set, this property is ignored and cannot be changed (the

field is disabled). The default value is www.mrmnames.net/ followed by the

message set identifier.

174 Message Models

Property Type Meaning

DOCTYPE

Public ID

String Specify the Public ID for DOCTYPE external DTD subset (if DOCTYPE is

present, and System ID is specified).

If Suppress DOCTYPE is set, this property is ignored and cannot be changed (the

field is disabled). The default value is the message set identifier.

DOCTYPE Text String Use this property to add additional DTD declarations. It is not parsed by the

XML parser and thus it might not be valid XML. You can include ENTITY

definitions or internal DTD declarations. It is a string (up to 32KB) in which new

line and tab characters are replaced by \n and \t respectively.

The content is not parsed, and appears in the output message. If there is an

in-line DTD, the content of this property takes precedence.

If you have set Suppress DOCTYPE, this property is ignored and cannot be

changed (the field is disabled).

For more information, see “MRM XML: In-line DTDs and the DOCTYPE text

property” on page 180.

The default value is empty (not set).

XML representation of Boolean values

 Property Type Meaning

Boolean True

Value

String Specify the string that is used to encode and recognize BOOLEAN true values.

When an XML document is parsed, the string 1 is always accepted as true for a

BOOLEAN element. Enter a string of up to 254 characters.

The default is true. 1 is also valid.

Boolean False

Value

String Specify the string that is used to encode and recognize BOOLEAN false values.

When an XML document is parsed, the string 0 is always accepted as false for a

BOOLEAN element. Enter a string of up to 254 characters.

The default is false. 0 is also valid.

Message model reference information 175

XML representation of null values

 Property Type Meaning

Encoding

Numeric Null

Enumerated

type

Specify the null encoding for numeric XML elements. This provides a method of

assigning a logical null meaning to such elements. You must select one of the

following values from the drop-down list:

v NULLEmpty. If the element value is the empty string, then the element is null.

This is the default value.

v NULLValue. If the element value matches that provided by associated property

Encoding Numeric Null Value, then the element is null.

v NULLXMLSchema. If the element contains an xsi:nil attribute that evaluates to

true, then the element is null.

v NULLValueAttribute. This option is valid only for elements that have XML

Wire Format property Render set to either XMLElementAttrVal or

XMLElementAttrIDVal. See “XML Null handling options” on page 731 for

details.

v NULLAttribute (deprecated). If the element contains an attribute with a name

that matches that provided by associated property Encoding Numeric Null

Value, and the attribute evaluates to true, then the element is null.

v NULLElement (deprecated). If the element contains a child element with a name

that matches that provided by associated property Encoding Numeric Null

Value, then the element is null.

See “XML Null handling options” on page 731 for full details.

Encoding

Numeric Null

Value

String Specify the value to qualify the Encoding Numeric Null property, if you have set

that to NULLValue, NULLAttribute, or NULLElement. Refer to “XML Null handling

options” on page 731 for further information.

Encoding

Non-Numeric

Null

Enumerated

type

Specify the null encoding for non-numeric XML elements. This provides a

method of assigning a logical null meaning to such elements. The options are

identical to those available for property Encoding Numeric Null.

Encoding

Non-Numeric

Null Value

String Specify the value to qualify the Encoding Non-Numeric Null property. Refer to

“XML Null handling options” on page 731 for further information.

DateTime settings

 Property Type Meaning

Derive default

dateTime

format from

logical type

Button Select this option if you want the default dateTime format to be determined by

the logical type of the element or attribute.

You can override this property for an element or attribute within a complex

type.

Use default

dateTime

format

Button and

String

Select this option if you want to specify a default dateTime format that is fixed

for all elements or attributes of logical type dateTime, date, time, gYear,

gYearMonth, gMonth, gMonthDay, and gDay.

You can override this property for an element or attribute within a complex

type.

For more information, see “DateTime formats” on page 763.

Start of century

for 2 digit years

Integer This property determines how two-digit years are interpreted. Specify the two

digits that start a 100-year window that contains the current year. For example, if

you specify 89, and the current year is 2002, all two-digit dates are interpreted as

being in the range 1989 to 2088.

176 Message Models

Property Type Meaning

Days in First

Week of Year

Enumerated Specify the number of days of the new year that must fall within the first week.

The start of a year typically falls in the middle of a week. If the number of days

in that week is less than the value specified here, the week is considered to be

the last week of the previous year; therefore, week 1 starts some days into the

new year. Otherwise, it is considered to be the first week of the new year; in this

case, week 1 starts some days before the new year.

Select Use Broker Locale, which causes the broker to get the information from

the underlying platform, or select a number from the list that is displayed.

First Day Of

Week

Enumerated Specify the day on which each new week starts.

Select Use Broker Locale, which causes the broker to get the information from

the underlying platform, or select a value from the list that is displayed.

Message model reference information 177

Property Type Meaning

Strict DateTime

Checking

Check box Select this option if you want to restrict dateTimes to a valid dateTime format. If

Strict DateTime Checking is selected, receiving an incorrect dateTime causes an

error.

Strict dateTime checking

Examples of strict dateTime checking are:

v DateTimes are restricted to valid dateTimes only. When you use this

option, a date such as the 35th March is not processed as 4th April,

and 10:79 is not processed as 11:19. Receiving an out-of-band

dateTime, such as these examples, causes an error to occur.

v The number of characters for a numeric dateTime component must

be within the bounds of the corresponding formatting symbols.

Repeat the symbol to specify the minimum number of digits that you

require. The maximum number of digits that are permitted becomes

the upper bound for a particular symbol. For example, day in month

has an upper bound of 31; therefore, a format string of ’d’ allows the

values 2 and 21 to be parsed, but does not allow the values 32 and

210. On output, numbers are padded with zeros to the specified

length. A year is a special case; see the message set property Start of

century for 2 digit years. For fractional seconds, the length must

implicitly match the number of format symbols on input. The output

is rounded to the specified length.

v White space is not skipped over. The white space in the input string

must correspond with the same number and position of white space

in the formatting string.

v If there is still data to be parsed in the input string after all of the

symbols in the formatting string have been matched, an error occurs.

Lenient dateTime checking

Examples of lenient dateTime checking are:

v The parser converts out-of-band dateTime values to the appropriate

in-band value. For example, a date of 2005-05-32 is converted to

2005-06-01.

v Output of dateTimes always adheres to the symbol count. For

example, a formatting string of yyyy-MM-dd (where ’-’ is the field

separator) allows one or more characters to be parsed against MM

and dd. Therefore, dates that are not valid - for example, 2005-1-123

and 2005-011-12 - can be input. The first value of 2005-1-123 is output

as the date 2005-05-03, and the second value of 2005-011-12 is output

as the date 2005-11-12.

v The number of the timezone formatting symbol Z is only applicable

to the output dateTime format.

v White space is skipped over.

Time Zone Enumerated The value that you set for this property is used if the value that you specified

for the Default DateTime Format property does not include Time Zone

information.

The initial value is Use Broker Locale, which causes the broker to get the

information from the underlying platform.

You can change this property by selecting from the list of values.

Daylight

Savings Time

Check box Select this option if the area in the Time Zone property observes Daylight Saving

Time. If it does not observe Daylight Saving Time, do not select this option.

For example, if an area is selected in Time Zone and this option is not selected,

the value passed represents the time zone without the Daylight Saving Time.

178 Message Models

Property Type Meaning

Use input UTC

format on

output

Check box This property applies to elements and attributes of logical type xsd:dateTime or

xsd:time that have a dateTime format of I, IU, T, or TU, or that include ZZZ or

ZZZU.

Such elements and attributes can specify Coordinated Universal Time (UTC) by

using either the Z character or timezone +00:00 in the value. On input, the MRM

parser remembers the way that UTC was specified.

If this property is selected, and the element or attribute is copied to an output

message, the UTC format is preserved into the output message and overrides the

format that is implied by the dateTime format property.

If this property is cleared, or the element or attribute was not copied from an

input message, the UTC format in the output message is controlled solely by the

dateTime format property.

xsi:type settings

 Property Type Meaning

Output policy

for xsi:type

attributes

Enumerated

type

When writing XML documents, this property allows you to specify the

circumstances under which the xsi:type attribute of elements will be output.

Never Do not output xsi:type attributes for elements, even if xsi:type attributes

appear in the message tree.

When present

Output xsi:type attributes for elements only when xsi:type attributes

appear in the message tree. This is the default value.

Always (Simple elements only)

Ensure that all simple elements are output with an xsi:type attribute. If

a simple element already has an xsi:type attribute in the message tree it

will be used, otherwise an xsi:type attribute will be generated using the

rules in the table below.

Always (All elements)

Ensure that all elements are output with an xsi:type attribute if possible

to do so. If an element already has an xsi:type attribute in the message

tree it will be used, otherwise an xsi:type attribute will be generated

using the rules in the table below.

Follow SOAP Encoding rules

Follow the same behaviour as for Always (Simple elements only).

Additionally, output a SOAP encoding-style attribute within the root tag

of all messages.

If an xsi:type attribute needs to be output, but does not appear in the message tree,

its value will be generated as follows:

Element type

Value generated when element is

defined in model

Value generated when element is

self-defining

Simple type If the type is global or is a built-in

type, use it.

If the type is local, use the global or

built-in type from which it is derived.

Use the built-in type which best

matches the data type of the element

in the message tree.

Message model reference information 179

Element type

Value generated when element is

defined in model

Value generated when element is

self-defining

Complex type with simple content If the type is global use it.

If the type is local, use the global or

built-in type from which it is derived.

Use the built-in type which best

matches the data type of the element

in the message tree.

Complex type with complex content If the type is global use it.

If the type is local, no xsi:type

attribute is output.

No xsi:type attribute is output.

Deprecated

Note: The following properties are used to control behavior of the MRM parser;

they should not be changed from their default settings. These properties will

be withdrawn in a future release.

 Property Type Meaning

Root Tag Name String Specify the name of the message set root tag. You can leave this property blank,

in which case no wrapper tags are used for messages (that is, the message tag is

the root of the document). The name can be followed by a space and additional

text for attribute/value pairs to appear with the root tag.

The default value is blank.

Suppress

Timestamp

Comment

Check box If selected, the timestamp comment string in the XML output is suppressed.

If not selected, the comment is not suppressed, and a comment of the form

<!--MRM Generated XML Output on: Tue Apr 23 09:34:42 2002--> is included in

the output message.

The default is for the check box to be selected.

Enable

Versioning

Support

Check box If this is selected, versioning support is enabled. This property specifies whether

XML namespace definitions are coded for the root tag in the message, together

with namespace qualifiers for any elements that do not belong to the default

namespace. These namespace definitions are used to represent the message set

dependency information, which is used to support the exchange of messages

between applications that are based on different customizations of the same

message set.

The default is for the check box to be selected, for compatibility with MRM XML

messages in earlier releases. If you did not use MRM XML messages in earlier

releases, you should ensure that this check box is not selected.

MRM XML: In-line DTDs and the DOCTYPE text property

You can include in-line DTDs in your messages, and you can specify additional

information by setting the property DOCTYPE Text, but you must be aware of the

action taken by the parser when it constructs an output message:

1. If you take any action that causes the output message to be regenerated, for

example if you configure a Compute node to create a new output message by

coding ESQL statements like SET OutputRoot.MRM.Field1 = xxx:

v If you have set the property Suppress DOCTYPE for the message set in which

you have defined this message to Yes, both DOCTYPE information (specified

in the DOCTYPE Text property for the message set or message) and in-line

DTD are excluded from the output message.

180 Message Models

v If you have set the property Suppress DOCTYPE for the message set in which

you have defined this message to No.

– The in-line DTD is preserved if possible.

– Otherwise, if the message is self-defining, the message set DOCTYPE Text

property information is included in the output message.

– Otherwise (the message is not self-defining), the message level DOCTYPE

Text property information is included in the output message.
2. If you do not take any action that causes the output message to be regenerated,

the parser generates an output message that is a direct copy of the input

message. This occurs if you have configured a Compute node in the message

flow to copy the message using SET OutputRoot = InputRoot (explicitly, or by

checking the Copy entire message check box), and you do not modify the

message in any way in this or any other node. In this case the in-line DTD is

retained in the output message but any information that you specify in the

DOCTYPE Text property for the message set or message is not included.

Documentation properties for a message set

 Property Type Meaning

Version String This field allows you to enter a version for the message set. This allows the

version of the message set to be displayed using the Eclipse properties view.

A default for this field can be set in the message set preferences.

Documentation String The documentation property of a message set is where you can add information

to enhance the understanding of the message set’s function.

It is a string field and any standard alphanumeric characters can be used.

You can also use this field to define a keyword and its value that will display for

the deployed message set in the properties view of Eclipse. An example is:

$MQSI Author=Fred MQSI$

When the properties of the deployed message set are displayed, this will add a

row to the display showing Author as the property name and ’Fred’ as its value.

Message definition file properties

Namespace

 Property Type Meaning

Prefix String The namespace prefix for the target namespace of this file. This field cannot be

changed after the message definition file has been created.

Target

Namespace

String The target namespace for the message definition file. All global objects created

within the file will have this namespace by default. This field cannot be changed

after the message definition file has been created.

Default namespaces for local objects

 Property Type Meaning

Elements String The default namespace for all local elements within this message definition file.

Attributes String The default namespace for all local attributes within this message definition file.

Message model reference information 181

Property Type Meaning

Default block String and

Enumerated

type

The default value for the block attribute for all complex types and elements

within this message definition file.

Default final String and

Enumerated

type

The default value for the final attribute for all complex types and elements

within this message definition file.

 Property Type Meaning

Use xml.xsd

schema

Check box Select this check box if you need to use the xml.xsd schema. When you select

this check box, the http://www.w3.org/2001/xml.xsd schema is imported and

you can use any of the constructs in that schema.

Note: The full text that describes this check box is Use http://www.w3.org/2001/
xml.xsd schema.

Message definition file includes properties

 Property Type Meaning

Schema

Location

String For each message definition file that has been included in this message

definition file, this field displays its location. The location is displayed as a

relative path from the message definition file to the included file.

Message definition file imports properties

 Property Type Meaning

Schema

Location

String For each message definition file that has been imported into this message

definition file, this field displays its location. The location is displayed as a

relative path from the message definition file to the imported file.

Prefix String Displays the namespace prefix for each imported message definition file.

Namespace String Displays the namespace URI for each imported message definition file.

Message definition file redefines properties

This provides details of the properties associated with message definition redefines.

 Property Type Meaning

Schema

Location

String For each message definition file that has been redefined in this message

definition file, this field displays its location. The location is displayed as a

relative path from the message definition file to the included file.

Note: Redefines are not supported and will result in a validation error. If you

right-click on the error message and select Quick Fix you can choose to

convert the redefines construct into an include construct. This also removes

the error message.

182 Message Models

Documentation properties for all message set objects

Use the documentation property of an object to add information to enhance the

understanding of the function of that object. The documentation property is

available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric

characters.

Message category properties

A message category provides a way of grouping your messages.

The following table describes the properties that are associated with a message

category:

 Property Type Meaning

Category Kind Enumerated

type

This property describes the purpose of the message category.

Choose from:

v wsdl. This is the default. Choose this value if the message category is to

participate in the generation of WSDL documents. When the WSDL document

is generated, the name of the message category provides the name for the

<wsdl:operation> element that is generated for eligible messages in the

message category.

Note: Message categories are no longer necessary for the generation of WSDL

documents; they were necessary in Version 6.0.

v other. This value ndicates that the category represents a generic grouping of

messages as an aid to organizing them in your workspace.

Category Usage Enumerated

type

Use this property to describe the operation type for a WSDL operation.

Choose from:

v wsdl:request-response. This is the default if Category Kind is wsdl.

v wsdl:solicit-response.

v wsdl:one-way.

v wsdl:notification.

v empty string. This is the default if Category Kind is other.

Documentation String Use this property to add information to enhance the understanding of an object’s

function.

This property is a string field; any standard alphanumeric characters can be

used.

If Category Kind is wsdl, the value of the field is included in any generated

WSDL as the wsdl:documentation child of the operation element in the WSDL

portType.

If Category Kind is other, the value of the field merely documents the Message

Category within your workspace.

Message category member properties

This describes the properties that are associated with a message category member.

Message model reference information 183

Property Type Meaning

Role Name String If Category Kind is wsdl, the value of the property becomes the WSDL message

part name and must be unique within the category. It always defaults to the

message name.

If Category Kind is other, the value of the property has no particular

significance.

Role Type Enumerated

type

This property determines the role that the message plays in the message

category.

Select from:

v wsdl:input

v wsdl:output

v wsdl:return

v wsdl:fault

v empty string

If Category Kind is wsdl, the default value is wsdl:input. This property dictates

the role within a WSDL operation. The value wsdl:return implies wsdl:output,

but for rpc-style WSDL generation it also identifies the message part that is used

as the return value and in this instance can be omitted from the parameterOrder

attribute. No more than one message can have Role Type of wsdl:return.

If Category Kind is other, the value defaults to an empty string and this

property has no role in the message category.

Role Usage Enumerated

type

This property determines the role that the message plays in the SOAP binding.

Select from:

v soap:body

v soap:header

v soap:fault

v soap:headerfault

v empty string

If Category Kind is wsdl, this property defaults to soap:body and dictates the

SOAP-binding child of the WSDL input, output, or fault element.

If Category Kind is other, this property is deactivated.

Documentation String This is a string property; any standard alphanumeric characters can be used.

If Category Kind is wsdl, the value of the property is included in any generated

WSDL as the wsdl:documentation child of the WSDL input, output, or fault

element under the WSDL portType.

If Category Kind is other, the value merely documents the Message Category

within your workspace.

Message model object properties

There are two ways of accessing the reference information for the properties of

message model objects. The following topics allow you to access the property

information by property kind:

v “Logical properties for message model objects” on page 185

v “Physical properties for message model objects” on page 214

184 Message Models

v “Documentation properties for all message set objects” on page 183

Alternatively, you can access the property information by object, starting from:

v “Message model object properties by object” on page 245

Deprecated objects are dealt with separately. For further information, see

“Deprecated message model object properties” on page 598

Logical properties for message model objects

Logical property information is available for the following objects:

v “Attribute group reference logical properties”

v “Attribute reference logical properties”

v “Complex type logical properties” on page 186

v “Element reference logical properties” on page 190

v “Global attribute logical properties” on page 191

v “Global attribute group logical properties” on page 194

v “Global element logical properties” on page 195

v “Global group logical properties” on page 198

v “Group reference logical properties” on page 200

v “Key logical properties” on page 200

v “Keyref logical properties” on page 200

v “Local element logical properties” on page 204

v “Local group logical properties” on page 208

v “Message logical properties” on page 210

v “Simple type logical properties” on page 211

v “Unique logical properties” on page 212

v “Wildcard attribute logical properties” on page 212

v “Wildcard element logical properties” on page 213

Attribute group reference logical properties

 Property Type Meaning

Reference Name Enumerated

type

The Reference Name is the name of the object that this object is referring to. The

objects available to reference can be selected from the drop-down list.

Attribute reference logical properties

 Property Type Meaning

Reference Name Enumerated

type

The Reference Name is the name of the object that this object is referring to. The

objects available to reference can be selected from the drop-down list.

Message model reference information 185

Property Type Meaning

Usage Enumerated

type

The usage property is used in conjunction with the Value property found in an

attribute object. The default for the Usage property is optional.

Select from;

v optional.

– Where the Value property is set to default and no data has been entered in

the Value property, the attribute can appear once and can have any value.

– Where the Value property is set to default, the attribute can appear once. If

it does not appear, its value is the data that has been entered in the Value

property. If it does appear it is the value given.

– Where the Value property is set to fixed, the attribute can appear once. If it

does appear, its value must match the data that has been entered in the

Value property. If it does not appear its value is the data that has been

entered in the Value property.

v prohibited. The attribute must not appear.

v required.

– Where the Value property is set to default and no data has been entered in

the Value property, the attribute must appear once and can have any value.

– Where the Value property is set to fixed, the attribute must appear once

and it must match the data that has been entered in the Value property.

Complex type logical properties

 Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters

A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a

number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the

XML standards specification.

Further details of naming conventions and allowable characters can be found in

the Extensible Markup Language (XML) specification that can be found on the

World Wide Web Consortium (W3C) Web site.

Base Type Enumerated

type

You can use this property to select a type (simple or complex) that is used as the

starting point to define a new complex type that is derived by restriction or

extension.

Derived By Enumerated

type

If this property is active, select from;

v restriction. If a complex type is derived by restriction, the content model of

the complex type is a subset of the base type.

v extension. If the complex type is derived by extension, the content model of

the complex type is the content model of the base type plus the content model

specified in the type derivation.

Derivation by list or union is not supported.

186 Message Models

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Content

The table below shows the valid settings for Composition and Content Validation.

These properties are actually located on the group which defines the content of this

type. They can only be edited if the Local group button is selected. If the Global

group button is selected, these properties are taken from the global group identified

by the Group name field.

Valid children in a complex type that depend on both Composition and Content

Validation are shown in “MRM content validation” on page 189.

 Property Type Meaning

Local Group Button You should select this if the content of your complex type is a local group.

Composition Enumerated

type

Define the order, and the number of occurrences, of the elements and groups in

your messages. Composition does not affect the attributes in a complex type.

Select from:

v Empty

v sequence. If you select this option, you can define members that are elements

or groups. These members, if present, must appear in the specified order in

the message. They can repeat, and the same element or group can appear

more than once.

v choice. If you select this option, you can define members that are elements or

groups. Exactly one of the defined members must be present in the message,

and can repeat.

Use this option if you want to model C unions and COBOL REDEFINES in a

Custom Wire Format, or an XML DTD element that uses choice in an XML

Wire Format, or a SWIFT field that has more than one option.

v all. If you select this option, you can define members that are elements;

groups are not allowed. The elements in an all group can appear in any

order. Each element can appear once, or not at all. An all group can only be

used at the top level of a complex type - it cannot be a member of another

group within a type.

v unorderedSet.

This option is supported only by the MRM domain.If you select this option,

you can define members that are elements. The elements can repeat but the

same element cannot appear twice in the list of members. The elements can

appear in any order in the message.

v orderedSet.

This option is supported only by the MRM domain.If you select this option,

you can define members that are elements. The elements can repeat, but the

same element cannot appear twice in the list of members. The elements must

appear in the specified order in the message.

v message.

This option is supported only by the MRM domain.If you select this option,

you can define only messages as members. Each member can repeat, but the

same message cannot appear twice in the list of members. Like choice, only

one of the defined members can be present in a message.

Unlike choice, when writing a message, if the complex type or group has

more than one member, the bit stream is not padded to the length of the

longest member.

Use this option to model multipart messages, which are used in some

industry standards, for example, SWIFT. For more information, see the section

on multipart messages in “Multipart messages” on page 25.

Message model reference information 187

Property Type Meaning

Content

Validation

Enumerated

type

Content Validation is used only by the MRM domain. If validation is enabled in

your message flow, Content Validation specifies the strictness of the MRM

validation for members of a complex type or group. See “MRM content

validation” on page 189 for further details.

Options:

v Closed. The complex type can only contain the child elements that you have

added to it.

v Open Defined. The complex type can contain any valid element defined within

the message set.

v Open. The complex type can contain any valid element, not just those that you

have added to this complex type.

See “Combinations of Composition and Content Validation” on page 293 for

further details of these options.

Group

Reference

Button You should select this if the content of your complex type is a reference to a

group object

Group Name Enumerated

type

The Group Name is the name of the group that this complex type is referring to.

The groups available to be referenced can be selected from the drop down list.

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default is

1.

If the value is set to 0, then the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,

it must be less than or equal to the value in Max Occurs.

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default is

1.

If this property is not set, then the object can not occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the

message.

It can also be set to -1 to indicate that the limit is unbounded and there is no

maximum to the number of occurrences.

Mixed Check box Select this where the complex type has mixed content and contains character

data alongside sub-elements.

Substitution settings

 Property Type Meaning

Final Multiple

selection

enumerated

type

The final attribute on a complex type controls whether other types may be

derived from it. Valid values are extension/restriction/all. You can select from

one or more of the following:

v Empty

v restriction. Prohibit type substitution by elements whose types are

restrictions of the head element’s type.

v extension. Prohibit type substitution by elements whose types are extensions

of the head element’s type.

v #all. Prohibit substitution by any method.

To select more than one, you will need to type the selection into the property

field.

188 Message Models

Property Type Meaning

Block Multiple

selection

enumerated

type

The block attribute on a complex type restricts the types of substitutions which

are allowed for elements based on that type. In the WebSphere Message Broker

its effect is the same as if the block attribute were copied from the complex type

onto every element based on the complex type. You can select from one or more

of the following:

v Empty

v restriction. Prohibit type substitution by elements whose types are

restrictions of the head element’s type.

v extension. Prohibit type substitution by elements whose types are extensions

of the head element’s type.

v #all. Prohibit substitution by any method.

To select more than one, you will need to type the selection into the property

field.

Abstract Check box If selected, no elements based on this type can appear in the message.

MRM content validation:

Content Validation is applied when the domain is MRM and validation is enabled.

The Content Validation property specifies how strictly the MRM parser validates the

members of a complex type or group.

The first table below shows the valid settings for Content Validation if Composition is

set to Message, and the second table shows the valid settings for Content Validation

if Composition is not set to Message.

Content Validation options if Composition is set to Message

 Option Meaning

Open When a message is parsed, this complex type or group can contain any message, not just those

that you have defined in this message set. You can use this option for sparse messages (see

“Predefined and self-defining elements and messages” on page 30 for a definition of sparse

messages).

Closed When a message is parsed, this complex type or group can only contain the messages that are

members of this complex type or group. This is always the case for messages represented in

CWF format.

Open Defined When a message is parsed, this complex type or group can contain any message defined within

the message set.

Content Validation options if Composition is not set to Message

 Option Meaning

Open When a message is parsed, this complex type or group can contain any elements and not just

those that you have defined in this message set (see “Predefined and self-defining elements and

messages” on page 30 for a definition of sparse messages).

Closed When a message is parsed, this complex type or group can only contain the elements that are

members of this complex type or group.

Open Defined When a message is parsed, this complex type or group can contain any element that you have

defined within the message set.

Message model reference information 189

When you are using Content Validation set to open or open defined, you can not

specify the precise position where the content that is not modeled is permitted to

occur. If you wish to do this, you should consider using a wildcard element as an

alternative. Note that wildcard elements can only appear within a complex type or

group with Composition of sequence and Content Validation of closed.

Element reference logical properties

 Property Type Meaning

Reference Name Enumerated

type

The Reference Name is the name of the object that this object is referring to. The

objects available to reference can be selected from the drop-down list.

Occurrences

 Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default is

1.

If the value is set to 0, then the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,

it must be less than or equal to the value in Max Occurs.

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default is

1.

If this property is not set, then the object can not occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the

message.

It can also be set to -1 to indicate that the limit is unbounded and there is no

maximum to the number of occurrences.

The Min Occurs and Max Occurs properties are used in conjunction with an

element’s Value properties. The table below summarizes how an element reference

can be constrained.

 Min Occurs Max Occurs Fixed Default Notes

1 1 The element must appear once and can have

any value.

1 1 Delta The element must appear once and it must

match the data that has been entered in the

Value property. In this example the element

must contain the text Delta.

2 -1 Delta The element must appear twice or more and it

must match the data that has been entered in

the Value property. In this example there will

be at least two elements that must contain the

text Delta.

0 1 The element is optional and can appear once

and have any value.

190 Message Models

Min Occurs Max Occurs Fixed Default Notes

0 1 Delta The element is optional and can appear once.

If it does appear, its value must match the data

that has been entered in the Value property. If

it does not appear its value will be the data

that has been entered in the Value property.

0 1 Delta The element is optional and can appear once.

If it does not appear, its value will be the data

that has been entered in the Value property. If

it does appear it must be the value given in

the element.

0 2 Delta The element is optional and can appear once,

twice or not at all. If the element does not

appear it is not provided. If the element

appears and it is empty, it set to the data held

in the Value property, else it is the value given

in the element.

0 0 The element is prohibited and must not

appear.

Global attribute logical properties

 Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters

A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a

number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the

XML standards specification.

Further details of naming conventions and allowable characters can be found in

the Extensible Markup Language (XML) specification that can be found on the

World Wide Web Consortium (W3C) Web site.

Message model reference information 191

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Property Type Meaning

Type Enumerated

type

The Type property constrains the type of data that can be present in the object.

There are a limited number of types available directly from the drop-down

selector. These are;

v int

v string

v Boolean

v hexBinary

v dateTime

v date

v time

v decimal

v float

v (More...)

v (New Simple Type)

v (New Complex Type)

If you select (More...), this starts the Type Selection wizard. From this wizard

you can select any of the available types.

If you select (New Simple Type), this starts the New Simple Type wizard which

allows you to create an Anonymous simple type that is based on an existing

type. This can be created locally or globally.

If you select (New Complex Type), this starts the New Complex Type wizard

which allows you to create an Anonymous complex type which can be derived

from an existing base type. This can be created locally or globally.

For further information about these types, and examples of their use see the

XML Schema Part 0: Primer which can be found on the World Wide Web

Consortium (W3C) Web site.

Namespace Enumerated

type

Namespaces are a simple method for qualifying element and attribute names by

associating them with namespaces identified by URI references.

If <no target namespace> is displayed, a namespace has not been set for this

object.

If the property is inactive, the message set has not been configured to support

namespaces.

Where the property is active, namespaces that are available for selection are

displayed in the drop-down list.

Value

The Value properties are used in conjunction with the Usage property in an

Attribute Reference or a Local Attribute.

192 Message Models

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/

Property Type Meaning

Default Button and

String

This property provides the default value for an element or attribute.

XMLNSC domain

When parsing with validation enabled, default values are applied to

missing attributes and empty elements as required by the XML Schema

1.0 specification. When writing, elements or attributes that are missing

from the message tree are not automatically added to the output XML

bit stream, even if they have default values. If this is required, the

message tree can be serialized and then re-parsed with validation

enabled.

MRM (CWF and TDS physical formats)

When writing a fixed-length portion of a message (CWF or fixed-length

TDS), if an attribute or element is missing from the message tree, the

default value is inserted into the bit stream so that the message

structure is preserved.

MRM (XML physical format)

No support for default values

Other domains

No support for default values.

Fixed Button and

String

This property provides the fixed value for an element or attribute.

XMLNSC domain

When parsing with validation enabled, if an attribute or element is

present, the value is validated against the fixed value. If the values are

not equal, a validation error is signalled. Also, when parsing with

validation enabled, fixed values are applied to missing attributes and

empty elements as required by the XML Schema 1.0 specification. When

writing, elements or attributes that are missing from the message tree

are not automatically added to the output XML bit stream, even if a

fixed value has been specified. If this is required, the message tree can

be serialized and then re-parsed with validation enabled.

MRM (CWF and TDS physical formats)

When writing a fixed-length portion of a message (CWF or fixed-length

TDS), if an attribute or element is missing from the message tree, the

fixed value is inserted into the bit stream so that the message structure

is preserved.

MRM (XML physical format)

No support for fixed values

Other domains

No support for fixed values.

Message model reference information 193

Property Type Meaning

Interpret Value

As

Enumerated

type

Specify if values stored within this object must be interpreted as having

significance for the parser and, if so, the type of interpretation that must occur.

The possible values for this property are:

v None This is the default value and indicates that the element or attribute does

not have any key value associated with it.

v MessageSetIdentity. Specifies that the value of the element or attribute

corresponds to the identifier, name or alias (in that priority order) that is

associated with the message set where all subsequent embedded messages

that are descendents of the enclosing message are defined. This value remains

in force unless a new element or attribute MessageSetIdentity field is

encountered which resets the MessageSetIdentity value to this new one.

v MessageIdentity. Specifies that the value of the element or attribute

corresponds to the name or alias (in that priority order) that is associated with

a message and acts as an identifier for subsequent embedded messages which

are the immediate children of the enclosing message. This identity applies

until a new element or attribute MessageIdentity field is encountered at the

same level in the tree. The embedded message may be defined in either the

current message set or in a message set identified using a MessageSetIdentity.

Note: This property is only applicable when the type of the object is derived

from xsd:string.

Global attribute group logical properties

 Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters

A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a

number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the

XML standards specification.

Further details of naming conventions and allowable characters can be found in

the Extensible Markup Language (XML) specification that can be found on the

World Wide Web Consortium (W3C) Web site.

194 Message Models

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Global element logical properties

 Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters

A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a

number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the

XML standards specification.

Further details of naming conventions and allowable characters can be found in

the Extensible Markup Language (XML) specification that can be found on the

World Wide Web Consortium (W3C) Web site.

Type Enumerated

type

The Type property constrains the type of data that can be present in the object.

There are a limited number of types available directly from the drop-down

selector. These are;

v int

v string

v Boolean

v hexBinary

v dateTime

v date

v time

v decimal

v float

v (More...)

v (New Simple Type)

v (New Complex Type)

If you select (More...), this starts the Type Selection wizard. From this wizard

you can select any of the available types.

If you select (New Simple Type), this starts the New Simple Type wizard which

allows you to create an Anonymous simple type that is based on an existing

type. This can be created locally or globally.

If you select (New Complex Type), this starts the New Complex Type wizard

which allows you to create an Anonymous complex type which can be derived

from an existing base type. This can be created locally or globally.

For further information about these types, and examples of their use see the

XML Schema Part 0: Primer which can be found on the World Wide Web

Consortium (W3C) Web site.

Message model reference information 195

http://www.w3.org/TR/REC-xml
http://www.w3.org/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/

Property Type Meaning

Namespace Enumerated

type

Namespaces are a simple method for qualifying element and attribute names by

associating them with namespaces identified by URI references.

If <no target namespace> is displayed, a namespace has not been set for this

object.

If the property is inactive, the message set has not been configured to support

namespaces.

Where the property is active, namespaces that are available for selection are

displayed in the drop-down list.

Value

 Property Type Meaning

Default Button and

String

This property provides the default value for an element or attribute.

XMLNSC domain

When parsing with validation enabled, default values are applied to

missing attributes and empty elements as required by the XML Schema

1.0 specification. When writing, elements or attributes that are missing

from the message tree are not automatically added to the output XML

bit stream, even if they have default values. If this is required, the

message tree can be serialized and then re-parsed with validation

enabled.

MRM (CWF and TDS physical formats)

When writing a fixed-length portion of a message (CWF or fixed-length

TDS), if an attribute or element is missing from the message tree, the

default value is inserted into the bit stream so that the message

structure is preserved.

MRM (XML physical format)

No support for default values

Other domains

No support for default values.

Fixed Button and

String

This property provides the fixed value for an element or attribute.

XMLNSC domain

When parsing with validation enabled, if an attribute or element is

present, the value is validated against the fixed value. If the values are

not equal, a validation error is signalled. Also, when parsing with

validation enabled, fixed values are applied to missing attributes and

empty elements as required by the XML Schema 1.0 specification. When

writing, elements or attributes that are missing from the message tree

are not automatically added to the output XML bit stream, even if a

fixed value has been specified. If this is required, the message tree can

be serialized and then re-parsed with validation enabled.

MRM (CWF and TDS physical formats)

When writing a fixed-length portion of a message (CWF or fixed-length

TDS), if an attribute or element is missing from the message tree, the

fixed value is inserted into the bit stream so that the message structure

is preserved.

MRM (XML physical format)

No support for fixed values

Other domains

No support for fixed values.

196 Message Models

Property Type Meaning

Nillable Check box Select this if you want the element to be able to be defined as null. This is

distinct from being empty where there is no data in the element.

Interpret Value

As

Enumerated

type

Specify if values stored within this object must be interpreted as having

significance for the parser and, if so, the type of interpretation that must occur.

The possible values for this property are:

v None This is the default value and indicates that the element or attribute does

not have any key value associated with it.

v MessageSetIdentity. Specifies that the value of the element or attribute

corresponds to the identifier, name or alias (in that priority order) that is

associated with the message set where all subsequent embedded messages

that are descendents of the enclosing message are defined. This value remains

in force unless a new element or attribute MessageSetIdentity field is

encountered which resets the MessageSetIdentity value to this new one.

v MessageIdentity. Specifies that the value of the element or attribute

corresponds to the name or alias (in that priority order) that is associated with

a message and acts as an identifier for subsequent embedded messages which

are the immediate children of the enclosing message. This identity applies

until a new element or attribute MessageIdentity field is encountered at the

same level in the tree. The embedded message may be defined in either the

current message set or in a message set identified using a MessageSetIdentity.

Note: This property is only applicable when the type of the object is derived

from xsd:string.

Substitution settings

Substitution Groups provide a means by which one element may be substituted for

another in a message. The element which can be substituted is called the ’head’

element, and the substitution group is the list of elements that may be used in its

place. An element can be in at most one substitution group.

 Property Type Meaning

Final Enumerated

type

You use this property to limit the set of elements which may belong to its

substitution group.

v Empty

v restriction. Prohibit element substitution by elements whose types are

restrictions of the head element’s type.

v extension. Prohibit element substitution by elements whose types are

extensions of the head element’s type.

v #all. Prohibit substitution by any method.

Block Enumerated

type

You use this property to limit the set of elements which may be substituted for

this element in a message.

Select from:

v Empty

v restriction. Prohibit element substitution by elements whose types are

restrictions of the head element’s type

v extension. Prohibit element substitution by elements whose types are

extensions of the head element’s type

v substitution. Prohibit element substitution by members of the element’s

substitution group.

v #all. Prohibit substitution by any method.

Message model reference information 197

Property Type Meaning

Substitution

Group

Enumerated

type

Use this property to specify the name of a ’head’ element. Setting this property

indicates that this element is a member of the substitution group for the ’head’

element.

Abstract Check box Select this if you do not want the element to appear in the message, but require

one of the members of its substitution group to appear in its place.

Global group logical properties

Valid children in a global group that depend on both Composition and Content

Validation are shown in “MRM content validation” on page 189.

 Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters

A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a

number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the

XML standards specification.

Further details of naming conventions and allowable characters can be found in

the Extensible Markup Language (XML) specification that can be found on the

World Wide Web Consortium (W3C) Web site.

198 Message Models

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Property Type Meaning

Composition Enumerated

type

Define the order, and the number of occurrences, of the elements and groups in

your messages. Composition does not affect the attributes in a complex type.

Select from:

v Empty

v sequence. If you select this option, you can define members that are elements

or groups. These members, if present, must appear in the specified order in

the message. They can repeat, and the same element or group can appear

more than once.

v choice. If you select this option, you can define members that are elements or

groups. Exactly one of the defined members must be present in the message,

and can repeat.

Use this option if you want to model C unions and COBOL REDEFINES in a

Custom Wire Format, or an XML DTD element that uses choice in an XML

Wire Format, or a SWIFT field that has more than one option.

v all. If you select this option, you can define members that are elements;

groups are not allowed. The elements in an all group can appear in any

order. Each element can appear once, or not at all. An all group can only be

used at the top level of a complex type - it cannot be a member of another

group within a type.

v unorderedSet.

This option is supported only by the MRM domain.If you select this option,

you can define members that are elements. The elements can repeat but the

same element cannot appear twice in the list of members. The elements can

appear in any order in the message.

v orderedSet.

This option is supported only by the MRM domain.If you select this option,

you can define members that are elements. The elements can repeat, but the

same element cannot appear twice in the list of members. The elements must

appear in the specified order in the message.

v message.

This option is supported only by the MRM domain.

If you select this option, you can define only messages as members. Each

member can repeat, but the same message cannot appear twice in the list of

members. Like choice, only one of the defined members can be present in a

message.

Unlike choice, when writing a message, if the complex type or group has

more than one member, the bit stream is not padded to the length of the

longest member.

Use this option to model multipart messages, which are used in some

industry standards, for example, SWIFT. For more information, see the section

on multipart messages in “Multipart messages” on page 25.

Message model reference information 199

Property Type Meaning

Content

Validation

Enumerated

type

Content Validation is used only by the MRM domain. If validation is enabled in

your message flow, Content Validation specifies the strictness of the MRM

validation for members of a complex type or group. See “MRM content

validation” on page 189 for further details.

Options:

v Closed. The complex type can only contain the child elements that you have

added to it.

v Open Defined. The complex type can contain any valid element defined within

the message set.

v Open. The complex type can contain any valid element, not just those that you

have added to this complex type.

See “Combinations of Composition and Content Validation” on page 293 for

further details of these options.

Group reference logical properties

 Property Type Meaning

Reference Name Enumerated

type

The Reference Name is the name of the object that this object is referring to. The

objects available to reference can be selected from the drop-down list.

Occurrence properties

 Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default is

1.

If the value is set to 0, then the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,

it must be less than or equal to the value in Max Occurs.

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default is

1.

If this property is not set, then the object can not occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the

message.

It can also be set to -1 to indicate that the limit is unbounded and there is no

maximum to the number of occurrences.

Key logical properties

There are no properties to show.

Keyref logical properties

There are no properties to show.

200 Message Models

Local attribute logical properties

 Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters

A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a

number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the

XML standards specification.

Further details of naming conventions and allowable characters can be found in

the Extensible Markup Language (XML) specification that can be found on the

World Wide Web Consortium (W3C) Web site.

Type Enumerated

type

The Type property constrains the type of data that can be present in the object.

There are a limited number of types available directly from the drop-down

selector. These are;

v int

v string

v Boolean

v hexBinary

v dateTime

v date

v time

v decimal

v float

v (More...)

v (New Simple Type)

v (New Complex Type)

If you select (More...), this starts the Type Selection wizard. From this wizard

you can select any of the available types.

If you select (New Simple Type), this starts the New Simple Type wizard which

allows you to create an Anonymous simple type that is based on an existing

type. This can be created locally or globally.

If you select (New Complex Type), this starts the New Complex Type wizard

which allows you to create an Anonymous complex type which can be derived

from an existing base type. This can be created locally or globally.

For further information about these types, and examples of their use see the

XML Schema Part 0: Primer which can be found on the World Wide Web

Consortium (W3C) Web site.

Message model reference information 201

http://www.w3.org/TR/REC-xml
http://www.w3.org/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/

Property Type Meaning

Namespace Enumerated

type

Namespaces are a simple method for qualifying element and attribute names by

associating them with namespaces identified by URI references.

If <no target namespace> is displayed, a namespace has not been set for this

object.

If the property is inactive, the message set has not been configured to support

namespaces.

Where the property is active, namespaces that are available for selection are

displayed in the drop-down list.

Value

The Value properties are used in conjunction with the Usage property in an

Attribute Reference or a Local Attribute.

 Property Type Meaning

Default Button and

String

This property provides the default value for an element or attribute.

XMLNSC domain

When parsing with validation enabled, default values are applied to

missing attributes and empty elements as required by the XML Schema

1.0 specification. When writing, elements or attributes that are missing

from the message tree are not automatically added to the output XML

bit stream, even if they have default values. If this is required, the

message tree can be serialized and then re-parsed with validation

enabled.

MRM (CWF and TDS physical formats)

When writing a fixed-length portion of a message (CWF or fixed-length

TDS), if an attribute or element is missing from the message tree, the

default value is inserted into the bit stream so that the message

structure is preserved.

MRM (XML physical format)

No support for default values

Other domains

No support for default values.

202 Message Models

Property Type Meaning

Fixed Button and

String

This property provides the fixed value for an element or attribute.

XMLNSC domain

When parsing with validation enabled, if an attribute or element is

present, the value is validated against the fixed value. If the values are

not equal, a validation error is signalled. Also, when parsing with

validation enabled, fixed values are applied to missing attributes and

empty elements as required by the XML Schema 1.0 specification. When

writing, elements or attributes that are missing from the message tree

are not automatically added to the output XML bit stream, even if a

fixed value has been specified. If this is required, the message tree can

be serialized and then re-parsed with validation enabled.

MRM (CWF and TDS physical formats)

When writing a fixed-length portion of a message (CWF or fixed-length

TDS), if an attribute or element is missing from the message tree, the

fixed value is inserted into the bit stream so that the message structure

is preserved.

MRM (XML physical format)

No support for fixed values

Other domains

No support for fixed values.

Interpret Value

As

Enumerated

type

Specify if values stored within this object must be interpreted as having

significance for the parser and, if so, the type of interpretation that must occur.

The possible values for this property are:

v None This is the default value and indicates that the element or attribute does

not have any key value associated with it.

v MessageSetIdentity. Specifies that the value of the element or attribute

corresponds to the identifier, name or alias (in that priority order) that is

associated with the message set where all subsequent embedded messages

that are descendents of the enclosing message are defined. This value remains

in force unless a new element or attribute MessageSetIdentity field is

encountered which resets the MessageSetIdentity value to this new one.

v MessageIdentity. Specifies that the value of the element or attribute

corresponds to the name or alias (in that priority order) that is associated with

a message and acts as an identifier for subsequent embedded messages which

are the immediate children of the enclosing message. This identity applies

until a new element or attribute MessageIdentity field is encountered at the

same level in the tree. The embedded message may be defined in either the

current message set or in a message set identified using a MessageSetIdentity.

Note: This property is only applicable when the type of the object is derived

from xsd:string.

Message model reference information 203

Usage properties

 Property Type Meaning

Usage Enumerated

type

The usage property is used in conjunction with the Value property found in an

attribute object. The default for the Usage property is optional.

Select from;

v optional.

– Where the Value property is set to default and no data has been entered in

the Value property, the attribute can appear once and can have any value.

– Where the Value property is set to default, the attribute can appear once. If

it does not appear, its value is the data that has been entered in the Value

property. If it does appear it is the value given.

– Where the Value property is set to fixed, the attribute can appear once. If it

does appear, its value must match the data that has been entered in the

Value property. If it does not appear its value is the data that has been

entered in the Value property.

v prohibited. The attribute must not appear.

v required.

– Where the Value property is set to default and no data has been entered in

the Value property, the attribute must appear once and can have any value.

– Where the Value property is set to fixed, the attribute must appear once

and it must match the data that has been entered in the Value property.

Local element logical properties

 Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters

A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a

number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the

XML standards specification.

Further details of naming conventions and allowable characters can be found in

the Extensible Markup Language (XML) specification that can be found on the

World Wide Web Consortium (W3C) Web site.

204 Message Models

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Property Type Meaning

Type Enumerated

type

The Type property constrains the type of data that can be present in the object.

There are a limited number of types available directly from the drop-down

selector. These are;

v int

v string

v Boolean

v hexBinary

v dateTime

v date

v time

v decimal

v float

v (More...)

v (New Simple Type)

v (New Complex Type)

If you select (More...), this starts the Type Selection wizard. From this wizard

you can select any of the available types.

If you select (New Simple Type), this starts the New Simple Type wizard which

allows you to create an Anonymous simple type that is based on an existing

type. This can be created locally or globally.

If you select (New Complex Type), this starts the New Complex Type wizard

which allows you to create an Anonymous complex type which can be derived

from an existing base type. This can be created locally or globally.

For further information about these types, and examples of their use see the

XML Schema Part 0: Primer which can be found on the World Wide Web

Consortium (W3C) Web site.

Namespace Enumerated

type

Namespaces are a simple method for qualifying element and attribute names by

associating them with namespaces identified by URI references.

If <no target namespace> is displayed, a namespace has not been set for this

object.

If the property is inactive, the message set has not been configured to support

namespaces.

Where the property is active, namespaces that are available for selection are

displayed in the drop-down list.

Occurrences

 Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default is

1.

If the value is set to 0, then the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,

it must be less than or equal to the value in Max Occurs.

Message model reference information 205

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/

Property Type Meaning

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default is

1.

If this property is not set, then the object can not occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the

message.

It can also be set to -1 to indicate that the limit is unbounded and there is no

maximum to the number of occurrences.

Value

 Property Type Meaning

Default Button and

String

This property provides the default value for an element or attribute.

XMLNSC domain

When parsing with validation enabled, default values are applied to

missing attributes and empty elements as required by the XML Schema

1.0 specification. When writing, elements or attributes that are missing

from the message tree are not automatically added to the output XML

bit stream, even if they have default values. If this is required, the

message tree can be serialized and then re-parsed with validation

enabled.

MRM (CWF and TDS physical formats)

When writing a fixed-length portion of a message (CWF or fixed-length

TDS), if an attribute or element is missing from the message tree, the

default value is inserted into the bit stream so that the message

structure is preserved.

MRM (XML physical format)

No support for default values

Other domains

No support for default values.

Fixed Button and

String

This property provides the fixed value for an element or attribute.

XMLNSC domain

When parsing with validation enabled, if an attribute or element is

present, the value is validated against the fixed value. If the values are

not equal, a validation error is signalled. Also, when parsing with

validation enabled, fixed values are applied to missing attributes and

empty elements as required by the XML Schema 1.0 specification. When

writing, elements or attributes that are missing from the message tree

are not automatically added to the output XML bit stream, even if a

fixed value has been specified. If this is required, the message tree can

be serialized and then re-parsed with validation enabled.

MRM (CWF and TDS physical formats)

When writing a fixed-length portion of a message (CWF or fixed-length

TDS), if an attribute or element is missing from the message tree, the

fixed value is inserted into the bit stream so that the message structure

is preserved.

MRM (XML physical format)

No support for fixed values

Other domains

No support for fixed values.

206 Message Models

Property Type Meaning

Nillable Check box Select this if you want the element to be able to be defined as null. This is

distinct from being empty where there is no data in the element.

Interpret Value

As

Enumerated

type

Specify if values stored within this object must be interpreted as having

significance for the parser and, if so, the type of interpretation that must occur.

The possible values for this property are:

v None This is the default value and indicates that the element or attribute does

not have any key value associated with it.

v MessageSetIdentity. Specifies that the value of the element or attribute

corresponds to the identifier, name or alias (in that priority order) that is

associated with the message set where all subsequent embedded messages

that are descendents of the enclosing message are defined. This value remains

in force unless a new element or attribute MessageSetIdentity field is

encountered which resets the MessageSetIdentity value to this new one.

v MessageIdentity. Specifies that the value of the element or attribute

corresponds to the name or alias (in that priority order) that is associated with

a message and acts as an identifier for subsequent embedded messages which

are the immediate children of the enclosing message. This identity applies

until a new element or attribute MessageIdentity field is encountered at the

same level in the tree. The embedded message may be defined in either the

current message set or in a message set identified using a MessageSetIdentity.

Note: This property is only applicable when the type of the object is derived

from xsd:string.

Substitution settings

Substitution Groups provide a means by which one element may be substituted for

another in a message. The element which can be substituted is called the ’head’

element, and the substitution group is the list of elements that may be used in its

place. An element can be in at most one substitution group.

 Property Type Meaning

Final Enumerated

type

You use this property to limit the set of elements which may belong to its

substitution group.

v Empty

v restriction. Prohibit element substitution by elements whose types are

restrictions of the head element’s type.

v extension. Prohibit element substitution by elements whose types are

extensions of the head element’s type.

v #all. Prohibit substitution by any method.

Block Enumerated

type

You use this property to limit the set of elements which may be substituted for

this element in a message.

Select from:

v Empty

v restriction. Prohibit element substitution by elements whose types are

restrictions of the head element’s type

v extension. Prohibit element substitution by elements whose types are

extensions of the head element’s type

v substitution. Prohibit element substitution by members of the element’s

substitution group.

v #all. Prohibit substitution by any method.

Message model reference information 207

Property Type Meaning

Substitution

Group

Enumerated

type

Use this property to specify the name of a ’head’ element. Setting this property

indicates that this element is a member of the substitution group for the ’head’

element.

Abstract Check box Select this if you do not want the element to appear in the message, but require

one of the members of its substitution group to appear in its place.

Local group logical properties

Valid children in a local group that depend on both Composition and Content

Validation are shown in “MRM content validation” on page 189.

208 Message Models

Property Type Meaning

Composition Enumerated

type

Define the order, and the number of occurrences, of the elements and groups in

your messages. Composition does not affect the attributes in a complex type.

Select from:

v Empty

v sequence. If you select this option, you can define members that are elements

or groups. These members, if present, must appear in the specified order in

the message. They can repeat, and the same element or group can appear

more than once.

v choice. If you select this option, you can define members that are elements or

groups. Exactly one of the defined members must be present in the message,

and can repeat.

Use this option if you want to model C unions and COBOL REDEFINES in a

Custom Wire Format, or an XML DTD element that uses choice in an XML

Wire Format, or a SWIFT field that has more than one option.

v all. If you select this option, you can define members that are elements;

groups are not allowed. The elements in an all group can appear in any

order. Each element can appear once, or not at all. An all group can only be

used at the top level of a complex type - it cannot be a member of another

group within a type.

v unorderedSet.

This option is supported only by the MRM domain.If you select this option,

you can define members that are elements. The elements can repeat but the

same element cannot appear twice in the list of members. The elements can

appear in any order in the message.

v orderedSet.

This option is supported only by the MRM domain.If you select this option,

you can define members that are elements. The elements can repeat, but the

same element cannot appear twice in the list of members. The elements must

appear in the specified order in the message.

v message.

This option is supported only by the MRM domain.

If you select this option, you can define only messages as members. Each

member can repeat, but the same message cannot appear twice in the list of

members. Like choice, only one of the defined members can be present in a

message.

Unlike choice, when writing a message, if the complex type or group has

more than one member, the bit stream is not padded to the length of the

longest member.

Use this option to model multipart messages, which are used in some

industry standards, for example, SWIFT. For more information, see the section

on multipart messages in “Multipart messages” on page 25.

Message model reference information 209

Property Type Meaning

Content

Validation

Enumerated

type

Content Validation is used only by the MRM domain. If validation is enabled in

your message flow, Content Validation specifies the strictness of the MRM

validation for members of a complex type or group. See “MRM content

validation” on page 189 for further details.

Options:

v Closed. The complex type can only contain the child elements that you have

added to it.

v Open Defined. The complex type can contain any valid element defined within

the message set.

v Open. The complex type can contain any valid element, not just those that you

have added to this complex type.

See “Combinations of Composition and Content Validation” on page 293 for

further details of these options.

Occurrences

 Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default is

1.

If the value is set to 0, then the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,

it must be less than or equal to the value in Max Occurs.

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default is

1.

If this property is not set, then the object can not occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the

message.

It can also be set to -1 to indicate that the limit is unbounded and there is no

maximum to the number of occurrences.

Message logical properties

This section describes the logical properties of a message.

210 Message Models

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters

A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a

number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the

XML standards specification.

Further details of naming conventions and allowable characters can be found in

the Extensible Markup Language (XML) specification that can be found on the

World Wide Web Consortium (W3C) Web site.

Message Alias String Specify an alternative unique value that identifies the message. This property is

only required if you are using the MRM domain and the Message Identity

technique to identify embedded messages, and the bit stream does not contain

the actual message name.

Simple type logical properties

 Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters

A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a

number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the

XML standards specification.

Further details of naming conventions and allowable characters can be found in

the Extensible Markup Language (XML) specification that can be found on the

World Wide Web Consortium (W3C) Web site.

Base Type Enumerated

type

This property only applies to a simple type restriction.

You can use this property to select a base type that is used as the starting point

to define a new simple type that is derived by setting additional value

constraints.

Item Type Enumerated

type

This property only applies to a simple type list.

You can use this property to select the type that is used as the item type of the

list.

Message model reference information 211

http://www.w3.org/TR/REC-xml
http://www.w3.org/
http://www.w3.org/TR/REC-xml
http://www.w3.org/

Property Type Meaning

Variety Enumerated

type

This property displays the variety of the simple type you have selected, either

atomic, list, or union.

A simple type can also have “Simple type logical value constraints.”

Simple type logical value constraints:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - base64Binary

 - hexBinary

Boolean types

 - Boolean

DateTime types

 - date

 - dateTime

 - gDay

 - gMonth

 - gMonthDay

 - gYear

 - gYearMonth

 - time

Decimal types

 - decimal

 - integer

 - negativeInteger

 - nonNegativeInteger

 - nonPositiveInteger

 - positiveInteger

 - unsignedLong

Float types

 - double

 - float

Integer types

 - byte

 - int

 - long

 - short

 - unsignedByte

 - unsignedInt

 - unsignedShort

Interval types

 - duration

String types

 - anyURI

 - ENTITIES

 - ENTITY

 - ID

 - IDREF

 - IDREFS

 - language

 - Name

 - NCName

 - NMTOKEN

 - NMTOKENS

 - normalizedString

 - NOTATION

 - QName

 - string

 - token

Unique logical properties

There are no properties to show.

Wildcard attribute logical properties

 Property Type Meaning

Namespace String Namespaces are a simple method for qualifying element and attribute names by

associating them with namespaces identified by URI references.

This field is initially blank.

212 Message Models

Property Type Meaning

Process Content Enumerated

type

If a message contains an attribute that corresponds to a wildcard in the message

model, Process Content defines how the attribute is validated.

Select from;

v strict. The parser can only match against attributes declared in the specified

namespace.

v lax. The parser attempts to match against attributes declared in any accessible

namespace. If the specified namespace cannot be found, an error is not

generated.

v skip. If you select skip the parser does not perform any validation on the

attribute.

Wildcard element logical properties

 Property Type Meaning

Namespace String Namespaces are a simple method for qualifying element and attribute names by

associating them with namespaces identified by URI references.

This field is initially blank.

 Property Type Meaning

Process Content Enumerated

type

If a message contains an element that corresponds to a wildcard in the message

model, Process Content defines how the element is validated.

Select from;

v strict. The parser can only match against elements declared in the specified

namespace.

v lax. The parser attempts to match against elements declared in any accessible

namespace. If the specified namespace cannot be found, an error is not

generated.

v skip. If you select skip the parser does not perform any validation on the

element.

Occurrences

 Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default is

1.

If the value is set to 0, then the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,

it must be less than or equal to the value in Max Occurs.

This property is ignored by brokers that are earlier than WebSphere Message

Broker Version 6.0.

Message model reference information 213

Property Type Meaning

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default is

1.

If this property is not set, then the object can not occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the

message.

It can also be set to -1 to indicate that the limit is unbounded and there is no

maximum to the number of occurrences.

This property is ignored by brokers that are earlier than WebSphere Message

Broker Version 6.0.

Physical properties for message model objects

Property information is available for objects within:

v “Custom Wire Format physical properties for message model objects”

v “XML wire format physical properties for message model objects” on page 220

v “TDS format physical properties for message model objects” on page 229

Custom Wire Format physical properties for message model

objects

Custom wire format physical property information is available for the following

objects:

v “Attribute group reference CWF properties”

v “Attribute reference CWF properties”

v “Complex type CWF properties” on page 215

v “Element reference CWF properties” on page 215

v “Global attribute CWF properties” on page 216

v “Global attribute group CWF properties” on page 216

v “Global element CWF properties” on page 216

v “Global group CWF properties” on page 216

v “Group reference CWF properties” on page 216

v “Key CWF properties” on page 217

v “Keyref CWF properties” on page 217

v “Local element CWF properties” on page 218

v “Local group CWF properties” on page 219

v “Message CWF properties” on page 220

v “Simple type CWF properties” on page 220

v “Unique CWF properties” on page 220

v “Wildcard attribute CWF properties” on page 220

v “Wildcard element CWF properties” on page 220

Attribute group reference CWF properties:

There are no properties to show.

Attribute reference CWF properties:

214 Message Models

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - base64Binary

 - hexBinary

Boolean types

 - Boolean

DateTime types

 - date

 - dateTime

 - gDay

 - gMonth

 - gMonthDay

 - gYear

 - gYearMonth

 - time

Decimal types

 - decimal

 - integer

 - negativeInteger

 - nonNegativeInteger

 - nonPositiveInteger

 - positiveInteger

 - unsignedLong

Float types

 - double

 - float

Integer types

 - byte

 - int

 - long

 - short

 - unsignedByte

 - unsignedInt

 - unsignedShort

Interval types

 - duration

String types

 - anyURI

 - ENTITIES

 - ENTITY

 - ID

 - IDREF

 - IDREFS

 - language

 - Name

 - NCName

 - NMTOKEN

 - NMTOKENS

 - normalizedString

 - NOTATION

 - QName

 - string

 - token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the

String logical types.

Complex type CWF properties:

There are no properties to show.

Element reference CWF properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

Message model reference information 215

Binary types

 - base64Binary

 - hexBinary

Boolean types

 - Boolean

DateTime types

 - date

 - dateTime

 - gDay

 - gMonth

 - gMonthDay

 - gYear

 - gYearMonth

 - time

Decimal types

 - decimal

 - integer

 - negativeInteger

 - nonNegativeInteger

 - nonPositiveInteger

 - positiveInteger

 - unsignedLong

Float types

 - double

 - float

Integer types

 - byte

 - int

 - long

 - short

 - unsignedByte

 - unsignedInt

 - unsignedShort

Interval types

 - duration

String types

 - anyURI

 - ENTITIES

 - ENTITY

 - ID

 - IDREF

 - IDREFS

 - language

 - Name

 - NCName

 - NMTOKEN

 - NMTOKENS

 - normalizedString

 - NOTATION

 - QName

 - string

 - token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the

String logical types.

Global attribute CWF properties:

There are no properties to show.

Global attribute group CWF properties:

There are no properties to show.

Global element CWF properties:

There are no properties to show.

Global group CWF properties:

There are no properties to show.

Group reference CWF properties:

216 Message Models

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

 Property Type Meaning

Repeat

Reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the displayed list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

Key CWF properties:

There are no properties to show.

Keyref CWF properties:

There are no properties to show.

Local attribute CWF properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

Message model reference information 217

Binary types

 - base64Binary

 - hexBinary

Boolean types

 - Boolean

DateTime types

 - date

 - dateTime

 - gDay

 - gMonth

 - gMonthDay

 - gYear

 - gYearMonth

 - time

Decimal types

 - decimal

 - integer

 - negativeInteger

 - nonNegativeInteger

 - nonPositiveInteger

 - positiveInteger

 - unsignedLong

Float types

 - double

 - float

Integer types

 - byte

 - int

 - long

 - short

 - unsignedByte

 - unsignedInt

 - unsignedShort

Interval types

 - duration

String types

 - anyURI

 - ENTITIES

 - ENTITY

 - ID

 - IDREF

 - IDREFS

 - language

 - Name

 - NCName

 - NMTOKEN

 - NMTOKENS

 - normalizedString

 - NOTATION

 - QName

 - string

 - token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the

String logical types.

Local element CWF properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - base64Binary

 - hexBinary

Boolean types

 - Boolean

DateTime types

 - date

 - dateTime

 - gDay

 - gMonth

 - gMonthDay

 - gYear

 - gYearMonth

 - time

Decimal types

 - decimal

 - integer

 - negativeInteger

 - nonNegativeInteger

 - nonPositiveInteger

 - positiveInteger

 - unsignedLong

218 Message Models

Float types

 - double

 - float

Integer types

 - byte

 - int

 - long

 - short

 - unsignedByte

 - unsignedInt

 - unsignedShort

Interval types

 - duration

String types

 - anyURI

 - ENTITIES

 - ENTITY

 - ID

 - IDREF

 - IDREFS

 - language

 - Name

 - NCName

 - NMTOKEN

 - NMTOKENS

 - normalizedString

 - NOTATION

 - QName

 - string

 - token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the

String logical types.

Local group CWF properties:

The CWF properties of a local group are described in the following tables.

 Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Message model reference information 219

Occurrences

 Property Type Meaning

Repeat

Reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the displayed list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

Message CWF properties:

There are no properties to show.

Simple type CWF properties:

There are no properties to show.

Unique CWF properties:

There are no properties to show.

Wildcard attribute CWF properties:

There are no properties to show.

Wildcard element CWF properties:

There are no properties to show.

XML wire format physical properties for message model objects

XML wire format physical property information is available for the following

objects:

v “Attribute group reference XML properties” on page 221

v “Attribute reference XML properties” on page 221

v “Complex type XML properties” on page 221

v “Element reference XML properties” on page 221

v “Global attribute XML properties” on page 222

v “Global attribute group XML properties” on page 223

v “Global element XML properties” on page 223

v “Global group XML properties” on page 224

v “Group reference XML properties” on page 224

v “Key XML properties” on page 224

v “Keyref XML properties” on page 224

v “Local attribute XML properties” on page 224

v “Local element XML properties” on page 225

v “Local group XML properties” on page 226

v “Message XML properties” on page 226

220 Message Models

v “Simple type XML properties” on page 228

v “Unique XML properties” on page 229

v “Wildcard attribute XML properties” on page 229

v “Wildcard element XML properties” on page 229

Attribute group reference XML properties:

There are no properties to show.

Attribute reference XML properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - base64Binary

 - hexBinary

Boolean types

 - Boolean

DateTime types

 - date

 - dateTime

 - gDay

 - gMonth

 - gMonthDay

 - gYear

 - gYearMonth

 - time

Decimal types

 - decimal

 - integer

 - negativeInteger

 - nonNegativeInteger

 - nonPositiveInteger

 - positiveInteger

 - unsignedLong

Float types

 - double

 - float

Integer types

 - byte

 - int

 - long

 - short

 - unsignedByte

 - unsignedInt

 - unsignedShort

Interval types

 - duration

String types

 - anyURI

 - ENTITIES

 - ENTITY

 - ID

 - IDREF

 - IDREFS

 - language

 - Name

 - NCName

 - NMTOKEN

 - NMTOKENS

 - normalizedString

 - NOTATION

 - QName

 - string

 - token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the

String logical types.

Complex type XML properties:

There are no properties to show.

Element reference XML properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

Message model reference information 221

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - base64Binary

 - hexBinary

Boolean types

 - Boolean

DateTime types

 - date

 - dateTime

 - gDay

 - gMonth

 - gMonthDay

 - gYear

 - gYearMonth

 - time

Decimal types

 - decimal

 - integer

 - negativeInteger

 - nonNegativeInteger

 - nonPositiveInteger

 - positiveInteger

 - unsignedLong

Float types

 - double

 - float

Integer types

 - byte

 - int

 - long

 - short

 - unsignedByte

 - unsignedInt

 - unsignedShort

Interval types

 - duration

String types

 - anyURI

 - ENTITIES

 - ENTITY

 - ID

 - IDREF

 - IDREFS

 - language

 - Name

 - NCName

 - NMTOKEN

 - NMTOKENS

 - normalizedString

 - NOTATION

 - QName

 - string

 - token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the

String logical types.

Global attribute XML properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - base64Binary

 - hexBinary

Boolean types

 - Boolean

DateTime types

 - date

 - dateTime

 - gDay

 - gMonth

 - gMonthDay

 - gYear

 - gYearMonth

 - time

Decimal types

 - decimal

 - integer

 - negativeInteger

 - nonNegativeInteger

 - nonPositiveInteger

 - positiveInteger

 - unsignedLong

222 Message Models

Float types

 - double

 - float

Integer types

 - byte

 - int

 - long

 - short

 - unsignedByte

 - unsignedInt

 - unsignedShort

Interval types

 - duration

String types

 - anyURI

 - ENTITIES

 - ENTITY

 - ID

 - IDREF

 - IDREFS

 - language

 - Name

 - NCName

 - NMTOKEN

 - NMTOKENS

 - normalizedString

 - NOTATION

 - QName

 - string

 - token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the

String logical types.

Global attribute group XML properties:

There are no properties to show.

Global element XML properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - base64Binary

 - hexBinary

Boolean types

 - Boolean

DateTime types

 - date

 - dateTime

 - gDay

 - gMonth

 - gMonthDay

 - gYear

 - gYearMonth

 - time

Decimal types

 - decimal

 - integer

 - negativeInteger

 - nonNegativeInteger

 - nonPositiveInteger

 - positiveInteger

 - unsignedLong

Message model reference information 223

Float types

 - double

 - float

Integer types

 - byte

 - int

 - long

 - short

 - unsignedByte

 - unsignedInt

 - unsignedShort

Interval types

 - duration

String types

 - anyURI

 - ENTITIES

 - ENTITY

 - ID

 - IDREF

 - IDREFS

 - language

 - Name

 - NCName

 - NMTOKEN

 - NMTOKENS

 - normalizedString

 - NOTATION

 - QName

 - string

 - token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the

String logical types.

Global group XML properties:

There are no properties to show.

Group reference XML properties:

There are no properties to show.

Key XML properties:

There are no properties to show.

Keyref XML properties:

There are no properties to show.

Local attribute XML properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - base64Binary

 - hexBinary

Boolean types

 - Boolean

DateTime types

 - date

 - dateTime

 - gDay

 - gMonth

 - gMonthDay

 - gYear

 - gYearMonth

 - time

Decimal types

 - decimal

 - integer

 - negativeInteger

 - nonNegativeInteger

 - nonPositiveInteger

 - positiveInteger

 - unsignedLong

224 Message Models

Float types

 - double

 - float

Integer types

 - byte

 - int

 - long

 - short

 - unsignedByte

 - unsignedInt

 - unsignedShort

Interval types

 - duration

String types

 - anyURI

 - ENTITIES

 - ENTITY

 - ID

 - IDREF

 - IDREFS

 - language

 - Name

 - NCName

 - NMTOKEN

 - NMTOKENS

 - normalizedString

 - NOTATION

 - QName

 - string

 - token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the

String logical types.

Local element XML properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - base64Binary

 - hexBinary

Boolean types

 - Boolean

DateTime types

 - date

 - dateTime

 - gDay

 - gMonth

 - gMonthDay

 - gYear

 - gYearMonth

 - time

Decimal types

 - decimal

 - integer

 - negativeInteger

 - nonNegativeInteger

 - nonPositiveInteger

 - positiveInteger

 - unsignedLong

Float types

 - double

 - float

Integer types

 - byte

 - int

 - long

 - short

 - unsignedByte

 - unsignedInt

 - unsignedShort

Interval types

 - duration

String types

 - anyURI

 - ENTITIES

 - ENTITY

 - ID

 - IDREF

 - IDREFS

 - language

 - Name

 - NCName

 - NMTOKEN

 - NMTOKENS

 - normalizedString

 - NOTATION

 - QName

 - string

 - token

Message model reference information 225

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the

String logical types.

Local group XML properties:

There are no properties to show.

Message XML properties:

The following tables describe the XML properties of a message.

 Namespace schema locations

This property is only active if namespaces have been enabled.

 Property Type Meaning

Namespace URI String A unique string, usually in the form of a URL that identifies the schema for this

If namespaces have not been enabled, this property will display <no target

namespace>.

This property will overide the same property at the message set level.

Schema location String Enter the location of the schema for the associated namespace name that will be

used to validate objects within the namespace.

XML declarations

 Property Type Meaning

Output

Namespace

Declaration

Enumerated

type

The Output Namespace Declaration property controls where the namespace

declarations will placed in the output XML document.

Select from:

v At start of document. Declarations for all of the entries in the Namespace

schema locations table above will be output as attributes of the message in the

output XML document. The disadvantage of this option is that in some cases

unnecessary declarations may be output.

v As required. Declarations will only be output when required by an element or

attribute that is in that namespace. The disadvantage of this option is that the

same namespace declaration may need to be output more than once in the

output XML document.

The default option is At start of document.

This property is only active if namespaces are enabled for this message set.

226 Message Models

XML document type settings

 Property Type Meaning

DOCTYPE

System ID

String Specify the System ID for DOCTYPE external DTD subset. It overrides the

equivalent message set property setting for this particular message.

If the message set property Suppress DOCTYPE is set to Yes, this parameter is

ignored and cannot be changed (the field is disabled) .

The default value is the value that you specified for the DOCTYPE System ID

property for the message set.

DOCTYPE

Public ID

String Specify the Public ID for DOCTYPE external DTD subset. It overrides the

equivalent message set property setting for this particular message.

If the message set property Suppress DOCTYPE is set to Yes, this parameter is

ignored and cannot be changed (the field is disabled) .

The default value is the value that you specified for the DOCTYPE Public ID

property for the message set.

DOCTYPE Text String Enter optional additional text to include within the DOCTYPE. It overrides the

message set property for this particular message.

If the message set property Suppress DOCTYPE is set to Yes, this parameter is

ignored and cannot be changed (the field is disabled) .

For more information, see “MRM XML: In-line DTDs and the DOCTYPE text

property” on page 180.

The default value is the value that you specified for the DOCTYPE Text property

for the message set.

 Property Type Meaning

Root Tag Name String Specify the name of the root tag for a message bit stream XML document. It

overrides the message set property set for this message.

The default value is the value that you specified for the Root Tag Name property

for the message set.

Note: This property is deprecated. Do not change its value from its default

setting.

Field identification

A number of the following properties will only become active depending on the

value that Render property is set to.

Message model reference information 227

Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Simple type XML properties:

There are no properties to show.

228 Message Models

Unique XML properties:

There are no properties to show.

Wildcard attribute XML properties:

There are no properties to show.

Wildcard element XML properties:

There are no properties to show.

TDS format physical properties for message model objects

TDS format physical property information is available for the following objects:

v “Attribute group reference TDS properties”

v “Attribute reference TDS properties”

v “Complex type TDS properties” on page 230

v “Element reference TDS properties” on page 233

v “Global attribute TDS properties” on page 234

v “Global attribute group TDS properties” on page 234

v “Global element TDS properties” on page 234

v “Global group TDS properties” on page 235

v “Group reference TDS properties” on page 238

v “Key TDS properties” on page 239

v “Keyref TDS properties” on page 239

v “Local attribute TDS properties” on page 239

v “Local element TDS properties” on page 240

v “Local group TDS properties” on page 240

v “Message TDS properties” on page 244

v “Simple type TDS properties” on page 244

v “Unique TDS properties” on page 244

v “White space characters in TDS” on page 244

v “Wildcard attribute TDS properties” on page 245

v “Wildcard element TDS properties” on page 245

Attribute group reference TDS properties:

There are no properties to show.

Attribute reference TDS properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

Message model reference information 229

Binary types

 - base64Binary

 - hexBinary

Boolean types

 - Boolean

DateTime types

 - date

 - dateTime

 - gDay

 - gMonth

 - gMonthDay

 - gYear

 - gYearMonth

 - time

Decimal types

 - decimal

 - integer

 - negativeInteger

 - nonNegativeInteger

 - nonPositiveInteger

 - positiveInteger

 - unsignedLong

Float types

 - double

 - float

Integer types

 - byte

 - int

 - long

 - short

 - unsignedByte

 - unsignedInt

 - unsignedShort

Interval types

 - duration

String types

 - anyURI

 - ENTITIES

 - ENTITY

 - ID

 - IDREF

 - IDREFS

 - language

 - Name

 - NCName

 - NMTOKEN

 - NMTOKENS

 - normalizedString

 - NOTATION

 - QName

 - string

 - token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the

String logical types.

Complex type TDS properties:

Field Identification

If the complex type is based on a global group, the TDS properties listed below

will actually be located on the global group. If this is the case, any changes to

these properties will be applied to the global group, and will affect all references to

the group (including any other complex types which are based on it).

230 Message Models

Property Type Meaning

Data Element

Separation

Enumerated

type

Select one of the following values to specify the method that is used to separate

the data elements within the type.

v Tagged Delimited. This value indicates that all elements within the complex

type are identified by a tag, and are separated by the value that is specified in

the optional Delimiter property (if specified). You must set the Tag property for

all child elements of simple type, and you can set the Delimiter property to a

non-empty value. See “Global element TDS properties” on page 234. You must

also set the Tag Data Separator or the Length of Tag property.

v Tagged Fixed Length. This value indicates that each element is identified by a

tag, and the data has a fixed length. There are no delimiters. You must set the

Tag property for each of the child elements of this complex type, and each

child element must have a Length or Length Reference property assigned to it.

You must also set the Tag Data Separator or the Length of Tag property.

v Tagged Encoded Length. This value indicates that all elements within the

complex type are separated by a tag, and a length field follows each tag.

There are no delimiters. The tag can be fixed length, as set by the Length of Tag

property, or variable length delimited by the Tag Data Separator property. You

must also set the Length Of Encoded Length property so that the parser knows

the size of the length field, and set the Extra Chars in Encoded Length property

to tell the parser what to subtract from the value in the Length Of Encoded

Length property to get the actual length of the data that follows the length

field.

This method provides a more flexible way of handling ACORD AL3 standard

messages than using the Fixed Length AL3 value, by allowing different parts

of the messages to be at different versions of the ACORD AL3 standard.

v All Elements Delimited. This value indicates that all elements within the

complex type are separated by a delimiter. You must set a value in the

Delimiter property.

v Variable Length Elements Delimited. This value indicates that some of the

elements within the complex type might be of variable length; if they are, they

must be delimited by the value that is specified in the Delimiter property.

v Use Data Pattern. This value indicates that the parser determines the

elements by matching the data with the regular expression that is set in the

Data Pattern property of the element or type member. See “Message definition

file properties” on page 181.

v Fixed Length. This value indicates that all elements within the complex type

are fixed length. The next data element is accessed by adding the value of the

Length property to the offset. See “Global element TDS properties” on page

234. If you set the Data Element Separation property of a complex type to Fixed

Length, you must also set the Data Element Separation property of all complex

children of this type to Fixed Length. Each child element must have a Length

or Length Reference property assigned to it.

v Fixed Length AL3. This value has a similar meaning to the separation type

Fixed Length, but also indicates to the parser that a number of predefined

rules with regard to missing optional elements, encoded lengths, and

versioning, must be applied. If you set the Data Element Separation property of

a complex type to Fixed Length AL3, you must also set the Data Element

Separation property of all complex children of this type to Fixed Length AL3.

v Undefined. This value is set automatically if you set the Type Composition

property of a complex type to Message, and you cannot change it to any other

value.

Do not set the Type Composition property to Empty, Choice, Unordered Set,

Ordered Set, Sequence, or Simple Unordered Set. If you do, you cannot check

in the type.

Message model reference information 231

Property Type Meaning

Group Indicator String Specify the value of a special character, or string, that precedes the data that

belongs to a group, or a complex type, within the bit stream.

Group

Terminator

String Specify the value of a special character, or string, that terminates the data that

belongs to a group, or a complex type, within the bit stream.

Delimiter String Specify the value of a special character, or string, that specifies the delimiter that

is used between data elements.

This property applies only to the delimited Data Element Separation methods

(Tagged Delimited, All Elements Delimited, and Variable Length Elements

Delimited).

Suppress

Absent Element

Delimiters

Enumerated

type

Use this property to select whether you want delimiters to be suppressed for

elements that are missing within a message.

Select from:

v End Of Type. Use this option to suppress the delimiter when an element is

missing. For example, if the model has been defined to have up to 3 elements

and only 2 are present, the last delimiter can be omitted from the message.

v Never. Use this option to ensure that even if optional elements are not present,

all delimiters are written out. This option should be used when the same

delimiter is used to delimit parent and child objects. For example, if an

optional child element is missing, message processing applications could not

tell where the child elements in a message ended and the next parent element

started, if the delimiters are all the same.

Observe

Element Length

Check box This property is applicable when Data Element Separation is All Elements

Delimited, and tells the TDS parser to take any Length property of child

elements or attributes into account. The default value depends on the setting of

the Messaging Standard property (at the message set level) and the Data Element

Separation property.

v If Data Element Separation is All Elements Delimited and the Messaging

Standard is set to TLOG, the check box is selected. For all other messaging

standards, the check box is cleared.

v If Data Element Separation is Tagged Delimited, the check box is cleared.

v If Data Element Separation is Tagged Fixed Length, Fixed Length, Fixed Length

AL3, or Variable Length Elements Delimited, this property is set and is

disabled.

v For all other data element separation methods, this property is not set and is

disabled.

Tag Data

Separator

Button and

String

Specify the value of a special character or string that separates the Tag from the

data. The Tag Data Separator and Length of Tag properties are mutually exclusive.

If you set the property Tag Data Separator, it overrides Length of Tag.

This property applies only to the tagged Data Element Separation methods (Tagged

Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Length of Tag Button and

Integer

Specify the length of a tag value. When the message is parsed, this allows tags

to be extracted from the bit stream if the Tag Data Separator property is not set.

The Tag Data Separator and Length of Tag properties are mutually exclusive. If you

set the property Tag Data Separator, it overrides this value.

This property applies only to the tagged Data Element Separation methods (Tagged

Delimited, Tagged Fixed Length, and Tagged Encoded Length).

232 Message Models

Property Type Meaning

Length of

Encoded

Length

Integer Specifies the number of characters (not bytes) after a tag that are used for the

length field. Enter a value from 0 to 2 147 483 647.

You must set this property if you have set the Data Element Separation property

to Tagged Encoded Length; it is not valid otherwise.

The actual number of data characters that are parsed depends on the value of

the Extra Chars in Encoded Length property.

Extra Chars in

Encoded

Length

Integer (Only valid if the Data Element Separation method is set to Tagged Encoded

Length.) Specifies the number of extra characters included in the value found in

the length field. (For example, the value in the length might include the size of

the length field itself as well as the size of the data field, or it might be the total

size of the tag, length, and data fields.)

Enter a value from 0 to 2 147 483 647. The parser subtracts this number from the

number found in the length field to get the number of data characters that follow

the length field.

You must set this property if you have set the Data Element Separation property

to Tagged Encoded Length, and the actual number of data characters is less than

the value found in the length field.

Element reference TDS properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - base64Binary

 - hexBinary

Boolean types

 - Boolean

DateTime types

 - date

 - dateTime

 - gDay

 - gMonth

 - gMonthDay

 - gYear

 - gYearMonth

 - time

Decimal types

 - decimal

 - integer

 - negativeInteger

 - nonNegativeInteger

 - nonPositiveInteger

 - positiveInteger

 - unsignedLong

Float types

 - double

 - float

Integer types

 - byte

 - int

 - long

 - short

 - unsignedByte

 - unsignedInt

 - unsignedShort

Interval types

 - duration

String types

 - anyURI

 - ENTITIES

 - ENTITY

 - ID

 - IDREF

 - IDREFS

 - language

 - Name

 - NCName

 - NMTOKEN

 - NMTOKENS

 - normalizedString

 - NOTATION

 - QName

 - string

 - token

Message model reference information 233

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the

String logical types.

Global attribute TDS properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - base64Binary

 - hexBinary

Boolean types

 - Boolean

DateTime types

 - date

 - dateTime

 - gDay

 - gMonth

 - gMonthDay

 - gYear

 - gYearMonth

 - time

Decimal types

 - decimal

 - integer

 - negativeInteger

 - nonNegativeInteger

 - nonPositiveInteger

 - positiveInteger

 - unsignedLong

Float types

 - double

 - float

Integer types

 - byte

 - int

 - long

 - short

 - unsignedByte

 - unsignedInt

 - unsignedShort

Interval types

 - duration

String types

 - anyURI

 - ENTITIES

 - ENTITY

 - ID

 - IDREF

 - IDREFS

 - language

 - Name

 - NCName

 - NMTOKEN

 - NMTOKENS

 - normalizedString

 - NOTATION

 - QName

 - string

 - token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the

String logical types.

Global attribute group TDS properties:

There are no properties to show.

Global element TDS properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

234 Message Models

Binary types

 - base64Binary

 - hexBinary

Boolean types

 - Boolean

DateTime types

 - date

 - dateTime

 - gDay

 - gMonth

 - gMonthDay

 - gYear

 - gYearMonth

 - time

Decimal types

 - decimal

 - integer

 - negativeInteger

 - nonNegativeInteger

 - nonPositiveInteger

 - positiveInteger

 - unsignedLong

Float types

 - double

 - float

Integer types

 - byte

 - int

 - long

 - short

 - unsignedByte

 - unsignedInt

 - unsignedShort

Interval types

 - duration

String types

 - anyURI

 - ENTITIES

 - ENTITY

 - ID

 - IDREF

 - IDREFS

 - language

 - Name

 - NCName

 - NMTOKEN

 - NMTOKENS

 - normalizedString

 - NOTATION

 - QName

 - string

 - token

Global group TDS properties:

Message model reference information 235

Field Identification

 Property Type Meaning

Data Element

Separation

Enumerated

type

Select one of the following values to specify the method that is used to separate

the data elements within the type.

v Tagged Delimited. This value indicates that all elements within the complex

type are identified by a tag, and are separated by the value that is specified in

the optional Delimiter property (if specified). You must set the Tag property for

all child elements of simple type, and you can set the Delimiter property to a

non-empty value. See “Global element TDS properties” on page 234. You must

also set the Tag Data Separator or the Length of Tag property.

v Tagged Fixed Length. This value indicates that each element is identified by a

tag, and the data has a fixed length. There are no delimiters. You must set the

Tag property for each of the child elements of this complex type, and each

child element must have a Length or Length Reference property assigned to it.

You must also set the Tag Data Separator or the Length of Tag property.

v Tagged Encoded Length. This value indicates that all elements within the

complex type are separated by a tag, and a length field follows each tag.

There are no delimiters. The tag can be fixed length, as set by the Length of Tag

property, or variable length delimited by the Tag Data Separator property. You

must also set the Length Of Encoded Length property so that the parser knows

the size of the length field, and set the Extra Chars in Encoded Length property

to tell the parser what to subtract from the value in the Length Of Encoded

Length property to get the actual length of the data that follows the length

field.

This method provides a more flexible way of handling ACORD AL3 standard

messages than using the Fixed Length AL3 value, by allowing different parts

of the messages to be at different versions of the ACORD AL3 standard.

v All Elements Delimited. This value indicates that all elements within the

complex type are separated by a delimiter. You must set a value in the

Delimiter property.

v Variable Length Elements Delimited. This value indicates that some of the

elements within the complex type might be of variable length; if they are, they

must be delimited by the value that is specified in the Delimiter property.

v Use Data Pattern. This value indicates that the parser determines the

elements by matching the data with the regular expression that is set in the

Data Pattern property of the element or type member. See “Message definition

file properties” on page 181.

v Fixed Length. This value indicates that all elements within the complex type

are fixed length. The next data element is accessed by adding the value of the

Length property to the offset. See “Global element TDS properties” on page

234. If you set the Data Element Separation property of a complex type to Fixed

Length, you must also set the Data Element Separation property of all complex

children of this type to Fixed Length. Each child element must have a Length

or Length Reference property assigned to it.

v Fixed Length AL3. This value has a similar meaning to the separation type

Fixed Length, but also indicates to the parser that a number of predefined

rules with regard to missing optional elements, encoded lengths, and

versioning, must be applied. If you set the Data Element Separation property of

a complex type to Fixed Length AL3, you must also set the Data Element

Separation property of all complex children of this type to Fixed Length AL3.

v Undefined. This value is set automatically if you set the Type Composition

property of a complex type to Message, and you cannot change it to any other

value.

Do not set the Type Composition property to Empty, Choice, Unordered Set,

Ordered Set, Sequence, or Simple Unordered Set. If you do, you cannot check

in the type.

236 Message Models

Property Type Meaning

Group Indicator String Specify the value of a special character, or string, that precedes the data that

belongs to a group, or a complex type, within the bit stream.

Group

Terminator

String Specify the value of a special character, or string, that terminates the data that

belongs to a group, or a complex type, within the bit stream.

Delimiter String Specify the value of a special character, or string, that specifies the delimiter that

is used between data elements.

This property applies only to the delimited Data Element Separation methods

(Tagged Delimited, All Elements Delimited, and Variable Length Elements

Delimited).

Suppress

Absent Element

Delimiters

Enumerated

type

Use this property to select whether you want delimiters to be suppressed for

elements that are missing within a message.

Select from:

v End Of Type. Use this option to suppress the delimiter when an element is

missing. For example, if the model has been defined to have up to 3 elements

and only 2 are present, the last delimiter can be omitted from the message.

v Never. Use this option to ensure that even if optional elements are not present,

all delimiters are written out. This option should be used when the same

delimiter is used to delimit parent and child objects. For example, if an

optional child element is missing, message processing applications could not

tell where the child elements in a message ended and the next parent element

started, if the delimiters are all the same.

Observe

Element Length

Check box This property is applicable when Data Element Separation is All Elements

Delimited, and tells the TDS parser to take any Length property of child

elements or attributes into account. The default value depends on the setting of

the Messaging Standard property (at the message set level) and the Data Element

Separation property.

v If Data Element Separation is All Elements Delimited and the Messaging

Standard is set to TLOG, the check box is selected. For all other messaging

standards, the check box is cleared.

v If Data Element Separation is Tagged Delimited, the check box is cleared.

v If Data Element Separation is Tagged Fixed Length, Fixed Length, Fixed Length

AL3, or Variable Length Elements Delimited, this property is set and is

disabled.

v For all other data element separation methods, this property is not set and is

disabled.

Tag Data

Separator

Button and

String

Specify the value of a special character or string that separates the Tag from the

data. The Tag Data Separator and Length of Tag properties are mutually exclusive.

If you set the property Tag Data Separator, it overrides Length of Tag.

This property applies only to the tagged Data Element Separation methods (Tagged

Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Length of Tag Button and

Integer

Specify the length of a tag value. When the message is parsed, this allows tags

to be extracted from the bit stream if the Tag Data Separator property is not set.

The Tag Data Separator and Length of Tag properties are mutually exclusive. If you

set the property Tag Data Separator, it overrides this value.

This property applies only to the tagged Data Element Separation methods (Tagged

Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Message model reference information 237

Property Type Meaning

Length of

Encoded

Length

Integer Specifies the number of characters (not bytes) after a tag that are used for the

length field. Enter a value from 0 to 2 147 483 647.

You must set this property if you have set the Data Element Separation property

to Tagged Encoded Length; it is not valid otherwise.

The actual number of data characters that are parsed depends on the value of

the Extra Chars in Encoded Length property.

Extra Chars in

Encoded

Length

Integer (Only valid if the Data Element Separation method is set to Tagged Encoded

Length.) Specifies the number of extra characters included in the value found in

the length field. (For example, the value in the length might include the size of

the length field itself as well as the size of the data field, or it might be the total

size of the tag, length, and data fields.)

Enter a value from 0 to 2 147 483 647. The parser subtracts this number from the

number found in the length field to get the number of data characters that follow

the length field.

You must set this property if you have set the Data Element Separation property

to Tagged Encoded Length, and the actual number of data characters is less than

the value found in the length field.

Group reference TDS properties:

The following tables describe the TDS properties of a group reference.

 Field identification

 Property Type Meaning

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Occurrences

 Property Type Meaning

Repeating

Element

Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element

Separation property of the parent group or complex type is set to All Elements

Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging

standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is

not HL7, and the maximum number of repeats is fixed, the delimiter of the

parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

238 Message Models

Property Type Meaning

Repeat

reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the drop-down list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

Key TDS properties:

There are no properties to show.

Keyref TDS properties:

There are no properties to show.

Local attribute TDS properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - base64Binary

 - hexBinary

Boolean types

 - Boolean

DateTime types

 - date

 - dateTime

 - gDay

 - gMonth

 - gMonthDay

 - gYear

 - gYearMonth

 - time

Decimal types

 - decimal

 - integer

 - negativeInteger

 - nonNegativeInteger

 - nonPositiveInteger

 - positiveInteger

 - unsignedLong

Float types

 - double

 - float

Integer types

 - byte

 - int

 - long

 - short

 - unsignedByte

 - unsignedInt

 - unsignedShort

Interval types

 - duration

String types

 - anyURI

 - ENTITIES

 - ENTITY

 - ID

 - IDREF

 - IDREFS

 - language

 - Name

 - NCName

 - NMTOKEN

 - NMTOKENS

 - normalizedString

 - NOTATION

 - QName

 - string

 - token

Message model reference information 239

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the

String logical types.

Local element TDS properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - base64Binary

 - hexBinary

Boolean types

 - Boolean

DateTime types

 - date

 - dateTime

 - gDay

 - gMonth

 - gMonthDay

 - gYear

 - gYearMonth

 - time

Decimal types

 - decimal

 - integer

 - negativeInteger

 - nonNegativeInteger

 - nonPositiveInteger

 - positiveInteger

 - unsignedLong

Float types

 - double

 - float

Integer types

 - byte

 - int

 - long

 - short

 - unsignedByte

 - unsignedInt

 - unsignedShort

Interval types

 - duration

String types

 - anyURI

 - ENTITIES

 - ENTITY

 - ID

 - IDREF

 - IDREFS

 - language

 - Name

 - NCName

 - NMTOKEN

 - NMTOKENS

 - normalizedString

 - NOTATION

 - QName

 - string

 - token

Local group TDS properties:

240 Message Models

Field Identification

 Property Type Meaning

Data Element

Separation

Enumerated

type

Select one of the following values to specify the method that is used to separate

the data elements within the type.

v Tagged Delimited. This value indicates that all elements within the complex

type are identified by a tag, and are separated by the value that is specified in

the optional Delimiter property (if specified). You must set the Tag property for

all child elements of simple type, and you can set the Delimiter property to a

non-empty value. See “Global element TDS properties” on page 234. You must

also set the Tag Data Separator or the Length of Tag property.

v Tagged Fixed Length. This value indicates that each element is identified by a

tag, and the data has a fixed length. There are no delimiters. You must set the

Tag property for each of the child elements of this complex type, and each

child element must have a Length or Length Reference property assigned to it.

You must also set the Tag Data Separator or the Length of Tag property.

v Tagged Encoded Length. This value indicates that all elements within the

complex type are separated by a tag, and a length field follows each tag.

There are no delimiters. The tag can be fixed length, as set by the Length of Tag

property, or variable length delimited by the Tag Data Separator property. You

must also set the Length Of Encoded Length property so that the parser knows

the size of the length field, and set the Extra Chars in Encoded Length property

to tell the parser what to subtract from the value in the Length Of Encoded

Length property to get the actual length of the data that follows the length

field.

This method provides a more flexible way of handling ACORD AL3 standard

messages than using the Fixed Length AL3 value, by allowing different parts

of the messages to be at different versions of the ACORD AL3 standard.

v All Elements Delimited. This value indicates that all elements within the

complex type are separated by a delimiter. You must set a value in the

Delimiter property.

v Variable Length Elements Delimited. This value indicates that some of the

elements within the complex type might be of variable length; if they are, they

must be delimited by the value that is specified in the Delimiter property.

v Use Data Pattern. This value indicates that the parser determines the

elements by matching the data with the regular expression that is set in the

Data Pattern property of the element or type member. See “Message definition

file properties” on page 181.

v Fixed Length. This value indicates that all elements within the complex type

are fixed length. The next data element is accessed by adding the value of the

Length property to the offset. See “Global element TDS properties” on page

234. If you set the Data Element Separation property of a complex type to Fixed

Length, you must also set the Data Element Separation property of all complex

children of this type to Fixed Length. Each child element must have a Length

or Length Reference property assigned to it.

v Fixed Length AL3. This value has a similar meaning to the separation type

Fixed Length, but also indicates to the parser that a number of predefined

rules with regard to missing optional elements, encoded lengths, and

versioning, must be applied. If you set the Data Element Separation property of

a complex type to Fixed Length AL3, you must also set the Data Element

Separation property of all complex children of this type to Fixed Length AL3.

v Undefined. This value is set automatically if you set the Type Composition

property of a complex type to Message, and you cannot change it to any other

value.

Do not set the Type Composition property to Empty, Choice, Unordered Set,

Ordered Set, Sequence, or Simple Unordered Set. If you do, you cannot check

in the type.

Message model reference information 241

Property Type Meaning

Group Indicator String Specify the value of a special character, or string, that precedes the data that

belongs to a group, or a complex type, within the bit stream.

Group

Terminator

String Specify the value of a special character, or string, that terminates the data that

belongs to a group, or a complex type, within the bit stream.

Delimiter String Specify the value of a special character, or string, that specifies the delimiter that

is used between data elements.

This property applies only to the delimited Data Element Separation methods

(Tagged Delimited, All Elements Delimited, and Variable Length Elements

Delimited).

Suppress

Absent Element

Delimiters

Enumerated

type

Use this property to select whether you want delimiters to be suppressed for

elements that are missing within a message.

Select from:

v End Of Type. Use this option to suppress the delimiter when an element is

missing. For example, if the model has been defined to have up to 3 elements

and only 2 are present, the last delimiter can be omitted from the message.

v Never. Use this option to ensure that even if optional elements are not present,

all delimiters are written out. This option should be used when the same

delimiter is used to delimit parent and child objects. For example, if an

optional child element is missing, message processing applications could not

tell where the child elements in a message ended and the next parent element

started, if the delimiters are all the same.

Observe

Element Length

Check box This property is applicable when Data Element Separation is All Elements

Delimited, and tells the TDS parser to take any Length property of child

elements or attributes into account. The default value depends on the setting of

the Messaging Standard property (at the message set level) and the Data Element

Separation property.

v If Data Element Separation is All Elements Delimited and the Messaging

Standard is set to TLOG, the check box is selected. For all other messaging

standards, the check box is cleared.

v If Data Element Separation is Tagged Delimited, the check box is cleared.

v If Data Element Separation is Tagged Fixed Length, Fixed Length, Fixed Length

AL3, or Variable Length Elements Delimited, this property is set and is

disabled.

v For all other data element separation methods, this property is not set and is

disabled.

Tag Data

Separator

Button and

String

Specify the value of a special character or string that separates the Tag from the

data. The Tag Data Separator and Length of Tag properties are mutually exclusive.

If you set the property Tag Data Separator, it overrides Length of Tag.

This property applies only to the tagged Data Element Separation methods (Tagged

Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Length of Tag Button and

Integer

Specify the length of a tag value. When the message is parsed, this allows tags

to be extracted from the bit stream if the Tag Data Separator property is not set.

The Tag Data Separator and Length of Tag properties are mutually exclusive. If you

set the property Tag Data Separator, it overrides this value.

This property applies only to the tagged Data Element Separation methods (Tagged

Delimited, Tagged Fixed Length, and Tagged Encoded Length).

242 Message Models

Property Type Meaning

Length of

Encoded

Length

Integer Specifies the number of characters (not bytes) after a tag that are used for the

length field. Enter a value from 0 to 2 147 483 647.

You must set this property if you have set the Data Element Separation property

to Tagged Encoded Length; it is not valid otherwise.

The actual number of data characters that are parsed depends on the value of

the Extra Chars in Encoded Length property.

Extra Chars in

Encoded

Length

Integer (Only valid if the Data Element Separation method is set to Tagged Encoded

Length.) Specifies the number of extra characters included in the value found in

the length field. (For example, the value in the length might include the size of

the length field itself as well as the size of the data field, or it might be the total

size of the tag, length, and data fields.)

Enter a value from 0 to 2 147 483 647. The parser subtracts this number from the

number found in the length field to get the number of data characters that follow

the length field.

You must set this property if you have set the Data Element Separation property

to Tagged Encoded Length, and the actual number of data characters is less than

the value found in the length field.

Field Identification

 Property Type Meaning

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Occurrences

 Property Type Meaning

Repeating

Element

Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element

Separation property of the parent group or complex type is set to All Elements

Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging

standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is

not HL7, and the maximum number of repeats is fixed, the delimiter of the

parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Repeat

reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the drop-down list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

Message model reference information 243

Message TDS properties:

 Property Type Meaning

Message Key String Specify an alternative unique value that identifies the message in the bit stream.

This property is required if the message is embedded within another message.

Note: From Version 6.0 onwards, the use of Message Key has been deprecated

for identifying an embedded message. You now have the option of identifying

an embedded message by Message Identity, using the Message Alias logical

property.

Simple type TDS properties:

There are no properties to show.

Unique TDS properties:

There are no properties to show.

White space characters in TDS:

White space characters are defined as:

v ASCII characters (hexadecimal) ’X’09 to ’X’0D

v EBCDIC characters ’X’05, ’X’0B, ’X’0C, ’X’0D, ’X’25, ’X’40

You can specify these characters in your message model using TDS mnemonics if

they are important to your processing, for example, to use as group terminators or

delimiting characters. See “TDS Mnemonics” on page 165 for further information.

If the:

v TDS messaging standard property is ″X12″ or ″EDIFACT″ and the

v TDS data element separation in force for the structure is:

– Tagged delimiter, or

– Tagged fixed length, or

– Tagged encoded length

then white space after the end of a group and preceding the tag of the next

element is ignored.

The following bit stream is accepted:

Tag<data>!<Any whitespace character>Tag

where:

v ! is the group terminator

v <Any whitespace character> is one of the ASCII or EBCDIC characters listed

previously

The following X12 ASCII message successfully parses:

ST*856*777777%<SPC><SPC><SPC><HEX 09>BSN*00*7654321*940920*10000%

The sequence

<SPC><SPC><SPC><HEX 09>

is ignored by the parser.

244 Message Models

Wildcard attribute TDS properties:

There are no properties to show.

Wildcard element TDS properties:

There are no properties to show.

Documentation properties for all message set objects

Use the documentation property of an object to add information to enhance the

understanding of the function of that object. The documentation property is

available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric

characters.

Message model object properties by object

The following objects have properties that can be viewed or set:

v “Attribute group reference properties”

v “Attribute reference properties” on page 246

v “Complex type properties” on page 288

v “Element reference properties” on page 297

v “Global attribute properties” on page 350

v “Global attribute group properties” on page 379

v “Global element properties” on page 380

v “Global group properties” on page 416

v “Group reference properties” on page 422

v “Key properties” on page 425

v “Keyref properties” on page 425

v “Local attribute properties” on page 426

v “Local element properties” on page 489

v “Local group properties” on page 570

v “Message properties” on page 577

v “Simple type properties” on page 580

v “Unique properties” on page 595

v “Wildcard attribute properties” on page 595

v “Wildcard element properties” on page 596

Attribute group reference properties

An attribute group reference can have the following properties;

v “Attribute group reference logical properties” on page 185

v “Attribute group reference CWF properties” on page 214

v “Attribute group reference XML properties” on page 221

v “Attribute group reference TDS properties” on page 229

v “Documentation properties for all message set objects” on page 183

Attribute group reference logical properties:

Message model reference information 245

Property Type Meaning

Reference Name Enumerated

type

The Reference Name is the name of the object that this object is referring to. The

objects available to reference can be selected from the drop-down list.

Attribute group reference CWF properties:

There are no properties to show.

Attribute group reference XML properties:

There are no properties to show.

Attribute group reference TDS properties:

There are no properties to show.

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the

understanding of the function of that object. The documentation property is

available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric

characters.

Attribute reference properties

An attribute reference can have the following properties;

v “Attribute reference logical properties” on page 185

v “Attribute reference CWF properties” on page 214

v “Attribute reference XML properties” on page 221

v “Attribute reference TDS properties” on page 229

v “Documentation properties for all message set objects” on page 183

Attribute reference logical properties:

 Property Type Meaning

Reference Name Enumerated

type

The Reference Name is the name of the object that this object is referring to. The

objects available to reference can be selected from the drop-down list.

246 Message Models

Property Type Meaning

Usage Enumerated

type

The usage property is used in conjunction with the Value property found in an

attribute object. The default for the Usage property is optional.

Select from;

v optional.

– Where the Value property is set to default and no data has been entered in

the Value property, the attribute can appear once and can have any value.

– Where the Value property is set to default, the attribute can appear once. If

it does not appear, its value is the data that has been entered in the Value

property. If it does appear it is the value given.

– Where the Value property is set to fixed, the attribute can appear once. If it

does appear, its value must match the data that has been entered in the

Value property. If it does not appear its value is the data that has been

entered in the Value property.

v prohibited. The attribute must not appear.

v required.

– Where the Value property is set to default and no data has been entered in

the Value property, the attribute must appear once and can have any value.

– Where the Value property is set to fixed, the attribute must appear once

and it must match the data that has been entered in the Value property.

Attribute reference CWF properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - base64Binary

 - hexBinary

Boolean types

 - Boolean

DateTime types

 - date

 - dateTime

 - gDay

 - gMonth

 - gMonthDay

 - gYear

 - gYearMonth

 - time

Decimal types

 - decimal

 - integer

 - negativeInteger

 - nonNegativeInteger

 - nonPositiveInteger

 - positiveInteger

 - unsignedLong

Message model reference information 247

Float types

 - double

 - float

Integer types

 - byte

 - int

 - long

 - short

 - unsignedByte

 - unsignedInt

 - unsignedShort

Interval types

 - duration

String types

 - anyURI

 - ENTITIES

 - ENTITY

 - ID

 - IDREF

 - IDREFS

 - language

 - Name

 - NCName

 - NMTOKEN

 - NMTOKENS

 - normalizedString

 - NOTATION

 - QName

 - string

 - token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the

String logical types.

CWF properties for attribute reference and local attribute binary types:

The Custom Wire Format properties described here apply to:

v Objects: Attribute Reference, Local Attribute

v Binary schema types: base64Binary, hexBinary

Physical representation

 Property Type Meaning

Length Button and

Integer

If you have selected the length to be defined by Length, enter the number of

length units for the element.

The minimum value that you can specify is 1.

The maximum value that you can specify is 2147483647.

The default value is empty (not set).

Length

Reference

Button and

Enumerated

type

If you have selected the length to be defined by Length Reference, select the name

of the integer object that specifies the length of this object. Make your selection

from the displayed list of integer objects that are defined as siblings of the

current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page

108.

Inclusive

Length

Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of

the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object

must be the same as that of the current object.

248 Message Models

Property Type Meaning

Length Units Enumerated

type

Select the unit of length for the element or attribute. Select one of the following

options from the displayed list (some physical types do not offer all of these

options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads

one character at a time and determines whether the character comprises

one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is

determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to

Characters.

– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest

character unit that the code page supports. However, this means that a

message must contain only these characters if it is to be processed correctly.

For example, in code page ″UTF-8″ (CCSID 1208), the minimum character

unit is one byte; therefore, the parser can make a single read (of the

number of bytes specified by the Length property) to fetch the entire

message. The message must contain only characters that are encoded in

1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count or Length

Reference property.

The default is Bytes.

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Message model reference information 249

Property Type Meaning

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

CWF properties for attribute reference and local attribute Boolean types:

The Custom Wire Format properties described here apply to:

v Objects: Attribute Reference, Local Attribute

v Boolean schema types: Boolean

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

CWF properties for attribute reference and local attribute dateTime types:

The Custom Wire Format properties described here apply to:

v Objects: Attribute Reference, Local Attribute

v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

250 Message Models

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select one of the following from the displayed list:

v Fixed Length String. The element’s length is determined by other length

properties below.

v Length Encoded String 1. The element’s first byte contains the length of the

string following the length byte in length units. The maximum length of a

Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The element’s first two bytes contain the length of

the string following the 2 length bytes in length units. The maximum length

of a Length Encoded String 2 element is 65535 length units. The two length

bytes are in the format of the WebSphere MQ queue manager Encoding.

v Null Terminated String. The string ends with the hexadecimal NULL

character, X’00’.

v Packed Decimal. The dateTime is coded as a Packed Decimal number. It is

valid only if the DateTime Format property represents numeric-only data.

v Binary. The dateTime is encoded as a binary sequence of bytes. If you select

this option, the range of symbols that you can specify for the Format String

property is less than the range of symbols you can specify if you select a

string option (see “DateTime formats” on page 763 for details).

v Time Seconds. This value supports C time_t and Java Date and Time objects. It

is valid only if the DateTime Format property represents numeric-only data.

v Time Milliseconds. This value supports C time_t and Java Date and Time

objects. It is valid only if the DateTime Format property represents

numeric-only data.

The default value is fixed length string.

DateTime

Format

String Specify a template for date and time.

The default dateTime format is dependent on the logical type of the object. For

information about the defaults for the dateTime format according to the logical

type see “DateTime defaults by logical type” on page 770.

See “DateTime formats” on page 763 for details of date and time formats.

Length Button and

Integer

If you have selected a Physical Type of Fixed Length String, Packed Decimal, or

Binary, and have selected the length to be defined by Length, enter the number

of length units for the element.

The minimum value that you can specify is 1 for all three physical types.

The maximum value that you can specify is 256 for Fixed Length String, 10 for

Packed Decimal, and 2147483647 for Binary.

The default value is 0 (zero).

Length

Reference

Button and

Enumerated

type

If you have selected the length to be defined by Length Reference, select the name

of the integer object that specifies the length of this object. Make your selection

from the displayed list of integer objects that are defined as siblings of the

current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page

108.

Message model reference information 251

Property Type Meaning

Inclusive

Length

Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of

the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object

must be the same as that of the current object.

Length Units Enumerated

type

Select the unit of length for the element or attribute. Select one of the following

options from the displayed list (some physical types do not offer all of these

options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads

one character at a time and determines whether the character comprises

one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is

determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to

Characters.

– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest

character unit that the code page supports. However, this means that a

message must contain only these characters if it is to be processed correctly.

For example, in code page ″UTF-8″ (CCSID 1208), the minimum character

unit is one byte; therefore, the parser can make a single read (of the

number of bytes specified by the Length property) to fetch the entire

message. The message must contain only characters that are encoded in

1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count or Length

Reference property.

The default is Bytes.

Justification Enumerated

type

If you have set the Physical Type property to Fixed Length String, select Left

Justify (the default value) or Right Justify from the list. If you have selected

another value for Physical Type, this is property is inactive.

252 Message Models

Property Type Meaning

Padding

Character

String If you have set the Physical Type property to Fixed Length String, and the

Justification property is either Left Justify or Right Justify, this property is

applicable.

When writing an output message, use the padding character to fill out the

remaining character positions when the string length is less than the length

implied by the Length or Length Reference property. Whether the string is padded

from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end

of the string. Whether the string is trimmed from the left or the right is

governed by the Justification property.

Specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal

value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM

element depends on the padding character that is required and whether the

padding character is to be subject to data conversion. In most cases, the

specification of a padding character in quotqtion marks is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated. For example, when converting

from ASCII to the code page 500, if you have specified U+0008 as your padding

character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC

representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should

ensure that the converted value of the padding character is valid for this code

page. If the padding character cannot be represented in the target code page, it

is replaced by a substitution character. The substitution character is fixed and its

value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the

hexadecimal or decimal format can be used. This gives the option of specifying

an absolute value as a padding character that is inserted directly into the output

message. If this format is used, you should still aim to ensure that this value is

valid for the code page of any output messages that are created using these

MRM definitions.

Message model reference information 253

Numeric representation

 Property Type Meaning

Signed Check box Specify whether or not the value is signed.

This property is applicable only if the Physical type property is Packed Decimal.

By default, this check box is cleared, which indicates that the value is not signed.

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

CWF properties for attribute reference and local attribute decimal types:

The Custom Wire Format properties described here apply to:

v Objects: Attribute Reference, Local Attribute

v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

254 Message Models

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select one of the following from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. This equates to the COMP-3 data type in COBOL.

v External Decimal. This equates to the data type PIC 9 USAGE DISPLAY in

COBOL.

The representation of numeric elements can be affected by the Encoding and

CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer and Packed Decimal are

represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in

the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the

displayed list.

v If you set the Physical Type to Packed Decimal, enter a value between 1 and 10.

v If you set the Physical Type to Extended Decimal, enter a value between 1 and

256. (Numbers greater than the maximum COBOL PICTURE clause of 18 are

assumed to be 18.)

Length Units Enumerated

type

Select the unit of length for the element or attribute. Select one of the following

options from the displayed list (some physical types do not offer all of these

options):

v Bytes.

v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads

one character at a time and determines whether the character comprises

one or more bytes.
v Character Units. This specifies that the size of each character (in bytes) is

determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to

Characters.

– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest

character unit that the code page supports. However, this means that a

message must contain only these characters if it is to be processed correctly.

For example, in code page ″UTF-8″ (CCSID 1208), the minimum character

unit is one byte; therefore, the parser can make a single read (of the

number of bytes specified by the Length property) to fetch the entire

message. The message must contain only characters that are encoded in

1-byte units.
v End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count.

The default is Bytes.

Message model reference information 255

Property Type Meaning

Justification Enumerated

type

If you have set the Physical Type property to External Decimal, select Left

Justify or Right Justify (the default value) from the list. If you have selected

another value for Physical Type, this is property is inactive.

Padding

Character

String The padding character is used to fill out the remaining character positions when

the string length is less than the specified string size. If you have set the Physical

Type property to Extended Decimal, and the Justification property is either Left

Justify or Right Justify, specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal

value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM

element depends on the padding character that is required and whether the

padding character is to be subject to data conversion. In most cases, the

specification of a padding character in quotqtion marks is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated. For example, when converting

from ASCII to the code page 500, if you have specified U+0008 as your padding

character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC

representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should

ensure that the converted value of the padding character is valid for this code

page. If the padding character cannot be represented in the target code page, it

is replaced by a substitution character. The substitution character is fixed and its

value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the

hexadecimal or decimal format can be used. This gives the option of specifying

an absolute value as a padding character that is inserted directly into the output

message. If this format is used, you should still aim to ensure that this value is

valid for the code page of any output messages that are created using these

MRM definitions.

Numeric representation

 Property Type Meaning

Signed Check box Select (the default) or clear this property. This property is used in conjunction

with Sign Orientation.

256 Message Models

Property Type Meaning

Sign EBCDIC

Custom

Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom

property is set, this indicates that the Sign EBCDIC Custom Overpunched

representation is to be used within an ASCII environment. If this check box is

not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate

only if the Sign Orientation property is set to Leading or Trailing (indicating that

the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,

if the Signed check box is not set).

Sign

Orientation

Enumerated

type

If you have set Physical Type to External Decimal and you have selected Signed,

choose from the following options that represent the COBOL options for

displaying numeric data:

v Leading Overpunched. This sets a bit in the first byte if the number is negative.

No setting is made if the number is positive. For example, the ASCII

hexadecimal representation of the number 22 is x’3232’. Using this option, the

number +22 would be x’3232’ and the number -22 would be x’7232’. This is

the default value.

v Leading Separate. This sets the first byte of the element to ’+’ if the number is

positive and to ’-’ if the number is negative. For this option, the length must

include the sign byte.

v Trailing Overpunched. This sets a bit in the last byte if the number is

negative. No setting is made if the number is positive. Using this option, the

number +22 would be x’3232’ and the number -22 would be x’3272’.

v Trailing Separate. This sets the last byte of the element to ’+’ if the number

is positive and to ’-’ if the number is negative. For this option, the length must

include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set

for you.

Virtual Decimal

Point

Integer Specify the number of places to the left (for a positive value) or right (for a

negative value) that a decimal point should be moved from its assumed position.

For example, a decimal element containing 1234 with a Virtual Decimal value of

3 is 1.234. This is equivalent to ’V’ or ’P’ in a COBOL picture clause. There is no

C equivalent

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Message model reference information 257

Property Type Meaning

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

CWF properties for attribute reference and local attribute float types:

The Custom Wire Format properties described here apply to:

v Objects: Attribute Reference, Local Attribute

v Float schema types: double, float

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select one of the following from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Float. This equates to the data type FLOAT or DOUBLE in C or the COMP-1

or COMP-2 data type in COBOL. This is the default value.

v Packed Decimal. This equates to the COMP-3 data type in COBOL.

v External Decimal. This equates to the data type PIC 9 USAGE DISPLAY in

COBOL.

The representation of numeric elements can be affected by the Encoding and

CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer, Packed Decimal, and Float are

represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in

the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Float, select a value from the displayed list. The

default value is 8.

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the

displayed list.

v If you set the Physical Type to Packed Decimal, enter a value between 1 and 10.

v If you set the Physical Type to Extended Decimal, enter a value between 1 and

256. (Numbers greater than the maximum COBOL PICTURE clause of 18 are

assumed to be 18.)

258 Message Models

Property Type Meaning

Length Units Enumerated

type

Select the unit of length for the element or attribute. Select one of the following

options from the displayed list (some physical types do not offer all of these

options):

v Bytes.

v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads

one character at a time and determines whether the character comprises

one or more bytes.
v Character Units. This specifies that the size of each character (in bytes) is

determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to

Characters.

– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest

character unit that the code page supports. However, this means that a

message must contain only these characters if it is to be processed correctly.

For example, in code page ″UTF-8″ (CCSID 1208), the minimum character

unit is one byte; therefore, the parser can make a single read (of the

number of bytes specified by the Length property) to fetch the entire

message. The message must contain only characters that are encoded in

1-byte units.
v End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count.

The default is Bytes.

Justification Enumerated

type

If you have set the Physical Type property to External Decimal, select Left

Justify or Right Justify (the default value) from the list. If you have selected

another value for Physical Type, this is property is inactive.

Message model reference information 259

Property Type Meaning

Padding

Character

String The padding character is used to fill out the remaining character positions when

the string length is less than the specified string size. If you have set the Physical

Type property to Extended Decimal, and the Justification property is either Left

Justify or Right Justify, specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal

value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM

element depends on the padding character that is required and whether the

padding character is to be subject to data conversion. In most cases, the

specification of a padding character in quotqtion marks is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated. For example, when converting

from ASCII to the code page 500, if you have specified U+0008 as your padding

character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC

representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should

ensure that the converted value of the padding character is valid for this code

page. If the padding character cannot be represented in the target code page, it

is replaced by a substitution character. The substitution character is fixed and its

value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the

hexadecimal or decimal format can be used. This gives the option of specifying

an absolute value as a padding character that is inserted directly into the output

message. If this format is used, you should still aim to ensure that this value is

valid for the code page of any output messages that are created using these

MRM definitions.

Numeric representation

 Property Type Meaning

Signed Check box Select or deselect (unsigned, the default) this property. If you have set Physical

Type to Float, this is selected. This property is used in conjunction with Sign

Orientation.

260 Message Models

Property Type Meaning

Sign EBCDIC

Custom

Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom

property is set, this indicates that the Sign EBCDIC Custom Overpunched

representation is to be used within an ASCII environment. If this check box is

not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate

only if the Sign Orientation property is set to Leading or Trailing (indicating that

the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,

if the Signed check box is not set).

Sign

Orientation

Enumerated

type

If you have set Physical Type to External Decimal and you have selected Signed,

choose from the following options that represent the COBOL options for

displaying numeric data:

v Leading Overpunched. This sets a bit in the first byte if the number is negative.

No setting is made if the number is positive. For example, the ASCII

hexadecimal representation of the number 22 is x’3232’. Using this option, the

number +22 would be x’3232’ and the number -22 would be x’7232’. This is

the default value.

v Leading Separate. This sets the first byte of the element to ’+’ if the number is

positive and to ’-’ if the number is negative. For this option, the length must

include the sign byte.

v Trailing Overpunched. This sets a bit in the last byte if the number is

negative. No setting is made if the number is positive. Using this option, the

number +22 would be x’3232’ and the number -22 would be x’3272’.

v Trailing Separate. This sets the last byte of the element to ’+’ if the number

is positive and to ’-’ if the number is negative. For this option, the length must

include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set

for you.

Virtual Decimal

Point

Integer Specify the number of places to the left (for a positive value) or right (for a

negative value) that a decimal point should be moved from its assumed position.

For example, a float element containing 1234 with a Virtual Decimal value of 3 is

1.234.

This is not applicable if you have set Physical Type to Float.

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Message model reference information 261

Property Type Meaning

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

CWF properties for attribute reference and local attribute integer types:

The Custom Wire Format properties described here apply to:

v Objects: Attribute Reference, Local Attribute

v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select one of the following from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. This equates to the COMP-3 data type in COBOL.

v External Decimal. This equates to the data type PIC 9 USAGE DISPLAY in

COBOL.

The representation of numeric elements can be affected by the Encoding and

CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer and Packed Decimal are

represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in

the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the

displayed list.

v If you have set Physical Type to Packed Decimal, enter a value between 1 and

6.

v If you have set Physical Type to Extended Decimal, enter a value between 1 and

11.

262 Message Models

Property Type Meaning

Length Units Enumerated

type

Select the unit of length for the element or attribute. Select one of the following

options from the displayed list (some physical types do not offer all of these

options):

v Bytes.

v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads

one character at a time and determines whether the character comprises

one or more bytes.
v Character Units. This specifies that the size of each character (in bytes) is

determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to

Characters.

– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest

character unit that the code page supports. However, this means that a

message must contain only these characters if it is to be processed correctly.

For example, in code page ″UTF-8″ (CCSID 1208), the minimum character

unit is one byte; therefore, the parser can make a single read (of the

number of bytes specified by the Length property) to fetch the entire

message. The message must contain only characters that are encoded in

1-byte units.
v End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count.

The default is Bytes.

Justification Enumerated

type

If you have set the Physical Type property to External Decimal, select Left

Justify or Right Justify (the default value) from the list. If you have selected

another value for Physical Type, this is property is inactive.

Message model reference information 263

Property Type Meaning

Padding

Character

String The padding character is used to fill out the remaining character positions when

the string length is less than the specified string size. If you have set the Physical

Type property to Extended Decimal, and the Justification property is either Left

Justify or Right Justify, specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal

value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM

element depends on the padding character that is required and whether the

padding character is to be subject to data conversion. In most cases, the

specification of a padding character in quotqtion marks is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated. For example, when converting

from ASCII to the code page 500, if you have specified U+0008 as your padding

character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC

representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should

ensure that the converted value of the padding character is valid for this code

page. If the padding character cannot be represented in the target code page, it

is replaced by a substitution character. The substitution character is fixed and its

value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the

hexadecimal or decimal format can be used. This gives the option of specifying

an absolute value as a padding character that is inserted directly into the output

message. If this format is used, you should still aim to ensure that this value is

valid for the code page of any output messages that are created using these

MRM definitions.

Numeric representation

 Property Type Meaning

Signed Check box Select (the default) or clear this property. This property is used in conjunction

with Sign Orientation.

264 Message Models

Property Type Meaning

Sign EBCDIC

Custom

Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom

property is set, this indicates that the Sign EBCDIC Custom Overpunched

representation is to be used within an ASCII environment. If this check box is

not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate

only if the Sign Orientation property is set to Leading or Trailing (indicating that

the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,

if the Signed check box is not set).

Sign

Orientation

Enumerated

type

If you have set Physical Type to External Decimal and you have selected Signed,

choose from the following options that represent the COBOL options for

displaying numeric data:

v Leading Overpunched. This sets a bit in the first byte if the number is negative.

No setting is made if the number is positive. For example, the ASCII

hexadecimal representation of the number 22 is x’3232’. Using this option, the

number +22 would be x’3232’ and the number -22 would be x’7232’. This is

the default value.

v Leading Separate. This sets the first byte of the element to ’+’ if the number is

positive and to ’-’ if the number is negative. For this option, the length must

include the sign byte.

v Trailing Overpunched. This sets a bit in the last byte if the number is

negative. No setting is made if the number is positive. Using this option, the

number +22 would be x’3232’ and the number -22 would be x’3272’.

v Trailing Separate. This sets the last byte of the element to ’+’ if the number

is positive and to ’-’ if the number is negative. For this option, the length must

include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set

for you.

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Message model reference information 265

Property Type Meaning

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

CWF properties for attribute reference and local attribute string types:

The Custom Wire Format properties described here apply to:

v Objects: Attribute Reference, Local Attribute

v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,

QName, string, token

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select one of the following from the displayed list:

v Fixed Length String. The element’s length is determined by other length

properties below.

v Length Encoded String 1. The element’s first byte contains the length of the

string following the length byte in length units. The maximum length of a

Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The element’s first two bytes contain the length of

the string following the 2 length bytes in length units. The maximum length

of a Length Encoded String 2 element is 65535 length units. The two length

bytes are in the format of the WebSphere MQ queue manager Encoding.

v Null Terminated String. The string ends with the hexadecimal NULL

character, X’00’.

The default is Fixed Length String.

Length Button and

Integer

If you have selected a Physical Type of Fixed Length String or Binary, and have

selected the length to be defined by Length, enter the number of length units for

the element.

The minimum value that you can specify is 0 (zero), the maximum value that

you can specify is 2147483647

The default value is 0 (zero).

Length

Reference

Button and

Enumerated

type

If you have selected the length to be defined by Length Reference, select the name

of the integer object that specifies the length of this object. Make your selection

from the displayed list of integer objects that are defined as siblings of the

current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page

108.

266 Message Models

Property Type Meaning

Inclusive

Length

Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of

the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object

must be the same as that of the current object.

Length Units Enumerated

type

Select the unit of length for the element or attribute. Select one of the following

options from the displayed list (some physical types do not offer all of these

options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads

one character at a time and determines whether the character comprises

one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is

determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to

Characters.

– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest

character unit that the code page supports. However, this means that a

message must contain only these characters if it is to be processed correctly.

For example, in code page ″UTF-8″ (CCSID 1208), the minimum character

unit is one byte; therefore, the parser can make a single read (of the

number of bytes specified by the Length property) to fetch the entire

message. The message must contain only characters that are encoded in

1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count or Length

Reference property.

The default is Bytes.

Justification Enumerated

type

If you have set the Physical Type property to Fixed Length String, select Left

Justify (the default value) or Right Justify from the list. If you have selected

another value for Physical Type, this is property is inactive.

Message model reference information 267

Property Type Meaning

Padding

Character

String If you have set the Physical Type property to Fixed Length String, and the

Justification property is either Left Justify or Right Justify, this property is

applicable.

When writing an output message, use the padding character to fill out the

remaining character positions when the string length is less than the length

implied by the Length or Length Reference property. Whether the string is padded

from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end

of the string. Whether the string is trimmed from the left or the right is

governed by the Justification property.

Specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal

value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM

element depends on the padding character that is required and whether the

padding character is to be subject to data conversion. In most cases, the

specification of a padding character in quotqtion marks is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated. For example, when converting

from ASCII to the code page 500, if you have specified U+0008 as your padding

character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC

representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should

ensure that the converted value of the padding character is valid for this code

page. If the padding character cannot be represented in the target code page, it

is replaced by a substitution character. The substitution character is fixed and its

value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the

hexadecimal or decimal format can be used. This gives the option of specifying

an absolute value as a padding character that is inserted directly into the output

message. If this format is used, you should still aim to ensure that this value is

valid for the code page of any output messages that are created using these

MRM definitions.

268 Message Models

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Attribute reference XML properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - base64Binary

 - hexBinary

Boolean types

 - Boolean

DateTime types

 - date

 - dateTime

 - gDay

 - gMonth

 - gMonthDay

 - gYear

 - gYearMonth

 - time

Decimal types

 - decimal

 - integer

 - negativeInteger

 - nonNegativeInteger

 - nonPositiveInteger

 - positiveInteger

 - unsignedLong

Message model reference information 269

Float types

 - double

 - float

Integer types

 - byte

 - int

 - long

 - short

 - unsignedByte

 - unsignedInt

 - unsignedShort

Interval types

 - duration

String types

 - anyURI

 - ENTITIES

 - ENTITY

 - ID

 - IDREF

 - IDREFS

 - language

 - Name

 - NCName

 - NMTOKEN

 - NMTOKENS

 - normalizedString

 - NOTATION

 - QName

 - string

 - token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the

String logical types.

XML properties for attribute reference, element reference, local attribute, local element

binary types:

The XML Wire Format properties described here apply to:

v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element

v Binary schema types: base64Binary, hexBinary

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

270 Message Models

Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an

attribute of the parent XML object. The identity of the child is determined by

the attribute name. The value is the attribute value. This is only valid for

simple elements.

If you select this value for more than one object , you must set their XML

Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered

as a child XML element of the parent complex type. The identity of the child

is determined by the tag name of the child. The value is the value of a

specified attribute. The name of the attribute is specified in Value Attribute

Name.

v XMLElementAttrIDVal. This option combines the two options,

XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of

the parent complex type. The identity of the child is determined by the value

of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

Message model reference information 271

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute

Name

String

Specify the name of the attribute used for the value of the child. This must be a

valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Physical representation

 Property Type Meaning

Encoding String Select one of the following values from the drop-down list: :

v CDatahex (the default). Hexadecimal values in this field are specified with the

CDATA qualifier, for example <e1><![CDATA[62]]></e1>

v hex. Hexadecimal values in this field are specified as digits only, for example

<e1>62</e1>.

v base64. Values in this field are specified as digits only, coded in base 64.

XML properties for attribute reference, element reference, local attribute, local element

Boolean types:

The XML Wire Format properties described here apply to:

v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element

v Boolean schema types: Boolean

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

272 Message Models

Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an

attribute of the parent XML object. The identity of the child is determined by

the attribute name. The value is the attribute value. This is only valid for

simple elements.

If you select this value for more than one object , you must set their XML

Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered

as a child XML element of the parent complex type. The identity of the child

is determined by the tag name of the child. The value is the value of a

specified attribute. The name of the attribute is specified in Value Attribute

Name.

v XMLElementAttrIDVal. This option combines the two options,

XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of

the parent complex type. The identity of the child is determined by the value

of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

Message model reference information 273

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute

Name

String

Specify the name of the attribute used for the value of the child. This must be a

valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element

dateTime types:

The XML Wire Format properties described here apply to:

v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element

v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

274 Message Models

Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an

attribute of the parent XML object. The identity of the child is determined by

the attribute name. The value is the attribute value. This is only valid for

simple elements.

If you select this value for more than one object , you must set their XML

Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered

as a child XML element of the parent complex type. The identity of the child

is determined by the tag name of the child. The value is the value of a

specified attribute. The name of the attribute is specified in Value Attribute

Name.

v XMLElementAttrIDVal. This option combines the two options,

XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of

the parent complex type. The identity of the child is determined by the value

of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

Message model reference information 275

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute

Name

String

Specify the name of the attribute used for the value of the child. This must be a

valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Physical representation

 Property Type Meaning

DateTime

Format

String Specify a format string that specifies the rendering of the value for dateTime

elements.

The default dateTime format is dependent on the logical type of the object. For

information about the defaults for the dateTime format according to the logical

type see “DateTime defaults by logical type” on page 770.

See “DateTime formats” on page 763 for details of dateTime formats.

XML properties for attribute reference, element reference, local attribute, local element

decimal types:

The XML Wire Format properties described here apply to:

v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element

v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

276 Message Models

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

 Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an

attribute of the parent XML object. The identity of the child is determined by

the attribute name. The value is the attribute value. This is only valid for

simple elements.

If you select this value for more than one object , you must set their XML

Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered

as a child XML element of the parent complex type. The identity of the child

is determined by the tag name of the child. The value is the value of a

specified attribute. The name of the attribute is specified in Value Attribute

Name.

v XMLElementAttrIDVal. This option combines the two options,

XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of

the parent complex type. The identity of the child is determined by the value

of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

Message model reference information 277

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute

Name

String

Specify the name of the attribute used for the value of the child. This must be a

valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element float

types:

The XML Wire Format properties described here apply to:

v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element

v Float schema types: double, float

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

278 Message Models

Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an

attribute of the parent XML object. The identity of the child is determined by

the attribute name. The value is the attribute value. This is only valid for

simple elements.

If you select this value for more than one object , you must set their XML

Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered

as a child XML element of the parent complex type. The identity of the child

is determined by the tag name of the child. The value is the value of a

specified attribute. The name of the attribute is specified in Value Attribute

Name.

v XMLElementAttrIDVal. This option combines the two options,

XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of

the parent complex type. The identity of the child is determined by the value

of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

Message model reference information 279

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute

Name

String

Specify the name of the attribute used for the value of the child. This must be a

valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element

integer types:

The XML Wire Format properties described here apply to:

v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element

v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

280 Message Models

Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an

attribute of the parent XML object. The identity of the child is determined by

the attribute name. The value is the attribute value. This is only valid for

simple elements.

If you select this value for more than one object , you must set their XML

Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered

as a child XML element of the parent complex type. The identity of the child

is determined by the tag name of the child. The value is the value of a

specified attribute. The name of the attribute is specified in Value Attribute

Name.

v XMLElementAttrIDVal. This option combines the two options,

XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of

the parent complex type. The identity of the child is determined by the value

of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

Message model reference information 281

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute

Name

String

Specify the name of the attribute used for the value of the child. This must be a

valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element

string types:

The XML Wire Format properties described here apply to:

v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element

v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,

QName, string, token

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

282 Message Models

Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an

attribute of the parent XML object. The identity of the child is determined by

the attribute name. The value is the attribute value. This is only valid for

simple elements.

If you select this value for more than one object , you must set their XML

Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered

as a child XML element of the parent complex type. The identity of the child

is determined by the tag name of the child. The value is the value of a

specified attribute. The name of the attribute is specified in Value Attribute

Name.

v XMLElementAttrIDVal. This option combines the two options,

XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of

the parent complex type. The identity of the child is determined by the value

of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

Message model reference information 283

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute

Name

String

Specify the name of the attribute used for the value of the child. This must be a

valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Attribute reference TDS properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - base64Binary

 - hexBinary

Boolean types

 - Boolean

DateTime types

 - date

 - dateTime

 - gDay

 - gMonth

 - gMonthDay

 - gYear

 - gYearMonth

 - time

Decimal types

 - decimal

 - integer

 - negativeInteger

 - nonNegativeInteger

 - nonPositiveInteger

 - positiveInteger

 - unsignedLong

284 Message Models

Float types

 - double

 - float

Integer types

 - byte

 - int

 - long

 - short

 - unsignedByte

 - unsignedInt

 - unsignedShort

Interval types

 - duration

String types

 - anyURI

 - ENTITIES

 - ENTITY

 - ID

 - IDREF

 - IDREFS

 - language

 - Name

 - NCName

 - NMTOKEN

 - NMTOKENS

 - normalizedString

 - NOTATION

 - QName

 - string

 - token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the

String logical types.

TDS properties for attribute reference binary types:

The TDS Format properties described here apply to:

v Objects: Attribute Reference

v Binary schema types: base64Binary, hexBinary

 Property Type Meaning

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

Inclusive

Length

Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of

the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object

must be the same as that of the current object.

TDS properties for attribute reference Boolean types:

There are no properties to show.

TDS properties for attribute reference dateTime types:

Message model reference information 285

The TDS Format properties described here apply to:

v Objects: Attribute Reference

v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

 Property Type Meaning

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

Inclusive

Length

Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of

the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object

must be the same as that of the current object.

TDS properties for attribute reference decimal types:

The TDS Format properties described here apply to:

v Objects: Attribute Reference

v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

 Property Type Meaning

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

Inclusive

Length

Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of

the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object

must be the same as that of the current object.

286 Message Models

TDS properties for attribute reference float types:

The TDS Format properties described here apply to:

v Objects: Attribute Reference

v Float schema types: double, float

 Property Type Meaning

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

Inclusive

Length

Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of

the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object

must be the same as that of the current object.

TDS properties for attribute reference integer types:

The TDS Format properties described here apply to:

v Objects: Attribute Reference

v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

 Property Type Meaning

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

Inclusive

Length

Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of

the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object

must be the same as that of the current object.

Message model reference information 287

TDS properties for attribute reference string types:

The TDS Format properties described here apply to:

v Objects: Attribute Reference

v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,

QName, string, token

 Property Type Meaning

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

Inclusive

Length

Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of

the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object

must be the same as that of the current object.

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the

understanding of the function of that object. The documentation property is

available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric

characters.

Complex type properties

A complex type can have the following properties;

v “Complex type logical properties” on page 186

v “Complex type CWF properties” on page 215

v “Complex type XML properties” on page 221

v “Complex type TDS properties” on page 230

v “Documentation properties for all message set objects” on page 183

Complex type logical properties:

288 Message Models

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters

A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a

number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the

XML standards specification.

Further details of naming conventions and allowable characters can be found in

the Extensible Markup Language (XML) specification that can be found on the

World Wide Web Consortium (W3C) Web site.

Base Type Enumerated

type

You can use this property to select a type (simple or complex) that is used as the

starting point to define a new complex type that is derived by restriction or

extension.

Derived By Enumerated

type

If this property is active, select from;

v restriction. If a complex type is derived by restriction, the content model of

the complex type is a subset of the base type.

v extension. If the complex type is derived by extension, the content model of

the complex type is the content model of the base type plus the content model

specified in the type derivation.

Derivation by list or union is not supported.

Content

The table below shows the valid settings for Composition and Content Validation.

These properties are actually located on the group which defines the content of this

type. They can only be edited if the Local group button is selected. If the Global

group button is selected, these properties are taken from the global group identified

by the Group name field.

Valid children in a complex type that depend on both Composition and Content

Validation are shown in “MRM content validation” on page 189.

 Property Type Meaning

Local Group Button You should select this if the content of your complex type is a local group.

Message model reference information 289

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Property Type Meaning

Composition Enumerated

type

Define the order, and the number of occurrences, of the elements and groups in

your messages. Composition does not affect the attributes in a complex type.

Select from:

v Empty

v sequence. If you select this option, you can define members that are elements

or groups. These members, if present, must appear in the specified order in

the message. They can repeat, and the same element or group can appear

more than once.

v choice. If you select this option, you can define members that are elements or

groups. Exactly one of the defined members must be present in the message,

and can repeat.

Use this option if you want to model C unions and COBOL REDEFINES in a

Custom Wire Format, or an XML DTD element that uses choice in an XML

Wire Format, or a SWIFT field that has more than one option.

v all. If you select this option, you can define members that are elements;

groups are not allowed. The elements in an all group can appear in any

order. Each element can appear once, or not at all. An all group can only be

used at the top level of a complex type - it cannot be a member of another

group within a type.

v unorderedSet.

This option is supported only by the MRM domain.If you select this option,

you can define members that are elements. The elements can repeat but the

same element cannot appear twice in the list of members. The elements can

appear in any order in the message.

v orderedSet.

This option is supported only by the MRM domain.If you select this option,

you can define members that are elements. The elements can repeat, but the

same element cannot appear twice in the list of members. The elements must

appear in the specified order in the message.

v message.

This option is supported only by the MRM domain.If you select this option,

you can define only messages as members. Each member can repeat, but the

same message cannot appear twice in the list of members. Like choice, only

one of the defined members can be present in a message.

Unlike choice, when writing a message, if the complex type or group has

more than one member, the bit stream is not padded to the length of the

longest member.

Use this option to model multipart messages, which are used in some

industry standards, for example, SWIFT. For more information, see the section

on multipart messages in “Multipart messages” on page 25.

290 Message Models

Property Type Meaning

Content

Validation

Enumerated

type

Content Validation is used only by the MRM domain. If validation is enabled in

your message flow, Content Validation specifies the strictness of the MRM

validation for members of a complex type or group. See “MRM content

validation” on page 189 for further details.

Options:

v Closed. The complex type can only contain the child elements that you have

added to it.

v Open Defined. The complex type can contain any valid element defined within

the message set.

v Open. The complex type can contain any valid element, not just those that you

have added to this complex type.

See “Combinations of Composition and Content Validation” on page 293 for

further details of these options.

Group

Reference

Button You should select this if the content of your complex type is a reference to a

group object

Group Name Enumerated

type

The Group Name is the name of the group that this complex type is referring to.

The groups available to be referenced can be selected from the drop down list.

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default is

1.

If the value is set to 0, then the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,

it must be less than or equal to the value in Max Occurs.

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default is

1.

If this property is not set, then the object can not occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the

message.

It can also be set to -1 to indicate that the limit is unbounded and there is no

maximum to the number of occurrences.

Mixed Check box Select this where the complex type has mixed content and contains character

data alongside sub-elements.

Substitution settings

 Property Type Meaning

Final Multiple

selection

enumerated

type

The final attribute on a complex type controls whether other types may be

derived from it. Valid values are extension/restriction/all. You can select from

one or more of the following:

v Empty

v restriction. Prohibit type substitution by elements whose types are

restrictions of the head element’s type.

v extension. Prohibit type substitution by elements whose types are extensions

of the head element’s type.

v #all. Prohibit substitution by any method.

To select more than one, you will need to type the selection into the property

field.

Message model reference information 291

Property Type Meaning

Block Multiple

selection

enumerated

type

The block attribute on a complex type restricts the types of substitutions which

are allowed for elements based on that type. In the WebSphere Message Broker

its effect is the same as if the block attribute were copied from the complex type

onto every element based on the complex type. You can select from one or more

of the following:

v Empty

v restriction. Prohibit type substitution by elements whose types are

restrictions of the head element’s type.

v extension. Prohibit type substitution by elements whose types are extensions

of the head element’s type.

v #all. Prohibit substitution by any method.

To select more than one, you will need to type the selection into the property

field.

Abstract Check box If selected, no elements based on this type can appear in the message.

MRM content validation:

Content Validation is applied when the domain is MRM and validation is enabled.

The Content Validation property specifies how strictly the MRM parser validates the

members of a complex type or group.

The first table below shows the valid settings for Content Validation if Composition is

set to Message, and the second table shows the valid settings for Content Validation

if Composition is not set to Message.

Content Validation options if Composition is set to Message

 Option Meaning

Open When a message is parsed, this complex type or group can contain any message, not just those

that you have defined in this message set. You can use this option for sparse messages (see

“Predefined and self-defining elements and messages” on page 30 for a definition of sparse

messages).

Closed When a message is parsed, this complex type or group can only contain the messages that are

members of this complex type or group. This is always the case for messages represented in

CWF format.

Open Defined When a message is parsed, this complex type or group can contain any message defined within

the message set.

Content Validation options if Composition is not set to Message

 Option Meaning

Open When a message is parsed, this complex type or group can contain any elements and not just

those that you have defined in this message set (see “Predefined and self-defining elements and

messages” on page 30 for a definition of sparse messages).

Closed When a message is parsed, this complex type or group can only contain the elements that are

members of this complex type or group.

Open Defined When a message is parsed, this complex type or group can contain any element that you have

defined within the message set.

292 Message Models

When you are using Content Validation set to open or open defined, you can not

specify the precise position where the content that is not modeled is permitted to

occur. If you wish to do this, you should consider using a wildcard element as an

alternative. Note that wildcard elements can only appear within a complex type or

group with Composition of sequence and Content Validation of closed.

Combinations of Composition and Content Validation:

If your message is in the MRM domain, and validation is enabled, the members of

each complex type or group are validated. The MRM validation logic is controlled

by the Composition and Content Validation properties, as described in the table

below.

Content validation applies also to the IDOC domain because the IDoc parser uses

the MRM parser internally. Content Validation does not affect validation in the

XMLNSC domain.

Valid children in complex types dependent on Composition and Content

Validation

 Composition Content Validation Valid children

Empty Closed None

Empty Open None

Empty Open Defined None

Sequence Open Elements, group references, embedded simple types

Sequence Closed Elements, group references, embedded simple types

Sequence Open Defined Elements, group references, embedded simple types

Choice Closed Elements, group references, embedded simple types

All Closed Elements

All Open Elements

All Open Defined Elements

Unordered Set Open Elements

Unordered Set Closed Elements

Unordered Set Open Defined Elements

Ordered Set Open Elements

Ordered Set Closed Elements

Ordered Set Open Defined Elements

Message Open Messages

Message Closed Messages

Message Open Defined Messages

Valid combinations of repeat and duplicate elements in complex types:

The table below defines the valid combinations of repeated and duplicate elements

within a complex type, dependent on the Composition property value.

v A repeated element is an element that is included once within the complex type,

and is defined with the property Min Occurs set to greater than 1. Repeated

elements are therefore always contiguous and are always specified in the form

A[n].

Message model reference information 293

v A duplicate element is an element included more than once anywhere within the

complex type. Duplicate elements do not have to be contiguous.

Repeated and duplicate elements in a complex type

 Elements in type Example Unordered Set Ordered Set Sequence

No repeats, no

duplicates

A, B, C Yes Yes Yes

Repeated element

(contiguous)

A[n], B, C Yes Yes Yes

Duplicate element A

(contiguous)

A, A, B, C No No Yes

Duplicate element A

(non-contiguous)

A, B, C, A No No Yes

Complex type CWF properties:

There are no properties to show.

Complex type XML properties:

There are no properties to show.

Complex type TDS properties:

Field Identification

If the complex type is based on a global group, the TDS properties listed below

will actually be located on the global group. If this is the case, any changes to

these properties will be applied to the global group, and will affect all references to

the group (including any other complex types which are based on it).

294 Message Models

Property Type Meaning

Data Element

Separation

Enumerated

type

Select one of the following values to specify the method that is used to separate

the data elements within the type.

v Tagged Delimited. This value indicates that all elements within the complex

type are identified by a tag, and are separated by the value that is specified in

the optional Delimiter property (if specified). You must set the Tag property for

all child elements of simple type, and you can set the Delimiter property to a

non-empty value. See “Global element TDS properties” on page 234. You must

also set the Tag Data Separator or the Length of Tag property.

v Tagged Fixed Length. This value indicates that each element is identified by a

tag, and the data has a fixed length. There are no delimiters. You must set the

Tag property for each of the child elements of this complex type, and each

child element must have a Length or Length Reference property assigned to it.

You must also set the Tag Data Separator or the Length of Tag property.

v Tagged Encoded Length. This value indicates that all elements within the

complex type are separated by a tag, and a length field follows each tag.

There are no delimiters. The tag can be fixed length, as set by the Length of Tag

property, or variable length delimited by the Tag Data Separator property. You

must also set the Length Of Encoded Length property so that the parser knows

the size of the length field, and set the Extra Chars in Encoded Length property

to tell the parser what to subtract from the value in the Length Of Encoded

Length property to get the actual length of the data that follows the length

field.

This method provides a more flexible way of handling ACORD AL3 standard

messages than using the Fixed Length AL3 value, by allowing different parts

of the messages to be at different versions of the ACORD AL3 standard.

v All Elements Delimited. This value indicates that all elements within the

complex type are separated by a delimiter. You must set a value in the

Delimiter property.

v Variable Length Elements Delimited. This value indicates that some of the

elements within the complex type might be of variable length; if they are, they

must be delimited by the value that is specified in the Delimiter property.

v Use Data Pattern. This value indicates that the parser determines the

elements by matching the data with the regular expression that is set in the

Data Pattern property of the element or type member. See “Message definition

file properties” on page 181.

v Fixed Length. This value indicates that all elements within the complex type

are fixed length. The next data element is accessed by adding the value of the

Length property to the offset. See “Global element TDS properties” on page

234. If you set the Data Element Separation property of a complex type to Fixed

Length, you must also set the Data Element Separation property of all complex

children of this type to Fixed Length. Each child element must have a Length

or Length Reference property assigned to it.

v Fixed Length AL3. This value has a similar meaning to the separation type

Fixed Length, but also indicates to the parser that a number of predefined

rules with regard to missing optional elements, encoded lengths, and

versioning, must be applied. If you set the Data Element Separation property of

a complex type to Fixed Length AL3, you must also set the Data Element

Separation property of all complex children of this type to Fixed Length AL3.

v Undefined. This value is set automatically if you set the Type Composition

property of a complex type to Message, and you cannot change it to any other

value.

Do not set the Type Composition property to Empty, Choice, Unordered Set,

Ordered Set, Sequence, or Simple Unordered Set. If you do, you cannot check

in the type.

Message model reference information 295

Property Type Meaning

Group Indicator String Specify the value of a special character, or string, that precedes the data that

belongs to a group, or a complex type, within the bit stream.

Group

Terminator

String Specify the value of a special character, or string, that terminates the data that

belongs to a group, or a complex type, within the bit stream.

Delimiter String Specify the value of a special character, or string, that specifies the delimiter that

is used between data elements.

This property applies only to the delimited Data Element Separation methods

(Tagged Delimited, All Elements Delimited, and Variable Length Elements

Delimited).

Suppress

Absent Element

Delimiters

Enumerated

type

Use this property to select whether you want delimiters to be suppressed for

elements that are missing within a message.

Select from:

v End Of Type. Use this option to suppress the delimiter when an element is

missing. For example, if the model has been defined to have up to 3 elements

and only 2 are present, the last delimiter can be omitted from the message.

v Never. Use this option to ensure that even if optional elements are not present,

all delimiters are written out. This option should be used when the same

delimiter is used to delimit parent and child objects. For example, if an

optional child element is missing, message processing applications could not

tell where the child elements in a message ended and the next parent element

started, if the delimiters are all the same.

Observe

Element Length

Check box This property is applicable when Data Element Separation is All Elements

Delimited, and tells the TDS parser to take any Length property of child

elements or attributes into account. The default value depends on the setting of

the Messaging Standard property (at the message set level) and the Data Element

Separation property.

v If Data Element Separation is All Elements Delimited and the Messaging

Standard is set to TLOG, the check box is selected. For all other messaging

standards, the check box is cleared.

v If Data Element Separation is Tagged Delimited, the check box is cleared.

v If Data Element Separation is Tagged Fixed Length, Fixed Length, Fixed Length

AL3, or Variable Length Elements Delimited, this property is set and is

disabled.

v For all other data element separation methods, this property is not set and is

disabled.

Tag Data

Separator

Button and

String

Specify the value of a special character or string that separates the Tag from the

data. The Tag Data Separator and Length of Tag properties are mutually exclusive.

If you set the property Tag Data Separator, it overrides Length of Tag.

This property applies only to the tagged Data Element Separation methods (Tagged

Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Length of Tag Button and

Integer

Specify the length of a tag value. When the message is parsed, this allows tags

to be extracted from the bit stream if the Tag Data Separator property is not set.

The Tag Data Separator and Length of Tag properties are mutually exclusive. If you

set the property Tag Data Separator, it overrides this value.

This property applies only to the tagged Data Element Separation methods (Tagged

Delimited, Tagged Fixed Length, and Tagged Encoded Length).

296 Message Models

Property Type Meaning

Length of

Encoded

Length

Integer Specifies the number of characters (not bytes) after a tag that are used for the

length field. Enter a value from 0 to 2 147 483 647.

You must set this property if you have set the Data Element Separation property

to Tagged Encoded Length; it is not valid otherwise.

The actual number of data characters that are parsed depends on the value of

the Extra Chars in Encoded Length property.

Extra Chars in

Encoded

Length

Integer (Only valid if the Data Element Separation method is set to Tagged Encoded

Length.) Specifies the number of extra characters included in the value found in

the length field. (For example, the value in the length might include the size of

the length field itself as well as the size of the data field, or it might be the total

size of the tag, length, and data fields.)

Enter a value from 0 to 2 147 483 647. The parser subtracts this number from the

number found in the length field to get the number of data characters that follow

the length field.

You must set this property if you have set the Data Element Separation property

to Tagged Encoded Length, and the actual number of data characters is less than

the value found in the length field.

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the

understanding of the function of that object. The documentation property is

available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric

characters.

Element reference properties

An element reference can have the following properties:

v “Element reference logical properties” on page 190

v “Element reference CWF properties” on page 215

v “Element reference XML properties” on page 221

v “Element reference TDS properties” on page 233

v “Documentation properties for all message set objects” on page 183

Element reference logical properties:

 Property Type Meaning

Reference Name Enumerated

type

The Reference Name is the name of the object that this object is referring to. The

objects available to reference can be selected from the drop-down list.

Message model reference information 297

Occurrences

 Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default is

1.

If the value is set to 0, then the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,

it must be less than or equal to the value in Max Occurs.

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default is

1.

If this property is not set, then the object can not occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the

message.

It can also be set to -1 to indicate that the limit is unbounded and there is no

maximum to the number of occurrences.

The Min Occurs and Max Occurs properties are used in conjunction with an

element’s Value properties. The table below summarizes how an element reference

can be constrained.

 Min Occurs Max Occurs Fixed Default Notes

1 1 The element must appear once and can have

any value.

1 1 Delta The element must appear once and it must

match the data that has been entered in the

Value property. In this example the element

must contain the text Delta.

2 -1 Delta The element must appear twice or more and it

must match the data that has been entered in

the Value property. In this example there will

be at least two elements that must contain the

text Delta.

0 1 The element is optional and can appear once

and have any value.

0 1 Delta The element is optional and can appear once.

If it does appear, its value must match the data

that has been entered in the Value property. If

it does not appear its value will be the data

that has been entered in the Value property.

0 1 Delta The element is optional and can appear once.

If it does not appear, its value will be the data

that has been entered in the Value property. If

it does appear it must be the value given in

the element.

0 2 Delta The element is optional and can appear once,

twice or not at all. If the element does not

appear it is not provided. If the element

appears and it is empty, it set to the data held

in the Value property, else it is the value given

in the element.

298 Message Models

Min Occurs Max Occurs Fixed Default Notes

0 0 The element is prohibited and must not

appear.

Element reference CWF properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - base64Binary

 - hexBinary

Boolean types

 - Boolean

DateTime types

 - date

 - dateTime

 - gDay

 - gMonth

 - gMonthDay

 - gYear

 - gYearMonth

 - time

Decimal types

 - decimal

 - integer

 - negativeInteger

 - nonNegativeInteger

 - nonPositiveInteger

 - positiveInteger

 - unsignedLong

Float types

 - double

 - float

Integer types

 - byte

 - int

 - long

 - short

 - unsignedByte

 - unsignedInt

 - unsignedShort

Interval types

 - duration

String types

 - anyURI

 - ENTITIES

 - ENTITY

 - ID

 - IDREF

 - IDREFS

 - language

 - Name

 - NCName

 - NMTOKEN

 - NMTOKENS

 - normalizedString

 - NOTATION

 - QName

 - string

 - token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the

String logical types.

CWF properties for element reference and local element binary types:

The Custom Wire Format properties described here apply to:

v Objects: Element Reference, Local Element

v Binary schema types: base64Binary, hexBinary

Message model reference information 299

Physical representation

 Property Type Meaning

Length Button and

Integer

If you have selected the length to be defined by Length, enter the number of

length units for the element.

The minimum value that you can specify is 1.

The maximum value that you can specify is 2147483647.

The default value is empty (not set).

Length

Reference

Button and

Enumerated

type

If you have selected the length to be defined by Length Reference, select the name

of the integer object that specifies the length of this object. Make your selection

from the displayed list of integer objects that are defined as siblings of the

current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page

108.

Inclusive

Length

Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of

the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object

must be the same as that of the current object.

300 Message Models

Property Type Meaning

Length Units Enumerated

type

Select the unit of length for the element or attribute. Select one of the following

options from the displayed list (some physical types do not offer all of these

options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads

one character at a time and determines whether the character comprises

one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is

determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to

Characters.

– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest

character unit that the code page supports. However, this means that a

message must contain only these characters if it is to be processed correctly.

For example, in code page ″UTF-8″ (CCSID 1208), the minimum character

unit is one byte; therefore, the parser can make a single read (of the

number of bytes specified by the Length property) to fetch the entire

message. The message must contain only characters that are encoded in

1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count or Length

Reference property.

The default is Bytes.

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Message model reference information 301

Property Type Meaning

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

 Property Type Meaning

Repeat

Reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the displayed list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

CWF properties for element reference and local element Boolean types:

The Custom Wire Format properties described here apply to:

v Objects: Element Reference, Local Element

v Boolean schema types: Boolean

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

302 Message Models

Occurrences

 Property Type Meaning

Repeat

Reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the displayed list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

CWF properties for element reference and local element dateTime types:

The Custom Wire Format properties described here apply to:

v Objects: Element Reference, Local Element

v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select one of the following from the displayed list:

v Fixed Length String. The element’s length is determined by other length

properties below.

v Length Encoded String 1. The element’s first byte contains the length of the

string following the length byte in length units. The maximum length of a

Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The element’s first two bytes contain the length of

the string following the 2 length bytes in length units. The maximum length

of a Length Encoded String 2 element is 65535 length units. The two length

bytes are in the format of the WebSphere MQ queue manager Encoding.

v Null Terminated String. The string ends with the hexadecimal NULL

character, X’00’.

v Packed Decimal. The dateTime is coded as a Packed Decimal number. It is

valid only if the DateTime Format property represents numeric-only data.

v Binary. The dateTime is encoded as a binary sequence of bytes. If you select

this option, the range of symbols that you can specify for the Format String

property is less than the range of symbols you can specify if you select a

string option (see “DateTime formats” on page 763 for details).

v Time Seconds. This value supports C time_t and Java Date and Time objects. It

is valid only if the DateTime Format property represents numeric-only data.

v Time Milliseconds. This value supports C time_t and Java Date and Time

objects. It is valid only if the DateTime Format property represents

numeric-only data.

The default value is fixed length string.

Message model reference information 303

Property Type Meaning

Length Button and

Integer

If you have selected a Physical Type of Fixed Length String, Packed Decimal, or

Binary, and have selected the length to be defined by Length, enter the number

of length units for the element.

The minimum value that you can specify is 1 for all three physical types.

The maximum value that you can specify is 256 for Fixed Length String, 10 for

Packed Decimal, and 2147483647 for Binary.

The default value is 0 (zero).

Length

Reference

Button and

Enumerated

type

If you have selected the length to be defined by Length Reference, select the name

of the integer object that specifies the length of this object. Make your selection

from the displayed list of integer objects that are defined as siblings of the

current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page

108.

Inclusive

Length

Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of

the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object

must be the same as that of the current object.

304 Message Models

Property Type Meaning

Length Units Enumerated

type

Select the unit of length for the element or attribute. Select one of the following

options from the displayed list (some physical types do not offer all of these

options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads

one character at a time and determines whether the character comprises

one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is

determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to

Characters.

– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest

character unit that the code page supports. However, this means that a

message must contain only these characters if it is to be processed correctly.

For example, in code page ″UTF-8″ (CCSID 1208), the minimum character

unit is one byte; therefore, the parser can make a single read (of the

number of bytes specified by the Length property) to fetch the entire

message. The message must contain only characters that are encoded in

1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count or Length

Reference property.

The default is Bytes.

Justification Enumerated

type

If you have set the Physical Type property to Fixed Length String, select Left

Justify (the default value) or Right Justify from the list. If you have selected

another value for Physical Type, this is property is inactive.

Message model reference information 305

Property Type Meaning

Padding

Character

String If you have set the Physical Type property to Fixed Length String, and the

Justification property is either Left Justify or Right Justify, this property is

applicable.

When writing an output message, use the padding character to fill out the

remaining character positions when the string length is less than the length

implied by the Length or Length Reference property. Whether the string is padded

from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end

of the string. Whether the string is trimmed from the left or the right is

governed by the Justification property.

Specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal

value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM

element depends on the padding character that is required and whether the

padding character is to be subject to data conversion. In most cases, the

specification of a padding character in quotqtion marks is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated. For example, when converting

from ASCII to the code page 500, if you have specified U+0008 as your padding

character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC

representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should

ensure that the converted value of the padding character is valid for this code

page. If the padding character cannot be represented in the target code page, it

is replaced by a substitution character. The substitution character is fixed and its

value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the

hexadecimal or decimal format can be used. This gives the option of specifying

an absolute value as a padding character that is inserted directly into the output

message. If this format is used, you should still aim to ensure that this value is

valid for the code page of any output messages that are created using these

MRM definitions.

DateTime

Format

String Specify a template for date and time.

The default dateTime format is dependent on the logical type of the object. For

information about the defaults for the dateTime format according to the logical

type see “DateTime defaults by logical type” on page 770.

See “DateTime formats” on page 763 for details of date and time formats.

306 Message Models

Numeric representation

 Property Type Meaning

Signed Check box Specify whether or not the value is signed.

This property is applicable only if the Physical type property is Packed Decimal.

By default, this check box is cleared, which indicates that the value is not signed.

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the displayed list. The option that you

select determines the value that you must set for the property Encoding Null

Value:

v NULLPadFill. This is valid only if Physical Type is Fixed Length String. The

field is filled with the value specified by the Padding Character. This is the

default value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an

actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that

is directly substituted as if it is a string. Use this option when the value you

have set for Encoding Null Value to specify a null date is not a dateTime value,

or does not conform to the standard dateTime format yyyy-MM-dd ’T’HH:mm:ss.

v NULLLiteralFill. The field is filled with the value specified by the Encoding

Null Value. Encoding Null Value must resolve to a single character.

Encoding Null

Value

String If you set the Encoding Null property to NULLPadFill, this property is disabled

(grayed out).

If you set the Encoding Null property to NULLLogicalValue, you must set this

property to an ISO8601 dateTime format. These formats are described in

“DateTime as string data” on page 763. For example, specify a value conforming

to yyyy-MM-dd’T’HH:mm:ss such as 1970-12-01.

If you set the Encoding Null property to NULLLiteralValue, you can enter any

value that is the same length as the field.

If you set the Encoding Null property to NULLLiteralFill, the value must resolve

to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY where YY is a

hexadecimal value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal format.

Message model reference information 307

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

 Property Type Meaning

Repeat

Reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the displayed list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

CWF properties for element reference and local element decimal types:

The Custom Wire Format properties described here apply to:

v Objects: Element Reference, Local Element

v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

308 Message Models

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select one of the following from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. This equates to the COMP-3 data type in COBOL.

v External Decimal. This equates to the data type PIC 9 USAGE DISPLAY in

COBOL.

The representation of numeric elements can be affected by the Encoding and

CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer and Packed Decimal are

represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in

the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the

displayed list.

v If you set the Physical Type to Packed Decimal, enter a value between 1 and 10.

v If you set the Physical Type to Extended Decimal, enter a value between 1 and

256. (Numbers greater than the maximum COBOL PICTURE clause of 18 are

assumed to be 18.)

Length Units Enumerated

type

Select the unit of length for the element or attribute. Select one of the following

options from the displayed list (some physical types do not offer all of these

options):

v Bytes.

v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads

one character at a time and determines whether the character comprises

one or more bytes.
v Character Units. This specifies that the size of each character (in bytes) is

determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to

Characters.

– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest

character unit that the code page supports. However, this means that a

message must contain only these characters if it is to be processed correctly.

For example, in code page ″UTF-8″ (CCSID 1208), the minimum character

unit is one byte; therefore, the parser can make a single read (of the

number of bytes specified by the Length property) to fetch the entire

message. The message must contain only characters that are encoded in

1-byte units.
v End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count.

The default is Bytes.

Message model reference information 309

Property Type Meaning

Justification Enumerated

type

If you have set the Physical Type property to External Decimal, select Left

Justify or Right Justify (the default value) from the list. If you have selected

another value for Physical Type, this is property is inactive.

Padding

Character

String The padding character is used to fill out the remaining character positions when

the string length is less than the specified string size. If you have set the Physical

Type property to Extended Decimal, and the Justification property is either Left

Justify or Right Justify, specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal

value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM

element depends on the padding character that is required and whether the

padding character is to be subject to data conversion. In most cases, the

specification of a padding character in quotqtion marks is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated. For example, when converting

from ASCII to the code page 500, if you have specified U+0008 as your padding

character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC

representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should

ensure that the converted value of the padding character is valid for this code

page. If the padding character cannot be represented in the target code page, it

is replaced by a substitution character. The substitution character is fixed and its

value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the

hexadecimal or decimal format can be used. This gives the option of specifying

an absolute value as a padding character that is inserted directly into the output

message. If this format is used, you should still aim to ensure that this value is

valid for the code page of any output messages that are created using these

MRM definitions.

Numeric representation

 Property Type Meaning

Signed Check box Select (the default) or clear this property. This property is used in conjunction

with Sign Orientation.

310 Message Models

Property Type Meaning

Sign EBCDIC

Custom

Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom

property is set, this indicates that the Sign EBCDIC Custom Overpunched

representation is to be used within an ASCII environment. If this check box is

not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate

only if the Sign Orientation property is set to Leading or Trailing (indicating that

the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,

if the Signed check box is not set).

Sign

Orientation

Enumerated

type

If you have set Physical Type to External Decimal and you have selected Signed,

choose from the following options that represent the COBOL options for

displaying numeric data:

v Leading Overpunched. This sets a bit in the first byte if the number is negative.

No setting is made if the number is positive. For example, the ASCII

hexadecimal representation of the number 22 is x’3232’. Using this option, the

number +22 would be x’3232’ and the number -22 would be x’7232’. This is

the default value.

v Leading Separate. This sets the first byte of the element to ’+’ if the number is

positive and to ’-’ if the number is negative. For this option, the length must

include the sign byte.

v Trailing Overpunched. This sets a bit in the last byte if the number is

negative. No setting is made if the number is positive. Using this option, the

number +22 would be x’3232’ and the number -22 would be x’3272’.

v Trailing Separate. This sets the last byte of the element to ’+’ if the number

is positive and to ’-’ if the number is negative. For this option, the length must

include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set

for you.

Virtual Decimal

Point

Integer Specify the number of places to the left (for a positive value) or right (for a

negative value) that a decimal point should be moved from its assumed position.

For example, a decimal element containing 1234 with a Virtual Decimal value of

3 is 1.234. This is equivalent to ’V’ or ’P’ in a COBOL picture clause. There is no

C equivalent

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the displayed list:

v NULLPadFill. This is valid only if Physical Type is External Decimal. The field

is filled with the value specified by the Padding Character. Encoding Null Value

must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the

required format for the field. This is the default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a

string. You can specify a nonnumeric value for Encoding Null Value.

v NULLLiteralFill. The field is filled with the value specified by the Encoding

Null Value. Encoding Null Value must resolve to a single character.

Message model reference information 311

Property Type Meaning

Encoding Null

Value

String The use of this property depends on the Encoding Null property, described

above, with the exception of NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must resolve

to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is

any alphanumeric character.

v Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal

value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal format.

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

 Property Type Meaning

Repeat

Reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the displayed list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

312 Message Models

CWF properties for element reference and local element float types:

The Custom Wire Format properties described here apply to:

v Objects: Element Reference, Local Element

v Float schema types: double, float

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select one of the following from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Float. This equates to the data type FLOAT or DOUBLE in C or the COMP-1

or COMP-2 data type in COBOL. This is the default value.

v Packed Decimal. This equates to the COMP-3 data type in COBOL.

v External Decimal. This equates to the data type PIC 9 USAGE DISPLAY in

COBOL.

The representation of numeric elements can be affected by the Encoding and

CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer, Packed Decimal, and Float are

represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in

the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Float, select a value from the displayed list. The

default value is 8.

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the

displayed list.

v If you set the Physical Type to Packed Decimal, enter a value between 1 and 10.

v If you set the Physical Type to Extended Decimal, enter a value between 1 and

256. (Numbers greater than the maximum COBOL PICTURE clause of 18 are

assumed to be 18.)

Message model reference information 313

Property Type Meaning

Length Units Enumerated

type

Select the unit of length for the element or attribute. Select one of the following

options from the displayed list (some physical types do not offer all of these

options):

v Bytes.

v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads

one character at a time and determines whether the character comprises

one or more bytes.
v Character Units. This specifies that the size of each character (in bytes) is

determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to

Characters.

– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest

character unit that the code page supports. However, this means that a

message must contain only these characters if it is to be processed correctly.

For example, in code page ″UTF-8″ (CCSID 1208), the minimum character

unit is one byte; therefore, the parser can make a single read (of the

number of bytes specified by the Length property) to fetch the entire

message. The message must contain only characters that are encoded in

1-byte units.
v End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count.

The default is Bytes.

Justification Enumerated

type

If you have set the Physical Type property to External Decimal, select Left

Justify or Right Justify (the default value) from the list. If you have selected

another value for Physical Type, this is property is inactive.

314 Message Models

Property Type Meaning

Padding

Character

String The padding character is used to fill out the remaining character positions when

the string length is less than the specified string size. If you have set the Physical

Type property to Extended Decimal, and the Justification property is either Left

Justify or Right Justify, specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal

value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM

element depends on the padding character that is required and whether the

padding character is to be subject to data conversion. In most cases, the

specification of a padding character in quotqtion marks is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated. For example, when converting

from ASCII to the code page 500, if you have specified U+0008 as your padding

character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC

representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should

ensure that the converted value of the padding character is valid for this code

page. If the padding character cannot be represented in the target code page, it

is replaced by a substitution character. The substitution character is fixed and its

value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the

hexadecimal or decimal format can be used. This gives the option of specifying

an absolute value as a padding character that is inserted directly into the output

message. If this format is used, you should still aim to ensure that this value is

valid for the code page of any output messages that are created using these

MRM definitions.

Numeric representation

 Property Type Meaning

Signed Check box Select or deselect (unsigned, the default) this property. If you have set Physical

Type to Float, this is selected. This property is used in conjunction with Sign

Orientation.

Message model reference information 315

Property Type Meaning

Sign EBCDIC

Custom

Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom

property is set, this indicates that the Sign EBCDIC Custom Overpunched

representation is to be used within an ASCII environment. If this check box is

not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate

only if the Sign Orientation property is set to Leading or Trailing (indicating that

the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,

if the Signed check box is not set).

Sign

Orientation

Enumerated

type

If you have set Physical Type to External Decimal and you have selected Signed,

choose from the following options that represent the COBOL options for

displaying numeric data:

v Leading Overpunched. This sets a bit in the first byte if the number is negative.

No setting is made if the number is positive. For example, the ASCII

hexadecimal representation of the number 22 is x’3232’. Using this option, the

number +22 would be x’3232’ and the number -22 would be x’7232’. This is

the default value.

v Leading Separate. This sets the first byte of the element to ’+’ if the number is

positive and to ’-’ if the number is negative. For this option, the length must

include the sign byte.

v Trailing Overpunched. This sets a bit in the last byte if the number is

negative. No setting is made if the number is positive. Using this option, the

number +22 would be x’3232’ and the number -22 would be x’3272’.

v Trailing Separate. This sets the last byte of the element to ’+’ if the number

is positive and to ’-’ if the number is negative. For this option, the length must

include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set

for you.

Virtual Decimal

Point

Integer Specify the number of places to the left (for a positive value) or right (for a

negative value) that a decimal point should be moved from its assumed position.

For example, a float element containing 1234 with a Virtual Decimal value of 3 is

1.234.

This is not applicable if you have set Physical Type to Float.

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the displayed list:

v NULLPadFill. This is valid only if Physical Type is External Decimal. The field

is filled with the value specified by the Padding Character. Encoding Null Value

must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the

required format for the field. This is the default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a

string. You can specify a nonnumeric value for Encoding Null Value.

v NULLLiteralFill. The field is filled with the value specified by the Encoding

Null Value. Encoding Null Value must resolve to a single character.

316 Message Models

Property Type Meaning

Encoding Null

Value

String The use of this property depends on the Encoding Null property, described

above, with the exception of NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must resolve

to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is

any alphanumeric character.

v Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal

value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal format.

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

 Property Type Meaning

Repeat

Reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the displayed list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

Message model reference information 317

CWF properties for element reference and local element integer types:

The Custom Wire Format properties described here apply to:

v Objects: Element Reference, Local Element

v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select one of the following from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. This equates to the COMP-3 data type in COBOL.

v External Decimal. This equates to the data type PIC 9 USAGE DISPLAY in

COBOL.

The representation of numeric elements can be affected by the Encoding and

CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer and Packed Decimal are

represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in

the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the

displayed list.

v If you have set Physical Type to Packed Decimal, enter a value between 1 and

6.

v If you have set Physical Type to Extended Decimal, enter a value between 1 and

11.

318 Message Models

Property Type Meaning

Length Units Enumerated

type

Select the unit of length for the element or attribute. Select one of the following

options from the displayed list (some physical types do not offer all of these

options):

v Bytes.

v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads

one character at a time and determines whether the character comprises

one or more bytes.
v Character Units. This specifies that the size of each character (in bytes) is

determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to

Characters.

– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest

character unit that the code page supports. However, this means that a

message must contain only these characters if it is to be processed correctly.

For example, in code page ″UTF-8″ (CCSID 1208), the minimum character

unit is one byte; therefore, the parser can make a single read (of the

number of bytes specified by the Length property) to fetch the entire

message. The message must contain only characters that are encoded in

1-byte units.
v End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count.

The default is Bytes.

Justification Enumerated

type

If you have set the Physical Type property to External Decimal, select Left

Justify or Right Justify (the default value) from the list. If you have selected

another value for Physical Type, this is property is inactive.

Message model reference information 319

Property Type Meaning

Padding

Character

String The padding character is used to fill out the remaining character positions when

the string length is less than the specified string size. If you have set the Physical

Type property to Extended Decimal, and the Justification property is either Left

Justify or Right Justify, specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal

value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM

element depends on the padding character that is required and whether the

padding character is to be subject to data conversion. In most cases, the

specification of a padding character in quotqtion marks is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated. For example, when converting

from ASCII to the code page 500, if you have specified U+0008 as your padding

character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC

representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should

ensure that the converted value of the padding character is valid for this code

page. If the padding character cannot be represented in the target code page, it

is replaced by a substitution character. The substitution character is fixed and its

value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the

hexadecimal or decimal format can be used. This gives the option of specifying

an absolute value as a padding character that is inserted directly into the output

message. If this format is used, you should still aim to ensure that this value is

valid for the code page of any output messages that are created using these

MRM definitions.

Numeric representation

 Property Type Meaning

Signed Check box Select (the default) or clear this property. This property is used in conjunction

with Sign Orientation.

320 Message Models

Property Type Meaning

Sign EBCDIC

Custom

Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom

property is set, this indicates that the Sign EBCDIC Custom Overpunched

representation is to be used within an ASCII environment. If this check box is

not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate

only if the Sign Orientation property is set to Leading or Trailing (indicating that

the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,

if the Signed check box is not set).

Sign

Orientation

Enumerated

type

If you have set Physical Type to External Decimal and you have selected Signed,

choose from the following options that represent the COBOL options for

displaying numeric data:

v Leading Overpunched. This sets a bit in the first byte if the number is negative.

No setting is made if the number is positive. For example, the ASCII

hexadecimal representation of the number 22 is x’3232’. Using this option, the

number +22 would be x’3232’ and the number -22 would be x’7232’. This is

the default value.

v Leading Separate. This sets the first byte of the element to ’+’ if the number is

positive and to ’-’ if the number is negative. For this option, the length must

include the sign byte.

v Trailing Overpunched. This sets a bit in the last byte if the number is

negative. No setting is made if the number is positive. Using this option, the

number +22 would be x’3232’ and the number -22 would be x’3272’.

v Trailing Separate. This sets the last byte of the element to ’+’ if the number

is positive and to ’-’ if the number is negative. For this option, the length must

include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set

for you.

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the displayed list:

v NULLPadFill. This is valid only if Physical Type is External Decimal. The field

is filled with the value specified by the Padding Character. Encoding Null Value

must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the

required format for the field. This is the default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a

string. You can specify a nonnumeric value for Encoding Null Value.

v NULLLiteralFill. The field is filled with the value specified by the Encoding

Null Value. Encoding Null Value must resolve to a single character.

Message model reference information 321

Property Type Meaning

Encoding Null

Value

String The use of this property depends on the Encoding Null property, described

above, with the exception of NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must resolve

to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is

any alphanumeric character.

v Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal

value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal format.

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

 Property Type Meaning

Repeat

Reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the displayed list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

322 Message Models

CWF properties for element reference and local element string types:

The Custom Wire Format properties described here apply to:

v Objects: Attribute Reference, Local Attribute

v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,

QName, string, token

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select one of the following from the displayed list:

v Fixed Length String. The element’s length is determined by other length

properties below.

v Length Encoded String 1. The element’s first byte contains the length of the

string following the length byte in length units. The maximum length of a

Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The element’s first two bytes contain the length of

the string following the 2 length bytes in length units. The maximum length

of a Length Encoded String 2 element is 65535 length units. The two length

bytes are in the format of the WebSphere MQ queue manager Encoding.

v Null Terminated String. The string ends with the hexadecimal NULL

character, X’00’.

The default is Fixed Length String.

Length Button and

Integer

If you have selected a Physical Type of Fixed Length String or Binary, and have

selected the length to be defined by Length, enter the number of length units for

the element.

The minimum value that you can specify is 0 (zero), the maximum value that

you can specify is 2147483647

The default value is 0 (zero).

Length

Reference

Button and

Enumerated

type

If you have selected the length to be defined by Length Reference, select the name

of the integer object that specifies the length of this object. Make your selection

from the displayed list of integer objects that are defined as siblings of the

current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page

108.

Inclusive

Length

Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of

the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object

must be the same as that of the current object.

Message model reference information 323

Property Type Meaning

Length Units Enumerated

type

Select the unit of length for the element or attribute. Select one of the following

options from the displayed list (some physical types do not offer all of these

options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads

one character at a time and determines whether the character comprises

one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is

determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to

Characters.

– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest

character unit that the code page supports. However, this means that a

message must contain only these characters if it is to be processed correctly.

For example, in code page ″UTF-8″ (CCSID 1208), the minimum character

unit is one byte; therefore, the parser can make a single read (of the

number of bytes specified by the Length property) to fetch the entire

message. The message must contain only characters that are encoded in

1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count or Length

Reference property.

The default is Bytes.

Justification Enumerated

type

If you have set the Physical Type property to Fixed Length String, select Left

Justify (the default value) or Right Justify from the list. If you have selected

another value for Physical Type, this is property is inactive.

324 Message Models

Property Type Meaning

Padding

Character

String If you have set the Physical Type property to Fixed Length String, and the

Justification property is either Left Justify or Right Justify, this property is

applicable.

When writing an output message, use the padding character to fill out the

remaining character positions when the string length is less than the length

implied by the Length or Length Reference property. Whether the string is padded

from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end

of the string. Whether the string is trimmed from the left or the right is

governed by the Justification property.

Specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal

value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM

element depends on the padding character that is required and whether the

padding character is to be subject to data conversion. In most cases, the

specification of a padding character in quotqtion marks is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated. For example, when converting

from ASCII to the code page 500, if you have specified U+0008 as your padding

character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC

representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should

ensure that the converted value of the padding character is valid for this code

page. If the padding character cannot be represented in the target code page, it

is replaced by a substitution character. The substitution character is fixed and its

value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the

hexadecimal or decimal format can be used. This gives the option of specifying

an absolute value as a padding character that is inserted directly into the output

message. If this format is used, you should still aim to ensure that this value is

valid for the code page of any output messages that are created using these

MRM definitions.

Message model reference information 325

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the displayed list:

v NULLPadFill. This is valid only if Physical Type is Fixed Length String. The

field is filled with the value specified by the Padding Character. Encoding Null

Value must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the

required format for the field. This is the default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a

string.

v NULLLiteralFill. The field is filled with the value specified by the Encoding

Null Value. Encoding Null Value must resolve to a single character.

Encoding Null

Value

STRING The use of this property depends on the Encoding Null property, described

above. If specified, its length must be equal to the length of the string element,

with the exception of NULLLiteralFill.

The default value is empty (not set).

If you set the Encoding Null property to NULLLiteralFill, the value must resolve

to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY where YY is a

hexadecimal value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal format.

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

326 Message Models

Occurrences

 Property Type Meaning

Repeat

Reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the displayed list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

Element reference XML properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - base64Binary

 - hexBinary

Boolean types

 - Boolean

DateTime types

 - date

 - dateTime

 - gDay

 - gMonth

 - gMonthDay

 - gYear

 - gYearMonth

 - time

Decimal types

 - decimal

 - integer

 - negativeInteger

 - nonNegativeInteger

 - nonPositiveInteger

 - positiveInteger

 - unsignedLong

Float types

 - double

 - float

Integer types

 - byte

 - int

 - long

 - short

 - unsignedByte

 - unsignedInt

 - unsignedShort

Interval types

 - duration

String types

 - anyURI

 - ENTITIES

 - ENTITY

 - ID

 - IDREF

 - IDREFS

 - language

 - Name

 - NCName

 - NMTOKEN

 - NMTOKENS

 - normalizedString

 - NOTATION

 - QName

 - string

 - token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the

String logical types.

XML properties for attribute reference, element reference, local attribute, local element

binary types:

Message model reference information 327

The XML Wire Format properties described here apply to:

v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element

v Binary schema types: base64Binary, hexBinary

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

328 Message Models

Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an

attribute of the parent XML object. The identity of the child is determined by

the attribute name. The value is the attribute value. This is only valid for

simple elements.

If you select this value for more than one object , you must set their XML

Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered

as a child XML element of the parent complex type. The identity of the child

is determined by the tag name of the child. The value is the value of a

specified attribute. The name of the attribute is specified in Value Attribute

Name.

v XMLElementAttrIDVal. This option combines the two options,

XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of

the parent complex type. The identity of the child is determined by the value

of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

Message model reference information 329

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute

Name

String

Specify the name of the attribute used for the value of the child. This must be a

valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Physical representation

 Property Type Meaning

Encoding String Select one of the following values from the drop-down list: :

v CDatahex (the default). Hexadecimal values in this field are specified with the

CDATA qualifier, for example <e1><![CDATA[62]]></e1>

v hex. Hexadecimal values in this field are specified as digits only, for example

<e1>62</e1>.

v base64. Values in this field are specified as digits only, coded in base 64.

XML properties for attribute reference, element reference, local attribute, local element

Boolean types:

The XML Wire Format properties described here apply to:

v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element

v Boolean schema types: Boolean

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

330 Message Models

Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an

attribute of the parent XML object. The identity of the child is determined by

the attribute name. The value is the attribute value. This is only valid for

simple elements.

If you select this value for more than one object , you must set their XML

Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered

as a child XML element of the parent complex type. The identity of the child

is determined by the tag name of the child. The value is the value of a

specified attribute. The name of the attribute is specified in Value Attribute

Name.

v XMLElementAttrIDVal. This option combines the two options,

XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of

the parent complex type. The identity of the child is determined by the value

of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

Message model reference information 331

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute

Name

String

Specify the name of the attribute used for the value of the child. This must be a

valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element

dateTime types:

The XML Wire Format properties described here apply to:

v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element

v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

332 Message Models

Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an

attribute of the parent XML object. The identity of the child is determined by

the attribute name. The value is the attribute value. This is only valid for

simple elements.

If you select this value for more than one object , you must set their XML

Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered

as a child XML element of the parent complex type. The identity of the child

is determined by the tag name of the child. The value is the value of a

specified attribute. The name of the attribute is specified in Value Attribute

Name.

v XMLElementAttrIDVal. This option combines the two options,

XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of

the parent complex type. The identity of the child is determined by the value

of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

Message model reference information 333

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute

Name

String

Specify the name of the attribute used for the value of the child. This must be a

valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Physical representation

 Property Type Meaning

DateTime

Format

String Specify a format string that specifies the rendering of the value for dateTime

elements.

The default dateTime format is dependent on the logical type of the object. For

information about the defaults for the dateTime format according to the logical

type see “DateTime defaults by logical type” on page 770.

See “DateTime formats” on page 763 for details of dateTime formats.

XML properties for attribute reference, element reference, local attribute, local element

decimal types:

The XML Wire Format properties described here apply to:

v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element

v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

334 Message Models

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

 Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an

attribute of the parent XML object. The identity of the child is determined by

the attribute name. The value is the attribute value. This is only valid for

simple elements.

If you select this value for more than one object , you must set their XML

Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered

as a child XML element of the parent complex type. The identity of the child

is determined by the tag name of the child. The value is the value of a

specified attribute. The name of the attribute is specified in Value Attribute

Name.

v XMLElementAttrIDVal. This option combines the two options,

XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of

the parent complex type. The identity of the child is determined by the value

of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

Message model reference information 335

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute

Name

String

Specify the name of the attribute used for the value of the child. This must be a

valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element float

types:

The XML Wire Format properties described here apply to:

v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element

v Float schema types: double, float

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

336 Message Models

Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an

attribute of the parent XML object. The identity of the child is determined by

the attribute name. The value is the attribute value. This is only valid for

simple elements.

If you select this value for more than one object , you must set their XML

Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered

as a child XML element of the parent complex type. The identity of the child

is determined by the tag name of the child. The value is the value of a

specified attribute. The name of the attribute is specified in Value Attribute

Name.

v XMLElementAttrIDVal. This option combines the two options,

XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of

the parent complex type. The identity of the child is determined by the value

of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

Message model reference information 337

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute

Name

String

Specify the name of the attribute used for the value of the child. This must be a

valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element

integer types:

The XML Wire Format properties described here apply to:

v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element

v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

338 Message Models

Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an

attribute of the parent XML object. The identity of the child is determined by

the attribute name. The value is the attribute value. This is only valid for

simple elements.

If you select this value for more than one object , you must set their XML

Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered

as a child XML element of the parent complex type. The identity of the child

is determined by the tag name of the child. The value is the value of a

specified attribute. The name of the attribute is specified in Value Attribute

Name.

v XMLElementAttrIDVal. This option combines the two options,

XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of

the parent complex type. The identity of the child is determined by the value

of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

Message model reference information 339

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute

Name

String

Specify the name of the attribute used for the value of the child. This must be a

valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element

string types:

The XML Wire Format properties described here apply to:

v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element

v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,

QName, string, token

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

340 Message Models

Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an

attribute of the parent XML object. The identity of the child is determined by

the attribute name. The value is the attribute value. This is only valid for

simple elements.

If you select this value for more than one object , you must set their XML

Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered

as a child XML element of the parent complex type. The identity of the child

is determined by the tag name of the child. The value is the value of a

specified attribute. The name of the attribute is specified in Value Attribute

Name.

v XMLElementAttrIDVal. This option combines the two options,

XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of

the parent complex type. The identity of the child is determined by the value

of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

Message model reference information 341

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute

Name

String

Specify the name of the attribute used for the value of the child. This must be a

valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Element reference TDS properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - base64Binary

 - hexBinary

Boolean types

 - Boolean

DateTime types

 - date

 - dateTime

 - gDay

 - gMonth

 - gMonthDay

 - gYear

 - gYearMonth

 - time

Decimal types

 - decimal

 - integer

 - negativeInteger

 - nonNegativeInteger

 - nonPositiveInteger

 - positiveInteger

 - unsignedLong

342 Message Models

Float types

 - double

 - float

Integer types

 - byte

 - int

 - long

 - short

 - unsignedByte

 - unsignedInt

 - unsignedShort

Interval types

 - duration

String types

 - anyURI

 - ENTITIES

 - ENTITY

 - ID

 - IDREF

 - IDREFS

 - language

 - Name

 - NCName

 - NMTOKEN

 - NMTOKENS

 - normalizedString

 - NOTATION

 - QName

 - string

 - token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the

String logical types.

TDS properties for element reference binary types:

The TDS Format properties described here apply to:

v Objects: Element Reference

v Binary schema types: base64Binary, hexBinary

Physical representation

 Property Type Meaning

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

Inclusive

Length

Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of

the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object

must be the same as that of the current object.

Message model reference information 343

Occurrences

 Property Type Meaning

Repeat

reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the drop-down list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

Repeating

Element

Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element

Separation property of the parent group or complex type is set to All Elements

Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging

standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is

not HL7, and the maximum number of repeats is fixed, the delimiter of the

parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

TDS properties for element reference Boolean types:

The TDS Format properties described here apply to:

v Objects: Element Reference

v Boolean schema types: Boolean

Occurrences

 Property Type Meaning

Repeat

reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the drop-down list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

Repeating

Element

Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element

Separation property of the parent group or complex type is set to All Elements

Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging

standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is

not HL7, and the maximum number of repeats is fixed, the delimiter of the

parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

344 Message Models

TDS properties for element reference dateTime types:

The TDS Format properties described here apply to:

v Objects: Element Reference

v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Physical representation

 Property Type Meaning

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

Inclusive

Length

Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of

the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object

must be the same as that of the current object.

Occurrences

 Property Type Meaning

Repeat

reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the drop-down list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

Repeating

Element

Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element

Separation property of the parent group or complex type is set to All Elements

Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging

standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is

not HL7, and the maximum number of repeats is fixed, the delimiter of the

parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Message model reference information 345

TDS properties for element reference decimal types:

The TDS Format properties described here apply to:

v Objects: Element Reference

v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

Physical representation

 Property Type Meaning

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

Inclusive

Length

Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of

the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object

must be the same as that of the current object.

Occurrences

 Property Type Meaning

Repeat

reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the drop-down list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

Repeating

Element

Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element

Separation property of the parent group or complex type is set to All Elements

Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging

standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is

not HL7, and the maximum number of repeats is fixed, the delimiter of the

parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

346 Message Models

TDS properties for element reference float types:

The TDS Format properties described here apply to:

v Objects: Element Reference

v Float schema types: double, float

Physical representation

 Property Type Meaning

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

Inclusive

Length

Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of

the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object

must be the same as that of the current object.

Occurrences

 Property Type Meaning

Repeat

reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the drop-down list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

Repeating

Element

Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element

Separation property of the parent group or complex type is set to All Elements

Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging

standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is

not HL7, and the maximum number of repeats is fixed, the delimiter of the

parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

TDS properties for element reference integer types:

Message model reference information 347

The TDS Format properties described here apply to:

v Objects: Element Reference

v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Physical representation

 Property Type Meaning

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

Inclusive

Length

Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of

the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object

must be the same as that of the current object.

Occurrences

 Property Type Meaning

Repeat

reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the drop-down list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

Repeating

Element

Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element

Separation property of the parent group or complex type is set to All Elements

Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging

standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is

not HL7, and the maximum number of repeats is fixed, the delimiter of the

parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

TDS properties for element reference string types:

348 Message Models

The TDS Format properties described here apply to:

v Objects: Element Reference

v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,

QName, string, token

Physical representation

 Property Type Meaning

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

Inclusive

Length

Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of

the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object

must be the same as that of the current object.

Occurrences

 Property Type Meaning

Repeat

reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the drop-down list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

Repeating

Element

Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element

Separation property of the parent group or complex type is set to All Elements

Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging

standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is

not HL7, and the maximum number of repeats is fixed, the delimiter of the

parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Documentation properties for all message set objects:

Message model reference information 349

Use the documentation property of an object to add information to enhance the

understanding of the function of that object. The documentation property is

available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric

characters.

Global attribute properties

A global attribute can have the following properties;

v “Global attribute logical properties” on page 191

v “Global attribute CWF properties” on page 216

v “Global attribute XML properties” on page 222

v “Global attribute TDS properties” on page 234

v “Documentation properties for all message set objects” on page 183

Global attribute logical properties:

 Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters

A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a

number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the

XML standards specification.

Further details of naming conventions and allowable characters can be found in

the Extensible Markup Language (XML) specification that can be found on the

World Wide Web Consortium (W3C) Web site.

350 Message Models

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Property Type Meaning

Type Enumerated

type

The Type property constrains the type of data that can be present in the object.

There are a limited number of types available directly from the drop-down

selector. These are;

v int

v string

v Boolean

v hexBinary

v dateTime

v date

v time

v decimal

v float

v (More...)

v (New Simple Type)

v (New Complex Type)

If you select (More...), this starts the Type Selection wizard. From this wizard

you can select any of the available types.

If you select (New Simple Type), this starts the New Simple Type wizard which

allows you to create an Anonymous simple type that is based on an existing

type. This can be created locally or globally.

If you select (New Complex Type), this starts the New Complex Type wizard

which allows you to create an Anonymous complex type which can be derived

from an existing base type. This can be created locally or globally.

For further information about these types, and examples of their use see the

XML Schema Part 0: Primer which can be found on the World Wide Web

Consortium (W3C) Web site.

Namespace Enumerated

type

Namespaces are a simple method for qualifying element and attribute names by

associating them with namespaces identified by URI references.

If <no target namespace> is displayed, a namespace has not been set for this

object.

If the property is inactive, the message set has not been configured to support

namespaces.

Where the property is active, namespaces that are available for selection are

displayed in the drop-down list.

Value

The Value properties are used in conjunction with the Usage property in an

Attribute Reference or a Local Attribute.

Message model reference information 351

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/

Property Type Meaning

Default Button and

String

This property provides the default value for an element or attribute.

XMLNSC domain

When parsing with validation enabled, default values are applied to

missing attributes and empty elements as required by the XML Schema

1.0 specification. When writing, elements or attributes that are missing

from the message tree are not automatically added to the output XML

bit stream, even if they have default values. If this is required, the

message tree can be serialized and then re-parsed with validation

enabled.

MRM (CWF and TDS physical formats)

When writing a fixed-length portion of a message (CWF or fixed-length

TDS), if an attribute or element is missing from the message tree, the

default value is inserted into the bit stream so that the message

structure is preserved.

MRM (XML physical format)

No support for default values

Other domains

No support for default values.

Fixed Button and

String

This property provides the fixed value for an element or attribute.

XMLNSC domain

When parsing with validation enabled, if an attribute or element is

present, the value is validated against the fixed value. If the values are

not equal, a validation error is signalled. Also, when parsing with

validation enabled, fixed values are applied to missing attributes and

empty elements as required by the XML Schema 1.0 specification. When

writing, elements or attributes that are missing from the message tree

are not automatically added to the output XML bit stream, even if a

fixed value has been specified. If this is required, the message tree can

be serialized and then re-parsed with validation enabled.

MRM (CWF and TDS physical formats)

When writing a fixed-length portion of a message (CWF or fixed-length

TDS), if an attribute or element is missing from the message tree, the

fixed value is inserted into the bit stream so that the message structure

is preserved.

MRM (XML physical format)

No support for fixed values

Other domains

No support for fixed values.

352 Message Models

Property Type Meaning

Interpret Value

As

Enumerated

type

Specify if values stored within this object must be interpreted as having

significance for the parser and, if so, the type of interpretation that must occur.

The possible values for this property are:

v None This is the default value and indicates that the element or attribute does

not have any key value associated with it.

v MessageSetIdentity. Specifies that the value of the element or attribute

corresponds to the identifier, name or alias (in that priority order) that is

associated with the message set where all subsequent embedded messages

that are descendents of the enclosing message are defined. This value remains

in force unless a new element or attribute MessageSetIdentity field is

encountered which resets the MessageSetIdentity value to this new one.

v MessageIdentity. Specifies that the value of the element or attribute

corresponds to the name or alias (in that priority order) that is associated with

a message and acts as an identifier for subsequent embedded messages which

are the immediate children of the enclosing message. This identity applies

until a new element or attribute MessageIdentity field is encountered at the

same level in the tree. The embedded message may be defined in either the

current message set or in a message set identified using a MessageSetIdentity.

Note: This property is only applicable when the type of the object is derived

from xsd:string.

Global attribute CWF properties:

There are no properties to show.

Global attribute XML properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - base64Binary

 - hexBinary

Boolean types

 - Boolean

DateTime types

 - date

 - dateTime

 - gDay

 - gMonth

 - gMonthDay

 - gYear

 - gYearMonth

 - time

Decimal types

 - decimal

 - integer

 - negativeInteger

 - nonNegativeInteger

 - nonPositiveInteger

 - positiveInteger

 - unsignedLong

Message model reference information 353

Float types

 - double

 - float

Integer types

 - byte

 - int

 - long

 - short

 - unsignedByte

 - unsignedInt

 - unsignedShort

Interval types

 - duration

String types

 - anyURI

 - ENTITIES

 - ENTITY

 - ID

 - IDREF

 - IDREFS

 - language

 - Name

 - NCName

 - NMTOKEN

 - NMTOKENS

 - normalizedString

 - NOTATION

 - QName

 - string

 - token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the

String logical types.

XML properties for global attribute and global element binary types:

The XML Wire Format properties described here apply to:

v Objects: Global Attribute, Global Element

v Binary schema types: base64Binary, hexBinary

 Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

Physical representation

 Property Type Meaning

Encoding String Select one of the following values from the drop-down list: :

v CDatahex (the default). Hexadecimal values in this field are specified with the

CDATA qualifier, for example <e1><![CDATA[62]]></e1>

v hex. Hexadecimal values in this field are specified as digits only, for example

<e1>62</e1>.

v base64. Values in this field are specified as digits only, coded in base 64.

354 Message Models

XML properties for global attribute and global element Boolean types:

The XML Wire Format properties described here apply to:

v Objects: Global Attribute, Global Element

v Boolean schema types: Boolean

 Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

XML properties for global attribute and global element dateTime types:

The XML Wire Format properties described here apply to:

v Objects: Global Attribute, Global Element

v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

 Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

Message model reference information 355

Physical representation

 Property Type Meaning

DateTime

Format

String Specify a format string that specifies the rendering of the value for dateTime

elements.

The default dateTime format is dependent on the logical type of the object. For

information about the defaults for the dateTime format according to the logical

type see “DateTime defaults by logical type” on page 770.

See “DateTime formats” on page 763 for details of dateTime formats.

XML properties for global attribute and global element decimal types:

The XML Wire Format properties described here apply to:

v Objects: Global Attribute, Global Element

v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

 Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

XML properties for global attribute and global element float types:

The XML Wire Format properties described here apply to:

v Objects: Global Attribute, Global Element

v Float schema types: double, float

356 Message Models

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

XML properties for global attribute and global element integer types:

The XML Wire Format properties described here apply to:

v Objects: Global Attribute, Global Element

v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

 Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

XML properties for global attribute and global element string types:

The XML Wire Format properties described here apply to:

v Objects: Global Attribute, Global Element

v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,

QName, string, token

Message model reference information 357

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

Global attribute TDS properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - base64Binary

 - hexBinary

Boolean types

 - Boolean

DateTime types

 - date

 - dateTime

 - gDay

 - gMonth

 - gMonthDay

 - gYear

 - gYearMonth

 - time

Decimal types

 - decimal

 - integer

 - negativeInteger

 - nonNegativeInteger

 - nonPositiveInteger

 - positiveInteger

 - unsignedLong

Float types

 - double

 - float

Integer types

 - byte

 - int

 - long

 - short

 - unsignedByte

 - unsignedInt

 - unsignedShort

Interval types

 - duration

String types

 - anyURI

 - ENTITIES

 - ENTITY

 - ID

 - IDREF

 - IDREFS

 - language

 - Name

 - NCName

 - NMTOKEN

 - NMTOKENS

 - normalizedString

 - NOTATION

 - QName

 - string

 - token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the

String logical types.

TDS properties for global attribute binary types:

358 Message Models

The TDS Format properties described here apply to:

v Objects: Global Attribute

v Binary schema types: base64Binary, hexBinary

Field identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

This value of this property defaults to Binary. It cannot be changed.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

The default is dependent on the setting of the message set property Derive default

length from logical type. If Derive default length from logical type is selected, the

default value is derived from any length or maxLength value constraint (schema

facet) on the object’s simple type.

Message model reference information 359

Property Type Meaning

Length Units Enumerated

type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both

options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of

bytes that are processed in the bit stream depends on the code page of the

message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the contents of the bit stream. The parser

reads one character at a time and determines whether the character

comprises one or more bytes.

The default is dependent on the physical type of the object.

TDS properties for global attribute Boolean types:

The TDS Format properties described here apply to:

v Objects: Global Attribute

v Boolean schema types: Boolean

Field identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

360 Message Models

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Binary. The data is in bit string format.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

TDS properties for global attribute dateTime types:

The TDS Format properties described here apply to:

v Objects: Global Attribute

v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Field Identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Message model reference information 361

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The data’s first byte contains the length (in length

units) of the data string that follows the length byte. The maximum length of

a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The data’s first two bytes contains the length (in

length units) of the data string that follows the two length bytes. The

maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL

character, X’00’.

v Packed Decimal. The data is a packed decimal number that equates to the

COMP-3 data type in COBOL.

v Binary. The data is in bit string format.

v Time Seconds. This value supports C time_t, and Java Date and Time objects.

It is valid only if the DateTime Format property represents numeric-only data.

v Time Milliseconds. This value supports C time_t, and Java Date and Time

objects. It is valid only if the DateTime Format property represents

numeric-only data.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from

logical type is selected, and the Physical type is ’Character’, the default value is

derived from any length or maxLength value constraint (schema facet) on the

simple type.

Length Units Enumerated

type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both

options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of

bytes that are processed in the bit stream depends on the code page of the

message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the contents of the bit stream. The parser

reads one character at a time and determines whether the character

comprises one or more bytes.

The default is dependent on the physical type of the object.

362 Message Models

Property Type Meaning

Justification Enumerated

type

Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output

as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Padding

Character

String Specify the padding character that is to be inserted or interpreted on the writing

or parsing of a fixed length object if the data is less than the fixed length value.

This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a

hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

The choice of which of these padding character forms is used for an MRM

element depends on the padding character required and whether the padding

character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the

hexadecimal format can be used. This gives the option of specifying a padding

character that is inserted directly into the output message. If this format is used,

you must ensure that this hexadecimal value is valid for the code page of any

output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure

that the converted value of the padding character is valid for this code page. For

example, when converting from ASCII to code page 500, if you have specified

the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the

ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must

not be greater than U+007F. Note that if you enter a Unicode mnemonic or

numeric value, it is considered to be the character that is represented by that

number in UTF-8.

Message model reference information 363

Property Type Meaning

DateTime

Format

String Specify a template for date and time.

The default DateTime format is dependent on the logical type of the object. For

information about the defaults for the dateTime format according to the logical

type see “DateTime defaults by logical type” on page 770.

See “DateTime formats” on page 763 for details of date and time formats.

Numeric representation

 Property Type Meaning

Signed Check box Specify whether or not the value is signed.

This property is applicable only if the Physical type property is Packed Decimal.

By default, this check box is cleared, which indicates that the value is not signed.

TDS properties for global attribute decimal types:

The TDS Format properties described here apply to:

v Objects: Global Attribute

v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

Field Identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

364 Message Models

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Packed Decimal. The data is a packed decimal number that equates to the

COMP-3 data type in COBOL.

v TLOG Specific - this option can be selected only if the Message Standard

property of the message set is TLOG. This option indicates that the format of

the data is specific to the TLOG messaging standard.

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type

PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from

logical type is selected, and the Physical type is ’Character’, the default value is

derived from any length or maxLength value constraint (schema facet) on the

simple type.

Length Units Enumerated

type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both

options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of

bytes that are processed in the bit stream depends on the code page of the

message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the contents of the bit stream. The parser

reads one character at a time and determines whether the character

comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated

type

Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output

as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Message model reference information 365

Property Type Meaning

Padding

Character

String Specify the padding character that is to be inserted or interpreted on the writing

or parsing of a fixed length object if the data is less than the fixed length value.

This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a

hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

The choice of which of these padding character forms is used for an MRM

element depends on the padding character required and whether the padding

character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the

hexadecimal format can be used. This gives the option of specifying a padding

character that is inserted directly into the output message. If this format is used,

you must ensure that this hexadecimal value is valid for the code page of any

output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure

that the converted value of the padding character is valid for this code page. For

example, when converting from ASCII to code page 500, if you have specified

the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the

ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must

not be greater than U+007F. Note that if you enter a Unicode mnemonic or

numeric value, it is considered to be the character that is represented by that

number in UTF-8.

366 Message Models

Numeric representation

 Property Type Meaning

Sign

Orientation

Enumerated

type

The values that you can choose for this property are:

v Leading Separate

v Trailing Separate

v Leading Overpunched

v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External

Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading

Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is

selected, the only valid values of Sign Orientation are Leading Overpunched and

Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric

value. If no value is set, ″+″ is assumed. The positive sign is not written when

creating an output message; it is used only to recognize the positive sign when

parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric

value. If no value is set, ″-″ is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Virtual Decimal

Point

Button and

Integer

Specify a nonzero integer that represents the position of an implied decimal

point within a number, or specify 0 (zero, the default) to use the formatting of

Float or Decimal numbers as specified by the Precision property.

If you specify a positive integer, the position of the decimal point is moved left

from the right hand side of the number. For example, if you specify 3, the

decimal value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is moved

right from the right hand side of the number. For example, if you specify -3, the

decimal value 1234 represents 1 234 000

Message model reference information 367

Property Type Meaning

Precision Button and

Integer

This property is applicable only if Physical Type is Text. It is used if the value of

the Virtual Decimal Point property is 0, which indicates that the decimal point is

present in the data. It deals with truncation, and specifies how many digits

should follow the decimal point.

Either specify a number of digits:

v If you set Precision to 0, data is truncated so that the fractional part is lost. For

example, the value 123.45 is truncated to 123.

v If you set Precision to a number less than the number of fractional digits, data

is truncated. For example, the value 123.4567 is truncated to 123.45 if you set

Precision to 2.

v If you set Precision to a number greater than the number of fractional digits,

the value is padded with extra zeros. For example, the value 12.345 is padded

to 12.34500 if you set Precision to 5.

Or select one of the following from the drop-down list:

v All Significant Digits - decimal separator only required if fractional

digits (the default): all significant digits are written to the output bit stream,

and there is no decimal separator if there are no fractional digits.

v Explicit Decimal Separator - decimal separator always required: all

significant digits are written to the output bit stream and the decimal

separator is always included, even if there are no fractional digits. The

decimal separator must be present in the input bit stream, even if no fractional

digits are present.

TDS properties for global attribute float types:

The TDS Format properties described here apply to:

v Objects: Global Attribute

v Float schema types: double, float

Field Identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

368 Message Models

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Float. This equates to the data type FLOAT or DOUBLE in C, or the COMP-1

or COMP-2 numeric data type in COBOL.

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. The data is a packed decimal number that equates to the

COMP-3 data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type

PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from

logical type is selected, and the Physical type is ’Character’, the default value is

derived from any length or maxLength value constraint (schema facet) on the

simple type.

Length Units Enumerated

type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both

options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of

bytes that are processed in the bit stream depends on the code page of the

message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the contents of the bit stream. The parser

reads one character at a time and determines whether the character

comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated

type

Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output

as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Message model reference information 369

Property Type Meaning

Padding

Character

String Specify the padding character that is to be inserted or interpreted on the writing

or parsing of a fixed length object if the data is less than the fixed length value.

This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a

hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

The choice of which of these padding character forms is used for an MRM

element depends on the padding character required and whether the padding

character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the

hexadecimal format can be used. This gives the option of specifying a padding

character that is inserted directly into the output message. If this format is used,

you must ensure that this hexadecimal value is valid for the code page of any

output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure

that the converted value of the padding character is valid for this code page. For

example, when converting from ASCII to code page 500, if you have specified

the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the

ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must

not be greater than U+007F. Note that if you enter a Unicode mnemonic or

numeric value, it is considered to be the character that is represented by that

number in UTF-8.

370 Message Models

Numeric representation

 Property Type Meaning

Sign

Orientation

Enumerated

type

The values that you can choose for this property are:

v Leading Separate

v Trailing Separate

v Leading Overpunched

v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External

Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading

Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is

selected, the only valid values of Sign Orientation are Leading Overpunched and

Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric

value. If no value is set, ″+″ is assumed. The positive sign is not written when

creating an output message; it is used only to recognize the positive sign when

parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric

value. If no value is set, ″-″ is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Virtual Decimal

Point

Button and

Integer

Specify a nonzero integer that represents the position of an implied decimal

point within a number, or specify 0 (zero, the default) to use the formatting of

Float or Decimal numbers as specified by the Precision property.

If you specify a positive integer, the position of the decimal point is moved left

from the right hand side of the number. For example, if you specify 3, the

decimal value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is moved

right from the right hand side of the number. For example, if you specify -3, the

decimal value 1234 represents 1 234 000

Message model reference information 371

Property Type Meaning

Precision Button and

Integer

This property is applicable only if Physical Type is Text. It is used if the value of

the Virtual Decimal Point property is 0, which indicates that the decimal point is

present in the data. It deals with truncation, and specifies how many digits

should follow the decimal point.

Either specify a number of digits:

v If you set Precision to 0, data is truncated so that the fractional part is lost. For

example, the value 123.45 is truncated to 123.

v If you set Precision to a number less than the number of fractional digits, data

is truncated. For example, the value 123.4567 is truncated to 123.45 if you set

Precision to 2.

v If you set Precision to a number greater than the number of fractional digits,

the value is padded with extra zeros. For example, the value 12.345 is padded

to 12.34500 if you set Precision to 5.

Or select one of the following from the drop-down list:

v All Significant Digits - decimal separator only required if fractional

digits (the default): all significant digits are written to the output bit stream,

and there is no decimal separator if there are no fractional digits.

v Explicit Decimal Separator - decimal separator always required: all

significant digits are written to the output bit stream and the decimal

separator is always included, even if there are no fractional digits. The

decimal separator must be present in the input bit stream, even if no fractional

digits are present.

v Exponential Notation - Example ″1.23456e002″: data is written out to the bit

stream as a signed value having the format [sign1]a.bbbe[sign2]ccc where:

– [sign1] is the value of Negative Sign if the value is negative

– a is a single decimal digit

– bbb is one or more decimal digits

– [sign2] is the value of Negative Sign if the exponent is negative

– ccc is exactly three decimal digits (the exponent)

[sign1] and [sign2] are absent if the value and exponent, respectively, are

positive.

For example, the value -123.456 is represented as -1.23456e002 and the value

0.00012 is represented as 1.2e-004 in the output bit stream (assuming that the

value of Negative Sign is ″-″, and the value of Sign Orientation is Leading).

The value -0.00012 is represented as 1.2*e*004 if Negative Sign is ″*″ and Sign

Orientation is Trailing.

TDS properties for global attribute integer types:

The TDS Format properties described here apply to:

v Objects: Global Attribute

v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

372 Message Models

Field Identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. The data is a packed decimal number that equates to the

COMP-3 data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type

PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from

logical type is selected, and the Physical type is ’Character’, the default value is

derived from any length or maxLength value constraint (schema facet) on the

simple type.

Message model reference information 373

Property Type Meaning

Length Units Enumerated

type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both

options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of

bytes that are processed in the bit stream depends on the code page of the

message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the contents of the bit stream. The parser

reads one character at a time and determines whether the character

comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated

type

Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output

as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

374 Message Models

Property Type Meaning

Padding

Character

String Specify the padding character that is to be inserted or interpreted on the writing

or parsing of a fixed length object if the data is less than the fixed length value.

This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a

hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

The choice of which of these padding character forms is used for an MRM

element depends on the padding character required and whether the padding

character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the

hexadecimal format can be used. This gives the option of specifying a padding

character that is inserted directly into the output message. If this format is used,

you must ensure that this hexadecimal value is valid for the code page of any

output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure

that the converted value of the padding character is valid for this code page. For

example, when converting from ASCII to code page 500, if you have specified

the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the

ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must

not be greater than U+007F. Note that if you enter a Unicode mnemonic or

numeric value, it is considered to be the character that is represented by that

number in UTF-8.

Message model reference information 375

Numeric representation

 Property Type Meaning

Sign

Orientation

Enumerated

type

The values that you can choose for this property are:

v Leading Separate

v Trailing Separate

v Leading Overpunched

v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External

Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading

Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is

selected, the only valid values of Sign Orientation are Leading Overpunched and

Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric

value. If no value is set, ″+″ is assumed. The positive sign is not written when

creating an output message; it is used only to recognize the positive sign when

parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric

value. If no value is set, ″-″ is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

TDS properties for global attribute string types:

The TDS Format properties described here apply to:

v Objects: Global Attribute

v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,

QName, string, token

Field Identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

376 Message Models

Property Type Meaning

Interpret

Element Value

Enumerated

type

Specify whether values stored within this object must be interpreted as having

significance for the parser and, if so, the type of interpretation that must occur.

This interpretation is generally standard-specific and is therefore hard-coded.

The possible values for this property are:

v None (the default value)

v EDIFACT Service String

v X12 Service String

v Message Key

v EDIFACT Syntax Level ID

v HL7 Service String

v HL7 Field Separator

Note: The Message Key enumeration has been deprecated

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The data’s first byte contains the length (in length

units) of the data string that follows the length byte. The maximum length of

a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The data’s first two bytes contains the length (in

length units) of the data string that follows the two length bytes. The

maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL

character, X’00’.

v TLOG Specific - this option can be selected only if the Message Standard

property of the message set is TLOG. This option indicates that the format of

the data is specific to the TLOG messaging standard.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from

logical type is selected, and the Physical type is ’Character’, the default value is

derived from any length or maxLength value constraint (schema facet) on the

simple type.

Message model reference information 377

Property Type Meaning

Length Units Enumerated

type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both

options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of

bytes that are processed in the bit stream depends on the code page of the

message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the contents of the bit stream. The parser

reads one character at a time and determines whether the character

comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated

type

Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output

as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

378 Message Models

Property Type Meaning

Padding

Character

String Specify the padding character that is to be inserted or interpreted on the writing

or parsing of a fixed length object if the data is less than the fixed length value.

This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a

hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

The choice of which of these padding character forms is used for an MRM

element depends on the padding character required and whether the padding

character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the

hexadecimal format can be used. This gives the option of specifying a padding

character that is inserted directly into the output message. If this format is used,

you must ensure that this hexadecimal value is valid for the code page of any

output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure

that the converted value of the padding character is valid for this code page. For

example, when converting from ASCII to code page 500, if you have specified

the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the

ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must

not be greater than U+007F. Note that if you enter a Unicode mnemonic or

numeric value, it is considered to be the character that is represented by that

number in UTF-8.

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the

understanding of the function of that object. The documentation property is

available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric

characters.

Global attribute group properties

A global attribute group can have the following properties;

v “Global attribute group logical properties” on page 194

Message model reference information 379

v “Global attribute group CWF properties” on page 216

v “Global attribute group XML properties” on page 223

v “Global attribute group TDS properties” on page 234

v “Documentation properties for all message set objects” on page 183

Global attribute group logical properties:

 Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters

A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a

number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the

XML standards specification.

Further details of naming conventions and allowable characters can be found in

the Extensible Markup Language (XML) specification that can be found on the

World Wide Web Consortium (W3C) Web site.

Global attribute group CWF properties:

There are no properties to show.

Global attribute group XML properties:

There are no properties to show.

Global attribute group TDS properties:

There are no properties to show.

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the

understanding of the function of that object. The documentation property is

available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric

characters.

Global element properties

A global element can have the following properties;

v “Global element logical properties” on page 195

v “Global element CWF properties” on page 216

v “Global element XML properties” on page 223

380 Message Models

http://www.w3.org/TR/REC-xml
http://www.w3.org/

v “Global element TDS properties” on page 234

v “Documentation properties for all message set objects” on page 183

Global element logical properties:

 Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters

A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a

number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the

XML standards specification.

Further details of naming conventions and allowable characters can be found in

the Extensible Markup Language (XML) specification that can be found on the

World Wide Web Consortium (W3C) Web site.

Type Enumerated

type

The Type property constrains the type of data that can be present in the object.

There are a limited number of types available directly from the drop-down

selector. These are;

v int

v string

v Boolean

v hexBinary

v dateTime

v date

v time

v decimal

v float

v (More...)

v (New Simple Type)

v (New Complex Type)

If you select (More...), this starts the Type Selection wizard. From this wizard

you can select any of the available types.

If you select (New Simple Type), this starts the New Simple Type wizard which

allows you to create an Anonymous simple type that is based on an existing

type. This can be created locally or globally.

If you select (New Complex Type), this starts the New Complex Type wizard

which allows you to create an Anonymous complex type which can be derived

from an existing base type. This can be created locally or globally.

For further information about these types, and examples of their use see the

XML Schema Part 0: Primer which can be found on the World Wide Web

Consortium (W3C) Web site.

Message model reference information 381

http://www.w3.org/TR/REC-xml
http://www.w3.org/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/

Property Type Meaning

Namespace Enumerated

type

Namespaces are a simple method for qualifying element and attribute names by

associating them with namespaces identified by URI references.

If <no target namespace> is displayed, a namespace has not been set for this

object.

If the property is inactive, the message set has not been configured to support

namespaces.

Where the property is active, namespaces that are available for selection are

displayed in the drop-down list.

Value

 Property Type Meaning

Default Button and

String

This property provides the default value for an element or attribute.

XMLNSC domain

When parsing with validation enabled, default values are applied to

missing attributes and empty elements as required by the XML Schema

1.0 specification. When writing, elements or attributes that are missing

from the message tree are not automatically added to the output XML

bit stream, even if they have default values. If this is required, the

message tree can be serialized and then re-parsed with validation

enabled.

MRM (CWF and TDS physical formats)

When writing a fixed-length portion of a message (CWF or fixed-length

TDS), if an attribute or element is missing from the message tree, the

default value is inserted into the bit stream so that the message

structure is preserved.

MRM (XML physical format)

No support for default values

Other domains

No support for default values.

Fixed Button and

String

This property provides the fixed value for an element or attribute.

XMLNSC domain

When parsing with validation enabled, if an attribute or element is

present, the value is validated against the fixed value. If the values are

not equal, a validation error is signalled. Also, when parsing with

validation enabled, fixed values are applied to missing attributes and

empty elements as required by the XML Schema 1.0 specification. When

writing, elements or attributes that are missing from the message tree

are not automatically added to the output XML bit stream, even if a

fixed value has been specified. If this is required, the message tree can

be serialized and then re-parsed with validation enabled.

MRM (CWF and TDS physical formats)

When writing a fixed-length portion of a message (CWF or fixed-length

TDS), if an attribute or element is missing from the message tree, the

fixed value is inserted into the bit stream so that the message structure

is preserved.

MRM (XML physical format)

No support for fixed values

Other domains

No support for fixed values.

382 Message Models

Property Type Meaning

Nillable Check box Select this if you want the element to be able to be defined as null. This is

distinct from being empty where there is no data in the element.

Interpret Value

As

Enumerated

type

Specify if values stored within this object must be interpreted as having

significance for the parser and, if so, the type of interpretation that must occur.

The possible values for this property are:

v None This is the default value and indicates that the element or attribute does

not have any key value associated with it.

v MessageSetIdentity. Specifies that the value of the element or attribute

corresponds to the identifier, name or alias (in that priority order) that is

associated with the message set where all subsequent embedded messages

that are descendents of the enclosing message are defined. This value remains

in force unless a new element or attribute MessageSetIdentity field is

encountered which resets the MessageSetIdentity value to this new one.

v MessageIdentity. Specifies that the value of the element or attribute

corresponds to the name or alias (in that priority order) that is associated with

a message and acts as an identifier for subsequent embedded messages which

are the immediate children of the enclosing message. This identity applies

until a new element or attribute MessageIdentity field is encountered at the

same level in the tree. The embedded message may be defined in either the

current message set or in a message set identified using a MessageSetIdentity.

Note: This property is only applicable when the type of the object is derived

from xsd:string.

Substitution settings

Substitution Groups provide a means by which one element may be substituted for

another in a message. The element which can be substituted is called the ’head’

element, and the substitution group is the list of elements that may be used in its

place. An element can be in at most one substitution group.

 Property Type Meaning

Final Enumerated

type

You use this property to limit the set of elements which may belong to its

substitution group.

v Empty

v restriction. Prohibit element substitution by elements whose types are

restrictions of the head element’s type.

v extension. Prohibit element substitution by elements whose types are

extensions of the head element’s type.

v #all. Prohibit substitution by any method.

Block Enumerated

type

You use this property to limit the set of elements which may be substituted for

this element in a message.

Select from:

v Empty

v restriction. Prohibit element substitution by elements whose types are

restrictions of the head element’s type

v extension. Prohibit element substitution by elements whose types are

extensions of the head element’s type

v substitution. Prohibit element substitution by members of the element’s

substitution group.

v #all. Prohibit substitution by any method.

Message model reference information 383

Property Type Meaning

Substitution

Group

Enumerated

type

Use this property to specify the name of a ’head’ element. Setting this property

indicates that this element is a member of the substitution group for the ’head’

element.

Abstract Check box Select this if you do not want the element to appear in the message, but require

one of the members of its substitution group to appear in its place.

Global element CWF properties:

There are no properties to show.

Global element XML properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - base64Binary

 - hexBinary

Boolean types

 - Boolean

DateTime types

 - date

 - dateTime

 - gDay

 - gMonth

 - gMonthDay

 - gYear

 - gYearMonth

 - time

Decimal types

 - decimal

 - integer

 - negativeInteger

 - nonNegativeInteger

 - nonPositiveInteger

 - positiveInteger

 - unsignedLong

Float types

 - double

 - float

Integer types

 - byte

 - int

 - long

 - short

 - unsignedByte

 - unsignedInt

 - unsignedShort

Interval types

 - duration

String types

 - anyURI

 - ENTITIES

 - ENTITY

 - ID

 - IDREF

 - IDREFS

 - language

 - Name

 - NCName

 - NMTOKEN

 - NMTOKENS

 - normalizedString

 - NOTATION

 - QName

 - string

 - token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the

String logical types.

XML properties for global attribute and global element binary types:

The XML Wire Format properties described here apply to:

v Objects: Global Attribute, Global Element

v Binary schema types: base64Binary, hexBinary

384 Message Models

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

Physical representation

 Property Type Meaning

Encoding String Select one of the following values from the drop-down list: :

v CDatahex (the default). Hexadecimal values in this field are specified with the

CDATA qualifier, for example <e1><![CDATA[62]]></e1>

v hex. Hexadecimal values in this field are specified as digits only, for example

<e1>62</e1>.

v base64. Values in this field are specified as digits only, coded in base 64.

XML properties for global attribute and global element Boolean types:

The XML Wire Format properties described here apply to:

v Objects: Global Attribute, Global Element

v Boolean schema types: Boolean

 Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

XML properties for global attribute and global element dateTime types:

The XML Wire Format properties described here apply to:

v Objects: Global Attribute, Global Element

Message model reference information 385

v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

 Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

Physical representation

 Property Type Meaning

DateTime

Format

String Specify a format string that specifies the rendering of the value for dateTime

elements.

The default dateTime format is dependent on the logical type of the object. For

information about the defaults for the dateTime format according to the logical

type see “DateTime defaults by logical type” on page 770.

See “DateTime formats” on page 763 for details of dateTime formats.

XML properties for global attribute and global element decimal types:

The XML Wire Format properties described here apply to:

v Objects: Global Attribute, Global Element

v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

 Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

XML properties for global attribute and global element float types:

386 Message Models

The XML Wire Format properties described here apply to:

v Objects: Global Attribute, Global Element

v Float schema types: double, float

 Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

XML properties for global attribute and global element integer types:

The XML Wire Format properties described here apply to:

v Objects: Global Attribute, Global Element

v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

 Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

XML properties for global attribute and global element string types:

The XML Wire Format properties described here apply to:

v Objects: Global Attribute, Global Element

v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,

QName, string, token

Message model reference information 387

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

Global element TDS properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - base64Binary

 - hexBinary

Boolean types

 - Boolean

DateTime types

 - date

 - dateTime

 - gDay

 - gMonth

 - gMonthDay

 - gYear

 - gYearMonth

 - time

Decimal types

 - decimal

 - integer

 - negativeInteger

 - nonNegativeInteger

 - nonPositiveInteger

 - positiveInteger

 - unsignedLong

Float types

 - double

 - float

Integer types

 - byte

 - int

 - long

 - short

 - unsignedByte

 - unsignedInt

 - unsignedShort

Interval types

 - duration

String types

 - anyURI

 - ENTITIES

 - ENTITY

 - ID

 - IDREF

 - IDREFS

 - language

 - Name

 - NCName

 - NMTOKEN

 - NMTOKENS

 - normalizedString

 - NOTATION

 - QName

 - string

 - token

TDS properties for global element binary types:

The TDS Format properties described here apply to:

v Objects: Global Element

388 Message Models

v Binary schema types: base64Binary, hexBinary

Field identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

For all Messaging Standard values, the Physical Type property is set to Binary and

cannot be changed.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

The default is dependent on the setting of the message set property Derive default

length from logical type. If Derive default length from logical type is selected, the

default value is derived from any length or maxLength value constraint (schema

facet) on the object’s simple type.

Length Units Enumerated

type

Always set to Bytes

TDS properties for global element Boolean types:

The TDS Format properties described here apply to:

v Objects: Global Element

v Boolean schema types: Boolean

Message model reference information 389

Field identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Binary. The data is in bit string format.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

TDS properties for global element dateTime types:

The TDS Format properties described here apply to:

v Objects: Global Element

v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

390 Message Models

Field Identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The data’s first byte contains the length (in length

units) of the data string that follows the length byte. The maximum length of

a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The data’s first two bytes contains the length (in

length units) of the data string that follows the two length bytes. The

maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL

character, X’00’.

v Packed Decimal. The data is a packed decimal number that equates to the

COMP-3 data type in COBOL.

v Binary. The data is in bit string format.

v Time Seconds. This value supports C time_t, and Java Date and Time objects.

It is valid only if the DateTime Format property represents numeric-only data.

v Time Milliseconds. This value supports C time_t, and Java Date and Time

objects. It is valid only if the DateTime Format property represents

numeric-only data.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Message model reference information 391

Property Type Meaning

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if one of the following statements is true:

v Physical Type is Packed Decimal.

v Physical Type is Text, no Length Reference is specified, and the Data Element

Separation of the parent complex type or group is Fixed Length, Tagged Fixed

Length, or Fixed Length AL3.

The default is dependent on the physical type of the object.

If Physical Type is Length Encoded String 1, Length Encoded String 2, or Null

Terminated String, this property is not applicable.

If Physical Type is Time Seconds, the value of this property is 4, and cannot be

changed.

If Physical Type is Time Milliseconds, the value of this property is 8, and cannot

be changed.

Length Units Enumerated

type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both

options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of

bytes that are processed in the bit stream depends on the code page of the

message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the contents of the bit stream. The parser

reads one character at a time and determines whether the character

comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated

type

Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output

as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

392 Message Models

Property Type Meaning

Padding

Character

String Specify the padding character that is to be inserted or interpreted on the writing

or parsing of a fixed length object if the data is less than the fixed length value.

This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a

hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

The choice of which of these padding character forms is used for an MRM

element depends on the padding character required and whether the padding

character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the

hexadecimal format can be used. This gives the option of specifying a padding

character that is inserted directly into the output message. If this format is used,

you must ensure that this hexadecimal value is valid for the code page of any

output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure

that the converted value of the padding character is valid for this code page. For

example, when converting from ASCII to code page 500, if you have specified

the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the

ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must

not be greater than U+007F. Note that if you enter a Unicode mnemonic or

numeric value, it is considered to be the character that is represented by that

number in UTF-8.

DateTime

Format

String Specify a template for date and time.

The default DateTime format is dependent on the logical type of the object. For

information about the defaults for the dateTime format according to the logical

type see “DateTime defaults by logical type” on page 770.

See “DateTime formats” on page 763 for details of date and time formats.

Numeric representation

 Property Type Meaning

Signed Check box Specify whether or not the value is signed.

This property is applicable only if the Physical type property is Packed Decimal.

By default, this check box is cleared, which indicates that the value is not signed.

Message model reference information 393

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default

value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an

actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that

is directly substituted as if it is a string. For dateTime elements, use this

option if you want to use the Encoding Null Value property to test or compare

the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified

by the Encoding Null Value property. Encoding Null Value must resolve to a

single character.

The option that you select determines the value that you must set for the

property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”

on page 751.

Encoding Null

Value

String The use of this property depends on the Encoding Null property that is described

above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,

the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 763.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;

for example, 1970-12-01.

TDS properties for global element decimal types:

The TDS Format properties described here apply to:

v Objects: Global Element

v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

394 Message Models

Field Identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Packed Decimal. The data is a packed decimal number that equates to the

COMP-3 data type in COBOL.

v TLOG Specific - this option can be selected only if the Message Standard

property of the message set is TLOG. This option indicates that the format of

the data is specific to the TLOG messaging standard.

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type

PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from

logical type is selected, and the Physical type is ’Character’, the default value is

derived from any totalDigits value constraint (schema facet) or, if none, any

minInclusive, maxInclusive, minExclusive, or maxExclusive value constraints

(schema facets), on the simple type.

Message model reference information 395

Property Type Meaning

Length Units Enumerated

type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both

options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of

bytes that are processed in the bit stream depends on the code page of the

message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the contents of the bit stream. The parser

reads one character at a time and determines whether the character

comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated

type

Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output

as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

396 Message Models

Property Type Meaning

Padding

Character

String Specify the padding character that is to be inserted or interpreted on the writing

or parsing of a fixed length object if the data is less than the fixed length value.

This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a

hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

The choice of which of these padding character forms is used for an MRM

element depends on the padding character required and whether the padding

character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the

hexadecimal format can be used. This gives the option of specifying a padding

character that is inserted directly into the output message. If this format is used,

you must ensure that this hexadecimal value is valid for the code page of any

output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure

that the converted value of the padding character is valid for this code page. For

example, when converting from ASCII to code page 500, if you have specified

the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the

ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must

not be greater than U+007F. Note that if you enter a Unicode mnemonic or

numeric value, it is considered to be the character that is represented by that

number in UTF-8.

Numeric representation

 Property Type Meaning

Signed Check box Specify whether or not the value is signed.

Sign EBCDIC

Custom

Overpunched

Check box Specify whether EBCDIC custom sign format is used.

This property is applicable only if the Signed property is selected and the

Physical Type property is set to External Decimal.

Message model reference information 397

Property Type Meaning

Sign

Orientation

Enumerated

type

The values that you can choose for this property are:

v Leading Separate

v Trailing Separate

v Leading Overpunched

v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External

Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading

Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is

selected, the only valid values of Sign Orientation are Leading Overpunched and

Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric

value. If no value is set, ″+″ is assumed. The positive sign is not written when

creating an output message; it is used only to recognize the positive sign when

parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric

value. If no value is set, ″-″ is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Virtual Decimal

Point

Button and

Integer

Specify a nonzero integer that represents the position of an implied decimal

point within a number, or specify 0 (zero, the default) to use the formatting of

Float or Decimal numbers as specified by the Precision property.

If you specify a positive integer, the position of the decimal point is moved left

from the right hand side of the number. For example, if you specify 3, the

decimal value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is moved

right from the right hand side of the number. For example, if you specify -3, the

decimal value 1234 represents 1 234 000

398 Message Models

Property Type Meaning

Precision Button and

Integer

This property is applicable only if Physical Type is Text. It is used if the value of

the Virtual Decimal Point property is 0, which indicates that the decimal point is

present in the data. It deals with truncation, and specifies how many digits

should follow the decimal point.

Either specify a number of digits:

v If you set Precision to 0, data is truncated so that the fractional part is lost. For

example, the value 123.45 is truncated to 123.

v If you set Precision to a number less than the number of fractional digits, data

is truncated. For example, the value 123.4567 is truncated to 123.45 if you set

Precision to 2.

v If you set Precision to a number greater than the number of fractional digits,

the value is padded with extra zeros. For example, the value 12.345 is padded

to 12.34500 if you set Precision to 5.

Or select one of the following from the drop-down list:

v All Significant Digits - decimal separator only required if fractional

digits (the default): all significant digits are written to the output bit stream,

and there is no decimal separator if there are no fractional digits.

v Explicit Decimal Separator - decimal separator always required: all

significant digits are written to the output bit stream and the decimal

separator is always included, even if there are no fractional digits. The

decimal separator must be present in the input bit stream, even if no fractional

digits are present.

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default

value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an

actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that

is directly substituted as if it is a string. For dateTime elements, use this

option if you want to use the Encoding Null Value property to test or compare

the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified

by the Encoding Null Value property. Encoding Null Value must resolve to a

single character.

The option that you select determines the value that you must set for the

property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”

on page 751.

Encoding Null

Value

String The use of this property depends on the Encoding Null property that is described

above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,

the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 763.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;

for example, 1970-12-01.

Message model reference information 399

TDS properties for global element float types:

The TDS Format properties described here apply to:

v Objects: Global Element

v Float schema types: double, float

Field Identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Float. This equates to the data type FLOAT or DOUBLE in C, or the COMP-1

or COMP-2 numeric data type in COBOL.

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. The data is a packed decimal number that equates to the

COMP-3 data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type

PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

400 Message Models

Property Type Meaning

Length Units Enumerated

type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both

options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of

bytes that are processed in the bit stream depends on the code page of the

message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the contents of the bit stream. The parser

reads one character at a time and determines whether the character

comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated

type

Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output

as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Message model reference information 401

Property Type Meaning

Padding

Character

String Specify the padding character that is to be inserted or interpreted on the writing

or parsing of a fixed length object if the data is less than the fixed length value.

This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a

hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

The choice of which of these padding character forms is used for an MRM

element depends on the padding character required and whether the padding

character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the

hexadecimal format can be used. This gives the option of specifying a padding

character that is inserted directly into the output message. If this format is used,

you must ensure that this hexadecimal value is valid for the code page of any

output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure

that the converted value of the padding character is valid for this code page. For

example, when converting from ASCII to code page 500, if you have specified

the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the

ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must

not be greater than U+007F. Note that if you enter a Unicode mnemonic or

numeric value, it is considered to be the character that is represented by that

number in UTF-8.

Numeric representation

 Property Type Meaning

Signed Check box Specify whether or not the value is signed.

Sign EBCDIC

Custom

Overpunched

Check box Specify whether EBCDIC custom sign format is used.

This property is applicable only if the Signed property is selected and the

Physical Type property is set to External Decimal.

402 Message Models

Property Type Meaning

Sign

Orientation

Enumerated

type

The values that you can choose for this property are:

v Leading Separate

v Trailing Separate

v Leading Overpunched

v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External

Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading

Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is

selected, the only valid values of Sign Orientation are Leading Overpunched and

Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric

value. If no value is set, ″+″ is assumed. The positive sign is not written when

creating an output message; it is used only to recognize the positive sign when

parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric

value. If no value is set, ″-″ is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Virtual Decimal

Point

Button and

Integer

Specify a nonzero integer that represents the position of an implied decimal

point within a number, or specify 0 (zero, the default) to use the formatting of

Float or Decimal numbers as specified by the Precision property.

If you specify a positive integer, the position of the decimal point is moved left

from the right hand side of the number. For example, if you specify 3, the

decimal value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is moved

right from the right hand side of the number. For example, if you specify -3, the

decimal value 1234 represents 1 234 000

Message model reference information 403

Property Type Meaning

Precision Button and

Integer

This property is applicable only if Physical Type is Text. It is used if the value of

the Virtual Decimal Point property is 0, which indicates that the decimal point is

present in the data. It deals with truncation, and specifies how many digits

should follow the decimal point.

Either specify a number of digits:

v If you set Precision to 0, data is truncated so that the fractional part is lost. For

example, the value 123.45 is truncated to 123.

v If you set Precision to a number less than the number of fractional digits, data

is truncated. For example, the value 123.4567 is truncated to 123.45 if you set

Precision to 2.

v If you set Precision to a number greater than the number of fractional digits,

the value is padded with extra zeros. For example, the value 12.345 is padded

to 12.34500 if you set Precision to 5.

Or select one of the following from the drop-down list:

v All Significant Digits - decimal separator only required if fractional

digits (the default): all significant digits are written to the output bit stream,

and there is no decimal separator if there are no fractional digits.

v Explicit Decimal Separator - decimal separator always required: all

significant digits are written to the output bit stream and the decimal

separator is always included, even if there are no fractional digits. The

decimal separator must be present in the input bit stream, even if no fractional

digits are present.

v Exponential Notation - Example ″1.23456e002″: data is written out to the bit

stream as a signed value having the format [sign1]a.bbbe[sign2]ccc where:

– [sign1] is the value of Negative Sign if the value is negative

– a is a single decimal digit

– bbb is one or more decimal digits

– [sign2] is the value of Negative Sign if the exponent is negative

– ccc is exactly three decimal digits (the exponent)

[sign1] and [sign2] are absent if the value and exponent, respectively, are

positive.

For example, the value -123.456 is represented as -1.23456e002 and the value

0.00012 is represented as 1.2e-004 in the output bit stream (assuming that the

value of Negative Sign is ″-″, and the value of Sign Orientation is Leading).

The value -0.00012 is represented as 1.2*e*004 if Negative Sign is ″*″ and Sign

Orientation is Trailing.

404 Message Models

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default

value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an

actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that

is directly substituted as if it is a string. For dateTime elements, use this

option if you want to use the Encoding Null Value property to test or compare

the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified

by the Encoding Null Value property. Encoding Null Value must resolve to a

single character.

The option that you select determines the value that you must set for the

property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”

on page 751.

Encoding Null

Value

String The use of this property depends on the Encoding Null property that is described

above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,

the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 763.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;

for example, 1970-12-01.

TDS properties for global element integer types:

The TDS Format properties described here apply to:

v Objects: Global Element

v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Field Identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Message model reference information 405

Property Type Meaning

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. The data is a packed decimal number that equates to the

COMP-3 data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type

PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from

logical type is selected, and the Physical type is ’Character’, the default value is

derived from any totalDigits value constraint (schema facet) or, if none, any

minInclusive, maxInclusive, minExclusive, or maxExclusive value constraints

(schema facets), on the simple type.

Length Units Enumerated

type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both

options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of

bytes that are processed in the bit stream depends on the code page of the

message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the contents of the bit stream. The parser

reads one character at a time and determines whether the character

comprises one or more bytes.

The default is dependent on the physical type of the object.

406 Message Models

Property Type Meaning

Justification Enumerated

type

Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output

as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Padding

Character

String Specify the padding character that is to be inserted or interpreted on the writing

or parsing of a fixed length object if the data is less than the fixed length value.

This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a

hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

The choice of which of these padding character forms is used for an MRM

element depends on the padding character required and whether the padding

character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the

hexadecimal format can be used. This gives the option of specifying a padding

character that is inserted directly into the output message. If this format is used,

you must ensure that this hexadecimal value is valid for the code page of any

output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure

that the converted value of the padding character is valid for this code page. For

example, when converting from ASCII to code page 500, if you have specified

the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the

ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must

not be greater than U+007F. Note that if you enter a Unicode mnemonic or

numeric value, it is considered to be the character that is represented by that

number in UTF-8.

Numeric representation

 Property Type Meaning

Signed Check box Specify whether or not the value is signed.

Message model reference information 407

Property Type Meaning

Sign EBCDIC

Custom

Overpunched

Check box Specify whether EBCDIC custom sign format is used.

This property is applicable only if the Signed property is selected and the

Physical Type property is set to External Decimal.

Sign

Orientation

Enumerated

type

The values that you can choose for this property are:

v Leading Separate

v Trailing Separate

v Leading Overpunched

v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External

Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading

Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is

selected, the only valid values of Sign Orientation are Leading Overpunched and

Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric

value. If no value is set, ″+″ is assumed. The positive sign is not written when

creating an output message; it is used only to recognize the positive sign when

parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric

value. If no value is set, ″-″ is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default

value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an

actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that

is directly substituted as if it is a string. For dateTime elements, use this

option if you want to use the Encoding Null Value property to test or compare

the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified

by the Encoding Null Value property. Encoding Null Value must resolve to a

single character.

The option that you select determines the value that you must set for the

property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”

on page 751.

408 Message Models

Property Type Meaning

Encoding Null

Value

String The use of this property depends on the Encoding Null property that is described

above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,

the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 763.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;

for example, 1970-12-01.

TDS properties for global element interval types:

The TDS Format properties described here apply to:

v Objects: Global Element

v Interval schema types: duration

Field Identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Message model reference information 409

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The data’s first byte contains the length (in length

units) of the data string that follows the length byte. The maximum length of

a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The data’s first two bytes contains the length (in

length units) of the data string that follows the two length bytes. The

maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL

character, X’00’.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from

logical type is selected, and the Physical type is ’Character’, the default value is

derived from any length or maxLength value constraint (schema facet) on the

simple type.

Length Units Enumerated

type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both

options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of

bytes that are processed in the bit stream depends on the code page of the

message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the contents of the bit stream. The parser

reads one character at a time and determines whether the character

comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated

type

Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output

as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

410 Message Models

Property Type Meaning

Padding

Character

String Specify the padding character that is to be inserted or interpreted on the writing

or parsing of a fixed length object if the data is less than the fixed length value.

This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a

hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

The choice of which of these padding character forms is used for an MRM

element depends on the padding character required and whether the padding

character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the

hexadecimal format can be used. This gives the option of specifying a padding

character that is inserted directly into the output message. If this format is used,

you must ensure that this hexadecimal value is valid for the code page of any

output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure

that the converted value of the padding character is valid for this code page. For

example, when converting from ASCII to code page 500, if you have specified

the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the

ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must

not be greater than U+007F. Note that if you enter a Unicode mnemonic or

numeric value, it is considered to be the character that is represented by that

number in UTF-8.

Message model reference information 411

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default

value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an

actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that

is directly substituted as if it is a string. For dateTime elements, use this

option if you want to use the Encoding Null Value property to test or compare

the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified

by the Encoding Null Value property. Encoding Null Value must resolve to a

single character.

The option that you select determines the value that you must set for the

property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”

on page 751.

Encoding Null

Value

String The use of this property depends on the Encoding Null property that is described

above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,

the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 763.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;

for example, 1970-12-01.

TDS properties for global element string types:

The TDS Format properties described here apply to:

v Objects: Global Element

v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,

QName, string, token

Field Identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

412 Message Models

Property Type Meaning

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Interpret

Element Value

Enumerated

type

Specify whether values stored within this object must be interpreted as having

significance for the parser and, if so, the type of interpretation that must occur.

This interpretation is generally standard-specific and is therefore hard-coded.

The possible values for this property are:

v None (the default value)

v EDIFACT Service String

v X12 Service String

v Message Key

v EDIFACT Syntax Level ID

v HL7 Service String

v HL7 Field Separator

Note: The Message Key enumeration has been deprecated

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The data’s first byte contains the length (in length

units) of the data string that follows the length byte. The maximum length of

a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The data’s first two bytes contains the length (in

length units) of the data string that follows the two length bytes. The

maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL

character, X’00’.

v TLOG Specific - this option can be selected only if the Message Standard

property of the message set is TLOG. This option indicates that the format of

the data is specific to the TLOG messaging standard.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from

logical type is selected, and the Physical type is ’Character’, the default value is

derived from any length or maxLength value constraint (schema facet) on the

simple type.

Message model reference information 413

Property Type Meaning

Length Units Enumerated

type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both

options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of

bytes that are processed in the bit stream depends on the code page of the

message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the contents of the bit stream. The parser

reads one character at a time and determines whether the character

comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated

type

Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output

as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

414 Message Models

Property Type Meaning

Padding

Character

String Specify the padding character that is to be inserted or interpreted on the writing

or parsing of a fixed length object if the data is less than the fixed length value.

This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a

hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

The choice of which of these padding character forms is used for an MRM

element depends on the padding character required and whether the padding

character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the

hexadecimal format can be used. This gives the option of specifying a padding

character that is inserted directly into the output message. If this format is used,

you must ensure that this hexadecimal value is valid for the code page of any

output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure

that the converted value of the padding character is valid for this code page. For

example, when converting from ASCII to code page 500, if you have specified

the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the

ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must

not be greater than U+007F. Note that if you enter a Unicode mnemonic or

numeric value, it is considered to be the character that is represented by that

number in UTF-8.

Message model reference information 415

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default

value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an

actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that

is directly substituted as if it is a string. For dateTime elements, use this

option if you want to use the Encoding Null Value property to test or compare

the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified

by the Encoding Null Value property. Encoding Null Value must resolve to a

single character.

The option that you select determines the value that you must set for the

property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”

on page 751.

Encoding Null

Value

String The use of this property depends on the Encoding Null property that is described

above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,

the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 763.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;

for example, 1970-12-01.

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the

understanding of the function of that object. The documentation property is

available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric

characters.

Global group properties

A global element can have the following properties;

v “Global group logical properties” on page 198

v “Global group CWF properties” on page 216

v “Global group XML properties” on page 224

v “Global group TDS properties” on page 235

v “Documentation properties for all message set objects” on page 183

Global group logical properties:

Valid children in a global group that depend on both Composition and Content

Validation are shown in “MRM content validation” on page 189.

416 Message Models

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters

A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a

number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the

XML standards specification.

Further details of naming conventions and allowable characters can be found in

the Extensible Markup Language (XML) specification that can be found on the

World Wide Web Consortium (W3C) Web site.

Message model reference information 417

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Property Type Meaning

Composition Enumerated

type

Define the order, and the number of occurrences, of the elements and groups in

your messages. Composition does not affect the attributes in a complex type.

Select from:

v Empty

v sequence. If you select this option, you can define members that are elements

or groups. These members, if present, must appear in the specified order in

the message. They can repeat, and the same element or group can appear

more than once.

v choice. If you select this option, you can define members that are elements or

groups. Exactly one of the defined members must be present in the message,

and can repeat.

Use this option if you want to model C unions and COBOL REDEFINES in a

Custom Wire Format, or an XML DTD element that uses choice in an XML

Wire Format, or a SWIFT field that has more than one option.

v all. If you select this option, you can define members that are elements;

groups are not allowed. The elements in an all group can appear in any

order. Each element can appear once, or not at all. An all group can only be

used at the top level of a complex type - it cannot be a member of another

group within a type.

v unorderedSet.

This option is supported only by the MRM domain.If you select this option,

you can define members that are elements. The elements can repeat but the

same element cannot appear twice in the list of members. The elements can

appear in any order in the message.

v orderedSet.

This option is supported only by the MRM domain.If you select this option,

you can define members that are elements. The elements can repeat, but the

same element cannot appear twice in the list of members. The elements must

appear in the specified order in the message.

v message.

This option is supported only by the MRM domain.

If you select this option, you can define only messages as members. Each

member can repeat, but the same message cannot appear twice in the list of

members. Like choice, only one of the defined members can be present in a

message.

Unlike choice, when writing a message, if the complex type or group has

more than one member, the bit stream is not padded to the length of the

longest member.

Use this option to model multipart messages, which are used in some

industry standards, for example, SWIFT. For more information, see the section

on multipart messages in “Multipart messages” on page 25.

418 Message Models

Property Type Meaning

Content

Validation

Enumerated

type

Content Validation is used only by the MRM domain. If validation is enabled in

your message flow, Content Validation specifies the strictness of the MRM

validation for members of a complex type or group. See “MRM content

validation” on page 189 for further details.

Options:

v Closed. The complex type can only contain the child elements that you have

added to it.

v Open Defined. The complex type can contain any valid element defined within

the message set.

v Open. The complex type can contain any valid element, not just those that you

have added to this complex type.

See “Combinations of Composition and Content Validation” on page 293 for

further details of these options.

Global group CWF properties:

There are no properties to show.

Global group XML properties:

There are no properties to show.

Global group TDS properties:

Message model reference information 419

Field Identification

 Property Type Meaning

Data Element

Separation

Enumerated

type

Select one of the following values to specify the method that is used to separate

the data elements within the type.

v Tagged Delimited. This value indicates that all elements within the complex

type are identified by a tag, and are separated by the value that is specified in

the optional Delimiter property (if specified). You must set the Tag property for

all child elements of simple type, and you can set the Delimiter property to a

non-empty value. See “Global element TDS properties” on page 234. You must

also set the Tag Data Separator or the Length of Tag property.

v Tagged Fixed Length. This value indicates that each element is identified by a

tag, and the data has a fixed length. There are no delimiters. You must set the

Tag property for each of the child elements of this complex type, and each

child element must have a Length or Length Reference property assigned to it.

You must also set the Tag Data Separator or the Length of Tag property.

v Tagged Encoded Length. This value indicates that all elements within the

complex type are separated by a tag, and a length field follows each tag.

There are no delimiters. The tag can be fixed length, as set by the Length of Tag

property, or variable length delimited by the Tag Data Separator property. You

must also set the Length Of Encoded Length property so that the parser knows

the size of the length field, and set the Extra Chars in Encoded Length property

to tell the parser what to subtract from the value in the Length Of Encoded

Length property to get the actual length of the data that follows the length

field.

This method provides a more flexible way of handling ACORD AL3 standard

messages than using the Fixed Length AL3 value, by allowing different parts

of the messages to be at different versions of the ACORD AL3 standard.

v All Elements Delimited. This value indicates that all elements within the

complex type are separated by a delimiter. You must set a value in the

Delimiter property.

v Variable Length Elements Delimited. This value indicates that some of the

elements within the complex type might be of variable length; if they are, they

must be delimited by the value that is specified in the Delimiter property.

v Use Data Pattern. This value indicates that the parser determines the

elements by matching the data with the regular expression that is set in the

Data Pattern property of the element or type member. See “Message definition

file properties” on page 181.

v Fixed Length. This value indicates that all elements within the complex type

are fixed length. The next data element is accessed by adding the value of the

Length property to the offset. See “Global element TDS properties” on page

234. If you set the Data Element Separation property of a complex type to Fixed

Length, you must also set the Data Element Separation property of all complex

children of this type to Fixed Length. Each child element must have a Length

or Length Reference property assigned to it.

v Fixed Length AL3. This value has a similar meaning to the separation type

Fixed Length, but also indicates to the parser that a number of predefined

rules with regard to missing optional elements, encoded lengths, and

versioning, must be applied. If you set the Data Element Separation property of

a complex type to Fixed Length AL3, you must also set the Data Element

Separation property of all complex children of this type to Fixed Length AL3.

v Undefined. This value is set automatically if you set the Type Composition

property of a complex type to Message, and you cannot change it to any other

value.

Do not set the Type Composition property to Empty, Choice, Unordered Set,

Ordered Set, Sequence, or Simple Unordered Set. If you do, you cannot check

in the type.

420 Message Models

Property Type Meaning

Group Indicator String Specify the value of a special character, or string, that precedes the data that

belongs to a group, or a complex type, within the bit stream.

Group

Terminator

String Specify the value of a special character, or string, that terminates the data that

belongs to a group, or a complex type, within the bit stream.

Delimiter String Specify the value of a special character, or string, that specifies the delimiter that

is used between data elements.

This property applies only to the delimited Data Element Separation methods

(Tagged Delimited, All Elements Delimited, and Variable Length Elements

Delimited).

Suppress

Absent Element

Delimiters

Enumerated

type

Use this property to select whether you want delimiters to be suppressed for

elements that are missing within a message.

Select from:

v End Of Type. Use this option to suppress the delimiter when an element is

missing. For example, if the model has been defined to have up to 3 elements

and only 2 are present, the last delimiter can be omitted from the message.

v Never. Use this option to ensure that even if optional elements are not present,

all delimiters are written out. This option should be used when the same

delimiter is used to delimit parent and child objects. For example, if an

optional child element is missing, message processing applications could not

tell where the child elements in a message ended and the next parent element

started, if the delimiters are all the same.

Observe

Element Length

Check box This property is applicable when Data Element Separation is All Elements

Delimited, and tells the TDS parser to take any Length property of child

elements or attributes into account. The default value depends on the setting of

the Messaging Standard property (at the message set level) and the Data Element

Separation property.

v If Data Element Separation is All Elements Delimited and the Messaging

Standard is set to TLOG, the check box is selected. For all other messaging

standards, the check box is cleared.

v If Data Element Separation is Tagged Delimited, the check box is cleared.

v If Data Element Separation is Tagged Fixed Length, Fixed Length, Fixed Length

AL3, or Variable Length Elements Delimited, this property is set and is

disabled.

v For all other data element separation methods, this property is not set and is

disabled.

Tag Data

Separator

Button and

String

Specify the value of a special character or string that separates the Tag from the

data. The Tag Data Separator and Length of Tag properties are mutually exclusive.

If you set the property Tag Data Separator, it overrides Length of Tag.

This property applies only to the tagged Data Element Separation methods (Tagged

Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Length of Tag Button and

Integer

Specify the length of a tag value. When the message is parsed, this allows tags

to be extracted from the bit stream if the Tag Data Separator property is not set.

The Tag Data Separator and Length of Tag properties are mutually exclusive. If you

set the property Tag Data Separator, it overrides this value.

This property applies only to the tagged Data Element Separation methods (Tagged

Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Message model reference information 421

Property Type Meaning

Length of

Encoded

Length

Integer Specifies the number of characters (not bytes) after a tag that are used for the

length field. Enter a value from 0 to 2 147 483 647.

You must set this property if you have set the Data Element Separation property

to Tagged Encoded Length; it is not valid otherwise.

The actual number of data characters that are parsed depends on the value of

the Extra Chars in Encoded Length property.

Extra Chars in

Encoded

Length

Integer (Only valid if the Data Element Separation method is set to Tagged Encoded

Length.) Specifies the number of extra characters included in the value found in

the length field. (For example, the value in the length might include the size of

the length field itself as well as the size of the data field, or it might be the total

size of the tag, length, and data fields.)

Enter a value from 0 to 2 147 483 647. The parser subtracts this number from the

number found in the length field to get the number of data characters that follow

the length field.

You must set this property if you have set the Data Element Separation property

to Tagged Encoded Length, and the actual number of data characters is less than

the value found in the length field.

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the

understanding of the function of that object. The documentation property is

available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric

characters.

Group reference properties

A group reference can have the following properties;

v “Group reference logical properties” on page 200

v “Group reference CWF properties” on page 216

v “Group reference XML properties” on page 224

v “Group reference TDS properties” on page 238

v “Documentation properties for all message set objects” on page 183

Group reference logical properties:

 Property Type Meaning

Reference Name Enumerated

type

The Reference Name is the name of the object that this object is referring to. The

objects available to reference can be selected from the drop-down list.

422 Message Models

Occurrence properties

 Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default is

1.

If the value is set to 0, then the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,

it must be less than or equal to the value in Max Occurs.

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default is

1.

If this property is not set, then the object can not occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the

message.

It can also be set to -1 to indicate that the limit is unbounded and there is no

maximum to the number of occurrences.

Group reference CWF properties:

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Message model reference information 423

Occurrences

 Property Type Meaning

Repeat

Reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the displayed list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

Group reference XML properties:

There are no properties to show.

Group reference TDS properties:

The following tables describe the TDS properties of a group reference.

 Field identification

 Property Type Meaning

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Occurrences

 Property Type Meaning

Repeating

Element

Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element

Separation property of the parent group or complex type is set to All Elements

Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging

standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is

not HL7, and the maximum number of repeats is fixed, the delimiter of the

parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Repeat

reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the drop-down list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

424 Message Models

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the

understanding of the function of that object. The documentation property is

available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric

characters.

Key properties

A key can have the following properties;

v “Key logical properties” on page 200

v “Key CWF properties” on page 217

v “Key XML properties” on page 224

v “Key TDS properties” on page 239

v “Documentation properties for all message set objects” on page 183

Key logical properties:

There are no properties to show.

Key CWF properties:

There are no properties to show.

Key XML properties:

There are no properties to show.

Key TDS properties:

There are no properties to show.

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the

understanding of the function of that object. The documentation property is

available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric

characters.

Keyref properties

A keyref can have the following properties;

v “Keyref logical properties” on page 200

v “Keyref CWF properties” on page 217

v “Keyref XML properties” on page 224

v “Keyref TDS properties” on page 239

v “Documentation properties for all message set objects” on page 183

Keyref logical properties:

Message model reference information 425

There are no properties to show.

Keyref CWF properties:

There are no properties to show.

Keyref XML properties:

There are no properties to show.

Keyref TDS properties:

There are no properties to show.

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the

understanding of the function of that object. The documentation property is

available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric

characters.

Local attribute properties

A local attribute can have the following properties;

v “Local attribute logical properties” on page 201

v “Local attribute CWF properties” on page 217

v “Local attribute XML properties” on page 224

v “Local attribute TDS properties” on page 239

v “Documentation properties for all message set objects” on page 183

Local attribute logical properties:

 Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters

A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a

number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the

XML standards specification.

Further details of naming conventions and allowable characters can be found in

the Extensible Markup Language (XML) specification that can be found on the

World Wide Web Consortium (W3C) Web site.

426 Message Models

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Property Type Meaning

Type Enumerated

type

The Type property constrains the type of data that can be present in the object.

There are a limited number of types available directly from the drop-down

selector. These are;

v int

v string

v Boolean

v hexBinary

v dateTime

v date

v time

v decimal

v float

v (More...)

v (New Simple Type)

v (New Complex Type)

If you select (More...), this starts the Type Selection wizard. From this wizard

you can select any of the available types.

If you select (New Simple Type), this starts the New Simple Type wizard which

allows you to create an Anonymous simple type that is based on an existing

type. This can be created locally or globally.

If you select (New Complex Type), this starts the New Complex Type wizard

which allows you to create an Anonymous complex type which can be derived

from an existing base type. This can be created locally or globally.

For further information about these types, and examples of their use see the

XML Schema Part 0: Primer which can be found on the World Wide Web

Consortium (W3C) Web site.

Namespace Enumerated

type

Namespaces are a simple method for qualifying element and attribute names by

associating them with namespaces identified by URI references.

If <no target namespace> is displayed, a namespace has not been set for this

object.

If the property is inactive, the message set has not been configured to support

namespaces.

Where the property is active, namespaces that are available for selection are

displayed in the drop-down list.

Value

The Value properties are used in conjunction with the Usage property in an

Attribute Reference or a Local Attribute.

Message model reference information 427

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/

Property Type Meaning

Default Button and

String

This property provides the default value for an element or attribute.

XMLNSC domain

When parsing with validation enabled, default values are applied to

missing attributes and empty elements as required by the XML Schema

1.0 specification. When writing, elements or attributes that are missing

from the message tree are not automatically added to the output XML

bit stream, even if they have default values. If this is required, the

message tree can be serialized and then re-parsed with validation

enabled.

MRM (CWF and TDS physical formats)

When writing a fixed-length portion of a message (CWF or fixed-length

TDS), if an attribute or element is missing from the message tree, the

default value is inserted into the bit stream so that the message

structure is preserved.

MRM (XML physical format)

No support for default values

Other domains

No support for default values.

Fixed Button and

String

This property provides the fixed value for an element or attribute.

XMLNSC domain

When parsing with validation enabled, if an attribute or element is

present, the value is validated against the fixed value. If the values are

not equal, a validation error is signalled. Also, when parsing with

validation enabled, fixed values are applied to missing attributes and

empty elements as required by the XML Schema 1.0 specification. When

writing, elements or attributes that are missing from the message tree

are not automatically added to the output XML bit stream, even if a

fixed value has been specified. If this is required, the message tree can

be serialized and then re-parsed with validation enabled.

MRM (CWF and TDS physical formats)

When writing a fixed-length portion of a message (CWF or fixed-length

TDS), if an attribute or element is missing from the message tree, the

fixed value is inserted into the bit stream so that the message structure

is preserved.

MRM (XML physical format)

No support for fixed values

Other domains

No support for fixed values.

428 Message Models

Property Type Meaning

Interpret Value

As

Enumerated

type

Specify if values stored within this object must be interpreted as having

significance for the parser and, if so, the type of interpretation that must occur.

The possible values for this property are:

v None This is the default value and indicates that the element or attribute does

not have any key value associated with it.

v MessageSetIdentity. Specifies that the value of the element or attribute

corresponds to the identifier, name or alias (in that priority order) that is

associated with the message set where all subsequent embedded messages

that are descendents of the enclosing message are defined. This value remains

in force unless a new element or attribute MessageSetIdentity field is

encountered which resets the MessageSetIdentity value to this new one.

v MessageIdentity. Specifies that the value of the element or attribute

corresponds to the name or alias (in that priority order) that is associated with

a message and acts as an identifier for subsequent embedded messages which

are the immediate children of the enclosing message. This identity applies

until a new element or attribute MessageIdentity field is encountered at the

same level in the tree. The embedded message may be defined in either the

current message set or in a message set identified using a MessageSetIdentity.

Note: This property is only applicable when the type of the object is derived

from xsd:string.

Usage properties

 Property Type Meaning

Usage Enumerated

type

The usage property is used in conjunction with the Value property found in an

attribute object. The default for the Usage property is optional.

Select from;

v optional.

– Where the Value property is set to default and no data has been entered in

the Value property, the attribute can appear once and can have any value.

– Where the Value property is set to default, the attribute can appear once. If

it does not appear, its value is the data that has been entered in the Value

property. If it does appear it is the value given.

– Where the Value property is set to fixed, the attribute can appear once. If it

does appear, its value must match the data that has been entered in the

Value property. If it does not appear its value is the data that has been

entered in the Value property.

v prohibited. The attribute must not appear.

v required.

– Where the Value property is set to default and no data has been entered in

the Value property, the attribute must appear once and can have any value.

– Where the Value property is set to fixed, the attribute must appear once

and it must match the data that has been entered in the Value property.

Local attribute CWF properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

Message model reference information 429

Binary types

 - base64Binary

 - hexBinary

Boolean types

 - Boolean

DateTime types

 - date

 - dateTime

 - gDay

 - gMonth

 - gMonthDay

 - gYear

 - gYearMonth

 - time

Decimal types

 - decimal

 - integer

 - negativeInteger

 - nonNegativeInteger

 - nonPositiveInteger

 - positiveInteger

 - unsignedLong

Float types

 - double

 - float

Integer types

 - byte

 - int

 - long

 - short

 - unsignedByte

 - unsignedInt

 - unsignedShort

Interval types

 - duration

String types

 - anyURI

 - ENTITIES

 - ENTITY

 - ID

 - IDREF

 - IDREFS

 - language

 - Name

 - NCName

 - NMTOKEN

 - NMTOKENS

 - normalizedString

 - NOTATION

 - QName

 - string

 - token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the

String logical types.

CWF properties for attribute reference and local attribute binary types:

The Custom Wire Format properties described here apply to:

v Objects: Attribute Reference, Local Attribute

v Binary schema types: base64Binary, hexBinary

Physical representation

 Property Type Meaning

Length Button and

Integer

If you have selected the length to be defined by Length, enter the number of

length units for the element.

The minimum value that you can specify is 1.

The maximum value that you can specify is 2147483647.

The default value is empty (not set).

Length

Reference

Button and

Enumerated

type

If you have selected the length to be defined by Length Reference, select the name

of the integer object that specifies the length of this object. Make your selection

from the displayed list of integer objects that are defined as siblings of the

current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page

108.

430 Message Models

Property Type Meaning

Inclusive

Length

Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of

the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object

must be the same as that of the current object.

Length Units Enumerated

type

Select the unit of length for the element or attribute. Select one of the following

options from the displayed list (some physical types do not offer all of these

options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads

one character at a time and determines whether the character comprises

one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is

determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to

Characters.

– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest

character unit that the code page supports. However, this means that a

message must contain only these characters if it is to be processed correctly.

For example, in code page ″UTF-8″ (CCSID 1208), the minimum character

unit is one byte; therefore, the parser can make a single read (of the

number of bytes specified by the Length property) to fetch the entire

message. The message must contain only characters that are encoded in

1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count or Length

Reference property.

The default is Bytes.

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Message model reference information 431

Property Type Meaning

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

CWF properties for attribute reference and local attribute Boolean types:

The Custom Wire Format properties described here apply to:

v Objects: Attribute Reference, Local Attribute

v Boolean schema types: Boolean

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

CWF properties for attribute reference and local attribute dateTime types:

The Custom Wire Format properties described here apply to:

432 Message Models

v Objects: Attribute Reference, Local Attribute

v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select one of the following from the displayed list:

v Fixed Length String. The element’s length is determined by other length

properties below.

v Length Encoded String 1. The element’s first byte contains the length of the

string following the length byte in length units. The maximum length of a

Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The element’s first two bytes contain the length of

the string following the 2 length bytes in length units. The maximum length

of a Length Encoded String 2 element is 65535 length units. The two length

bytes are in the format of the WebSphere MQ queue manager Encoding.

v Null Terminated String. The string ends with the hexadecimal NULL

character, X’00’.

v Packed Decimal. The dateTime is coded as a Packed Decimal number. It is

valid only if the DateTime Format property represents numeric-only data.

v Binary. The dateTime is encoded as a binary sequence of bytes. If you select

this option, the range of symbols that you can specify for the Format String

property is less than the range of symbols you can specify if you select a

string option (see “DateTime formats” on page 763 for details).

v Time Seconds. This value supports C time_t and Java Date and Time objects. It

is valid only if the DateTime Format property represents numeric-only data.

v Time Milliseconds. This value supports C time_t and Java Date and Time

objects. It is valid only if the DateTime Format property represents

numeric-only data.

The default value is fixed length string.

DateTime

Format

String Specify a template for date and time.

The default dateTime format is dependent on the logical type of the object. For

information about the defaults for the dateTime format according to the logical

type see “DateTime defaults by logical type” on page 770.

See “DateTime formats” on page 763 for details of date and time formats.

Length Button and

Integer

If you have selected a Physical Type of Fixed Length String, Packed Decimal, or

Binary, and have selected the length to be defined by Length, enter the number

of length units for the element.

The minimum value that you can specify is 1 for all three physical types.

The maximum value that you can specify is 256 for Fixed Length String, 10 for

Packed Decimal, and 2147483647 for Binary.

The default value is 0 (zero).

Length

Reference

Button and

Enumerated

type

If you have selected the length to be defined by Length Reference, select the name

of the integer object that specifies the length of this object. Make your selection

from the displayed list of integer objects that are defined as siblings of the

current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page

108.

Message model reference information 433

Property Type Meaning

Inclusive

Length

Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of

the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object

must be the same as that of the current object.

Length Units Enumerated

type

Select the unit of length for the element or attribute. Select one of the following

options from the displayed list (some physical types do not offer all of these

options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads

one character at a time and determines whether the character comprises

one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is

determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to

Characters.

– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest

character unit that the code page supports. However, this means that a

message must contain only these characters if it is to be processed correctly.

For example, in code page ″UTF-8″ (CCSID 1208), the minimum character

unit is one byte; therefore, the parser can make a single read (of the

number of bytes specified by the Length property) to fetch the entire

message. The message must contain only characters that are encoded in

1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count or Length

Reference property.

The default is Bytes.

Justification Enumerated

type

If you have set the Physical Type property to Fixed Length String, select Left

Justify (the default value) or Right Justify from the list. If you have selected

another value for Physical Type, this is property is inactive.

434 Message Models

Property Type Meaning

Padding

Character

String If you have set the Physical Type property to Fixed Length String, and the

Justification property is either Left Justify or Right Justify, this property is

applicable.

When writing an output message, use the padding character to fill out the

remaining character positions when the string length is less than the length

implied by the Length or Length Reference property. Whether the string is padded

from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end

of the string. Whether the string is trimmed from the left or the right is

governed by the Justification property.

Specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal

value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM

element depends on the padding character that is required and whether the

padding character is to be subject to data conversion. In most cases, the

specification of a padding character in quotqtion marks is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated. For example, when converting

from ASCII to the code page 500, if you have specified U+0008 as your padding

character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC

representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should

ensure that the converted value of the padding character is valid for this code

page. If the padding character cannot be represented in the target code page, it

is replaced by a substitution character. The substitution character is fixed and its

value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the

hexadecimal or decimal format can be used. This gives the option of specifying

an absolute value as a padding character that is inserted directly into the output

message. If this format is used, you should still aim to ensure that this value is

valid for the code page of any output messages that are created using these

MRM definitions.

Message model reference information 435

Numeric representation

 Property Type Meaning

Signed Check box Specify whether or not the value is signed.

This property is applicable only if the Physical type property is Packed Decimal.

By default, this check box is cleared, which indicates that the value is not signed.

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

CWF properties for attribute reference and local attribute decimal types:

The Custom Wire Format properties described here apply to:

v Objects: Attribute Reference, Local Attribute

v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

436 Message Models

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select one of the following from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. This equates to the COMP-3 data type in COBOL.

v External Decimal. This equates to the data type PIC 9 USAGE DISPLAY in

COBOL.

The representation of numeric elements can be affected by the Encoding and

CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer and Packed Decimal are

represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in

the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the

displayed list.

v If you set the Physical Type to Packed Decimal, enter a value between 1 and 10.

v If you set the Physical Type to Extended Decimal, enter a value between 1 and

256. (Numbers greater than the maximum COBOL PICTURE clause of 18 are

assumed to be 18.)

Length Units Enumerated

type

Select the unit of length for the element or attribute. Select one of the following

options from the displayed list (some physical types do not offer all of these

options):

v Bytes.

v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads

one character at a time and determines whether the character comprises

one or more bytes.
v Character Units. This specifies that the size of each character (in bytes) is

determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to

Characters.

– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest

character unit that the code page supports. However, this means that a

message must contain only these characters if it is to be processed correctly.

For example, in code page ″UTF-8″ (CCSID 1208), the minimum character

unit is one byte; therefore, the parser can make a single read (of the

number of bytes specified by the Length property) to fetch the entire

message. The message must contain only characters that are encoded in

1-byte units.
v End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count.

The default is Bytes.

Message model reference information 437

Property Type Meaning

Justification Enumerated

type

If you have set the Physical Type property to External Decimal, select Left

Justify or Right Justify (the default value) from the list. If you have selected

another value for Physical Type, this is property is inactive.

Padding

Character

String The padding character is used to fill out the remaining character positions when

the string length is less than the specified string size. If you have set the Physical

Type property to Extended Decimal, and the Justification property is either Left

Justify or Right Justify, specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal

value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM

element depends on the padding character that is required and whether the

padding character is to be subject to data conversion. In most cases, the

specification of a padding character in quotqtion marks is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated. For example, when converting

from ASCII to the code page 500, if you have specified U+0008 as your padding

character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC

representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should

ensure that the converted value of the padding character is valid for this code

page. If the padding character cannot be represented in the target code page, it

is replaced by a substitution character. The substitution character is fixed and its

value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the

hexadecimal or decimal format can be used. This gives the option of specifying

an absolute value as a padding character that is inserted directly into the output

message. If this format is used, you should still aim to ensure that this value is

valid for the code page of any output messages that are created using these

MRM definitions.

Numeric representation

 Property Type Meaning

Signed Check box Select (the default) or clear this property. This property is used in conjunction

with Sign Orientation.

438 Message Models

Property Type Meaning

Sign EBCDIC

Custom

Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom

property is set, this indicates that the Sign EBCDIC Custom Overpunched

representation is to be used within an ASCII environment. If this check box is

not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate

only if the Sign Orientation property is set to Leading or Trailing (indicating that

the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,

if the Signed check box is not set).

Sign

Orientation

Enumerated

type

If you have set Physical Type to External Decimal and you have selected Signed,

choose from the following options that represent the COBOL options for

displaying numeric data:

v Leading Overpunched. This sets a bit in the first byte if the number is negative.

No setting is made if the number is positive. For example, the ASCII

hexadecimal representation of the number 22 is x’3232’. Using this option, the

number +22 would be x’3232’ and the number -22 would be x’7232’. This is

the default value.

v Leading Separate. This sets the first byte of the element to ’+’ if the number is

positive and to ’-’ if the number is negative. For this option, the length must

include the sign byte.

v Trailing Overpunched. This sets a bit in the last byte if the number is

negative. No setting is made if the number is positive. Using this option, the

number +22 would be x’3232’ and the number -22 would be x’3272’.

v Trailing Separate. This sets the last byte of the element to ’+’ if the number

is positive and to ’-’ if the number is negative. For this option, the length must

include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set

for you.

Virtual Decimal

Point

Integer Specify the number of places to the left (for a positive value) or right (for a

negative value) that a decimal point should be moved from its assumed position.

For example, a decimal element containing 1234 with a Virtual Decimal value of

3 is 1.234. This is equivalent to ’V’ or ’P’ in a COBOL picture clause. There is no

C equivalent

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Message model reference information 439

Property Type Meaning

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

CWF properties for attribute reference and local attribute float types:

The Custom Wire Format properties described here apply to:

v Objects: Attribute Reference, Local Attribute

v Float schema types: double, float

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select one of the following from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Float. This equates to the data type FLOAT or DOUBLE in C or the COMP-1

or COMP-2 data type in COBOL. This is the default value.

v Packed Decimal. This equates to the COMP-3 data type in COBOL.

v External Decimal. This equates to the data type PIC 9 USAGE DISPLAY in

COBOL.

The representation of numeric elements can be affected by the Encoding and

CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer, Packed Decimal, and Float are

represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in

the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Float, select a value from the displayed list. The

default value is 8.

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the

displayed list.

v If you set the Physical Type to Packed Decimal, enter a value between 1 and 10.

v If you set the Physical Type to Extended Decimal, enter a value between 1 and

256. (Numbers greater than the maximum COBOL PICTURE clause of 18 are

assumed to be 18.)

440 Message Models

Property Type Meaning

Length Units Enumerated

type

Select the unit of length for the element or attribute. Select one of the following

options from the displayed list (some physical types do not offer all of these

options):

v Bytes.

v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads

one character at a time and determines whether the character comprises

one or more bytes.
v Character Units. This specifies that the size of each character (in bytes) is

determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to

Characters.

– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest

character unit that the code page supports. However, this means that a

message must contain only these characters if it is to be processed correctly.

For example, in code page ″UTF-8″ (CCSID 1208), the minimum character

unit is one byte; therefore, the parser can make a single read (of the

number of bytes specified by the Length property) to fetch the entire

message. The message must contain only characters that are encoded in

1-byte units.
v End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count.

The default is Bytes.

Justification Enumerated

type

If you have set the Physical Type property to External Decimal, select Left

Justify or Right Justify (the default value) from the list. If you have selected

another value for Physical Type, this is property is inactive.

Message model reference information 441

Property Type Meaning

Padding

Character

String The padding character is used to fill out the remaining character positions when

the string length is less than the specified string size. If you have set the Physical

Type property to Extended Decimal, and the Justification property is either Left

Justify or Right Justify, specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal

value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM

element depends on the padding character that is required and whether the

padding character is to be subject to data conversion. In most cases, the

specification of a padding character in quotqtion marks is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated. For example, when converting

from ASCII to the code page 500, if you have specified U+0008 as your padding

character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC

representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should

ensure that the converted value of the padding character is valid for this code

page. If the padding character cannot be represented in the target code page, it

is replaced by a substitution character. The substitution character is fixed and its

value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the

hexadecimal or decimal format can be used. This gives the option of specifying

an absolute value as a padding character that is inserted directly into the output

message. If this format is used, you should still aim to ensure that this value is

valid for the code page of any output messages that are created using these

MRM definitions.

Numeric representation

 Property Type Meaning

Signed Check box Select or deselect (unsigned, the default) this property. If you have set Physical

Type to Float, this is selected. This property is used in conjunction with Sign

Orientation.

442 Message Models

Property Type Meaning

Sign EBCDIC

Custom

Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom

property is set, this indicates that the Sign EBCDIC Custom Overpunched

representation is to be used within an ASCII environment. If this check box is

not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate

only if the Sign Orientation property is set to Leading or Trailing (indicating that

the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,

if the Signed check box is not set).

Sign

Orientation

Enumerated

type

If you have set Physical Type to External Decimal and you have selected Signed,

choose from the following options that represent the COBOL options for

displaying numeric data:

v Leading Overpunched. This sets a bit in the first byte if the number is negative.

No setting is made if the number is positive. For example, the ASCII

hexadecimal representation of the number 22 is x’3232’. Using this option, the

number +22 would be x’3232’ and the number -22 would be x’7232’. This is

the default value.

v Leading Separate. This sets the first byte of the element to ’+’ if the number is

positive and to ’-’ if the number is negative. For this option, the length must

include the sign byte.

v Trailing Overpunched. This sets a bit in the last byte if the number is

negative. No setting is made if the number is positive. Using this option, the

number +22 would be x’3232’ and the number -22 would be x’3272’.

v Trailing Separate. This sets the last byte of the element to ’+’ if the number

is positive and to ’-’ if the number is negative. For this option, the length must

include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set

for you.

Virtual Decimal

Point

Integer Specify the number of places to the left (for a positive value) or right (for a

negative value) that a decimal point should be moved from its assumed position.

For example, a float element containing 1234 with a Virtual Decimal value of 3 is

1.234.

This is not applicable if you have set Physical Type to Float.

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Message model reference information 443

Property Type Meaning

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

CWF properties for attribute reference and local attribute integer types:

The Custom Wire Format properties described here apply to:

v Objects: Attribute Reference, Local Attribute

v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select one of the following from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. This equates to the COMP-3 data type in COBOL.

v External Decimal. This equates to the data type PIC 9 USAGE DISPLAY in

COBOL.

The representation of numeric elements can be affected by the Encoding and

CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer and Packed Decimal are

represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in

the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the

displayed list.

v If you have set Physical Type to Packed Decimal, enter a value between 1 and

6.

v If you have set Physical Type to Extended Decimal, enter a value between 1 and

11.

444 Message Models

Property Type Meaning

Length Units Enumerated

type

Select the unit of length for the element or attribute. Select one of the following

options from the displayed list (some physical types do not offer all of these

options):

v Bytes.

v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads

one character at a time and determines whether the character comprises

one or more bytes.
v Character Units. This specifies that the size of each character (in bytes) is

determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to

Characters.

– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest

character unit that the code page supports. However, this means that a

message must contain only these characters if it is to be processed correctly.

For example, in code page ″UTF-8″ (CCSID 1208), the minimum character

unit is one byte; therefore, the parser can make a single read (of the

number of bytes specified by the Length property) to fetch the entire

message. The message must contain only characters that are encoded in

1-byte units.
v End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count.

The default is Bytes.

Justification Enumerated

type

If you have set the Physical Type property to External Decimal, select Left

Justify or Right Justify (the default value) from the list. If you have selected

another value for Physical Type, this is property is inactive.

Message model reference information 445

Property Type Meaning

Padding

Character

String The padding character is used to fill out the remaining character positions when

the string length is less than the specified string size. If you have set the Physical

Type property to Extended Decimal, and the Justification property is either Left

Justify or Right Justify, specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal

value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM

element depends on the padding character that is required and whether the

padding character is to be subject to data conversion. In most cases, the

specification of a padding character in quotqtion marks is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated. For example, when converting

from ASCII to the code page 500, if you have specified U+0008 as your padding

character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC

representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should

ensure that the converted value of the padding character is valid for this code

page. If the padding character cannot be represented in the target code page, it

is replaced by a substitution character. The substitution character is fixed and its

value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the

hexadecimal or decimal format can be used. This gives the option of specifying

an absolute value as a padding character that is inserted directly into the output

message. If this format is used, you should still aim to ensure that this value is

valid for the code page of any output messages that are created using these

MRM definitions.

Numeric representation

 Property Type Meaning

Signed Check box Select (the default) or clear this property. This property is used in conjunction

with Sign Orientation.

446 Message Models

Property Type Meaning

Sign EBCDIC

Custom

Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom

property is set, this indicates that the Sign EBCDIC Custom Overpunched

representation is to be used within an ASCII environment. If this check box is

not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate

only if the Sign Orientation property is set to Leading or Trailing (indicating that

the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,

if the Signed check box is not set).

Sign

Orientation

Enumerated

type

If you have set Physical Type to External Decimal and you have selected Signed,

choose from the following options that represent the COBOL options for

displaying numeric data:

v Leading Overpunched. This sets a bit in the first byte if the number is negative.

No setting is made if the number is positive. For example, the ASCII

hexadecimal representation of the number 22 is x’3232’. Using this option, the

number +22 would be x’3232’ and the number -22 would be x’7232’. This is

the default value.

v Leading Separate. This sets the first byte of the element to ’+’ if the number is

positive and to ’-’ if the number is negative. For this option, the length must

include the sign byte.

v Trailing Overpunched. This sets a bit in the last byte if the number is

negative. No setting is made if the number is positive. Using this option, the

number +22 would be x’3232’ and the number -22 would be x’3272’.

v Trailing Separate. This sets the last byte of the element to ’+’ if the number

is positive and to ’-’ if the number is negative. For this option, the length must

include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set

for you.

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Message model reference information 447

Property Type Meaning

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

CWF properties for attribute reference and local attribute string types:

The Custom Wire Format properties described here apply to:

v Objects: Attribute Reference, Local Attribute

v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,

QName, string, token

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select one of the following from the displayed list:

v Fixed Length String. The element’s length is determined by other length

properties below.

v Length Encoded String 1. The element’s first byte contains the length of the

string following the length byte in length units. The maximum length of a

Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The element’s first two bytes contain the length of

the string following the 2 length bytes in length units. The maximum length

of a Length Encoded String 2 element is 65535 length units. The two length

bytes are in the format of the WebSphere MQ queue manager Encoding.

v Null Terminated String. The string ends with the hexadecimal NULL

character, X’00’.

The default is Fixed Length String.

Length Button and

Integer

If you have selected a Physical Type of Fixed Length String or Binary, and have

selected the length to be defined by Length, enter the number of length units for

the element.

The minimum value that you can specify is 0 (zero), the maximum value that

you can specify is 2147483647

The default value is 0 (zero).

Length

Reference

Button and

Enumerated

type

If you have selected the length to be defined by Length Reference, select the name

of the integer object that specifies the length of this object. Make your selection

from the displayed list of integer objects that are defined as siblings of the

current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page

108.

448 Message Models

Property Type Meaning

Inclusive

Length

Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of

the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object

must be the same as that of the current object.

Length Units Enumerated

type

Select the unit of length for the element or attribute. Select one of the following

options from the displayed list (some physical types do not offer all of these

options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads

one character at a time and determines whether the character comprises

one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is

determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to

Characters.

– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest

character unit that the code page supports. However, this means that a

message must contain only these characters if it is to be processed correctly.

For example, in code page ″UTF-8″ (CCSID 1208), the minimum character

unit is one byte; therefore, the parser can make a single read (of the

number of bytes specified by the Length property) to fetch the entire

message. The message must contain only characters that are encoded in

1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count or Length

Reference property.

The default is Bytes.

Justification Enumerated

type

If you have set the Physical Type property to Fixed Length String, select Left

Justify (the default value) or Right Justify from the list. If you have selected

another value for Physical Type, this is property is inactive.

Message model reference information 449

Property Type Meaning

Padding

Character

String If you have set the Physical Type property to Fixed Length String, and the

Justification property is either Left Justify or Right Justify, this property is

applicable.

When writing an output message, use the padding character to fill out the

remaining character positions when the string length is less than the length

implied by the Length or Length Reference property. Whether the string is padded

from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end

of the string. Whether the string is trimmed from the left or the right is

governed by the Justification property.

Specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal

value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM

element depends on the padding character that is required and whether the

padding character is to be subject to data conversion. In most cases, the

specification of a padding character in quotqtion marks is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated. For example, when converting

from ASCII to the code page 500, if you have specified U+0008 as your padding

character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC

representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should

ensure that the converted value of the padding character is valid for this code

page. If the padding character cannot be represented in the target code page, it

is replaced by a substitution character. The substitution character is fixed and its

value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the

hexadecimal or decimal format can be used. This gives the option of specifying

an absolute value as a padding character that is inserted directly into the output

message. If this format is used, you should still aim to ensure that this value is

valid for the code page of any output messages that are created using these

MRM definitions.

450 Message Models

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Local attribute XML properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - base64Binary

 - hexBinary

Boolean types

 - Boolean

DateTime types

 - date

 - dateTime

 - gDay

 - gMonth

 - gMonthDay

 - gYear

 - gYearMonth

 - time

Decimal types

 - decimal

 - integer

 - negativeInteger

 - nonNegativeInteger

 - nonPositiveInteger

 - positiveInteger

 - unsignedLong

Message model reference information 451

Float types

 - double

 - float

Integer types

 - byte

 - int

 - long

 - short

 - unsignedByte

 - unsignedInt

 - unsignedShort

Interval types

 - duration

String types

 - anyURI

 - ENTITIES

 - ENTITY

 - ID

 - IDREF

 - IDREFS

 - language

 - Name

 - NCName

 - NMTOKEN

 - NMTOKENS

 - normalizedString

 - NOTATION

 - QName

 - string

 - token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the

String logical types.

XML properties for attribute reference, element reference, local attribute, local element

binary types:

The XML Wire Format properties described here apply to:

v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element

v Binary schema types: base64Binary, hexBinary

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

452 Message Models

Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an

attribute of the parent XML object. The identity of the child is determined by

the attribute name. The value is the attribute value. This is only valid for

simple elements.

If you select this value for more than one object , you must set their XML

Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered

as a child XML element of the parent complex type. The identity of the child

is determined by the tag name of the child. The value is the value of a

specified attribute. The name of the attribute is specified in Value Attribute

Name.

v XMLElementAttrIDVal. This option combines the two options,

XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of

the parent complex type. The identity of the child is determined by the value

of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

Message model reference information 453

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute

Name

String

Specify the name of the attribute used for the value of the child. This must be a

valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Physical representation

 Property Type Meaning

Encoding String Select one of the following values from the drop-down list: :

v CDatahex (the default). Hexadecimal values in this field are specified with the

CDATA qualifier, for example <e1><![CDATA[62]]></e1>

v hex. Hexadecimal values in this field are specified as digits only, for example

<e1>62</e1>.

v base64. Values in this field are specified as digits only, coded in base 64.

XML properties for attribute reference, element reference, local attribute, local element

Boolean types:

The XML Wire Format properties described here apply to:

v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element

v Boolean schema types: Boolean

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

454 Message Models

Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an

attribute of the parent XML object. The identity of the child is determined by

the attribute name. The value is the attribute value. This is only valid for

simple elements.

If you select this value for more than one object , you must set their XML

Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered

as a child XML element of the parent complex type. The identity of the child

is determined by the tag name of the child. The value is the value of a

specified attribute. The name of the attribute is specified in Value Attribute

Name.

v XMLElementAttrIDVal. This option combines the two options,

XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of

the parent complex type. The identity of the child is determined by the value

of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

Message model reference information 455

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute

Name

String

Specify the name of the attribute used for the value of the child. This must be a

valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element

dateTime types:

The XML Wire Format properties described here apply to:

v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element

v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

456 Message Models

Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an

attribute of the parent XML object. The identity of the child is determined by

the attribute name. The value is the attribute value. This is only valid for

simple elements.

If you select this value for more than one object , you must set their XML

Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered

as a child XML element of the parent complex type. The identity of the child

is determined by the tag name of the child. The value is the value of a

specified attribute. The name of the attribute is specified in Value Attribute

Name.

v XMLElementAttrIDVal. This option combines the two options,

XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of

the parent complex type. The identity of the child is determined by the value

of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

Message model reference information 457

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute

Name

String

Specify the name of the attribute used for the value of the child. This must be a

valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Physical representation

 Property Type Meaning

DateTime

Format

String Specify a format string that specifies the rendering of the value for dateTime

elements.

The default dateTime format is dependent on the logical type of the object. For

information about the defaults for the dateTime format according to the logical

type see “DateTime defaults by logical type” on page 770.

See “DateTime formats” on page 763 for details of dateTime formats.

XML properties for attribute reference, element reference, local attribute, local element

decimal types:

The XML Wire Format properties described here apply to:

v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element

v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

458 Message Models

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

 Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an

attribute of the parent XML object. The identity of the child is determined by

the attribute name. The value is the attribute value. This is only valid for

simple elements.

If you select this value for more than one object , you must set their XML

Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered

as a child XML element of the parent complex type. The identity of the child

is determined by the tag name of the child. The value is the value of a

specified attribute. The name of the attribute is specified in Value Attribute

Name.

v XMLElementAttrIDVal. This option combines the two options,

XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of

the parent complex type. The identity of the child is determined by the value

of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

Message model reference information 459

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute

Name

String

Specify the name of the attribute used for the value of the child. This must be a

valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element float

types:

The XML Wire Format properties described here apply to:

v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element

v Float schema types: double, float

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

460 Message Models

Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an

attribute of the parent XML object. The identity of the child is determined by

the attribute name. The value is the attribute value. This is only valid for

simple elements.

If you select this value for more than one object , you must set their XML

Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered

as a child XML element of the parent complex type. The identity of the child

is determined by the tag name of the child. The value is the value of a

specified attribute. The name of the attribute is specified in Value Attribute

Name.

v XMLElementAttrIDVal. This option combines the two options,

XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of

the parent complex type. The identity of the child is determined by the value

of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

Message model reference information 461

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute

Name

String

Specify the name of the attribute used for the value of the child. This must be a

valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element

integer types:

The XML Wire Format properties described here apply to:

v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element

v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

462 Message Models

Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an

attribute of the parent XML object. The identity of the child is determined by

the attribute name. The value is the attribute value. This is only valid for

simple elements.

If you select this value for more than one object , you must set their XML

Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered

as a child XML element of the parent complex type. The identity of the child

is determined by the tag name of the child. The value is the value of a

specified attribute. The name of the attribute is specified in Value Attribute

Name.

v XMLElementAttrIDVal. This option combines the two options,

XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of

the parent complex type. The identity of the child is determined by the value

of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

Message model reference information 463

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute

Name

String

Specify the name of the attribute used for the value of the child. This must be a

valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element

string types:

The XML Wire Format properties described here apply to:

v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element

v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,

QName, string, token

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

464 Message Models

Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an

attribute of the parent XML object. The identity of the child is determined by

the attribute name. The value is the attribute value. This is only valid for

simple elements.

If you select this value for more than one object , you must set their XML

Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered

as a child XML element of the parent complex type. The identity of the child

is determined by the tag name of the child. The value is the value of a

specified attribute. The name of the attribute is specified in Value Attribute

Name.

v XMLElementAttrIDVal. This option combines the two options,

XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of

the parent complex type. The identity of the child is determined by the value

of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

Message model reference information 465

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute

Name

String

Specify the name of the attribute used for the value of the child. This must be a

valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Local attribute TDS properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - base64Binary

 - hexBinary

Boolean types

 - Boolean

DateTime types

 - date

 - dateTime

 - gDay

 - gMonth

 - gMonthDay

 - gYear

 - gYearMonth

 - time

Decimal types

 - decimal

 - integer

 - negativeInteger

 - nonNegativeInteger

 - nonPositiveInteger

 - positiveInteger

 - unsignedLong

466 Message Models

Float types

 - double

 - float

Integer types

 - byte

 - int

 - long

 - short

 - unsignedByte

 - unsignedInt

 - unsignedShort

Interval types

 - duration

String types

 - anyURI

 - ENTITIES

 - ENTITY

 - ID

 - IDREF

 - IDREFS

 - language

 - Name

 - NCName

 - NMTOKEN

 - NMTOKENS

 - normalizedString

 - NOTATION

 - QName

 - string

 - token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the

String logical types.

TDS properties for local attribute binary types:

The TDS Format properties described here apply to:

v Objects: Local Attribute

v Binary schema types: base64Binary, hexBinary

Field Identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Message model reference information 467

Physical representation

 Property Type Meaning

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

The default is dependent on the setting of the message set property Derive default

length from logical type. If Derive default length from logical type is selected, the

default value is derived from any length or maxLength value constraint (schema

facet) on the object’s simple type.

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

Inclusive

Length

Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of

the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object

must be the same as that of the current object.

TDS properties for local attribute Boolean types:

The TDS Format properties described here apply to:

v Objects: Local Attribute

v Boolean schema types: Boolean

Field Identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

468 Message Models

Property Type Meaning

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Binary. The data is in bit string format.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

TDS properties for local attribute dateTime types:

The TDS Format properties described here apply to:

v Objects: Local Attribute

v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Field Identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Message model reference information 469

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The data’s first byte contains the length (in length

units) of the data string that follows the length byte. The maximum length of

a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The data’s first two bytes contains the length (in

length units) of the data string that follows the two length bytes. The

maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL

character, X’00’.

v Packed Decimal. The data is a packed decimal number that equates to the

COMP-3 data type in COBOL.

v Binary. The data is in bit string format.

v Time Seconds. This value supports C time_t, and Java Date and Time objects.

It is valid only if the DateTime Format property represents numeric-only data.

v Time Milliseconds. This value supports C time_t, and Java Date and Time

objects. It is valid only if the DateTime Format property represents

numeric-only data.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from

logical type is selected, and the Physical type is ’Character’, the default value is

derived from any length or maxLength value constraint (schema facet) on the

simple type.

Length Units Enumerated

type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both

options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of

bytes that are processed in the bit stream depends on the code page of the

message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the contents of the bit stream. The parser

reads one character at a time and determines whether the character

comprises one or more bytes.

The default is dependent on the physical type of the object.

470 Message Models

Property Type Meaning

Justification Enumerated

type

Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output

as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Padding

Character

String Specify the padding character that is to be inserted or interpreted on the writing

or parsing of a fixed length object if the data is less than the fixed length value.

This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a

hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

The choice of which of these padding character forms is used for an MRM

element depends on the padding character required and whether the padding

character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the

hexadecimal format can be used. This gives the option of specifying a padding

character that is inserted directly into the output message. If this format is used,

you must ensure that this hexadecimal value is valid for the code page of any

output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure

that the converted value of the padding character is valid for this code page. For

example, when converting from ASCII to code page 500, if you have specified

the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the

ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must

not be greater than U+007F. Note that if you enter a Unicode mnemonic or

numeric value, it is considered to be the character that is represented by that

number in UTF-8.

Message model reference information 471

Property Type Meaning

DateTime

Format

String Specify a template for date and time.

The default DateTime format is dependent on the logical type of the object. For

information about the defaults for the dateTime format according to the logical

type see “DateTime defaults by logical type” on page 770.

See “DateTime formats” on page 763 for details of date and time formats.

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

Inclusive

Length

Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of

the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object

must be the same as that of the current object.

Numeric representation

 Property Type Meaning

Signed Check box Specify whether or not the value is signed.

This property is applicable only if the Physical type property is Packed Decimal.

By default, this check box is cleared, which indicates that the value is not signed.

TDS properties for local attribute decimal types:

The TDS Format properties described here apply to:

v Objects: Local Attribute

v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

472 Message Models

Field Identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Packed Decimal. The data is a packed decimal number that equates to the

COMP-3 data type in COBOL.

v TLOG Specific - this option can be selected only if the Message Standard

property of the message set is TLOG. This option indicates that the format of

the data is specific to the TLOG messaging standard.

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type

PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from

logical type is selected, and the Physical type is ’Character’, the default value is

derived from any length or maxLength value constraint (schema facet) on the

simple type.

Message model reference information 473

Property Type Meaning

Length Units Enumerated

type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both

options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of

bytes that are processed in the bit stream depends on the code page of the

message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the contents of the bit stream. The parser

reads one character at a time and determines whether the character

comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated

type

Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output

as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

474 Message Models

Property Type Meaning

Padding

Character

String Specify the padding character that is to be inserted or interpreted on the writing

or parsing of a fixed length object if the data is less than the fixed length value.

This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a

hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

The choice of which of these padding character forms is used for an MRM

element depends on the padding character required and whether the padding

character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the

hexadecimal format can be used. This gives the option of specifying a padding

character that is inserted directly into the output message. If this format is used,

you must ensure that this hexadecimal value is valid for the code page of any

output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure

that the converted value of the padding character is valid for this code page. For

example, when converting from ASCII to code page 500, if you have specified

the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the

ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must

not be greater than U+007F. Note that if you enter a Unicode mnemonic or

numeric value, it is considered to be the character that is represented by that

number in UTF-8.

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

Message model reference information 475

Property Type Meaning

Inclusive

Length

Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of

the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object

must be the same as that of the current object.

Numeric representation

 Property Type Meaning

Sign

Orientation

Enumerated

type

The values that you can choose for this property are:

v Leading Separate

v Trailing Separate

v Leading Overpunched

v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External

Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading

Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is

selected, the only valid values of Sign Orientation are Leading Overpunched and

Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric

value. If no value is set, ″+″ is assumed. The positive sign is not written when

creating an output message; it is used only to recognize the positive sign when

parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric

value. If no value is set, ″-″ is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Virtual Decimal

Point

Button and

Integer

Specify a nonzero integer that represents the position of an implied decimal

point within a number, or specify 0 (zero, the default) to use the formatting of

Float or Decimal numbers as specified by the Precision property.

If you specify a positive integer, the position of the decimal point is moved left

from the right hand side of the number. For example, if you specify 3, the

decimal value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is moved

right from the right hand side of the number. For example, if you specify -3, the

decimal value 1234 represents 1 234 000

476 Message Models

Property Type Meaning

Precision Button and

Integer

This property is applicable only if Physical Type is Text. It is used if the value of

the Virtual Decimal Point property is 0, which indicates that the decimal point is

present in the data. It deals with truncation, and specifies how many digits

should follow the decimal point.

Either specify a number of digits:

v If you set Precision to 0, data is truncated so that the fractional part is lost. For

example, the value 123.45 is truncated to 123.

v If you set Precision to a number less than the number of fractional digits, data

is truncated. For example, the value 123.4567 is truncated to 123.45 if you set

Precision to 2.

v If you set Precision to a number greater than the number of fractional digits,

the value is padded with extra zeros. For example, the value 12.345 is padded

to 12.34500 if you set Precision to 5.

Or select one of the following from the drop-down list:

v All Significant Digits - decimal separator only required if fractional

digits (the default): all significant digits are written to the output bit stream,

and there is no decimal separator if there are no fractional digits.

v Explicit Decimal Separator - decimal separator always required: all

significant digits are written to the output bit stream and the decimal

separator is always included, even if there are no fractional digits. The

decimal separator must be present in the input bit stream, even if no fractional

digits are present.

TDS properties for local attribute float types:

The TDS Format properties described here apply to:

v Objects: Local Attribute

v Float schema types: double, float

Field Identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Message model reference information 477

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Float. This equates to the data type FLOAT or DOUBLE in C, or the COMP-1

or COMP-2 numeric data type in COBOL.

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. The data is a packed decimal number that equates to the

COMP-3 data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type

PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from

logical type is selected, and the Physical type is ’Character’, the default value is

derived from any length or maxLength value constraint (schema facet) on the

simple type.

Length Units Enumerated

type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both

options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of

bytes that are processed in the bit stream depends on the code page of the

message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the contents of the bit stream. The parser

reads one character at a time and determines whether the character

comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated

type

Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output

as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

478 Message Models

Property Type Meaning

Padding

Character

String Specify the padding character that is to be inserted or interpreted on the writing

or parsing of a fixed length object if the data is less than the fixed length value.

This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a

hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

The choice of which of these padding character forms is used for an MRM

element depends on the padding character required and whether the padding

character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the

hexadecimal format can be used. This gives the option of specifying a padding

character that is inserted directly into the output message. If this format is used,

you must ensure that this hexadecimal value is valid for the code page of any

output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure

that the converted value of the padding character is valid for this code page. For

example, when converting from ASCII to code page 500, if you have specified

the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the

ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must

not be greater than U+007F. Note that if you enter a Unicode mnemonic or

numeric value, it is considered to be the character that is represented by that

number in UTF-8.

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

Message model reference information 479

Property Type Meaning

Inclusive

Length

Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of

the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object

must be the same as that of the current object.

Numeric representation

 Property Type Meaning

Sign

Orientation

Enumerated

type

The values that you can choose for this property are:

v Leading Separate

v Trailing Separate

v Leading Overpunched

v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External

Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading

Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is

selected, the only valid values of Sign Orientation are Leading Overpunched and

Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric

value. If no value is set, ″+″ is assumed. The positive sign is not written when

creating an output message; it is used only to recognize the positive sign when

parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric

value. If no value is set, ″-″ is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Virtual Decimal

Point

Button and

Integer

Specify a nonzero integer that represents the position of an implied decimal

point within a number, or specify 0 (zero, the default) to use the formatting of

Float or Decimal numbers as specified by the Precision property.

If you specify a positive integer, the position of the decimal point is moved left

from the right hand side of the number. For example, if you specify 3, the

decimal value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is moved

right from the right hand side of the number. For example, if you specify -3, the

decimal value 1234 represents 1 234 000

480 Message Models

Property Type Meaning

Precision Button and

Integer

This property is applicable only if Physical Type is Text. It is used if the value of

the Virtual Decimal Point property is 0, which indicates that the decimal point is

present in the data. It deals with truncation, and specifies how many digits

should follow the decimal point.

Either specify a number of digits:

v If you set Precision to 0, data is truncated so that the fractional part is lost. For

example, the value 123.45 is truncated to 123.

v If you set Precision to a number less than the number of fractional digits, data

is truncated. For example, the value 123.4567 is truncated to 123.45 if you set

Precision to 2.

v If you set Precision to a number greater than the number of fractional digits,

the value is padded with extra zeros. For example, the value 12.345 is padded

to 12.34500 if you set Precision to 5.

Or select one of the following from the drop-down list:

v All Significant Digits - decimal separator only required if fractional

digits (the default): all significant digits are written to the output bit stream,

and there is no decimal separator if there are no fractional digits.

v Explicit Decimal Separator - decimal separator always required: all

significant digits are written to the output bit stream and the decimal

separator is always included, even if there are no fractional digits. The

decimal separator must be present in the input bit stream, even if no fractional

digits are present.

v Exponential Notation - Example ″1.23456e002″: data is written out to the bit

stream as a signed value having the format [sign1]a.bbbe[sign2]ccc where:

– [sign1] is the value of Negative Sign if the value is negative

– a is a single decimal digit

– bbb is one or more decimal digits

– [sign2] is the value of Negative Sign if the exponent is negative

– ccc is exactly three decimal digits (the exponent)

[sign1] and [sign2] are absent if the value and exponent, respectively, are

positive.

For example, the value -123.456 is represented as -1.23456e002 and the value

0.00012 is represented as 1.2e-004 in the output bit stream (assuming that the

value of Negative Sign is ″-″, and the value of Sign Orientation is Leading).

The value -0.00012 is represented as 1.2*e*004 if Negative Sign is ″*″ and Sign

Orientation is Trailing.

TDS properties for local attribute integer types:

The TDS Format properties described here apply to:

v Objects: Local Attribute

v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Message model reference information 481

Field Identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. The data is a packed decimal number that equates to the

COMP-3 data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type

PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from

logical type is selected, and the Physical type is ’Character’, the default value is

derived from any length or maxLength value constraint (schema facet) on the

simple type.

482 Message Models

Property Type Meaning

Length Units Enumerated

type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both

options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of

bytes that are processed in the bit stream depends on the code page of the

message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the contents of the bit stream. The parser

reads one character at a time and determines whether the character

comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated

type

Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output

as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Message model reference information 483

Property Type Meaning

Padding

Character

String Specify the padding character that is to be inserted or interpreted on the writing

or parsing of a fixed length object if the data is less than the fixed length value.

This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a

hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

The choice of which of these padding character forms is used for an MRM

element depends on the padding character required and whether the padding

character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the

hexadecimal format can be used. This gives the option of specifying a padding

character that is inserted directly into the output message. If this format is used,

you must ensure that this hexadecimal value is valid for the code page of any

output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure

that the converted value of the padding character is valid for this code page. For

example, when converting from ASCII to code page 500, if you have specified

the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the

ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must

not be greater than U+007F. Note that if you enter a Unicode mnemonic or

numeric value, it is considered to be the character that is represented by that

number in UTF-8.

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

484 Message Models

Property Type Meaning

Inclusive

Length

Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of

the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object

must be the same as that of the current object.

Numeric representation

 Property Type Meaning

Sign

Orientation

Enumerated

type

The values that you can choose for this property are:

v Leading Separate

v Trailing Separate

v Leading Overpunched

v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External

Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading

Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is

selected, the only valid values of Sign Orientation are Leading Overpunched and

Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric

value. If no value is set, ″+″ is assumed. The positive sign is not written when

creating an output message; it is used only to recognize the positive sign when

parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric

value. If no value is set, ″-″ is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

TDS properties for local attribute string types:

The TDS Format properties described here apply to:

v Objects: Local Attribute

v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,

QName, string, token

Message model reference information 485

Field Identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Interpret

Element Value

Enumerated

type

Specify whether values stored within this object must be interpreted as having

significance for the parser and, if so, the type of interpretation that must occur.

This interpretation is generally standard-specific and is therefore hard-coded.

The possible values for this property are:

v None (the default value)

v EDIFACT Service String

v X12 Service String

v Message Key

v EDIFACT Syntax Level ID

v HL7 Service String

v HL7 Field Separator

Note: The Message Key enumeration has been deprecated

486 Message Models

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The data’s first byte contains the length (in length

units) of the data string that follows the length byte. The maximum length of

a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The data’s first two bytes contains the length (in

length units) of the data string that follows the two length bytes. The

maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL

character, X’00’.

v TLOG Specific - this option can be selected only if the Message Standard

property of the message set is TLOG. This option indicates that the format of

the data is specific to the TLOG messaging standard.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from

logical type is selected, and the Physical type is ’Character’, the default value is

derived from any length or maxLength value constraint (schema facet) on the

simple type.

Length Units Enumerated

type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both

options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of

bytes that are processed in the bit stream depends on the code page of the

message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the contents of the bit stream. The parser

reads one character at a time and determines whether the character

comprises one or more bytes.

The default is dependent on the physical type of the object.

Message model reference information 487

Property Type Meaning

Justification Enumerated

type

Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output

as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Padding

Character

String Specify the padding character that is to be inserted or interpreted on the writing

or parsing of a fixed length object if the data is less than the fixed length value.

This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a

hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

The choice of which of these padding character forms is used for an MRM

element depends on the padding character required and whether the padding

character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the

hexadecimal format can be used. This gives the option of specifying a padding

character that is inserted directly into the output message. If this format is used,

you must ensure that this hexadecimal value is valid for the code page of any

output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure

that the converted value of the padding character is valid for this code page. For

example, when converting from ASCII to code page 500, if you have specified

the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the

ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must

not be greater than U+007F. Note that if you enter a Unicode mnemonic or

numeric value, it is considered to be the character that is represented by that

number in UTF-8.

488 Message Models

Property Type Meaning

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

Inclusive

Length

Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of

the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object

must be the same as that of the current object.

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the

understanding of the function of that object. The documentation property is

available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric

characters.

Local element properties

A local element can have the following properties;

v “Local element logical properties” on page 204

v “Local element CWF properties” on page 218

v “Local element XML properties” on page 225

v “Local element TDS properties” on page 240

v “Documentation properties for all message set objects” on page 183

Local element logical properties:

Message model reference information 489

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters

A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a

number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the

XML standards specification.

Further details of naming conventions and allowable characters can be found in

the Extensible Markup Language (XML) specification that can be found on the

World Wide Web Consortium (W3C) Web site.

Type Enumerated

type

The Type property constrains the type of data that can be present in the object.

There are a limited number of types available directly from the drop-down

selector. These are;

v int

v string

v Boolean

v hexBinary

v dateTime

v date

v time

v decimal

v float

v (More...)

v (New Simple Type)

v (New Complex Type)

If you select (More...), this starts the Type Selection wizard. From this wizard

you can select any of the available types.

If you select (New Simple Type), this starts the New Simple Type wizard which

allows you to create an Anonymous simple type that is based on an existing

type. This can be created locally or globally.

If you select (New Complex Type), this starts the New Complex Type wizard

which allows you to create an Anonymous complex type which can be derived

from an existing base type. This can be created locally or globally.

For further information about these types, and examples of their use see the

XML Schema Part 0: Primer which can be found on the World Wide Web

Consortium (W3C) Web site.

490 Message Models

http://www.w3.org/TR/REC-xml
http://www.w3.org/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/

Property Type Meaning

Namespace Enumerated

type

Namespaces are a simple method for qualifying element and attribute names by

associating them with namespaces identified by URI references.

If <no target namespace> is displayed, a namespace has not been set for this

object.

If the property is inactive, the message set has not been configured to support

namespaces.

Where the property is active, namespaces that are available for selection are

displayed in the drop-down list.

Occurrences

 Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default is

1.

If the value is set to 0, then the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,

it must be less than or equal to the value in Max Occurs.

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default is

1.

If this property is not set, then the object can not occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the

message.

It can also be set to -1 to indicate that the limit is unbounded and there is no

maximum to the number of occurrences.

Value

 Property Type Meaning

Default Button and

String

This property provides the default value for an element or attribute.

XMLNSC domain

When parsing with validation enabled, default values are applied to

missing attributes and empty elements as required by the XML Schema

1.0 specification. When writing, elements or attributes that are missing

from the message tree are not automatically added to the output XML

bit stream, even if they have default values. If this is required, the

message tree can be serialized and then re-parsed with validation

enabled.

MRM (CWF and TDS physical formats)

When writing a fixed-length portion of a message (CWF or fixed-length

TDS), if an attribute or element is missing from the message tree, the

default value is inserted into the bit stream so that the message

structure is preserved.

MRM (XML physical format)

No support for default values

Other domains

No support for default values.

Message model reference information 491

Property Type Meaning

Fixed Button and

String

This property provides the fixed value for an element or attribute.

XMLNSC domain

When parsing with validation enabled, if an attribute or element is

present, the value is validated against the fixed value. If the values are

not equal, a validation error is signalled. Also, when parsing with

validation enabled, fixed values are applied to missing attributes and

empty elements as required by the XML Schema 1.0 specification. When

writing, elements or attributes that are missing from the message tree

are not automatically added to the output XML bit stream, even if a

fixed value has been specified. If this is required, the message tree can

be serialized and then re-parsed with validation enabled.

MRM (CWF and TDS physical formats)

When writing a fixed-length portion of a message (CWF or fixed-length

TDS), if an attribute or element is missing from the message tree, the

fixed value is inserted into the bit stream so that the message structure

is preserved.

MRM (XML physical format)

No support for fixed values

Other domains

No support for fixed values.

Nillable Check box Select this if you want the element to be able to be defined as null. This is

distinct from being empty where there is no data in the element.

Interpret Value

As

Enumerated

type

Specify if values stored within this object must be interpreted as having

significance for the parser and, if so, the type of interpretation that must occur.

The possible values for this property are:

v None This is the default value and indicates that the element or attribute does

not have any key value associated with it.

v MessageSetIdentity. Specifies that the value of the element or attribute

corresponds to the identifier, name or alias (in that priority order) that is

associated with the message set where all subsequent embedded messages

that are descendents of the enclosing message are defined. This value remains

in force unless a new element or attribute MessageSetIdentity field is

encountered which resets the MessageSetIdentity value to this new one.

v MessageIdentity. Specifies that the value of the element or attribute

corresponds to the name or alias (in that priority order) that is associated with

a message and acts as an identifier for subsequent embedded messages which

are the immediate children of the enclosing message. This identity applies

until a new element or attribute MessageIdentity field is encountered at the

same level in the tree. The embedded message may be defined in either the

current message set or in a message set identified using a MessageSetIdentity.

Note: This property is only applicable when the type of the object is derived

from xsd:string.

Substitution settings

Substitution Groups provide a means by which one element may be substituted for

another in a message. The element which can be substituted is called the ’head’

element, and the substitution group is the list of elements that may be used in its

place. An element can be in at most one substitution group.

492 Message Models

Property Type Meaning

Final Enumerated

type

You use this property to limit the set of elements which may belong to its

substitution group.

v Empty

v restriction. Prohibit element substitution by elements whose types are

restrictions of the head element’s type.

v extension. Prohibit element substitution by elements whose types are

extensions of the head element’s type.

v #all. Prohibit substitution by any method.

Block Enumerated

type

You use this property to limit the set of elements which may be substituted for

this element in a message.

Select from:

v Empty

v restriction. Prohibit element substitution by elements whose types are

restrictions of the head element’s type

v extension. Prohibit element substitution by elements whose types are

extensions of the head element’s type

v substitution. Prohibit element substitution by members of the element’s

substitution group.

v #all. Prohibit substitution by any method.

Substitution

Group

Enumerated

type

Use this property to specify the name of a ’head’ element. Setting this property

indicates that this element is a member of the substitution group for the ’head’

element.

Abstract Check box Select this if you do not want the element to appear in the message, but require

one of the members of its substitution group to appear in its place.

Local element CWF properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - base64Binary

 - hexBinary

Boolean types

 - Boolean

DateTime types

 - date

 - dateTime

 - gDay

 - gMonth

 - gMonthDay

 - gYear

 - gYearMonth

 - time

Decimal types

 - decimal

 - integer

 - negativeInteger

 - nonNegativeInteger

 - nonPositiveInteger

 - positiveInteger

 - unsignedLong

Message model reference information 493

Float types

 - double

 - float

Integer types

 - byte

 - int

 - long

 - short

 - unsignedByte

 - unsignedInt

 - unsignedShort

Interval types

 - duration

String types

 - anyURI

 - ENTITIES

 - ENTITY

 - ID

 - IDREF

 - IDREFS

 - language

 - Name

 - NCName

 - NMTOKEN

 - NMTOKENS

 - normalizedString

 - NOTATION

 - QName

 - string

 - token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the

String logical types.

CWF properties for element reference and local element binary types:

The Custom Wire Format properties described here apply to:

v Objects: Element Reference, Local Element

v Binary schema types: base64Binary, hexBinary

Physical representation

 Property Type Meaning

Length Button and

Integer

If you have selected the length to be defined by Length, enter the number of

length units for the element.

The minimum value that you can specify is 1.

The maximum value that you can specify is 2147483647.

The default value is empty (not set).

Length

Reference

Button and

Enumerated

type

If you have selected the length to be defined by Length Reference, select the name

of the integer object that specifies the length of this object. Make your selection

from the displayed list of integer objects that are defined as siblings of the

current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page

108.

Inclusive

Length

Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of

the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object

must be the same as that of the current object.

494 Message Models

Property Type Meaning

Length Units Enumerated

type

Select the unit of length for the element or attribute. Select one of the following

options from the displayed list (some physical types do not offer all of these

options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads

one character at a time and determines whether the character comprises

one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is

determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to

Characters.

– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest

character unit that the code page supports. However, this means that a

message must contain only these characters if it is to be processed correctly.

For example, in code page ″UTF-8″ (CCSID 1208), the minimum character

unit is one byte; therefore, the parser can make a single read (of the

number of bytes specified by the Length property) to fetch the entire

message. The message must contain only characters that are encoded in

1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count or Length

Reference property.

The default is Bytes.

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Message model reference information 495

Property Type Meaning

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

 Property Type Meaning

Repeat

Reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the displayed list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

CWF properties for element reference and local element Boolean types:

The Custom Wire Format properties described here apply to:

v Objects: Element Reference, Local Element

v Boolean schema types: Boolean

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

496 Message Models

Occurrences

 Property Type Meaning

Repeat

Reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the displayed list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

CWF properties for element reference and local element dateTime types:

The Custom Wire Format properties described here apply to:

v Objects: Element Reference, Local Element

v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select one of the following from the displayed list:

v Fixed Length String. The element’s length is determined by other length

properties below.

v Length Encoded String 1. The element’s first byte contains the length of the

string following the length byte in length units. The maximum length of a

Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The element’s first two bytes contain the length of

the string following the 2 length bytes in length units. The maximum length

of a Length Encoded String 2 element is 65535 length units. The two length

bytes are in the format of the WebSphere MQ queue manager Encoding.

v Null Terminated String. The string ends with the hexadecimal NULL

character, X’00’.

v Packed Decimal. The dateTime is coded as a Packed Decimal number. It is

valid only if the DateTime Format property represents numeric-only data.

v Binary. The dateTime is encoded as a binary sequence of bytes. If you select

this option, the range of symbols that you can specify for the Format String

property is less than the range of symbols you can specify if you select a

string option (see “DateTime formats” on page 763 for details).

v Time Seconds. This value supports C time_t and Java Date and Time objects. It

is valid only if the DateTime Format property represents numeric-only data.

v Time Milliseconds. This value supports C time_t and Java Date and Time

objects. It is valid only if the DateTime Format property represents

numeric-only data.

The default value is fixed length string.

Message model reference information 497

Property Type Meaning

Length Button and

Integer

If you have selected a Physical Type of Fixed Length String, Packed Decimal, or

Binary, and have selected the length to be defined by Length, enter the number

of length units for the element.

The minimum value that you can specify is 1 for all three physical types.

The maximum value that you can specify is 256 for Fixed Length String, 10 for

Packed Decimal, and 2147483647 for Binary.

The default value is 0 (zero).

Length

Reference

Button and

Enumerated

type

If you have selected the length to be defined by Length Reference, select the name

of the integer object that specifies the length of this object. Make your selection

from the displayed list of integer objects that are defined as siblings of the

current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page

108.

Inclusive

Length

Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of

the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object

must be the same as that of the current object.

498 Message Models

Property Type Meaning

Length Units Enumerated

type

Select the unit of length for the element or attribute. Select one of the following

options from the displayed list (some physical types do not offer all of these

options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads

one character at a time and determines whether the character comprises

one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is

determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to

Characters.

– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest

character unit that the code page supports. However, this means that a

message must contain only these characters if it is to be processed correctly.

For example, in code page ″UTF-8″ (CCSID 1208), the minimum character

unit is one byte; therefore, the parser can make a single read (of the

number of bytes specified by the Length property) to fetch the entire

message. The message must contain only characters that are encoded in

1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count or Length

Reference property.

The default is Bytes.

Justification Enumerated

type

If you have set the Physical Type property to Fixed Length String, select Left

Justify (the default value) or Right Justify from the list. If you have selected

another value for Physical Type, this is property is inactive.

Message model reference information 499

Property Type Meaning

Padding

Character

String If you have set the Physical Type property to Fixed Length String, and the

Justification property is either Left Justify or Right Justify, this property is

applicable.

When writing an output message, use the padding character to fill out the

remaining character positions when the string length is less than the length

implied by the Length or Length Reference property. Whether the string is padded

from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end

of the string. Whether the string is trimmed from the left or the right is

governed by the Justification property.

Specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal

value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM

element depends on the padding character that is required and whether the

padding character is to be subject to data conversion. In most cases, the

specification of a padding character in quotqtion marks is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated. For example, when converting

from ASCII to the code page 500, if you have specified U+0008 as your padding

character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC

representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should

ensure that the converted value of the padding character is valid for this code

page. If the padding character cannot be represented in the target code page, it

is replaced by a substitution character. The substitution character is fixed and its

value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the

hexadecimal or decimal format can be used. This gives the option of specifying

an absolute value as a padding character that is inserted directly into the output

message. If this format is used, you should still aim to ensure that this value is

valid for the code page of any output messages that are created using these

MRM definitions.

DateTime

Format

String Specify a template for date and time.

The default dateTime format is dependent on the logical type of the object. For

information about the defaults for the dateTime format according to the logical

type see “DateTime defaults by logical type” on page 770.

See “DateTime formats” on page 763 for details of date and time formats.

500 Message Models

Numeric representation

 Property Type Meaning

Signed Check box Specify whether or not the value is signed.

This property is applicable only if the Physical type property is Packed Decimal.

By default, this check box is cleared, which indicates that the value is not signed.

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the displayed list. The option that you

select determines the value that you must set for the property Encoding Null

Value:

v NULLPadFill. This is valid only if Physical Type is Fixed Length String. The

field is filled with the value specified by the Padding Character. This is the

default value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an

actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that

is directly substituted as if it is a string. Use this option when the value you

have set for Encoding Null Value to specify a null date is not a dateTime value,

or does not conform to the standard dateTime format yyyy-MM-dd ’T’HH:mm:ss.

v NULLLiteralFill. The field is filled with the value specified by the Encoding

Null Value. Encoding Null Value must resolve to a single character.

Encoding Null

Value

String If you set the Encoding Null property to NULLPadFill, this property is disabled

(grayed out).

If you set the Encoding Null property to NULLLogicalValue, you must set this

property to an ISO8601 dateTime format. These formats are described in

“DateTime as string data” on page 763. For example, specify a value conforming

to yyyy-MM-dd’T’HH:mm:ss such as 1970-12-01.

If you set the Encoding Null property to NULLLiteralValue, you can enter any

value that is the same length as the field.

If you set the Encoding Null property to NULLLiteralFill, the value must resolve

to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY where YY is a

hexadecimal value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal format.

Message model reference information 501

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

 Property Type Meaning

Repeat

Reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the displayed list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

CWF properties for element reference and local element decimal types:

The Custom Wire Format properties described here apply to:

v Objects: Element Reference, Local Element

v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

502 Message Models

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select one of the following from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. This equates to the COMP-3 data type in COBOL.

v External Decimal. This equates to the data type PIC 9 USAGE DISPLAY in

COBOL.

The representation of numeric elements can be affected by the Encoding and

CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer and Packed Decimal are

represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in

the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the

displayed list.

v If you set the Physical Type to Packed Decimal, enter a value between 1 and 10.

v If you set the Physical Type to Extended Decimal, enter a value between 1 and

256. (Numbers greater than the maximum COBOL PICTURE clause of 18 are

assumed to be 18.)

Length Units Enumerated

type

Select the unit of length for the element or attribute. Select one of the following

options from the displayed list (some physical types do not offer all of these

options):

v Bytes.

v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads

one character at a time and determines whether the character comprises

one or more bytes.
v Character Units. This specifies that the size of each character (in bytes) is

determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to

Characters.

– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest

character unit that the code page supports. However, this means that a

message must contain only these characters if it is to be processed correctly.

For example, in code page ″UTF-8″ (CCSID 1208), the minimum character

unit is one byte; therefore, the parser can make a single read (of the

number of bytes specified by the Length property) to fetch the entire

message. The message must contain only characters that are encoded in

1-byte units.
v End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count.

The default is Bytes.

Message model reference information 503

Property Type Meaning

Justification Enumerated

type

If you have set the Physical Type property to External Decimal, select Left

Justify or Right Justify (the default value) from the list. If you have selected

another value for Physical Type, this is property is inactive.

Padding

Character

String The padding character is used to fill out the remaining character positions when

the string length is less than the specified string size. If you have set the Physical

Type property to Extended Decimal, and the Justification property is either Left

Justify or Right Justify, specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal

value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM

element depends on the padding character that is required and whether the

padding character is to be subject to data conversion. In most cases, the

specification of a padding character in quotqtion marks is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated. For example, when converting

from ASCII to the code page 500, if you have specified U+0008 as your padding

character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC

representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should

ensure that the converted value of the padding character is valid for this code

page. If the padding character cannot be represented in the target code page, it

is replaced by a substitution character. The substitution character is fixed and its

value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the

hexadecimal or decimal format can be used. This gives the option of specifying

an absolute value as a padding character that is inserted directly into the output

message. If this format is used, you should still aim to ensure that this value is

valid for the code page of any output messages that are created using these

MRM definitions.

Numeric representation

 Property Type Meaning

Signed Check box Select (the default) or clear this property. This property is used in conjunction

with Sign Orientation.

504 Message Models

Property Type Meaning

Sign EBCDIC

Custom

Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom

property is set, this indicates that the Sign EBCDIC Custom Overpunched

representation is to be used within an ASCII environment. If this check box is

not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate

only if the Sign Orientation property is set to Leading or Trailing (indicating that

the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,

if the Signed check box is not set).

Sign

Orientation

Enumerated

type

If you have set Physical Type to External Decimal and you have selected Signed,

choose from the following options that represent the COBOL options for

displaying numeric data:

v Leading Overpunched. This sets a bit in the first byte if the number is negative.

No setting is made if the number is positive. For example, the ASCII

hexadecimal representation of the number 22 is x’3232’. Using this option, the

number +22 would be x’3232’ and the number -22 would be x’7232’. This is

the default value.

v Leading Separate. This sets the first byte of the element to ’+’ if the number is

positive and to ’-’ if the number is negative. For this option, the length must

include the sign byte.

v Trailing Overpunched. This sets a bit in the last byte if the number is

negative. No setting is made if the number is positive. Using this option, the

number +22 would be x’3232’ and the number -22 would be x’3272’.

v Trailing Separate. This sets the last byte of the element to ’+’ if the number

is positive and to ’-’ if the number is negative. For this option, the length must

include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set

for you.

Virtual Decimal

Point

Integer Specify the number of places to the left (for a positive value) or right (for a

negative value) that a decimal point should be moved from its assumed position.

For example, a decimal element containing 1234 with a Virtual Decimal value of

3 is 1.234. This is equivalent to ’V’ or ’P’ in a COBOL picture clause. There is no

C equivalent

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the displayed list:

v NULLPadFill. This is valid only if Physical Type is External Decimal. The field

is filled with the value specified by the Padding Character. Encoding Null Value

must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the

required format for the field. This is the default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a

string. You can specify a nonnumeric value for Encoding Null Value.

v NULLLiteralFill. The field is filled with the value specified by the Encoding

Null Value. Encoding Null Value must resolve to a single character.

Message model reference information 505

Property Type Meaning

Encoding Null

Value

String The use of this property depends on the Encoding Null property, described

above, with the exception of NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must resolve

to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is

any alphanumeric character.

v Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal

value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal format.

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

 Property Type Meaning

Repeat

Reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the displayed list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

506 Message Models

CWF properties for element reference and local element float types:

The Custom Wire Format properties described here apply to:

v Objects: Element Reference, Local Element

v Float schema types: double, float

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select one of the following from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Float. This equates to the data type FLOAT or DOUBLE in C or the COMP-1

or COMP-2 data type in COBOL. This is the default value.

v Packed Decimal. This equates to the COMP-3 data type in COBOL.

v External Decimal. This equates to the data type PIC 9 USAGE DISPLAY in

COBOL.

The representation of numeric elements can be affected by the Encoding and

CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer, Packed Decimal, and Float are

represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in

the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Float, select a value from the displayed list. The

default value is 8.

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the

displayed list.

v If you set the Physical Type to Packed Decimal, enter a value between 1 and 10.

v If you set the Physical Type to Extended Decimal, enter a value between 1 and

256. (Numbers greater than the maximum COBOL PICTURE clause of 18 are

assumed to be 18.)

Message model reference information 507

Property Type Meaning

Length Units Enumerated

type

Select the unit of length for the element or attribute. Select one of the following

options from the displayed list (some physical types do not offer all of these

options):

v Bytes.

v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads

one character at a time and determines whether the character comprises

one or more bytes.
v Character Units. This specifies that the size of each character (in bytes) is

determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to

Characters.

– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest

character unit that the code page supports. However, this means that a

message must contain only these characters if it is to be processed correctly.

For example, in code page ″UTF-8″ (CCSID 1208), the minimum character

unit is one byte; therefore, the parser can make a single read (of the

number of bytes specified by the Length property) to fetch the entire

message. The message must contain only characters that are encoded in

1-byte units.
v End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count.

The default is Bytes.

Justification Enumerated

type

If you have set the Physical Type property to External Decimal, select Left

Justify or Right Justify (the default value) from the list. If you have selected

another value for Physical Type, this is property is inactive.

508 Message Models

Property Type Meaning

Padding

Character

String The padding character is used to fill out the remaining character positions when

the string length is less than the specified string size. If you have set the Physical

Type property to Extended Decimal, and the Justification property is either Left

Justify or Right Justify, specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal

value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM

element depends on the padding character that is required and whether the

padding character is to be subject to data conversion. In most cases, the

specification of a padding character in quotqtion marks is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated. For example, when converting

from ASCII to the code page 500, if you have specified U+0008 as your padding

character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC

representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should

ensure that the converted value of the padding character is valid for this code

page. If the padding character cannot be represented in the target code page, it

is replaced by a substitution character. The substitution character is fixed and its

value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the

hexadecimal or decimal format can be used. This gives the option of specifying

an absolute value as a padding character that is inserted directly into the output

message. If this format is used, you should still aim to ensure that this value is

valid for the code page of any output messages that are created using these

MRM definitions.

Numeric representation

 Property Type Meaning

Signed Check box Select or deselect (unsigned, the default) this property. If you have set Physical

Type to Float, this is selected. This property is used in conjunction with Sign

Orientation.

Message model reference information 509

Property Type Meaning

Sign EBCDIC

Custom

Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom

property is set, this indicates that the Sign EBCDIC Custom Overpunched

representation is to be used within an ASCII environment. If this check box is

not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate

only if the Sign Orientation property is set to Leading or Trailing (indicating that

the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,

if the Signed check box is not set).

Sign

Orientation

Enumerated

type

If you have set Physical Type to External Decimal and you have selected Signed,

choose from the following options that represent the COBOL options for

displaying numeric data:

v Leading Overpunched. This sets a bit in the first byte if the number is negative.

No setting is made if the number is positive. For example, the ASCII

hexadecimal representation of the number 22 is x’3232’. Using this option, the

number +22 would be x’3232’ and the number -22 would be x’7232’. This is

the default value.

v Leading Separate. This sets the first byte of the element to ’+’ if the number is

positive and to ’-’ if the number is negative. For this option, the length must

include the sign byte.

v Trailing Overpunched. This sets a bit in the last byte if the number is

negative. No setting is made if the number is positive. Using this option, the

number +22 would be x’3232’ and the number -22 would be x’3272’.

v Trailing Separate. This sets the last byte of the element to ’+’ if the number

is positive and to ’-’ if the number is negative. For this option, the length must

include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set

for you.

Virtual Decimal

Point

Integer Specify the number of places to the left (for a positive value) or right (for a

negative value) that a decimal point should be moved from its assumed position.

For example, a float element containing 1234 with a Virtual Decimal value of 3 is

1.234.

This is not applicable if you have set Physical Type to Float.

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the displayed list:

v NULLPadFill. This is valid only if Physical Type is External Decimal. The field

is filled with the value specified by the Padding Character. Encoding Null Value

must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the

required format for the field. This is the default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a

string. You can specify a nonnumeric value for Encoding Null Value.

v NULLLiteralFill. The field is filled with the value specified by the Encoding

Null Value. Encoding Null Value must resolve to a single character.

510 Message Models

Property Type Meaning

Encoding Null

Value

String The use of this property depends on the Encoding Null property, described

above, with the exception of NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must resolve

to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is

any alphanumeric character.

v Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal

value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal format.

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

 Property Type Meaning

Repeat

Reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the displayed list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

Message model reference information 511

CWF properties for element reference and local element integer types:

The Custom Wire Format properties described here apply to:

v Objects: Element Reference, Local Element

v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select one of the following from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. This equates to the COMP-3 data type in COBOL.

v External Decimal. This equates to the data type PIC 9 USAGE DISPLAY in

COBOL.

The representation of numeric elements can be affected by the Encoding and

CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer and Packed Decimal are

represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in

the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the

displayed list.

v If you have set Physical Type to Packed Decimal, enter a value between 1 and

6.

v If you have set Physical Type to Extended Decimal, enter a value between 1 and

11.

512 Message Models

Property Type Meaning

Length Units Enumerated

type

Select the unit of length for the element or attribute. Select one of the following

options from the displayed list (some physical types do not offer all of these

options):

v Bytes.

v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads

one character at a time and determines whether the character comprises

one or more bytes.
v Character Units. This specifies that the size of each character (in bytes) is

determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to

Characters.

– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest

character unit that the code page supports. However, this means that a

message must contain only these characters if it is to be processed correctly.

For example, in code page ″UTF-8″ (CCSID 1208), the minimum character

unit is one byte; therefore, the parser can make a single read (of the

number of bytes specified by the Length property) to fetch the entire

message. The message must contain only characters that are encoded in

1-byte units.
v End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count.

The default is Bytes.

Justification Enumerated

type

If you have set the Physical Type property to External Decimal, select Left

Justify or Right Justify (the default value) from the list. If you have selected

another value for Physical Type, this is property is inactive.

Message model reference information 513

Property Type Meaning

Padding

Character

String The padding character is used to fill out the remaining character positions when

the string length is less than the specified string size. If you have set the Physical

Type property to Extended Decimal, and the Justification property is either Left

Justify or Right Justify, specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal

value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM

element depends on the padding character that is required and whether the

padding character is to be subject to data conversion. In most cases, the

specification of a padding character in quotqtion marks is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated. For example, when converting

from ASCII to the code page 500, if you have specified U+0008 as your padding

character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC

representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should

ensure that the converted value of the padding character is valid for this code

page. If the padding character cannot be represented in the target code page, it

is replaced by a substitution character. The substitution character is fixed and its

value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the

hexadecimal or decimal format can be used. This gives the option of specifying

an absolute value as a padding character that is inserted directly into the output

message. If this format is used, you should still aim to ensure that this value is

valid for the code page of any output messages that are created using these

MRM definitions.

Numeric representation

 Property Type Meaning

Signed Check box Select (the default) or clear this property. This property is used in conjunction

with Sign Orientation.

514 Message Models

Property Type Meaning

Sign EBCDIC

Custom

Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom

property is set, this indicates that the Sign EBCDIC Custom Overpunched

representation is to be used within an ASCII environment. If this check box is

not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate

only if the Sign Orientation property is set to Leading or Trailing (indicating that

the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,

if the Signed check box is not set).

Sign

Orientation

Enumerated

type

If you have set Physical Type to External Decimal and you have selected Signed,

choose from the following options that represent the COBOL options for

displaying numeric data:

v Leading Overpunched. This sets a bit in the first byte if the number is negative.

No setting is made if the number is positive. For example, the ASCII

hexadecimal representation of the number 22 is x’3232’. Using this option, the

number +22 would be x’3232’ and the number -22 would be x’7232’. This is

the default value.

v Leading Separate. This sets the first byte of the element to ’+’ if the number is

positive and to ’-’ if the number is negative. For this option, the length must

include the sign byte.

v Trailing Overpunched. This sets a bit in the last byte if the number is

negative. No setting is made if the number is positive. Using this option, the

number +22 would be x’3232’ and the number -22 would be x’3272’.

v Trailing Separate. This sets the last byte of the element to ’+’ if the number

is positive and to ’-’ if the number is negative. For this option, the length must

include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set

for you.

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the displayed list:

v NULLPadFill. This is valid only if Physical Type is External Decimal. The field

is filled with the value specified by the Padding Character. Encoding Null Value

must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the

required format for the field. This is the default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a

string. You can specify a nonnumeric value for Encoding Null Value.

v NULLLiteralFill. The field is filled with the value specified by the Encoding

Null Value. Encoding Null Value must resolve to a single character.

Message model reference information 515

Property Type Meaning

Encoding Null

Value

String The use of this property depends on the Encoding Null property, described

above, with the exception of NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must resolve

to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is

any alphanumeric character.

v Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal

value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal format.

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

 Property Type Meaning

Repeat

Reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the displayed list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

516 Message Models

CWF properties for element reference and local element string types:

The Custom Wire Format properties described here apply to:

v Objects: Attribute Reference, Local Attribute

v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,

QName, string, token

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select one of the following from the displayed list:

v Fixed Length String. The element’s length is determined by other length

properties below.

v Length Encoded String 1. The element’s first byte contains the length of the

string following the length byte in length units. The maximum length of a

Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The element’s first two bytes contain the length of

the string following the 2 length bytes in length units. The maximum length

of a Length Encoded String 2 element is 65535 length units. The two length

bytes are in the format of the WebSphere MQ queue manager Encoding.

v Null Terminated String. The string ends with the hexadecimal NULL

character, X’00’.

The default is Fixed Length String.

Length Button and

Integer

If you have selected a Physical Type of Fixed Length String or Binary, and have

selected the length to be defined by Length, enter the number of length units for

the element.

The minimum value that you can specify is 0 (zero), the maximum value that

you can specify is 2147483647

The default value is 0 (zero).

Length

Reference

Button and

Enumerated

type

If you have selected the length to be defined by Length Reference, select the name

of the integer object that specifies the length of this object. Make your selection

from the displayed list of integer objects that are defined as siblings of the

current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page

108.

Inclusive

Length

Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of

the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object

must be the same as that of the current object.

Message model reference information 517

Property Type Meaning

Length Units Enumerated

type

Select the unit of length for the element or attribute. Select one of the following

options from the displayed list (some physical types do not offer all of these

options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads

one character at a time and determines whether the character comprises

one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is

determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to

Characters.

– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest

character unit that the code page supports. However, this means that a

message must contain only these characters if it is to be processed correctly.

For example, in code page ″UTF-8″ (CCSID 1208), the minimum character

unit is one byte; therefore, the parser can make a single read (of the

number of bytes specified by the Length property) to fetch the entire

message. The message must contain only characters that are encoded in

1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count or Length

Reference property.

The default is Bytes.

Justification Enumerated

type

If you have set the Physical Type property to Fixed Length String, select Left

Justify (the default value) or Right Justify from the list. If you have selected

another value for Physical Type, this is property is inactive.

518 Message Models

Property Type Meaning

Padding

Character

String If you have set the Physical Type property to Fixed Length String, and the

Justification property is either Left Justify or Right Justify, this property is

applicable.

When writing an output message, use the padding character to fill out the

remaining character positions when the string length is less than the length

implied by the Length or Length Reference property. Whether the string is padded

from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end

of the string. Whether the string is trimmed from the left or the right is

governed by the Justification property.

Specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal

value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM

element depends on the padding character that is required and whether the

padding character is to be subject to data conversion. In most cases, the

specification of a padding character in quotqtion marks is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated. For example, when converting

from ASCII to the code page 500, if you have specified U+0008 as your padding

character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC

representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should

ensure that the converted value of the padding character is valid for this code

page. If the padding character cannot be represented in the target code page, it

is replaced by a substitution character. The substitution character is fixed and its

value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the

hexadecimal or decimal format can be used. This gives the option of specifying

an absolute value as a padding character that is inserted directly into the output

message. If this format is used, you should still aim to ensure that this value is

valid for the code page of any output messages that are created using these

MRM definitions.

Message model reference information 519

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the displayed list:

v NULLPadFill. This is valid only if Physical Type is Fixed Length String. The

field is filled with the value specified by the Padding Character. Encoding Null

Value must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the

required format for the field. This is the default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a

string.

v NULLLiteralFill. The field is filled with the value specified by the Encoding

Null Value. Encoding Null Value must resolve to a single character.

Encoding Null

Value

STRING The use of this property depends on the Encoding Null property, described

above. If specified, its length must be equal to the length of the string element,

with the exception of NULLLiteralFill.

The default value is empty (not set).

If you set the Encoding Null property to NULLLiteralFill, the value must resolve

to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY where YY is a

hexadecimal value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal format.

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

520 Message Models

Occurrences

 Property Type Meaning

Repeat

Reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the displayed list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

Local element XML properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - base64Binary

 - hexBinary

Boolean types

 - Boolean

DateTime types

 - date

 - dateTime

 - gDay

 - gMonth

 - gMonthDay

 - gYear

 - gYearMonth

 - time

Decimal types

 - decimal

 - integer

 - negativeInteger

 - nonNegativeInteger

 - nonPositiveInteger

 - positiveInteger

 - unsignedLong

Float types

 - double

 - float

Integer types

 - byte

 - int

 - long

 - short

 - unsignedByte

 - unsignedInt

 - unsignedShort

Interval types

 - duration

String types

 - anyURI

 - ENTITIES

 - ENTITY

 - ID

 - IDREF

 - IDREFS

 - language

 - Name

 - NCName

 - NMTOKEN

 - NMTOKENS

 - normalizedString

 - NOTATION

 - QName

 - string

 - token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the

String logical types.

XML properties for attribute reference, element reference, local attribute, local element

binary types:

Message model reference information 521

The XML Wire Format properties described here apply to:

v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element

v Binary schema types: base64Binary, hexBinary

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

522 Message Models

Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an

attribute of the parent XML object. The identity of the child is determined by

the attribute name. The value is the attribute value. This is only valid for

simple elements.

If you select this value for more than one object , you must set their XML

Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered

as a child XML element of the parent complex type. The identity of the child

is determined by the tag name of the child. The value is the value of a

specified attribute. The name of the attribute is specified in Value Attribute

Name.

v XMLElementAttrIDVal. This option combines the two options,

XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of

the parent complex type. The identity of the child is determined by the value

of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

Message model reference information 523

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute

Name

String

Specify the name of the attribute used for the value of the child. This must be a

valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Physical representation

 Property Type Meaning

Encoding String Select one of the following values from the drop-down list: :

v CDatahex (the default). Hexadecimal values in this field are specified with the

CDATA qualifier, for example <e1><![CDATA[62]]></e1>

v hex. Hexadecimal values in this field are specified as digits only, for example

<e1>62</e1>.

v base64. Values in this field are specified as digits only, coded in base 64.

XML properties for attribute reference, element reference, local attribute, local element

Boolean types:

The XML Wire Format properties described here apply to:

v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element

v Boolean schema types: Boolean

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

524 Message Models

Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an

attribute of the parent XML object. The identity of the child is determined by

the attribute name. The value is the attribute value. This is only valid for

simple elements.

If you select this value for more than one object , you must set their XML

Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered

as a child XML element of the parent complex type. The identity of the child

is determined by the tag name of the child. The value is the value of a

specified attribute. The name of the attribute is specified in Value Attribute

Name.

v XMLElementAttrIDVal. This option combines the two options,

XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of

the parent complex type. The identity of the child is determined by the value

of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

Message model reference information 525

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute

Name

String

Specify the name of the attribute used for the value of the child. This must be a

valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element

dateTime types:

The XML Wire Format properties described here apply to:

v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element

v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

526 Message Models

Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an

attribute of the parent XML object. The identity of the child is determined by

the attribute name. The value is the attribute value. This is only valid for

simple elements.

If you select this value for more than one object , you must set their XML

Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered

as a child XML element of the parent complex type. The identity of the child

is determined by the tag name of the child. The value is the value of a

specified attribute. The name of the attribute is specified in Value Attribute

Name.

v XMLElementAttrIDVal. This option combines the two options,

XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of

the parent complex type. The identity of the child is determined by the value

of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

Message model reference information 527

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute

Name

String

Specify the name of the attribute used for the value of the child. This must be a

valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Physical representation

 Property Type Meaning

DateTime

Format

String Specify a format string that specifies the rendering of the value for dateTime

elements.

The default dateTime format is dependent on the logical type of the object. For

information about the defaults for the dateTime format according to the logical

type see “DateTime defaults by logical type” on page 770.

See “DateTime formats” on page 763 for details of dateTime formats.

XML properties for attribute reference, element reference, local attribute, local element

decimal types:

The XML Wire Format properties described here apply to:

v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element

v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

528 Message Models

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

 Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an

attribute of the parent XML object. The identity of the child is determined by

the attribute name. The value is the attribute value. This is only valid for

simple elements.

If you select this value for more than one object , you must set their XML

Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered

as a child XML element of the parent complex type. The identity of the child

is determined by the tag name of the child. The value is the value of a

specified attribute. The name of the attribute is specified in Value Attribute

Name.

v XMLElementAttrIDVal. This option combines the two options,

XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of

the parent complex type. The identity of the child is determined by the value

of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

Message model reference information 529

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute

Name

String

Specify the name of the attribute used for the value of the child. This must be a

valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element float

types:

The XML Wire Format properties described here apply to:

v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element

v Float schema types: double, float

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

530 Message Models

Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an

attribute of the parent XML object. The identity of the child is determined by

the attribute name. The value is the attribute value. This is only valid for

simple elements.

If you select this value for more than one object , you must set their XML

Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered

as a child XML element of the parent complex type. The identity of the child

is determined by the tag name of the child. The value is the value of a

specified attribute. The name of the attribute is specified in Value Attribute

Name.

v XMLElementAttrIDVal. This option combines the two options,

XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of

the parent complex type. The identity of the child is determined by the value

of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

Message model reference information 531

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute

Name

String

Specify the name of the attribute used for the value of the child. This must be a

valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element

integer types:

The XML Wire Format properties described here apply to:

v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element

v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

532 Message Models

Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an

attribute of the parent XML object. The identity of the child is determined by

the attribute name. The value is the attribute value. This is only valid for

simple elements.

If you select this value for more than one object , you must set their XML

Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered

as a child XML element of the parent complex type. The identity of the child

is determined by the tag name of the child. The value is the value of a

specified attribute. The name of the attribute is specified in Value Attribute

Name.

v XMLElementAttrIDVal. This option combines the two options,

XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of

the parent complex type. The identity of the child is determined by the value

of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

Message model reference information 533

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute

Name

String

Specify the name of the attribute used for the value of the child. This must be a

valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element

string types:

The XML Wire Format properties described here apply to:

v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element

v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,

QName, string, token

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

534 Message Models

Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an

attribute of the parent XML object. The identity of the child is determined by

the attribute name. The value is the attribute value. This is only valid for

simple elements.

If you select this value for more than one object , you must set their XML

Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered

as a child XML element of the parent complex type. The identity of the child

is determined by the tag name of the child. The value is the value of a

specified attribute. The name of the attribute is specified in Value Attribute

Name.

v XMLElementAttrIDVal. This option combines the two options,

XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of

the parent complex type. The identity of the child is determined by the value

of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

Message model reference information 535

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute

Name

String

Specify the name of the attribute used for the value of the child. This must be a

valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Local element TDS properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - base64Binary

 - hexBinary

Boolean types

 - Boolean

DateTime types

 - date

 - dateTime

 - gDay

 - gMonth

 - gMonthDay

 - gYear

 - gYearMonth

 - time

Decimal types

 - decimal

 - integer

 - negativeInteger

 - nonNegativeInteger

 - nonPositiveInteger

 - positiveInteger

 - unsignedLong

536 Message Models

Float types

 - double

 - float

Integer types

 - byte

 - int

 - long

 - short

 - unsignedByte

 - unsignedInt

 - unsignedShort

Interval types

 - duration

String types

 - anyURI

 - ENTITIES

 - ENTITY

 - ID

 - IDREF

 - IDREFS

 - language

 - Name

 - NCName

 - NMTOKEN

 - NMTOKENS

 - normalizedString

 - NOTATION

 - QName

 - string

 - token

TDS properties for local element binary types:

The TDS Format properties described here apply to:

v Objects: Local Element

v Binary schema types: base64Binary, hexBinary

Field Identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

For all Messaging Standard values, the Physical Type property is set to Binary and

cannot be changed.

Message model reference information 537

Property Type Meaning

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

The default is dependent on the setting of the message set property Derive default

length from logical type. If Derive default length from logical type is selected, the

default value is derived from any length or maxLength value constraint (schema

facet) on the object’s simple type.

Length Units Enumerated

type

Always set to Bytes

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

Inclusive

Length

Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of

the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object

must be the same as that of the current object.

Occurrences

 Property Type Meaning

Repeat

reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the drop-down list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

Repeating

Element

Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element

Separation property of the parent group or complex type is set to All Elements

Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging

standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is

not HL7, and the maximum number of repeats is fixed, the delimiter of the

parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

538 Message Models

TDS properties for local element Boolean types:

The TDS Format properties described here apply to:

v Objects: Local Element

v Boolean schema types: Boolean

Field Identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Binary. The data is in bit string format.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Occurrences

 Property Type Meaning

Repeat

reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the drop-down list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

Message model reference information 539

Property Type Meaning

Repeating

Element

Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element

Separation property of the parent group or complex type is set to All Elements

Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging

standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is

not HL7, and the maximum number of repeats is fixed, the delimiter of the

parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

TDS properties for local element dateTime types:

The TDS Format properties described here apply to:

v Objects: Local Element

v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Field Identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

540 Message Models

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The data’s first byte contains the length (in length

units) of the data string that follows the length byte. The maximum length of

a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The data’s first two bytes contains the length (in

length units) of the data string that follows the two length bytes. The

maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL

character, X’00’.

v Packed Decimal. The data is a packed decimal number that equates to the

COMP-3 data type in COBOL.

v Binary. The data is in bit string format.

v Time Seconds. This value supports C time_t, and Java Date and Time objects.

It is valid only if the DateTime Format property represents numeric-only data.

v Time Milliseconds. This value supports C time_t, and Java Date and Time

objects. It is valid only if the DateTime Format property represents

numeric-only data.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if one of the following statements is true:

v Physical Type is Packed Decimal.

v Physical Type is Text, no Length Reference is specified, and the Data Element

Separation of the parent complex type or group is Fixed Length, Tagged Fixed

Length, or Fixed Length AL3.

The default is dependent on the physical type of the object.

If Physical Type is Length Encoded String 1, Length Encoded String 2, or Null

Terminated String, this property is not applicable.

If Physical Type is Time Seconds, the value of this property is 4, and cannot be

changed.

If Physical Type is Time Milliseconds, the value of this property is 8, and cannot

be changed.

Message model reference information 541

Property Type Meaning

Length Units Enumerated

type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both

options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of

bytes that are processed in the bit stream depends on the code page of the

message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the contents of the bit stream. The parser

reads one character at a time and determines whether the character

comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated

type

Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output

as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

542 Message Models

Property Type Meaning

Padding

Character

String Specify the padding character that is to be inserted or interpreted on the writing

or parsing of a fixed length object if the data is less than the fixed length value.

This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a

hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

The choice of which of these padding character forms is used for an MRM

element depends on the padding character required and whether the padding

character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the

hexadecimal format can be used. This gives the option of specifying a padding

character that is inserted directly into the output message. If this format is used,

you must ensure that this hexadecimal value is valid for the code page of any

output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure

that the converted value of the padding character is valid for this code page. For

example, when converting from ASCII to code page 500, if you have specified

the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the

ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must

not be greater than U+007F. Note that if you enter a Unicode mnemonic or

numeric value, it is considered to be the character that is represented by that

number in UTF-8.

DateTime

Format

String Specify a template for date and time.

The default DateTime format is dependent on the logical type of the object. For

information about the defaults for the dateTime format according to the logical

type see “DateTime defaults by logical type” on page 770.

See “DateTime formats” on page 763 for details of date and time formats.

Message model reference information 543

Property Type Meaning

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

Inclusive

Length

Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of

the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object

must be the same as that of the current object.

Numeric representation

 Property Type Meaning

Signed Check box Specify whether or not the value is signed.

This property is applicable only if the Physical type property is Packed Decimal.

By default, this check box is cleared, which indicates that the value is not signed.

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default

value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an

actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that

is directly substituted as if it is a string. For dateTime elements, use this

option if you want to use the Encoding Null Value property to test or compare

the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified

by the Encoding Null Value property. Encoding Null Value must resolve to a

single character.

The option that you select determines the value that you must set for the

property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”

on page 751.

544 Message Models

Property Type Meaning

Encoding Null

Value

String The use of this property depends on the Encoding Null property that is described

above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,

the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 763.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;

for example, 1970-12-01.

Occurrences

 Property Type Meaning

Repeat

reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the drop-down list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

Repeating

Element

Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element

Separation property of the parent group or complex type is set to All Elements

Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging

standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is

not HL7, and the maximum number of repeats is fixed, the delimiter of the

parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

TDS properties for local element decimal types:

The TDS Format properties described here apply to:

v Objects: Local Element

v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

Message model reference information 545

Field Identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Packed Decimal. The data is a packed decimal number that equates to the

COMP-3 data type in COBOL.

v TLOG Specific - this option can be selected only if the Message Standard

property of the message set is TLOG. This option indicates that the format of

the data is specific to the TLOG messaging standard.

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type

PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from

logical type is selected, and the Physical type is ’Character’, the default value is

derived from any totalDigits value constraint (schema facet) or, if none, any

minInclusive, maxInclusive, minExclusive, or maxExclusive value constraints

(schema facets), on the simple type.

546 Message Models

Property Type Meaning

Length Units Enumerated

type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both

options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of

bytes that are processed in the bit stream depends on the code page of the

message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the contents of the bit stream. The parser

reads one character at a time and determines whether the character

comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated

type

Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output

as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Message model reference information 547

Property Type Meaning

Padding

Character

String Specify the padding character that is to be inserted or interpreted on the writing

or parsing of a fixed length object if the data is less than the fixed length value.

This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a

hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

The choice of which of these padding character forms is used for an MRM

element depends on the padding character required and whether the padding

character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the

hexadecimal format can be used. This gives the option of specifying a padding

character that is inserted directly into the output message. If this format is used,

you must ensure that this hexadecimal value is valid for the code page of any

output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure

that the converted value of the padding character is valid for this code page. For

example, when converting from ASCII to code page 500, if you have specified

the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the

ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must

not be greater than U+007F. Note that if you enter a Unicode mnemonic or

numeric value, it is considered to be the character that is represented by that

number in UTF-8.

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

548 Message Models

Property Type Meaning

Inclusive

Length

Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of

the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object

must be the same as that of the current object.

Numeric representation

 Property Type Meaning

Signed Check box Specify whether or not the value is signed.

Sign EBCDIC

Custom

Overpunched

Check box Specify whether EBCDIC custom sign format is used.

This property is applicable only if the Signed property is selected and the

Physical Type property is set to External Decimal.

Sign

Orientation

Enumerated

type

The values that you can choose for this property are:

v Leading Separate

v Trailing Separate

v Leading Overpunched

v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External

Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading

Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is

selected, the only valid values of Sign Orientation are Leading Overpunched and

Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric

value. If no value is set, ″+″ is assumed. The positive sign is not written when

creating an output message; it is used only to recognize the positive sign when

parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric

value. If no value is set, ″-″ is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Virtual Decimal

Point

Button and

Integer

Specify a nonzero integer that represents the position of an implied decimal

point within a number, or specify 0 (zero, the default) to use the formatting of

Float or Decimal numbers as specified by the Precision property.

If you specify a positive integer, the position of the decimal point is moved left

from the right hand side of the number. For example, if you specify 3, the

decimal value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is moved

right from the right hand side of the number. For example, if you specify -3, the

decimal value 1234 represents 1 234 000

Message model reference information 549

Property Type Meaning

Precision Button and

Integer

This property is applicable only if Physical Type is Text. It is used if the value of

the Virtual Decimal Point property is 0, which indicates that the decimal point is

present in the data. It deals with truncation, and specifies how many digits

should follow the decimal point.

Either specify a number of digits:

v If you set Precision to 0, data is truncated so that the fractional part is lost. For

example, the value 123.45 is truncated to 123.

v If you set Precision to a number less than the number of fractional digits, data

is truncated. For example, the value 123.4567 is truncated to 123.45 if you set

Precision to 2.

v If you set Precision to a number greater than the number of fractional digits,

the value is padded with extra zeros. For example, the value 12.345 is padded

to 12.34500 if you set Precision to 5.

Or select one of the following from the drop-down list:

v All Significant Digits - decimal separator only required if fractional

digits (the default): all significant digits are written to the output bit stream,

and there is no decimal separator if there are no fractional digits.

v Explicit Decimal Separator - decimal separator always required: all

significant digits are written to the output bit stream and the decimal

separator is always included, even if there are no fractional digits. The

decimal separator must be present in the input bit stream, even if no fractional

digits are present.

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default

value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an

actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that

is directly substituted as if it is a string. For dateTime elements, use this

option if you want to use the Encoding Null Value property to test or compare

the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified

by the Encoding Null Value property. Encoding Null Value must resolve to a

single character.

The option that you select determines the value that you must set for the

property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”

on page 751.

Encoding Null

Value

String The use of this property depends on the Encoding Null property that is described

above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,

the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 763.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;

for example, 1970-12-01.

550 Message Models

Occurrences

 Property Type Meaning

Repeat

reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the drop-down list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

Repeating

Element

Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element

Separation property of the parent group or complex type is set to All Elements

Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging

standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is

not HL7, and the maximum number of repeats is fixed, the delimiter of the

parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

TDS properties for local element float types:

The TDS Format properties described here apply to:

v Objects: Local Element

v Float schema types: double, float

Field Identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Message model reference information 551

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Float. This equates to the data type FLOAT or DOUBLE in C, or the COMP-1

or COMP-2 numeric data type in COBOL.

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. The data is a packed decimal number that equates to the

COMP-3 data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type

PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

Length Units Enumerated

type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both

options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of

bytes that are processed in the bit stream depends on the code page of the

message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the contents of the bit stream. The parser

reads one character at a time and determines whether the character

comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated

type

Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output

as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

552 Message Models

Property Type Meaning

Padding

Character

String Specify the padding character that is to be inserted or interpreted on the writing

or parsing of a fixed length object if the data is less than the fixed length value.

This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a

hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

The choice of which of these padding character forms is used for an MRM

element depends on the padding character required and whether the padding

character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the

hexadecimal format can be used. This gives the option of specifying a padding

character that is inserted directly into the output message. If this format is used,

you must ensure that this hexadecimal value is valid for the code page of any

output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure

that the converted value of the padding character is valid for this code page. For

example, when converting from ASCII to code page 500, if you have specified

the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the

ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must

not be greater than U+007F. Note that if you enter a Unicode mnemonic or

numeric value, it is considered to be the character that is represented by that

number in UTF-8.

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

Message model reference information 553

Property Type Meaning

Inclusive

Length

Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of

the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object

must be the same as that of the current object.

Numeric representation

 Property Type Meaning

Signed Check box Specify whether or not the value is signed.

Sign EBCDIC

Custom

Overpunched

Check box Specify whether EBCDIC custom sign format is used.

This property is applicable only if the Signed property is selected and the

Physical Type property is set to External Decimal.

Sign

Orientation

Enumerated

type

The values that you can choose for this property are:

v Leading Separate

v Trailing Separate

v Leading Overpunched

v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External

Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading

Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is

selected, the only valid values of Sign Orientation are Leading Overpunched and

Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric

value. If no value is set, ″+″ is assumed. The positive sign is not written when

creating an output message; it is used only to recognize the positive sign when

parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric

value. If no value is set, ″-″ is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Virtual Decimal

Point

Button and

Integer

Specify a nonzero integer that represents the position of an implied decimal

point within a number, or specify 0 (zero, the default) to use the formatting of

Float or Decimal numbers as specified by the Precision property.

If you specify a positive integer, the position of the decimal point is moved left

from the right hand side of the number. For example, if you specify 3, the

decimal value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is moved

right from the right hand side of the number. For example, if you specify -3, the

decimal value 1234 represents 1 234 000

554 Message Models

Property Type Meaning

Precision Button and

Integer

This property is applicable only if Physical Type is Text. It is used if the value of

the Virtual Decimal Point property is 0, which indicates that the decimal point is

present in the data. It deals with truncation, and specifies how many digits

should follow the decimal point.

Either specify a number of digits:

v If you set Precision to 0, data is truncated so that the fractional part is lost. For

example, the value 123.45 is truncated to 123.

v If you set Precision to a number less than the number of fractional digits, data

is truncated. For example, the value 123.4567 is truncated to 123.45 if you set

Precision to 2.

v If you set Precision to a number greater than the number of fractional digits,

the value is padded with extra zeros. For example, the value 12.345 is padded

to 12.34500 if you set Precision to 5.

Or select one of the following from the drop-down list:

v All Significant Digits - decimal separator only required if fractional

digits (the default): all significant digits are written to the output bit stream,

and there is no decimal separator if there are no fractional digits.

v Explicit Decimal Separator - decimal separator always required: all

significant digits are written to the output bit stream and the decimal

separator is always included, even if there are no fractional digits. The

decimal separator must be present in the input bit stream, even if no fractional

digits are present.

v Exponential Notation - Example ″1.23456e002″: data is written out to the bit

stream as a signed value having the format [sign1]a.bbbe[sign2]ccc where:

– [sign1] is the value of Negative Sign if the value is negative

– a is a single decimal digit

– bbb is one or more decimal digits

– [sign2] is the value of Negative Sign if the exponent is negative

– ccc is exactly three decimal digits (the exponent)

[sign1] and [sign2] are absent if the value and exponent, respectively, are

positive.

For example, the value -123.456 is represented as -1.23456e002 and the value

0.00012 is represented as 1.2e-004 in the output bit stream (assuming that the

value of Negative Sign is ″-″, and the value of Sign Orientation is Leading).

The value -0.00012 is represented as 1.2*e*004 if Negative Sign is ″*″ and Sign

Orientation is Trailing.

Message model reference information 555

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default

value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an

actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that

is directly substituted as if it is a string. For dateTime elements, use this

option if you want to use the Encoding Null Value property to test or compare

the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified

by the Encoding Null Value property. Encoding Null Value must resolve to a

single character.

The option that you select determines the value that you must set for the

property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”

on page 751.

Encoding Null

Value

String The use of this property depends on the Encoding Null property that is described

above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,

the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 763.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;

for example, 1970-12-01.

Occurrences

 Property Type Meaning

Repeat

reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the drop-down list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

Repeating

Element

Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element

Separation property of the parent group or complex type is set to All Elements

Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging

standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is

not HL7, and the maximum number of repeats is fixed, the delimiter of the

parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

556 Message Models

TDS properties for local element integer types:

The TDS Format properties described here apply to:

v Objects: Local Element

v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Field Identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. The data is a packed decimal number that equates to the

COMP-3 data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type

PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from

logical type is selected, and the Physical type is ’Character’, the default value is

derived from any totalDigits value constraint (schema facet) or, if none, any

minInclusive, maxInclusive, minExclusive, or maxExclusive value constraints

(schema facets), on the simple type.

Message model reference information 557

Property Type Meaning

Length Units Enumerated

type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both

options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of

bytes that are processed in the bit stream depends on the code page of the

message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the contents of the bit stream. The parser

reads one character at a time and determines whether the character

comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated

type

Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output

as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

558 Message Models

Property Type Meaning

Padding

Character

String Specify the padding character that is to be inserted or interpreted on the writing

or parsing of a fixed length object if the data is less than the fixed length value.

This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a

hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

The choice of which of these padding character forms is used for an MRM

element depends on the padding character required and whether the padding

character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the

hexadecimal format can be used. This gives the option of specifying a padding

character that is inserted directly into the output message. If this format is used,

you must ensure that this hexadecimal value is valid for the code page of any

output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure

that the converted value of the padding character is valid for this code page. For

example, when converting from ASCII to code page 500, if you have specified

the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the

ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must

not be greater than U+007F. Note that if you enter a Unicode mnemonic or

numeric value, it is considered to be the character that is represented by that

number in UTF-8.

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

Message model reference information 559

Property Type Meaning

Inclusive

Length

Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of

the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object

must be the same as that of the current object.

Numeric representation

 Property Type Meaning

Signed Check box Specify whether or not the value is signed.

Sign EBCDIC

Custom

Overpunched

Check box Specify whether EBCDIC custom sign format is used.

This property is applicable only if the Signed property is selected and the

Physical Type property is set to External Decimal.

Sign

Orientation

Enumerated

type

The values that you can choose for this property are:

v Leading Separate

v Trailing Separate

v Leading Overpunched

v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External

Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading

Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is

selected, the only valid values of Sign Orientation are Leading Overpunched and

Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric

value. If no value is set, ″+″ is assumed. The positive sign is not written when

creating an output message; it is used only to recognize the positive sign when

parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric

value. If no value is set, ″-″ is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

560 Message Models

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default

value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an

actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that

is directly substituted as if it is a string. For dateTime elements, use this

option if you want to use the Encoding Null Value property to test or compare

the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified

by the Encoding Null Value property. Encoding Null Value must resolve to a

single character.

The option that you select determines the value that you must set for the

property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”

on page 751.

Encoding Null

Value

String The use of this property depends on the Encoding Null property that is described

above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,

the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 763.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;

for example, 1970-12-01.

Occurrences

 Property Type Meaning

Repeat

reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the drop-down list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

Repeating

Element

Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element

Separation property of the parent group or complex type is set to All Elements

Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging

standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is

not HL7, and the maximum number of repeats is fixed, the delimiter of the

parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Message model reference information 561

TDS properties for local element interval types:

The TDS Format properties described here apply to:

v Objects: Local Element

v Interval schema types: duration

Field Identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The data’s first byte contains the length (in length

units) of the data string that follows the length byte. The maximum length of

a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The data’s first two bytes contains the length (in

length units) of the data string that follows the two length bytes. The

maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL

character, X’00’.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from

logical type is selected, and the Physical type is ’Character’, the default value is

derived from any length or maxLength value constraint (schema facet) on the

simple type.

562 Message Models

Property Type Meaning

Length Units Enumerated

type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both

options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of

bytes that are processed in the bit stream depends on the code page of the

message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the contents of the bit stream. The parser

reads one character at a time and determines whether the character

comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated

type

Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output

as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Message model reference information 563

Property Type Meaning

Padding

Character

String Specify the padding character that is to be inserted or interpreted on the writing

or parsing of a fixed length object if the data is less than the fixed length value.

This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a

hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

The choice of which of these padding character forms is used for an MRM

element depends on the padding character required and whether the padding

character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the

hexadecimal format can be used. This gives the option of specifying a padding

character that is inserted directly into the output message. If this format is used,

you must ensure that this hexadecimal value is valid for the code page of any

output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure

that the converted value of the padding character is valid for this code page. For

example, when converting from ASCII to code page 500, if you have specified

the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the

ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must

not be greater than U+007F. Note that if you enter a Unicode mnemonic or

numeric value, it is considered to be the character that is represented by that

number in UTF-8.

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

564 Message Models

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default

value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an

actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that

is directly substituted as if it is a string. For dateTime elements, use this

option if you want to use the Encoding Null Value property to test or compare

the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified

by the Encoding Null Value property. Encoding Null Value must resolve to a

single character.

The option that you select determines the value that you must set for the

property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”

on page 751.

Encoding Null

Value

String The use of this property depends on the Encoding Null property that is described

above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,

the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 763.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;

for example, 1970-12-01.

Occurrences

 Property Type Meaning

Repeat

reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the drop-down list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

Repeating

Element

Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element

Separation property of the parent group or complex type is set to All Elements

Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging

standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is

not HL7, and the maximum number of repeats is fixed, the delimiter of the

parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Message model reference information 565

TDS properties for local element string types:

The TDS Format properties described here apply to:

v Objects: Local Element

v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,

QName, string, token

Field Identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Interpret

Element Value

Enumerated

type

Specify whether values stored within this object must be interpreted as having

significance for the parser and, if so, the type of interpretation that must occur.

This interpretation is generally standard-specific and is therefore hard-coded.

The possible values for this property are:

v None (the default value)

v EDIFACT Service String

v X12 Service String

v Message Key

v EDIFACT Syntax Level ID

v HL7 Service String

v HL7 Field Separator

Note: The Message Key enumeration has been deprecated

566 Message Models

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The data’s first byte contains the length (in length

units) of the data string that follows the length byte. The maximum length of

a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The data’s first two bytes contains the length (in

length units) of the data string that follows the two length bytes. The

maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL

character, X’00’.

v TLOG Specific - this option can be selected only if the Message Standard

property of the message set is TLOG. This option indicates that the format of

the data is specific to the TLOG messaging standard.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from

logical type is selected, and the Physical type is ’Character’, the default value is

derived from any length or maxLength value constraint (schema facet) on the

simple type.

Length Units Enumerated

type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both

options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of

bytes that are processed in the bit stream depends on the code page of the

message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the contents of the bit stream. The parser

reads one character at a time and determines whether the character

comprises one or more bytes.

The default is dependent on the physical type of the object.

Message model reference information 567

Property Type Meaning

Justification Enumerated

type

Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output

as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Padding

Character

String Specify the padding character that is to be inserted or interpreted on the writing

or parsing of a fixed length object if the data is less than the fixed length value.

This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a

hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

The choice of which of these padding character forms is used for an MRM

element depends on the padding character required and whether the padding

character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the

hexadecimal format can be used. This gives the option of specifying a padding

character that is inserted directly into the output message. If this format is used,

you must ensure that this hexadecimal value is valid for the code page of any

output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure

that the converted value of the padding character is valid for this code page. For

example, when converting from ASCII to code page 500, if you have specified

the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the

ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must

not be greater than U+007F. Note that if you enter a Unicode mnemonic or

numeric value, it is considered to be the character that is represented by that

number in UTF-8.

568 Message Models

Property Type Meaning

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

Inclusive

Length

Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of

the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object

must be the same as that of the current object.

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default

value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an

actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that

is directly substituted as if it is a string. For dateTime elements, use this

option if you want to use the Encoding Null Value property to test or compare

the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified

by the Encoding Null Value property. Encoding Null Value must resolve to a

single character.

The option that you select determines the value that you must set for the

property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”

on page 751.

Encoding Null

Value

String The use of this property depends on the Encoding Null property that is described

above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,

the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 763.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;

for example, 1970-12-01.

Message model reference information 569

Occurrences

 Property Type Meaning

Repeat

reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the drop-down list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

Repeating

Element

Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element

Separation property of the parent group or complex type is set to All Elements

Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging

standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is

not HL7, and the maximum number of repeats is fixed, the delimiter of the

parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the

understanding of the function of that object. The documentation property is

available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric

characters.

Local group properties

A local group can have the following properties;

v “Local group logical properties” on page 208

v “Local group CWF properties” on page 219

v “Local group XML properties” on page 226

v “Local group TDS properties” on page 240

v “Documentation properties for all message set objects” on page 183

Local group logical properties:

Valid children in a local group that depend on both Composition and Content

Validation are shown in “MRM content validation” on page 189.

570 Message Models

Property Type Meaning

Composition Enumerated

type

Define the order, and the number of occurrences, of the elements and groups in

your messages. Composition does not affect the attributes in a complex type.

Select from:

v Empty

v sequence. If you select this option, you can define members that are elements

or groups. These members, if present, must appear in the specified order in

the message. They can repeat, and the same element or group can appear

more than once.

v choice. If you select this option, you can define members that are elements or

groups. Exactly one of the defined members must be present in the message,

and can repeat.

Use this option if you want to model C unions and COBOL REDEFINES in a

Custom Wire Format, or an XML DTD element that uses choice in an XML

Wire Format, or a SWIFT field that has more than one option.

v all. If you select this option, you can define members that are elements;

groups are not allowed. The elements in an all group can appear in any

order. Each element can appear once, or not at all. An all group can only be

used at the top level of a complex type - it cannot be a member of another

group within a type.

v unorderedSet.

This option is supported only by the MRM domain.If you select this option,

you can define members that are elements. The elements can repeat but the

same element cannot appear twice in the list of members. The elements can

appear in any order in the message.

v orderedSet.

This option is supported only by the MRM domain.If you select this option,

you can define members that are elements. The elements can repeat, but the

same element cannot appear twice in the list of members. The elements must

appear in the specified order in the message.

v message.

This option is supported only by the MRM domain.

If you select this option, you can define only messages as members. Each

member can repeat, but the same message cannot appear twice in the list of

members. Like choice, only one of the defined members can be present in a

message.

Unlike choice, when writing a message, if the complex type or group has

more than one member, the bit stream is not padded to the length of the

longest member.

Use this option to model multipart messages, which are used in some

industry standards, for example, SWIFT. For more information, see the section

on multipart messages in “Multipart messages” on page 25.

Message model reference information 571

Property Type Meaning

Content

Validation

Enumerated

type

Content Validation is used only by the MRM domain. If validation is enabled in

your message flow, Content Validation specifies the strictness of the MRM

validation for members of a complex type or group. See “MRM content

validation” on page 189 for further details.

Options:

v Closed. The complex type can only contain the child elements that you have

added to it.

v Open Defined. The complex type can contain any valid element defined within

the message set.

v Open. The complex type can contain any valid element, not just those that you

have added to this complex type.

See “Combinations of Composition and Content Validation” on page 293 for

further details of these options.

Occurrences

 Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default is

1.

If the value is set to 0, then the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,

it must be less than or equal to the value in Max Occurs.

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default is

1.

If this property is not set, then the object can not occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the

message.

It can also be set to -1 to indicate that the limit is unbounded and there is no

maximum to the number of occurrences.

Local group CWF properties:

The CWF properties of a local group are described in the following tables.

 Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

572 Message Models

Property Type Meaning

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

 Property Type Meaning

Repeat

Reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the displayed list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

Local group XML properties:

There are no properties to show.

Local group TDS properties:

Message model reference information 573

Field Identification

 Property Type Meaning

Data Element

Separation

Enumerated

type

Select one of the following values to specify the method that is used to separate

the data elements within the type.

v Tagged Delimited. This value indicates that all elements within the complex

type are identified by a tag, and are separated by the value that is specified in

the optional Delimiter property (if specified). You must set the Tag property for

all child elements of simple type, and you can set the Delimiter property to a

non-empty value. See “Global element TDS properties” on page 234. You must

also set the Tag Data Separator or the Length of Tag property.

v Tagged Fixed Length. This value indicates that each element is identified by a

tag, and the data has a fixed length. There are no delimiters. You must set the

Tag property for each of the child elements of this complex type, and each

child element must have a Length or Length Reference property assigned to it.

You must also set the Tag Data Separator or the Length of Tag property.

v Tagged Encoded Length. This value indicates that all elements within the

complex type are separated by a tag, and a length field follows each tag.

There are no delimiters. The tag can be fixed length, as set by the Length of Tag

property, or variable length delimited by the Tag Data Separator property. You

must also set the Length Of Encoded Length property so that the parser knows

the size of the length field, and set the Extra Chars in Encoded Length property

to tell the parser what to subtract from the value in the Length Of Encoded

Length property to get the actual length of the data that follows the length

field.

This method provides a more flexible way of handling ACORD AL3 standard

messages than using the Fixed Length AL3 value, by allowing different parts

of the messages to be at different versions of the ACORD AL3 standard.

v All Elements Delimited. This value indicates that all elements within the

complex type are separated by a delimiter. You must set a value in the

Delimiter property.

v Variable Length Elements Delimited. This value indicates that some of the

elements within the complex type might be of variable length; if they are, they

must be delimited by the value that is specified in the Delimiter property.

v Use Data Pattern. This value indicates that the parser determines the

elements by matching the data with the regular expression that is set in the

Data Pattern property of the element or type member. See “Message definition

file properties” on page 181.

v Fixed Length. This value indicates that all elements within the complex type

are fixed length. The next data element is accessed by adding the value of the

Length property to the offset. See “Global element TDS properties” on page

234. If you set the Data Element Separation property of a complex type to Fixed

Length, you must also set the Data Element Separation property of all complex

children of this type to Fixed Length. Each child element must have a Length

or Length Reference property assigned to it.

v Fixed Length AL3. This value has a similar meaning to the separation type

Fixed Length, but also indicates to the parser that a number of predefined

rules with regard to missing optional elements, encoded lengths, and

versioning, must be applied. If you set the Data Element Separation property of

a complex type to Fixed Length AL3, you must also set the Data Element

Separation property of all complex children of this type to Fixed Length AL3.

v Undefined. This value is set automatically if you set the Type Composition

property of a complex type to Message, and you cannot change it to any other

value.

Do not set the Type Composition property to Empty, Choice, Unordered Set,

Ordered Set, Sequence, or Simple Unordered Set. If you do, you cannot check

in the type.

574 Message Models

Property Type Meaning

Group Indicator String Specify the value of a special character, or string, that precedes the data that

belongs to a group, or a complex type, within the bit stream.

Group

Terminator

String Specify the value of a special character, or string, that terminates the data that

belongs to a group, or a complex type, within the bit stream.

Delimiter String Specify the value of a special character, or string, that specifies the delimiter that

is used between data elements.

This property applies only to the delimited Data Element Separation methods

(Tagged Delimited, All Elements Delimited, and Variable Length Elements

Delimited).

Suppress

Absent Element

Delimiters

Enumerated

type

Use this property to select whether you want delimiters to be suppressed for

elements that are missing within a message.

Select from:

v End Of Type. Use this option to suppress the delimiter when an element is

missing. For example, if the model has been defined to have up to 3 elements

and only 2 are present, the last delimiter can be omitted from the message.

v Never. Use this option to ensure that even if optional elements are not present,

all delimiters are written out. This option should be used when the same

delimiter is used to delimit parent and child objects. For example, if an

optional child element is missing, message processing applications could not

tell where the child elements in a message ended and the next parent element

started, if the delimiters are all the same.

Observe

Element Length

Check box This property is applicable when Data Element Separation is All Elements

Delimited, and tells the TDS parser to take any Length property of child

elements or attributes into account. The default value depends on the setting of

the Messaging Standard property (at the message set level) and the Data Element

Separation property.

v If Data Element Separation is All Elements Delimited and the Messaging

Standard is set to TLOG, the check box is selected. For all other messaging

standards, the check box is cleared.

v If Data Element Separation is Tagged Delimited, the check box is cleared.

v If Data Element Separation is Tagged Fixed Length, Fixed Length, Fixed Length

AL3, or Variable Length Elements Delimited, this property is set and is

disabled.

v For all other data element separation methods, this property is not set and is

disabled.

Tag Data

Separator

Button and

String

Specify the value of a special character or string that separates the Tag from the

data. The Tag Data Separator and Length of Tag properties are mutually exclusive.

If you set the property Tag Data Separator, it overrides Length of Tag.

This property applies only to the tagged Data Element Separation methods (Tagged

Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Length of Tag Button and

Integer

Specify the length of a tag value. When the message is parsed, this allows tags

to be extracted from the bit stream if the Tag Data Separator property is not set.

The Tag Data Separator and Length of Tag properties are mutually exclusive. If you

set the property Tag Data Separator, it overrides this value.

This property applies only to the tagged Data Element Separation methods (Tagged

Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Message model reference information 575

Property Type Meaning

Length of

Encoded

Length

Integer Specifies the number of characters (not bytes) after a tag that are used for the

length field. Enter a value from 0 to 2 147 483 647.

You must set this property if you have set the Data Element Separation property

to Tagged Encoded Length; it is not valid otherwise.

The actual number of data characters that are parsed depends on the value of

the Extra Chars in Encoded Length property.

Extra Chars in

Encoded

Length

Integer (Only valid if the Data Element Separation method is set to Tagged Encoded

Length.) Specifies the number of extra characters included in the value found in

the length field. (For example, the value in the length might include the size of

the length field itself as well as the size of the data field, or it might be the total

size of the tag, length, and data fields.)

Enter a value from 0 to 2 147 483 647. The parser subtracts this number from the

number found in the length field to get the number of data characters that follow

the length field.

You must set this property if you have set the Data Element Separation property

to Tagged Encoded Length, and the actual number of data characters is less than

the value found in the length field.

Field Identification

 Property Type Meaning

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Occurrences

 Property Type Meaning

Repeating

Element

Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element

Separation property of the parent group or complex type is set to All Elements

Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging

standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is

not HL7, and the maximum number of repeats is fixed, the delimiter of the

parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Repeat

reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the drop-down list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

576 Message Models

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the

understanding of the function of that object. The documentation property is

available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric

characters.

Message properties

A message can have the following properties;

v “Message logical properties” on page 210

v “Message CWF properties” on page 220

v “Message XML properties” on page 226

v “Message TDS properties” on page 244

v “Documentation properties for all message set objects” on page 183

Message logical properties:

This section describes the logical properties of a message.

 Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters

A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a

number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the

XML standards specification.

Further details of naming conventions and allowable characters can be found in

the Extensible Markup Language (XML) specification that can be found on the

World Wide Web Consortium (W3C) Web site.

Message Alias String Specify an alternative unique value that identifies the message. This property is

only required if you are using the MRM domain and the Message Identity

technique to identify embedded messages, and the bit stream does not contain

the actual message name.

Message CWF properties:

There are no properties to show.

Message XML properties:

The following tables describe the XML properties of a message.

Message model reference information 577

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Namespace schema locations

This property is only active if namespaces have been enabled.

 Property Type Meaning

Namespace URI String A unique string, usually in the form of a URL that identifies the schema for this

If namespaces have not been enabled, this property will display <no target

namespace>.

This property will overide the same property at the message set level.

Schema location String Enter the location of the schema for the associated namespace name that will be

used to validate objects within the namespace.

XML declarations

 Property Type Meaning

Output

Namespace

Declaration

Enumerated

type

The Output Namespace Declaration property controls where the namespace

declarations will placed in the output XML document.

Select from:

v At start of document. Declarations for all of the entries in the Namespace

schema locations table above will be output as attributes of the message in the

output XML document. The disadvantage of this option is that in some cases

unnecessary declarations may be output.

v As required. Declarations will only be output when required by an element or

attribute that is in that namespace. The disadvantage of this option is that the

same namespace declaration may need to be output more than once in the

output XML document.

The default option is At start of document.

This property is only active if namespaces are enabled for this message set.

XML document type settings

 Property Type Meaning

DOCTYPE

System ID

String Specify the System ID for DOCTYPE external DTD subset. It overrides the

equivalent message set property setting for this particular message.

If the message set property Suppress DOCTYPE is set to Yes, this parameter is

ignored and cannot be changed (the field is disabled) .

The default value is the value that you specified for the DOCTYPE System ID

property for the message set.

DOCTYPE

Public ID

String Specify the Public ID for DOCTYPE external DTD subset. It overrides the

equivalent message set property setting for this particular message.

If the message set property Suppress DOCTYPE is set to Yes, this parameter is

ignored and cannot be changed (the field is disabled) .

The default value is the value that you specified for the DOCTYPE Public ID

property for the message set.

578 Message Models

Property Type Meaning

DOCTYPE Text String Enter optional additional text to include within the DOCTYPE. It overrides the

message set property for this particular message.

If the message set property Suppress DOCTYPE is set to Yes, this parameter is

ignored and cannot be changed (the field is disabled) .

For more information, see “MRM XML: In-line DTDs and the DOCTYPE text

property” on page 180.

The default value is the value that you specified for the DOCTYPE Text property

for the message set.

 Property Type Meaning

Root Tag Name String Specify the name of the root tag for a message bit stream XML document. It

overrides the message set property set for this message.

The default value is the value that you specified for the Root Tag Name property

for the message set.

Note: This property is deprecated. Do not change its value from its default

setting.

Field identification

A number of the following properties will only become active depending on the

value that Render property is set to.

 Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

Message model reference information 579

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Message TDS properties:

 Property Type Meaning

Message Key String Specify an alternative unique value that identifies the message in the bit stream.

This property is required if the message is embedded within another message.

Note: From Version 6.0 onwards, the use of Message Key has been deprecated

for identifying an embedded message. You now have the option of identifying

an embedded message by Message Identity, using the Message Alias logical

property.

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the

understanding of the function of that object. The documentation property is

available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric

characters.

Simple type properties

A simple type can have the following properties;

v “Simple type logical properties” on page 211

v “Simple type CWF properties” on page 220

v “Simple type XML properties” on page 228

v “Simple type TDS properties” on page 244

v “Documentation properties for all message set objects” on page 183

580 Message Models

A simple type can also have “Simple type logical value constraints” on page 212.

Simple type logical properties:

 Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters

A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a

number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the

XML standards specification.

Further details of naming conventions and allowable characters can be found in

the Extensible Markup Language (XML) specification that can be found on the

World Wide Web Consortium (W3C) Web site.

Base Type Enumerated

type

This property only applies to a simple type restriction.

You can use this property to select a base type that is used as the starting point

to define a new simple type that is derived by setting additional value

constraints.

Item Type Enumerated

type

This property only applies to a simple type list.

You can use this property to select the type that is used as the item type of the

list.

Variety Enumerated

type

This property displays the variety of the simple type you have selected, either

atomic, list, or union.

A simple type can also have “Simple type logical value constraints” on page 212.

Simple type logical value constraints:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - base64Binary

 - hexBinary

Boolean types

 - Boolean

DateTime types

 - date

 - dateTime

 - gDay

 - gMonth

 - gMonthDay

 - gYear

 - gYearMonth

 - time

Decimal types

 - decimal

 - integer

 - negativeInteger

 - nonNegativeInteger

 - nonPositiveInteger

 - positiveInteger

 - unsignedLong

Message model reference information 581

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Float types

 - double

 - float

Integer types

 - byte

 - int

 - long

 - short

 - unsignedByte

 - unsignedInt

 - unsignedShort

Interval types

 - duration

String types

 - anyURI

 - ENTITIES

 - ENTITY

 - ID

 - IDREF

 - IDREFS

 - language

 - Name

 - NCName

 - NMTOKEN

 - NMTOKENS

 - normalizedString

 - NOTATION

 - QName

 - string

 - token

Logical properties for value constraints for simple type binary types:

The simple type value constraint properties described here apply to:

v Objects: Simple types

v Binary schema types: base64Binary, hexBinary

Length constraints

 Property Type Meaning

Length Integer The length property is used to specify the exact length of the simple type in

bytes or characters.

The value must be greater than 0 and less than 2147483648.

Min Integer The Min property is used to specify the minimum length of the simple type in

bytes or characters.

The value must be greater than 0 and less than 2147483648.

Max Integer The Max property is used to specify the maximum length of the simple type in

bytes or characters.

The value must be greater than 0 and less than 2147483648.

 Property Type Meaning

White Space Enumerated

type

The White Space controls the processing of white space characters received for

this type.

The value of White Space must be one of;

v preserve. If you set the property to preserve, all white space characters

including carriage return, line feed and tab are preserved.

v replace. If you set the property to replace, all carriage return, line feed and

tab characters are replaced with a space character.

v collapse. If you set the property to collapse, all carriage return, line feed and

tab characters are replaced with a space character. Any adjacent white space

characters are then collapsed to a single space character and any leading or

trailing spaces are stripped from the data.

582 Message Models

Enumerations

 Property Type Meaning

Enumerations String Enumerations constrain the values to the list that is specified in this property. For

example, you might create a simple type called RainbowColors, and add Red,

Orange, Yellow, Green, Blue, Indigo, and Violet to the enumerations list.

You need to ensure that you have all variations of the data that you are likely to

receive in the message defined in the list. For example, Yellow, yellow, yel, y

might be variations of a single color.

Select Add to add a default enumeration. Overtype the default with the data

you require.

If you need to change an entry, select the entry, then click on the entry a second

time (as distinct from double-click). The selected entry can then be updated.

Patterns

 Property Type Meaning

Patterns String Patterns are a regular expression or a series of regular expressions used to

constrain the data within the simple type. For further information about patterns

and their syntax see “Using regular expressions to parse data elements” on page

757.

Select Add to add a default pattern. Overtype the default with the data you

require.

If you need to change an entry, select the entry, then click on the entry a second

time (as distinct from double-click). The selected entry can then be updated.

Logical properties for value constraints for simple type Boolean types:

The simple type value constraint properties described here apply to:

v Objects: Simple types

v Boolean schema types: Boolean

 Property Type Meaning

White Space Enumerated

type

The White Space controls the processing of white space characters received for

this type.

The value of White Space must be one of;

v preserve. If you set the property to preserve, all white space characters

including carriage return, line feed and tab are preserved.

v replace. If you set the property to replace, all carriage return, line feed and

tab characters are replaced with a space character.

v collapse. If you set the property to collapse, all carriage return, line feed and

tab characters are replaced with a space character. Any adjacent white space

characters are then collapsed to a single space character and any leading or

trailing spaces are stripped from the data.

Message model reference information 583

Patterns

 Property Type Meaning

Patterns String Patterns are a regular expression or a series of regular expressions used to

constrain the data within the simple type. For further information about patterns

and their syntax see “Using regular expressions to parse data elements” on page

757.

Select Add to add a default pattern. Overtype the default with the data you

require.

If you need to change an entry, select the entry, then click on the entry a second

time (as distinct from double-click). The selected entry can then be updated.

Logical properties for value constraints for simple type dateTime types:

The simple type value constraint properties described here apply to:

v Objects: Simple types

v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Inclusive Constraints

 Property Type Meaning

Min Integer The Min property is used to specify the minimum value for which the data in

the message must be greater than or equal to.

When this value is set it cannot be equal to or greater than the Max Inclusive

Constraint property.

You cannot specify both Min Inclusive Constraint and Min Exclusive Constraint

properties together for the same simple type.

Max Integer The Max property is used to specify the maximum value for which the data in

the message must be less than or equal to.

When this value is set it cannot be equal to or less than the Min Inclusive

Constraint property.

You cannot specify both Max Inclusive Constraint and Max Exclusive Constraint

properties together for the same simple type.

Exclusive Constraints

 Property Type Meaning

Min Integer The Min property is used to specify the minimum value for which the data in

the message must be greater than.

When this value is set it cannot be equal to or greater than the Max Inclusive

Constraint property.

You cannot specify both Min Inclusive Constraint and Min Exclusive Constraint

properties together for the same simple type.

584 Message Models

Property Type Meaning

Max Integer The Max property is used to specify the maximum value for which the data in

the message must be less than.

When this value is set it cannot be equal to or less than the Min Inclusive

Constraint property.

You cannot specify both Max Inclusive Constraint and Max Exclusive Constraint

properties together for the same simple type.

 Property Type Meaning

White Space Enumerated

type

The White Space controls the processing of white space characters received for

this type.

The value of White Space must be one of;

v preserve. If you set the property to preserve, all white space characters

including carriage return, line feed and tab are preserved.

v replace. If you set the property to replace, all carriage return, line feed and

tab characters are replaced with a space character.

v collapse. If you set the property to collapse, all carriage return, line feed and

tab characters are replaced with a space character. Any adjacent white space

characters are then collapsed to a single space character and any leading or

trailing spaces are stripped from the data.

Enumerations

 Property Type Meaning

Enumerations String Enumerations constrain the values to the list that is specified in this property. For

example, you might create a simple type called RainbowColors, and add Red,

Orange, Yellow, Green, Blue, Indigo, and Violet to the enumerations list.

You need to ensure that you have all variations of the data that you are likely to

receive in the message defined in the list. For example, Yellow, yellow, yel, y

might be variations of a single color.

Select Add to add a default enumeration. Overtype the default with the data

you require.

If you need to change an entry, select the entry, then click on the entry a second

time (as distinct from double-click). The selected entry can then be updated.

Patterns

 Property Type Meaning

Patterns String Patterns are a regular expression or a series of regular expressions used to

constrain the data within the simple type. For further information about patterns

and their syntax see “Using regular expressions to parse data elements” on page

757.

Select Add to add a default pattern. Overtype the default with the data you

require.

If you need to change an entry, select the entry, then click on the entry a second

time (as distinct from double-click). The selected entry can then be updated.

Message model reference information 585

Logical properties for value constraints for simple type decimal types:

The simple type value constraint properties described here apply to:

v Objects: Simple types

v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

Inclusive Constraints

 Property Type Meaning

Min Integer The Min property is used to specify the minimum value for which the data in

the message must be greater than or equal to.

When this value is set it cannot be equal to or greater than the Max Inclusive

Constraint property.

You cannot specify both Min Inclusive Constraint and Min Exclusive Constraint

properties together for the same simple type.

Max Integer The Max property is used to specify the maximum value for which the data in

the message must be less than or equal to.

When this value is set it cannot be equal to or less than the Min Inclusive

Constraint property.

You cannot specify both Max Inclusive Constraint and Max Exclusive Constraint

properties together for the same simple type.

Exclusive Constraints

 Property Type Meaning

Min Integer The Min property is used to specify the minimum value for which the data in

the message must be greater than.

When this value is set it cannot be equal to or greater than the Max Inclusive

Constraint property.

You cannot specify both Min Inclusive Constraint and Min Exclusive Constraint

properties together for the same simple type.

Max Integer The Max property is used to specify the maximum value for which the data in

the message must be less than.

When this value is set it cannot be equal to or less than the Min Inclusive

Constraint property.

You cannot specify both Max Inclusive Constraint and Max Exclusive Constraint

properties together for the same simple type.

 Property Type Meaning

Fraction Digits Integer Set this property to limit the number of digits in the fraction part of a numerical

value to the number of digits specified in this property.

The value must be greater than or equal to 0 and less than 2147483648.

The value set for Fraction Digits cannot be greater than the value specified for

Total Digits.

586 Message Models

Property Type Meaning

Total Digits Integer Set this property to set the maximum number of digits in a numerical value to

the number of digits specified in this property.

The value must be greater than or equal to 0 and less than 2147483648.

The value set for Total Digits cannot be less than the value specified for Fraction

Digits.

 Property Type Meaning

White Space Enumerated

type

The White Space controls the processing of white space characters received for

this type.

The value of White Space must be one of;

v preserve. If you set the property to preserve, all white space characters

including carriage return, line feed and tab are preserved.

v replace. If you set the property to replace, all carriage return, line feed and

tab characters are replaced with a space character.

v collapse. If you set the property to collapse, all carriage return, line feed and

tab characters are replaced with a space character. Any adjacent white space

characters are then collapsed to a single space character and any leading or

trailing spaces are stripped from the data.

Enumerations

 Property Type Meaning

Enumerations String Enumerations constrain the values to the list that is specified in this property. For

example, you might create a simple type called RainbowColors, and add Red,

Orange, Yellow, Green, Blue, Indigo, and Violet to the enumerations list.

You need to ensure that you have all variations of the data that you are likely to

receive in the message defined in the list. For example, Yellow, yellow, yel, y

might be variations of a single color.

Select Add to add a default enumeration. Overtype the default with the data

you require.

If you need to change an entry, select the entry, then click on the entry a second

time (as distinct from double-click). The selected entry can then be updated.

Patterns

 Property Type Meaning

Patterns String Patterns are a regular expression or a series of regular expressions used to

constrain the data within the simple type. For further information about patterns

and their syntax see “Using regular expressions to parse data elements” on page

757.

Select Add to add a default pattern. Overtype the default with the data you

require.

If you need to change an entry, select the entry, then click on the entry a second

time (as distinct from double-click). The selected entry can then be updated.

Logical properties for value constraints for simple type float types:

Message model reference information 587

The simple type value constraint properties described here apply to:

v Objects: Simple types

v Float schema types: double, float

Inclusive Constraints

 Property Type Meaning

Min Integer The Min property is used to specify the minimum value for which the data in

the message must be greater than or equal to.

When this value is set it cannot be equal to or greater than the Max Inclusive

Constraint property.

You cannot specify both Min Inclusive Constraint and Min Exclusive Constraint

properties together for the same simple type.

Max Integer The Max property is used to specify the maximum value for which the data in

the message must be less than or equal to.

When this value is set it cannot be equal to or less than the Min Inclusive

Constraint property.

You cannot specify both Max Inclusive Constraint and Max Exclusive Constraint

properties together for the same simple type.

Exclusive Constraints

 Property Type Meaning

Min Integer The Min property is used to specify the minimum value for which the data in

the message must be greater than.

When this value is set it cannot be equal to or greater than the Max Inclusive

Constraint property.

You cannot specify both Min Inclusive Constraint and Min Exclusive Constraint

properties together for the same simple type.

Max Integer The Max property is used to specify the maximum value for which the data in

the message must be less than.

When this value is set it cannot be equal to or less than the Min Inclusive

Constraint property.

You cannot specify both Max Inclusive Constraint and Max Exclusive Constraint

properties together for the same simple type.

588 Message Models

Property Type Meaning

White Space Enumerated

type

The White Space controls the processing of white space characters received for

this type.

The value of White Space must be one of;

v preserve. If you set the property to preserve, all white space characters

including carriage return, line feed and tab are preserved.

v replace. If you set the property to replace, all carriage return, line feed and

tab characters are replaced with a space character.

v collapse. If you set the property to collapse, all carriage return, line feed and

tab characters are replaced with a space character. Any adjacent white space

characters are then collapsed to a single space character and any leading or

trailing spaces are stripped from the data.

Enumerations

 Property Type Meaning

Enumerations String Enumerations constrain the values to the list that is specified in this property. For

example, you might create a simple type called RainbowColors, and add Red,

Orange, Yellow, Green, Blue, Indigo, and Violet to the enumerations list.

You need to ensure that you have all variations of the data that you are likely to

receive in the message defined in the list. For example, Yellow, yellow, yel, y

might be variations of a single color.

Select Add to add a default enumeration. Overtype the default with the data

you require.

If you need to change an entry, select the entry, then click on the entry a second

time (as distinct from double-click). The selected entry can then be updated.

Patterns

 Property Type Meaning

Patterns String Patterns are a regular expression or a series of regular expressions used to

constrain the data within the simple type. For further information about patterns

and their syntax see “Using regular expressions to parse data elements” on page

757.

Select Add to add a default pattern. Overtype the default with the data you

require.

If you need to change an entry, select the entry, then click on the entry a second

time (as distinct from double-click). The selected entry can then be updated.

Logical properties for value constraints for simple type integer types:

The simple type value constraint properties described here apply to:

v Objects: Simple types

v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Message model reference information 589

Inclusive Constraints

 Property Type Meaning

Min Integer The Min property is used to specify the minimum value for which the data in

the message must be greater than or equal to.

When this value is set it cannot be equal to or greater than the Max Inclusive

Constraint property.

You cannot specify both Min Inclusive Constraint and Min Exclusive Constraint

properties together for the same simple type.

Max Integer The Max property is used to specify the maximum value for which the data in

the message must be less than or equal to.

When this value is set it cannot be equal to or less than the Min Inclusive

Constraint property.

You cannot specify both Max Inclusive Constraint and Max Exclusive Constraint

properties together for the same simple type.

Exclusive Constraints

 Property Type Meaning

Min Integer The Min property is used to specify the minimum value for which the data in

the message must be greater than.

When this value is set it cannot be equal to or greater than the Max Inclusive

Constraint property.

You cannot specify both Min Inclusive Constraint and Min Exclusive Constraint

properties together for the same simple type.

Max Integer The Max property is used to specify the maximum value for which the data in

the message must be less than.

When this value is set it cannot be equal to or less than the Min Inclusive

Constraint property.

You cannot specify both Max Inclusive Constraint and Max Exclusive Constraint

properties together for the same simple type.

 Property Type Meaning

Fraction Digits Integer Set this property to limit the number of digits in the fraction part of a numerical

value to the number of digits specified in this property.

The value must be greater than or equal to 0 and less than 2147483648.

The value set for Fraction Digits cannot be greater than the value specified for

Total Digits.

 Property Type Meaning

Total Digits Integer Set this property to set the maximum number of digits in a numerical value to

the number of digits specified in this property.

The value must be greater than or equal to 0 and less than 2147483648.

The value set for Total Digits cannot be less than the value specified for Fraction

Digits.

590 Message Models

Property Type Meaning

White Space Enumerated

type

The White Space controls the processing of white space characters received for

this type.

The value of White Space must be one of;

v preserve. If you set the property to preserve, all white space characters

including carriage return, line feed and tab are preserved.

v replace. If you set the property to replace, all carriage return, line feed and

tab characters are replaced with a space character.

v collapse. If you set the property to collapse, all carriage return, line feed and

tab characters are replaced with a space character. Any adjacent white space

characters are then collapsed to a single space character and any leading or

trailing spaces are stripped from the data.

Enumerations

 Property Type Meaning

Enumerations String Enumerations constrain the values to the list that is specified in this property. For

example, you might create a simple type called RainbowColors, and add Red,

Orange, Yellow, Green, Blue, Indigo, and Violet to the enumerations list.

You need to ensure that you have all variations of the data that you are likely to

receive in the message defined in the list. For example, Yellow, yellow, yel, y

might be variations of a single color.

Select Add to add a default enumeration. Overtype the default with the data

you require.

If you need to change an entry, select the entry, then click on the entry a second

time (as distinct from double-click). The selected entry can then be updated.

Patterns

 Property Type Meaning

Patterns String Patterns are a regular expression or a series of regular expressions used to

constrain the data within the simple type. For further information about patterns

and their syntax see “Using regular expressions to parse data elements” on page

757.

Select Add to add a default pattern. Overtype the default with the data you

require.

If you need to change an entry, select the entry, then click on the entry a second

time (as distinct from double-click). The selected entry can then be updated.

Logical properties for value constraints for simple type interval types:

The simple type value constraint properties described here apply to:

v Objects: Simple types

v Interval schema types: duration

Message model reference information 591

Inclusive Constraints

 Property Type Meaning

Min Integer The Min property is used to specify the minimum value for which the data in

the message must be greater than or equal to.

When this value is set it cannot be equal to or greater than the Max Inclusive

Constraint property.

You cannot specify both Min Inclusive Constraint and Min Exclusive Constraint

properties together for the same simple type.

Max Integer The Max property is used to specify the maximum value for which the data in

the message must be less than or equal to.

When this value is set it cannot be equal to or less than the Min Inclusive

Constraint property.

You cannot specify both Max Inclusive Constraint and Max Exclusive Constraint

properties together for the same simple type.

Exclusive Constraints

 Property Type Meaning

Min Integer The Min property is used to specify the minimum value for which the data in

the message must be greater than.

When this value is set it cannot be equal to or greater than the Max Inclusive

Constraint property.

You cannot specify both Min Inclusive Constraint and Min Exclusive Constraint

properties together for the same simple type.

Max Integer The Max property is used to specify the maximum value for which the data in

the message must be less than.

When this value is set it cannot be equal to or less than the Min Inclusive

Constraint property.

You cannot specify both Max Inclusive Constraint and Max Exclusive Constraint

properties together for the same simple type.

 Property Type Meaning

White Space Enumerated

type

The White Space controls the processing of white space characters received for

this type.

The value of White Space must be one of;

v preserve. If you set the property to preserve, all white space characters

including carriage return, line feed and tab are preserved.

v replace. If you set the property to replace, all carriage return, line feed and

tab characters are replaced with a space character.

v collapse. If you set the property to collapse, all carriage return, line feed and

tab characters are replaced with a space character. Any adjacent white space

characters are then collapsed to a single space character and any leading or

trailing spaces are stripped from the data.

592 Message Models

Enumerations

 Property Type Meaning

Enumerations String Enumerations constrain the values to the list that is specified in this property. For

example, you might create a simple type called RainbowColors, and add Red,

Orange, Yellow, Green, Blue, Indigo, and Violet to the enumerations list.

You need to ensure that you have all variations of the data that you are likely to

receive in the message defined in the list. For example, Yellow, yellow, yel, y

might be variations of a single color.

Select Add to add a default enumeration. Overtype the default with the data

you require.

If you need to change an entry, select the entry, then click on the entry a second

time (as distinct from double-click). The selected entry can then be updated.

Patterns

 Property Type Meaning

Patterns String Patterns are a regular expression or a series of regular expressions used to

constrain the data within the simple type. For further information about patterns

and their syntax see “Using regular expressions to parse data elements” on page

757.

Select Add to add a default pattern. Overtype the default with the data you

require.

If you need to change an entry, select the entry, then click on the entry a second

time (as distinct from double-click). The selected entry can then be updated.

Logical properties for value constraints for simple type string types:

The simple type value constraint properties described here apply to:

v Objects: Simple types

v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Length constraints

 Property Type Meaning

Length Integer The length property is used to specify the exact length of the simple type in

bytes or characters.

The value must be greater than 0 and less than 2147483648.

Min Integer The Min property is used to specify the minimum length of the simple type in

bytes or characters.

The value must be greater than 0 and less than 2147483648.

Max Integer The Max property is used to specify the maximum length of the simple type in

bytes or characters.

The value must be greater than 0 and less than 2147483648.

Message model reference information 593

Property Type Meaning

White Space Enumerated

type

The White Space controls the processing of white space characters received for

this type.

The value of White Space must be one of;

v preserve. If you set the property to preserve, all white space characters

including carriage return, line feed and tab are preserved.

v replace. If you set the property to replace, all carriage return, line feed and

tab characters are replaced with a space character.

v collapse. If you set the property to collapse, all carriage return, line feed and

tab characters are replaced with a space character. Any adjacent white space

characters are then collapsed to a single space character and any leading or

trailing spaces are stripped from the data.

Enumerations

 Property Type Meaning

Enumerations String Enumerations constrain the values to the list that is specified in this property. For

example, you might create a simple type called RainbowColors, and add Red,

Orange, Yellow, Green, Blue, Indigo, and Violet to the enumerations list.

You need to ensure that you have all variations of the data that you are likely to

receive in the message defined in the list. For example, Yellow, yellow, yel, y

might be variations of a single color.

Select Add to add a default enumeration. Overtype the default with the data

you require.

If you need to change an entry, select the entry, then click on the entry a second

time (as distinct from double-click). The selected entry can then be updated.

Patterns

 Property Type Meaning

Patterns String Patterns are a regular expression or a series of regular expressions used to

constrain the data within the simple type. For further information about patterns

and their syntax see “Using regular expressions to parse data elements” on page

757.

Select Add to add a default pattern. Overtype the default with the data you

require.

If you need to change an entry, select the entry, then click on the entry a second

time (as distinct from double-click). The selected entry can then be updated.

Simple type CWF properties:

There are no properties to show.

Simple type XML properties:

There are no properties to show.

Simple type TDS properties:

There are no properties to show.

594 Message Models

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the

understanding of the function of that object. The documentation property is

available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric

characters.

Unique properties

A unique can have the following properties;

v “Unique logical properties” on page 212

v “Unique CWF properties” on page 220

v “Unique XML properties” on page 229

v “Unique TDS properties” on page 244

v “Documentation properties for all message set objects” on page 183

Unique logical properties:

There are no properties to show.

Unique CWF properties:

There are no properties to show.

Unique XML properties:

There are no properties to show.

Unique TDS properties:

There are no properties to show.

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the

understanding of the function of that object. The documentation property is

available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric

characters.

Wildcard attribute properties

A wildcard attribute can have the following properties;

v “Wildcard attribute logical properties” on page 212

v “Wildcard attribute CWF properties” on page 220

v “Wildcard attribute XML properties” on page 229

v “Wildcard attribute TDS properties” on page 245

v “Documentation properties for all message set objects” on page 183

Wildcard attribute logical properties:

Message model reference information 595

Property Type Meaning

Namespace String Namespaces are a simple method for qualifying element and attribute names by

associating them with namespaces identified by URI references.

This field is initially blank.

 Property Type Meaning

Process Content Enumerated

type

If a message contains an attribute that corresponds to a wildcard in the message

model, Process Content defines how the attribute is validated.

Select from;

v strict. The parser can only match against attributes declared in the specified

namespace.

v lax. The parser attempts to match against attributes declared in any accessible

namespace. If the specified namespace cannot be found, an error is not

generated.

v skip. If you select skip the parser does not perform any validation on the

attribute.

Wildcard attribute CWF properties:

There are no properties to show.

Wildcard attribute XML properties:

There are no properties to show.

Wildcard attribute TDS properties:

There are no properties to show.

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the

understanding of the function of that object. The documentation property is

available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric

characters.

Wildcard element properties

A wildcard element can have the following properties;

v “Wildcard element logical properties” on page 213

v “Wildcard element CWF properties” on page 220

v “Wildcard element XML properties” on page 229

v “Wildcard element TDS properties” on page 245

v “Documentation properties for all message set objects” on page 183

Wildcard element logical properties:

596 Message Models

Property Type Meaning

Namespace String Namespaces are a simple method for qualifying element and attribute names by

associating them with namespaces identified by URI references.

This field is initially blank.

 Property Type Meaning

Process Content Enumerated

type

If a message contains an element that corresponds to a wildcard in the message

model, Process Content defines how the element is validated.

Select from;

v strict. The parser can only match against elements declared in the specified

namespace.

v lax. The parser attempts to match against elements declared in any accessible

namespace. If the specified namespace cannot be found, an error is not

generated.

v skip. If you select skip the parser does not perform any validation on the

element.

Occurrences

 Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default is

1.

If the value is set to 0, then the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,

it must be less than or equal to the value in Max Occurs.

This property is ignored by brokers that are earlier than WebSphere Message

Broker Version 6.0.

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default is

1.

If this property is not set, then the object can not occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the

message.

It can also be set to -1 to indicate that the limit is unbounded and there is no

maximum to the number of occurrences.

This property is ignored by brokers that are earlier than WebSphere Message

Broker Version 6.0.

Wildcard element CWF properties:

There are no properties to show.

Wildcard element XML properties:

There are no properties to show.

Wildcard element TDS properties:

Message model reference information 597

There are no properties to show.

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the

understanding of the function of that object. The documentation property is

available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric

characters.

Deprecated message model object properties

Some objects in the message model are deprecated, but you can reference the

information for their properties.

You can access the reference information for the properties of deprecated message

model objects in two ways. The following topics allow you to access the property

information by property kind:

v “Logical properties for deprecated message model objects”

v “Physical properties for deprecated message model objects” on page 602

v “Documentation properties for all message set objects” on page 183

Alternatively, you can access the property information by object, starting from the

following topic:

v “Deprecated message model object properties by object” on page 605

Logical properties for deprecated message model objects

Logical property information is available for the following deprecated objects:

v “Compound element logical properties”

v “Embedded simple type logical properties” on page 601

Compound element logical properties

 Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters

A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a

number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the

XML standards specification.

Further details of naming conventions and allowable characters can be found in

the Extensible Markup Language (XML) specification that can be found on the

World Wide Web Consortium (W3C) Web site.

598 Message Models

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Property Type Meaning

Namespace Enumerated

type

Namespaces are a simple method for qualifying element and attribute names by

associating them with namespaces identified by URI references.

If <no target namespace> is displayed, a namespace has not been set for this

object.

If the property is inactive, the message set has not been configured to support

namespaces.

Where the property is active, namespaces that are available for selection are

displayed in the drop-down list.

Nillable Check box Select this if you want the element to be able to be defined as null. This is

distinct from being empty where there is no data in the element.

Abstract Check box Select this if you do not want the element to appear in the message, but require

one of the members of its substitution group to appear in its place.

Value

 Property Type Meaning

Default Button and

String

This property provides the default value for an element or attribute.

XMLNSC domain

When parsing with validation enabled, default values are applied to

missing attributes and empty elements as required by the XML Schema

1.0 specification. When writing, elements or attributes that are missing

from the message tree are not automatically added to the output XML

bit stream, even if they have default values. If this is required, the

message tree can be serialized and then re-parsed with validation

enabled.

MRM (CWF and TDS physical formats)

When writing a fixed-length portion of a message (CWF or fixed-length

TDS), if an attribute or element is missing from the message tree, the

default value is inserted into the bit stream so that the message

structure is preserved.

MRM (XML physical format)

No support for default values

Other domains

No support for default values.

Message model reference information 599

Property Type Meaning

Fixed Button and

String

This property provides the fixed value for an element or attribute.

XMLNSC domain

When parsing with validation enabled, if an attribute or element is

present, the value is validated against the fixed value. If the values are

not equal, a validation error is signalled. Also, when parsing with

validation enabled, fixed values are applied to missing attributes and

empty elements as required by the XML Schema 1.0 specification. When

writing, elements or attributes that are missing from the message tree

are not automatically added to the output XML bit stream, even if a

fixed value has been specified. If this is required, the message tree can

be serialized and then re-parsed with validation enabled.

MRM (CWF and TDS physical formats)

When writing a fixed-length portion of a message (CWF or fixed-length

TDS), if an attribute or element is missing from the message tree, the

fixed value is inserted into the bit stream so that the message structure

is preserved.

MRM (XML physical format)

No support for fixed values

Other domains

No support for fixed values.

Interpret Value

As

Enumerated

type

Specify if values stored within this object must be interpreted as having

significance for the parser and, if so, the type of interpretation that must occur.

The possible values for this property are:

v None This is the default value and indicates that the element or attribute does

not have any key value associated with it.

v MessageSetIdentity. Specifies that the value of the element or attribute

corresponds to the identifier, name or alias (in that priority order) that is

associated with the message set where all subsequent embedded messages

that are descendents of the enclosing message are defined. This value remains

in force unless a new element or attribute MessageSetIdentity field is

encountered which resets the MessageSetIdentity value to this new one.

v MessageIdentity. Specifies that the value of the element or attribute

corresponds to the name or alias (in that priority order) that is associated with

a message and acts as an identifier for subsequent embedded messages which

are the immediate children of the enclosing message. This identity applies

until a new element or attribute MessageIdentity field is encountered at the

same level in the tree. The embedded message may be defined in either the

current message set or in a message set identified using a MessageSetIdentity.

Note: This property is only applicable when the type of the object is derived

from xsd:string.

Occurrences

 Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default is

1.

If the value is set to 0, then the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,

it must be less than or equal to the value in Max Occurs.

600 Message Models

Property Type Meaning

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default is

1.

If this property is not set, then the object can not occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the

message.

It can also be set to -1 to indicate that the limit is unbounded and there is no

maximum to the number of occurrences.

Compound element complex type logical properties:

 Only the complex type properties shown in the tables below are applicable to

compound elements.

 Property Type Meaning

Name String This property is set to **ANONYMOUS** and cannot be changed.

Content:

 Property Type Meaning

Group

Reference

Button This radio button is already selected and cannot be changed.

Group Name Enumerated

type

The Group Name is the name of the group that this complex type is referring to.

The groups available to be referenced can be selected from the drop down list.

Compound element value constraint properties:

The properties for compound element value constraints are identical to simple type

value constraints. See “Simple type logical value constraints” on page 212 for

details.

Embedded simple type logical properties

Occurrences

 Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default is

1.

If the value is set to 0, then the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,

it must be less than or equal to the value in Max Occurs.

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default is

1.

If this property is not set, then the object can not occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the

message.

It can also be set to -1 to indicate that the limit is unbounded and there is no

maximum to the number of occurrences.

Message model reference information 601

Physical properties for deprecated message model objects

Property information is available for deprecated objects within:

v “Custom Wire Format properties for deprecated message model objects”

v “XML wire format physical properties for deprecated message model objects” on

page 603

v “TDS format physical properties for deprecated objects” on page 604

Custom Wire Format properties for deprecated message model

objects

Custom wire format physical property information is available for the following

deprecated objects:

v “Compound element CWF properties”

v “Embedded simple type CWF properties”

Compound element CWF properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - ComIbmMrm

 _BaseValueBinary

Boolean types

 - ComIbmMrm

 _BaseValueBoolean

DateTime types

 - ComIbmMrm

 _BaseValueDateTime

Decimal types

 - ComIbmMrm

 _BaseValueDecimal

Float types

 - ComIbmMrm

 _BaseValueFloat

Integer types

 - ComIbmMrm

 _BaseValueInt

String types

 - ComIbmMrm

 _BaseValueString

`

Compound element complex type CWF properties:

There are no properties to show.

Embedded simple type CWF properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

602 Message Models

Binary types

 - ComIbmMrm

 _AnonBinary

Boolean types

 - ComIbmMrm

 _AnonBoolean

DateTime types

 - ComIbmMrm

 _AnonDate

 - ComIbmMrm

 _AnonDateTime

 - ComIbmMrm

 _AnonGDay

 - ComIbmMrm

 _AnonGMonth

 - ComIbmMrm

 _AnonGMonthDay

 - ComIbmMrm

 _AnonGYear

 - ComIbmMrm

 _AnonGYearMonth

 - ComIbmMrm

 _AnonTime

Decimal types

 - ComIbmMrm

 _AnonDecimal

Float types

 - ComIbmMrm

 _AnonFloat

Integer types

 - ComIbmMrm

 _AnonInt

String types

 - ComIbmMrm

 _AnonString

XML wire format physical properties for deprecated message

model objects

XML wire format physical property information is available for the following

deprecated objects:

v “Compound element XML properties”

v “Embedded simple type XML properties”

Compound element XML properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - ComIbmMrm

 _BaseValueBinary

Boolean types

 - ComIbmMrm

 _BaseValueBoolean

DateTime types

 - ComIbmMrm

 _BaseValueDateTime

Decimal types

 - ComIbmMrm

 _BaseValueDecimal

Float types

 - ComIbmMrm

 _BaseValueFloat

Integer types

 - ComIbmMrm

 _BaseValueInt

String types

 - ComIbmMrm

 _BaseValueString

Compound element complex type XML properties:

There are no properties to show.

Embedded simple type XML properties:

Message model reference information 603

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - ComIbmMrm

 _AnonBinary

Boolean types

 - ComIbmMrm

 _AnonBoolean

DateTime types

 - ComIbmMrm

 _AnonDate

 - ComIbmMrm

 _AnonDateTime

 - ComIbmMrm

 _AnonGDay

 - ComIbmMrm

 _AnonGMonth

 - ComIbmMrm

 _AnonGMonthDay

 - ComIbmMrm

 _AnonGYear

 - ComIbmMrm

 _AnonGYearMonth

 - ComIbmMrm

 _AnonTime

Decimal types

 - ComIbmMrm

 _AnonDecimal

Float types

 - ComIbmMrm

 _AnonFloat

Integer types

 - ComIbmMrm

 _AnonInt

String types

 - ComIbmMrm

 _AnonString

TDS format physical properties for deprecated objects

TDS format physical property information is available for the following deprecated

objects:

v “Compound element TDS properties”

v “Embedded simple type TDS properties” on page 605

Compound element TDS properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - ComIbmMrm

 _BaseValueBinary

Boolean types

 - ComIbmMrm

 _BaseValueBoolean

DateTime types

 - ComIbmMrm

 _BaseValueDateTime

Decimal types

 - ComIbmMrm

 _BaseValueDecimal

Float types

 - ComIbmMrm

 _BaseValueFloat

Integer types

 - ComIbmMrm

 _BaseValueInt

String types

 - ComIbmMrm

 _BaseValueString

Compound element complex type TDS properties:

604 Message Models

The TDS properties for compound element complex types are identical to the TDS

properties for normal complex types. See “Complex type TDS properties” on page

230 for details.

Embedded simple type TDS properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - ComIbmMrm

 _AnonBinary

Boolean types

 - ComIbmMrm

 _AnonBoolean

DateTime types

 - ComIbmMrm

 _AnonDate

 - ComIbmMrm

 _AnonDateTime

 - ComIbmMrm

 _AnonGDay

 - ComIbmMrm

 _AnonGMonth

 - ComIbmMrm

 _AnonGMonthDay

 - ComIbmMrm

 _AnonGYear

 - ComIbmMrm

 _AnonGYearMonth

 - ComIbmMrm

 _AnonTime

Decimal types

 - ComIbmMrm

 _AnonDecimal

Float types

 - ComIbmMrm

 _AnonFloat

Integer types

 - ComIbmMrm

 _AnonInt

String types

 - ComIbmMrm

 _AnonString

Documentation properties for all message set objects

Use the documentation property of an object to add information to enhance the

understanding of the function of that object. The documentation property is

available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric

characters.

Deprecated message model object properties by object

The following deprecated objects have properties that can be viewed or set:

v “Compound element properties”

v “Embedded simple type properties” on page 673

Compound element properties

A compound element can have the following properties;

v “Compound element logical properties” on page 598

v “Compound element CWF properties” on page 602

v “Compound element XML properties” on page 603

Message model reference information 605

v “Compound element TDS properties” on page 604

v “Documentation properties for all message set objects” on page 183

Compound element logical properties:

 Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters

A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a

number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the

XML standards specification.

Further details of naming conventions and allowable characters can be found in

the Extensible Markup Language (XML) specification that can be found on the

World Wide Web Consortium (W3C) Web site.

Namespace Enumerated

type

Namespaces are a simple method for qualifying element and attribute names by

associating them with namespaces identified by URI references.

If <no target namespace> is displayed, a namespace has not been set for this

object.

If the property is inactive, the message set has not been configured to support

namespaces.

Where the property is active, namespaces that are available for selection are

displayed in the drop-down list.

Nillable Check box Select this if you want the element to be able to be defined as null. This is

distinct from being empty where there is no data in the element.

Abstract Check box Select this if you do not want the element to appear in the message, but require

one of the members of its substitution group to appear in its place.

606 Message Models

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Value

 Property Type Meaning

Default Button and

String

This property provides the default value for an element or attribute.

XMLNSC domain

When parsing with validation enabled, default values are applied to

missing attributes and empty elements as required by the XML Schema

1.0 specification. When writing, elements or attributes that are missing

from the message tree are not automatically added to the output XML

bit stream, even if they have default values. If this is required, the

message tree can be serialized and then re-parsed with validation

enabled.

MRM (CWF and TDS physical formats)

When writing a fixed-length portion of a message (CWF or fixed-length

TDS), if an attribute or element is missing from the message tree, the

default value is inserted into the bit stream so that the message

structure is preserved.

MRM (XML physical format)

No support for default values

Other domains

No support for default values.

Fixed Button and

String

This property provides the fixed value for an element or attribute.

XMLNSC domain

When parsing with validation enabled, if an attribute or element is

present, the value is validated against the fixed value. If the values are

not equal, a validation error is signalled. Also, when parsing with

validation enabled, fixed values are applied to missing attributes and

empty elements as required by the XML Schema 1.0 specification. When

writing, elements or attributes that are missing from the message tree

are not automatically added to the output XML bit stream, even if a

fixed value has been specified. If this is required, the message tree can

be serialized and then re-parsed with validation enabled.

MRM (CWF and TDS physical formats)

When writing a fixed-length portion of a message (CWF or fixed-length

TDS), if an attribute or element is missing from the message tree, the

fixed value is inserted into the bit stream so that the message structure

is preserved.

MRM (XML physical format)

No support for fixed values

Other domains

No support for fixed values.

Message model reference information 607

Property Type Meaning

Interpret Value

As

Enumerated

type

Specify if values stored within this object must be interpreted as having

significance for the parser and, if so, the type of interpretation that must occur.

The possible values for this property are:

v None This is the default value and indicates that the element or attribute does

not have any key value associated with it.

v MessageSetIdentity. Specifies that the value of the element or attribute

corresponds to the identifier, name or alias (in that priority order) that is

associated with the message set where all subsequent embedded messages

that are descendents of the enclosing message are defined. This value remains

in force unless a new element or attribute MessageSetIdentity field is

encountered which resets the MessageSetIdentity value to this new one.

v MessageIdentity. Specifies that the value of the element or attribute

corresponds to the name or alias (in that priority order) that is associated with

a message and acts as an identifier for subsequent embedded messages which

are the immediate children of the enclosing message. This identity applies

until a new element or attribute MessageIdentity field is encountered at the

same level in the tree. The embedded message may be defined in either the

current message set or in a message set identified using a MessageSetIdentity.

Note: This property is only applicable when the type of the object is derived

from xsd:string.

Occurrences

 Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default is

1.

If the value is set to 0, then the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,

it must be less than or equal to the value in Max Occurs.

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default is

1.

If this property is not set, then the object can not occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the

message.

It can also be set to -1 to indicate that the limit is unbounded and there is no

maximum to the number of occurrences.

Compound element value constraint properties:

The properties for compound element value constraints are identical to simple type

value constraints. See “Simple type logical value constraints” on page 212 for

details.

Compound element CWF properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

608 Message Models

Binary types

 - ComIbmMrm

 _BaseValueBinary

Boolean types

 - ComIbmMrm

 _BaseValueBoolean

DateTime types

 - ComIbmMrm

 _BaseValueDateTime

Decimal types

 - ComIbmMrm

 _BaseValueDecimal

Float types

 - ComIbmMrm

 _BaseValueFloat

Integer types

 - ComIbmMrm

 _BaseValueInt

String types

 - ComIbmMrm

 _BaseValueString

`

CWF properties for compound element binary types:

The Custom Wire Format properties described here apply to:

v Objects: Compound elements

Physical representation

 Property Type Meaning

Length Button and

Integer

If you have selected the length to be defined by Length, enter the number of

length units for the element.

The minimum value that you can specify is 1.

The maximum value that you can specify is 2147483647.

The default value is empty (not set).

Length

Reference

Button and

Enumerated

type

If you have selected the length to be defined by Length Reference, select the name

of the integer object that specifies the length of this object. Make your selection

from the displayed list of integer objects that are defined as siblings of the

current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page

108.

Message model reference information 609

Property Type Meaning

Length Units Enumerated

type

Select the unit of length for the element or attribute. Select one of the following

options from the displayed list (some physical types do not offer all of these

options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads

one character at a time and determines whether the character comprises

one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is

determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to

Characters.

– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest

character unit that the code page supports. However, this means that a

message must contain only these characters if it is to be processed correctly.

For example, in code page ″UTF-8″ (CCSID 1208), the minimum character

unit is one byte; therefore, the parser can make a single read (of the

number of bytes specified by the Length property) to fetch the entire

message. The message must contain only characters that are encoded in

1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count or Length

Reference property.

The default is Bytes.

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

610 Message Models

Property Type Meaning

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

 Property Type Meaning

Repeat

Reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the displayed list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

CWF properties for compound element Boolean types:

The Custom Wire Format properties described here apply to:

v Objects: Compound elements

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Message model reference information 611

Occurrences

 Property Type Meaning

Repeat

Reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the displayed list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

CWF properties for compound element dateTime types:

The Custom Wire Format properties described here apply to:

v Objects: Compound elements

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select one of the following from the displayed list:

v Fixed Length String. The element’s length is determined by other length

properties below.

v Length Encoded String 1. The element’s first byte contains the length of the

string following the length byte in length units. The maximum length of a

Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The element’s first two bytes contain the length of

the string following the 2 length bytes in length units. The maximum length

of a Length Encoded String 2 element is 65535 length units. The two length

bytes are in the format of the WebSphere MQ queue manager Encoding.

v Null Terminated String. The string ends with the hexadecimal NULL

character, X’00’.

v Packed Decimal. The dateTime is coded as a Packed Decimal number. It is

valid only if the DateTime Format property represents numeric-only data.

v Binary. The dateTime is encoded as a binary sequence of bytes. If you select

this option, the range of symbols that you can specify for the Format String

property is less than the range of symbols you can specify if you select a

string option (see “DateTime formats” on page 763 for details).

v Time Seconds. This value supports C time_t and Java Date and Time objects. It

is valid only if the DateTime Format property represents numeric-only data.

v Time Milliseconds. This value supports C time_t and Java Date and Time

objects. It is valid only if the DateTime Format property represents

numeric-only data.

The default value is fixed length string.

DateTime

Format

String Specify a template for date and time.

The default dateTime format is dependent on the logical type of the object. For

information about the defaults for the dateTime format according to the logical

type see “DateTime defaults by logical type” on page 770.

See “DateTime formats” on page 763 for details of date and time formats.

612 Message Models

Property Type Meaning

Length Button and

Integer

If you have selected a Physical Type of Fixed Length String, Packed Decimal, or

Binary, and have selected the length to be defined by Length, enter the number

of length units for the element.

The minimum value that you can specify is 1 for all three physical types.

The maximum value that you can specify is 256 for Fixed Length String, 10 for

Packed Decimal, and 2147483647 for Binary.

The default value is 0 (zero).

Length

Reference

Button and

Enumerated

type

If you have selected the length to be defined by Length Reference, select the name

of the integer object that specifies the length of this object. Make your selection

from the displayed list of integer objects that are defined as siblings of the

current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page

108.

Length Units Enumerated

type

Select the unit of length for the element or attribute. Select one of the following

options from the displayed list (some physical types do not offer all of these

options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads

one character at a time and determines whether the character comprises

one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is

determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to

Characters.

– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest

character unit that the code page supports. However, this means that a

message must contain only these characters if it is to be processed correctly.

For example, in code page ″UTF-8″ (CCSID 1208), the minimum character

unit is one byte; therefore, the parser can make a single read (of the

number of bytes specified by the Length property) to fetch the entire

message. The message must contain only characters that are encoded in

1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count or Length

Reference property.

The default is Bytes.

Signed Check box Specify whether or not the value is signed.

This property is applicable only if the Physical type property is Packed Decimal.

By default, this check box is cleared, which indicates that the value is not signed.

Message model reference information 613

Property Type Meaning

Justification Enumerated

type

If you have set the Physical Type property to Fixed Length String, select Left

Justify (the default value) or Right Justify from the list. If you have selected

another value for Physical Type, this is property is inactive.

Padding

Character

String If you have set the Physical Type property to Fixed Length String, and the

Justification property is either Left Justify or Right Justify, this property is

applicable.

When writing an output message, use the padding character to fill out the

remaining character positions when the string length is less than the length

implied by the Length or Length Reference property. Whether the string is padded

from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end

of the string. Whether the string is trimmed from the left or the right is

governed by the Justification property.

Specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal

value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM

element depends on the padding character that is required and whether the

padding character is to be subject to data conversion. In most cases, the

specification of a padding character in quotqtion marks is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated. For example, when converting

from ASCII to the code page 500, if you have specified U+0008 as your padding

character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC

representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should

ensure that the converted value of the padding character is valid for this code

page. If the padding character cannot be represented in the target code page, it

is replaced by a substitution character. The substitution character is fixed and its

value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the

hexadecimal or decimal format can be used. This gives the option of specifying

an absolute value as a padding character that is inserted directly into the output

message. If this format is used, you should still aim to ensure that this value is

valid for the code page of any output messages that are created using these

MRM definitions.

614 Message Models

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the displayed list. The option that you

select determines the value that you must set for the property Encoding Null

Value:

v NULLPadFill. This is valid only if Physical Type is Fixed Length String. The

field is filled with the value specified by the Padding Character. This is the

default value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an

actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that

is directly substituted as if it is a string. Use this option when the value you

have set for Encoding Null Value to specify a null date is not a dateTime value,

or does not conform to the standard dateTime format yyyy-MM-dd ’T’HH:mm:ss.

v NULLLiteralFill. The field is filled with the value specified by the Encoding

Null Value. Encoding Null Value must resolve to a single character.

Encoding Null

Value

String If you set the Encoding Null property to NULLPadFill, this property is disabled

(grayed out).

If you set the Encoding Null property to NULLLogicalValue, you must set this

property to an ISO8601 dateTime format. These formats are described in

“DateTime as string data” on page 763. For example, specify a value conforming

to yyyy-MM-dd’T’HH:mm:ss such as 1970-12-01.

If you set the Encoding Null property to NULLLiteralValue, you can enter any

value that is the same length as the field.

If you set the Encoding Null property to NULLLiteralFill, the value must resolve

to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY where YY is a

hexadecimal value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal format.

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Message model reference information 615

Property Type Meaning

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

 Property Type Meaning

Repeat

Reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the displayed list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

CWF properties for compound element decimal types:

The Custom Wire Format properties described here apply to:

v Objects: Compound elements

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select one of the following from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. This equates to the COMP-3 data type in COBOL.

v External Decimal. This equates to the data type PIC 9 USAGE DISPLAY in

COBOL.

The representation of numeric elements can be affected by the Encoding and

CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer and Packed Decimal are

represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in

the WebSphere MQ CodedCharSetId value.

616 Message Models

Property Type Meaning

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the

displayed list.

v If you set the Physical Type to Packed Decimal, enter a value between 1 and 10.

v If you set the Physical Type to Extended Decimal, enter a value between 1 and

256. (Numbers greater than the maximum COBOL PICTURE clause of 18 are

assumed to be 18.)

Length Units Enumerated

type

Select the unit of length for the element or attribute. Select one of the following

options from the displayed list (some physical types do not offer all of these

options):

v Bytes.

v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads

one character at a time and determines whether the character comprises

one or more bytes.
v Character Units. This specifies that the size of each character (in bytes) is

determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to

Characters.

– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest

character unit that the code page supports. However, this means that a

message must contain only these characters if it is to be processed correctly.

For example, in code page ″UTF-8″ (CCSID 1208), the minimum character

unit is one byte; therefore, the parser can make a single read (of the

number of bytes specified by the Length property) to fetch the entire

message. The message must contain only characters that are encoded in

1-byte units.
v End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count.

The default is Bytes.

Signed Check box Select (the default) or clear this property. This property is used in conjunction

with Sign Orientation.

Sign EBCDIC

Custom

Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom

property is set, this indicates that the Sign EBCDIC Custom Overpunched

representation is to be used within an ASCII environment. If this check box is

not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate

only if the Sign Orientation property is set to Leading or Trailing (indicating that

the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,

if the Signed check box is not set).

Message model reference information 617

Property Type Meaning

Sign

Orientation

Enumerated

type

If you have set Physical Type to External Decimal and you have selected Signed,

choose from the following options that represent the COBOL options for

displaying numeric data:

v Leading Overpunched. This sets a bit in the first byte if the number is negative.

No setting is made if the number is positive. For example, the ASCII

hexadecimal representation of the number 22 is x’3232’. Using this option, the

number +22 would be x’3232’ and the number -22 would be x’7232’. This is

the default value.

v Leading Separate. This sets the first byte of the element to ’+’ if the number is

positive and to ’-’ if the number is negative. For this option, the length must

include the sign byte.

v Trailing Overpunched. This sets a bit in the last byte if the number is

negative. No setting is made if the number is positive. Using this option, the

number +22 would be x’3232’ and the number -22 would be x’3272’.

v Trailing Separate. This sets the last byte of the element to ’+’ if the number

is positive and to ’-’ if the number is negative. For this option, the length must

include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set

for you.

Virtual Decimal

Point

Integer Specify the number of places to the left (for a positive value) or right (for a

negative value) that a decimal point should be moved from its assumed position.

For example, a decimal element containing 1234 with a Virtual Decimal value of

3 is 1.234. This is equivalent to ’V’ or ’P’ in a COBOL picture clause. There is no

C equivalent

Justification Enumerated

type

If you have set the Physical Type property to External Decimal, select Left

Justify or Right Justify (the default value) from the list. If you have selected

another value for Physical Type, this is property is inactive.

618 Message Models

Property Type Meaning

Padding

Character

String The padding character is used to fill out the remaining character positions when

the string length is less than the specified string size. If you have set the Physical

Type property to Extended Decimal, and the Justification property is either Left

Justify or Right Justify, specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal

value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM

element depends on the padding character that is required and whether the

padding character is to be subject to data conversion. In most cases, the

specification of a padding character in quotqtion marks is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated. For example, when converting

from ASCII to the code page 500, if you have specified U+0008 as your padding

character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC

representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should

ensure that the converted value of the padding character is valid for this code

page. If the padding character cannot be represented in the target code page, it

is replaced by a substitution character. The substitution character is fixed and its

value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the

hexadecimal or decimal format can be used. This gives the option of specifying

an absolute value as a padding character that is inserted directly into the output

message. If this format is used, you should still aim to ensure that this value is

valid for the code page of any output messages that are created using these

MRM definitions.

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the displayed list:

v NULLPadFill. This is valid only if Physical Type is External Decimal. The field

is filled with the value specified by the Padding Character. Encoding Null Value

must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the

required format for the field. This is the default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a

string. You can specify a nonnumeric value for Encoding Null Value.

v NULLLiteralFill. The field is filled with the value specified by the Encoding

Null Value. Encoding Null Value must resolve to a single character.

Message model reference information 619

Property Type Meaning

Encoding Null

Value

String The use of this property depends on the Encoding Null property, described

above, with the exception of NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must resolve

to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is

any alphanumeric character.

v Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal

value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal format.

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

 Property Type Meaning

Repeat

Reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the displayed list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

620 Message Models

CWF properties for compound element float types:

The Custom Wire Format properties described here apply to:

v Objects: Compound elements

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select one of the following from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Float. This equates to the data type FLOAT or DOUBLE in C or the COMP-1

or COMP-2 data type in COBOL. This is the default value.

v Packed Decimal. This equates to the COMP-3 data type in COBOL.

v External Decimal. This equates to the data type PIC 9 USAGE DISPLAY in

COBOL.

The representation of numeric elements can be affected by the Encoding and

CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer, Packed Decimal, and Float are

represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in

the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Float, select a value from the displayed list. The

default value is 8.

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the

displayed list.

v If you set the Physical Type to Packed Decimal, enter a value between 1 and 10.

v If you set the Physical Type to Extended Decimal, enter a value between 1 and

256. (Numbers greater than the maximum COBOL PICTURE clause of 18 are

assumed to be 18.)

Message model reference information 621

Property Type Meaning

Length Units Enumerated

type

Select the unit of length for the element or attribute. Select one of the following

options from the displayed list (some physical types do not offer all of these

options):

v Bytes.

v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads

one character at a time and determines whether the character comprises

one or more bytes.
v Character Units. This specifies that the size of each character (in bytes) is

determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to

Characters.

– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest

character unit that the code page supports. However, this means that a

message must contain only these characters if it is to be processed correctly.

For example, in code page ″UTF-8″ (CCSID 1208), the minimum character

unit is one byte; therefore, the parser can make a single read (of the

number of bytes specified by the Length property) to fetch the entire

message. The message must contain only characters that are encoded in

1-byte units.
v End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count.

The default is Bytes.

Signed Check box Select or deselect (unsigned, the default) this property. If you have set Physical

Type to Float, this is selected. This property is used in conjunction with Sign

Orientation.

Sign EBCDIC

Custom

Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom

property is set, this indicates that the Sign EBCDIC Custom Overpunched

representation is to be used within an ASCII environment. If this check box is

not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate

only if the Sign Orientation property is set to Leading or Trailing (indicating that

the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,

if the Signed check box is not set).

622 Message Models

Property Type Meaning

Sign

Orientation

Enumerated

type

If you have set Physical Type to External Decimal and you have selected Signed,

choose from the following options that represent the COBOL options for

displaying numeric data:

v Leading Overpunched. This sets a bit in the first byte if the number is negative.

No setting is made if the number is positive. For example, the ASCII

hexadecimal representation of the number 22 is x’3232’. Using this option, the

number +22 would be x’3232’ and the number -22 would be x’7232’. This is

the default value.

v Leading Separate. This sets the first byte of the element to ’+’ if the number is

positive and to ’-’ if the number is negative. For this option, the length must

include the sign byte.

v Trailing Overpunched. This sets a bit in the last byte if the number is

negative. No setting is made if the number is positive. Using this option, the

number +22 would be x’3232’ and the number -22 would be x’3272’.

v Trailing Separate. This sets the last byte of the element to ’+’ if the number

is positive and to ’-’ if the number is negative. For this option, the length must

include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set

for you.

Virtual Decimal

Point

Integer Specify the number of places to the left (for a positive value) or right (for a

negative value) that a decimal point should be moved from its assumed position.

For example, a float element containing 1234 with a Virtual Decimal value of 3 is

1.234.

This is not applicable if you have set Physical Type to Float.

Justification Enumerated

type

If you have set the Physical Type property to External Decimal, select Left

Justify or Right Justify (the default value) from the list. If you have selected

another value for Physical Type, this is property is inactive.

Message model reference information 623

Property Type Meaning

Padding

Character

String The padding character is used to fill out the remaining character positions when

the string length is less than the specified string size. If you have set the Physical

Type property to Extended Decimal, and the Justification property is either Left

Justify or Right Justify, specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal

value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM

element depends on the padding character that is required and whether the

padding character is to be subject to data conversion. In most cases, the

specification of a padding character in quotqtion marks is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated. For example, when converting

from ASCII to the code page 500, if you have specified U+0008 as your padding

character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC

representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should

ensure that the converted value of the padding character is valid for this code

page. If the padding character cannot be represented in the target code page, it

is replaced by a substitution character. The substitution character is fixed and its

value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the

hexadecimal or decimal format can be used. This gives the option of specifying

an absolute value as a padding character that is inserted directly into the output

message. If this format is used, you should still aim to ensure that this value is

valid for the code page of any output messages that are created using these

MRM definitions.

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the displayed list:

v NULLPadFill. This is valid only if Physical Type is External Decimal. The field

is filled with the value specified by the Padding Character. Encoding Null Value

must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the

required format for the field. This is the default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a

string. You can specify a nonnumeric value for Encoding Null Value.

v NULLLiteralFill. The field is filled with the value specified by the Encoding

Null Value. Encoding Null Value must resolve to a single character.

624 Message Models

Property Type Meaning

Encoding Null

Value

String The use of this property depends on the Encoding Null property, described

above, with the exception of NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must resolve

to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is

any alphanumeric character.

v Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal

value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal format.

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

 Property Type Meaning

Repeat

Reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the displayed list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

Message model reference information 625

CWF properties for compound element integer types:

The Custom Wire Format properties described here apply to:

v Objects: Compound elements

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select one of the following from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. This equates to the COMP-3 data type in COBOL.

v External Decimal. This equates to the data type PIC 9 USAGE DISPLAY in

COBOL.

The representation of numeric elements can be affected by the Encoding and

CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer and Packed Decimal are

represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in

the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the

displayed list.

v If you have set Physical Type to Packed Decimal, enter a value between 1 and

6.

v If you have set Physical Type to Extended Decimal, enter a value between 1 and

11.

626 Message Models

Property Type Meaning

Length Units Enumerated

type

Select the unit of length for the element or attribute. Select one of the following

options from the displayed list (some physical types do not offer all of these

options):

v Bytes.

v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads

one character at a time and determines whether the character comprises

one or more bytes.
v Character Units. This specifies that the size of each character (in bytes) is

determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to

Characters.

– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest

character unit that the code page supports. However, this means that a

message must contain only these characters if it is to be processed correctly.

For example, in code page ″UTF-8″ (CCSID 1208), the minimum character

unit is one byte; therefore, the parser can make a single read (of the

number of bytes specified by the Length property) to fetch the entire

message. The message must contain only characters that are encoded in

1-byte units.
v End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count.

The default is Bytes.

Signed Check box Select (the default) or clear this property. This property is used in conjunction

with Sign Orientation.

Sign EBCDIC

Custom

Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom

property is set, this indicates that the Sign EBCDIC Custom Overpunched

representation is to be used within an ASCII environment. If this check box is

not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate

only if the Sign Orientation property is set to Leading or Trailing (indicating that

the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,

if the Signed check box is not set).

Message model reference information 627

Property Type Meaning

Sign

Orientation

Enumerated

type

If you have set Physical Type to External Decimal and you have selected Signed,

choose from the following options that represent the COBOL options for

displaying numeric data:

v Leading Overpunched. This sets a bit in the first byte if the number is negative.

No setting is made if the number is positive. For example, the ASCII

hexadecimal representation of the number 22 is x’3232’. Using this option, the

number +22 would be x’3232’ and the number -22 would be x’7232’. This is

the default value.

v Leading Separate. This sets the first byte of the element to ’+’ if the number is

positive and to ’-’ if the number is negative. For this option, the length must

include the sign byte.

v Trailing Overpunched. This sets a bit in the last byte if the number is

negative. No setting is made if the number is positive. Using this option, the

number +22 would be x’3232’ and the number -22 would be x’3272’.

v Trailing Separate. This sets the last byte of the element to ’+’ if the number

is positive and to ’-’ if the number is negative. For this option, the length must

include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set

for you.

Justification Enumerated

type

If you have set the Physical Type property to External Decimal, select Left

Justify or Right Justify (the default value) from the list. If you have selected

another value for Physical Type, this is property is inactive.

628 Message Models

Property Type Meaning

Padding

Character

String The padding character is used to fill out the remaining character positions when

the string length is less than the specified string size. If you have set the Physical

Type property to Extended Decimal, and the Justification property is either Left

Justify or Right Justify, specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal

value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM

element depends on the padding character that is required and whether the

padding character is to be subject to data conversion. In most cases, the

specification of a padding character in quotqtion marks is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated. For example, when converting

from ASCII to the code page 500, if you have specified U+0008 as your padding

character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC

representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should

ensure that the converted value of the padding character is valid for this code

page. If the padding character cannot be represented in the target code page, it

is replaced by a substitution character. The substitution character is fixed and its

value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the

hexadecimal or decimal format can be used. This gives the option of specifying

an absolute value as a padding character that is inserted directly into the output

message. If this format is used, you should still aim to ensure that this value is

valid for the code page of any output messages that are created using these

MRM definitions.

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the displayed list:

v NULLPadFill. This is valid only if Physical Type is External Decimal. The field

is filled with the value specified by the Padding Character. Encoding Null Value

must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the

required format for the field. This is the default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a

string. You can specify a nonnumeric value for Encoding Null Value.

v NULLLiteralFill. The field is filled with the value specified by the Encoding

Null Value. Encoding Null Value must resolve to a single character.

Message model reference information 629

Property Type Meaning

Encoding Null

Value

String The use of this property depends on the Encoding Null property, described

above, with the exception of NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must resolve

to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is

any alphanumeric character.

v Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal

value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal format.

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

 Property Type Meaning

Repeat

Reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the displayed list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

630 Message Models

CWF properties for compound element string types:

The Custom Wire Format properties described here apply to:

v Objects: Compound elements

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select one of the following from the displayed list:

v Fixed Length String. The element’s length is determined by other length

properties below.

v Length Encoded String 1. The element’s first byte contains the length of the

string following the length byte in length units. The maximum length of a

Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The element’s first two bytes contain the length of

the string following the 2 length bytes in length units. The maximum length

of a Length Encoded String 2 element is 65535 length units. The two length

bytes are in the format of the WebSphere MQ queue manager Encoding.

v Null Terminated String. The string ends with the hexadecimal NULL

character, X’00’.

The default is Fixed Length String.

Length Button and

Integer

If you have selected a Physical Type of Fixed Length String or Binary, and have

selected the length to be defined by Length, enter the number of length units for

the element.

The minimum value that you can specify is 0 (zero), the maximum value that

you can specify is 2147483647

The default value is 0 (zero).

Length

Reference

Button and

Enumerated

type

If you have selected the length to be defined by Length Reference, select the name

of the integer object that specifies the length of this object. Make your selection

from the displayed list of integer objects that are defined as siblings of the

current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page

108.

Message model reference information 631

Property Type Meaning

Length Units Enumerated

type

Select the unit of length for the element or attribute. Select one of the following

options from the displayed list (some physical types do not offer all of these

options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads

one character at a time and determines whether the character comprises

one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is

determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to

Characters.

– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest

character unit that the code page supports. However, this means that a

message must contain only these characters if it is to be processed correctly.

For example, in code page ″UTF-8″ (CCSID 1208), the minimum character

unit is one byte; therefore, the parser can make a single read (of the

number of bytes specified by the Length property) to fetch the entire

message. The message must contain only characters that are encoded in

1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count or Length

Reference property.

The default is Bytes.

Justification Enumerated

type

If you have set the Physical Type property to Fixed Length String, select Left

Justify (the default value) or Right Justify from the list. If you have selected

another value for Physical Type, this is property is inactive.

632 Message Models

Property Type Meaning

Padding

Character

String If you have set the Physical Type property to Fixed Length String, and the

Justification property is either Left Justify or Right Justify, this property is

applicable.

When writing an output message, use the padding character to fill out the

remaining character positions when the string length is less than the length

implied by the Length or Length Reference property. Whether the string is padded

from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end

of the string. Whether the string is trimmed from the left or the right is

governed by the Justification property.

Specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal

value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM

element depends on the padding character that is required and whether the

padding character is to be subject to data conversion. In most cases, the

specification of a padding character in quotqtion marks is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated. For example, when converting

from ASCII to the code page 500, if you have specified U+0008 as your padding

character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC

representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should

ensure that the converted value of the padding character is valid for this code

page. If the padding character cannot be represented in the target code page, it

is replaced by a substitution character. The substitution character is fixed and its

value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the

hexadecimal or decimal format can be used. This gives the option of specifying

an absolute value as a padding character that is inserted directly into the output

message. If this format is used, you should still aim to ensure that this value is

valid for the code page of any output messages that are created using these

MRM definitions.

Message model reference information 633

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the displayed list:

v NULLPadFill. This is valid only if Physical Type is Fixed Length String. The

field is filled with the value specified by the Padding Character. Encoding Null

Value must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the

required format for the field. This is the default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a

string.

v NULLLiteralFill. The field is filled with the value specified by the Encoding

Null Value. Encoding Null Value must resolve to a single character.

Encoding Null

Value

STRING The use of this property depends on the Encoding Null property, described

above. If specified, its length must be equal to the length of the string element,

with the exception of NULLLiteralFill.

The default value is empty (not set).

If you set the Encoding Null property to NULLLiteralFill, the value must resolve

to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY where YY is a

hexadecimal value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal format.

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

634 Message Models

Occurrences

 Property Type Meaning

Repeat

Reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the displayed list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

Compound element XML properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - ComIbmMrm

 _BaseValueBinary

Boolean types

 - ComIbmMrm

 _BaseValueBoolean

DateTime types

 - ComIbmMrm

 _BaseValueDateTime

Decimal types

 - ComIbmMrm

 _BaseValueDecimal

Float types

 - ComIbmMrm

 _BaseValueFloat

Integer types

 - ComIbmMrm

 _BaseValueInt

String types

 - ComIbmMrm

 _BaseValueString

XML wire format properties for compound element binary types:

The XML Wire Format properties described here apply to:

v Objects: Compound elements

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

Message model reference information 635

Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an

attribute of the parent XML object. The identity of the child is determined by

the attribute name. The value is the attribute value. This is only valid for

simple elements.

If you select this value for more than one object , you must set their XML

Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered

as a child XML element of the parent complex type. The identity of the child

is determined by the tag name of the child. The value is the value of a

specified attribute. The name of the attribute is specified in Value Attribute

Name.

v XMLElementAttrIDVal. This option combines the two options,

XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of

the parent complex type. The identity of the child is determined by the value

of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

636 Message Models

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute

Name

String

Specify the name of the attribute used for the value of the child. This must be a

valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Physical representation

 Property Type Meaning

Encoding String Select one of the following values from the drop-down list: :

v CDatahex (the default). Hexadecimal values in this field are specified with the

CDATA qualifier, for example <e1><![CDATA[62]]></e1>

v hex. Hexadecimal values in this field are specified as digits only, for example

<e1>62</e1>.

v base64. Values in this field are specified as digits only, coded in base 64.

XML wire format properties for compound element Boolean types:

The XML Wire Format properties described here apply to:

v Objects: Compound elements

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

Message model reference information 637

Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an

attribute of the parent XML object. The identity of the child is determined by

the attribute name. The value is the attribute value. This is only valid for

simple elements.

If you select this value for more than one object , you must set their XML

Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered

as a child XML element of the parent complex type. The identity of the child

is determined by the tag name of the child. The value is the value of a

specified attribute. The name of the attribute is specified in Value Attribute

Name.

v XMLElementAttrIDVal. This option combines the two options,

XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of

the parent complex type. The identity of the child is determined by the value

of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

638 Message Models

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute

Name

String

Specify the name of the attribute used for the value of the child. This must be a

valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML wire format properties for compound element dateTime types:

The XML Wire Format properties described here apply to:

v Objects: Compound elements

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

Message model reference information 639

Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an

attribute of the parent XML object. The identity of the child is determined by

the attribute name. The value is the attribute value. This is only valid for

simple elements.

If you select this value for more than one object , you must set their XML

Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered

as a child XML element of the parent complex type. The identity of the child

is determined by the tag name of the child. The value is the value of a

specified attribute. The name of the attribute is specified in Value Attribute

Name.

v XMLElementAttrIDVal. This option combines the two options,

XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of

the parent complex type. The identity of the child is determined by the value

of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

640 Message Models

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute

Name

String

Specify the name of the attribute used for the value of the child. This must be a

valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Physical representation

 Property Type Meaning

DateTime

Format

String Specify a format string that specifies the rendering of the value for dateTime

elements.

The default dateTime format is dependent on the logical type of the object. For

information about the defaults for the dateTime format according to the logical

type see “DateTime defaults by logical type” on page 770.

See “DateTime formats” on page 763 for details of dateTime formats.

XML wire format properties for compound element decimal types:

The XML Wire Format properties described here apply to:

v Objects: Compound elements

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

Message model reference information 641

Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an

attribute of the parent XML object. The identity of the child is determined by

the attribute name. The value is the attribute value. This is only valid for

simple elements.

If you select this value for more than one object , you must set their XML

Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered

as a child XML element of the parent complex type. The identity of the child

is determined by the tag name of the child. The value is the value of a

specified attribute. The name of the attribute is specified in Value Attribute

Name.

v XMLElementAttrIDVal. This option combines the two options,

XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of

the parent complex type. The identity of the child is determined by the value

of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

642 Message Models

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute

Name

String

Specify the name of the attribute used for the value of the child. This must be a

valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML wire format properties for compound element float types:

The XML Wire Format properties described here apply to:

v Objects: Compound elements

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

Message model reference information 643

Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an

attribute of the parent XML object. The identity of the child is determined by

the attribute name. The value is the attribute value. This is only valid for

simple elements.

If you select this value for more than one object , you must set their XML

Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered

as a child XML element of the parent complex type. The identity of the child

is determined by the tag name of the child. The value is the value of a

specified attribute. The name of the attribute is specified in Value Attribute

Name.

v XMLElementAttrIDVal. This option combines the two options,

XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of

the parent complex type. The identity of the child is determined by the value

of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

644 Message Models

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute

Name

String

Specify the name of the attribute used for the value of the child. This must be a

valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML wire format properties for compound element integer types:

The XML Wire Format properties described here apply to:

v Objects: Compound elements

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

Message model reference information 645

Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an

attribute of the parent XML object. The identity of the child is determined by

the attribute name. The value is the attribute value. This is only valid for

simple elements.

If you select this value for more than one object , you must set their XML

Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered

as a child XML element of the parent complex type. The identity of the child

is determined by the tag name of the child. The value is the value of a

specified attribute. The name of the attribute is specified in Value Attribute

Name.

v XMLElementAttrIDVal. This option combines the two options,

XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of

the parent complex type. The identity of the child is determined by the value

of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

646 Message Models

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute

Name

String

Specify the name of the attribute used for the value of the child. This must be a

valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML wire format properties for compound element string types:

The XML Wire Format properties described here apply to:

v Objects: Compound elements

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

Message model reference information 647

Property Type Meaning

Render Enumerated

type

Specify how the instantiated object or type is rendered (output) in the resulting

XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child

XML element of the parent complex type. The identity of the child is

determined by the tag name of the child. The value is the content of the child

element.

If you select this value for more than one object, and set their XML

Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an

attribute of the parent XML object. The identity of the child is determined by

the attribute name. The value is the attribute value. This is only valid for

simple elements.

If you select this value for more than one object , you must set their XML

Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a

child XML element of the parent complex type. The identity of the child is

determined by the value of a specified attribute of the child. The value is the

content of the child element. You must add an attribute to the child element

with an attribute name as specified in ID Attribute Name and a value as

specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute

Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered

as a child XML element of the parent complex type. The identity of the child

is determined by the tag name of the child. The value is the value of a

specified attribute. The name of the attribute is specified in Value Attribute

Name.

v XMLElementAttrIDVal. This option combines the two options,

XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of

the parent complex type. The identity of the child is determined by the value

of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two

objects.

– Both objects must refer to the same element.

“XML rendering options” on page 733 shows some examples of how these

rendering options affect the XML output, and provides usage recommendations.

648 Message Models

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for

the XML start tag or attribute for the element (or attribute) in an XML document

(message).

This can be used to provide name mapping when the MRM identifier needs to

be different from the XML name, for example because of different namespace

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)

, or for a message. No two elements (or attribute) or messages can have the

same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the

element’s identifier is a prefixed identifier, it defaults to the identifier with the

caret character (^) replaced by an underscore (_).

ID Attribute

Name

String Specify the name of the attribute used to identify the child. This must be a valid

XML Attribute Name. This property is ignored and cannot be changed (the field

is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute

Value

String Specify the value of the attribute used to identify the child. This property is

ignored and cannot be changed (the field is disabled) if Render is set to

XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute

Name

String

Specify the name of the attribute used for the value of the child. This must be a

valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Compound element TDS properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - ComIbmMrm

 _BaseValueBinary

Boolean types

 - ComIbmMrm

 _BaseValueBoolean

DateTime types

 - ComIbmMrm

 _BaseValueDateTime

Decimal types

 - ComIbmMrm

 _BaseValueDecimal

Float types

 - ComIbmMrm

 _BaseValueFloat

Integer types

 - ComIbmMrm

 _BaseValueInt

String types

 - ComIbmMrm

 _BaseValueString

TDS properties for compound element binary types:

The TDS properties described here apply to:

v Objects: Compound elements

Message model reference information 649

Field identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Repeating

Element

Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element

Separation property of the parent group or complex type is set to All Elements

Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging

standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is

not HL7, and the maximum number of repeats is fixed, the delimiter of the

parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Physical representation

 Property Type Meaning

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

The default is dependent on the setting of the message set property Derive default

length from logical type. If Derive default length from logical type is selected, the

default value is derived from any length or maxLength value constraint (schema

facet) on the object’s simple type.

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

TDS properties for compound element Boolean types:

650 Message Models

The TDS properties described here apply to:

v Objects: Compound elements

Field identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Repeating

Element

Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element

Separation property of the parent group or complex type is set to All Elements

Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging

standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is

not HL7, and the maximum number of repeats is fixed, the delimiter of the

parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Binary. The data is in bit string format.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Message model reference information 651

Property Type Meaning

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

TDS properties for compound element dateTime types:

The TDS properties described here apply to:

v Objects: Compound elements

Field identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Repeating

Element

Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element

Separation property of the parent group or complex type is set to All Elements

Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging

standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is

not HL7, and the maximum number of repeats is fixed, the delimiter of the

parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

652 Message Models

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The data’s first byte contains the length (in length

units) of the data string that follows the length byte. The maximum length of

a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The data’s first two bytes contains the length (in

length units) of the data string that follows the two length bytes. The

maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL

character, X’00’.

v Packed Decimal. The data is a packed decimal number that equates to the

COMP-3 data type in COBOL.

v Binary. The data is in bit string format.

v Time Seconds. This value supports C time_t, and Java Date and Time objects.

It is valid only if the DateTime Format property represents numeric-only data.

v Time Milliseconds. This value supports C time_t, and Java Date and Time

objects. It is valid only if the DateTime Format property represents

numeric-only data.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

Justification Enumerated

type

Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output

as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Message model reference information 653

Property Type Meaning

Padding

Character

String Specify the padding character that is to be inserted or interpreted on the writing

or parsing of a fixed length object if the data is less than the fixed length value.

This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a

hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

The choice of which of these padding character forms is used for an MRM

element depends on the padding character required and whether the padding

character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the

hexadecimal format can be used. This gives the option of specifying a padding

character that is inserted directly into the output message. If this format is used,

you must ensure that this hexadecimal value is valid for the code page of any

output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure

that the converted value of the padding character is valid for this code page. For

example, when converting from ASCII to code page 500, if you have specified

the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the

ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must

not be greater than U+007F. Note that if you enter a Unicode mnemonic or

numeric value, it is considered to be the character that is represented by that

number in UTF-8.

DateTime

Format

String Specify a template for date and time.

The default DateTime format is dependent on the logical type of the object. For

information about the defaults for the dateTime format according to the logical

type see “DateTime defaults by logical type” on page 770.

See “DateTime formats” on page 763 for details of date and time formats.

654 Message Models

Property Type Meaning

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default

value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an

actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that

is directly substituted as if it is a string. For dateTime elements, use this

option if you want to use the Encoding Null Value property to test or compare

the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified

by the Encoding Null Value property. Encoding Null Value must resolve to a

single character.

The option that you select determines the value that you must set for the

property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”

on page 751.

Encoding Null

Value

String The use of this property depends on the Encoding Null property that is described

above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,

the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 763.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;

for example, 1970-12-01.

TDS properties for compound element decimal types:

The TDS properties described here apply to:

v Objects: Compound elements

Message model reference information 655

Field identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Repeating

Element

Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element

Separation property of the parent group or complex type is set to All Elements

Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging

standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is

not HL7, and the maximum number of repeats is fixed, the delimiter of the

parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Packed Decimal. The data is a packed decimal number that equates to the

COMP-3 data type in COBOL.

v TLOG Specific - this option can be selected only if the Message Standard

property of the message set is TLOG. This option indicates that the format of

the data is specific to the TLOG messaging standard.

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type

PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

656 Message Models

Property Type Meaning

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from

logical type is selected, and the Physical type is ’Character’, the default value is

derived from any totalDigits value constraint (schema facet) or, if none, any

minInclusive, maxInclusive, minExclusive, or maxExclusive value constraints

(schema facets), on the simple type.

Justification Enumerated

type

Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output

as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Message model reference information 657

Property Type Meaning

Padding

Character

String Specify the padding character that is to be inserted or interpreted on the writing

or parsing of a fixed length object if the data is less than the fixed length value.

This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a

hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

The choice of which of these padding character forms is used for an MRM

element depends on the padding character required and whether the padding

character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the

hexadecimal format can be used. This gives the option of specifying a padding

character that is inserted directly into the output message. If this format is used,

you must ensure that this hexadecimal value is valid for the code page of any

output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure

that the converted value of the padding character is valid for this code page. For

example, when converting from ASCII to code page 500, if you have specified

the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the

ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must

not be greater than U+007F. Note that if you enter a Unicode mnemonic or

numeric value, it is considered to be the character that is represented by that

number in UTF-8.

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

658 Message Models

Numeric representation

 Property Type Meaning

Virtual Decimal

Point

Button and

Integer

Specify a nonzero integer that represents the position of an implied decimal

point within a number, or specify 0 (zero, the default) to use the formatting of

Float or Decimal numbers as specified by the Precision property.

If you specify a positive integer, the position of the decimal point is moved left

from the right hand side of the number. For example, if you specify 3, the

decimal value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is moved

right from the right hand side of the number. For example, if you specify -3, the

decimal value 1234 represents 1 234 000

Precision Button and

Integer

This property is applicable only if Physical Type is Text. It is used if the value of

the Virtual Decimal Point property is 0, which indicates that the decimal point is

present in the data. It deals with truncation, and specifies how many digits

should follow the decimal point.

Either specify a number of digits:

v If you set Precision to 0, data is truncated so that the fractional part is lost. For

example, the value 123.45 is truncated to 123.

v If you set Precision to a number less than the number of fractional digits, data

is truncated. For example, the value 123.4567 is truncated to 123.45 if you set

Precision to 2.

v If you set Precision to a number greater than the number of fractional digits,

the value is padded with extra zeros. For example, the value 12.345 is padded

to 12.34500 if you set Precision to 5.

Or select one of the following from the drop-down list:

v All Significant Digits - decimal separator only required if fractional

digits (the default): all significant digits are written to the output bit stream,

and there is no decimal separator if there are no fractional digits.

v Explicit Decimal Separator - decimal separator always required: all

significant digits are written to the output bit stream and the decimal

separator is always included, even if there are no fractional digits. The

decimal separator must be present in the input bit stream, even if no fractional

digits are present.

Sign

Orientation

Enumerated

type

The values that you can choose for this property are:

v Leading Separate

v Trailing Separate

v Leading Overpunched

v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External

Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading

Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is

selected, the only valid values of Sign Orientation are Leading Overpunched and

Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric

value. If no value is set, ″+″ is assumed. The positive sign is not written when

creating an output message; it is used only to recognize the positive sign when

parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected

Message model reference information 659

Property Type Meaning

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric

value. If no value is set, ″-″ is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default

value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an

actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that

is directly substituted as if it is a string. For dateTime elements, use this

option if you want to use the Encoding Null Value property to test or compare

the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified

by the Encoding Null Value property. Encoding Null Value must resolve to a

single character.

The option that you select determines the value that you must set for the

property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”

on page 751.

Encoding Null

Value

String The use of this property depends on the Encoding Null property that is described

above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,

the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 763.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;

for example, 1970-12-01.

TDS properties for compound element float types:

The TDS properties described here apply to:

v Objects: Compound elements

660 Message Models

Field identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Repeating

Element

Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element

Separation property of the parent group or complex type is set to All Elements

Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging

standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is

not HL7, and the maximum number of repeats is fixed, the delimiter of the

parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Float. This equates to the data type FLOAT or DOUBLE in C, or the COMP-1

or COMP-2 numeric data type in COBOL.

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. The data is a packed decimal number that equates to the

COMP-3 data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type

PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

Message model reference information 661

Property Type Meaning

Justification Enumerated

type

Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output

as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Padding

Character

String Specify the padding character that is to be inserted or interpreted on the writing

or parsing of a fixed length object if the data is less than the fixed length value.

This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a

hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

The choice of which of these padding character forms is used for an MRM

element depends on the padding character required and whether the padding

character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the

hexadecimal format can be used. This gives the option of specifying a padding

character that is inserted directly into the output message. If this format is used,

you must ensure that this hexadecimal value is valid for the code page of any

output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure

that the converted value of the padding character is valid for this code page. For

example, when converting from ASCII to code page 500, if you have specified

the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the

ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must

not be greater than U+007F. Note that if you enter a Unicode mnemonic or

numeric value, it is considered to be the character that is represented by that

number in UTF-8.

662 Message Models

Property Type Meaning

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

Numeric representation

 Property Type Meaning

Virtual Decimal

Point

Button and

Integer

Specify a nonzero integer that represents the position of an implied decimal

point within a number, or specify 0 (zero, the default) to use the formatting of

Float or Decimal numbers as specified by the Precision property.

If you specify a positive integer, the position of the decimal point is moved left

from the right hand side of the number. For example, if you specify 3, the

decimal value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is moved

right from the right hand side of the number. For example, if you specify -3, the

decimal value 1234 represents 1 234 000

Message model reference information 663

Property Type Meaning

Precision Button and

Integer

This property is applicable only if Physical Type is Text. It is used if the value of

the Virtual Decimal Point property is 0, which indicates that the decimal point is

present in the data. It deals with truncation, and specifies how many digits

should follow the decimal point.

Either specify a number of digits:

v If you set Precision to 0, data is truncated so that the fractional part is lost. For

example, the value 123.45 is truncated to 123.

v If you set Precision to a number less than the number of fractional digits, data

is truncated. For example, the value 123.4567 is truncated to 123.45 if you set

Precision to 2.

v If you set Precision to a number greater than the number of fractional digits,

the value is padded with extra zeros. For example, the value 12.345 is padded

to 12.34500 if you set Precision to 5.

Or select one of the following from the drop-down list:

v All Significant Digits - decimal separator only required if fractional

digits (the default): all significant digits are written to the output bit stream,

and there is no decimal separator if there are no fractional digits.

v Explicit Decimal Separator - decimal separator always required: all

significant digits are written to the output bit stream and the decimal

separator is always included, even if there are no fractional digits. The

decimal separator must be present in the input bit stream, even if no fractional

digits are present.

v Exponential Notation - Example ″1.23456e002″: data is written out to the bit

stream as a signed value having the format [sign1]a.bbbe[sign2]ccc where:

– [sign1] is the value of Negative Sign if the value is negative

– a is a single decimal digit

– bbb is one or more decimal digits

– [sign2] is the value of Negative Sign if the exponent is negative

– ccc is exactly three decimal digits (the exponent)

[sign1] and [sign2] are absent if the value and exponent, respectively, are

positive.

For example, the value -123.456 is represented as -1.23456e002 and the value

0.00012 is represented as 1.2e-004 in the output bit stream (assuming that the

value of Negative Sign is ″-″, and the value of Sign Orientation is Leading).

The value -0.00012 is represented as 1.2*e*004 if Negative Sign is ″*″ and Sign

Orientation is Trailing.

Sign

Orientation

Enumerated

type

The values that you can choose for this property are:

v Leading Separate

v Trailing Separate

v Leading Overpunched

v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External

Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading

Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is

selected, the only valid values of Sign Orientation are Leading Overpunched and

Trailing Overpunched.

664 Message Models

Property Type Meaning

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric

value. If no value is set, ″+″ is assumed. The positive sign is not written when

creating an output message; it is used only to recognize the positive sign when

parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric

value. If no value is set, ″-″ is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default

value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an

actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that

is directly substituted as if it is a string. For dateTime elements, use this

option if you want to use the Encoding Null Value property to test or compare

the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified

by the Encoding Null Value property. Encoding Null Value must resolve to a

single character.

The option that you select determines the value that you must set for the

property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”

on page 751.

Encoding Null

Value

String The use of this property depends on the Encoding Null property that is described

above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,

the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 763.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;

for example, 1970-12-01.

TDS properties for compound element integer types:

The TDS properties described here apply to:

v Objects: Compound elements

Message model reference information 665

Field identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Repeating

Element

Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element

Separation property of the parent group or complex type is set to All Elements

Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging

standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is

not HL7, and the maximum number of repeats is fixed, the delimiter of the

parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. The data is a packed decimal number that equates to the

COMP-3 data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type

PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

666 Message Models

Property Type Meaning

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from

logical type is selected, and the Physical type is ’Character’, the default value is

derived from any totalDigits value constraint (schema facet) or, if none, any

minInclusive, maxInclusive, minExclusive, or maxExclusive value constraints

(schema facets), on the simple type.

Justification Enumerated

type

Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output

as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Message model reference information 667

Property Type Meaning

Padding

Character

String Specify the padding character that is to be inserted or interpreted on the writing

or parsing of a fixed length object if the data is less than the fixed length value.

This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a

hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

The choice of which of these padding character forms is used for an MRM

element depends on the padding character required and whether the padding

character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the

hexadecimal format can be used. This gives the option of specifying a padding

character that is inserted directly into the output message. If this format is used,

you must ensure that this hexadecimal value is valid for the code page of any

output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure

that the converted value of the padding character is valid for this code page. For

example, when converting from ASCII to code page 500, if you have specified

the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the

ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must

not be greater than U+007F. Note that if you enter a Unicode mnemonic or

numeric value, it is considered to be the character that is represented by that

number in UTF-8.

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

668 Message Models

Numeric representation

 Property Type Meaning

Sign

Orientation

Enumerated

type

The values that you can choose for this property are:

v Leading Separate

v Trailing Separate

v Leading Overpunched

v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External

Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading

Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is

selected, the only valid values of Sign Orientation are Leading Overpunched and

Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric

value. If no value is set, ″+″ is assumed. The positive sign is not written when

creating an output message; it is used only to recognize the positive sign when

parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric

value. If no value is set, ″-″ is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default

value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an

actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that

is directly substituted as if it is a string. For dateTime elements, use this

option if you want to use the Encoding Null Value property to test or compare

the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified

by the Encoding Null Value property. Encoding Null Value must resolve to a

single character.

The option that you select determines the value that you must set for the

property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”

on page 751.

Message model reference information 669

Property Type Meaning

Encoding Null

Value

String The use of this property depends on the Encoding Null property that is described

above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,

the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 763.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;

for example, 1970-12-01.

TDS properties for compound element string types:

The TDS properties described here apply to:

v Objects: Compound elements

Field identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Interpret

Element Value

Enumerated

type

Specify whether values stored within this object must be interpreted as having

significance for the parser and, if so, the type of interpretation that must occur.

This interpretation is generally standard-specific and is therefore hard-coded.

The possible values for this property are:

v None (the default value)

v EDIFACT Service String

v X12 Service String

v Message Key

v EDIFACT Syntax Level ID

v HL7 Service String

v HL7 Field Separator

670 Message Models

Property Type Meaning

Repeating

Element

Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element

Separation property of the parent group or complex type is set to All Elements

Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging

standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is

not HL7, and the maximum number of repeats is fixed, the delimiter of the

parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The data’s first byte contains the length (in length

units) of the data string that follows the length byte. The maximum length of

a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The data’s first two bytes contains the length (in

length units) of the data string that follows the two length bytes. The

maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL

character, X’00’.

v TLOG Specific - this option can be selected only if the Message Standard

property of the message set is TLOG. This option indicates that the format of

the data is specific to the TLOG messaging standard.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from

logical type is selected, and the Physical type is ’Character’, the default value is

derived from any length or maxLength value constraint (schema facet) on the

simple type.

Justification Enumerated

type

Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output

as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Message model reference information 671

Property Type Meaning

Padding

Character

String Specify the padding character that is to be inserted or interpreted on the writing

or parsing of a fixed length object if the data is less than the fixed length value.

This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a

hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

The choice of which of these padding character forms is used for an MRM

element depends on the padding character required and whether the padding

character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the

hexadecimal format can be used. This gives the option of specifying a padding

character that is inserted directly into the output message. If this format is used,

you must ensure that this hexadecimal value is valid for the code page of any

output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure

that the converted value of the padding character is valid for this code page. For

example, when converting from ASCII to code page 500, if you have specified

the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the

ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must

not be greater than U+007F. Note that if you enter a Unicode mnemonic or

numeric value, it is considered to be the character that is represented by that

number in UTF-8.

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

672 Message Models

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default

value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an

actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that

is directly substituted as if it is a string. For dateTime elements, use this

option if you want to use the Encoding Null Value property to test or compare

the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified

by the Encoding Null Value property. Encoding Null Value must resolve to a

single character.

The option that you select determines the value that you must set for the

property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”

on page 751.

Encoding Null

Value

String The use of this property depends on the Encoding Null property that is described

above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,

the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 763.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;

for example, 1970-12-01.

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the

understanding of the function of that object. The documentation property is

available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric

characters.

Embedded simple type properties

An embedded simple type can have the following properties;

v “Embedded simple type logical properties” on page 601

v “Embedded simple type CWF properties” on page 602

v “Embedded simple type XML properties” on page 603

v “Embedded simple type TDS properties” on page 605

v “Documentation properties for all message set objects” on page 183

Embedded simple type logical properties:

Message model reference information 673

Occurrences

 Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default is

1.

If the value is set to 0, then the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,

it must be less than or equal to the value in Max Occurs.

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default is

1.

If this property is not set, then the object can not occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the

message.

It can also be set to -1 to indicate that the limit is unbounded and there is no

maximum to the number of occurrences.

Embedded simple type CWF properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - ComIbmMrm

 _AnonBinary

Boolean types

 - ComIbmMrm

 _AnonBoolean

DateTime types

 - ComIbmMrm

 _AnonDate

 - ComIbmMrm

 _AnonDateTime

 - ComIbmMrm

 _AnonGDay

 - ComIbmMrm

 _AnonGMonth

 - ComIbmMrm

 _AnonGMonthDay

 - ComIbmMrm

 _AnonGYear

 - ComIbmMrm

 _AnonGYearMonth

 - ComIbmMrm

 _AnonTime

Decimal types

 - ComIbmMrm

 _AnonDecimal

Float types

 - ComIbmMrm

 _AnonFloat

Integer types

 - ComIbmMrm

 _AnonInt

String types

 - ComIbmMrm

 _AnonString

CWF properties for embedded simple type binary types:

The Custom Wire Format properties described here apply to:

v Objects: Embedded simple types

674 Message Models

Physical representation

 Property Type Meaning

Length Button and

Integer

If you have selected the length to be defined by Length, enter the number of

length units for the element.

The minimum value that you can specify is 1.

The maximum value that you can specify is 2147483647.

The default value is empty (not set).

Length

Reference

Button and

Enumerated

type

If you have selected the length to be defined by Length Reference, select the name

of the integer object that specifies the length of this object. Make your selection

from the displayed list of integer objects that are defined as siblings of the

current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page

108.

Length Units Enumerated

type

Select the unit of length for the element or attribute. Select one of the following

options from the displayed list (some physical types do not offer all of these

options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads

one character at a time and determines whether the character comprises

one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is

determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to

Characters.

– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest

character unit that the code page supports. However, this means that a

message must contain only these characters if it is to be processed correctly.

For example, in code page ″UTF-8″ (CCSID 1208), the minimum character

unit is one byte; therefore, the parser can make a single read (of the

number of bytes specified by the Length property) to fetch the entire

message. The message must contain only characters that are encoded in

1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count or Length

Reference property.

The default is Bytes.

Message model reference information 675

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

 Property Type Meaning

Repeat

Reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the displayed list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

CWF properties for embedded simple type Boolean types:

The Custom Wire Format properties described here apply to:

v Objects: Embedded simple types

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

676 Message Models

Property Type Meaning

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

 Property Type Meaning

Repeat

Reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the displayed list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

CWF properties for embedded simple type dateTime types:

The Custom Wire Format properties described here apply to:

v Objects: Embedded simple types

Message model reference information 677

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select one of the following from the displayed list:

v Fixed Length String. The element’s length is determined by other length

properties below.

v Length Encoded String 1. The element’s first byte contains the length of the

string following the length byte in length units. The maximum length of a

Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The element’s first two bytes contain the length of

the string following the 2 length bytes in length units. The maximum length

of a Length Encoded String 2 element is 65535 length units. The two length

bytes are in the format of the WebSphere MQ queue manager Encoding.

v Null Terminated String. The string ends with the hexadecimal NULL

character, X’00’.

v Packed Decimal. The dateTime is coded as a Packed Decimal number. It is

valid only if the DateTime Format property represents numeric-only data.

v Binary. The dateTime is encoded as a binary sequence of bytes. If you select

this option, the range of symbols that you can specify for the Format String

property is less than the range of symbols you can specify if you select a

string option (see “DateTime formats” on page 763 for details).

v Time Seconds. This value supports C time_t and Java Date and Time objects. It

is valid only if the DateTime Format property represents numeric-only data.

v Time Milliseconds. This value supports C time_t and Java Date and Time

objects. It is valid only if the DateTime Format property represents

numeric-only data.

The default value is fixed length string.

DateTime

Format

String Specify a template for date and time.

The default dateTime format is dependent on the logical type of the object. For

information about the defaults for the dateTime format according to the logical

type see “DateTime defaults by logical type” on page 770.

See “DateTime formats” on page 763 for details of date and time formats.

Length Button and

Integer

If you have selected a Physical Type of Fixed Length String, Packed Decimal, or

Binary, and have selected the length to be defined by Length, enter the number

of length units for the element.

The minimum value that you can specify is 1 for all three physical types.

The maximum value that you can specify is 256 for Fixed Length String, 10 for

Packed Decimal, and 2147483647 for Binary.

The default value is 0 (zero).

Length

Reference

Button and

Enumerated

type

If you have selected the length to be defined by Length Reference, select the name

of the integer object that specifies the length of this object. Make your selection

from the displayed list of integer objects that are defined as siblings of the

current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page

108.

678 Message Models

Property Type Meaning

Length Units Enumerated

type

Select the unit of length for the element or attribute. Select one of the following

options from the displayed list (some physical types do not offer all of these

options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads

one character at a time and determines whether the character comprises

one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is

determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to

Characters.

– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest

character unit that the code page supports. However, this means that a

message must contain only these characters if it is to be processed correctly.

For example, in code page ″UTF-8″ (CCSID 1208), the minimum character

unit is one byte; therefore, the parser can make a single read (of the

number of bytes specified by the Length property) to fetch the entire

message. The message must contain only characters that are encoded in

1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count or Length

Reference property.

The default is Bytes.

Signed Check box Specify whether or not the value is signed.

This property is applicable only if the Physical type property is Packed Decimal.

By default, this check box is cleared, which indicates that the value is not signed.

Justification Enumerated

type

If you have set the Physical Type property to Fixed Length String, select Left

Justify (the default value) or Right Justify from the list. If you have selected

another value for Physical Type, this is property is inactive.

Message model reference information 679

Property Type Meaning

Padding

Character

String If you have set the Physical Type property to Fixed Length String, and the

Justification property is either Left Justify or Right Justify, this property is

applicable.

When writing an output message, use the padding character to fill out the

remaining character positions when the string length is less than the length

implied by the Length or Length Reference property. Whether the string is padded

from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end

of the string. Whether the string is trimmed from the left or the right is

governed by the Justification property.

Specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal

value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM

element depends on the padding character that is required and whether the

padding character is to be subject to data conversion. In most cases, the

specification of a padding character in quotqtion marks is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated. For example, when converting

from ASCII to the code page 500, if you have specified U+0008 as your padding

character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC

representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should

ensure that the converted value of the padding character is valid for this code

page. If the padding character cannot be represented in the target code page, it

is replaced by a substitution character. The substitution character is fixed and its

value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the

hexadecimal or decimal format can be used. This gives the option of specifying

an absolute value as a padding character that is inserted directly into the output

message. If this format is used, you should still aim to ensure that this value is

valid for the code page of any output messages that are created using these

MRM definitions.

680 Message Models

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the displayed list. The option that you

select determines the value that you must set for the property Encoding Null

Value:

v NULLPadFill. This is valid only if Physical Type is Fixed Length String. The

field is filled with the value specified by the Padding Character. This is the

default value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an

actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that

is directly substituted as if it is a string. Use this option when the value you

have set for Encoding Null Value to specify a null date is not a dateTime value,

or does not conform to the standard dateTime format yyyy-MM-dd ’T’HH:mm:ss.

v NULLLiteralFill. The field is filled with the value specified by the Encoding

Null Value. Encoding Null Value must resolve to a single character.

Encoding Null

Value

String If you set the Encoding Null property to NULLPadFill, this property is disabled

(grayed out).

If you set the Encoding Null property to NULLLogicalValue, you must set this

property to an ISO8601 dateTime format. These formats are described in

“DateTime as string data” on page 763. For example, specify a value conforming

to yyyy-MM-dd’T’HH:mm:ss such as 1970-12-01.

If you set the Encoding Null property to NULLLiteralValue, you can enter any

value that is the same length as the field.

If you set the Encoding Null property to NULLLiteralFill, the value must resolve

to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY where YY is a

hexadecimal value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal format.

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Message model reference information 681

Property Type Meaning

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

 Property Type Meaning

Repeat

Reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the displayed list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

CWF properties for embedded simple type decimal types:

The Custom Wire Format properties described here apply to:

v Objects: Embedded simple types

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select one of the following from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. This equates to the COMP-3 data type in COBOL.

v External Decimal. This equates to the data type PIC 9 USAGE DISPLAY in

COBOL.

The representation of numeric elements can be affected by the Encoding and

CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer and Packed Decimal are

represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in

the WebSphere MQ CodedCharSetId value.

682 Message Models

Property Type Meaning

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the

displayed list.

v If you set the Physical Type to Packed Decimal, enter a value between 1 and 10.

v If you set the Physical Type to Extended Decimal, enter a value between 1 and

256. (Numbers greater than the maximum COBOL PICTURE clause of 18 are

assumed to be 18.)

Length Units Enumerated

type

Select the unit of length for the element or attribute. Select one of the following

options from the displayed list (some physical types do not offer all of these

options):

v Bytes.

v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads

one character at a time and determines whether the character comprises

one or more bytes.
v Character Units. This specifies that the size of each character (in bytes) is

determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to

Characters.

– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest

character unit that the code page supports. However, this means that a

message must contain only these characters if it is to be processed correctly.

For example, in code page ″UTF-8″ (CCSID 1208), the minimum character

unit is one byte; therefore, the parser can make a single read (of the

number of bytes specified by the Length property) to fetch the entire

message. The message must contain only characters that are encoded in

1-byte units.
v End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count.

The default is Bytes.

Signed Check box Select (the default) or clear this property. This property is used in conjunction

with Sign Orientation.

Sign EBCDIC

Custom

Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom

property is set, this indicates that the Sign EBCDIC Custom Overpunched

representation is to be used within an ASCII environment. If this check box is

not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate

only if the Sign Orientation property is set to Leading or Trailing (indicating that

the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,

if the Signed check box is not set).

Message model reference information 683

Property Type Meaning

Sign

Orientation

Enumerated

type

If you have set Physical Type to External Decimal and you have selected Signed,

choose from the following options that represent the COBOL options for

displaying numeric data:

v Leading Overpunched. This sets a bit in the first byte if the number is negative.

No setting is made if the number is positive. For example, the ASCII

hexadecimal representation of the number 22 is x’3232’. Using this option, the

number +22 would be x’3232’ and the number -22 would be x’7232’. This is

the default value.

v Leading Separate. This sets the first byte of the element to ’+’ if the number is

positive and to ’-’ if the number is negative. For this option, the length must

include the sign byte.

v Trailing Overpunched. This sets a bit in the last byte if the number is

negative. No setting is made if the number is positive. Using this option, the

number +22 would be x’3232’ and the number -22 would be x’3272’.

v Trailing Separate. This sets the last byte of the element to ’+’ if the number

is positive and to ’-’ if the number is negative. For this option, the length must

include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set

for you.

Virtual Decimal

Point

Integer Specify the number of places to the left (for a positive value) or right (for a

negative value) that a decimal point should be moved from its assumed position.

For example, a decimal element containing 1234 with a Virtual Decimal value of

3 is 1.234. This is equivalent to ’V’ or ’P’ in a COBOL picture clause. There is no

C equivalent

Justification Enumerated

type

If you have set the Physical Type property to External Decimal, select Left

Justify or Right Justify (the default value) from the list. If you have selected

another value for Physical Type, this is property is inactive.

684 Message Models

Property Type Meaning

Padding

Character

String The padding character is used to fill out the remaining character positions when

the string length is less than the specified string size. If you have set the Physical

Type property to Extended Decimal, and the Justification property is either Left

Justify or Right Justify, specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal

value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM

element depends on the padding character that is required and whether the

padding character is to be subject to data conversion. In most cases, the

specification of a padding character in quotqtion marks is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated. For example, when converting

from ASCII to the code page 500, if you have specified U+0008 as your padding

character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC

representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should

ensure that the converted value of the padding character is valid for this code

page. If the padding character cannot be represented in the target code page, it

is replaced by a substitution character. The substitution character is fixed and its

value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the

hexadecimal or decimal format can be used. This gives the option of specifying

an absolute value as a padding character that is inserted directly into the output

message. If this format is used, you should still aim to ensure that this value is

valid for the code page of any output messages that are created using these

MRM definitions.

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the displayed list:

v NULLPadFill. This is valid only if Physical Type is External Decimal. The field

is filled with the value specified by the Padding Character. Encoding Null Value

must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the

required format for the field. This is the default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a

string. You can specify a nonnumeric value for Encoding Null Value.

v NULLLiteralFill. The field is filled with the value specified by the Encoding

Null Value. Encoding Null Value must resolve to a single character.

Message model reference information 685

Property Type Meaning

Encoding Null

Value

String The use of this property depends on the Encoding Null property, described

above, with the exception of NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must resolve

to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is

any alphanumeric character.

v Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal

value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal format.

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

 Property Type Meaning

Repeat

Reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the displayed list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

686 Message Models

CWF properties for embedded simple type float types:

The Custom Wire Format properties described here apply to:

v Objects: Embedded simple types

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select one of the following from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Float. This equates to the data type FLOAT or DOUBLE in C or the COMP-1

or COMP-2 data type in COBOL. This is the default value.

v Packed Decimal. This equates to the COMP-3 data type in COBOL.

v External Decimal. This equates to the data type PIC 9 USAGE DISPLAY in

COBOL.

The representation of numeric elements can be affected by the Encoding and

CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer, Packed Decimal, and Float are

represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in

the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Float, select a value from the displayed list. The

default value is 8.

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the

displayed list.

v If you set the Physical Type to Packed Decimal, enter a value between 1 and 10.

v If you set the Physical Type to Extended Decimal, enter a value between 1 and

256. (Numbers greater than the maximum COBOL PICTURE clause of 18 are

assumed to be 18.)

Message model reference information 687

Property Type Meaning

Length Units Enumerated

type

Select the unit of length for the element or attribute. Select one of the following

options from the displayed list (some physical types do not offer all of these

options):

v Bytes.

v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads

one character at a time and determines whether the character comprises

one or more bytes.
v Character Units. This specifies that the size of each character (in bytes) is

determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to

Characters.

– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest

character unit that the code page supports. However, this means that a

message must contain only these characters if it is to be processed correctly.

For example, in code page ″UTF-8″ (CCSID 1208), the minimum character

unit is one byte; therefore, the parser can make a single read (of the

number of bytes specified by the Length property) to fetch the entire

message. The message must contain only characters that are encoded in

1-byte units.
v End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count.

The default is Bytes.

Signed Check box Select or deselect (unsigned, the default) this property. If you have set Physical

Type to Float, this is selected. This property is used in conjunction with Sign

Orientation.

Sign EBCDIC

Custom

Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom

property is set, this indicates that the Sign EBCDIC Custom Overpunched

representation is to be used within an ASCII environment. If this check box is

not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate

only if the Sign Orientation property is set to Leading or Trailing (indicating that

the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,

if the Signed check box is not set).

688 Message Models

Property Type Meaning

Sign

Orientation

Enumerated

type

If you have set Physical Type to External Decimal and you have selected Signed,

choose from the following options that represent the COBOL options for

displaying numeric data:

v Leading Overpunched. This sets a bit in the first byte if the number is negative.

No setting is made if the number is positive. For example, the ASCII

hexadecimal representation of the number 22 is x’3232’. Using this option, the

number +22 would be x’3232’ and the number -22 would be x’7232’. This is

the default value.

v Leading Separate. This sets the first byte of the element to ’+’ if the number is

positive and to ’-’ if the number is negative. For this option, the length must

include the sign byte.

v Trailing Overpunched. This sets a bit in the last byte if the number is

negative. No setting is made if the number is positive. Using this option, the

number +22 would be x’3232’ and the number -22 would be x’3272’.

v Trailing Separate. This sets the last byte of the element to ’+’ if the number

is positive and to ’-’ if the number is negative. For this option, the length must

include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set

for you.

Virtual Decimal

Point

Integer Specify the number of places to the left (for a positive value) or right (for a

negative value) that a decimal point should be moved from its assumed position.

For example, a float element containing 1234 with a Virtual Decimal value of 3 is

1.234.

This is not applicable if you have set Physical Type to Float.

Justification Enumerated

type

If you have set the Physical Type property to External Decimal, select Left

Justify or Right Justify (the default value) from the list. If you have selected

another value for Physical Type, this is property is inactive.

Message model reference information 689

Property Type Meaning

Padding

Character

String The padding character is used to fill out the remaining character positions when

the string length is less than the specified string size. If you have set the Physical

Type property to Extended Decimal, and the Justification property is either Left

Justify or Right Justify, specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal

value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM

element depends on the padding character that is required and whether the

padding character is to be subject to data conversion. In most cases, the

specification of a padding character in quotqtion marks is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated. For example, when converting

from ASCII to the code page 500, if you have specified U+0008 as your padding

character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC

representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should

ensure that the converted value of the padding character is valid for this code

page. If the padding character cannot be represented in the target code page, it

is replaced by a substitution character. The substitution character is fixed and its

value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the

hexadecimal or decimal format can be used. This gives the option of specifying

an absolute value as a padding character that is inserted directly into the output

message. If this format is used, you should still aim to ensure that this value is

valid for the code page of any output messages that are created using these

MRM definitions.

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the displayed list:

v NULLPadFill. This is valid only if Physical Type is External Decimal. The field

is filled with the value specified by the Padding Character. Encoding Null Value

must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the

required format for the field. This is the default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a

string. You can specify a nonnumeric value for Encoding Null Value.

v NULLLiteralFill. The field is filled with the value specified by the Encoding

Null Value. Encoding Null Value must resolve to a single character.

690 Message Models

Property Type Meaning

Encoding Null

Value

String The use of this property depends on the Encoding Null property, described

above, with the exception of NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must resolve

to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is

any alphanumeric character.

v Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal

value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal format.

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

 Property Type Meaning

Repeat

Reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the displayed list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

Message model reference information 691

CWF properties for embedded simple type integer types:

The Custom Wire Format properties described here apply to:

v Objects: Embedded simple types

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select one of the following from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. This equates to the COMP-3 data type in COBOL.

v External Decimal. This equates to the data type PIC 9 USAGE DISPLAY in

COBOL.

The representation of numeric elements can be affected by the Encoding and

CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer and Packed Decimal are

represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in

the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the

displayed list.

v If you have set Physical Type to Packed Decimal, enter a value between 1 and

6.

v If you have set Physical Type to Extended Decimal, enter a value between 1 and

11.

692 Message Models

Property Type Meaning

Length Units Enumerated

type

Select the unit of length for the element or attribute. Select one of the following

options from the displayed list (some physical types do not offer all of these

options):

v Bytes.

v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads

one character at a time and determines whether the character comprises

one or more bytes.
v Character Units. This specifies that the size of each character (in bytes) is

determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to

Characters.

– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest

character unit that the code page supports. However, this means that a

message must contain only these characters if it is to be processed correctly.

For example, in code page ″UTF-8″ (CCSID 1208), the minimum character

unit is one byte; therefore, the parser can make a single read (of the

number of bytes specified by the Length property) to fetch the entire

message. The message must contain only characters that are encoded in

1-byte units.
v End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count.

The default is Bytes.

Signed Check box Select (the default) or clear this property. This property is used in conjunction

with Sign Orientation.

Sign EBCDIC

Custom

Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom

property is set, this indicates that the Sign EBCDIC Custom Overpunched

representation is to be used within an ASCII environment. If this check box is

not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate

only if the Sign Orientation property is set to Leading or Trailing (indicating that

the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,

if the Signed check box is not set).

Message model reference information 693

Property Type Meaning

Sign

Orientation

Enumerated

type

If you have set Physical Type to External Decimal and you have selected Signed,

choose from the following options that represent the COBOL options for

displaying numeric data:

v Leading Overpunched. This sets a bit in the first byte if the number is negative.

No setting is made if the number is positive. For example, the ASCII

hexadecimal representation of the number 22 is x’3232’. Using this option, the

number +22 would be x’3232’ and the number -22 would be x’7232’. This is

the default value.

v Leading Separate. This sets the first byte of the element to ’+’ if the number is

positive and to ’-’ if the number is negative. For this option, the length must

include the sign byte.

v Trailing Overpunched. This sets a bit in the last byte if the number is

negative. No setting is made if the number is positive. Using this option, the

number +22 would be x’3232’ and the number -22 would be x’3272’.

v Trailing Separate. This sets the last byte of the element to ’+’ if the number

is positive and to ’-’ if the number is negative. For this option, the length must

include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set

for you.

Justification Enumerated

type

If you have set the Physical Type property to External Decimal, select Left

Justify or Right Justify (the default value) from the list. If you have selected

another value for Physical Type, this is property is inactive.

694 Message Models

Property Type Meaning

Padding

Character

String The padding character is used to fill out the remaining character positions when

the string length is less than the specified string size. If you have set the Physical

Type property to Extended Decimal, and the Justification property is either Left

Justify or Right Justify, specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal

value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM

element depends on the padding character that is required and whether the

padding character is to be subject to data conversion. In most cases, the

specification of a padding character in quotqtion marks is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated. For example, when converting

from ASCII to the code page 500, if you have specified U+0008 as your padding

character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC

representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should

ensure that the converted value of the padding character is valid for this code

page. If the padding character cannot be represented in the target code page, it

is replaced by a substitution character. The substitution character is fixed and its

value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the

hexadecimal or decimal format can be used. This gives the option of specifying

an absolute value as a padding character that is inserted directly into the output

message. If this format is used, you should still aim to ensure that this value is

valid for the code page of any output messages that are created using these

MRM definitions.

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the displayed list:

v NULLPadFill. This is valid only if Physical Type is External Decimal. The field

is filled with the value specified by the Padding Character. Encoding Null Value

must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the

required format for the field. This is the default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a

string. You can specify a nonnumeric value for Encoding Null Value.

v NULLLiteralFill. The field is filled with the value specified by the Encoding

Null Value. Encoding Null Value must resolve to a single character.

Message model reference information 695

Property Type Meaning

Encoding Null

Value

String The use of this property depends on the Encoding Null property, described

above, with the exception of NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must resolve

to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is

any alphanumeric character.

v Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal

value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal format.

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

 Property Type Meaning

Repeat

Reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the displayed list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

696 Message Models

CWF properties for embedded simple type string types:

The Custom Wire Format properties described here apply to:

v Objects: Embedded simple types

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select one of the following from the displayed list:

v Fixed Length String. The element’s length is determined by other length

properties below.

v Length Encoded String 1. The element’s first byte contains the length of the

string following the length byte in length units. The maximum length of a

Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The element’s first two bytes contain the length of

the string following the 2 length bytes in length units. The maximum length

of a Length Encoded String 2 element is 65535 length units. The two length

bytes are in the format of the WebSphere MQ queue manager Encoding.

v Null Terminated String. The string ends with the hexadecimal NULL

character, X’00’.

The default is Fixed Length String.

Length Button and

Integer

If you have selected a Physical Type of Fixed Length String or Binary, and have

selected the length to be defined by Length, enter the number of length units for

the element.

The minimum value that you can specify is 0 (zero), the maximum value that

you can specify is 2147483647

The default value is 0 (zero).

Length

Reference

Button and

Enumerated

type

If you have selected the length to be defined by Length Reference, select the name

of the integer object that specifies the length of this object. Make your selection

from the displayed list of integer objects that are defined as siblings of the

current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page

108.

Message model reference information 697

Property Type Meaning

Length Units Enumerated

type

Select the unit of length for the element or attribute. Select one of the following

options from the displayed list (some physical types do not offer all of these

options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads

one character at a time and determines whether the character comprises

one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is

determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to

Characters.

– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest

character unit that the code page supports. However, this means that a

message must contain only these characters if it is to be processed correctly.

For example, in code page ″UTF-8″ (CCSID 1208), the minimum character

unit is one byte; therefore, the parser can make a single read (of the

number of bytes specified by the Length property) to fetch the entire

message. The message must contain only characters that are encoded in

1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count or Length

Reference property.

The default is Bytes.

Justification Enumerated

type

If you have set the Physical Type property to Fixed Length String, select Left

Justify (the default value) or Right Justify from the list. If you have selected

another value for Physical Type, this is property is inactive.

698 Message Models

Property Type Meaning

Padding

Character

String If you have set the Physical Type property to Fixed Length String, and the

Justification property is either Left Justify or Right Justify, this property is

applicable.

When writing an output message, use the padding character to fill out the

remaining character positions when the string length is less than the length

implied by the Length or Length Reference property. Whether the string is padded

from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end

of the string. Whether the string is trimmed from the left or the right is

governed by the Justification property.

Specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal

value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM

element depends on the padding character that is required and whether the

padding character is to be subject to data conversion. In most cases, the

specification of a padding character in quotqtion marks is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated. For example, when converting

from ASCII to the code page 500, if you have specified U+0008 as your padding

character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC

representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should

ensure that the converted value of the padding character is valid for this code

page. If the padding character cannot be represented in the target code page, it

is replaced by a substitution character. The substitution character is fixed and its

value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the

hexadecimal or decimal format can be used. This gives the option of specifying

an absolute value as a padding character that is inserted directly into the output

message. If this format is used, you should still aim to ensure that this value is

valid for the code page of any output messages that are created using these

MRM definitions.

Message model reference information 699

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the displayed list:

v NULLPadFill. This is valid only if Physical Type is Fixed Length String. The

field is filled with the value specified by the Padding Character. Encoding Null

Value must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the

required format for the field. This is the default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a

string.

v NULLLiteralFill. The field is filled with the value specified by the Encoding

Null Value. Encoding Null Value must resolve to a single character.

Encoding Null

Value

STRING The use of this property depends on the Encoding Null property, described

above. If specified, its length must be equal to the length of the string element,

with the exception of NULLLiteralFill.

The default value is empty (not set).

If you set the Encoding Null property to NULLLiteralFill, the value must resolve

to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY where YY is a

hexadecimal value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value

specified in hexadecimal format.

Byte alignment

 Property Type Meaning

Byte Alignment Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:

v 1 Bytes. This is the default value.

v 2 Bytes

v 4 Bytes

v 8 Bytes

v 16 Bytes

Leading Skip

Count

Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a field

defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte

boundary. Specify the number of bytes to skip before reading or writing this

object. When an output message is written, Skip Count bytes are assigned the

value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip

Count

Integer Specify the number of bytes to skip after reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating

structure containing fields which require alignment on a 2, 4, 8 or 16 byte

boundary. When an output message is written, Skip Count bytes are assigned

the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

700 Message Models

Occurrences

 Property Type Meaning

Repeat

Reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of

occurrences is given dynamically by a field earlier in the message. Select an

integer object from the displayed list of integer objects that occur before this

object in the structure of the message. The value of the selected integer specifies

the number of occurrences of this object. If no objects are listed, there are no

integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs

logical property when parsing and writing the message, but not for validation of

the message.

Embedded simple type XML properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - ComIbmMrm

 _AnonBinary

Boolean types

 - ComIbmMrm

 _AnonBoolean

DateTime types

 - ComIbmMrm

 _AnonDate

 - ComIbmMrm

 _AnonDateTime

 - ComIbmMrm

 _AnonGDay

 - ComIbmMrm

 _AnonGMonth

 - ComIbmMrm

 _AnonGMonthDay

 - ComIbmMrm

 _AnonGYear

 - ComIbmMrm

 _AnonGYearMonth

 - ComIbmMrm

 _AnonTime

Decimal types

 - ComIbmMrm

 _AnonDecimal

Float types

 - ComIbmMrm

 _AnonFloat

Integer types

 - ComIbmMrm

 _AnonInt

String types

 - ComIbmMrm

 _AnonString

XML Wire Format properties for embedded simple type binary types:

The XML wire format properties described here apply to:

v Objects: Embedded simple types

Message model reference information 701

Physical representation

 Property Type Meaning

Encoding String Select one of the following values from the drop-down list: :

v CDatahex (the default). Hexadecimal values in this field are specified with the

CDATA qualifier, for example <e1><![CDATA[62]]></e1>

v hex. Hexadecimal values in this field are specified as digits only, for example

<e1>62</e1>.

v base64. Values in this field are specified as digits only, coded in base 64.

XML wire format properties for embedded simple type Boolean types:

The XML wire format properties described here apply to:

v Objects: Embedded simple types

There are no properties to show.

XML wire format properties for embedded simple type dateTime types:

The XML wire format properties described here apply to:

v Objects: Embedded simple types

Physical representation

 Property Type Meaning

DateTime

Format

String Specify a format string that specifies the rendering of the value for dateTime

elements.

The default dateTime format is dependent on the logical type of the object. For

information about the defaults for the dateTime format according to the logical

type see “DateTime defaults by logical type” on page 770.

See “DateTime formats” on page 763 for details of dateTime formats.

XML wire format properties for embedded simple type decimal types:

The XML Wire Format properties described here apply to:

v Objects: Embedded simple types

There are no properties to show.

XML wire format properties for embedded simple type float types:

The XML wire format properties described here apply to:

v Objects: Embedded simple types

There are no properties to show.

XML wire format properties for embedded simple type integer types:

The XML wire format properties described here apply to:

v Objects: Embedded simple types

There are no properties to show.

702 Message Models

XML wire format properties for embedded simple type string types:

The XML wire format properties described here apply to:

v Objects: Embedded simple types

There are no properties to show.

Embedded simple type TDS properties:

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link

for the object type from the following table.

 Binary types

 - ComIbmMrm

 _AnonBinary

Boolean types

 - ComIbmMrm

 _AnonBoolean

DateTime types

 - ComIbmMrm

 _AnonDate

 - ComIbmMrm

 _AnonDateTime

 - ComIbmMrm

 _AnonGDay

 - ComIbmMrm

 _AnonGMonth

 - ComIbmMrm

 _AnonGMonthDay

 - ComIbmMrm

 _AnonGYear

 - ComIbmMrm

 _AnonGYearMonth

 - ComIbmMrm

 _AnonTime

Decimal types

 - ComIbmMrm

 _AnonDecimal

Float types

 - ComIbmMrm

 _AnonFloat

Integer types

 - ComIbmMrm

 _AnonInt

String types

 - ComIbmMrm

 _AnonString

TDS properties for embedded simple type binary types:

The TDS properties described here apply to:

v Objects: Embedded simple types

Message model reference information 703

Field identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Repeating

Element

Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element

Separation property of the parent group or complex type is set to All Elements

Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging

standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is

not HL7, and the maximum number of repeats is fixed, the delimiter of the

parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Physical representation

 Property Type Meaning

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

The default is dependent on the setting of the message set property Derive default

length from logical type. If Derive default length from logical type is selected, the

default value is derived from any length or maxLength value constraint (schema

facet) on the object’s simple type.

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

TDS properties for embedded simple type Boolean types:

704 Message Models

The TDS properties described here apply to:

v Objects: Embedded simple types

Field identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Repeating

Element

Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element

Separation property of the parent group or complex type is set to All Elements

Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging

standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is

not HL7, and the maximum number of repeats is fixed, the delimiter of the

parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Binary. The data is in bit string format.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Message model reference information 705

Property Type Meaning

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

TDS properties for embedded simple type dateTime types:

The TDS properties described here apply to:

v Objects: Embedded simple types

Field identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Repeating

Element

Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element

Separation property of the parent group or complex type is set to All Elements

Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging

standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is

not HL7, and the maximum number of repeats is fixed, the delimiter of the

parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

706 Message Models

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The data’s first byte contains the length (in length

units) of the data string that follows the length byte. The maximum length of

a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The data’s first two bytes contains the length (in

length units) of the data string that follows the two length bytes. The

maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL

character, X’00’.

v Packed Decimal. The data is a packed decimal number that equates to the

COMP-3 data type in COBOL.

v Binary. The data is in bit string format.

v Time Seconds. This value supports C time_t, and Java Date and Time objects.

It is valid only if the DateTime Format property represents numeric-only data.

v Time Milliseconds. This value supports C time_t, and Java Date and Time

objects. It is valid only if the DateTime Format property represents

numeric-only data.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

Justification Enumerated

type

Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output

as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Message model reference information 707

Property Type Meaning

Padding

Character

String Specify the padding character that is to be inserted or interpreted on the writing

or parsing of a fixed length object if the data is less than the fixed length value.

This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a

hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

The choice of which of these padding character forms is used for an MRM

element depends on the padding character required and whether the padding

character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the

hexadecimal format can be used. This gives the option of specifying a padding

character that is inserted directly into the output message. If this format is used,

you must ensure that this hexadecimal value is valid for the code page of any

output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure

that the converted value of the padding character is valid for this code page. For

example, when converting from ASCII to code page 500, if you have specified

the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the

ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must

not be greater than U+007F. Note that if you enter a Unicode mnemonic or

numeric value, it is considered to be the character that is represented by that

number in UTF-8.

DateTime

Format

String Specify a template for date and time.

The default DateTime format is dependent on the logical type of the object. For

information about the defaults for the dateTime format according to the logical

type see “DateTime defaults by logical type” on page 770.

See “DateTime formats” on page 763 for details of date and time formats.

708 Message Models

Property Type Meaning

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default

value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an

actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that

is directly substituted as if it is a string. For dateTime elements, use this

option if you want to use the Encoding Null Value property to test or compare

the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified

by the Encoding Null Value property. Encoding Null Value must resolve to a

single character.

The option that you select determines the value that you must set for the

property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”

on page 751.

Encoding Null

Value

String The use of this property depends on the Encoding Null property that is described

above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,

the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 763.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;

for example, 1970-12-01.

TDS properties for embedded simple type decimal types:

The TDS properties described here apply to:

v Objects: Embedded simple types

Message model reference information 709

Field identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Repeating

Element

Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element

Separation property of the parent group or complex type is set to All Elements

Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging

standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is

not HL7, and the maximum number of repeats is fixed, the delimiter of the

parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Packed Decimal. The data is a packed decimal number that equates to the

COMP-3 data type in COBOL.

v TLOG Specific - this option can be selected only if the Message Standard

property of the message set is TLOG. This option indicates that the format of

the data is specific to the TLOG messaging standard.

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type

PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

710 Message Models

Property Type Meaning

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from

logical type is selected, and the Physical type is ’Character’, the default value is

derived from any totalDigits value constraint (schema facet) or, if none, any

minInclusive, maxInclusive, minExclusive, or maxExclusive value constraints

(schema facets), on the simple type.

Justification Enumerated

type

Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output

as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Message model reference information 711

Property Type Meaning

Padding

Character

String Specify the padding character that is to be inserted or interpreted on the writing

or parsing of a fixed length object if the data is less than the fixed length value.

This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a

hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

The choice of which of these padding character forms is used for an MRM

element depends on the padding character required and whether the padding

character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the

hexadecimal format can be used. This gives the option of specifying a padding

character that is inserted directly into the output message. If this format is used,

you must ensure that this hexadecimal value is valid for the code page of any

output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure

that the converted value of the padding character is valid for this code page. For

example, when converting from ASCII to code page 500, if you have specified

the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the

ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must

not be greater than U+007F. Note that if you enter a Unicode mnemonic or

numeric value, it is considered to be the character that is represented by that

number in UTF-8.

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

712 Message Models

Numeric representation

 Property Type Meaning

Virtual Decimal

Point

Button and

Integer

Specify a nonzero integer that represents the position of an implied decimal

point within a number, or specify 0 (zero, the default) to use the formatting of

Float or Decimal numbers as specified by the Precision property.

If you specify a positive integer, the position of the decimal point is moved left

from the right hand side of the number. For example, if you specify 3, the

decimal value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is moved

right from the right hand side of the number. For example, if you specify -3, the

decimal value 1234 represents 1 234 000

Precision Button and

Integer

This property is applicable only if Physical Type is Text. It is used if the value of

the Virtual Decimal Point property is 0, which indicates that the decimal point is

present in the data. It deals with truncation, and specifies how many digits

should follow the decimal point.

Either specify a number of digits:

v If you set Precision to 0, data is truncated so that the fractional part is lost. For

example, the value 123.45 is truncated to 123.

v If you set Precision to a number less than the number of fractional digits, data

is truncated. For example, the value 123.4567 is truncated to 123.45 if you set

Precision to 2.

v If you set Precision to a number greater than the number of fractional digits,

the value is padded with extra zeros. For example, the value 12.345 is padded

to 12.34500 if you set Precision to 5.

Or select one of the following from the drop-down list:

v All Significant Digits - decimal separator only required if fractional

digits (the default): all significant digits are written to the output bit stream,

and there is no decimal separator if there are no fractional digits.

v Explicit Decimal Separator - decimal separator always required: all

significant digits are written to the output bit stream and the decimal

separator is always included, even if there are no fractional digits. The

decimal separator must be present in the input bit stream, even if no fractional

digits are present.

Sign

Orientation

Enumerated

type

The values that you can choose for this property are:

v Leading Separate

v Trailing Separate

v Leading Overpunched

v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External

Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading

Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is

selected, the only valid values of Sign Orientation are Leading Overpunched and

Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric

value. If no value is set, ″+″ is assumed. The positive sign is not written when

creating an output message; it is used only to recognize the positive sign when

parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected

Message model reference information 713

Property Type Meaning

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric

value. If no value is set, ″-″ is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default

value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an

actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that

is directly substituted as if it is a string. For dateTime elements, use this

option if you want to use the Encoding Null Value property to test or compare

the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified

by the Encoding Null Value property. Encoding Null Value must resolve to a

single character.

The option that you select determines the value that you must set for the

property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”

on page 751.

Encoding Null

Value

String The use of this property depends on the Encoding Null property that is described

above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,

the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 763.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;

for example, 1970-12-01.

TDS properties for embedded simple type float types:

The TDS properties described here apply to:

v Objects: Embedded simple types

714 Message Models

Field identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Repeating

Element

Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element

Separation property of the parent group or complex type is set to All Elements

Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging

standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is

not HL7, and the maximum number of repeats is fixed, the delimiter of the

parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Float. This equates to the data type FLOAT or DOUBLE in C, or the COMP-1

or COMP-2 numeric data type in COBOL.

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. The data is a packed decimal number that equates to the

COMP-3 data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type

PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

Message model reference information 715

Property Type Meaning

Justification Enumerated

type

Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output

as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Padding

Character

String Specify the padding character that is to be inserted or interpreted on the writing

or parsing of a fixed length object if the data is less than the fixed length value.

This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a

hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

The choice of which of these padding character forms is used for an MRM

element depends on the padding character required and whether the padding

character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the

hexadecimal format can be used. This gives the option of specifying a padding

character that is inserted directly into the output message. If this format is used,

you must ensure that this hexadecimal value is valid for the code page of any

output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure

that the converted value of the padding character is valid for this code page. For

example, when converting from ASCII to code page 500, if you have specified

the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the

ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must

not be greater than U+007F. Note that if you enter a Unicode mnemonic or

numeric value, it is considered to be the character that is represented by that

number in UTF-8.

716 Message Models

Property Type Meaning

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

Numeric representation

 Property Type Meaning

Virtual Decimal

Point

Button and

Integer

Specify a nonzero integer that represents the position of an implied decimal

point within a number, or specify 0 (zero, the default) to use the formatting of

Float or Decimal numbers as specified by the Precision property.

If you specify a positive integer, the position of the decimal point is moved left

from the right hand side of the number. For example, if you specify 3, the

decimal value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is moved

right from the right hand side of the number. For example, if you specify -3, the

decimal value 1234 represents 1 234 000

Message model reference information 717

Property Type Meaning

Precision Button and

Integer

This property is applicable only if Physical Type is Text. It is used if the value of

the Virtual Decimal Point property is 0, which indicates that the decimal point is

present in the data. It deals with truncation, and specifies how many digits

should follow the decimal point.

Either specify a number of digits:

v If you set Precision to 0, data is truncated so that the fractional part is lost. For

example, the value 123.45 is truncated to 123.

v If you set Precision to a number less than the number of fractional digits, data

is truncated. For example, the value 123.4567 is truncated to 123.45 if you set

Precision to 2.

v If you set Precision to a number greater than the number of fractional digits,

the value is padded with extra zeros. For example, the value 12.345 is padded

to 12.34500 if you set Precision to 5.

Or select one of the following from the drop-down list:

v All Significant Digits - decimal separator only required if fractional

digits (the default): all significant digits are written to the output bit stream,

and there is no decimal separator if there are no fractional digits.

v Explicit Decimal Separator - decimal separator always required: all

significant digits are written to the output bit stream and the decimal

separator is always included, even if there are no fractional digits. The

decimal separator must be present in the input bit stream, even if no fractional

digits are present.

v Exponential Notation - Example ″1.23456e002″: data is written out to the bit

stream as a signed value having the format [sign1]a.bbbe[sign2]ccc where:

– [sign1] is the value of Negative Sign if the value is negative

– a is a single decimal digit

– bbb is one or more decimal digits

– [sign2] is the value of Negative Sign if the exponent is negative

– ccc is exactly three decimal digits (the exponent)

[sign1] and [sign2] are absent if the value and exponent, respectively, are

positive.

For example, the value -123.456 is represented as -1.23456e002 and the value

0.00012 is represented as 1.2e-004 in the output bit stream (assuming that the

value of Negative Sign is ″-″, and the value of Sign Orientation is Leading).

The value -0.00012 is represented as 1.2*e*004 if Negative Sign is ″*″ and Sign

Orientation is Trailing.

Sign

Orientation

Enumerated

type

The values that you can choose for this property are:

v Leading Separate

v Trailing Separate

v Leading Overpunched

v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External

Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading

Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is

selected, the only valid values of Sign Orientation are Leading Overpunched and

Trailing Overpunched.

718 Message Models

Property Type Meaning

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric

value. If no value is set, ″+″ is assumed. The positive sign is not written when

creating an output message; it is used only to recognize the positive sign when

parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric

value. If no value is set, ″-″ is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default

value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an

actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that

is directly substituted as if it is a string. For dateTime elements, use this

option if you want to use the Encoding Null Value property to test or compare

the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified

by the Encoding Null Value property. Encoding Null Value must resolve to a

single character.

The option that you select determines the value that you must set for the

property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”

on page 751.

Encoding Null

Value

String The use of this property depends on the Encoding Null property that is described

above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,

the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 763.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;

for example, 1970-12-01.

TDS properties for embedded simple type integer types:

The TDS properties described here apply to:

v Objects: Embedded simple types

Message model reference information 719

Field identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Repeating

Element

Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element

Separation property of the parent group or complex type is set to All Elements

Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging

standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is

not HL7, and the maximum number of repeats is fixed, the delimiter of the

parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. The data is a packed decimal number that equates to the

COMP-3 data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type

PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

720 Message Models

Property Type Meaning

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from

logical type is selected, and the Physical type is ’Character’, the default value is

derived from any totalDigits value constraint (schema facet) or, if none, any

minInclusive, maxInclusive, minExclusive, or maxExclusive value constraints

(schema facets), on the simple type.

Justification Enumerated

type

Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output

as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Message model reference information 721

Property Type Meaning

Padding

Character

String Specify the padding character that is to be inserted or interpreted on the writing

or parsing of a fixed length object if the data is less than the fixed length value.

This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a

hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

The choice of which of these padding character forms is used for an MRM

element depends on the padding character required and whether the padding

character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the

hexadecimal format can be used. This gives the option of specifying a padding

character that is inserted directly into the output message. If this format is used,

you must ensure that this hexadecimal value is valid for the code page of any

output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure

that the converted value of the padding character is valid for this code page. For

example, when converting from ASCII to code page 500, if you have specified

the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the

ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must

not be greater than U+007F. Note that if you enter a Unicode mnemonic or

numeric value, it is considered to be the character that is represented by that

number in UTF-8.

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

722 Message Models

Numeric representation

 Property Type Meaning

Sign

Orientation

Enumerated

type

The values that you can choose for this property are:

v Leading Separate

v Trailing Separate

v Leading Overpunched

v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External

Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading

Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is

selected, the only valid values of Sign Orientation are Leading Overpunched and

Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric

value. If no value is set, ″+″ is assumed. The positive sign is not written when

creating an output message; it is used only to recognize the positive sign when

parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric

value. If no value is set, ″-″ is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default

value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an

actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that

is directly substituted as if it is a string. For dateTime elements, use this

option if you want to use the Encoding Null Value property to test or compare

the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified

by the Encoding Null Value property. Encoding Null Value must resolve to a

single character.

The option that you select determines the value that you must set for the

property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”

on page 751.

Message model reference information 723

Property Type Meaning

Encoding Null

Value

String The use of this property depends on the Encoding Null property that is described

above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,

the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 763.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;

for example, 1970-12-01.

TDS properties for embedded simple type string types:

The TDS properties described here apply to:

v Objects: Embedded simple types

Field identification

 Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex

type or types in which the object is a child is Tagged Delimited, Tagged Fixed

Length, or Tagged Encoded Length, this property must contain a non-empty

value.

If the object is a complex element, and the Data Element Separation property of its

parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the

property can contain an empty value.

The value for this property must be unique for every element in the message set;

that is, no two elements in the message set can contain the same value for this

property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the

data in the message to be assigned to the object. This property is used when the

Data Element Separation method has been set to Use Data Pattern in the complex

type. See “Regular expression syntax” on page 759 for more details.

Interpret

Element Value

Enumerated

type

Specify whether values stored within this object must be interpreted as having

significance for the parser and, if so, the type of interpretation that must occur.

This interpretation is generally standard-specific and is therefore hard-coded.

The possible values for this property are:

v None (the default value)

v EDIFACT Service String

v X12 Service String

v Message Key

v EDIFACT Syntax Level ID

v HL7 Service String

v HL7 Field Separator

724 Message Models

Property Type Meaning

Repeating

Element

Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element

Separation property of the parent group or complex type is set to All Elements

Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging

standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is

not HL7, and the maximum number of repeats is fixed, the delimiter of the

parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Physical representation

 Property Type Meaning

Physical Type Enumerated

type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User

Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The data’s first byte contains the length (in length

units) of the data string that follows the length byte. The maximum length of

a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The data’s first two bytes contains the length (in

length units) of the data string that follows the two length bytes. The

maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL

character, X’00’.

v TLOG Specific - this option can be selected only if the Message Standard

property of the message set is TLOG. This option indicates that the format of

the data is specific to the TLOG messaging standard.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from

logical type is selected, and the Physical type is ’Character’, the default value is

derived from any length or maxLength value constraint (schema facet) on the

simple type.

Justification Enumerated

type

Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output

as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Message model reference information 725

Property Type Meaning

Padding

Character

String Specify the padding character that is to be inserted or interpreted on the writing

or parsing of a fixed length object if the data is less than the fixed length value.

This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is

any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a

hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value

specified in hexadecimal. The maximum length of the string that you can

enter is 10.

The choice of which of these padding character forms is used for an MRM

element depends on the padding character required and whether the padding

character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when

this padding character is used, it is converted to the target code page of the

output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding

character field, the Unicode mnemonic format can be used to specify the

required character. When used, this Unicode value is also converted to the target

code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the

hexadecimal format can be used. This gives the option of specifying a padding

character that is inserted directly into the output message. If this format is used,

you must ensure that this hexadecimal value is valid for the code page of any

output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure

that the converted value of the padding character is valid for this code page. For

example, when converting from ASCII to code page 500, if you have specified

the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the

ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must

not be greater than U+007F. Note that if you enter a Unicode mnemonic or

numeric value, it is considered to be the character that is represented by that

number in UTF-8.

Length

Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG

Specific. If set, this property takes precedence over any value in the Length

Units property.

Specify the identifier of a sibling integer object, the value of which determines

the length of the object in question. The sibling object must be defined before the

current object within the message structure.

For information about reordering elements, see “Reordering objects” on page

108.

726 Message Models

Representation of null values

 Property Type Meaning

Encoding Null Enumerated

type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default

value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an

actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that

is directly substituted as if it is a string. For dateTime elements, use this

option if you want to use the Encoding Null Value property to test or compare

the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified

by the Encoding Null Value property. Encoding Null Value must resolve to a

single character.

The option that you select determines the value that you must set for the

property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”

on page 751.

Encoding Null

Value

String The use of this property depends on the Encoding Null property that is described

above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,

the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 763.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;

for example, 1970-12-01.

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the

understanding of the function of that object. The documentation property is

available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric

characters.

Additional MRM domain information

This section provides additional information in relation to the MRM domain. This

information is categorized into:

v “MRM restrictions”

v “Data types for elements in an MRM message” on page 729

v “Additional CWF information” on page 730

v “Additional XML information” on page 731

v “Additional TDS information” on page 734

v “DateTime formats” on page 763

MRM restrictions

The MRM parser does not exactly follow the XML Schema 1.0 specification.

Message model reference information 727

However, the XMLNSC domain fully complies with the XML Schema 1.0

specification when validation is enabled. All of the constructs that are mentioned

in this topic are supported by the XMLNSC domain.

XML Schema features supported only in the message editor

The following features can be created and edited using the message editor, but are

not honored by the MRM domain.

v Pattern facet on non-string data types. The message broker only validates pattern

facets that are applied to simple types based on xsd:string.

v Whitespace facet. The message broker does not make use of the whitespace facet.

However, if necessary, whitespace facets can be included in the message model.

You can accurately control the processing of whitespace by using the settings on

the physical formats.

v ID attribute. The message model can contain attributes with the name ’id’, but

these will not be checked for uniqueness.

XML Schema exceptions

The following features can be created and edited using the message editor, but the

MRM domain processes them in a way that differs from the XML Schema

specification.

v Default and fixed values. The processing of default and fixed values depends on

the physical format in which the message is parsed. For details on how each

physical format uses these fields, refer to the concept topic Relationship to the

logical model for the relevant physical format.

v xsi:type attribute. The xsi:type attribute is not automatically processed by the

message broker. An attribute with the name ’xsi:type’ can be included in the

message model, and can be processed using a message flow.

Differences in validation

If validation is enabled in a message flow, the following features or scenarios are

not validated in exactly the same way as a validating XML parser would validate

them:

v Any Element or Any Attribute. If the message model contains a wildcard (’any

element’ or ’any attribute’), the message broker validates the ’processContents’

field as follows:

– skip. No checking is done; any element or attribute is allowed.

– lax. No checking is done; any element or attribute is allowed.

– strict. Any element or attribute in the same message set is allowed.

Note: If all of the definitions for a namespace are included within the same

message set, the validation of ’strict’ is the same as by a validating XML

parser.

v Element substitution and ’all’ groups. If an element can be substituted, and it

occurs within an ’all’ group, the following exceptions apply to the validation of

the element:

– The element is always validated as if it were optional.

– An input message is not rejected if more than one of the substitutions is used

in the same ’all’ group.

728 Message Models

Data types for elements in an MRM message

A parser is supplied for the body of a message in the MRM domain; it associates

each field with a specific data type.

The following table shows the mapping from XML Schema data types that you

have specified for elements in the MRM to data types used by the broker and

supported by ESQL. When you create an element, you might find that associated

value constraints are created to ensure a more accurate mapping of the XML

Schema type.

 Data type of the element ESQL data type in message tree

ANYURI CHARACTER

BASE64BIN BLOB

BOOLEAN BOOLEAN

BYTE INTEGER

DATE DATE

DATETIME TIMESTAMP

DECIMAL DECIMAL

DOUBLE FLOAT

DURATION INTERVAL

ENTITIES List of CHARACTER

ENTITY STRING

FLOAT FLOAT

GDAY DATE

GMONTH DATE

GMONTHDAY DATE

GYEAR DATE

GYEARMONTH DATE

HEXBINARY BLOB

ID CHARACTER

IDREF CHARACTER

IDREFS List of CHARACTER

INT INTEGER

INTEGER DECIMAL

LANGUAGE CHARACTER

LONG INTEGER

NAME CHARACTER

NCNAME CHARACTER

NEGATIVE_INTEGER DECIMAL

NMTOKEN CHARACTER

NMTOKENS List of CHARACTER

NON_NEGATIVE_INT DECIMAL

NON_POSITIVE_INTEGER DECIMAL

NORMAILIZED_STRING CHARACTER

Message model reference information 729

Data type of the element ESQL data type in message tree

NOTATION CHARACTER

POSITIVE_INTEGER DECIMAL

QNAME CHARACTER

SHORT INTEGER

STRING CHARACTER

TIME DATETIME

TOKEN CHARACTER

UNSIGNED_BYTE INTEGER

UNSIGNEDINT INTEGER

UNSIGNEDLONG DECIMAL

UNSIGNED_SHORT INTEGER

Simple type - list

In the message tree, a list type will be represented as a name node with an

anonymous value child for each list item. This allows repeating lists to be handled

without any loss of information. Repeating lists will appear as sibling name

elements, each of which has its own anonymous value child nodes for its

respective list items.

Additional CWF information

This section provides additional information in relation to the CWF physical

format. This information has been categorized into:

v “CWF data conversion”

v “CWF Null handling options” on page 731

CWF data conversion

You can convert an MRM message to a different code page or encoding, or both.

To do this, set the CodedCharSetId and Encoding fields in the Properties folder

and the message tree to the target value.

The data conversion that is performed is dependent on the simple type of each

element:

v Binary schema types: base64Binary, hexBinary objects are not converted.

v Boolean schema types: Boolean objects are not converted.

v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time objects are handled as binary, string, packed decimal,

timeSeconds, or timeMilliseconds.

If a dateTime element is defined as binary, it is not converted.

If it is defined as string, it is converted as a string element (described below).

If it is defined as a packed decimal value, it is converted as Decimal (described

below).

If it is defined as a timeSeconds or timeMilliseconds value, it is converted as

Integer (described below).

730 Message Models

v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong objects with Physical Type set

to External Decimal are converted to the target CodedCharSetId. Elements with

other Physical Type settings are converted to the target Encoding.

v Float schema types: double, float objects with Physical Type set to External

Decimal are converted to the target CodedCharSetId. Elements with other

Physical Type settings are converted to the target Encoding.

v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort objects with Physical Type set to External Decimal are converted

to the target CodedCharSetId. Elements with other Physical Type settings are

converted to the target Encoding.

v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,

QName, string, token objects are converted to the target CodedCharSetId (the

length of an object that has Physical Type of Length Encoded String 2 is

converted to the target Encoding).

CWF Null handling options

The Custom Wire Format (CWF) supports handling of null values within messages.

The Boolean Null Value that you set for the message set is applicable for all the

defined objects within the message set.

For more information about the use of nulls, refer to the properties Encoding Null

and Encoding Null Value for objects of each simple type, for example, “CWF

properties for element reference and local element dateTime types” on page 303.

Additional XML information

This section provides additional information in relation to the XML physical

format. This information has been categorized into:

v “XML Null handling options”

v “XML rendering options” on page 733

XML Null handling options

The XML Wire Format supports the handling of null values in messages. Encoding

null properties for XML are set only on the message set, and apply to all the

defined objects in the message set.

You can use the following two properties to represent the numeric and

non-numeric encoding for NULL in the XML Wire Format:

v Encoding Numeric Null

v Encoding Non-Numeric Null

These properties represent the numeric and non-numeric encoding for NULL

respectively.

v The numeric data types are:

– Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

– Float schema types: double, float

– Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort
v The non-numeric data types are:

– Binary schema types: base64Binary, hexBinary

Message model reference information 731

– Boolean schema types: Boolean

– DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

– String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS,

language, Name, NCName, NMTOKEN, NMTOKENS, normalizedString,

NOTATION, QName, string, token

Each of these encodings has the following enumerated values:

v NULLEmpty (default)

v NULLValue

v NULLXMLSchema

v NULLValueAttribute

v NULLAttribute (deprecated)

v NULLElement (deprecated)

You do not have to supply additional information for NULLEmpty,

NULLXMLSchema, and NULLValueAttribute, but if you select NULLValue,

NULLAttribute, or NULLElement, you must define further values to be assigned

to represent the NULL condition in the Encoding Numeric Null Value and

Encoding Non-Numeric Null Value message set properties.

The following table shows how each encoding works. For each encoding, the

example XML causes the element myElem to be given a value NULL.

 Encoding Numeric Null

Encoding Non-Numeric Null

Encoding Numeric Null Value

Encoding Non-Numeric Null Value

Example XML

NULLEmpty <myElem/>

<myElem></myElem>

NULLValue zzz <myElem>zzz</myElem>

NULLXMLSchema <myElem xsi:nil=’true’/>1 5

NULLValueAttribute <myElem></myElem>2

<parent id="myElem"></parent>3

NULLElement null4 <myElem><null/></myElem>

NULLAttribute null4 <myElem null=’true’/>1

Notes:

1. The attribute must evaluate to true, so the value must be true, 1, or the

Boolean True Value property.

2. This value is valid only for XMLElementAttrVal element rendering, as

specified in “XML rendering options” on page 733. Marking an element

as being rendered in this way, and setting it to null, is equivalent to

removing the attribute of the element that provides the element’s value.

3. This value is valid only for XMLElementAttrIdVal element rendering, as

specified in “XML rendering options” on page 733. Marking an element

as being rendered in this way, and setting it to null, is equivalent to

removing the attribute of the element that provides the element’s value,

but not removing the attribute that provides the element’s name.

4. Both NULLElement and NULLAttribute are deprecated. The element or

attribute name provided must not include a namespace URI or prefix. If

namespaces are enabled for the message set, the name matches any

namespace.

5. xsi:nil is not supported with complex elements of MRM-XML.

732 Message Models

|

XML Null value:

Unlike the TDS and CWF format, when you set the Encoding Null Num property to

NULLValue in XML, the value is taken as a literal. A direct comparison is done with

the text string, and no logical data conversion is performed.

For example, if you set the message set property Encoding Null Num to the value

NULLValue, and you set Encoding Null Num Val to 0, a FLOAT value of 0.0 or a

DECIMAL value of +0 does not match NULL.

If you set Encoding Null Num to NULLEmpty, this is equivalent to setting Encoding

Null Num to NULLValue and Encoding Null Num Val to ″″.

XML Null element and NullValAttr:

In XML there are two conventions for storing a value:

1. It can be stored as an XML attribute with a local element or element reference

property Render set to XMLAttribute, XMLElement, XMLElementAttrID,

XMLElementAttrVal, or XMLElementAttrIDVal. For example, <element1

val="12"></element1>.

2. It can be stored as XML content with a local element or element reference

property Render set to XMLElement. For example, <element1>12</element1>.

If you set the message set property Encoding Null Num to NULLElement, there is no

way to represent a null value for an attribute value. If a null value is present in the

tree (from ESQL or another format), an attribute with an empty string is written in

the output message.

Conversely, if you have set the message set property Encoding Null Num or

Encoding Null Non-Num to NULLValAttr, there is no way to represent a null value

for a value rendered as XML content. If a null value is present in the tree, when

writing an empty string, an element with no character content is written out

instead.

XML Null representation for Binary data:

If you use the Encoding Null Non-Num Val field in conjunction with a binary object

in XML, you need to type the desired hex value. Do not insert the word CDATA in

this field. If CDataHex is specified in the Encoding XML property, CDATA rendering

is used when writing the message.

XML rendering options

There are four properties on the XML layer that you can use to affect how the

XML messages are rendered. The table below shows examples of the values that

you can set for the Member Render property. In this table, the member element is

referred to as A, and has the value value of element. The parent is referred to as

X.

Message model reference information 733

The effect of rendering options on XML output

 To get XML rendered like this: Set this Member

Render property

value:

Set these other property values:

<X>

<A>value of element

</X>

XMLElement (the

default)

Member XML Name = A

<X A=’value of element’/> XMLAttribute Member XML Name = A

<X>

<Field id=’A’>value of element</Field>

</X>

XMLElementAttrID Member XML Name = Field

Member ID Attribute Name = id

Member ID Attribute Value = A

<X>

</X>

XMLElementAttrVal Member XML Name = A

Member Value Attribute Name = val

<X>

<Field id=’A’ val=’value of element’/>

</X>

XMLElementAttrIDVal Member XML Name = Field

Member ID Attribute Name = id

Member ID Attribute Value = A

Member Value Attribute Name = val

You should not have an element in the model that is rendered as an XML attribute.

This can result in incorrect validation of XML documents. Instead the element

should be redefined as an attribute in the model.

You should not have an attribute in the model that is rendered as an XML element.

This can result in incorrect validation of XML documents. Instead the attribute

should be defined as an element in the model.

There is one scenario where this technique is appropriate. When you have created

a message model by importing a C header file or a COBOL copybook, it will

consist entirely of elements. An XML form of this model can be created by simply

adding an XML physical format to the message set. If you are looking for certain

elements to appear as XML attributes in the XML form, then you can use the

Render property to achieve this.

Additional TDS information

This section provides additional information in relation to the TDS physical format.

It has been categorized into:

v “TDS Industry standard formats”

v “Message characteristics” on page 743

v “TDS Null handling options” on page 751

v “TDS message model integrity” on page 753

v “Using regular expressions to parse data elements” on page 757

TDS Industry standard formats

WebSphere Message Broker supports the ACORD AL3 , CSV, EDIFACT, FIX, HL7,

SWIFT, TLOG, and X12 standards. For some of these standards, default property

values are supplied as defined in “Default TDS message set properties” on page

167. If you use these defaults, or override some of these defaults where necessary,

you can model all these industry standard formats.

For more details about each of these industry standards see:

734 Message Models

v “EDIFACT messaging standard”

v “HL7 messaging standard” on page 736

v “SWIFT messaging standard” on page 737

v “TLOG messaging standard” on page 738

v “X12 messaging standard” on page 738

v “ACORD AL3 messaging standard” on page 738

v “FIX messaging standard” on page 740

v “CSV messaging standard” on page 740

These topics also contain details of any predefined message set solutions that are

available from IBM.

EDIFACT messaging standard:

EDIFACT is an international standard for EDI trading in commercial and

non-commercial sectors. EDIFACT has an underlying syntax, which is an ISO

standard. Within that syntax, there are directories of data elements, composite data

elements, segments, and messages. There are conventions for placing messages in

an “envelope” which identifies the sender and receiver and other attributes of a

transmission. For more information on the EDIFACT messaging standard, see the

United Nations Centre for Trade Facilitation and Electronic Business Web site and

click “Standards” on the left side.

EDIFACT messages can be modeled using the MRM Tagged/Delimited String

Format (TDS)

The high level structure of an EDIFACT message is shown below.

Message model reference information 735

http://www.unece.org/cefact/

You can model the top level interchange of an EDIFACT message by setting the

following properties for the complex type on which the message is based:

Composition = Sequence

Content Validation = Closed

Tag Data Separator = <EDIFACT_TAGDATA_SEP>

Data Element Separation = Tagged Delimited

Delimiter = <EDIFACT_CS>

Within an EDIFACT message, you can define the delimiters to be used in the

message itself using the optional Service String Advice element. To enable this

element to be recognized as an EDIFACT Service String, you must set the element

property Interpret Element Value to EDIFACT Service String. You must also set the

delimiter values to the mnemonic values that are defaulted when you set the

Message Standard property to EDIFACT.

A predefined message set solution for EDIFACT can be purchased from IBM.

HL7 messaging standard:

Hospitals, doctors, healthcare professionals and institutions require the ability to

exchange information. The HL7 messaging standard defines the structure and

content of the messages that are exchanged between systems that are working in

various administrative, financial, and clinical activities in the healthcare industry.

HL7 messages can be modeled using the MRM Tagged/Delimited String Format

(TDS).

Interchange

Service String Advice
UNA

Interchange Header
UNB

OR
Only Messages

Interchange Trailer
UNZ

Either Functional
Groups

` `

` `Functional Group Hdr-UNG Functional Group Trailer- UNEMessage Message

` `Message Header - UNH Data Segment Message Trailer- UNTData Segment

Value Component Data Element Component Data Element:

TAG + Composite Data ElementSimple Data Element `+

Code : Value

Value Value

736 Message Models

If you are working with HL7 messages you can specify the messaging standard at

the message set level and a number of the properties for this standard are set to

default settings for HL7 at the message set, complex type, group and element

levels.

A predefined message set solution for HL7 can be purchased from IBM.

SWIFT messaging standard:

SWIFT is a cooperative owned by the financial industry. It supplies secure,

standardized messaging services and interface software to financial institutions. For

more information on the SWIFT messaging standard, see the SWIFT community

Web site.

SWIFT FIN messages can be modeled using the MRM Tagged/Delimited String

Format (TDS).

The high-level block structure of a SWIFT message is shown in the table below.

SWIFT message high level block structure

 Block name Format

Basic header {1:...}

Application header {2:...}

User header {3:...}

Text {4:...}

Trailer {5:...}

When they are concatenated in a message, the blocks appear as:

{1:...}{2:...}{3:...}{4:...}{5:...}

You can model this setting the following type properties for the message:

Data Element Separation = Tagged Delimited

Group Indicator = {

Delimiter = }{

Group Terminator = }

Tag Data Separator = :

Each block is modeled as a complex element with element Tag property values of

1,2,3,4, and 5 respectively.

The text body of the message has the following format:

{4:

:20:X

:32A:940930USD1,

.....

:72:/A/

-}

You can model the complex type of the Text body by setting the following type

properties:

Message model reference information 737

http://www.swift.com
http://www.swift.com

Data Element Separation = Tagged Delimited

Group Indicator = <CR><LF>:

Delimiter = <CR><LF>:

Group Terminator = <CR><LF>-

Tag Data Separator = :

The Tag property of the elements within the body has values of 20, 32A, 72, and so

on.

A predefined message set solution for SWIFT can be purchased from IBM. See the

WebSphere MQ SupportPacs Web page.

TLOG messaging standard:

In the retail industry, a TLOG is the Point of Sale (POS) Transaction Log.

 The TLOG is a complete, detailed record of everything that occurs at the POS

terminal, including events that are not directly related to a sales transaction.

Typically, the precise TLOG record format is unique to a given POS application,

but the majority of formats are based on a tagged/delimited string format called

Raw TLOG.

Raw TLOG messages can be modeled using the MRM Tagged/Delimited String

Format (TDS).

If you are working with TLOG messages you can specify whether fields in the

messages are in character format or in a format that is specific to the message. This

requires that the Messaging Standard property (at the message set level) is set to

TLOG, and relevant objects that have this non-character based field in the TDS

message have their Physical Type property set to TLOG Specific.

Predefined message set solutions for TLOG can be purchased from IBM.

X12 messaging standard:

X12 is a standard for EDI trading in commercial and non-commercial sectors. X12

has an underlying syntax, which is an ANSI standard. Within that syntax, there are

directories of data elements, composite data elements, segments, and messages.

There are conventions for placing messages in an “envelope” which identifies the

sender and receiver and other attributes of a transmission. For more information

on the X12 messaging standard, see the ASC X12 Web site.

X12 messages can be modeled using the MRM Tagged/Delimited String Format

(TDS).

If you are working with X12 messages, you can define the delimiters to be used in

the message itself using the mandatory Interchange Control Header element. To

enable this element to be recognized as an X12 Service String, you must set the

element property Interpret Element Value to X12 Service String. You must also set

the delimiter values to the mnemonic values defaulted by setting the Message

Standard property to X12.

A predefined message set solution for X12 can be purchased from IBM.

ACORD AL3 messaging standard:

The basic structure of an ACORD AL3 message is shown below.

738 Message Models

http://www.ibm.com/software/integration/support/supportpacs
http://www.x12.org

Each group with an ACORD AL3 message has a header consisting of a one-digit

number, three letters, plus a three-digit total length count. These first seven

characters can be modeled as a tag. The data within the headers is fixed length.

Therefore the header type used for the overall message can be modeled as follows:

Data Element Separation = Tagged Fixed Length

Length of Tag = 7

The Transaction Group contains other groups, and is therefore modeled in the

same way as the overall message. The Message Header Group and the Message

Trailer group just consist of fixed length elements, therefore the type used can be

modeled as:

Data Element Separation = Fixed Length

There are two Data Element Separation methods particularly suited to handling

ACORD AL3 messages:

v Fixed Length AL3 supports basic handling of ACORD AL3 messages, including

situations where the message groups conform to a different version of the

ACORD AL3 standard. This is deprecated and will be removed in a future

version of the product and an alternative will be provided.

v Tagged Encoded Length supports handling of more sophisticated situations,

including messages containing message groups unknown to the message

dictionary.

The following sections describe their use:

v “Using Fixed Length AL3”

v “Using Tagged Encoded Length to support re-versioning” on page 740

Using Fixed Length AL3:

This is deprecated and will be removed in a future version of the product and an

alternative will be provided.

You can select the value Fixed Length AL3 for the Data Element Separation property

for complex types within a message that conforms to the ACORD AL3 standard.

This allows different versions of the ACORD AL3 standard to be supported using

the same message set. This value is similar to the value Fixed Length except for

the following:

v A question mark (?) in the left-most position of an element means that it is

skipped.

v A sequence of question marks is inserted for all missing optional elements.

v Unused trailing optional elements are truncated.

v Any <CR><LF> after the last element is ignored.

ACORD Message

Transaction Header Group Transaction Control Group (OPTIONAL) Data Group Segments (1 Or More)

Message Header Group Message Trailer GroupTransaction (1 or More)

Message model reference information 739

v The length field is extracted on input (and not put to the tree), and automatically

recalculated on output.

Using Tagged Encoded Length to support re-versioning:

The incoming message might contain a group that is no longer in use within the

current ACORD AL3 standards, and has therefore been deleted from the later

version of the standards. Similarly, the incoming bit stream might be from a later

version of the ACORD AL3 standards, and might contain a new group that was

not defined in earlier versions.

In order to correctly parse this self defining tag, the TDS parser needs to know the

length of the group it is parsing and skip to the end of all data associated with

that self defining tag.

Use the Data Element Separation method Tagged Encoded Length to handle these

situations. You will also need to set these properties:

v Length of Tag or Tag Data Separator, so that the TDS parser knows where tags

end.

v Length of Encoded Length, so that the TDS parser knows the size of the length

field.

v Extra Chars in Encoded Length, are used to indicate to the TDS parser how

many characters, apart from the data itself, are counted in the encoded length

field.

FIX messaging standard:

The Financial Information eXchange (FIX) Protocol is a series of messaging

specifications. It is a global language describing trade-related messages, and is

used for automated trading of securities, derivative, and other financial

instruments. For more information on the FIX protocol, see the FIX protocol Web

site.

FIX messages can be modeled using the MRM Tagged/Delimited String Format

(TDS).

A predefined message set solution for FIX can be purchased from IBM. See the

WebSphere MQ SupportPacs Web page.

CSV messaging standard:

The comma separated value (CSV) format is a typical format for describing data in

tables or spreadsheets.

 The CSV format is used to exchange data between database applications or

spreadsheet applications. Although the CSV format is widely used, a definitive

specification has not been formally documented. However, these are some of the

rules that characterize the CSV format:

v Data fields are separated by commas, and groups of data fields are separated by

repeating field delimiters (for example, the <CR><LF> combination of ASCII

characters).

Here is a typical CSV message:

12345,Smith,John,"3, North Street"<CR><LF>

41352,Jones,Ivor,"5, South Road"<CR><LF>

53421,Edwards,David,"10, East Lane"

740 Message Models

http://www.fixprotocol.org
http://www.fixprotocol.org
http://www.ibm.com/software/integration/support/supportpacs

v A comma that occurs within a data field is regarded as part of the data, rather

than as a field separator, only if the comma is preceded by a special escape

character (for example, a backslash (\)), or is surrounded by quotation marks (″).

For example, Clapton, Eric, 461\, Ocean Boulevard, Scunthorpe and Clapton,

Eric, "461, Ocean Boulevard", Scunthorpe are equivalent; they both define

data that contains four fields.

v A quotation mark character (″) that is within a data field that is enclosed within

quotation marks must always be ’escaped’ by another instance of the quotation

mark character.

For example, xx"xx must appear as "xx""xx", and "xxxx" must appear as

"""xxxx""".

v In an input message, any variable length data field can be enclosed within

quotation mark characters, regardless of whether the field contains any special

characters such as quotation mark characters, escape characters, or other

reserved characters.

The quotation mark characters must occur at the start and end of the data, are

stripped from the data when the field is parsed, and are not added to the output

tree. For example, the data A,"B",C results in an output tree that contains the

values A, B, and C.

v If a data field contains two quotation mark characters and nothing else, the

quotation mark characters are removed by the parser and the data field is

processed in the same way as an empty field.

v In an output message, any data field that contains a quotation mark character, or

any of the special characters that are specified in the TDS message set Reserved

Characters property, has quotation mark characters added.

CSV messages can be modeled using the MRM Tagged/Delimited String Format

(TDS). The default message set property values are shown in “Default TDS

message set properties” on page 167.

The Comma Separated Value (CSV) sample is a message set application that shows

you how to model some typical CSV message variants, and how to transform the

sample CSV messages to and from XML. The XML messages illustrate the logical

structure of the data after it has been parsed.You can view samples only when you

use the information center that is integrated with the Message Broker Toolkit.

You can also import a sample CSV message model using the New Message

Definition File From IBM Supplied Message wizard.

IDoc messaging standard:

WebSphere Message Broker can receive data from SAP systems in a variety of

ways.

Two such ways are:

v ALE IDocs exported from SAP across the WebSphere MQ Link for R3.

v File IDocs exported from SAP to the file system.

Such IDocs are a fixed length text format, and can be modeled using the MRM

domain Tagged/Delimited String Format (TDS).

This supersedes the use of the IDOC domain, which is deprecated.

Message model reference information 741

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.csv.doc/doc/overview.htm

Note: For SAP data that is received from the WebSphere Adapter for SAP, use the

DataObject domain.

Building the MRM TDS model for an IDoc:

The MRM domain Tagged/Delimited String (TDS) physical format is suitable for

parsing and writing SAP ALE IDocs and SAP File IDocs. ALE IDoc messages are

exported from SAP across the WebSphere MQ Link for R3. File IDocs are exported

from SAP to the file system.

 This topic describes how to build the message model that is required by the MRM

parser when parsing and writing SAP ALE and File IDocs using its TDS physical

format.

Obtaining the IDoc:

Create an import file of the required IDoc data for the Message Brokers Toolkit.

1. Log on to a SAP system.

2. Run the supplied transaction we60, which extracts the IDoc data as a C header

file.

a. In Basic Type, select the IDoc type of interest; for example, MATMAS02.

b. Leave the Control, Data, and Status check boxes cleared.

c. Select the Record types version. A version 4 IDoc is type 3.

d. Press F7 to display a C representation of the IDoc.

e. Click unconverted.

f. Select System->List->Save->Local file .

g. When prompted, enter a file name and directory for the output from the

transaction. The C representation of the IDoc is saved to this C header file.

Tip: The exported C header can be imported into the Message Brokers Toolkit

without any further manual processing. This was not true in previous releases

of WebSphere Message Broker.

Modeling the IDoc:

Create your message model.

1. Switch to the Broker Application Development perspective of the Message

Brokers Toolkit.

2. Use the New Message Set wizard to create a message set for your IDoc. Select

text data as the kind of data to be used. This creates a Tagged/Delimited String

Format (TDS) physical format, and presets the Default message domain property

to MRM.

3. Use the Message Set editor to rename the TDS physical format to Text_IDoc.

4. Use the New Message Definition File From IBM® supplied message wizard to

import a prebuilt model of the overall ALE or File IDoc message structure. This

model includes definitions of the DC and DD segments. The prebuilt models

are called SAP ALE IDoc and SAP File IDoc. The resultant message definition

file is called ale_idoc.mxsd or file_idoc.mxsd. For information about using the

New Message Definition File From IBM supplied message wizard, see

“Importing from IBM supplied messages” on page 133.

5. Use the New Message Definition File From C Header File wizard, or the

mqsicreatemsgdefs command, to import the C representation of the IDoc into

the new message set. Specify the following settings:

742 Message Models

v Set the Pre-processing option to SAP ALE IDoc or SAP File IDoc. If this is

not specified, the C header is not imported.

v Create messages for the segments that appear in the IDoc.

v Use the String Encoding option to import character arrays as fixed length

strings.

v Use the Padding Char for String option to make space (“ ”) the padding

character that is used.

For information about using the wizard, see “Importing from C” on page 129.

Using the IDoc message model:

You can now use your message model to help you to construct a message flow

that processes instances of your IDoc message, in the same way as any other

message that belongs to the MRM domain.

Tip: SupportPac™ IA0F contains a more detailed description of the steps involved

in building the IDoc message model. You can ignore ignore utilities

IDocHeaderTweak and IDocMsgSetTweak because that processing has been

incorporated into the New Message Definition File From C Header File

wizard.

Message characteristics

There are a number of features of text string messages that are common across

many formats. The following sections give an overview of the main features that

are supported by the TDS wire format:

v The text strings in the message can have a tag or a label preceding the data

value. The tag is a string that uniquely identifies the data value. The TDS format

allows you to associate a tag with each element when you define the element in

the workbench.

v The message can contain various special characters or strings in addition to the

tags and text string data values. The TDS format supports a number of different

types of special characters or strings. Some messages have a special character or

string that separates each data value from the next. In the TDS format this is a

known as a delimiter. In formats that have a tag before each data value, the tag

can be separated from its data value by a special character or string. In the TDS

format this is known as a tag data separator.

v A message can be split into a number of substructures in a similar manner to a

to COBOL or C structure. You can model each of these substructures separately

by defining complex types or elements for each one. Complex types and

elements are described in “Message model objects” on page 13. A substructure

can have a special character or string that indicates its start within the data. This

is known in the TDS format as a group indicator. A substructure can also have a

special character or string that indicates its end in the data. In the TDS format,

this is known as a group terminator. A group indicator and group terminator can

also be defined for the whole message. Group indicators and group terminators

are optional for the message and each substructure.

v Some text strings within a message can be of fixed length, so a delimiter

between each data value is not necessary. This is supported by the TDS format.

If you use a fixed length tag, a tagged data separator is not required.

v The TDS property that controls the way text strings are separated is Data Element

Separation. It has several options that let you choose, for example, if tags are

Message model reference information 743

used, if strings lengths are fixed or variable, and what types of text strings are

permitted. See “Specifying data element separation methods to model a

message.”

v The substructures within a message can use different types of Data Element

Separation and use different special characters. Therefore the TDS format allows

you to define different types of data element separation and special characters

for each complex type within the message.

v If you use the Use Data Pattern method of Data Element Separation, you can use

regular expressions to identify parts of the message data to be assigned to

sub-fields. This is done by setting the regular expression in the Data Pattern

property. See “Using regular expressions to parse data elements” on page 757 for

further details.

The figure below illustrates the tags and special characters in a TDS message,

showing an example data message with each of its components labeled.

v At the top level, each data value has a tag associated with it, each tag is

separated from its data value using a tag data separator of colon (:), and the

data values are separated from each other using the asterisk delimiter (*).

v The group indicator for the message is the left brace ({) and the group

terminator is the right brace (}).

v The data values Data2 and Data3 are in a substructure in which there are no

tags, and each data element is separated from the next using the delimiter plus

(+). The group indicator for this substructure is the left bracket ([) and the group

terminator is the right bracket (]).

v The data values Data4 and Data5 are in a substructure in which the values are

fixed length, and are therefore not separated by a delimiter. The group indicator

for this substructure is the less than symbol (<) and the group terminator is the

greater than symbol (>).

The following sections describe data element separation and the special characters

in more detail:

v “Specifying data element separation methods to model a message”

v “Specifying special characters to model a message” on page 747

Specifying data element separation methods to model a message:

Elements of data in a TDS message are identified according to the data element

separation method that you must specify for the Data Element Separation property

{Tag1:Data1*Tag2:[Data2+Data3]*Tag3:<Data4Data5>}

Tag
Separator

Data Tag
Separator

Data Tag
Separator

Data

Delimiter DelimiterDelimiter

Tag TagTag

Group
Indicator

Group
Indicator

Group
Indicator

Group
Terminator

Group
Terminator

Group
Terminator

744 Message Models

for a complex type. Depending on the value that you have set for Data Element

Separation, the properties Tag Data Separator and Delimiter (for a message set and a

complex type) might also be required to identify each element.

The methods that you can specify for each complex type are described below. The

examples given are all based on a complex type that contains three elements of

type STRING. The Tag Data Separator, where used, is the colon (:), and the

Delimiter, where used, is the asterisk (*).

Tagged Delimited

Each data value is preceded by a tag that is specified as an element

property. If the tag has an associated Length of Tag, indicating that the tag

has a fixed length, each data value follows immediately after the tag. If the

tag is not specified as fixed length, the tag is separated from the next

element by a Tag Data Separator. Each data value is separated from the next

by a Delimiter. There is no Delimiter after the last element in the complex

type.

 The following example shows tags of fixed length:

 tag1data1*tag2data2*tag3data3

The following example shows tags of variable length:

 tag1:data1*tag11:data2*tag111:data3

Tagged Fixed Length

This method is the similar to Tagged Delimited, but the data values are

always fixed length. Therefore, no delimiter is required after each data

value. The tags themselves can be fixed length or variable length,

depending the setting of Tag Data Separator and Length of Tag.

 The following example shows tags of fixed length:

tag1data1tag2data2tag3data3

The following example shows tags of variable length:

tag1:data1tag11:data2tag111:data3

Tagged Encoded Length

This method has a tag and a length field before the data. It indicates to the

parser that following each tag in the bit stream there is data defining the

length of data to be associated with that tag. You must set the Length of

Encoded Length parameter. If the value in Length of Encoded Length includes

extra characters, you must also set the Extra Chars in Encoded Length

parameter.

 The following example shows a tag of fixed length of four characters

(Length of Tag has been set to four), a three-character length field (Length of

Encoded Length has been set to three), and several characters of data. Extra

Chars in Encoded Length has been set to zero:

tagA007dataAAAtagB006dataBBtagC009dataCCCCC

Given the bit stream above, the parser finds the tag ″tagA″ and extracts the

length value 7. Because Extra Chars in Encoded Length is set to zero, the next

seven (7 - 0) characters are the data. Then follow the characters for the next

tag ″tagB″ and the length value of 6, and so on for tag ″tagC″. In each case

in this example, the value in the length field is exactly the length of data.

 The following example shows tags with a fixed length of four characters

(Length of Tag has been set to four), a three-character length field (Length of

Message model reference information 745

Encoded Length has been set to three), and several characters of data. Extra

Chars in Encoded Length has been set to three (because in this example the

length field value includes the three-character length field as well as the

data field):

tagA012dataAAAAAtagB010dataBBBtagC016dataCCCCCCCCC

Given the bit stream above, after ″tagA″ the parser extracts the length

value 12. But because Extra Chars in Encoded Length is set to three, only the

next nine (12 - 3) characters are the data. Then follow the characters for

″tagB″ and length value 10, and so on. In each case in this example, the

value in the length field is three more than the actual length of data.

All Elements Delimited

The data values have no tag, but each data value is separated from the

next by a delimiter.

 The following example shows this:

data1*data2*data3

Variable Length Elements Delimited

If a data element is fixed length, the next data value follows immediately

after it. If the data element is variable length, the next data value is

separated from it by the delimiter. There are no tags.

 The following example shows element 2 as fixed length, and elements 1

and 3 as variable length:

data1*data2data3

Use Data Pattern

The data associated with each element is determined by the parser

matching the data with the regular expression in the Data Pattern property

for that element. The TDS parser uses the regular expression in the Data

Pattern to:

v Determine the length of data to associate with each element.

v Determine if, in the case of a repeating element, another occurrence of

an element is present in the bit stream.

v Determine the presence (if the pattern is matched) or absence (if the

pattern is not matched) of an element in the bit stream.

There are no delimiters or tags, other than those coded as part of the

regular expression patterns. See “Regular expression syntax” on page 759

for an explanation of how pattern matching works.

 The following example shows three elements, each having the regular

expression Data Pattern shown:

First Data Pattern = [A-Z]{1,3}

Second Data Pattern = [0-9]+

Third Data Pattern = [a-z]*

Message data = ’DT31758934information for you’

First element data: ’DT’

Second element data: ’31758934’

Third element data: ’information’

The first Data Pattern means ″from one to three characters in the range A to

Z″, the second means ″one or more characters in the range 0 to 9″, and the

746 Message Models

third means ″zero or more characters in the range a to z″. Notice how each

element’s data was terminated by the first character that did not match the

element’s Data Pattern.

Fixed Length

All elements are fixed length, and each data value immediately follows the

next with no delimiter. There are no tags.

 The following example shows this:

data1data2data3

Fixed Length AL3

This method is the same as Fixed Length, but it also notifies the parser to

implement a number of rules in relation to missing elements, length

encoding, and versioning that are predefined in the ACORD AL3 standard.

Undefined

This value is set automatically when you set the Type Composition property

of a complex type to Message, and you cannot set it to any other value. You

are also unable to set values for the TDS Type properties Group Indicator,

Group Terminator, Tag Data Separator, Length of Tag, and Delimiter.

 If you set the Data Element Separation method to Undefined, you must not

set the Type Composition property to Empty, Choice, Unordered Set, Ordered

Set, Sequence, or Simple Unordered Set.

For more information about Type Composition set to Message, see “Multipart

messages” on page 25.

Specifying special characters to model a message:

You can specify a number of different types of special character in the workbench.

 You can also specify special character values for message sets, types, and type

members. The values that you set for a type override the corresponding values that

are set for the message set in which it is defined.

You can specify a special character value in one of the following ways:

v As a literal string of one or more characters.

v As a mnemonic value.

v As a combination of both mnemonics and literals.

The types of special character are described in the table below.

 Special character

type

Description Set as a property

of...

Group Indicator This is a string that indicates the start of a group or

complex type within a message

Message set,

complex type

Group

Terminator

This is a string that indicates that the end of a group

or complex type within a message

Message set,

complex type

Tag Data

Separator

This is the string that is used to separate a tag from

its data.

Message set,

complex type

Delimiter This is the string used to separate data elements

from one another

Message set,

complex type

Repeating

Element

Delimiter

This is the string used to separate repeating data

elements from one another

Local element or

element reference

Message model reference information 747

Special character

type

Description Set as a property

of...

Tag This is the string that indicates the start of a piece of

data.

Local element or

global element

Escape character This is the character that is used to allow special

reserved characters (such as delimiters) to be

included as part of data

Message set

Quote character This is the character that is used to allow special

reserved characters (such as delimiters) to be

included as part of data.

Message set

Reserved

characters

These are characters that have a special meaning; for

example, escape characters, quote characters,

delimiters, and group indicators, are all examples of

reserved characters.

Message set

Decimal point This is the character that is used as the separator

between the integer and fractional components of a

decimal number.

Message set

If you create a complex type and set the Data Element Separation property to Tagged

Delimited, the Group Indicator property to left brace ({) , the Group Terminator to

right brace (}), the Tag Data Separator to colon (:), and the Delimiter to asterisk (*),

the bit stream has the following format:

{tag1:data1*tag2:data2*tag3:data3}

In some message formats, a special character is specified before each element or

after each element, as shown in the following two examples:

:data1:data2:data3

data1:data2:data3:

You can model these formats by using a combination of the Data Element Separation

method, the Delimiter value, the Group Indicator value, and the Group Terminator

value.

For the first example, specify Data Element Separation as All Elements Delimited,

Delimiter as colon (:), and Group Indicator as colon (:).

For the second example, specify Data Element Separation as All Elements

Delimited, Delimiter as colon (:), and Group Terminator as colon (:).

Using mnemonics for special characters:

A mnemonic is a tag that is delimited by < and >. The broker translates the

mnemonic to obtain the actual value of the special character.

 Mnemonics can be used in TDS properties Decimal Point, Escape Character,

Reserved Characters, Delimiter, Group Indicator, Tag data Separator, Tag, and

Repeating Element Delimiter to specify special characters.

There are two types of mnemonic:

v Control code mnemonics, which map to the common non-printing characters.

These are mapped using the local code page for your system. This is typically an

ASCII code page on distributed platforms and an EBCDIC code page on other

platforms.

748 Message Models

This means that characters are generally mapped to the ’expected’ values for

your system. This depends on your code page setting; for more information,

refer to your system documentation. If a specific mnemonic is not mapped to the

value that you need, you can use the explicit representation (<U+xxxx>,

<0xNN>, or <0XNN>) that is described below.

v Message mnemonics for use with specific industry message standards such as

X12.

These are mapped according to their associated message standard. Each

mnemonic has a default mapping, but in message standards such as EDIFACT

and X12, this default can be overridden by a ’service string’ that is specified in

the message itself.

Mnemonics can be specified in one of the following ways:

v <Mnemonic_Name>, where Mnemonic_Name can comprise alphanumeric characters

and underscore (_) characters.

v <U+xxxx>, where xxxx are hexadecimal digits. The mnemonic is interpreted as the

Unicode character that corresponds to the value of the digits.

v <0xNN> or <0XNN>, where N is a hexadecimal digit. The mnemonic is interpreted

as the raw byte value given by the digits.

For more details about the supported mnemonics, see “TDS Mnemonics” on page

165.

TDS Mnemonics:

The Tagged/Delimited String Format (TDS) uses mnemonics for a number of

properties for a message set, complex type, or both. These TDS mnemonics and

their associated properties are listed in the table below.

 Mnemonic string Meaning Default value Associated property

<EDIFACT_CS> Component separator in

EDIFACT

: Message set and complex

type/group, Delimiter

<EDIFACT_DS> Data element separator in

EDIFACT

+ Message set and complex

type/group, Delimiter

<EDIFACT_TAGDATA_SEP> Tag data separator in EDIFACT

This is overridden with the

same value as that which

overrides <EDIFACT_DS>

+ Message set and complex

type/group, Tag Data Separator

<EDIFACT_DEC_NOTATION> Decimal notation in EDIFACT . Message set, Decimal Point

<EDIFACT_ESC_CHAR> Escape character in EDIFACT ? Message set, Escape Character

<EDIFACT_GROUP_TERM> Tag terminator in EDIFACT ’ Message set, Group Terminator

<X12_GROUP_TERM> Tag terminator in X12 ! Message set level, Group

Terminator

<X12_DS> Data element separator for X12 * Message set and complex

type/group, Delimiter

<X12_CS> Component separator for X12 : Message set and complex

type/group, Delimiter

<HL7_CS> Component separator in HL7 ^ Message set and complex

type/group, Delimiter

<HL7_FS> Data element separator in HL7 | Message set and complex

type/group, Delimiter

Message model reference information 749

Mnemonic string Meaning Default value Associated property

<HL7_RS> Repeating element delimiter in

HL7

~ Local element and element

reference, Repeating Element

Delimiter

<HL7_SCS> Sub-component separator in

HL7

& Message set and complex

type/group, Delimiter

<0xNN> Byte of two hexadecimal digits,

where N is a hexadecimal digit

in the range 0 to F.

Group Indicator, Group

Terminator, Delimiter, Repeating

Element Delimiter, Tag Data

Separator, and Tag.

<0XNN> Byte of two hexadecimal digits,

where N is a hexadecimal digit

in the range 0 to F.

Group Indicator, Group

Terminator, Delimiter, Repeating

Element Delimiter, Tag Data

Separator, and Tag.

Mnemonics for control characters are shown in the following table.

 Mnemonic Hex

value

Unicode Description

<ACK> X’06’ <U+0006> Acknowledge

<BEL> X’07’ <U+0007> Bell

<BS> X’08’ <U+0008> Backspace

<CAN> X’18’ <U+0018> Cancel

<CR> X’0D’ <U+000D> Carriage Return

<DC1> X’11’ <U+0011> Device Control One

<DC2> X’12’ <U+0012> Device Control Two

<DC3> X’13’ <U+0013> Device Control Three

<DC4> X’14’ <U+0014> Device Control Four

<DLE> X’10’ <U+0010> Data Link Escape

 X’19’ <U+0019> End of Medium

<ENQ> X’05’ <U+0005> Enquiry

<EOT> X’04’ <U+0004> End of Transmission

<ESC> X’1B’ <U+001B> Escape

<ETB> X’17’ <U+0017> End of Transmission Block

<ETX> X’03’ <U+0003> End of Text

<FF> X’0C’ <U+000C> Form Feed

<FS> X’1C’ <U+001C> File Separator

<GS> X’1D’ <U+001D> Group Separator

<GT> X’3E’ <U+003E> Greater Than

<HT> X’09’ <U+0009> Horizontal Tabulation

<LF> X’0A’ <U+000A> Line Feed

<LT> X’3C’ <U+003C> Less Than

<NAK> X’15’ <U+0015> Negative Acknowledge

<NUL> X’00’ <U+0000> Null-

<RS> X’1E’ <U+001E> Record Separator

750 Message Models

Mnemonic Hex

value

Unicode Description

<SI> X’0F’ <U+000F> Locking Shift Zero (Shift In)

<SO> X’0E’ <U+000E> Locking Shift One (Shift Out)

<SOH> X’01’ <U+0001> Start of Heading

<SP> X’20’ <U+0020> Space

<STX> X’02’ <U+0002> Start of Text

<SUB> X’1A’ <U+001A> Substitute

<SYN> X’16’ <U+0016> Synchronous Idle

<US> X’1F’ <U+001F> Unit Separator

<VT> X’0B’ <U+000B> Vertical Tabulation

These mnemonics were created for characters that cannot be entered into the

message editor.

You can enter a mnemonic in the form <U+xxxx> where xxxx are hexadecimal

digits. None of the characters in this structure are case sensitive. Do not enclose

spaces inside the angle brackets.

These numbers represent a Unicode character, not a character in the code page of

the input message.

For example, if you have an input message in which MQMD.CodedCharSetId has

the value 437 and there was a separator of X’1A’, you might specify <SUB> as the

mnemonic. This is not correct. X’1A’ in code page 437 is a file separator character

and this maps to the unicode codepoint of X’001C’. Therefore, you should use the

mnemonic for X’1C’ which is <FS> (File Separator).

TDS Null handling options

TDS supports the handling of null values within messages, provided that the

logical Nillable property of the element is set.

You can use the message set property Boolean Null Representation to specify the

value to be used for Boolean Null representation. You can use the object properties

Encoding Null and Encoding Null Value to control how null handling is represented

for individual objects.

You can select the Encoding Null property from the enumerated values

NULLPadFill, NULLLogicalValue, NULLLiteralValue, and NULLLiteralFill:

v Only use the NULLPadFill option for fixed length objects. If you select this

option for an object of simple type dateTime, a null dateTime is written out,

which is an empty tag with a delimiter. (This is equivalent to selecting

NullLiteralValue, with the Encoding Null Value property set to the empty string

″″.) If you select this option for an object of another simple type, the object is

filled with the value specified by the Padding Character property. If you select

this option, the Encoding Null Value property is disabled.

If you use this option for a variable length object, the parser does not know how

many padding characters to write out; therefore, it does not write any. Instead,

the parser writes an explicit null, with tag and delimiter but no data value. For

example:

tag1:,

Message model reference information 751

is written out, where tag1 is the tag for the variable length element with

NULLPadFill set, ":" is the tag data separator, and "," is the delimiter.

v If you select the NULLLogicalValue option, the value entered for the Encoding

Null Value property is converted to its logical value. For writing, the logical

value is written in the same way as any other value. For parsing, the converted

logical value is compared against the converted message data.

v If you select the NULLLiteralValue option, the value entered for the Encoding

Null Value property is directly substituted as if it were a string value. The value

is case insensitive. For fixed length objects, the literal value must be no longer

than the length of the object.

If the literal value is shorter, the Encoding Null Value is padded (using Padding

Character) on output. On input, if the NULLLiteralValue’s length does not match

the Length field, set the message set level Trim Fix Len String property so that

padded nulls are correctly parsed.

v If you select the NULLLiteralFill option, the value entered for the Encoding Null

Value property is interpreted as a single character string value. Therefore, each

character of the value of the element in the bit stream must match exactly the

character value specified, to be interpreted as a null value.

The use of the Encoding Null Value property is dependent on the value that you

select for the Encoding Null property described above. Null values are not defined

for binary types. The properties Encoding Null and Encoding Null Value are therefore

not set for binary types.

Handling missing fields in a delimited format

When dealing with delimited message formats, it is common for fields to be empty.

For example, in a line-oriented format, blank lines might be inserted to separate

lines of data.

This is Line 1<CR><LF>

<CR><LF>

This is Line 3<CR><LF>

This is Line 4

If the TDS property Suppress Absent Element Delimiters of the parent complex type

is set to Never, such a message is successfully parsed, but the blank line does not

appear in the message tree:

MRM

 - line1 = ’This is Line 1’

 - line3 = ’This is Line 3’

 - line4 = ’This is Line 4’

If you need to preserve the blank lines in the message tree, you can use TDS null

handling to treat the blank line as NULL. You must set the following three

properties on the element:

v Nillable = true

v TDS Encoding Null = ’NullLiteralValue’

v TDS Encoding Null Value = (Blank)

The message tree then looks like:

MRM

 - line1 = ’This is Line 1’

 - line2 = NULL

 - line3 = ’This is Line 3’

 - line4 = ’This is Line 4’

752 Message Models

The example above assumes that each line is modeled as an element of simple type

string. If each line is modeled as an element of complex type, with each line

consisting of a repeating number of word elements, set the three null handling

properties on the word element instead, because an element of complex type can

not have a null value.

The message tree then looks like:

MRM

 - line1

 - word = ’This’

 - word = ’is’

 - word = ’Line’

 - word = ’1’

 - line2

 - word = NULL

 - line3

 - word = ’This’

 - word = ’is’

 - word = ’Line’

 - word = ’3’

 - line4

 - word = ’This’

 - word = ’is’

 - word = ’Line’

 - word = ’4’

TDS message model integrity

When you use the TDS wire format, you must conform to a number of rules that

apply to the setting of values of properties. These rules are checked any time the

project is saved. If an inconsistency is found, the error is displayed in the task list

of the workbench.

The following sections cover the rules for TDS wire format properties:

v “General rules: TDS message model integrity”

v “Restrictions for nesting complex types” on page 755

v “Omission and truncation of elements” on page 756

General rules: TDS message model integrity:

This section describes the general rules for each value that you can set for the Data

Element Separation property of a type.

Tagged Delimited

v The Tag property for every simple child element must contain a

non-empty value.

Tagged Encoded Length

v The Tag property for every simple child element must contain a

non-empty value.

v The Length Of Encoded Length property must contain a positive integer

greater than zero.

Variable Length Elements Delimited

v The Delimiter property must contain a non-empty value.

Use Data Pattern

Message model reference information 753

v Each simple element that is a child of the complex type must have a

regular expression specified for Data Pattern. See “Regular expression

syntax” on page 759.

All Elements Delimited

v The Delimiter property must contain a non-empty value.

Fixed Length

v All simple child elements must specify a length, unless their data type is

Boolean (or derived from Boolean).

v All compound child elements must specify a length, unless their data

type is Boolean (or derived from Boolean).

v The length can be specified using either the Length property, or the

Length Value Of member property.

Fixed Length AL3

v All complex child elements with a non-Boolean compound element and

non-Boolean simple child elements must have either a nonzero value in

their Length property, or a non-empty value for their Length Value Of

type member property.

Tagged Fixed Length

v All complex child elements with a non-Boolean compound element and

non-Boolean simple child elements must have either a nonzero value in

their Length property or a non-empty value for their Length Value Of type

member property.

v The Tag property for each and every simple child element must contain

a non-empty value.

The following rules also apply:

v If you have set the parent Type Composition to Choice, and the parent Data

Element Separation property to Variable Length Elements Delimited, All

Elements Delimited, Fixed Length, or Fixed Length AL3:

– You must not set the Type Composition to Message for any child complex types.

– You must not set the Data Element Separation method to Tagged Delimited or

Tagged Fixed Length for any child complex types.

If you do so, the message set will not deploy successfully.

v If you have set the type’s Data Element Separation property to Fixed Length,

Fixed Length AL3, or Tagged Fixed Length, you must set either the Length or

Length Value Of property for all simple elements under this parent, and also for

all complex elements with a simple content and compound elements.

v For a Choice in a fixed length environment (Data Element Separation set to Fixed

Length, Tagged Fixed Length, or Fixed Length AL3), length references are not

valid, and element lengths should be used.

v Elements specified in a Length Value Of property must be simple elements of

type INTEGER, they must exist in the same structure as the referring element,

and they must appear before the referring element in that structure.

v Complex types with simple content and Compound elements must have an

empty Length Value Of type member property. This is because the Length Value

Of element would occur after the referring element in the parent structure,

which is disallowed by the previous rule.

v Complex types with simple content cannot have a separation type of Use Data

Pattern.

754 Message Models

v Compound elements cannot have a separation type of Use Data Pattern.

v Regardless of the setting of the type’s Data Element Separation property, if the

type of a simple element is BINARY, you must set either the Length or Length

Value Of property.

v For fixed length elements, the Justification property must be set to something

other than Not Applicable, and the Padding Character property cannot be an

empty value.

v If any element within a message has its Interpret Element Value property set to

Message Key, the Message Key property must be set for all messages within the

message set.

v If you have set the Repeat property in the type member to Yes, you must set a

value for the Max Occurs property in the following two situations:

– If you have defined an element as a member of a complex type that has the

property Data Element Separation set to Fixed Length.

– If you have defined a fixed length element as a member of a complex type

that has the property Data Element Separation set to Variable Length Elements

Delimited.

When it is invoked by the broker to interpret an input message, the parser

assumes that the number of occurrences of the element is equal to the value that

you set for Max Occurs. When the parser constructs an output message, if there

are fewer elements than the value of Max Occurs, the missing elements are

inserted with default values.

Restrictions for nesting complex types:

If you include a group within another group or complex type, the Data Element

Separation property for the nested group must be compatible with the Data Element

Separation property of the parent group or complex type. For example, you cannot

set the parent property to Fixed Length and the child property to Tagged

Delimited, because the length of the Tagged Delimited structure would not be

known, and would therefore conflict with the parent definition. If groups are

nested to three or more levels, the Data Element Separation property for each nested

group must be compatible with all of its parent groups.

The rules for compatibility are listed in the table of permitted options for nested

complex types shown below.

 Parent

Child Tagged

Delimited,

Tagged Encoded

Length

All Elements

Delimited,

Variable Length

Elements

Delimited

Fixed Length,

Fixed Length

AL3

Tagged Fixed

Length

Use Data Pattern

Tagged

Delimited,

Tagged Encoded

Length

Allowed Allowed Not allowed Not allowed Allowed

All Elements

Delimited,

Variable Length

Elements

Delimited

Allowed Allowed Not allowed Not allowed Allowed

Message model reference information 755

Parent

Child Tagged

Delimited,

Tagged Encoded

Length

All Elements

Delimited,

Variable Length

Elements

Delimited

Fixed Length,

Fixed Length

AL3

Tagged Fixed

Length

Use Data Pattern

Fixed Length,

Fixed Length

AL3

Allowed Allowed Allowed Allowed Allowed

Tagged Fixed

Length

Allowed Allowed Not allowed1 Allowed Allowed

Use Data Pattern Allowed Allowed Allowed Allowed Allowed

Note:

1. Tagged Fixed Length cannot exist at the inner level if any outer level has a Data Element Separation method of

Fixed Length or Fixed Length AL3. This is because an item of Tagged Fixed Length can repeat a variable

number of times. Fixed Length and Fixed Length AL3 are parsed by moving a set number of bytes: with a

variable number of repeats, it is not possible to calculate the number of bytes that need to be parsed.

Omission and truncation of elements:

The omission and truncation of elements is dependent on the setting of the

property Suppress Absent Element Delimiters. A description of this can be found in

“Complex type TDS properties” on page 230, “Global group TDS properties” on

page 235, or “Local group TDS properties” on page 240.

If you have created a message in which some elements are optional, an input

message might not contain all defined elements. If the elements are in a complex

type that you have defined with the Data Element Separation property of the type

set to All Elements Delimited or Variable Length Elements Delimited (in which

the elements are separated by a delimiter and have no tag), any elements that are

missing from the end of the complex type must be indicated by the application

that creates the message in one of two ways. These both provide techniques to

avoid unnecessarily long sequences of delimiters, and to preserve consistent

representation of missing elements.

1. If you have set the Delimiter property for the complex type to a value that does

not match the value that you have set for the Delimiter property for any of the

complex type’s parent types, the elements at the end of the message can be

indicated by the occurrence of a Delimiter of one of its parents after the last

actual element in the complex type data.

This is known as the truncation method, in which missing elements are treated

as not expected, and both data and delimiters are omitted in the bit stream.

For example, you define a complex element C that has four optional elements.

You set the Delimiter property to the character plus (+). You define complex

element P, and set the Delimiter property of P to asterisk (*). You add three

elements to P, the first is a string, the second is complex element C, and the

third is a string.

When a particular instance of the message is received by the broker, all the

elements of P are present, but only the first two elements of C are present. The

data in the message appears as follows if the truncation method is used (where

Pn are the values of the elements of P and Cn the values of the elements of C):

P1*C1+C2*P3

756 Message Models

When the parser encounters the second asterisk delimiter, it determines that the

last two elements of complex element C are not present, and the next element is

the third element of P.

You can use truncation successfully only when both omission and truncation

cause the parser to exhibit the same behavior, unless the elements truncated are

fixed length.

2. If the Delimiter of the complex type matches that of one of its parents, the

truncation method cannot be used. This is because the parser cannot determine

whether the delimiter after the last element is for the current complex type, or

for one of its parents. Therefore a delimiter must be included in the message

data for each missing element to ensure that the parser can match the elements

with the model.

This is known as the omission method, in which missing simple elements are

represented by an empty sequence of characters between two delimiters.

For example, you define P and C as in the previous example, but set the

Delimiter property for P to plus (+). When the same message is received by the

broker (all elements of P are present, the first two elements of C are present),

the data in the message appears as follows:

P1+C1+C2++P3

Two delimiter characters have been inserted in the message data for the

missing elements of complex element C. If the truncation method had been

used, the parser would have interpreted the data value P3 as the value of the

third element of complex element C and not the third element of complex

element P.

Using regular expressions to parse data elements

If your input messages can contain sub-fields whose presence or absence can only

be determined by examining the actual value of the data (for example, an optional

field of numeric digits followed by one or more alphabetic characters) you need to

use the Data Element Separation method Use Data Pattern.

This is particularly relevant to messages that conform to the SWIFT industry

standard. To use this method, you must provide regular expressions to identify

those portions of an input message that are to be associated with sub-fields. You

need to provide a regular expression value for the Data Pattern property of each

child of the complex type.

When parsing, data is matched in turn with each child of the complex type. The

parser does this by using the regular expression for the child to determine the

number of characters from the message that apply for that child. This number of

characters is the length of the longest string, starting from the current position in

the message, that matches the regular expression. If the longest string that matches

the regular expression is of length zero, the element is present in the message, and

the empty string is used for the value. If no string matches the regular expression,

the element is not present. This might cause a subsequent validation error if the

element is required.

After the number of characters from the input message has been determined,

normal data conversion, or further parsing in the case of a complex element, is

performed on the text of the input message to assign values to elements. This

might lead to data overrun or underrun errors if the length identified by the

pattern is not appropriate for the definition of the child.

Message model reference information 757

“Regular expression syntax” on page 759 explains the full syntax rules and how to

apply them, but the table below gives a few simple examples of parsing using data

patterns. A more complex example appears after the table.

 Input message Data Pattern Value matched

"123456ABC" [0-9]* "123456"

"123" [A-Z]* ""

"123" [A-Z]+ Not present

"0x2A2B" \x2A+ X’2A’

"ABCD123"

[A-Z]{1,3} first field

[A-Z]{2,4} second field

"ABC" - first field (the longest

string matching the pattern)

Not present - second field

(minimum length of two

alphabetic characters is not

present)

"ABCDEFGHIJ1234"

[A-Z]{1,3} first field, repeat

[0-9]+ second field

"ABC" - first field [1]

"DEF" - first field [2]

"GHI" - first field [3]

"J" - first field [4]

"1234" - second field (the

repeating field is terminated

when the data "1234" no

longer matches the data

pattern specified for the first

field.)

The example below shows three-field pattern matching.

Message definition:

 Complex type: Data Element Separation=Use Data Pattern

 Field1: xsd:string minOccurs=1, maxOccurs=1, Length=5, Pad=SPACE,

 Data Pattern=".{5}"

 Field2: xsd:int minOccurs=0, maxOccurs=1,

 Data Pattern="[0-9]{0,6}"

 Field3: xsd:string minOccurs=1, maxOccurs=1, minLength=3, maxLength=4,

 Data Pattern="[A-Z][A-Za-z0-9]{2,3}"

Input1: "ABCDE123F12"

Result1: Field1="ABCDE", Field2="123", Field3="F12"

Input2: "ABCDEF12"

Result2: Field1="ABCDE", Field2=not present, Field3="F12"

Input3: "ABCDE123456XXXX"

Result3: Field1="ABCDE", Field2="123456", Field3="XXXX"

Input4: "ABCDE1234567"

Result4: Field1="ABCDE", Field2="123456", Field3=not present,

 which causes an exception if validation is enabled. One

 character ("7") remains unassigned to any element, which

 also causes an exception.

758 Message Models

In the case of a repeating child, instances of the child are parsed for as many times

as the pattern is matched. This is applied even if Max Occurs is specified for the

repeating element and the number of occurrences exceeds the upper bound.

Therefore some terminating condition must be determinable from the regular

expression pattern for the element. The table above includes an example of a

repeating element.

When parsing, the data from the input message that matches the Data Pattern, and

that is assigned to an element, is not further scanned for delimiters of a higher

level complex type. This behavior is similar to that of Data Element Separation

method Fixed Length. However, you can code a regular expression that will match

data to one of a number of possible delimiters.

When writing, if a length is specified for a child, the value is padded as

appropriate to that length. This behavior is similar to that of Data Element

Separation method Variable Length Elements Delimited, but without delimiters.

If the message includes a complex type that has Composition set to Choice, you can

set the Data Element Separation method to Use Data Pattern. In this case, the Data

Pattern values of the children are used to resolve the choice. Starting with the first

child, the first pattern to provide a match determines which child is present.

Therefore the order of children in a choice might be important.

A complex type can contain repeating children with Max Occurs unbounded.

Length, and other associated properties such as Justification and Padding, can

optionally be specified for the children.

See “TDS message model integrity” on page 753 for rules that you must follow

when using the Data Element Separation method Use Data Pattern, and refer to

“Combinations of Composition and Content Validation” on page 293 for details of

valid settings of Composition and Content Validation.

Regular expression syntax:

A regular expression is a coded string. It defines a set of strings that match the

expression. A regular expression can be made up of one or more branches

(choices), each of which can be a string made up of characters, character classes, or

parenthesized expressions with modifiers to specify repetition rules.

The regular expression syntax that is supported is a subset of XML Schema regular

expressions, with the addition of the \xNN hexadecimal syntax. For the full

syntax, see Appendix F in XML Schema Part 2: Datatypes that can be found on the

World Wide Web Consortium (W3C) Web site.

The following table lists the supported regular expression syntax elements:

 Metacharacter Meaning

\ escape

. any single character

* preceding character 0 or more times

+ preceding character 1 or more times

? preceding character 0 or 1 time

{...} occurrences of preceding

1

[...] match one of the class contained

Message model reference information 759

http://www.w3.org/TR/xmlschema-2/#regexs
http://www.w3.org/TR/xmlschema-2
http://www.w3.org/

[^...] match one of the class not contained

1

(...) group the expressions

1

| match either preceding or following

Escape sequence Meaning

\n new line

\r carriage return

\t tab

\e escape

Class code Meaning

\d digit [0-9]

\D non-digit [^0-9]

2

\s white space[\t\n\r]

\S non-whitespace character[^ \t\n\r]

2

\p{L} all letters

3

\p{N} all numbers, similar to \d

4

[\p{N}\p{L}] all numbers and all letters , similar to \w

4

\P{L} not letters, equivalent to [^\p{L}]

\P{N} not numbers, equivalent to [^\p{N}]

\xNN hexadecimal digits in the range 0 to F

Range Meaning

{n} exactly n times

{n,} at least n times

{n,m} at least n, but no more than m, times

{0,m) zero to m times

Notes:

1. The ellipsis (...) is used to indicate anything inside the { }, or [], or ()

characters.

2. The caret (^) means ″not″ when inside the [] characters.

3. Consult Appendix F of the document XML Schema Part 2: Datatypes for

other characters that can be used in place of L and N.

4. Consult Appendix F of the document XML Schema Part 2: Datatypes for

the precise differences.

The following table gives some examples of the syntax rules for regular expression

syntax. See “Using regular expressions to parse data elements” on page 757 for

some examples of their use.

 Regular expression data pattern Meaning

a Match character "a"

. Match any one character

a+ Match a string of one or more "a"

a* Match a string of zero or more "a"

a? Match zero or one "a"

760 Message Models

http://www.w3.org/TR/xmlschema-2/#regexs
http://www.w3.org/TR/xmlschema-2
http://www.w3.org/TR/xmlschema-2/#regexs
http://www.w3.org/TR/xmlschema-2

Regular expression data pattern Meaning

a{3} Match a string of exactly three ″a″, that is

"aaa"

a{3,} Match a string of three or more "a"

a{2,4} Match a string with a minimum of two and

a maximum of four occurrences of "a"

[abc] Match any one of the characters "a", "b", or

"c"

[a-zA-Z] Match any one character in the range "a" to

"z", or in the range "A" to "Z". Note that

the range of characters matched is based on

the Unicodes of the characters specified.

[^abc] Match any character except one of "a", "b",

or "c"

(ab)+ Match one or more repetitions of the string

"ab"

(ab)|(cd) Match either of the strings "ab" or "cd"

Using multiple delimiters:

If you set Data Element Separation to the method Use Data Pattern, messages in

which fields are delimited by one of a set of characters or strings can be parsed.

For example, consider a simple message with two numeric fields that can have

either of the characters ’;’ or ’/’ delimiting them. There are two approaches that

you could use:

1. Model the delimiter as a data element which is added to the message tree. If

the message is rewritten, it looks like the input message.

Consider this model:

Composition = Sequence

Data Element Separation = Use Data Pattern

 FieldA Data Pattern = [0-9]*

 Delim Data Pattern = [;/] optionally with a default value.

 FieldB Data Pattern = [0-9]*

After parsing, the elements FieldA and FieldB each contain any number of the

digits 0 to 9, and the element Delim contains either ″;″ or ″/″.

2. Recognize the delimiter as a delimiter, which is not added to the tree. If the

message is rewritten, a preferred delimiter (as specified in the model) is used.

Consider this model:

Composition = Choice

Data Element Separation = Use Data Pattern

 SubType1 Data Pattern = [0-9]*;[0-9]*

 (Composition = Sequence

 Data Element Separation = All Elements Delimited

 Delimiter = ’;’)

 FieldA

 FieldB

 SubType2 Data Pattern = [0-9]*/[0-9]*

 (Composition = Sequence

 Data Element Separation = All Elements Delimited

 Delimiter = ’/’)

 FieldA

 FieldB

Message model reference information 761

The regular expressions differentiate between the two options that can occur in

the message, which are then parsed as a normal delimited structure. After

parsing, the elements FieldA and FieldB each contain any number of the digits

0 to 9. The delimiter found in the input message is not saved in an element.

You could refine this approach by using different names for the children, or

elements for SubType1 and SubType2, to provide the knowledge of which

delimiter is used, or to control which delimiter is included in the output

message.

Using a variable number of repeats:

You can use the Data Element Separation method Use Data Pattern to support a

variable number of repetitions in an otherwise fixed length environment, where

there is no markup to indicate the end of the repetitions.

 However, it relies on the ability to recognize the end of the repetitions based on

the data content.

In its simplest form, you can do this by specifying a regular expression Data

Pattern that matches a fixed number of characters that is terminated by reaching

the end of the message bit stream.

For example, consider a message with one fixed length field (length 10), followed

by another fixed length field (length 20) that repeats indefinitely to the end of the

bit stream:

Message Data Element Separation=Use Data Pattern

 FieldA Data Pattern=.{10}

 FieldB Repeat, Min Occurs=1, no Max Occurs, Data Pattern=.{20}

The following example message contains a fixed length field (length 20) that

repeats a variable number of times, and is separated from a second field by the

string ″;″. The pattern specifies a string of 20 characters starting with anything

except a semicolon:

Message Data Element Separation=All Elements Delimited, Delimiter=;

 SubType1 Data Element Separation=Use Data Pattern

 FieldA Repeat, Min Occurs=1, no Max Occurs, Data Pattern=[^;].{19}

 FieldB

Performance considerations when using regular expressions:

You should take care when specifying regular expressions: some forms of regular

expression can involve a large amount of work to find the best match, adversely

impacting performance. Other expressions might produce a result that you did not

expect.

For example, to match text up to and including a delimiter character ’;’ do not use

the pattern ″.*;″ because this matches up to the last ’;’ character in the message,

including any prior ’;’ characters in the matched text. Instead, you should use the

pattern ″[^;]*;″.

Similarly, avoid using the pattern ″.*″ because this will always force a search to the

end of the message to try and find the best match, and this might result in poor

performance. However, you should use the pattern ″.*″ if you intend to match all

remaining data in a message.

762 Message Models

For best performance, avoid expressions with redundant nested repeats, such as

″([0-9]+)*″. Try to keep the expressions simple, with precise matching criteria. This

avoids the need to perform multiple searches for the best match.

DateTime formats

When you create an element or attribute with a simple type of dateTime, you must

specify a format string in the object’s Format String property for each physical

format layer (CWF, TDS, XML).

You can use the symbols defined in the information below to control the format in

which the dateTime appears in the message data.

You can only use dateTime for Gregorian calendar dates.

DateTime information can appear in a message as:

v String data. This includes XML, and all TDS and CWF physical types except

those mentioned below. This is described further in “DateTime as string data”.

v Binary data. This is for the TDS or CWF Binary physical type. See “DateTime as

BINARY data” on page 769 for more information.

v An offset from an epoch in seconds or milliseconds. This is used if you have set

the TDS or CWF Physical Type property to Time Seconds or Time Milliseconds

respectively. See “DateTime as encoded values” on page 770 for details of this

option.

The defaults that are set for each message set property that relates to dateTime, for

each physical representation (CWF, TDS, XML), are defined in “Message set

defaults” on page 771.

DateTime as string data

You can use a string of pattern letters to specify the dateTime format.

When you convert a date or time into a string, a format pattern must be applied

that directs the conversion. Apply the format pattern to convert a date or time into

a string, or to parse a string into a date or time.

During the conversion (for example, of a dateTime into a string), a pattern or a set

of tokens is replaced with the equivalent source. The following diagram shows

how a pattern is used to format a dateTime source to produce a character string

output.

source pattern

output

Year=2004, Month=10, Day=07,
Hour=10, Minute=24, Second=40

yyyy-MM-dd HH:mm:ss

2004-10-07 10:24:40

Message model reference information 763

When a string is parsed (for example, when converting the string to a dateTime),

the pattern or set of tokens is used to determine which part of the target dateTime

is represented by which part of the string. The following diagram shows how this

is done.

Syntax

The expression pattern is defined by:

��

�

symbol

string

��

Where:

symbol

is a character in the set adDeEFGhHIkKmMsSTUwWyYzZ.

string is a sequence of characters enclosed in single quotation marks. If a single

quotation mark is required within the string, use two single quotation

marks (″).

Characters for formatting a dateTime as a string

The following table lists the characters that you can use in a pattern for formatting

or parsing strings in relation to a dateTime. The table is followed by some notes

that explain more about some of the examples in the table.

 Symbol Meaning Presentation Examples

a am or pm marker Text Input am, AM, pm, PM.

Output AM or PM

d day in month (1-31) Number 1, 20

dd day in month (01-31) Number 01, 31

D day in year (1-366) Number 3, 80, 100

DD day in year (01-366) Number 03, 80, 366

source pattern

output

12 Jan 03, 3:45pm dd MMM yy, h:ma

Year=2003, Month=01, Day=12,
Hour=15, Minute=45

764 Message Models

Symbol Meaning Presentation Examples

DDD day in year (001-366) Number 003

e day in week (1-7)1 Number 2

EEE day in week1 Text Tue

EEEE day in week1 Text Tuesday

F day of week in month (1-5)2 Number 2

G Era Text BC or AD

h hour in am or pm (1-12) Number 6

hh hour in am or pm (01-12) Number 06

H hour of day in 24 hour

form (0-23)3

Number 7

HH hour of day in 24 hour

form (00-23)3

Number 07

I ISO8601 Date/Time (up to

yyyy-MM-dd’T’HH:mm:ss.

SSSZZZ)4

Text 2006-10-
07T12:06:56.568+01:00

IU ISO8601 Date/Time (similar

to I, but ZZZ with output

″Z″ if the time zone is

+00:00)4

Text 2006-10-
07T12:06:56.568+01:00,

2003-12 -15T15:42:12.000Z

k hour of day in 24 hour

form (1-24)3

Number 8

k hour of day in 24 hour

form (01-24)3

Number 08

K hour in am or pm (0-11) Number 9

KK hour in am or pm (00-11) Number 09

m minute Number 4

mm minute Number 04

M numeric month Number 5, 12

MM numeric month Number 05, 12

MMM named month Text Jan, Feb

MMMM named month Text January, February

s seconds Number 5

ss seconds Number 05

S decisecond5 Number 7

SS centisecond5 Number 70

SSS millisecond5 Number 700

SSSS 0.0001 second5 Number 7000

SSSSS 0.00001 second5 Number 70000

SSSSSS 0.000001 second5 Number 700000

T ISO8601 Time (up to

HH:mm:ss.SSSZZZ)4

Text 12:06:56.568+01:00

TU ISO8601 Time (similar to T,

but a time zone of +00:00 is

replaced with ’Z’)4

Text 12:06:56.568+01:00,

15:42:12.000Z

Message model reference information 765

Symbol Meaning Presentation Examples

w week in year6 Number 7, 53

ww week in year6 Number 07, 53

W week in month7 Number 2

yy year8 Number 06

yyyy year8 Number 2006

YY year: use with week in year

only6

Number 06

YYYY year: use with week in year

only6

Number 2006

zzz time zone (abbreviated

name)

Text GMT

zzzz time zone (full name) Text Greenwich Mean Time

Z time zone (+/-n) Text +3

ZZ time zone (+/-nn) Text +03

ZZZ time zone (+/-nn:nn) Text +03:00

ZZZU time zone (as ZZZ, ″+00:00″

is replaced by ″Z″)

Text +03:00, Z

ZZZZ time zone (GMT+/-nn:nn) Text GMT+03:00

ZZZZZ time zone (as ZZZ, but no

colon) (+/-nnnn)

Text +0300

’ escape for text ’User text’

″ (two single quotation

marks) single quotation

mark within escaped text

’o″clock’

The presentation of the dateTime object depends on the symbols that you specify.

v Text: If you specify four or more of the symbols, the full form is presented. If

you specify less than four, the short or abbreviated form, if it exists, is presented.

For example, EEEE produces Monday, EEE produces Mon.

v Number: The number of characters for a numeric dateTime component must be

within the bounds of the corresponding formatting symbols. Repeat the symbol

to specify the minimum number of digits required. The maximum number of

digits permitted is the upper bound for a particular symbol. For example, day in

month has an upper bound of 31; therefore, a format string of d allows the

values 2 or 21 to be parsed but does not allow the values 32 or 210 to be parsed.

On output, numbers are padded with zeros to the specified length. A year is a

special case; see note 8. Fractional seconds are also a special case; see note 5.

v Lenient dateTime checking: The parser converts out-of-band dateTime values to

the appropriate in-band value. For example, the date 2005-05-32 is converted to

2005-06-01. Output of dateTimes always adheres to the symbol count. For

example, a formatting string of yyyy-MM-dd (where ’-’ is the field separator)

allows one or more characters to be parsed against MM and dd. This conversion

allows dates such as 2006-01-123 and 2006-011-12, which are not valid, to be

input. The value of 2006-01-123 is output as the date 2006-05-03, and the value

of 2006-011-12 is output as the date 2006-11-12. The number of occurrences of the

time zone formatting symbol Z applies only to the output dateTime format.

White space is skipped over.

766 Message Models

v Physical Type: If you specify the Physical Type property of the dateTime object

to be Packed Decimal, the only pattern formatting symbols that are valid are

those that represent numbers; that is, those that have Number in the

Presentation column of the table. No other characters are allowed in the format

pattern. For example, yyyyMMdd is valid, but yyyyMMMdd is not valid

because MM is a numeric representation of the month, and MMM is a textual

representation of the month.

v Any characters in the pattern that are not in the ranges of [’a’..’z’] and [’A’..’Z’]

are treated as quoted text. For example, characters like colon (:), comma (,),

period (.), the number sign (hash or pound, #), the at sign (@), and space are

displayed in the resulting time text even if they are not enclosed within single

quotation marks.

v You can create formatting strings that produce unpredictable results; therefore,

you must use these symbols with care. For example, if you specify dMyyyy, it is

impossible to distinguish between day, month, and year. dMyyyy tells the broker

that a minimum of one character represents the day, a minimum of one

character represents the month, and four characters represent the year. Therefore

3112006 might be interpreted as 3/11/2006 or as 31/1/2006.

Notes: The following notes apply to the preceding table.

1. The day in week field is the numeric offset into a week and varies

according to the value of the physical message set property First Day of

Week. For example, the third day in the week is Wednesday if the

physical message set property First Day of Week is set to Monday.

2. 12th July 2006 is the second Wednesday in July and can be expressed as

2006 July Wednesday 2 using the format string yyyy MMMM EEEE F. Note

that this format does not represent the Wednesday in week 2 of July

2006, which is 5th July 2006; the format string for this is yyyy MMMM EEEE

W.

3. 24-hour fields might result in an ambiguous time, if specified with a

conflicting am/pm field.

4. See “ISO8601, I and T DateTime tokens” on page 768.

5. Fractional seconds are represented by uppercase S. The length must

implicitly match the number of format symbols on input. The format

string ss SSS or ss.SSS, for example, represents seconds and

milliseconds. However, the format string ss.sss represents a repeated

field (of seconds); the value after the period (.) is taken as a seconds

field, not as fractional seconds. The output is truncated to the specified

length.

6. The start of a year typically falls in the middle of a week. If the number

of days in that week is less than the value specified by the physical

message set property Days in First Week of Year, the week is considered

to be the last week of the previous year; in this case, week 1 starts some

days into the new year. Otherwise, the week is considered to be the first

week of the new year; in this case, week 1 starts some days before the

new year. For example, Monday of week 1 in 2004 (2004 01 Monday,

where Days in First Week of Year = 4 and First Day of Week = Monday

) using format string YYYY ww EEEE is in fact 29th December 2003. If you

use Y, the day of week (E) and week in year (w) are adjusted if necessary

to indicate that the date falls in the previous year.

If you use the lower case y symbol, the adjustment is not done and

unpredictable results might occur for dates around year end. For

example, if the string 2002 01 Monday is formatted:

Message model reference information 767

v Monday of week 1 in 2002 using format string YYYY ww EEEE is

correctly interpreted as 31st December 2001

v Monday of week 1 in 2002 using format string yyyy ww EEEE is

incorrectly interpreted as 30th December 2002

Use Y only together with w. If you specify Y without w, the year is

ignored. For example, if you specify YYYY-MM-dd to format 1996-03-01

the result is 2006-03-01 because the year input is ignored and the

current year is assumed.

7. The first and last week in a month might include days from

neighboring months. For example, Monday 31st July 2006 can be

expressed as Monday in week one of August 2006, which is 2006 08 1

Monday using format string yyyy MM W EEEE.

8. Year is handled as a special case:

v On output, if the count of y is 2, the year is truncated to 2 digits. For

example, if yyyy produces 2006, yy produces 06.

v On input, for 2-digit years, the physical message set property of Start

of century for 2 digit years is used to determine the century. For

example, if Start of century for 2 digit years is set to 53, year 97 is

1997, year 52 is 2052, and year 53 is 1953.

ISO8601, I and T DateTime tokens

If your dateTime values comply with the ISO8601:2000 ’Representation of dates

and times’ standard, consider using the formatting symbols I and T, which match

the following subset of the ISO8601 standard.

v The restricted profile as proposed by the W3C at http://www.w3.org/TR/
NOTE-datetime

v Truncated representations of calendar dates, as specified in section 5.2.1.3 of

ISO8601:2000

– Basic format (subsections c, e, and f)

– Extended format (subsections a, b, and d)

Use the formatting symbols I and T only on their own:

v The I formatting symbol matches any dateTime string that conforms to the

supported subset.

v The T formatting symbol matches any dateTime string that conforms to the

supported subset that consists of a time portion only.

The following table shows how the output form relates to the logical data type.

 Logical model data type ESQL data type Output form

xsd:dateTime TIMESTAMP or GMTTIMESTAMP yyyy-MM-dd’T’HH:mm:ss.SSSZZZ

xsd:date DATE yyyy-MM-dd

xsd:gYear INTERVAL yyyy

xsd:gYearMonth INTERVAL yyyy-MM

xsd:gMonth INTERVAL --MM

xsd:gmonthDay INTERVAL --MM-dd

xsd:gDay INTERVAL ---dd

xsd:time TIME / GMTTIME ’T’HH:mm:ss.SSSZZZ

768 Message Models

http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime

Note:

v On input, both I and T accept both ’+00:00’ and ’Z’ to indicate a zero time

difference from Coordinated Universal Time (UTC), but on output they

always generate ’+00:00’. If you want ’Z’ to always be generated on

output, use the IU or TU formatting symbols instead.

v ZZZ always outputs ’+00:00’ to indicate a zero time difference from

Coordinated Universal Time (UTC). If you want ’Z’ to always be

generated on output, use ZZZU instead.

Using the input UTC format on output

An element or attribute of logical type xsd:dateTime or xsd:time that contains a

dateTime as a string can specify Coordinated Universal Time (UTC) by using either

the Z symbol or time zone +00:00. On input, the MRM parser remembers the UTC

format of such elements and attributes. On output, you can specify whether Z or

+00:00 is displayed by using the Default DateTime Format property of the element

or attribute. Alternatively, you can preserve the input UTC format by selecting the

message set property Use input UTC format on output. If this property is selected,

the UTC format is preserved in the output message and overrides the format that

is implied by the dateTime format property.

Examples

The following table shows a few examples of dateTime formats.

 Format pattern Result

″yyyy.MM.dd ’at’ HH:mm:ss ZZZ″ 2006.07.10 at 15:08:56 -05:00

″EEE, MMM d, ″yy″ Wed, July 10, ’06

″h:mm a″ 8:08 PM

″hh o″clock a, ZZZZ″ 09 o’clock AM, GMT+09:00

″K:mm a, ZZZ″ 9:34 AM, -05:00

″yyyy.MMMMM.dd hh:mm aaa″ 1996.July.10 12:08 PM

DateTime as BINARY data

The count of pattern letters determines the number of bytes used to represent a

value. The symbol used in the pattern of letters can only be used in groups of 1, 2,

or 4, for example, y, yy, or yyyy.

The following table shows the dateTime symbols for binary data:

 Symbol Meaning Example

y year 1996

M month in year 7

d day in month 10

H hour in day (0-23) 13

m minute in hour 30

s second in minute 55

S millisecond 978

Message model reference information 769

Symbol Meaning Example

X Ignore on input

Pad with zeros on output

The following example shows the C language structure tm with an integer of four

bytes:

struct tm

{ int tm_sec; /* seconds after the minute - [0,59]*/

{ int tm_min; /* minutes after the hour - [0,59]*/

{ int tm_hour; /* hours since midnight - [0,23]*/

{ int tm_mday; /* day of the month - [1,31]*/

{ int tm_mon; /* months since January - [0,11]*/

{ int tm_year; /* years since 1900 */

{ int tm_wday; /* days since Sunday - [0,6]*/

{ int tm_yday; /* days since January 1 - [0,365]*/

{ int tm_isdst; /* daylight savings time flag */

};

You can format this structure by specifying the string

″ssssmmmmHHHHddddMMMM+1yyyy+1900XXXXXXXXXXXX″. The number of pattern letters

determines the number of bytes. There are 36 A-Z characters specified in this

pattern, which match the 36 byte structure tm. A field followed by a plus sign (+)

has the succeeding numeric characters added to it. Therefore MMMM+1 adds one to

the month, yyyy+1900 adds 1900 to the year. X expects one byte of input, but

ignores its value. On output, it outputs the byte as 0.

DateTime as encoded values

You can represent a dateTime element with the following physical types:

v TimeSeconds. This is a 4 byte integer that represents the number of seconds since

the epoch.

v TimeMilliSeconds. This is an 8 byte integer that represents the number of

milliseconds since the epoch.

These types provide a way for c time_t and Java dateTime representations to be

parsed.

The epoch (time 0) is specified by a format string. To change the epoch you must

update the physical properties of your dateTime element:

v In the Physical representation section you must set the Physical Type to either

Time Seconds or Time Milliseconds.

v In the Format field set the value to the format of ″yyyy-MM-dd’T’HH:mm ZZZ″.

For example, 2000-01-01T12:59 +00:00.

DateTime defaults by logical type

The default value that is assigned to the dateTime Format property is dependent

on the logical type of the property.

The following table lists the default for each of the logical dateTime types:

 Logical Type Default Format

date yyyy-MM-dd

dateTime yyyy-MM-dd’T’HH:mm:ss

gDay - - -dd

770 Message Models

Logical Type Default Format

gMonth - -MM

gMonthDay - -MM-dd

gYear yyyy

gYearMonth yyyy-MM

time HH:mm:ssZZZ

DateTime component defaults

Default values are assumed if any part of a dateTime element is not present on

input.

For example, the formatting string yyyy-MM’T’HH:mm does not contain any

information about day in month (d), seconds (s), or milliseconds (S). The table

below shows the defaults for all dateTime components:

 Component Default value

Year 1970

Month First month of year

Day First day of month

Hour First hour of day

Minute Minute 0 of hour

Second Second 0 of minute

Millisecond Millisecond 0 of second

Message set defaults

The table below shows the default dateTime formatting property settings for the

different MRM physical formats:

 Message set property CWF default TDS default XML default

Default DateTime Format See Note 1. See Note 1. See Note 1.

Default Time Zone ID Use Broker Locale (see

Note 2)

Use Broker Locale (see

Note 2)

Use Broker Locale (see

Note 2)

Century Window 53 53 (80 for SWIFT) 53

Days in First Week of Year 4 Use Broker Locale (see

Note 2)

Use Broker Locale (see

Note 2)

First Day of Week Monday Use Broker Locale (see

Note 2)

Use Broker Locale (see

Note 2)

Note:

1. You can either set the default dateTime format to be derived from its

logical type (the default), or specify the dateTime format that is to be

used. This is set at the message set level for each physical format that

has been added.

2. The key phrase Use Broker Locale causes the broker to get the

information from the underlying platform.

Message model reference information 771

You can update all these default values. The CWF defaults are set for all values of

the Physical Type property. If you change the CWF Physical Type to Binary, Packed

Decimal, TimeSeconds, or TimeMilliseconds, you must update the Default DateTime

Format property manually to ensure consistent results.

For more information about these message set properties, see “Custom Wire

Format message set properties” on page 152, “TDS Format message set properties”

on page 157, or “XML Wire Format message set properties” on page 173.

Additional MIME domain information

This section provides additional information in relation to the MIME domain. This

information is categorized into:

v “MIME standard header fields”

v “MIME parser use and restrictions” on page 775

MIME standard header fields

This section is a summary of the common MIME headers and may be useful as a

quick reference. It is not a definitive specification of MIME. In some cases the

MIME parser allows documents which are not strictly valid according to the

standard. For example, it does not insist on the presence of a MIME-Version

header. All the standard MIME header fields are simply written to the logical tree

as they appear in the MIME document. The MIME parser only takes special note

of the Content-Type header field.

All MIME headers may include comments enclosed by parentheses as shown in

the example for the MIME-Version header.

MIME header fields

MIME-Version

 Example:

MIME-version: 1.0 (generated by my-application 1.2)

For a MIME document to conform with RFC 2045, this field is required in

the top-level header with a value of 1.0. MIME-Version should not be

specified on individual parts.

Content-Type

 Content-Type is not required for a document to conform with RFC 2045,

but a top-level Content-Type is required by the MIME parser. Content-Type

defaults to text/plains. Content-Type defines the type of data in each part

as a type/subtype. The MIME parser accepts most values for Content-Type

and simply stores them in the logical tree. The only exceptions are:

v The MIME parser rejects any Content-Type value with type = message

v The MIME parser assumes that a Content-Type value with type =

multipart introduces a multipart MIME document and rejects such a

value if it does not contain a valid boundary parameter. The value of the

boundary parameter defines the separator between message parts in a

multipart message. In a nested multipart message, a unique boundary

value is needed for each nesting level.

Syntax:

772 Message Models

Content-Type: type/subtype;parameter

Where type and subtype define the Content-Type and any optional

parameters are delimited by semicolons.

Example 1:

Content-Type: multipart/related;type=text/xml

In example 1 the Content-Type is defined as multipart/related and also has

an optional parameter definition (type=text/xml). While this is

syntactically correct, as there is no valid boundary parameter this message

will be rejected.

Example 2:

Content-Type: multipart/related;boundary=Boundary;type=text/xml

Example 2 shows a valid Content-Type definition, both in terms of syntax

and semantics. The boundary value may optionally be enclosed in qotation

marks. When it appears in the MIME body the value is preceded by the

sequence ’--’ and care must be taken that the resulting value (in this

example it would be --Boundary) cannot appear in the message body. If the

message data is encoded as quoted-printable, you should have a boundary

that includes a sequence such as “=_”, which cannot appear in a

quoted-printable body.

Some common Content-Type values are shown below. Any other values are

allowed and simply stored in the logical tree.

 Content-Type Description

text/plain Generally used for a typical mail or news message. text/richtext also common.

text/xml Generally used with SwA (SOAP with Attachments)

application/octet-stream Used where the message is an unknown type and contains any kind of data as bytes.

application/xml Used for application-specific xml data

x-type Used for non-standard content type. It must start x-

image/jpeg Used for images. image/jpeg and image/gif are common image formats that are used

multipart/related Used for multiple related parts in a message. Specifically used with SwA (SOAP with

Attachments)

multipart/signed Used for multiple related parts in a message including signature. Specifically used

with S/MIME

multipart/mixed Used for multiple independent parts in a message

Content-Transfer-Encoding

 Optional. Many Content-Types are represented as 8-bit character or binary

data. This could include XML, which typically uses UTF-8 or UTF-16

encoding. This type of data cannot be transmitted over some transport

protocols and may be encoded to 7-bit.

The Content-Transfer-Encoding header field is used to indicate the type of

transformation that has been used for encoding this type of data into a

7-bit format.

The only values allowed by the WS-I Basic Profile are:

v 7bit - the default

v 8bit

Message model reference information 773

v binary

v base64

v quoted-printable

The values 7bit, 8bit, and binary all effectively mean that no encoding took

place. It is possible that a MIME conformant mail gateway might use this

value to control how it handles the message. For example, encoding it as

7bit before passing routing it over SMTP.

The values base64 and quoted-printable mean that the content has been

encoded. The value quoted-printable means that only non-7-bit characters

in the original are encoded and is intended to yield a document which is

still human-readable. This setting is most likely to be used in conjunction

with a Content-Type of text/plain.

Content-ID

 Optional. This enables parts to be labeled and referenced from other parts

of the message. These parts are typically referenced from part 0 (the first)

of the message.

Content-Description

 Optional. This enables parts to be described.

MIME encodings

The following section is aimed to provide a basic guide to the base64 and

quoted-printable encoding. Please refer to RFC 1521 for a definitive specification of

MIME encodings.

base64

 The original data is broken into groups of 3 octets. Each group is then

treated as 4 concatenated 6-bit groups, each of which is translated into a

single digit in the base64 alphabet. The base64 alphabet is A-Z, a-z, 0-9,

and / (with A=0 and /=63).

 If fewer than 24 bits are available at the end of the data, the encoded data

is padded using the “=” character . The maximum line length in the

Original Data

Encoded Data

msb

8 bits

6 bits 6 bits 6 bits 6 bits

8 bits 8 bits

lsb msb lsb msb lsb

Split into 3 x octets

Treat as 4 x 6-bits, each rendered
as one base 64 character

msb = most significant bit
lsb = least significant bit

Figure 1. base64 data transformation

774 Message Models

encoded data is 76 characters and line breaks (and any other characters not

in the alphabet above) are ignored when decoding.

Examples:

 Input Output

Some data encoded in base64. U29tZSBkYXRhIGVuY29kZWQgaW4gYmFzZTY0Lg==

life of brian bGlmZSBvZiBicmlhbg==\012

what d2hhdA==

quoted-printable

 This encoding is only appropriate if most of the data comprises printable

characters. Specifically, characters in the ranges 33-60 and 62-126 are

usually represented by the corresponding ASCII characters. Control

characters and 8-bit data must be represented by the sequence = followed

by a pair of hex digits.

The standard ASCII space <SP> and horizontal tab <HT> represent

themselves, unless they appear at the end of an encoded line (without a

soft line break) in which case the equivalent hex format must be used (=09

and =20 respectively).

Line breaks in the data are represented by the RFC 822 line break sequence

<CR><LF> and should be encoded as ″=0D=0A″ if binary data is being

encoded.

As for base64, the maximum line length in the encoded data is 76

characters. An ‘=’ sign at the end of an encoded line (a ‘soft’ line break) is

used to tell the decoder that the line is to be continued.

MIME parser use and restrictions

This topic provides a general introduction to the MIME parser and some of the

restrictions in its use. The MIME domain does not support the full MIME standard,

but supports specific known uses of MIME.

MIME stands for Multipurpose Internet Mail Extensions. A multipart MIME

message comprises a number of message parts, each qualified by MIME headers.

The MIME domain and parser enable you to parse and write multipart MIME

messages.

MIME is used to send e-mail messages. When the e-mail includes attachments, a

multipart MIME message is used. Multipart MIME is becoming more widely used

as a convenient physical format for sending other kinds of message that have

attachments or that consist of multiple separate parts.

Examples are:

v RosettaNet. Each part is typically a separate XML document but there might

also be non-XML attachments. The MIME parser enables the parsing of MIME

messages of the style used by RosettaNet, including nested multipart messages.

However, it does not offer specific support for the wider RosettaNet architecture

or PIPs (Partner Interface Processes).

v SOAP with Attachments (SwA). The first part is a normal SOAP XML message

and the other parts contain XML or non-XML attachments.

Message model reference information 775

v TLOG. This is a specialized use of SwA in which the attachments are groups of

point-of-sale Transaction Log records in either one of two XML forms or a

tagged/delimited string form. Different POS devices generate different TLOG

record formats such as ACE. In addition, the record can either be processed

before it is uploaded or it can be sent unchanged.

Restrictions

The MIME parser is bitstream driven and has no external metadata. It relies

exclusively on bitstream metadata when parsing and on tree metadata when

writing. The parser does not validate MIME messages against a message model

and it ignores the tooling Validate property. The parts of a MIME message are

handled as BLOBs. You can choose to parse specific MIME parts using a different

parser. If this is an MRM parser, they can be validated in the usual way. The

MIME parser does not support on-demand parsing and ignores the Parse Timing

property.

You can specify the new MIME domain either at runtime in an MQRFH2 header

(WebSphere MQ only) or statically in their message flow in the tooling (on the

input nodes MQGet, HTTPRequest, ResetContentDescriptor or XSLTransform). The

MIME parser is then invoked to own the last child of root (for example, the

message body). The MIME domain can be specified with the ESQL CREATE

PARSE clause and ASBITSTREAM function to parse and write bitstreams. The

MIME parser handles documents received both over the HTTP transport (where

the Content-Type appears as an HTTP header) and over other transports (where

the Content-Type header is part of the message body). In both cases, set the

Content-Type value using the ContentType property in the MIME domain. Setting

the Content-Type value directly in the MIME tree or HTTP trees can lead to the

value being ignored or used inconsistently.

Typically, the MIME parser handles the majority of uses of MIME in

application-to-application messaging, including multipart MIME with a single part

and non-multipart MIME documents. However, you should use the SOAP domain

for SOAP with Attachments (SwA).

Additional IDOC domain information

This section provides additional information in relation to the IDOC domain. This

information is categorized into:

v “Building the message model for the IDOC parser”

v “Field names of the IDOC parser structures” on page 778

Note: The IDOC domain is deprecated and is not recommended for developing

new message flows. Instead use the MRM domain with a TDS physical

format when you want to process SAP ALE IDocs that are sent to the broker

by SAP R3 clients across the WebSphere MQ link for R3.

Building the message model for the IDOC parser

The ALE IDoc messages that are sent to, and received from, SAP applications

using the WebSphere MQ Link for R3, can be processed by the IDOC parser, which

requires a message model to interpret the data correctly. This topic describes how

to build the message model.

776 Message Models

Note: The IDOC domain is deprecated and is not recommended for developing

new message flows. Instead, use the MRM domain with a TDS physical

format when you want to process SAP ALE IDocs that are sent to the broker

by SAP R3 clients across the WebSphere MQ link for R3.

Obtaining the IDoc

Create an import file of the required IDoc data for the Message Brokers Toolkit.

1. Log on to a SAP system.

2. Run the supplied transaction we60, which extracts the IDoc data as a C header

file.

a. In Basic Type, select the IDoc type of interest; for example, MATMAS02.

b. Leave the Control, Data, and Status check boxes cleared.

c. Select the Record types version. A version 4 IDoc is type 3.

d. Press F7 to display a C representation of the IDoc.

e. Select System->List->Save->Local file.

f. Click unconverted.

g. When prompted, enter a file name and directory for the output from the

transaction. The C representation of the IDoc is saved to this C header file.

Tip: The exported C header can be imported into the Message Brokers Toolkit

without any further manual processing. This was not true in previous releases

of WebSphere Message Broker.

Modeling the IDoc

Create your message model.

1. Switch to the Broker Application Development perspective of the Message

Brokers Toolkit.

2. Use the New Message Set wizard to create a message set for your IDoc. Select

binary data as the kind of data to be used. This creates a message set with a

Custom Wire Format (CWF) physical format, and presets the Default message

domain property to MRM.

3. Use the Message Set editor to change the Default message domain property to

IDOC.

4. Use the New Message Definition File wizard to import a prebuilt model of the

ALE IDoc message structure. To start the wizard, click File → New → Message

Definition File From. When the wizard opens, select IBM supplied message,

then SAP ALE IDoc. This SAP ALE IDoc prebuilt model includes definitions of

the DC and DD segments. The resulting message definition file is called

ale_idoc.mxsd. For information about using the New Message Definition File

wizard, see “Importing from IBM supplied messages” on page 133.

5. Use the New Message Definition File wizard, or the mqsicreatemsgdefs

command, to import the C representation of the IDoc into the new message set.

To start the wizard, click File → New → Message Definition File From.

Specify the following settings:

v Select C Header file.

v Set Select the pre-processing option to apply to SAP ALE IDoc. If this option

is not specified, the import of the C header fails. If this option is specified,

the message prefix preference is ignored.

v Create messages for the segments that appear in the IDoc.

v Use the String Encoding option to import character arrays as fixed length

strings.

Message model reference information 777

|
|

v Use the Padding Char for String option to make space (“ ”) the padding

character that is used.

For information about using the New Message Definition File From C Header

File wizard, see “Importing from C” on page 129.

Using the IDoc message model

You can now use your message model to help you to construct a message flow

that processes instances of your IDoc message. You can use ESQL or Java to access

the fields of the IDoc. You cannot use graphical maps to access the fields of the

IDoc because the IDOC domain is not supported by the mapping editor.

When you set the properties of the MQInput node that is to receive your IDoc

from the WebSphere MQ Link for R3, the Message Domain property must be

IDOC, the Message Set property must be the name of your message set, and the

Message Format property must be the name of your Custom Wire Format. You do

not need to set a Message Type property on the MQInput node because it is not

needed by the IDOC parser.

When your message flow is complete, add the message set and the message flow

to a broker archive (bar) file and deploy the bar file to a broker execution group.

When an IDoc is received by the MQInput node, the IDOC parser processes the

SAP-defined elements in the DC and then, for each DD, processes the SAP-defined

elements, and then invokes the MRM parser to process the user-defined segment

data, as described by your exported IDoc, using the CWF physical format. The

MRM parser knows the Message Type property to use for the user-defined

segment, because this is obtained from the SAP-defined DD field segnam by the

IDOC parser.

Tip: SupportPac IA0F contains a more detailed description of the steps involved in

building the IDoc message model. You can ignore utilities IDocHeaderTweak

and IDocMsgSetTweak because that processing has been incorporated into the

New Message Definition File From C Header File wizard.

Field names of the IDOC parser structures

The field names of the Control Structure (DC) and the Data Structure (DD) that are

used by the IDOC parser.

The field names are documented in the form that they are used in a SET statement

of ESQL; for example:

SET OutputRoot.Properties = InputRoot.Properties;

SET OutputRoot.MQMD = InputRoot.MQMD;

Control structure (DC) fields

All the fields must be specified and set.

The syntax is:

<rootname>.<ParserName>.<foldername>.<fieldname>=

For example:

SET "OutputRoot"."IDOC"."DC"."docnum" = ’0000000000000001’;

SET "OutputRoot"."IDOC"."DC"."idoctyp" = ’MATMAS01’

778 Message Models

The field names, which must be specified in order, are:

 1) tabnam 2) mandt 3) docnum

4) docrel 5) status 6) direct

7) outmod 8) exprss 9) test

10) idoctyp 11) cimtyp 12) mestyp

13) mescod 14) mesfct 15) std

16) stdvrs 17) stdmes 18) sndpor

19) sndprt 20) sndpfc 21) sndprn

22) sndsad 23) sndlad 24) rcvpor

25) rcvprt 26) rcvpfc 27) rcvprn

28) rcvsad 29) rcvlad 30) credat

31) cretim 32) refint 33) refgrp

34) refmes 35) arckey 36) serial

Data structure (DD) fields

To access each DD segment, use the array suffix DD[1], DD[2], and so on.

The syntax is:

<rootname>.<ParserName>.DD[1].<fieldname>=

For example:

SET OutputRoot.IDOC.DD[I].segnam = ’E2MAKTM001’;

SET OutputRoot.IDOC.DD[I].mandt2 = ’111’;

The following table illustrates how the suffix 2 is used to give unique field names

to the mandt and docnum fields.

The field names, which must be supplied in order, are:

 1) segnam 2) mandt2 3) docnum2

4) segnum 5) psgnum 6) hlevel

Notes:

v The last 1000 bytes of data in the DD segment are the bytes that are

parsed by the MRM domain.

v The DD segnam describes the model that the MRM uses.

Segment fields

The syntax is:

<rootname>.<ParserName>.DD[1].sdatatag.MRM.<fieldname>=

For example:

SET OutputRoot.IDOC.DD[I].sdatatag.MRM.msgfn = ’006’

SET OutputRoot.IDOC.DD[I].sdatatag.MRM.spras_iso = ’EN’

Notes:

Message model reference information 779

v The sdatatag field indicates to the parser that it is the element that

contains the data to be manipulated.

v The MRM field indicates that the MRM handles the transformation.

 msgfn spras maktx

msgfn spras_iso fill954

The fill954 field is the filler for the segment because an incoming IDoc to SAP

must have 1000 byte segments.

Message model task list errors that have a quick fix

This provides a list of message modeling task list warnings or errors where a quick

fix can be applied to correct them.

Unresolved references

The following table provides a list of those errors that have references that cannot

be resolved:

 Error type Description Quick Fix

Attribute reference error The attribute reference

cannot be resolved

Allows you to add the

missing include or import

statement

Attribute group reference

error

The attribute group reference

cannot be resolved

Allows you to add the

missing include or import

statement

Attribute type reference The attribute type reference

cannot be resolved

Allows you to add the

missing include or import

statement

Base type error The type has an unresolved

base type

Allows you to add the

missing include or import

statement

Element reference error The element reference cannot

be resolved

Allows you to add the

missing include or import

statement

Element type reference error The element type reference

cannot be resolved

Allows you to add the

missing include or import

statement

Group reference error The group reference cannot

be resolved

Allows you to add the

missing include or import

statement

Schema directive error The schema directive cannot

be resolved

Allows you to add the

missing include or import

statement

Sub group error The element declaration

references a head element

which cannot be resolved.

Allows you to add the

missing include or import

statement

780 Message Models

Other errors

The following table provides a list of additional warnings or errors that can be

cleared using a quick fix:

 Error type Description Quick Fix

Message key deprecated

warning

TDS property ″Message Key″

has been superseded by

logical property ″Message

Alias″.

Will update your message

definition to use ″Message

Alias″ instead. (You should

use this if you only have

Version 6.0 brokers in your

domain.)

Message key enumeration

deprecated warning

TDS property ″Interpret

Element Value = Message

Key″ has been superseded by

logical property ″Interpret

Value As = Message

Identity″.

Will update your element

definition to use logical

property ″Interpret Value As

= Message Identity″ instead.

You should use this if you

only have Version 6.0 brokers

in your domain.)

Repeat count deprecated

warning #1

CWF property ″Repeat

Count″ has been superseded

by ″Max Occurs″. Both

″Repeat Count″ and ″Max

Occurs″ have been set, but

do not have the same value.

You will have a choice of

two quick fixes:

v Will update your

definition to unset the

″Repeat Count″ property.

v Will update your

definition to set ″Max

Occurs″ to the value of the

″Repeat Count″ property,

and to unset the ″Repeat

Count″ property.

Repeat count deprecated

warning #2

CWF property ″Repeat

Count″ has been superseded

by ″Max Occurs″. Both

″Repeat Count″ and ″Max

Occurs″ have been set and

have the same value.

Will update your definition

to unset the ″Repeat Count″

property.

Redefine error An XML Schema Redefine

construct has been found but

is not supported.

Will update your message

definition file to use an XML

Schema Include construct

instead. Any redefinitions

will be lost.

Value does not match Length

facet error

The length of a default value,

fixed value or enumeration

value does not match the

effective Length facet for the

simple type.

You will have a choice of

two quick fixes:

v Will update your simple

type definition so that the

Length facet is converted

to a Max length facet.

v Will update all the simple

type definitions in your

message definition file so

that all Length facets are

converted to Max Length

facets, and then save the

file to remove all the

associated task list errors.

Message model reference information 781

Error type Description Quick Fix

Facet not applicable for

simple type error

A facet has been found on a

simple type, but the facet is

either not permitted on that

simple type or is a duplicate.

Will update your simple type

definition so that all illegal

facets and all duplicate facets

are removed.

Generated model representations

This section provides information on the possible generated model representations.

Details are provided for:

v “Document generation”

v “WSDL generation”

v “XML Schema generation” on page 784

Document generation

Output Files

The document generator produces a set of HTML pages and any necessary files

(for example, images) that are required to display the pages correctly.

There is one page for each message definition file in the message set, and one

additional index page linking these pages together.

The index page (index.html), is intended to be the ″entry point″ into the

documentation.

WSDL generation

This topic defines the objects created by the WSDL Generator.

Generated Files

The default file and definition element names are shown in the table below.

<Message Set> is the supplied message set name and <Definition Name> is the

supplied Definition Name solicited by the wizard.

 Table 1. WSDL File Naming Convention

File File Name File Extension

Value of name

attribute on WSDL

<definitions>

element

Service File

(single-file format)

<Message Set> wsdl <Definition Name>

Service File

(multi-file format)

<Message Set>Service wsdl <Definition

Name>Service

Binding File <Message

Set>Binding

wsdl <Definition

Name>Binding

Interface File <Message Set> wsdl <Definition Name>

If ’Deployable WSDL’ is generated, no additional XML schema (xsd) files are

generated, and the WSDL refers directly to the broker message definition (mxsd)

782 Message Models

||

|||

|
|
|
|

|
|
|||

|
|
|||
|

||
|
||
|

||||
|

|
|

files; otherwise, separate XML schema (xsd) files are generated, unless you selected

’inline schema’.

Report File

The WSDL generator appends the result of the generation operation to a report

file, listing any errors which occurred. The file name is:

<Message Set>.wsdlgen.report.txt

WSDL Content

The tables below show the element / attribute values to be set in the generated

WSDL. The elements are described top-down as they appear in a conventionally

ordered WSDL document. The <schema> section of the WSDL definition is not

shown since this corresponds directly to the broker message definitions.

Element names are from the WSDL 1.1 namespace except where prefixed by soap:

for the WSDL SOAP namespace. Operation elements occur in both the binding and

portType sections, so operation is qualified as necessary – for example, portType /

operation.

The following values apply to the WSDL definition as a whole:

 Table 2. WSDL objects

Element Attribute Value

definitions xmlns assign namespace prefixes.

definitions targetNamespace This is the WSDL Namespace solicited by the

wizard, defaulting to http://tempuri.org/<Message

Set>.

message name <operation>_<role> where <operation> is the

operation name and <role> is in, out, or fault

part name name of the broker message. If Style is set to rpc, the

body parts are defined using the type attribute. If

not, the body parts are defined using the element

attribute.

portType name <Message Set>PortType

binding name v ”<Message Set>SOAP_HTTP_ Binding”

v ”<Message Set>SOAP_JMS_ Binding”

soap:binding style From the value of Style set in the wizard.

The following values apply to each individual WSDL operation:

 Table 3. WSDL <operation> objects

Element Attribute Value

operation name The name of the operation specified in the wizard.

soap:operation style From the value of Style set in the wizard.

input, output,

fault

name <operation>_<role>, where <operation> is the

operation name, and <role> is Input, Output, or

Fault.

Message model reference information 783

|
|

|||
|
|

|||
|

|||

|||

|

Table 3. WSDL <operation> objects (continued)

Element Attribute Value

soap:body namespace v If Style has been set to rpc then it is the

namespace of the corresponding broker message.

v If Style has been set to document the attribute is

not generated.

soap:header,

soap:fault,

soap:body

use This is set to literal.

Message Set

The message set provides the basis for many important broker features, including

mapping support and ESQL code completion at development time, and validation

at runtime.

Therefore, the WSDL that you use in the broker at development time (for example,

when configuring SOAP nodes) is integrated with the message set, and references

the broker message definitions (mxsd) rather than ordinary Schema (xsd) files. This

is referred to as deployable WSDL and is displayed under the category Deployable

WSDL in the workbench.

Deployable WSDL is generated when you specify your Message Set Folder (the

immediate child of your Message Set Project) as the destination directory for

your WSDL.

Otherwise, regular WSDL is generated, along with separate XML schema (xsd) files

if these were requested. Regular WSDL cannot be used to configure SOAP nodes,

but is suitable for consumption by external applications such as .NET.

Assuming that you are generating deployable WSDL for use in a message flow, the

flow typically needs to be able to parse and validate the runtime SOAP messages

described by that WSDL. The WSDL generator, therefore, adds additional

definitions to your message set:

v For rpc-style WSDL, additional definitions for the WSDL operations themselves

are added to your message set

v For the version of the SOAP Envelope used by the WSDL an mxsd file is added

– this will be soapenv11.mxsd or soapenv12.mxsd.

v For use by ESQL Content assist and the Mapping editor primarily, a definition

of the SOAP_Domain_Msg tree.

XML Schema generation

This topic covers the behavior of XML Schema generation. For example, you could

use the schema generated from a message definition file to subsequently validate

XML instance documents written by WebSphere Message Broker.

Lax generation

Lax generation affects how complex types that have Content Validation set to Open

or OpenDefined or have Composition set to UnorderedSet are rendered in the

generated schema. Note that such a validating schema will permit a wider range of

messages than MRM parser validation.

784 Message Models

|

|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|

Content Validation is set to Open or OpenDefined

Here a complex type (global or anonymous) has its content replaced by a

single element of type anyType. The following generation pattern is used

for complex types with Content Validation set to Open:

 <element name="xmlNameOfMessage">

 <complexType>

 <sequence>

 <any processContent="lax"

 minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

</element>

Where Content Validation is set to OpenDefined, the following pattern is

used. (The namespaces listed are all those defined in the containing

message set.)

<element name="xmlNameOfMessage">

 <complexType>

 <sequence>

 <any processContent="lax"

 minOccurs="0" maxOccurs="unbounded"

 namespace="http://www.ns1 http://www.ns2" />

 </sequence>

 </complexType>

</element>

Composition is set to UnorderedSet

Where Composition is set to UnorderedSet, to mimic the unordered aspect, a

choice is inserted with appropriate cardinality. This is shown below.

 <element name="xmlNameOfMessage">

 <complexType>

 <sequence maxOccurs="unbounded"

 minOccurs= "(minOccurs of original sequence) *

 (items in original sequence)">

 <choice>

 .. sequence contents ..

 </choice>

 </sequence>

 </complexType>

</element>

Strict generation

Strict generation affects how complex types that have Content Validation set to Open

or OpenDefined or have Composition set to UnorderedSet are rendered in the

generated schema. Note that such a validating schema will permit a narrower

range of messages than MRM parser validation.

Strict is the default generation option and generates a schema that matches the

schema held in the message definition file, without the model extensions.

Content Validation set to Open/OpenDefined

A complex type (global or anonymous) will lose the ability to contain

self-defining elements and becomes closed.

Composition set to UnorderedSet

A complex type (global or anonymous) will lose the ability to be

unordered and becomes a sequence.

Message model reference information 785

Rendering of xsd:elements

If an XML physical format is specified when generating the schema, the wire

format customization is applied to the logical model. These properties control how

an element in the model is actually rendered when it appears in a message for an

XML wire format. See “XML rendering options” on page 733 for the different

render options available. A generated schema example is given below showing

what is generated for the different render options available for local elements; note

these examples do not modify the Namespace of any ID Attribute Name or Value

Attribute Name properties and assume that all elements specified in the

complexType1 are of schema built-in type string.

 <xsd:complexType name="complexType1">

 <xsd:sequence>

 <!-- Local element Render = ’XMLElement’ -->

 <xsd:element name="localElement1" type="xsd:string"/>

 <!-- Local element Render = ’XMLElementAttrID’

 ID Attribute Name = ’id’ -->

 <xsd:element name="localElement2">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:attribute name="id" type="xsd:string"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <!-- Local element Render = ’XMLElementAttrVal’

 Val Attribute Name = ’val’ -->

 <xsd:element name="localElement3">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:attribute name="val" type="xsd:string"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <!-- Local element Render = ’XMLElementAttrIDVal’

 ID Attribute Name = ’id’ Val Attribute Name = ’val’ -->

 <xsd:element name="localElement4">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:attribute name="val" type="xsd:string"/>

 <xsd:attribute name="id" type="xsd:string"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 <!-- Local element Render = ’XMLAttribute’ -->

 <xsd:attribute name="localElement5" type="xsd:string"/>

 </xsd:complexType>

Rendering of xsd:attributes

The rendering of xsd:Attributes is not supported. The user can only change the

name of the attribute.

Embedded simple types and Compound Elements

These are deprecated objects that are only encountered if the message set was

created using WebSphere MQ Integrator Broker Version 2.1.

786 Message Models

They are modeled in the message definition file as elements with both minOccurs

and maxOccurs set to 0 and have one of the predefined ComIbmMrm_xxx types.

During the schema generation, the type of such elements is changed to the base

type of the respective ComIbmMrm_xxx type.

If there are global simple types that inherit from one of these ComIbmMrm_xxx

types, these are changed to inherit from the base type of the corresponding

ComIbmMrm_xxx type.

Generated schema files will not have any occurrence of these ComIbmMrm_xxx

types.

For example the global element with type defined below:

<element name="globalElement1" type="ns1:ComIbmMrm_BaseValueBinary"/>

will result in the generated schema file and a global element with the

corresponding xsd base type as defined below:

<element name="globalElement1" type="hexBinary"/>

Import formats

This section provides information on the supported features of formats that have

been imported from an external source. Details are provided for:

v “Importing from C: supported features”

v “Importing from COBOL: supported features” on page 789

v “Importing from WSDL: generated objects and restrictions” on page 794

v “Importing from XML Schema: unsupported features” on page 797

Importing from C: supported features

This section describes the defaults that the C importer uses when mapping C data

types to message model elements.

The table below shows how the C definitions influence the XML Schema settings

in the message model. Some xsd types have ’-’ after the type. This indicates that it

is an anonymous simple type based on this type. For strings, the purpose of the

anonymous type is to add a maximum length restriction; for numeric types, the

purpose of the anonymous type is to add either a minimum or a maximum value

restriction.

 C data type XML Schema data Notes

Char xsd:string- maxlength=1

Char[10] xsd:string- maxlength=10

Char[10][3] xsd:string- maxlength=3

Char[10][3][6] xsd:string- maxlength=6

Unsigned Char xsd:unsignedByte

Unsigned Char[2] xsd:unsignedByte

Signed Char xsd:byte

Signed Char[2] xsd:byte

Int xsd:int

Int[2] xsd:int

Int[2][3] xsd:int

Message model reference information 787

C data type XML Schema data Notes

Unsigned Int xsd:unsignedInt

Short xsd:short

Unsigned Short xsd:unsignedShort

Long xsd:int

Long Long Int xsd:long

Float xsd:float

Double xsd:double

Long Double

(see note 1) xsd:double

<any pointer type> xsd:hexBinary- maxlength=(see note 2)

<any enum>

(see note 3)

The following table shows how C definitions influence the physical MRM CWF

characteristics of the elements that are generated in the message model.

 C data type CWF Physical type CWF Length characteristics Other CWF characteristics

Char Fixed Length Length = 1

Length Units = Bytes

Char[10] Fixed Length Length = 10

Length Units = Bytes

Left justify

Char[10][3] Fixed Length Length = 3

(and Max Occurs = 10)

Length Units = bytes

Left justify

Char[10][3][6] Fixed Length Length =6

(and Max Occurs = 30)

Length Units = bytes

Left justify

Unsigned Char Integer Length = 1 Signed = no

Unsigned Char[2] Integer Length = 1

(and Max Occurs = 2)

Signed = no

Signed Char Integer Length = 1 Signed = yes

Signed Char[2] Integer Length = 1

(and Max Occurs = 2)

Signed = yes

Int Integer Length = 4 Signed = yes

Int[2] Integer Length = 4

(and Max Occurs = 2)

Signed = yes

Int[2][3] Integer Length = 4

(and Max Occurs = 6)

Signed = yes

Unsigned Int Integer Length = 4 Signed = no

Short Integer Length = 2 Signed = yes

Unsigned Short Integer Length = 2 Signed = no

788 Message Models

C data type CWF Physical type CWF Length characteristics Other CWF characteristics

Long Integer Length = 4

(see note 4) Signed = yes

Long Long Int Integer Length = 8 Signed = yes

Float Float Length = 4

Double Float Length = 8

Long Double

(see note 1) Float Length = 8

<any pointer type>

(see note 2)

<any enum> Integer

(see note 3)

Notes:

 1. Do not set the value of C importer option size of long double to 128 bit.

This will not import successfully. Please use the default 64 bit.

 2. The length is affected by the Address Size C importer option as follows:

v For 32 bit, CWF length = 4 bytes.

v For 64 bit, CWF length = 8 bytes.
 3. The type and length of an enum is affected by the Size of enum C

importer option as follows:

v For 1: Logical type = xsd:byte, CWF physical type = Integer, CWF

length = 1 byte.

v For 2: Logical type = xsd:short, CWF physical type = Integer, CWF

length = 2 bytes.

v For 4: Logical type = xsd:int, CWF physical type = Integer, CWF

length = 4 bytes.

v For Compact: The smallest representation is chosen that the

enumeration fits into.
 4. The length of a long is affected by the Address Size C importer option

as follows:

v For 32 bit: CWF length = 4 bytes.

v For 64 bit: CWF length = 8 bytes.
 5. Element names that clash with Java language keywords are modified

by prefixing them with a single underscore character.

 6. The _Packed keyword is not supported. Only ANSI C declarations are

supported.

 7. The C long long data type is not supported.

 8. C++ object oriented extensions are not supported. Only ANSI C

declarations are supported.

 9. Pointers will be imported as xsd:integer with CWF length set to 4.

10. Recursive C structures are not supported. If a nested structure contains

a structure with a name that is the same as the parent structure, the

import succeeds but the logical definitions are not correct. To avoid

this problem, ensure that the name of the nested structure is not the

same as that of the outer or parent structure.

Importing from COBOL: supported features

The following table shows how COBOL definitions influence the XML Schema

settings in the message model.

Message model reference information 789

COBOL Clause XML Schema data

type

Notes

PIC A xsd:string

PIC G xsd:string Set the compile-time locale name to ja_JP in Windows - Preferences

- Importer - COBOL to process this.

PIC N xsd:string Set the compile-time locale name to ja_JP in Windows - Preferences

- Importer - COBOL to process this.

PIC X xsd:string

PIC 9(n) n = 1-4 xsd:short DISPLAY, COMP, or COMP-3

PIC 9(n) n = 5-9 xsd:int DISPLAY, COMP, or COMP-3

PIC 9(n) n = 10-18 xsd:long DISPLAY, COMP, or COMP-3

PIC 9(n) n = 19-31 xsd:integer DISPLAY, COMP, or COMP-3

PIC 9(n)V9(m) xsd:decimal DISPLAY, COMP, or COMP-3 any virtual decimal point value

COMP-1 xsd:float

COMP-2 xsd:double

Any edited string xsd:string

Any edited number xsd:string For example, a COBOL PICTURE clause that contains any of the

following characters:

 ’Z’

 ’+’

 ’-’

 ’.’

 ’,’

 ’B’

 ’0’

or a currency symbol.

If you want your broker logical type to be a numeric one, make

sure that the COBOL PICTURE clause does not contain any of these

characters.

VALUE All Non-88 Level VALUE clauses can be imported as schema default

values (option on import wizard).

The following table shows how COBOL definitions influence the physical MRM

CWF characteristics of the elements that are generated in the message model.

 COBOL Clause CWF Physical Type CWF Length

Characteristics

Other CWF characteristics

PIC X(n)

PIC A(n)

Fixed Length String Length = n

Length Units = Bytes

Justification = Left Justify

Padding Character =

SPACE

PIC G(n)

PIC N(n)

Fixed Length String Length = n

Length Units = Characters

Justification = Left Justify

Padding Character =

SPACE

790 Message Models

COBOL Clause CWF Physical Type CWF Length

Characteristics

Other CWF characteristics

PIC 9(n) DISPLAY n=1-31 External Decimal Length = n

Length Units = Bytes

Justification = Right Justify

Padding Character = ’0’

Signed = Unticked

Sign Orientation = Trailing

PIC 9(n) COMP, COMP-4,

COMP-5 or BINARY

Integer Length = 2, 4 or 8 based on

n

Length Units = Bytes

Signed = Unticked

Sign Orientation = Blank

PIC 9(n) COMP-3 n=1-18 Packed Decimal Length =

CEILING((n+1)/2)

Length Units = Bytes

Signed = Unticked

Sign Orientation = Blank

PIC S9(n) DISPLAY n=1-31 External Decimal Length = n

Length Units = Bytes

Signed = Ticked

Sign Orientation = Trailing

*See Note 1

PIC S9(n) COMP or

COMP-3

n=1-18

Integer or Packed Decimal Length = See COMP and

COMP-3 definitions above

Length Units = Bytes

Signed = Ticked

Sign Orientation = Blank

PIC 9(m)V9(n) DISPLAY

n=1-31

External Decimal Length = n+m

Length Units = Bytes

Signed = Unticked

Sign Orientation = Trailing

Virtual Decimal Point = n

PIC 9(m)V9(n) COMP or

COMP-3

Integer or Packed Decimal Length =

CEILING((n+m+1)/2) for

COMP-3

Length = 2, 4 or 8 for

COMP

Length Units = Bytes

Signed = Unticked

Sign Orientation = Blank

Virtual Decimal Point = n

COMP-1 Float Length = 4

Length Units = Bytes

Signed = Ticked

Sign Orientation = Blank

COMP-2 Float Length = 8

Length Units = Bytes

Signed = Ticked

Sign Orientation = Blank

SYNC Float, Integer or Packed

Decimal

Leading Skip Count as

appropriate

Trailing Skip Count as

appropriate

Byte alignment as

appropriate

*See note 2

Notes:

Message model reference information 791

1. Sign Orientation can take one of the following values, based on the

SEPARATE, LEADING, or TRAILING keywords in the COBOL

definition:

v Leading

v Leading Separate

v Trailing

v Trailing Separate
 2. The SYNC keyword causes the field to be aligned on a 1, 2, 4, or

8-byte boundary. This might cause ’slack bytes’ to be added either

before or after a field. Leading Skip Count is the number of such

bytes that are added before a field; Trailing Skip Count is the number

of such bytes that are added after a field.

Leading Skip Count and Trailing Skip Count are calculated by the

importer for each of the imported elements by the importer,

irrespective of the SYNC clause. They have non-zero values when the

SYNC clause is present.

Where there is a repeating element, Leading Skip Count and Trailing

Skip Count are used for the first occurrence of the repeating element;

for subsequent occurrences, only the Trailing Skip Count is used.

Refer to COBOL reference material for details of fields that require

byte alignment.

 3. All files that you import must be syntactically correct. Results are

unpredictable if the file being imported is not synctactically correct.

 4. COBOL data types that have keywords POINTER, COMP-X, INDEX,

or PROCEDURE-POINTER, are not supported.

 5. COBOL clauses that contain the keyword NATIVE cause an error, and

are not imported.

 6. COBOL level 66 and level 77 data items are not imported.

 7. Hexadecimal binary values cannot be attributed to non-numeric

literals. They cannot reside in the LINKAGE SECTIONs that are

imported by the COBOL importer. They can reside elsewhere in the

COBOL file. Alternatively, you can convert the hexadecimal value to a

character string for PIC X, or to a decimal number for PIC 9.

 8. If element names clash with Java language keywords, the element

names are modified by prefixing the element name with a single

underscore character.

 9. Object-oriented extensions to COBOL 85 are not supported. For

example, OBJECT-REFERENCE is not supported.

10. COBOL OCCURS DEPENDING ON clause. The Byte Alignment,

Leading Skip Count, and Trailing Skip Count CWF properties of

elements within such a structure are not set up properly. You must

correct these using the message editor.

11. When the imported COBOL source file contains QUOTE or QUOTES

in the value clause of a picture string, the default behavior is to fill in

the data with double quotation marks, unless you set the COBOL

QUOTE compile option to SINGLE on the Import Options page of the

COBOL importer wizard.

Signed external decimal numbers

The MRM Custom Wire Format (CWF) and TDS components of the WebSphere

Message Broker support the External Decimal (also known as Zoned Decimal) data

792 Message Models

format for numeric data. Numeric data in this format is stored internally as

decimal character data. For example, in a system that uses the EBCDIC code, the

number 1234 stored in a 4-byte external decimal field is stored as the character

string ’1234’, and its actual internal hexadecimal representation is ’F1F2F3F4’.

With signed external decimal numbers, the sign can be incorporated into the actual

data by modifying the first half of the first or last byte (depending on whether you

are using a sign-leading or sign-trailing representation). Typically, ’0xC’ is used to

represent a positive number, ’0xD’ is used to represent a negative number and

’0xF’ is used to represent an unsigned number.

Note: In general, any of ’0xA’, ’0xC’, ’0xE’ or ’0xF’ can be used to indicate a

positive value, and ’0xB’ or ’0xD’ can be used to indicate a negative value.

The actual preferred representation is dependent upon the actual hardware

architecture.

On ASCII machines there are a number of mechanisms for the internal

representation of external decimal data. One representation (’Sign ASCII’) that is

employed by IBM’s pSeries machines, uses the normal ASCII codes (’0’ [hex 30] to

’9’ [hex 39]) for the first or last digit of both unsigned and positive numbers, and

the characters ’p’ [hex 70] to ’y’ [hex 79] for negative numbers.

An alternative method (Sign EBCDIC Custom) is used on some other ASCII based

machines. This uses the same characters as an EBCDIC based machine, even

though the actual internal hexadecimal representations of them are different. Using

this technique, the character string for both EBCDIC and ASCII platforms is

identical. You could potentially receive a message from an EBCDIC platform

(created from a COBOL copy book that contains such entries as PIC XXX and PIC

S999) and convert the whole message to ASCII, or the other way around. The

character string that represents the external decimal field in the message (after the

ASCII to EBCDIC, or EBCDIC to ASCII, conversion) maps to the code point that

represents the correct sign for the decimal. Note that there is a limitation with this

method; curly brace characters are variant (they have different code points in

different EBCDIC code pages). This mechanism works only for those EBCDIC code

pages where the curly brace characters ’{’ and ’}’ (which are used to represent

signed 0) have exactly the code points x’C0’ and x’D0’. For example, it works for

code page 500 but not for code page 871, where the curly braces have code points

X’8E’ and X’9C.

In an ASCII environment (determined by the CCSID property at runtime), the

default for both input and output is the ’Sign ASCII’ representation. You can

specify the applicable representation in the CWF physical layer for local attributes

and local elements of types decimal, float, and integer.

Note: This is only appropriate for those elements or attributes that have an

external decimal physical representation, and that have an embedded

(’Leading’ or ’Trailing’) sign (determined by the Sign Orientation property).

The table below shows the internal representation (both character and actual

hexadecimal value) of the first or last digit for external decimal numbers with an

included (embedded) leading or trailing sign respectively. (Note that the table does

not specify the representation for unsigned values, which are 0x30-0x39 for ASCII

and 0xF0-0xF9 for EBCDIC)

Message model reference information 793

Positively signed values Negatively signed values

ASCII environment EBCDIC

environment

ASCII environment EBCDIC

environment

Digit Sign ASCII Sign EBCDIC

Custom

Sign ASCII Sign EBCDIC

Custom

0 0(30) {(7B) {(C0) p(70) }(7D) }(D0)

1 1(31) A(41) A(C1) q(71) J(4A) J(D1)

2 2(32) B(42) B(C2) r(72) K(4B) K(D2)

3 3(33) C(43) C(C3) s(73) L(4C) L(D3)

4 4(34) D(44) D(C4) t(74) M(4D) M(D4)

5 5(35) E(45) E(C5) u(75) N(4E) N(D5)

6 6(36) F(46) F(C6) v(76) O(4F) O(D6)

7 7(37) G(47) G(C7) w(77) P(50) P(D7)

8 8(38) H(48) H(C8) x(78) Q(51) Q(D8)

9 9(39) I(49) I(C9) y(79) R(52) R(D9)

The next table gives some examples for a range of simple numbers that are

representative of what can be transmitted or received using these approaches.

 Sign leading Sign trailing

ASCII Environment EBCDIC

Environment

ASCII Environment EBCDIC

Environment

Decimal value Sign ASCII Sign EBCDIC

Custom

Sign ASCII Sign EBCDIC

Custom

1234 31 32 33 34

″1234″

31 32 33 34

″1234″

F1 F2 F3 F4

″1234″

31 32 33 34

″1234″

31 32 33 34

″1234″

F1 F2 F3 F4

″1234″

+1234 31 32 33 34

″1234″

41 32 33 34

″A234″

C1 F2 F3 F4

″A234″

31 32 33 34

″1234″

31 32 33 44

″123D″

F1 F2 F3 C4

″123D″

-1234 71 32 33 34

″q234″

4A 32 33 34

″J234″

D1 F2 F3 F4

″J234″

31 32 33 74

″123t″

31 32 33 4D

″123M″

F1 F2 F3 D4

″123M″

7890 37 38 39 30

″7890″

37 38 39 30

″7890″

F7 F8 F9 F0

″7890″

37 38 39 30

″7890″

37 38 39 30

″7890″

F7 F8 F9 F0

″7890″

+7890 37 38 39 30

″7890″

47 38 39 30

″G890″

C7 F8 F9 F0

″G890″

37 38 39 30

″7890″

37 38 39 7B

″789{″

F7 F8 F9 C0

″789{″

-7890 77 38 39 30

″w890″

50 38 39 30

″P890″

D7 F8 F9 F0

″P890″

37 38 39 70

″789p″

37 38 39 7D

″789}″

F7 F8 F9 D0

″789}″

Importing from WSDL: generated objects and restrictions

This describes the objects that are generated when a WSDL definition is imported

and some restrictions that you need to be aware of.

Generated objects

Files copied by command line import

The mqsicreatemsgdefsfromwsdl command copies the WSDL files it needs

into the workspace before the import process is run. These are the top level

WSDL file and any imports resolved via a relative location. The files are

copied under the specified message set in to a folder called importFiles.

794 Message Models

Report File

The WSDL importer appends the result of the import operation to a report

file, listing any errors that occurred during the process. The file name of

the report file is <message set>.wsdl.report.txt.

SOAP Message Definitions

The required SOAP mxsds are added to the message set. Currently the

SOAP 1.1 definitions are always imported. There are several reasons for

this:

v SOAP 1.1 is more widely used than SOAP 1.2.

v There is no standard SOAP 1.2 binding for WSDL 1.1. This will mean

that the WSDL importer cannot reliably determine that SOAP 1.2 is

required.

v It is not possible to import both SOAP 1.1 and SOAP 1.2 definitions

because they use the same message name (for example, Envelope).

If you need to parse SOAP 1.2 instance documents you should manually

remove the SOAP 1.1 definitions and import the SOAP 1.2 definitions via

the Message Definition File wizard, selecting IBM supplied message.

If your message set has TDS or CWF layers you may find that you get a

number of warnings against the imported SOAP definitions. Most of these

can be ignored, but you may need to take account of the allowed values

for boolean attributes. In SOAP 1.1 a boolean has the value 1 or 0, whilst

in SOAP 1.2 the values are true and false. The XML representation of

boolean values for a message set is specified in the physical properties for

the XML physical format and may need to be set accordingly.

Message Definition Files

Other message definition file names are created as <input file name>.mxsd

and their content depends on the WSDL style.

document-style

WSDL message parts for style=”document” (which includes all SOAP

header, fault and headerfault parts) refer to an element defined in XML

Schema. This element is imported as a global element and broker message

in the mxsd.

 The xsi:type Output Policy on the message is set to “Never”.

rpc-style

WSDL message parts for style=”rpc” (and exclusively those allocated to the

SOAP body) refer to a type defined in XML Schema. In this case, input and

output messages are created as follows:

 An input message An output message

Derived From wsdl:input child (if any) of

WSDL operation, and the

WSDL message and parts

which it identifies

wsdl:output child (if any) of

WSDL operation, and the

WSDL message and parts

which it identifies

Name of Element value of the name attribute

on the WSDL operation

element

value of the name attribute

on the WSDL operation

element suffixed by

″Response″

Namespace of Element value of the namespace

attribute on the

corresponding soap:body

element

value of the namespace

attribute on the

corresponding soap:body

element

Message model reference information 795

Each message is of local complex type, being a sequence of elements. The

name of each element is the value of the name attribute on the WSDL parts

of the message identified by the input or output element respectively.

These elements have no namespace (the underlying schema representation

has form=″unqualified″) and are locally scoped to avoid name clashes. The

type of these local elements is the XML Schema type referred to by the

type attribute of the corresponding part element. (The type will be global

in the WSDL schema.)

If the soap:body was defined with use=″encoded″ in the WSDL definition

then the message definition includes a reference to the attribute group

encodingStyle in the SOAP-ENV namespace and the xsi:type Output Policy

on the message is set to ″Follow SOAP encoding rules″. Otherwise the

xsi:type Output Policy on the message is set to ″Never″.

Restrictions

This describes some of the restrictions related to importing WSDL definitions.

These are where the WSDL definitions are not WS-I compliant.

SOAP Arrays

A WSDL 1.1 definition may define a SOAP Array (only applicable to the

WSDL rpc-encoded style, and not WS-I compliant):

 <xsd:complexType name="t">

 <xsd:complexContent>

 <xsd:restriction base="SOAP-ENC:Array">

 <xsd:sequence>

 <xsd:element name="item" type="string" maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute ref="SOAP-ENC:arrayType" wsdl:arrayType="xsd:string[]"/>

 </xsd:restriction>

 </xsd:complexContent>

 </xsd:complexType>

Some uses of SOAP array syntax are not fully supported. Although a

useful tree is created during parsing (and can be serialized when writing),

note that:

v the model does not take any account of the SOAP-ENC:arrayType

attribute.

v the model for partially transmitted arrays does not take account of the

SOAP-ENC:offset attribute.

For example, the first element of an array specified with offset[2] would

be accessed in ESQL not as InputRoot.MRM.array.item[3], but as

InputRoot.MRM.array.item[1].

v the model for multi-dimensional arrays flattens the representation into a

single dimension. For example, a 2 dimensional array is accessed in

ESQL not as InputRoot.MRM.array.item[x][y], but as

InputRoot.MRM.array.item[i] where the index i would have to be

calculated appropriately.

Anonymous Elements

The WSDL excerpt above describes a SOAP instance document of the

following form:

 <SOAP-ENC:Array SOAP-ENC:arrayType="xsd:string[3]">

 <item xsi:type="xsd:string">A general text string</item>

 <item xsi:type="xsd:token">A restriction of the string type</item>

 <item xsi:type="xsd:Name">ARestrictionOfTheTokenType</item>

 </SOAP-ENC:Array>

796 Message Models

The broker model handles this as expected, but in SOAP encoding, array

elements are also allowed to use the type-elements from the SOAP

encoding namespace. This means an application using the same WSDL

definition might create an instance document of the following form:

 <SOAP-ENC:Array SOAP-ENC:arrayType="xsd:string[3]">

 <SOAP-ENC:string>A general text string</SOAP-ENC:string>

 <SOAP-ENC:token>A restriction of the string type</SOAP-ENC:token>

 <SOAP-ENC:Name>ARestrictionOfTheTokenType</ SOAP-ENC:Name>

 </SOAP-ENC:Array>

The broker model created by importing the WSDL would have to be

manually edited to handle this case, unless it is acceptable to have the

parser treat it as a self-defined element.

Importing from XML Schema: unsupported features

A number of features in XML Schema are not supported, or their support is

restricted in some way.

Message sets with namespace support

v Constructs accepted but not supported when importing from an XML Schema.

When importing an XML Schema into a message set that supports namespaces,

the Redefine construct is accepted, but causes an error message to be displayed

in the task list because it is not fully supported.

The following XML shows an example of the Redefine construct:

<?xml version="1.0" encoding="UTF-8"?>

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.ibm.com" xmlns:ibm="http://www.ibm.com">

 <!-- Unsupported feature: redefine -->

 <redefine schemaLocation="test.xsd"/>

</schema>

Message sets without namespace support

v Constructs accepted and ignored when importing from an XML Schema.

The list of constructs and the action taken is the same as for a message set with

namespace support, as described above.

v Target namespaces not qualified with a prefix.

When importing an XML Schema into a message set that does not support

namespaces, you cannot import a schema document that has a target namespace

that is not qualified with a prefix. For example:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.ibm.com" xmlns="http://www.ibm.com">

</xsd:schema>

Message model wizards

Wizards help to simplify complex message modeling tasks.

As software grows more complex, wizards are increasingly used to step you

through complex tasks or procedures, ensuring that you correctly specify all the

parameters that are required, and that you perform the required tasks in the

correct order.

Message model reference information 797

This topic provides some additional reference material for those wizards where

you might need help in specifying certain parameters.

Each wizard that is documented here has its own high-level topic and a topic for

each panel that is displayed by the wizard. The panels are listed in the order that

they appear, and the fields on each panel appear in the topic in the same order as

they appear on the panel. These topics provide only information about these fields

and panels. You can find further information about the wizards in topics that are

referenced from the wizard’s high-level topic.

The following wizards have additional information:

v “New message definition file wizards”

v “Generate WSDL wizard” on page 805

v “Export WSDL wizard” on page 813

v “Configure New Web Service Usage wizard” on page 814

New message definition file wizards

Use the New message definition file wizards to create message definition files.

Depending on the selection that you make, you are routed through the correct

sequence of panels to create the message definition file from the source that you

have requested. Some panels appear if certain conditions are met. These are

marked as (optional).

The following links provide further information about the panels and fields that

form the New message definition file wizards.

v New Message Definition File (from scratch)

v XML Schema file

v IBM supplied message

v XML DTD

v C header file

v COBOL file

v WSDL file

New message definition file wizard: Create a new message

definition file from scratch

Create a new message definition file from scratch

When you choose to create a new message definition file from scratch, you are

presented with the following panels:

v Select the target message set

v Specify the namespace

Create a new message definition file from scratch: Select the target message set:

 Create a new message definition file from scratch

When you choose to create a new message definition file from scratch, you are

presented with the following panels:

v Select the target message set

v Specify the namespace

798 Message Models

Panel properties

Message sets

This field lists the message set projects that are available in your

workspace. By clicking on the ’+’ symbol to the left of the project, these

expand to list the message sets that are available for you to select from the

active working set. Depending on how you started the New message

definition file wizard, a message set might be preselected for you, but this

does not prevent you from selecting a different message set if you prefer.

File name

Specify the name of the message definition file that you are creating.

Create a new message definition file from scratch: Specify the namespace:

 Create a new message definition file from scratch

When you choose to create a new message definition file from scratch, you are

presented with the following panels:

v Select the target message set

v Specify the namespace

Panel properties

Schema for Schema settings

Prefix Specifies the namespace prefix to use for the namespace shown in the

Namespace property.

Namespace

Specifies the namespace to be used.

Use target namespace

Selecting this check box allows you to specify a target namespace for the message

definition file. You can only choose a target namespace if namespaces have been

enabled in the message set.

Target namespace settings

Prefix Specifies the namespace prefix to use for the namespace shown in the

Namespace property.

Namespace

Specifies the namespace to be used.

New message definition file wizard: Create a new message

definition file from an XML Schema file

You can create a new message definition file from an XML Schema file.

Create a new message definition file from an XML Schema file

When you choose to create a new message definition file from an XML Schema

file, you are presented with a panel with the following fields:

Message model reference information 799

|
|
|
|
|
|

Select an XML Schema file

Message set

Use this field to choose the message set project that will contain the

message definition file that you create.

Message definition file name

Use this field for the name of the message definition file that you want to

create.

Select file from workspace

Choose this option if the XML Schema file that you want to add to the

message definition file that you are creating is in the current workspace,

and select the file from the displayed content of the workspace.

Select file from outside workspace

Choose this option if the XML Schema file that you want to add to the

message definition file that you are creating is not in the current

workspace, and specify the location of the XML Schema file that you want

to add.

Copy source file into the ’importFiles’ directory of the message set project

Select this check box to copy the source file into the ’importFiles’ directory

of the message set project.

Create an appropriate physical format if one does not already exist

Select this check box to automatically create the message set physical

format that is needed by the pre-canned schema that you have selected for

import.

New message definition file wizard: IBM supplied message

You can create a new message definition file from an IBM supplied message.

IBM supplied message wizard

When you choose to create a message definition file from an IBM supplied

message, you are presented with a panel with the following fields:

Select an IBM supplied message

Message set

Use this field to choose the message set project that will contain the

message definition file that you create. Message set projects are filtered to

only show artifacts in the active working set.

Message definition file name

Use this field for the name of the message definition file that you want to

create.

IBM supplied messages

Select from the displayed set of IBM supplied message definitions. This

field is split into two panes; the pane on the left displays the IBM supplied

message definitions that are available, and the pane on the right contains

text that gives advice about the usage of the message definition that you

have selected in the field’s left pane.

Copy source file into the ’importFiles’ directory of the message set project

Select this check box to copy the source file into the ’importFiles’ directory

of the message set project.

800 Message Models

|
|
|

Create an appropriate physical format if one does not already exist

Select this check box to automatically create the message set physical

format that is needed by the pre-canned schema that you have selected for

import.

IBM supplied messages that you can import:

You can import IBM supplied messages to create a new message definition file.

 If the message is to be used with an XML parser, the following points apply:

v If the message set to which you are adding the new message definition file has

an XML physical format layer, but does not have namespace support, the

imported IBM supplied message is modified to remove namespaces. Therefore,

enable namespace support before you import an IBM supplied message.

v If the message set to which you are adding the new message definition file does

not have an XML physical format layer, but has namespace support, only the

logical information appears in the model. The IBM supplied message is not

modified to remove namespaces. You can add the physical layer to the message

set before or after importing the IBM supplied message but you should add the

physical layer before you import an IBM supplied message.

v If the message set to which you are adding the new message definition file does

not have an XML physical format layer, and does not have namespace support,

only the logical information appears in the model and the imported IBM

supplied message is modified to remove namespaces.

The IBM supplied messages that you can import are:

SOAP message definitions

These model the SOAP-defined portions of SOAP XML messages. They are

best used with the SOAP parser. The definitions Soap 1.1 Envelope and Soap

1.2 Envelope model the SOAP envelope structure that is used to wrapper

the user-defined body of a SOAP message. The definitions Soap 1.1

Encoding and Soap 1.2 Encoding model certain structures for use in

″rpc/encoded″ style SOAP messages.

 An IBM message for the SOAP domain tree is supplied as a schema that

provides content-assist in creating a logical model for the SOAP domain

using the ESQL or mapping editor.

Multipart MIME message definitions

These model the MIME-defined portions of multipart MIME messages and

should be used with the message broker’s MIME parser. Use the MIME

multipart header definition for normal multipart MIME messages such as

SOAP with Attachments or RosettaNet. Use the MIME Nested Multipart

header definition for multipart MIME messages in which the individual

parts can themselves be multipart MIME; for example, S/MIME.

SAP IDoc message definitions

These model the SAP-defined portion of ALE and File IDocs that precede

the user-defined content. The ALE IDoc model can be used with the MRM

and IDOC parsers. The File IDoc model can be used with the MRM parser

only.

Timeout Request message definition

This models the TimeoutRequest message that is used in conjunction with

the message broker TimeoutControl and TimeoutNotification nodes. You

can use it with any parser.

Message model reference information 801

CSV This models a CSV (comma separated value) format message. It can be

used with the MRM parser.

New message definition file wizard: Create a new message

definition file from an XML DTD file

You can create a new message definition file from an XML DTD file.

Create a new message definition file from an XML DTD file

When you choose to create a new message definition file from an XML DTD file,

you are presented with a panel with the following fields:

Select an XML DTD file

Message set

Use this field to choose the message set project that will contain the

message definition file that you create. Message set projects are filtered to

only show artifacts in the active working set.

Message definition file name

Use this field for the name of the message definition file that you want to

create.

Select file from workspace

Choose this option if the XML DTD file that you want to add to the

message definition file that you are creating is in the current workspace,

and select the file from the displayed content of the workspace. XML DTD

files are filtered to only show artifacts in the active working set.

Select file from outside workspace

Choose this option if the XML DTD file that you want to add to the

message definition file that you are creating is not in the current

workspace, and specify the location of the XML DTD file that you want to

add.

Copy source file into the ’importFiles’ directory of the message set project

Select this check box to copy the source file into the ’importFiles’ directory

of the message set project.

Create an appropriate physical format if one does not already exist

Select this check box to automatically create the message set physical

format that is needed by the pre-canned schema that you have selected for

import.

New message definition file wizard: Create a new message

definition file from a C header file

You can create a new message definition file from a C header file.

Create a new message definition file from a C header file

When you choose to create a new message definition file from a C header file, you

are presented with a panel with the following fields:

Select a C header file

Message set

Use this field to choose the message set project that will contain the

message definition file that you create. Message set projects are filtered to

only show artifacts in the active working set.

802 Message Models

|
|
|

|
|
|
|

|
|
|

Message definition file name

Use this field for the name of the message definition file that you want to

create.

Target namespace

Use this field for the name of the target namespace for the message

definition file that you want to create.

Select file from workspace

Choose this option if the C header file that you want to add to the

message definition file that you are creating is in the current workspace,

and select the file from the displayed content of the workspace. C header

files are filtered to only show artifacts in the active working set.

Select file from outside workspace

Choose this option if the C header file that you want to add to the

message definition file that you are creating is not in the current

workspace, and specify the location of the C header file that you want to

add.

Copy source file into the ’importFiles’ directory of the message set project

Select this check box to copy the source file into the ’importFiles’ directory

of the message set project.

Create an appropriate physical format if one does not already exist

Select this check box to automatically create the message set physical

format that is needed by the pre-canned schema that you have selected for

import.

C header file options

Include paths

Preserve case in variable names

Select this check box if you want to preserve the case of the

characters that form the names of the variables.

Select the pre-processing option to apply

Choose an option from the list.

New message definition file wizard: Create a new message

definition file from a COBOL file

You can create a new message definition file from a COBOL file.

Create a new message definition file from a COBOL file

When you choose to create a new message definition file from a COBOL file, you

are presented with a panel with the following fields:

Select a COBOL file

Message set

Use this field to choose the message set project that will contain the

message definition file that you create. Message set projects are filtered to

only show artifacts in the active working set.

Message definition file name

Use this field for the name of the message definition file that you want to

create.

Message model reference information 803

|
|
|
|

|
|
|

Target namespace

Use this field for the name of the target namespace for the message

definition file that you want to create.

Select file from workspace

Choose this option if the COBOL file that you want to add to the message

definition file that you are creating is in the current workspace, and select

the file from the displayed content of the workspace. COBOL files are

filtered to only show artifacts in the active working set.

Select file from outside workspace

Choose this option if the COBOL file that you want to add to the message

definition file that you are creating is not in the current workspace, and

specify the location of the COBOL file that you want to add.

Copy source file into the ’importFiles’ directory of the message set project

Select this check box to copy the source file into the ’importFiles’ directory

of the message set project.

Create an appropriate physical format if one does not already exist

Select this check box to automatically create the message set physical

format that is needed by the pre-canned schema that you have selected for

import.

COBOL file options

Preserve case in variable names

Select this check box if you want to preserve the case of the

characters that form the names of the variables.

New message definition file wizard: Create a new message

definition file from a WSDL file

You can create a new message definition file from a WSDL file.

Create a new message definition file from a WSDL file

When you choose to create a new message definition file from a WSDL file, you

are presented with a panel with the following fields:

Select a WSDL file

Message set

Use this field to choose the message set project that will contain the

message definition file that you create. Message set projects are filtered to

only show artifacts in the active working set.

Message definition file name

Use this field for the name of the message definition file that you want to

create.

Select file from workspace

Choose this option if the WSDL file that you want to add to the message

definition file that you are creating is in the current workspace, and select

the file from the displayed content of the workspace. WSDL files are

filtered to only show artifacts in the active working set.

Select file from outside workspace

Choose this option if the WSDL file that you want to add to the message

definition file that you are creating is not in the current workspace, and

specify the location of the WSDL file that you want to add.

804 Message Models

|
|
|
|

|
|
|

|
|
|
|

|
|
|

Copy source file into the ’importFiles’ directory of the message set project

Select this check box to copy the source file into the ’importFiles’ directory

of the message set project.

Create an appropriate physical format if one does not already exist

Select this check box to automatically create the message set physical

format that is needed by the pre-canned schema that you have selected for

import.

Add SOAP and XMLNSC to supported message domains if they do not exist

Select this check box to add the SOAP and XMLNSC message domains to

the list of supported message domains that the message definition

supports.

Generate WSDL wizard

The Generate WSDL wizard creates a WSDL definition from a message set.

The following links provide further information in relation to the panels and fields

that form the Generate WSDL wizard. Some panels only appear if certain

conditions are met. These are marked as (optional).

Open the Generate WSDL wizard

To open the Generate WSDL wizard:

1. Switch to the Broker Application Development perspective.

2. In the Broker Development view, right-click the folder that contains the

message set file from which you want to generate a web service definition, and

select Generate → WSDL Definition. This starts the Generate WSDL wizard.

Generate WSDL wizard

The following panels are shown by the Generate WSDL wizard:

v Select the action you wish to perform

v Select a message set folder and destination directory

v Specify WSDL details

v Add operations to the WSDL definition

v Configure binding details - SOAP/HTTP

v Configure binding details - SOAP/JMS (optional)

v Summary of tasks

Generate WSDL wizard: Select the action you wish to perform

Use this panel to select how you want to generate the WSDL definition.

Generate WSDL wizard

The following panels are shown by the Generate WSDL wizard:

v Select the action you wish to perform

v Select a message set folder and destination directory

v Specify WSDL details

v Add operations to the WSDL definition

v Configure binding details - SOAP/HTTP

v Configure binding details - SOAP/JMS (optional)

v Summary of tasks

Message model reference information 805

Panel properties

A choice of three options is presented.

Generate a new WSDL definition from existing message definitions

Select this option to generate a new WSDL definition from existing

message definitions. This is the default option.

Export an existing WSDL definition to another directory in the workspace or file

system.

Select this option to load the Export WSDL wizard.

Generate a new WSDL definition from existing message definitions using

message categories (deprecated)

Select this option to generate a new WSDL definition using existing

message definitions and message categories. This option is available to

provide compatibility with previous releases of WebSphere Message

Broker.

Generate WSDL wizard: Select a message set folder and

destination directory

Use Generate WSDL wizard to select both the source of the WSDL definition and

where you want the generated WSDL definition to be placed.

Generate WSDL wizard

The following panels are shown by the Generate WSDL wizard:

v Select the action you wish to perform

v Select a message set folder and destination directory

v Specify WSDL details

v Add operations to the WSDL definition

v Configure binding details - SOAP/HTTP

v Configure binding details - SOAP/JMS (optional)

v Summary of tasks

Panel properties

Select the message set folder from which to generate the WSDL definition:

Specify the message set folder from which to generate the WSDL

definition.

Choose one of the following radio buttons to select the destination for the

generated WSDL definition:

Create in a workspace directory

Select from your workspace directory the message set folder that will

contain the generated WSDL definition.

Export to an external directory

Specify the address of the directory, outside your workspace, that you

want to contain the generated WSDL definition.

Options

Specify the structure of the generated XML schema

Choose one of the following radio buttons to specify the structure of the generated

XML schema:

806 Message Models

|
|

|
|

Generate XML schema definitions with current directory structure

Generates the schema definition using the current directory structure; this

is the default.

Generate XML schema definitions with flat structure

Generates the schema definition as a single level directory structure.

Generate WSDL wizard: Specify WSDL details

Use this panel to describe some details of the WSDL definition that you want to

generate.

Generate WSDL wizard

The following panels are shown by the Generate WSDL wizard:

v Select the action you wish to perform

v Select a message set folder and destination directory

v Specify WSDL details

v Add operations to the WSDL definition

v Configure binding details - SOAP/HTTP

v Configure binding details - SOAP/JMS (optional)

v Summary of tasks

Panel properties

File Format

Select from:

v Generate as a single WSDL file

The WSDL definition is written to a single file. This format is widely

understood by external applications and SOAP toolkits.

v Generate as a single WSDL file with all XML schema inlined

The WSDL definition is written to a single file with the XML added.

v Generate as three WSDL files (one each for port type, service, and

binding)

The WSDL definition is split into multiple files. This format offers better

reuse of the component files.

WSDL Version

Select the required version of WSDL.

SOAP Version

Select the required version of SOAP

Style The style determines the format of the runtime SOAP messages described

by the generated WSDL. The choices are:

v rpc

v document

WSDL Namespace

This must be a valid URI and becomes the target namespace for the WSDL

definitions. This value has no particular significance outside of the WSDL

definition itself and does not correspond to the namespace of SOAP

messages described by the generated WSDL. A default value of

http://tempuri.org/<message set name> is set.

RPC Namespace

This field is only enabled if you selected the Style as rpc. It is the

Message model reference information 807

|
|
|

|
|

|

|

namespace for the immediate children of your SOAP body. The value must

be a valid URI. A default value of http://tempuri.org/<message set name>

is set.

Definition Name

This is used in deriving the names of the WSDL file or files that are

created. The default value is the name of your message set.

Documentation

Optional: This text is included as documentation for the PortType element

on the generated WSDL. It has no implications for the SOAP messages that

are described by the generated WSDL.

Generate WSDL wizard: Add operations to the WSDL details

Use this panel to define the operations that you want to add to the WSDL

definition.

Generate WSDL wizard

The following panels are shown by the Generate WSDL wizard:

v Select the action you wish to perform

v Select a message set folder and destination directory

v Specify WSDL details

v Add operations to the WSDL definition

v Configure binding details - SOAP/HTTP

v Configure binding details - SOAP/JMS (optional)

v Summary of tasks

Panel properties

The panel is divided into two panes.

The top pane is read-only and displays a table that describes the operations that

you have defined. The table has four columns with the following headings:

Operation

The name that you have given to the operation.

Input message

The name of the input message. This might be blank if the operation is a

Notification type operation.

Output message

The name of the output message. This might be blank if no output

message is specified for this operation.

Operation Type

The type of operation. Examples of operation type are:

 Request-response

 One-way

 Solicit-response

 Notification

The bottom pane is where you describe a new operation. The following fields

describe the operation:

Name The name that you have given to the operation.

808 Message Models

|
|

|

|

|

|

Operation Type

The type of operation. Examples of operation type are:

 Request-response

 One-way

 Solicit-response

 Notification

Input The name of the input message. This is omitted for a Notification operation.

Output

The name of the output message. This is omitted for a One-way operation.

Fault The name of the fault message. This is omitted for a Notification operation.

Otherwise, you can specify one or more fault messages.

Generate WSDL wizard: Configure binding details - SOAP/HTTP

Use this panel to specify your SOAP/HTTP binding details, or to go to the panel

that allows you to specify your SOAP/JMS binding details instead.

Generate WSDL wizard

The following panels are shown by the Generate WSDL wizard:

v Select the action you wish to perform

v Select a message set folder and destination directory

v Specify WSDL details

v Add operations to the WSDL definition

v Configure binding details - SOAP/HTTP

v Configure binding details - SOAP/JMS (optional)

v Summary of tasks

Panel properties

A choice of two options is presented:

SOAP/HTTP

Select this option to generate a new WSDL definition using existing

message definitions. This is the default option.

SOAP/JMS

Select this option to load the WSDL export wizard.

If you select SOAP/HTTP, the following properties are displayed:

SOAP action

This defines the value for the HTTP SoapAction header. It is possible that

an application will use the SoapAction as a mechanism for relating a SOAP

message to an implementation method. This is often true with rpc-style

WSDL.

Service name

The Service Name will be the value of the name attribute on the service

element in the generated WSDL. The exact use of the name depends on

products that subsequently use the WSDL such as the SOAP toolkits and

UDDI repositories. For example if you subsequently use a SOAP toolkit to

generate Java from your WSDL, the Service Name is likely to become the

Java interface name.

Message model reference information 809

Port name

This is the name of a specific WSDL port for this service and would

usually be derived from the Service Name. One convention would be to

provide a Service Name of <xyz> Service and a Port Name of <xyz>

Provider.

 The Port Name will be the value of the name attribute on the port element

in the generated WSDL. The exact use of the name depends on products

that subsequently use the WSDL such as SOAP toolkits and UDDI

repositories. For example if you use a SOAP toolkit to generate Java from

your WSDL, the Port Name could become a Java class name.

Port address

This defines the address at which the service will be made available. It

must be a valid URL and it must include the port number, if this is

different from the default HTTP port. An example of a port address is:

http://localhost:9080/wassoap/servlet/router

If you select SOAP/JMS, the SOAP/JMS panel is displayed. See “Generate WSDL

wizard: Configure binding details - SOAP/JMS (optional).”

Generate WSDL wizard: Configure binding details - SOAP/JMS

(optional)

Use this panel to specify your SOAP/JMS binding details.

Generate WSDL wizard

The following panels are shown by the Generate WSDL wizard:

v Select the action you wish to perform

v Select a message set folder and destination directory

v Specify WSDL details

v Add operations to the WSDL definition

v Configure binding details - SOAP/HTTP

v Configure binding details - SOAP/JMS (optional)

v Summary of tasks

Panel properties

This panel is displayed only when you have selected SOAP/JMS from the previous

panel.

SOAP/HTTP

Select this option to generate a new WSDL definition using existing

message definitions. This option is shown as not selected.

SOAP/JMS

Select this option to load the WSDL export wizard. This option is shown as

selected.

The following properties are displayed for you to specify the bindings for

SOAP/JMS:

Destination Style

This field is predefined as ’queue’ and cannot be edited.

Initial Context Factory

This is the name of a Java class which will allows the SOAP client or

810 Message Models

server to perform naming and directory service functions through the

standard JNDI interface to a particular type of repository.

 The following predefined Java classes are offered, or the user can enter

their own:

v com.ibm.websphere.naming.WsnInitialContextFactory - This corresponds

to a repository type of WebSphere Application Server Common Object

Services Name Server (part of the CORBA standard)

v com.sun.jndi.ldap.LdapCtxFactory - This has a repository type of LDAP

(Lightweight Directory Access Protocol)

v com.sun.jndi.fscontext.RefFSContextFactory - This has a file system

repository type.

The named class must be available on the classpath for a SOAP client or

server using this WSDL binding.

If one of these is selected, the corresponding JNDI Provider Type is

selected automatically . If a user-defined value is supplied for the Initial

Context Factory, the Provider Type field defaults to LDAP.

Note: The value of this field will determine the Provider Type and

additional details that you will need to provide in the JNDI Provider

Type Properties section of this wizard panel.

JNDI Connection Factory

This is the JNDI name used to bind to the JMS connection factory and

must match your JMS configuration.

JNDI Destination Name

This is the JNDI name for the JMS destination factory and must match

your JMS configuration.

Host Name

The host name or IP address of the machine hosting the JNDI provider

Port Number

The port number on the host machine at which the JNDI provider can be

contacted

Target Context

The JNDI context in which the search is to be performed

JNDI Provider URL

This is the resulting URL as used by JNDI and is read only. It is comprised

of the host name and port number and optionally the target context. For

example, iiop://hostname[:port] /[?TargetContext=ctx] (where [] define

what is optional and should not be included in the string).

Service Name

The Service Name will be the value of the name attribute on the service

element in the generated WSDL. The exact use of the name depends on

products that subsequently use the WSDL such as the SOAP toolkits and

UDDI repositories. For example if you subsequently use a SOAP toolkit to

generate Java from your WSDL, the Service Name is likely to become the

Java interface name.

Port Name

This is the name of a specific WSDL port for this service and would

usually be derived from the Service Name. One convention would be to

provide a Service Name of <xyz> Service and a Port Name of <xyz>

Provider.

Message model reference information 811

The Port Name will be the value of name attribute on the port element in

the generated WSDL. The exact use of the name depends on products that

subsequently use the WSDL such as the SOAP toolkits and UDDI

repositories. For example if you use a SOAP toolkit to generate Java from

your WSDL, the Port Name could become a Java class name.

Generate WSDL Definition wizard: Summary of tasks

Generate WSDL Definition wizard: provides a summary of the actions that will

occur on finalizing the wizard.

Generate WSDL wizard

The following panels are shown by the Generate WSDL wizard:

v Select the action you wish to perform

v Select a message set folder and destination directory

v Specify WSDL details

v Add operations to the WSDL definition

v Configure binding details - SOAP/HTTP

v Configure binding details - SOAP/JMS (optional)

v Summary of tasks

Summary information

This panel consists of two panes. The top pane displays a summary of the

selections you have made and the bottom pane lists the message definition files

generated.

The selected message set

The message set you selected on the Select a message set folder and

destination directory panel.

The generated WSDL files will go into:

The destination directory you selected on the Select a message set folder

and destination directory panel.

The version of WSDL to be generated

The version you selected on the Specify WSDL details panel.

The version of SOAP to be generated

The version you selected on the Specify WSDL details panel.

The selected style for WSDL generation:

The style you selected on the Specify WSDL details panel.

The WSDL namespace:

The namespace you selected on the Specify WSDL details panel.

If you selected rpc as the style there is an entry for RPC namespace.

The following bindings are selected:

SOAP over HTTP

See Configure binding details - SOAP/HTTP for further details.

SOAP over JMS

See Configure binding details - SOAP/HTTP for further details.

The following WSDL files will be generated:

The name of the generated file.

812 Message Models

|

|
|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|

|

|

|
|

|
|

|
|

Export WSDL wizard

The Export WSDL wizard exports a WSDL definition from a message set.

The following links provide further information in relation to the panels and fields

that form the Export WSDL wizard.

Export WSDL wizard

The following panels are shown by the Export WSDL wizard:

v Select the WSDL definition you wish to export

v Specify the export location

Export WSDL wizard: Select the WSDL definition you wish to

export

Use this panel of the Export WSDL wizard to select the WSDL definition that you

want to export from a message set.

The following links provide further information in relation to the panels and fields

that form the Export WSDL wizard.

Export WSDL wizard

The following panels are shown by the Export WSDL wizard:

v Select the WSDL definition you wish to export

v Specify the export location

Panel properties

The top pane of the panel shows a map of your workspace. Select the WSDL

definition that you want to export.

Export file format

Choose one of the following options:

v Export to a single WSDL file

The WSDL definition is written to a single file. This format is widely

understood by external applications and SOAP toolkits.

v Export to a single WSDL file with all XML schema inlined

The WSDL definition is written to a single file. This format is widely

understood by external applications and SOAP toolkits.

v Export to three WSDL files (one each for port type, service, and

binding)

The WSDL definition is split into multiple files. This format offers better

reuse of the component files.

v Export based on the existing file structure

The WSDL definition is written to a single file. This format is widely

understood by external applications and SOAP toolkits.

WSDL definition name

Select a name for the exported WSDL.

Export WSDL wizard: Specify the export location

Use this panel of the Export WSDL wizard to specify the location for the WSDL

definition that you want to export from a message set.

Message model reference information 813

The following links provide further information in relation to the panels and fields

that form the Export WSDL wizard.

Export WSDL wizard

The following panels are shown by the Export WSDL wizard:

v Select the WSDL definition you wish to export

v Specify the export location

Panel properties

Choose one of the following options:

Export to a workspace directory

The structure of the workspace is displayed. Click the folder that you want

the WSDL definition to be exported to.

Export to an external directory

Specify the name of the external directory that you want the WSDL

definition to be exported to.

Select the Overwrite existing files without warning check box if you do not want

to be warned that a file with the name that you specified is being overwritten. By

default, the check box is cleared; if a file exists with the same name as the name

that you have selected, you are prompted to confirm whether you want this file to

be overwritten by the file that you are exporting.

Configure New Web Service Usage wizard

This provides additional reference information in relation to the Configure New

Web Service Usage wizard.

You can launch this wizard by dragging deployable WSDL onto the message flow

canvas.

The following links provide further information in relation to the panels and fields

that form the Configure New Web Service Usage wizard.

Configure New Web Service Usage wizard

List of panels:

v Configure web service usage

v File generation details

Configure New Web Service Usage wizard: Configure web

service usage details

Use this panel of the Configure New Web Service Usage wizard to configure a new

Web service.

The following links provide further information in relation to the panels and fields

that form the Configure New Web Service Usage wizard.

Configure New Web Service Usage wizard

List of panels:

v Configure web service usage

814 Message Models

v File generation details

Panel properties

Web service usage

Select from:

v Expose message flow as web service

The message flow is exposed as a web service to its clients.

v Invoke web service from message flow

The web service is invoked from the message flow.

Web service parameters

Configure the WSDL-related fields:

v Port type

Port type must be specified, and lists all the port types defined in the

WSDL document.

By default, the drop down is populated with all the port types from the

WSDL, in the order in which they appear in the WSDL file. The initially

selected port type is the first port type that has at least one http binding

associated with it.

v Binding

Binding must be specified and lists all SOAP bindings with HTTP

transport, associated with the selected port type.

Bindings related to the selected port type are populated in the order in

which they appear in the WSDL file. The initially selected binding is the

one that has at least one port and one operation associated with it; if

there is no such binding, the first binding with at least one port is

selected.

If no binding has ports associated with it, the first binding in the list is

selected.

v Service port

Lists all WSDL ports that point to the selected binding.

v Binding operations

Lists all operations defined by the selected port type. Note, that only

those operations implemented by the selected binding are selected by

default.

For every selected operation, the subflow generation process produces

an output terminal, in the generated subflow.

If you select an operation, that is not implemented by the selected

binding, you receive a warning message; however, you can continue

with the selection.

Configure New Web Service Usage wizard: File generation

details

Configure New Web Service Usage wizard, specify file generation details

Configure New Web Service Usage wizard

List of panels:

v Configure web service usage

v File generation details

Message model reference information 815

Panel properties

Flow Generation Details

Only one file is generated, namely the subflow. The subflow name is

constructed as follows:

 Format of the generated subflow name

Request operation OperationName_WSDLFileName_MainFlow.msgflow

Extract operation WSDLFileName_MainFlow.msgflow

This page of the wizard lists the name of the file to be generated together

with its location.

Typically, this file represents the subflow that is about to be generated. The

default subflow name is prefixed by the name of the selected WSDL file,

however, you have the option to change the name.

If the file to be generated already exists in the workspace, a warning is

issued and the Finish button is no longer enabled.

You either have to change the name of the file, or select the Overwrite

existing file checkbox.

Node type to be used by the Web service flows

Select from:

v SOAP nodes

Select this option to use the SOAP domain and the SOAP nodes. This is

the default option.

Using SOAP nodes is WSDL driven and allows you to take advantage of

various WS_* standards; for example WS_Security and WS_Addressing.

If the message set does not support the SOAP domain you receive a

warning.

v HTTP nodes

Select this option if you want to use HTTP nodes rather than SOAP

nodes.

You can select this option only if the message set supports the XMLNSC,

MRM, or XMLNS domains.

If you select HTTP nodes, you see a message explaining the advantages

of the SOAP nodes together with a suggestion that you import WSDL

files.

If you use the ImportFiles folder as your source, you can only select

HTTP node generation.

Details

This pane appears if any additional warnings about the subflow that is

generated apply. Possible warnings are as follows:

v When Service Definition is not found in the WSDL file, the URL

property is not set on the node.

v You have selected one or more operations that are not implemented by

the selected binding.

v When message domain is MRM, but XML wire format not found,

message format property is not set on the HTTPInput or Request node.

816 Message Models

Part 3. Appendixes

© Copyright IBM Corp. 2000, 2008 817

818 Message Models

Appendix. Notices for WebSphere Message Broker

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this information

in other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this information. The furnishing of this information does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032,

Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the information. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

information at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2000, 2008 819

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM United Kingdom Laboratories,

Mail Point 151,

Hursley Park,

Winchester,

Hampshire,

England

SO21 2JN

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Programming License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information includes examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

820 Message Models

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

(C) (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Trademarks in the WebSphere Message Broker information center

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

 AIX CICS DB2

DB2 Connect DB2 Universal Database developerWorks

Domino Everyplace

FFST First Failure Support

Technology

IBM

IBMLink IMS IMS/ESA

Informix iSeries i5/OS

Language Environment Lotus MQSeries

MVS NetView OS/400

OS/390 Passport Advantage POWER

pSeries RACF Rational

Redbooks RETAIN RS/6000

SupportPac System i S/390

Tivoli VisualAge WebSphere

xSeries z/OS zSeries

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered

trademarks or trademarks of Adobe Systems Incorporated in the United States,

and/or other countries.

Intel and Pentium are trademarks or registered trademark of Intel Corporation or

its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,

Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, or service names may be trademarks or service marks of

others.

Appendix. Notices for WebSphere Message Broker 821

822 Message Models

Index

A
ACORD AL3 messages 738

attribute group reference
CWF properties 214

logical properties 185

message models, adding to 106

TDS format properties 229

XML wire format properties 221

attribute reference
CWF properties 214

logical properties 185

message models, adding to 101

TDS format properties 229

XML wire format properties 221

attributes 21

complex type, adding 111

simple type, adding 111

attributes, changing the type of 110

C
C language

importing from C: supported

features 787

importing message definitions 129

COBOL
importing from COBOL: supported

features 789

importing message definitions 131

command line
importing message definitions

C header files 130

COBOL copybooks 132

WSDL 135

XML DTDs 137

XML Schema 140

complex type
message models, adding to 104

complex types 16

attribute, adding to an 111

content validation properties 292

CWF properties 215

element, adding to an 111

logical properties 186

combinations of composition and

content validation 293

repeats and duplicates 293

TDS format properties 230

XML wire format properties 221

compound elements
complex type CWF properties 602

complex type logical properties 601

complex type TDS format

properties 604

complex type XML wire format

properties 603

CWF properties 602

logical properties 598

value constraints 601

TDS format properties 604

compound elements (continued)
XML wire format properties 603

configuration
CWF physical properties

message model objects 116

message sets 87

documentation properties
message model objects 115

message sets 92

logical properties
message model objects 114

message sets 85

message category file properties 126

message model objects 107

message set preferences 82

physical properties
message model objects 116

message sets 86

TDS Format physical properties
message model objects 117

message sets 88

XML Wire Format physical properties
message model objects 118

message sets 89

Configure New Web Service Usage

wizard, panel properties 814

CSV messages 740

CWF 40

data conversion 42

model integrity 41

multipart messages 42

NULL handling 41

NULL handling options 731

physical format layers, adding 86

physical properties
configuring for message model

objects 116

configuring for message sets 87

relationship to the logical model 42

CWF properties
attribute group reference 214

attribute reference 214

complex types 215

compound elements 602

complex types 602

deprecated message model

objects 602

element reference 215

embedded simple types 602

global attribute 216

global attribute group 216

global elements 216

global group 216

group reference 216

key 217

keyref 217

local attribute 217

local elements 218

local group 219

message 220

message model objects 214

CWF properties (continued)
message sets 152

simple types 220

unique 220

wildcard attribute 220

wildcard elements 220

D
data conversion

CWF 42

TDS format 58

data structures, importing 127

data types
MRM message 729

dateTime formats 763

component defaults 771

CWF binary data 769

CWF encoded values 770

defaults by logical type 770

message set defaults 771

string data 763

Daylight Savings Time U.S. 2007

changes 91

deploying XML Schemas 79

deprecated message model objects
CWF properties 602

logical properties 598

physical properties 602

properties by object 605

TDS format properties 604

XML wire format properties 603

documentation properties
message model objects,

configuring 115

message sets, configuring 92

E
EDIFACT messages 735

element reference
CWF properties 215

message models, adding to 99

TDS format properties 233

XML wire format properties 221

element references
logical properties 190

elements 15

complex type, adding 111

predefined 30

self-defining 30

simple type, adding 111

elements, changing the type of 110

embedded messages 121

embedded simple types
CWF properties 602

logical properties 601

TDS format properties 605

XML wire format properties 603

© Copyright IBM Corp. 2000, 2008 823

environment variables
MQSI_USE_NEW_DST 91

Export WSDL wizard, panel

properties 813

F
facets 15

field names, IDOC parser 778

file systems, importing into

workbench 127

FIX messages 740

G
Generate WSDL wizard, panel

properties 805

generating message model

representations 77

documentation 81

message dictionary 77

WSDL 79

XML Schema 78

global attribute
CWF properties 216

message models, adding to 100

TDS format properties 234

XML wire format properties 222

global attribute group
CWF properties 216

logical properties 194

message models, adding to 105

TDS format properties 234

XML wire format properties 223

global attribute groups 23

global attributes
logical properties 191

global elements
CWF properties 216

logical properties 195

TDS format properties 234

XML wire format properties 223

global group
CWF properties 216

logical properties 198

message models, adding to 104

TDS format properties 235

XML wire format properties 224

global groups 20

global type
message models, adding to 98

group reference
CWF properties 216

logical properties 200

message models, adding to 106

TDS format properties 238

XML wire format properties 224

H
HL7 messages 736

I
IBM supplied messages, importing

message definitions 133

IDOC domain 776

IDoc messages 741

building the message model 742

IDOC parser
building the message model 777

Import wizard 127

importing
copying and pasting 127

dragging and dropping 127

from C header files 129

from COBOL copybooks 131

from command line
C header files 130

COBOL copybooks 132

WSDL 135

XML DTDs 137

XML Schema 140

from IBM supplied messages 133

from WSDL 134

from XML DTD 136

from XML schema 138

Import wizard 127

message definitions 127

other model representations 67

from C 72

from COBOL 73

from IBM supplied messages 70

from WSDL 75

from XML DTD 70

from XML schema 67

K
key

CWF properties 217

logical properties 200

TDS format properties 239

XML wire format properties 224

keyref
CWF properties 217

logical properties 200

TDS format properties 239

XML wire format properties 224

L
local attribute

CWF properties 217

logical properties 201

message models, adding to 101

TDS format properties 239

XML wire format properties 224

local element
message models, adding to 99

local elements
CWF properties 218

logical properties 204

TDS format properties 240

XML wire format properties 225

local group
CWF properties 219

logical properties 208

message models, adding to 105

local group (continued)
TDS format properties 240

XML wire format properties 226

logical model
relationship to CWF 42

relationship to TDS format 59

relationship to XML Wire Format 64

logical properties
attribute group reference 185

attribute reference 185

complex types 186

combinations of composition and

content validation 293

content validation 292

repeats and duplicates 293

compound elements 598

complex types 601

value constraints 601

configuring
message model objects 114

message sets 85

deprecated message model

objects 598

element references 190

embedded simple types 601

global attribute group 194

global attributes 191

global elements 195

global group 198

group reference 200

key 200

keyref 200

local attribute 201

local elements 204

local group 208

message 211

message model objects 185

message sets 149

simple types 211

value constraints 212

unique 212

wildcard attribute 212

wildcard elements 213

logical tree structures 7

M
message

CWF properties 220

global complex types, adding

from 98

global elements, adding from 97

logical properties 211

message models, adding to 97

TDS format properties 244

XML wire format properties 226

message categories 32

member properties 184

properties 183

Message Category editor
adding messages to message

categories 125

message category file properties,

configuring 126

message category file properties,

viewing 126

message category files, opening 124

824 Message Models

message category files
creating 123

deleting 126

message
adding 125

deleting 126

opening 124

properties, configuring 126

properties, viewing 126

working with 123

Message Definition editor
message definition files, opening 93

message model objects, adding 96

message model objects,

configuring 107

message definition files 11

adding an import 122

adding an include 122

configuring 107

creating 94

creating by importing 127

creating from a C header file 95

creating from a COBOL file 95

creating from a WSDL file 95

creating from an existing resource 95

creating from an IBM-supplied

message 95

creating from an XML DTD file 95

creating from an XML Schema file 95

creating from scratch 94

deleting 95

deleting objects 120

imports properties 182

includes properties 182

linking 122

multipart messages 121

opening 93

properties 181

redefines properties 182

working with 93

XML schema 12

extensions 13

restrictions 12

message definitions
creating 66

generating WSDL, relationship to the

message model 80

importing from C 72

importing from COBOL 73

importing from IBM supplied

messages 70

importing from other model

representations 67

importing from WSDL 75

relationship to the message

model 76

importing from XML DTD 70

importing from XML schema 67

message sets with namespaces

disabled 69

message domains 7

message flows
data types

MRM message 729

field names, IDOC parser 778

generating documentation from 141

message model object properties
attribute group reference 245

attribute reference 246

complex types 288

compound elements 605

element reference 297

embedded simple types 673

global attribute 350

global attribute group 379

global elements 380

global group 416

group reference 422

key 425

keyref 425

local attribute 426

local elements 489

local group 570

message 577

simple types 580

unique 595

wildcard attribute 595

wildcard elements 596

message model objects 13

adding 96

attribute groups 23

attributes 21

changing the type of an attribute 110

changing the type of an element 110

complex types 16

configuring 107

documentation properties 115

logical properties 114

physical properties 116

copying 109

CWF properties 214

default physical format settings,

applying 119

deleting 120

elements 15

groups 20

identification 25

lists 17

logical properties 185

messages 14

pasting 109

physical properties 214

properties by object 245

renaming 108

reordering 108

restrictions 17

simple types 17

lists 17

restrictions 17

unions 17

value constraints 23

TDS format properties 229

type inheritance 19

types 16

unions 17

value constraints, setting 112

wildcard attributes 23

wildcard elements 22

working with 96

XML wire format properties 220

message model reference

information 147

message modeling 3

message modeling (continued)
advantages of modeling messages 6

concepts 4

logical tree structures 7

message domains 7

parsers 7

message models 7

attribute group reference, adding 106

attribute reference, adding 101

complex type, adding 104

developing 3

documentation, generating 81

element reference, adding 99

global attribute group, adding 105

global attribute, adding 100

global groups, adding 104

global type, adding 98

group reference, adding 106

IDOC parser 777

local attribute, adding 101

local element, adding 99

local group, adding 105

message categories 32

message definition files 11

message dictionary, generating 77

message sets 9

identification 10

recommendations 10

resources 9

versions and keywords 10

message, adding 97

message, adding from global complex

types 98

message, adding from global

elements 97

model integrity 38

model representations, generating 77

namespaces 33

non-XML messages 36

reusing message definition

files 37

specifying in a message type 36

XML messages 35

object cardinality 30

simple type, adding 102

substitution groups 31

task list errors
applying a quick fix 92

quick fix list 780

wildcard attribute, adding 102

wildcard elements, adding 100

WSDL, generating 79

XML Schema, deploying 79

XML Schema, generating 78

XML Schema, validating 79

Message Set editor
configuring physical formats 86

documentation properties,

configuring 92

logical properties 85

message sets, opening 82

message set projects
creating 83

deleting 81

working with 81

message sets 9

adding CWF layers 86

Index 825

message sets (continued)
adding TDS Format layers 87

adding XML Wire Format layers 88

configuring
CWF properties 87

documentation properties 92

logical properties 85

physical format layers 86

preferences 82

TDS Format properties 88

XML Wire Format properties 89

creating 83

CWF properties 152

daylight savings time U.S. 2007 91

default physical format settings,

applying 90

deleting 92

documentation properties 181

generating documentation from 141

identification 10

importing
from C: supported features 787

from COBOL: supported

features 789

from WSDL: generated

objects 794

from WSDL: restrictions 794

from XML Schema: unsupported

features 797

supported and unsupported

features 787

logical properties 149

opening 82

physical format layers
adding 86

removing 90

renaming 89

preferences 147

editors 147

validation 148

XML Schema importer 149

recommendations 10

resources 9

TDS format properties 157

defaults 167

TDS mnemonics 165

versions and keywords 10

working with 82

XML wire format properties 173

In-line DTDs and the DOCTYPE

text property 180

messages 14

embedding 121

message category file
adding to 125

deleting from 126

multipart 26

identifying using Message

Identity 26

identifying using Message

Path 29

predefined 30

self-defining 30

MIME domain 772

parser restrictions 775

parser use 775

standard header fields 772

model integrity
CWF 41

TDS format 57

XML Wire Format 63

modeling messages 3

advantages of modeling messages 6

concepts 4

MQSI_USE_NEW_DST environment

variable 91

MRM domain 727

additional CWF information 730

data conversion 730

NULL handling options 731

additional logical format, MRM model

restrictions 728

additional TDS format

information 734

industry standard formats 734

message characteristics in the

MRM 743

message model integrity 753

NULL handling options 751

regular expressions to parse data

elements 757

additional XML wire format

information 731

NULL handling options 731

MRM: Generated model

representations 782

document generation 782

WSDL generation 782

XML Schema generation 784

multipart messages 26

creating 121

CWF 42

identifying using Message

Identity 26

identifying using Message Path 29

TDS format 58

XML Wire Format 64

N
namespaces 33

non-XML messages 36

reusing message definition files 37

specifying in a message type 36

XML messages 35

namespaces in the MRM domain 35

New Message Category File wizard 123

New Message Definition File From

wizard 95

New Message Definition File wizard 94

panel properties 798

New Message Set Web Service Definition

wizard 143

New Message Set wizard 83

New XML Schema wizard 141

NULL handling
CWF 41

CWF options 731

TDS format 58

TDS format options 751

XML Wire Format 63

XML wire format options 731

NULL element and

NULLValAttr 733

NULL handling (continued)
XML wire format options (continued)

NULL representation for Binary

data 733

NULL value 733

P
performance

regular expressions to parse TDS

messages 762

physical format layers 38

CWF 40

data conversion 42

model integrity 41

multipart messages 42

NULL handling 41

relationship to the logical

model 42

CWF layers
adding 86

daylight savings time U.S. 2007 91

default settings, applying 90

message model object properties,

configuring 116

message sets, adding 86

removing 90

renaming 89

TDS Format 44

data conversion 58

data element separation 47

model integrity 57

multipart messages 58

NULL handling 58

relationship to the logical

model 59

TDS Format layers
adding 87

XML Wire Format 62

model integrity 63

multipart messages 64

NULL handling 63

relationship to the logical

model 64

xsi:type attributes 65

XML Wire Format layers, adding 88

physical formats, applying default

settings to message model objects 119

physical properties
configuring

message model objects 116

message sets 86

deprecated message model

objects 602

message model objects 214

preferences
message sets 147

configuring 82

editors 147

validation 148

XML Schema importer 149

projects
message sets 8

properties
deprecated message model

objects 598

documentation, message sets 181

826 Message Models

properties (continued)
message categories 183

message category members 184

message definition file imports 182

message definition file includes 182

message definition file redefines 182

message definition files 181

message model objects 184

message sets, documentation 181

Q
quick fix, applying to task list errors 92

S
simple type

message models, adding to 102

value constraints
setting 112

simple types 17

attribute, adding to an 111

CWF properties 220

element, adding to an 111

lists 17

logical properties 211

value constraints 212

restrictions 17

TDS format properties 244

unions 17

value constraints 23

XML wire format properties 228

substitution groups 31

SWIFT messages 737

T
task list errors, applying a quick fix 92

TDS format 44

data conversion 58

data element separation 47

data pattern separation types 56

delimited separation types 52

fixed length separation types 48

tagged separation types 49

message model integrity 753

general rules 753

omission and truncation of

elements 756

restrictions for nesting complex

types 755

model integrity 57

multipart messages 58

NULL handling 58

NULL handling options 751

physical format layers, adding 87

physical properties
configuring for message model

objects 117

configuring for message sets 88

regular expressions to parse data

elements 757

multiple delimiters 761

performance considerations 762

syntax 759

variable number of repeats 762

TDS format (continued)
relationship to the logical model 59

simple data values
determining the length of 46

TDS format properties
attribute group reference 229

attribute reference 229

complex types 230

compound elements 604

complex types 604

deprecated message model

objects 604

element reference 233

embedded simple types 605

global attribute 234

global attribute group 234

global elements 234

global group 235

group reference 238

key 239

keyref 239

local attribute 239

local elements 240

local group 240

message 244

message model objects 229

message set defaults 167

message sets 157

TDS mnemonics 165

simple types 244

unique 244

white space characters 244

wildcard attribute 245

wildcard elements 245

TDS industry standard formats 734

ACORD AL3 messages 738

fixed length AL3 739

tagged encoded length to support

reversioning 740

CSV messages 740

EDIFACT messages 735

FIX messages 740

HL7 messages 736

SWIFT messages 737

TLOG messages 738

X12 messages 738

TDS message characteristics in the

MRM 743

data element separation 744

special characters to model a

message 747

mnemonics as special

characters 748

TDS mnemonics 749

TLOG messages 738

trademarks 821

U
unique

CWF properties 220

logical properties 212

TDS format properties 244

XML wire format properties 229

V
value constraints, setting 112

W
Web Service Definitions

message set, generating from 143

white space characters, TDS format

properties 244

wildcard attribute
CWF properties 220

logical properties 212

message models, adding to 102

TDS format properties 245

XML wire format properties 229

wildcard attributes 23

wildcard element
message models, adding to 100

wildcard elements 22

CWF properties 220

logical properties 213

TDS format properties 245

XML wire format properties 229

WSDL 143

importing from WSDL
generated objects 794

restrictions 794

importing message definitions 134

relationship to the message model
generating WSDL 80

importing WSDL 76

X
X12 messages 738

XML DTD, importing message

definitions 136

XML messages
validating against a schema 79

XML namespaces in the MRM

domain 33

XML rendering options 733

XML schema 12

extensions 13

importing 138

message set, generating from 141

restrictions 12

XML Schema
facets 15

message editor only features 728

XML wire format
NULL handling options 731

NULL element and

NULLValAttr 733

NULL representation for Binary

data 733

NULL value 733

XML rendering options 733

XML Wire Format 62

model integrity 63

multipart messages 64

NULL handling 63

physical format layers, adding 88

physical properties
configuring for message model

objects 118

Index 827

XML Wire Format (continued)
physical properties (continued)

configuring for message sets 89

relationship to the logical model 64

xsi:type attributes 65

XML wire format properties
attribute group reference 221

attribute reference 221

complex types 221

compound elements 603

complex types 603

deprecated message model

objects 603

element reference 221

embedded simple types 603

global attribute 222

global attribute group 223

global elements 223

global group 224

group reference 224

key 224

keyref 224

local attribute 224

local elements 225

local group 226

message 226

message model objects 220

message sets 173

In-line DTDs and the DOCTYPE

text property 180

simple types 228

unique 229

wildcard attribute 229

wildcard elements 229

828 Message Models

����

Printed in USA

	Contents
	About this topic collection
	Part 1. Developing message models
	Developing message models
	Message modeling
	Message modeling concepts
	Why model messages?
	Message domains and parsers
	The message model
	Physical formats in the MRM domain
	Ways to create message definitions
	Generate model representations

	Working with a message set project
	Deleting a message set project

	Working with a message set
	Configuring message set preferences
	Opening an existing message set
	Creating a message set
	Configuring logical properties: Message sets
	Working with physical formats
	Observing 2007 U.S. changes to Daylight Savings Time
	Configuring documentation properties: Message sets
	Deleting a message set
	Applying a Quick Fix to a task list error

	Working with a message definition file
	Opening an existing message definition file
	Creating a message definition file
	Deleting a message definition file

	Working with message model objects
	Adding message model objects
	Configuring message model objects
	Deleting objects

	Creating a multipart message
	Linking from one message definition file to another
	Include
	Import

	Working with a message category file
	Creating a message category file
	Opening an existing message category file
	Adding a message to a message category
	Deleting a message from a message category
	Viewing or configuring message category file properties
	Deleting a message category file

	Importing data structures
	Importing file systems into the workbench
	Importing from C
	Importing from COBOL copybooks
	Importing from IBM supplied messages
	Importing from WSDL
	Importing from XML DTD
	Importing from XML Schema

	Generating documentation from message sets and message flows
	Generating an XML Schema
	Generating a WSDL definition from a message set

	Part 2. Reference
	Message model reference information
	Message set preferences
	Message Set Editor and Message Definition Editor preferences
	Validation of the message model
	XML Schema Importer

	Message set properties
	Custom Wire Format message set properties
	TDS Format message set properties
	XML Wire Format message set properties
	Documentation properties for a message set

	Message definition file properties
	Message definition file includes properties
	Message definition file imports properties
	Message definition file redefines properties
	Documentation properties for all message set objects

	Message category properties
	Message category member properties

	Message model object properties
	Logical properties for message model objects
	Physical properties for message model objects
	Documentation properties for all message set objects
	Message model object properties by object

	Deprecated message model object properties
	Logical properties for deprecated message model objects
	Physical properties for deprecated message model objects
	Documentation properties for all message set objects
	Deprecated message model object properties by object

	Additional MRM domain information
	MRM restrictions
	Data types for elements in an MRM message
	Additional CWF information
	Additional XML information
	Additional TDS information
	DateTime formats

	Additional MIME domain information
	MIME standard header fields
	MIME parser use and restrictions

	Additional IDOC domain information
	Building the message model for the IDOC parser
	Field names of the IDOC parser structures

	Message model task list errors that have a quick fix
	Generated model representations
	Document generation
	WSDL generation
	XML Schema generation

	Import formats
	Importing from C: supported features
	Importing from COBOL: supported features
	Importing from WSDL: generated objects and restrictions
	Importing from XML Schema: unsupported features

	Message model wizards
	New message definition file wizards
	Generate WSDL wizard
	Export WSDL wizard
	Configure New Web Service Usage wizard

	Part 3. Appendixes
	Appendix. Notices for WebSphere Message Broker
	Trademarks in the WebSphere Message Broker information center

	Index

