WebSphere Message Broker

Configuration, Administration, and
Security

Version 6 Release 1

<|ll

WebSphere Message Broker

Configuration, Administration, and
Security

Version 6 Release 1

<|ll

Note
FBefore you use this information and the product that it supports, read the information in the Notices appendix.

This edition applies to version 6, release 1, modification 0, fix pack 6 of IBM WebSphere Message Broker and to all
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2000, 2010.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this topic collection. v

Part1.Security.1

Security.3

Security overview . . .3
Planning for security when you 1nsta11 WebSphere

Message Broker B
Setting up message flow securlty)
Setting up broker domain security.46
Setting up z/OS security83
Publish/subscribe security88
Securing the publish/subscribe domam)

Part 2. Conflgurlng the broker

domain . 105
Configuring WebSphere Message

Broker . . 107
Planning a broker domam .o . (14
Configuring broker and user databases A 1)
Customizing the z/OS environment. 163
Configuring broker domain components 188
Configuring a broker domain in the workbench 264
Configuring a publish/subscribe topology. . . . 277
Configuring global coordination of transactions
(two-phase commit) . . Lo o029
Configuring the workbench N A |
Changing locales325
Part 3. Administering the broker
domain . 333
Administering the broker domain. . 335

Connecting to and disconnecting from the broker

domain . . . 335
Connecting to and drsconnectlng from the broker

domain on z/OS 336
Starting and stopping message ﬂows 338
Starting and stopping a broker 339
Starting and stopping a Configuration Manager 341
Starting and stopping the User Name Server . . . 343

© Copyright IBM Corp. 2000, 2010

Starting a WebSphere MQ queue manager as a

Windows service . . 345
Stopping a WebSphere MQ queue manager when
you stop a component .. . 345
Viewing broker domain log 1nformat10n . 346
Refreshing broker domain log information. . 347
Filtering broker domain log information . 347
Saving broker domain log information . . 348
Clearing Event logbroker domain log 1nformat10n 348
Changing the location of the work path . 349
Changing Event log editor preferences . . 350
Backing up resources . . 351
Part 4. Reference . . 357
Database configuration . . 359
odbc32.ini sample file . 359
odbc64.ini sample file . 367
Operations . 383
Broker properties . . . 383
Restrictions that apply in each operatlon mode . . 384
Commands 386
z/0S configuration and admmlstrahon spec1f1c
information . . 701
Security requirements for
administrative tasks . 735
ACL permissions . . 755
Security requirements for Llnux and UNIX
platforms. . 756
Security requlrements for Wmdows platforms . 757
Security requirements for z/OS . 761
Part 5. Appendixes . . 763
Appendix. Notices for WebSphere
Message Broker . . 765
Trademarks in the WebSphere Message Broker
Information Center R .o . 767
Index . . 769
iii

iv Configuration, Administration, and Security

About this topic collection

This PDF file has been created from the WebSphere Message Broker Version 6.1 (fix
pack 6 update, March 2010) information center topics. Always refer to the
WebSphere Message Broker online information center to access the most current
information. The information center is periodically updated on the

site and this PDF and others that you can download from that Web site
might not contain the most current information.

The topic content included in the PDF does not include the "Related Links"
sections provided in the online topics. Links within the topic content itself are
included, but are active only if they link to another topic in the same PDF
collection. Links to topics outside this topic collection are also shown, but result in
a "file not found "error message. Use the online information to navigate freely
between topics.

Feedback: do not provide feedback on this PDF. Refer to the online information to
ensure that you have access to the most current information, and use the Feedback
link that appears at the end of each topic to report any errors or suggestions for
improvement. Using the Feedback link provides precise information about the
location of your comment.

The content of these topics is created for viewing online; you might find that the
formatting and presentation of some figures, tables, examples, and so on are not
optimized for the printed page. Text highlighting might also have a different
appearance.

© Copyright IBM Corp. 2000, 2010 \%

ftp://ftp.software.ibm.com/software/integration/wbibrokers/docs
ftp://ftp.software.ibm.com/software/integration/wbibrokers/docs

vi Configuration, Administration, and Security

Part 1. Security

Security
Security overview .
Message flow security .
Authorization for configuration tasks
Security for development resources .
Security for runtime resources: Access control
lists . .
Security exits .
Public key cryptography
Digital signatures
Digital certificates
SSL authentication .
Tunneling .
Quality of protection
Domain awareness for Message Broker Toolklt
users on Windows .
Planning for security when you 1nsta11 WebSphere
Message Broker . . .o
Setting up message flow securlty .
Creating a security profile .
Configuring identity extraction in a message ﬂow
Configuring identity authentication
Configuring identity mapping .
Configuring authorization
Configuring for identity propagatlon
Diagnosing security problems
Setting up broker domain security.
Creating user IDs .
Considering security for the workbench
Considering security for a broker .
Considering security for a Configuration
Manager . .
Configuring securlty for domaln components .
Changing the security domain for the User Name
Server . . .
Implementing SSL authentlcatlon .
Enabling topic-based security
Using security exits.
Implementing HTTP tunnellng
Implementing quality of protection
Database security
Setting up z/OS security . .
Setting up DB2 security on z / OS .
Setting up WebSphere MQ
Setting up workbench access on z/ OS
Creating Publish/Subscribe user IDs .
Enabling the Configuration Manager on z/OS to
obtain user ID information o
Publish/subscribe security
Topic-based security
Authentication services
Message protection . .
Securing the publish/subscribe domaln .
Enabling topic-based security
Creating ACL entries .
Enabling SSL for the Real- tlme nodes

© Copyright IBM Corp. 2000, 2010

. 28

. 28
.29

.29
35

. 36
. 39
. 40
. 44
. 45
. 46
. 47
. 48
. 50

. 53
. 56

. 58
. 58
.79
. 81
. 82
. 82
. 82
. 83
. 85
. 86
. 86

. 87

. 87

.88
. 88
. 93
. 95
. 96
. 96
.99
.99

Using message protection

Securing WebSphere MQ resources .

. 102
. 103

2 Configuration, Administration, and Security

Security

Security is an important consideration for both developers of WebSphere® Message
Broker applications, and for system administrators configuring WebSphere Message
Broker authorities.

The topics in this section help you to deal with security in WebSphere Message
Broker:

* [“Security overview”]

+ [“Planning for security when you install WebSphere Message Broker” on page 28|

* [“Setting up message flow security” on page 29|

* [“Setting up broker domain security” on page 46|

+ [“Setting up z/0S security” on page 83|

* [Transferring files securely by using SFTP|

[“Publish /subscribe security” on page 88|

* [“Securing the publish/subscribe domain” on page 96|

Security overview

When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.

An important aspect of securing an enterprise system is the ability to protect the
information that is passed from third parties. This capability includes restricting
access to WebSphere MQ and JMS queues. For information about the steps
involved, refer to the documentation supplied by your transport provider. If you
are using HTTPS, you need to set specific properties in the HTTP nodes. For
information about this option, see [HTTPInput node} [HTTPRequest node} and
[HTTPReply nodel

Some security configuration is required to enable WebSphere Message Broker to
work correctly and to protect the information in the system. For example, you can
secure the messaging transport with SSL connections, restrict access to queues,
apply WS-Security to Web services, and secure access to message flows.

In addition, system administrators need WebSphere Message Broker authorities
that allow them to perform customization and configuration tasks, run utilities,
perform problem determination, and collect diagnostic materials.

Security information is split into several areas:

* ["“Message flow security” on page 4|

* [WS-Security]

+ |“Authorization for configuration tasks” on page 17

* [“Security for development resources” on page 17

* |“Security for runtime resources: Access control lists” on page 17|
+ [“Security exits” on page 20|

+ [“SSL authentication” on page 26| (for the Real-time nodes only)
* [“Tunneling” on page 27]

+ [“Quality of protection” on page 27]

+ ["Domain awareness for Message Broker Toolkit users on Windows” on page 28

© Copyright IBM Corp. 2000, 2010 3

Message flow security

WebSphere Message Broker provides a security manager, which enables you to
control access to individual messages in a message flow, using the identity of the
message.

You can configure the broker to perform end-to-end processing of an identity
carried in a message through a message flow. This capability enables you to
configure security for a message flow, allowing you to control access based on the
identity associated with the message and providing a security mechanism that is
independent of both transport type and message format.

If you do not enable message flow security, the default security facilities in
WebSphere Message Broker are based on the facilities provided by the transport
mechanism. In this case, the broker processes all messages that are delivered to it,
using the broker service identity as a proxy identity for all message instances. Any
identity that is present in the incoming message is ignored.

Instead of delegating this authority to the transport mechanism, the security
manager enables the broker to:

* Extract the identity from an inbound message
* Authenticate the identity (using an external security provider)
* Map the identity to an alternative identity (using an external security provider)

* Check that either the alternative identity or the original identity is authorized to
access the message flow (using an external security provider)

* Propagate either the alternative identity or the original identity with an
outbound message.

The security functions that are associated with a message flow are controlled by
using |“Security profiles” on page 7|which are created by the broker administrator
and accessed by the security manager at run time. Two external security providers
are supported: Lightweight Directory Access Protocol (LDAP) for authentication
and authorization, and Tivoli® Federated Identity Manager (TFIM) for
authentication, mapping, and authorization.

The input nodes that support runtime security are MQInput, HTTPInput, and
SOAPInput. However, the support for treating security exceptions as normal
exceptions is provided only by the MQInput and HTTPInput nodes; it is not
available in the SOAPInput node.

The output nodes that support identity propagation are MQOutput, HTTPRequest,
SOAPRequest, and SOAPAsyncRequest.

If the message flow is a Web Service that is implemented by using the broker
OAP nodes}| the identity can be taken from the header tokens that are
defined through appropriate and bindings.

4 Configuration, Administration, and Security

IdentitySourceType |

000 [

IdentitySourceToken |

IdentitySourcePassword |

IdentitySourcelssuedBy |

\

IdentityMappedType |

IdentityMappedToken |

IdentityMappedPassword |

IdentityMappedIssuedBy |

Lidllll]

Policy
Enforcement
Point (PEP)

Security
Profiles

MQ
HTTP(S) H >

SOAP

L]
" Password
-} Security Processing -- Vault

Falllcy, @: .
I/

Authorization
Provider

Authentication
Provider

The following steps explain the sequence of events that occur when a message
arrives at a message flow. The numbers correspond to those in the preceding
diagram:

1. When a message arrives at an input node, a security profile associated with
the node indicates whether runtime security is configured. The broker's
security manager is called to read the profile, which specifies the combination
of propagation, authentication, authorization, and mapping to be performed
with the identity of the message. It also specifies the external security provider
to be used.

You can create security profiles by using either the
mgsicreateconfigurableservice command or an editor in the Broker
Administration perspective of the Message Broker Toolkit. You then use the
Broker Archive editor to configure the security profile on the message flow.

Security 5

2.

10.

11.

If you configure a SOAPInput node to use the identity in the WS-Security
header (rather than an underlying transport identity), you must also define

and specify an appropriate policy set and bindings. For more information, see
ﬁ

If a security profile is present, the security manager extracts the identity
information from the input message and sets it in a group of new elements in
the Properties folder. This source identity information can be in a message
header or in the message body itself, or a mixture of the two.

If authentication is specified in the security profile, the security manager calls
the provider to authenticate the identity. A failure results in a
SecurityException being thrown. The security providers that are supported by
Message Broker for authentication are LDAP and TFIM. A security cache is
provided for the authentication result.

If identity mapping is specified in the security profile, the security manager
calls the provider to map the identity to an alternative identity. A failure
results in a SecurityException being thrown. Otherwise, the mapped identity
information is set in a group of new elements in the Properties folder. The
provider that is supported by Message Broker for identity mapping is TFIM.
A security cache is provided for the result of the identity mapping.

If authorization is specified in the security profile, the security manager calls
the provider to authorize that the identity has access to this message flow. A
failure results in a SecurityException being issued. Message Broker supports
LDAP and TFIM for authorization. A security cache is provided for the
authorization result.

When all security processing is complete, control returns to the input node.

The message, including the Properties folder and its source and mapped
identity information, is propagated down the message flow.

At subsequent nodes in the message flow an identity might be required to
access a resource such as a database. The identity used to access such a
resource is a proxy identity, either the broker's identity or an identity
configured for the specific resource by using the mgsisetdbparms command.

When you are developing a message flow you can use the identity fields in
the Properties folder for application processing (for example, identity-based
routing or content building based on identity). Also, as an alternative to
invoking mapping through TFIM, you can set the mapped identity fields in a
user-defined node.

When the message reaches an output node, a security profile associated with
the node indicates whether an identity is to be propagated when the message
is sent.

If the security profile indicates that propagation is required, the mapped
identity is used. If the mapped identity is not set, the source identity is used.
If no identity is set, a SecurityException is issued.

The propagated identity is included in the appropriate message header when
it is sent.

To improve performance, the authentication, authorization, and mapping
information from the configured providers is cached for reuse. You can use the
mgsireloadsecurity command to reload the security cache, and you can use the
mgsichangeproperties command to set the expiry and sweep intervals for the
security cache.

6 Configuration, Administration, and Security

For a SOAPRequest and SOAPAsyncRequest node, an appropriate policy set and
bindings can be defined to specify how the token is placed in the WS-Security

header (rather than the underlying transport headers). For more information, see
i

The following topics in this section provide more detailed information about
message flow security:

+ [“Identity” on page §

+ [“Authentication” on page 10|

+ |“Identity mapping” on page 12|

* |“Authorization” on page 11|

+ [“Identity propagation” on page 16|

* [“Security profiles”|

+ [“Security exception processing” on page 17

Security profiles
A security profile defines the security operations to be performed on a message
flow.

Security profiles are configured by the broker administrator before deploying a
message flow, and are accessed by the security manager at run time.

A security profile allows a broker administrator to specify whether identity
propagation, authentication, authorization, and mapping are performed on the
identity of messages in the message flow, and if so, which external security
provider is used. Lightweight Directory Access Protocol (LDAP) is supported for
authentication and authorization, and IBM® Tivoli Federated Identity Manager
(TFIM) is supported for authentication, authorization, and mapping.

Security properties apply to input, output, and request nodes, and are configured
by the administrator at deployment time in the Broker Archive editor. Input,
output, and request nodes have a Security Profile property (in the Broker Archive
editor), which can be set to a specific profile name, left blank so that they inherit
the Security Profile property set at the message flow level, or set to No Security to
explicitly turn off security for the node. For input nodes, the Security Profile
property determines whether runtime security is configured. If the property does
not resolve to a real security profile, identity tokens are not extracted to the
identity fields in the Properties folder.

The security profile also specifies whether propagation is required. A
pre-configured profile that specifies propagation is provided for use by output and
request nodes. This profile is the Default Propagation security profile.

Security profiles contain values for the following properties:

authentication
Defines the type of authentication that is performed on the source identity.
This property applies only to input nodes. For more information, see
[“Authentication” on page 10,

authenticationConfig
Defines the information that the broker needs to connect to the provider,
and the information needed to look up the identity tokens. It is a
provider-specific configuration string. This property applies only to input
nodes.

Security 7

mapping
Defines the type of mapping that is performed on the source identity. This
property applies only to input nodes. For more information, see
[mapping” on page 12

mappingConfig
Defines how the broker connects to the provider, and contains additional
information required to look up the mapping routine. It is a
provider-specific configuration string. This property applies only to input
nodes.

authorization
Defines the types of authorization checks that are performed on the
mapped or source identity. This property applies only to input nodes. For
more information, see [“Authorization” on page 11)

authorizationConfig
Defines how the broker connects to the provider, and contains additional
information that can be used to check access (for example, a group that can
be checked for membership). It is a provider-specific configuration string.
This property applies only to input nodes.

passwordValue
Defines how passwords are treated when they enter a message flow. If
PLAIN is selected, the password appears in the Properties folder in plain
text. If OBFUSCATE is selected, the password appears in the Properties
folder in base64 encoding. If MASK is selected, the password appears in
the Properties folder as four asterisks (****). This property applies only to
input nodes.

Propagation
Enables or disables identity propagation on output and request nodes. For
more information, see [“Identity propagation” on page 16

For information on configuring a security profile for LDAP or TFIM, see
la security profile” on page 29.

Identity
An identity is a piece of information that can uniquely identify an individual or
object.

When a supported input node is configured with a security profile, the extracted
identity is held in the broker as eight properties in the Properties folder of the
message tree structure. These properties define two identities in the broker: source
and mapped. For both the source and mapped identities, values are held for Type,
Token, Password, and IssuedBy properties:

8 Configuration, Administration, and Security

IdentitySourceType

IdentitySourceToken

IdentitySourcePassword

IdentitySourcelssuedBy

Properties

IdentityMappedType

IdentityMappedToken

IdentityMappedPassword

IdentityMappedIssuedBy

The Type property defines the format of the token, and valid values are Username,
Username and Password and X.509 Certificate. The Type property can also have a
value of Transport Default, which causes the transport's default to be used. For
WebSphere MQ the default is Username, and for HTTP the default is Username and
Password.

The Token property holds the security token and, in the case of a Username and
Password token, the Password field contains the attached password. The IssuedBy
property defines where the token was created. For example, for an X.509 Certificate
this value could be “IBM” (the Common Name of the Certifying Authority). For
Username and Username and Password formats, the value is transport specific unless
the IssuedBy property is set on the node. For more information, see

lidentity extraction in a message flow” on page 35,

The following table shows the support that is provided (by the broker security
manager and external security providers) for the different security token types:

Table 1. Support for security token types

Token type (format)

Broker security manager
support

External security provider
support

Username

Token obtained from one of
the following transport
headers:

« MQ

e HTTP

« SOAP

or from an MQ or HTTP
message body.

LDAP: Authorization

Security 9

Table 1. Support for security token types (continued)

Broker security manager External security provider
Token type (format) support support
Username and password Token obtained from one of |LDAP:

the following transport * Authentication

headers: * Authorization

) SHOTXI; TFIM:

* Authentication
or from an MQ or HTTP * Mapping
message body. * Authorization.

X.509 Certificate Token obtained from a SOAP | TFIM:
transport header or from an | Authentication
MQ or HTTP message body. |* Mapping
* Authorization.

The source identity is set by the input node only if a security profile is associated
with the node. The information to complete these fields is typically found in the
headers of a message but can also be located in the body (as long as the node has
been configured with an ESQL Path or XPath reference for the various properties).
If multiple identities are available (for example, if you are using message
aggregation), the first identity is used. The token extraction is transport specific
and can be performed only using transports that support the flow of identities.
These transports are: Websphere MQ, HTTP(S), and SOAP. See and
[HTTPInput node| for more information.

You can modify the values in the properties (for example, from ESQL), but do not
write to the IdentitySource* values. For example, you can create a custom identity
mapping routine in ESQL or Java " by using the IdentitySource* values to create
custom IdentityMapped™ values.

Authentication
Authentication is the process of establishing the identity of a user or system and
verifying that the identity is valid.

In WebSphere Message Broker, authentication is the process of passing the identity
source type and token to an external authenticator. For more information about
source type and token, see [“Identity” on page 8|

10 Configuration, Administration, and Security

Properties IdentitySourceType

IdentitySourceToken

IdentitySourcePassword

IdentitySourcelssuedBy

YVVVY

IdentityMappedType Authentication

IdentityMappedToken

IdentityMappedPassword Identity
Provider

IdentityMappedIssuedBy

The two external security providers supported for authentication are Lightweight
Directory Access Protocol (LDAP) and Tivoli Federated Identity Manager (TFIM).
The external security provider checks the identities and returns a value to confirm
whether the identity is authentic. If the identity is not authentic, a security
exception is raised.

Some identity providers support only a single type of authentication token. If a
token of another type is passed into the message flow, an exception is raised. For
example, LDAP supports only a Username and password token.

If you want to use LDAP to authenticate an incoming identity token, the identity
must be a member of the relevant group configured in the security profile. The
LDAP server must be LDAP Version 3 compliant.

You can also select TFIM V6.1 for authentication in the profile, but the TFIM
module chain is invoked only once and the single module chain must be
configured to perform all the required authentication, mapping, and authorization
operations.

For more information about using TFIM V6.1 for authentication, see
[“Authentication, Mapping, and Authorization with TFIM and TAM” on page 14

Authorization
Authorization is the process of verifying that an identity has permission to start a
message flow.

If authentication and mapping are configured, they are used to verify the identity
before it is authorized.

Security 11

Properties IdentitySourceType

IdentitySourceToken

IdentitySourcePassword

IdentitySourcelssuedBy

» Authorization
IdentityMappedType < /Policy
» Enforcement
Point
T A
IdentityMappedToken 1 1
IdentityMappedPassword

Access Manager
/Policy Decision
Point

IdentityMappedIssuedBy

If a mapped identity exists, authorization is applied to the mapped identity. If a
mapped identity does not exist, the source identity is used.

If you use LDAP for authorization, the identity must be a member of the relevant
group configured in the security profile. The LDAP server must be LDAP Version 3
compliant.

Alternatively, you can select TFIM for authorization in the profile. However, the
TFIM module chain is invoked only once and the single module chain must be
configured to perform all the required authentication, mapping, and authorization
operations.

For more information about using TFIM for authorization, see [Authentication
[Mapping, and Authorization with TFIM and TAM” on page 14

Identity mapping

Identity mapping is the transformation of an identity in one format to an identity
in another format, or the transformation of an identity in one realm to an identity
in another realm.

12 Configuration, Administration, and Security

Properties IdentitySourceType

IdentitySourceToken

IdentitySourcePassword

IdentitySourcelssuedBy

YVYVY
) A Identity
IdentityMappedType
yNappedlyp Mapping
IdentityMappedToken
IdentityMappedPassword < Identity Mapper
/FIM

A

IdentityMappedIssuedBy

TFIM mapping

The mapper that is supported by WebSphere Message Broker is IBM Tivoli
Federated Identity Manager (TFIM). Mapping is performed only for input nodes
with an associated security profile that specifies that TFIM is to be used for
mapping. TFIM can also be selected for authentication and authorization in the
profile, but the TFIM module chain is invoked only once and must be configured
to perform all the required operations. Mapping is not performed in output nodes,
even if the node has been configured with a security profile.

In the broker, identity mapping is performed at the input node, after authentication
but before authorization. The source identity is passed to an identity mapper (also
known as a Federated Identity Manager) for processing.

WebSphere Message Broker supports the mapping from a Username token to a
Username token, and the mapping from an X.509 certificate to a Username token. No
support exists for mapping to an X.509 token. When mapping from an X.509
certificate, TFIM can validate the certificate but cannot verify the identity of the

original sender. However, if it is required, this verification integrity check can be
performed by the SOAPInput node. For more information, see |WS-Securityj

For more information about using TFIM for mapping, see [*Authentication,)
[Mapping, and Authorization with TFIM and TAM” on page 14

User-defined mapping

When you develop a message flow, you can implement a custom token mapping to
be used for identity propagation. For example, you can implement a custom token
mapping using a JavaCompute node, following the input node. In the

Security 13

JavaCompute node you read the source identity values from the Properties folder,
process them, then write the new identity values to the mapped identity fields. The
mapped identity fields are then used in preference to the source identity fields by
subsequent nodes. However, in this case, any authorization configured on the
input node will already have been performed using the source identity.

Authentication, Mapping, and Authorization with TFIM and TAM
Use WebSphere Message Broker, Tivoli Federated Identity Manager (TFIM), and
Tivoli Access Manager (TAM) to control authentication, mapping, and
authorization.

WebSphere Message Broker makes a single TFIM WS-Trust call for an input node
that is configured with a TFIM security profile, which means that a single module
chain must be configured to perform all the required authentication, mapping, and
authorization operations.

The following diagram shows the configuration of WebSphere Message Broker,

TFIM, and TAM to enable authentication, mapping, and authorization of an
identity in a message flow:

14 Configuration, Administration, and Security

@

Broker
Input Message —|
Ildsesr;tgl}' Execution |—| y
Group Flow
I

TFIM ["module Chain

Address = "<Broker>.<ExecutionGroup>.<FlowName>"
@ Issuer ="<Issuer>"

0T § o

Authentication Mapping Authorization Module
Module Module ProjectedObjectRoot="<root>"
Token(s)
Token(s)
()
XSLT @
ACL -
h 4 LDAP Allow "i" for
TAM Group "Vt\)/ekl?gervic"e"
y "Group
v —
LDAP T 1
Users [
" " Operation
PortType'<Flow>"— "MessageFlowAccess"
PO Root="<root>" 1
PortType".." — Operation".."
PO Root="..." — PortType".." — Operation".."

The numbers in the preceding diagram correspond to the following sequence of
events:

1.
2.

A message enters a message flow.

A WS-Trust request is issued by the broker, with these properties:

* RequestType = Validate

* Identity = Token(s) from input message

* Issuer = Issuer from input message

* AppliesTo Address = "Broker.ExecutionGroup.FlowName”
* PortType = "FlowName"

* Operation = "MessageFlowAccess"

Security 15

3. TFIM selects a module chain to process the WS-Trust request, based on the
AppliesTo Address and Issuer properties of the request.

4. A module chain can perform authentication if it includes a module (such as a
UsernameTokenSTSModule or X509STSModule) in validate mode.

5. A module chain can perform mapping by using an XSLTransformationModule
in mapping mode to manipulate the identity information.

6. A module chain can perform authorization by using an
AuthorizationSTSModule in other mode. The module chain must be configured
with a Protected Object Root value.

7. The AuthorizationSTSModule performs the authorization check by making a
request to TAM with these properties:

“uzry

* Action = “i” (invoke)
* Action Group = “WebService"
* Protected Object = "ProtectedObjectRoot.FlowName.MessageFlowAccess”

"y

where “i” and “WebService” are default values used by an
AuthorizationSTSModule; and FlowName and MessageFlowAccess are the
WS-Trust request PortType and Operation values.

8. TAM processes the authorization request by:

a. Finding the Access Control Lists (ACLs) associated with protected object
"<ProtectedObjectRoot>.<FlowName>.MessageFlowAccess”.

b. Checking whether or not the ACLs grant action “i” on action group

“WebService” to the user (with the user either named directly, or by

membership of a named group).

9. The WS-Trust reply is returned to the broker. If this action is the result of a
mapping request, the WS-Trust reply contains the mapped identity token.

For further information about how to configure TFIM, see the [[BM Tivoli Federated]
[[dentity Manager Information Center]|

For information about how to configure TAM, see the [[BM Tivoli Access Manager|
[[nformation Center]

Identity propagation
Identity propagation enables a logical identity to be maintained throughout a
message flow.

In an enterprise system, you can use different physical identities (such as user
names and certificates) to represent a single logical identity through different parts
of the enterprise. Identity propagation ensures that the logical identity is kept
throughout the system by mapping between the various physical forms as
necessary. For example, a message might enter the system using a certificate, but a
user name token might be required for server processing of the message. Identity
mapping is used to convert from the certificate to the username token, and identity
propagation ensures that the mapped identity is placed in the correct place for the
outbound transport.

For information about how to configure a message flow to propagate a message
identity, see [‘Configuring for identity propagation” on page 44| For more
information about how one physical identity is converted to another, see
[mapping” on page 12]

16 Configuration, Administration, and Security

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?toc=/com.ibm.tivoli.fim.doc/toc.xml
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?toc=/com.ibm.tivoli.fim.doc/toc.xml
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.itame.doc/welcome.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.itame.doc/welcome.htm

Security exception processing
A security exception is raised when a runtime security failure occurs during
security processing in an input node.

Security exceptions are processed in a different way from other errors on the input
node. An error is typically caught on the input node and routed down the Failure
terminal for error processing, but security exceptions are not processed in the same
way. By default, the broker does not allow security exceptions to be caught within
the flow, but backs the message out or returns an error (as in the case of HTTP).
Security exceptions are managed in this way to prevent a security denial of service
attack filling the logs and destabilizing the system.

If you have designed the flow to be in a secure area and you want to explicitly
perform processing of security exceptions, you can select the Treat Security
Exceptions as normal exceptions property on the MQInput or HTTPInput nodes.
This property causes security exceptions to be processed in the same way as other
exceptions in the message flow.

For information on how to diagnose the causes of security exceptions, see
[‘Diagnosing security problems” on page 45|

Authorization for configuration tasks

Authorization is the process of granting or denying access to a system resource.
For WebSphere Message Broker, authorization is concerned with controlling who
has permission to access WebSphere Message Broker resources, and ensuring that
users who attempt to work with those resources have the necessary authorization
to do so.

Examples of tasks that require authorization are:

+ Configuring a broker using, for example, the [“mgsicreatebroker command” on|

* Accessing queues, for example, putting a message to the input queue of a
message flow.

 Taking actions within the workbench, for example, deploying a message flow to
an execution group.

* Publishing topics and subscribing to topics, as described in
[topic-based security” on page 79

Security for development resources

Security for development resources must be addressed and defined by the
application development organization. No special facilities are provided by
WebSphere Message Broker to address this environment over and above those
available for a production environment.

Security for runtime resources: Access control lists

Access control list (ACL) entries allow or deny a user access to specific runtime
resources. Runtime resources are WebSphere Message Broker objects that exist at
run time in the broker domain.

Each runtime object has an ACL that determines which users and groups can
access the object. Using ACL entries, you can control users' access to specific
objects in the broker domain, and permit a user or group to view, modify, or
deploy the object. You can manipulate the ACL entries by using the workbench,

Security 17

the Java Configuration Manager Proxy API, or the [mgsicreateaclentry]
[mgsideleteaclentry] and jmgsilistaclentry| commands.

For example, user USER1 might be given access to modify BROKERA, but have no
access rights to BROKERB. In a further example, the same user might have access
to deploy to execution group EXEGRP1, but not to EXEGRP2, even though they
are both members of BROKERA.

When you try to view or modify an object for which you require permission, the
following information is passed to the Configuration Manager:

* Object type

¢ Object name

* Requested action

* Your user ID.

The Configuration Manager checks the ACL table and, if your user ID is included
in the ACL entry for the named object, you are authorized to perform the
operation.

There are four different access levels that can be granted for a user or group: Full
control, View, Deploy, and Edit. Not all access levels are valid for all object types;
see [“ACL permissions” on page 755| for a list of the permissions that can be
applied to each object type and for a summary of the actions that the user or
group can perform.

An ACL entry contains the user name and can specify a host name or domain
name. For example, it is possible for a user to gain access to the objects by creating
an account on a computer that has a host name that is the same as an authorized
Windows domain name. Use ACL entries to control access to the objects in the
broker domain but do not rely on ACL entries to secure your broker domains; use
SSL or security exits to secure the channels between components in the broker
domain. Although ACL entries permit or deny access to an object based on the
user ID, they do not secure the object because an ACL entry cannot verify the
user's identity.

To reduce the number of ACL entries that a broker administrator must create, the
ACL permissions operate in a hierarchical manner. The root of the tree is the
ConfigManangerProxy object, which has three children: RootTopic, Subscriptions,
and PubSubTopology. The PubSubTopology object has zero or more brokers as
children, and each broker can have zero or more execution groups as children.
When an ACL entry is added to a given object, permission is granted to that object
and to all objects beneath it in the hierarchy, unless it is overridden by another
ACL entry. The following diagram shows an example hierarchy of access control
list entries:

18 Configuration, Administration, and Security

RootTopic

Subscriptions PubSubTopology
Broker1 Broker2
Egl1A Eg1B Eg2A Eg2B

For examples showing how this hierarchy works in practice, see

[security for domain components” on page 56

To change the access control entries for an object, a user must have Full authority
for that object or any parent in the hierarchy. This means that the permission to
change the ACLs themselves works in the same way as described previously, with
the exception that access to the ACLs cannot be removed by granting a lower
permission further down the tree; this is necessary because otherwise a user would
be able to give themselves a View entry and would not then be able to remove it.

On z/0S®, you must define an OMVS segment for user IDs and groups, so that a
Configuration Manager can obtain user ID and group information from the
External Security Manager (ESM) database.

ACL entries and groups

In previous versions of WebSphere Message Broker, access to runtime objects was
controlled by defining a set of groups and assigning users to those groups. ACL
entries enable you to control access with more granularity than groups. ACL
entries also enable a single Configuration Manager to manage development, test,
and production systems separately by configuring users' access to each broker.
Using groups, you would have to place the development, test, and production
systems in separate broker domains, each controlled by a separate Configuration
Manager.

If you migrate a Configuration Manager from a previous version of WebSphere
Message Broker, ACL entries are automatically defined for the following groups:

* mgqbrkrs
* mgbrops
* mgqbrdevt
* mgqbrasgn
* mgbrtpic

Without these ACL entries, users that belong to these groups do not have authority
to perform actions on the objects in the domain.

Security 19

When you use single user ACLs, you must define the users on the workstation that
is accessing the objects (that is, the machine on which the Toolkit is running), but
you do not need to define them on the workstation that is running the
Configuration Manager. However, when you are using Group ACLs, you must
define the users on both workstations and then define the groups on the
workstation that is running the Configuration Manager, before adding the users to
the groups. This is necessary because no group information is passed between the
workstations.

Security exits

Use security exit programs to verify that the partner at the other end of a
connection is genuine.

When you connect from the Message Broker Toolkit to a Configuration Manager
on another computer, a security exit is not started by default to monitor the
connection. If you want to protect access to the Configuration Manager from client
programs, you can use the WebSphere MQ security exit facility.

You can enable a security exit at each end of the connection between your client
session and the Configuration Manager:

* Set up a security exit on the channel at the Configuration Manager end. This
security exit has no special requirements; you can provide a standard security
exit.

* Set up a security exit in the Message Broker Toolkit. Identify the security exit
properties when you create the domain connection.

The security exit is a standard WebSphere MQ security exit, written in Java.

For an overview of security exits and details in their implementation, see "Channel
security exit programs" in the Intercommunication section of the [WebSphere MQ)
Version 7 Information Center online] or [WebSphere MQ Version 6 Information|

Center onlinel
Public key cryptography

All encryption systems rely on the concept of a key. A key is the basis for a
transformation, usually mathematical, of an ordinary message into an unreadable
message. For centuries, most encryption systems have relied on private key
encryption. Public key encryption is the only challenge to private key encryption
that has appeared in the last 30 years.

Private key encryption

Private key encryption systems use a single key that is shared between the sender
and the receiver. Both must have the key; the sender encrypts the message by
using the key, and the receiver decrypts the message with the same key. Both the
sender and receiver must keep the key private to keep their communication
private. This kind of encryption has characteristics that make it unsuitable for
widespread general use:

* Private key encryption requires a key for every pair of individuals who need to

communicate privately. The necessary number of keys rises dramatically as the
number of participants increases.

* Keys must be shared between pairs of communicators, therefore the keys must
be distributed to the participants. The need to transmit secret keys makes them
vulnerable to theft.

20 Configuration, Administration, and Security

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

* Participants can communicate only by prior arrangement. You cannot send a
usable encrypted message to someone spontaneously. You and the other
participant must make arrangements to communicate by sharing keys.

Private key encryption is also called symmetric encryption because the same key is
used to encrypt and decrypt the message.

Public key encryption

Public key encryption uses a pair of mathematically-related keys. A message that is
encrypted with the first key must be decrypted with the second key, and a
message that is encrypted with the second key must be decrypted with the first
key.

Each participant in a public key system has a pair of keys. One key is nominated
as the private key and is kept secret. The other key is distributed to anyone who
wants it; this key is the public key.

Anyone can encrypt a message by using your public key, but only you can read it.
When you receive the message, you decrypt it by using your private key.

Similarly, you can encrypt a message for anyone else by using their public key, and
they decrypt it by using their private key. You can then send the message safely
over an unsecured connection.

This kind of encryption has characteristics that make it very suitable for general
use:

* Public key encryption requires only two keys per participant.

¢ The need for secrecy is more easily met: only the private key needs to be kept
secret, and because it does not need to be shared, it is less vulnerable to theft in
transmission than the shared key in a symmetric key system.

* Public keys can be published, which eliminates the need for prior sharing of a
secret key before communication. Anyone who knows your public key can use it
to send you a message that only you can read.

Public key encryption is also called asymmetric encryption, because the same key
cannot be used to encrypt and decrypt the message. Instead, one key of a pair is
used to undo the work of the other.

With symmetric key encryption, beware of stolen or intercepted keys. In public key
encryption, where anyone can create a key pair and publish the public key, the
challenge is in verifying the identity of the owner of the public key. Nothing
prevents a user from creating a key pair and publishing the public key under a
false name. The listed owner of the public key cannot read messages that are
encrypted with that key because the owner does not have the corresponding
private key. If the creator of the false public key can intercept these messages, that
person can decrypt and read messages that are intended for someone else. To
counteract the potential for forged keys, public key systems provide mechanisms
for validating public keys and other information with digital certificates and digital
signatures.

Public Key Infrastructure (PKI)

PKI is an infrastructure that uses public key technology to allow applications to
interact securely. PKI uses public key encryption to provide privacy. In practice,

Security 21

only a small amount of data is encrypted in this way. Typically, a session key is
used with a symmetric algorithm to transmit the bulk of the data efficiently.

In business transactions, trust is even more important than privacy. PKI uses the
private key to allow an application to sign a document. For the recipient to
authenticate the sender, it needs a reliable way to obtain the public key for the
sender. This public key is provided in the form of a digital certificate, which is
mediated by a trusted third party certificate authority (CA).

Digital signatures

A digital signature is a number that is attached to a document. For example, in an
authentication system that uses public-key encryption, digital signatures are used
to sign certificates.

This signature establishes the following information:

* The integrity of the message: Is the message intact? That is, has the message
been modified between the time it was digitally signed and now?

* The identity of the signer of the message: Is the message authentic? That is, was
the message signed by the user who claims to have signed it?

A digital signature is created in two steps. The first step distills the document into
a large number. This number is the digest code or fingerprint. The digest code is
then encrypted, which results in the digital signature. The digital signature is
appended to the document from which the digest code is generated.

Several options are available for generating the digest code. This process is not
encryption, but a sophisticated checksum. The message cannot regenerate from the
resulting digest code. The crucial aspect of distilling the document to a number is
that if the message changes, even in a trivial way, a different digest code results.
When the recipient gets a message and verifies the digest code by recomputing it,
any changes in the document result in a mismatch between the stated and the
computed digest codes.

To stop someone from intercepting a message, changing it, recomputing the digest
code, and retransmitting the modified message and code, you need a way to verify
the digest code as well. To verify the digest code, reverse the use of the public and
private keys. For private communication, it makes no sense to encrypt messages
with your private key; these keys can be decrypted by anyone with your public
key. However, this technique can be useful for proving that a message came from
you. No one can create it because no-one else has your private key. If some
meaningful message results from decrypting a document by using someone's
public key, the decryption process verifies that the holder of the corresponding
private key did encrypt the message.

The second step in creating a digital signature takes advantage of this reverse
application of public and private keys. After a digest code is computed for a
document, the digest code is encrypted with the sender's private key. The result is
the digital signature, which is attached to the end of the message.

When the message is received, the recipient follows these steps to verify the
signature:

1. Recomputes the digest code for the message.

2. Decrypts the signature by using the sender's public key. This decryption yields
the original digest code for the message.

22 Configuration, Administration, and Security

3. Compares the original and recomputed digest codes. If these codes match, the
message is both intact and authentic. If not, something has changed and the
message is not to be trusted.

Digital certificates

Certificates provide a way of authenticating users. Instead of requiring each
participant in an application to authenticate every user, third-party authentication
relies on the use of digital certificates.

A digital certificate is equivalent to an electronic ID card. The certificate serves two
purposes:

* Establishes the identity of the owner of the certificate

* Distributes the owner's public key

Certificates are issued by trusted third parties, called certificate authorities (CAs).
These authorities can be commercial ventures or local entities, depending on the
requirements of your application. The CA is trusted to adequately authenticate
users before issuing certificates. A CA issues certificates with digital signatures.
When a user presents a certificate, the recipient of the certificate validates it by
using the digital signature. If the digital signature validates the certificate, the
certificate is recognized as intact and authentic. Participants in an application need
to validate certificates only; they do not need to authenticate users. The fact that a
user can present a valid certificate proves that the CA has authenticated the user.
The designation, "trusted third parties", indicates that the system relies on the
trustworthiness of the CAs.

The certificates and private keys are stored in files called keystores and truststores.
* A keystore holds the private keys and public key certificates for an application.

* A truststore contains the CA certificates required to authenticate certificates that
are presented by another application.

Contents of a digital certificate

A certificate contains several pieces of information, including information about the
owner of the certificate and the issuing CA. Specifically, a certificate includes:

* The distinguished name (DN) of the owner. A DN is a unique identifier, a fully
qualified name including not only the common name (CN) of the owner but also
the owner's organization and other distinguishing information.

* The public key of the owner.

¢ The date on which the certificate is issued.

* The date on which the certificate expires.

* The distinguished name of the issuing CA.

* The digital signature of the issuing CA. The message-digest function creates a
signature based upon all the previously listed fields.

The idea of a certificate is that a CA takes the public key of the owner, signs the
public key with its own private key, and returns the information to the owner as a
certificate. When the owner distributes the certificate to another party, it signs the
certificate with its private key. The receiver can extract the certificate that contains
the CA signature with the public key of the owner. By using the CA public key
and the CA signature on the extracted certificate, the receiver can validate the CA
signature. If valid, the public key that is used to extract the certificate is considered

Security 23

good. The owner signature is validated, and if the validation succeeds, the owner
is successfully authenticated to the receiver.

The additional information in a certificate helps an application to determine
whether to honor the certificate. With the expiration date, the application can
determine if the certificate is still valid. With the name of the issuing CA, the
application can check that the CA is considered trustworthy by the site.

An application that needs to authenticate itself must provide its personal
certificate, the one containing its public key, and the certificate of the CA that
signed its certificate, called a signer certificate. In cases where chains of trust are
established, several signer certificates can be involved.

Requesting certificates

To get a certificate, send a certificate request to the CA. The certificate request

includes:

* The distinguished name of the owner or the user for whom the certificate is
requested

e The public key of the owner

* The digital signature of the owner

The message digest function creates a signature based on all the previously listed
fields.

The CA verifies the signature with the public key in the request to ensure that the
request is intact and authentic. The CA then authenticates the owner. Exactly what
the authentication consists of depends on a prior agreement between the CA and
the requesting organization. If the owner in the request is authenticated
successfully, the CA issues a certificate for that owner.

Using certificates: Chain of trust and self-signed certificate

To verity the digital signature on a certificate, you must have the public key of the
issuing CA. Public keys are distributed in certificates, therefore you must have a
certificate for the issuing CA that is signed by the issuer. One CA can certify other
CAs, so a chain of CAs can issue certificates for other CAs, all of whose public
keys you need. Eventually, you reach a root CA that issues itself a self-signed
certificate. To validate a user certificate, you need certificates for all of the
intervening participants back to the root CA. You then have the public keys that
you need to validate each certificate, including the user certificate.

A self-signed certificate contains the public key of the issuer and is signed with the
private key. The digital signature is validated like any other, and if the certificate is
valid, the public key it contains is used to check the validity of other certificates
issued by the CA. However, anyone can generate a self-signed certificate. In fact,
you can probably generate self-signed certificates for testing purposes before
installing production certificates. The fact that a self-signed certificate contains a
valid public key does not mean that the issuer is a trusted certificate authority. To
ensure that self-signed certificates are generated by trusted CAs, such certificates
must be distributed by secure means; for example, hand-delivered on floppy disks,
downloaded from secure sites, and so on.

Applications that use certificates store these certificates in a keystore file. This file
typically contains the necessary personal certificates, its signing certificates, and its

private key. The private key is used by the application to create digital signatures.

24 Configuration, Administration, and Security

Servers always have personal certificates in their keystore files. A client requires a
personal certificate only if the client must authenticate to the server when mutual
authentication is enabled.

To allow a client to authenticate a server, a server keystore file contains the private
key and the certificate of the server and the certificates of its CA. A client truststore
file must contain the signer certificates of the CAs of each server, which the client
must authenticate. The following diagram illustrates how a client authenticates a

server.

Client

(

truststore

\

CA certificate
C1

J

Server

(

keystore

~N

Server certificate

CA certificate

_

J

If mutual authentication is needed, the client keystore file must contain the client
private key and certificate. The server truststore file requires a copy of the
certificate of the client CA. The following diagram illustrates mutual

authentication.

Client

(

keystore

\

Client certificate

CA certificate

Server

(

keystore

~N

Server certificate

CA certificate

(o] c1
= . >
truststore : Client certificate |
_______ I CA certificate ,
| (o7 !
CA certificate -
c1

CA certificate
Cc2

J

Security 25

SSL authentication

SSL authentication is available for the Real-time nodes, the HTTP listener, and the
WebSphere MQ Java Client.

SSL authentication for the Real-time nodes

SSL authentication in WebSphere Message Broker supports an authentication
protocol known as mutual challenge-response password authentication. This support is
a non-standard variant of the industry standard SSL protocol in which the public
key cryptography called for by SSL is replaced by symmetric secret key
cryptography. Although this protocol is both secure and convenient to administer,
you might prefer to use the industry standard SSL protocol exactly as defined,
especially if a public key cryptography infrastructure is already deployed for other
purposes. Two standardized versions of SSL are provided:

Asymmetric SSL
This version is used by most Web browsers. In this protocol, the brokers
have public/private key pairs, and clients know the brokers' public keys.
The SSL protocol establishes a secure connection in which the broker is
authenticated to the client by using public key cryptography, after which
the client can send its password, encrypted by a secure session key, to
authenticate itself to the broker.

Symmetric SSL
This version uses a shared symmetric key for both participants, which is
used to encrypt and decrypt messages. The SSL protocol uses public key
cryptography to accomplish mutual authentication.

In both instances, SSL authentication does not keep the SSL protocol up for the
entire lifetime of a connection, because that incurs protection overheads on all
messages. The SSL protocol remains in force long enough to accomplish mutual
authentication and to establish a shared secret session key that can be used by
message protection (see [“Message protection” on page 95). Messages are then
individually protected in accordance with the protection level specified for the
given topic.

The SSL protocol implementation requires a Public-Key Cryptography Standards
(PKCS) file, containing X.509 V3 certificates for the broker's private key, and
possibly the public keys of clients and other brokers. This file, called the keyring
file, must contain at least one certificate for the broker and for the trusted
certification authority (CA) that issued and signed the broker's certificate. For the R
form of SSL, the keyring file can also have the public keys of clients and other
brokers that need to be authenticated, and the certificates supporting those public
keys. However, the SSL protocol calls for the exchange of public keys and
certificates, therefore keyring files do not need to be fully primed in this fashion, as
long as there are enough commonly-trusted authorities to ensure that
authentication completes.

By convention, keyring files are encrypted and protected by a passphrase, which is
stored in a second file. The passphrase file requires careful protection using
operating system mechanisms to ensure that it is not exposed to unauthorized
observers. An observer who learns the passphrase can learn the private keys in the
keyring file. However, only the passphrase file must be secure in this way, and the
keyring file is protected by the passphrase. Only private keys are sensitive. Other
information in the keyring file, such as the broker's certificates, can be revealed
without compromising security.

26 Configuration, Administration, and Security

For more information on SSL authentication for the Real-time nodes, see
[SSL for the Real-time nodes” on page 71

SSL authentication for the HTTP listener

For information on SSL authentication for the HTTP listener, see |”Conﬁgurin§|
HTTPInput and HTTPReply nodes to use SSL (HTTPS)” on page 75) and
“Configuring an HTTPRequest node to use SSL (HTTPS)” on page 76/

SSL authentication for the JMS nodes

For information on SSL authentication for the JMS nodes, see [“Configuring the
[proker to use SSL with JMS nodes” on page 68

SSL authentication for the WebSphere MQ Java Client

For information on SSL authentication for the WebSphere MQ Java Client, see
[“Enabling SSL on the WebSphere MQ Java Client” on page 77

Tunneling

When implementing WebSphere Message Broker, both the clients and their brokers
can reside on different intranets, that is, separate organizational entities. This
causes problems when a client attempts to connect to a broker. Tunneling
addresses this problem where a broker's firewall has been configured to allow
incoming connections from clients. Two options are provided for a client to connect
through its own firewall to a broker with both methods achieving the same result,
these are:

HTTP tunneling

This is suitable for applets where, due to sandbox security, an attempt to connect
explicitly to an HTTP proxy server would be rejected. HTTP tunneling uses the
Web support in Web browsers and connects through the proxy as if it were
connecting to a Web site.

Activating HTTP tunneling support is configured on each node. Once a node has
been configured to use HTTP tunneling, all client connections to that node must
use this method of connection. Clients that don't will be rejected when an attempt
to connect is made.

HTTP tunneling is not supported in conjunction with SSL authentication.
Connect via proxy

This is not suitable for applets. It is suitable for use where there are no sandbox
security restrictions. It connects directly to the proxy and uses Internet protocols to
request that the proxy forwards the connection to the broker. This option does not
work in applets where the security manager rejects an explicit connection to the

proxy.

Quality of protection

In Internet deployments, cryptographically-based protection of messages enhances
security by preventing tampering and eavesdropping by hackers. The
authentication services provided by WebSphere Message Broker ensure that only
legitimate event broker servers and clients can connect to each other. However, a

Security 27

hacker might still be able to observe messages in transit or tamper with messages
on established connections. Message protection provides security against these
kinds of attacks.

Message protection consumes processor time and can slow system throughput.
However, not all messages are equally sensitive, so message protection is
configurable on a per-topic basis, so that you get only the protection you really
need. Some topics might get no message protection at all, others might get channel
integrity (making it impossible for hackers to insert or delete messages
undetected), or message integrity (making it impossible for hackers to alter
messages undetected), or message privacy (making it impossible for hackers to
observe message contents). The protection levels are cumulative. For example, if
you request message privacy you get message integrity and channel integrity as
well. If you request message integrity you also get channel integrity. The higher
levels of protection consume more resources than the lower levels.

You can also set message protection on internal system topics. Unlike user topics
this must be either enabled on all topics, or on none.

Domain awareness for Message Broker Toolkit users on
Windows

If you enable domain awareness, access to the Message Broker Toolkit is not
restricted to users from one Windows® domain.

The Configuration Manager is always domain aware; when a Configuration
Manager on Windows receives user information, it verifies the user's domain
membership.

You can configure the Message Broker Toolkit to send domain aware information
about the user to the Configuration Manager, if required. If the user is logged on
to a Windows domain and the Message Broker Toolkit sends domain aware
information, the Message Broker Toolkit sends the user's domain membership
information and the user's ID. If the user is not logged on to a Windows domain,
the Message Broker Toolkit sends only the user's ID and the computer name.

If you enable domain awareness, users from different Windows domains, who are
either trusted by the primary domain, or in a Windows transitive trust
relationship, can perform Message Broker Toolkit tasks, provided that they are in
the correct user role definition groups or object level security groups.

When using domain awareness:

* Domain information is retrieved by the Configuration Manager.

* Membership of user role definition or object level security groups is not
restricted to users from one domain.

* Nesting in user role definition or object level security groups is supported.

Planning for security when you install WebSphere Message Broker

The Installation Guide describes the security tasks that you must complete before,
during, and after installation.

On Linux® and UNIX® systems, you must complete security tasks before you
install WebSphere Message Broker; these tasks are described in the Installation
Guide. On Windows systems, security tasks are completed during and after
installation.

28 Configuration, Administration, and Security

Always refer to the Installation Guide for the latest information about installation
tasks.

After installation, refer to [“Creating user IDs” on page 47| for further security
considerations.

For an introduction to various aspects of security, see [“Security overview” on page]

Setting up message flow security

Set up security on a message flow to control access based on the identity of a
message passing through the message flow.

You can configure the broker to perform end-to-end processing of an identity
carried in a message through a message flow. Administrators can configure
security at message flow level, controlling access based on the identity flowed in a
message. This security mechanism is independent of both the transport and the
message format.

To set up security for a message flow, perform the tasks described in the following
topics:

. |“Creating a security profile”]

. “Configuring identity extraction in a message flow” on page 35|

. [“Configuring identity authentication” on page 36|

. [“Configuring identity mapping” on page 39|

. [“Configuring authorization” on page 40|

(o2) B O B S

. [“Configuring for identity propagation” on page 44|

If the message flow is a Web service implemented by using the |[SOAP nodes} and

the identity is to be taken from the |WS-Security| header tokens, you must also

create appropriate [Policy sets| and bindings, then configure them on the relevant
SOAP nodes (in addition to the security profile). See [Associating policy sets and|
[pindings with message flows and nodes|

To work with a Username and Password identity, you must configure the policy
sets and bindings for [Username token capabilities] To work with an X.509
Certificate identity, you must configure them for [X.509 certificate token capabilities}
In the policy set binding, the Certificates mode of the X.509 certificate
authentication token must be set as Trust Any (rather than Trust Store), so that the
certificate is passed to the security provider defined by the security profile. Setting
Trust Store causes the certificate to be validated in the local broker trust store. For
more information, see [Policy Sets and Policy Set Bindings editor: Authentication|
[and Protection Tokens panell

Creating a security profile

You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or Tivoli Federated Identity Manager (TFIM) V6.1 by using either
the mgsicreateconfigurableservice command or an editor in the Broker
Administration perspective of the Message Broker Toolkit.

Before you can enable security on a node or a message flow, you need to create a
security profile that defines the operations you want to perform.

Security 29

You can create a security profile for use with an external security provider to
provide the required security enforcement and mapping. If you want to extract and
propagate an identity without security enforcement or mapping, you can use the
supplied security profile called Default Propagation. The Default Propagation
profile is a predefined profile that requests only identity propagation. To create a
security profile, see:

* |“Creating a security profile for LDAP”|

* |“Creating a security profile for TFIM V6.1” on page 33|

Creating a security profile for LDAP

Create a security profile for use with Lightweight Directory Access Protocol
(LDAP) or Secure LDAP (LDAPS), by using either the
mgsicreateconfigurableservice command or an editor in the Broker Administration
perspective of the Message Broker Toolkit.

Before you start:

Ensure that you have an LDAP server that is LDAP Version 3 compliant, for
example:

* IBM Tivoli Directory Server
* Microsoft® Active Directory
* OpenLDAP.

If your LDAP directory does not permit login by unrecognized user IDs, and does
not grant search access rights on the subtree, you must also set up a separate
authorized login ID that the broker can use for the search. For information on how
to do this, see [Configuring authorization with LDAP” on page 40| or [“Configuring]
[authentication with LDAP” on page 37|

Creating a security profile using mgqsicreateconfigurableservice:

You can use the mgsicreateconfigurableservice command to create a security profile
that uses LDAP for authentication, authorization, or both. The security profile
ensures that each message has an authenticated ID and is authorized for the
message flow.

1. Open a command window that is configured for your environment.

2. Enter the mgsicreateconfigurableservice command on the command line. For
example:
mgsicreateconfigurableservice WBRK_BROKER -c SecurityProfiles -o LDAP
-n authentication,authenticationConfig,authorization,authorizationConfig
-v "LDAP,\"1dap://1dap.acme.com:389/ou=sales,o=acme.com\",LDAP,
\"1dap://1dap.acme.com:389/cn=A11 Sales,ou=acmegroups,o=acme.com\""
You must enclose the LDAP URL (which contains commas) with escaped
double quotation marks (\" and \") so that the URL commas are not confused
with the comma separator of the value parameter of
mgsicreateconfigurableservice.

If the LDAP URL includes an element name with a space, in this case cn=A11
Sales, the set of values after the -v flag must be enclosed by double quotes, (")

For more information about the structure of the command, refer to the
[‘mgsicreateconfigurableservice command” on page 560

You can define the security-specific parts of the command in the following way:

a. Set the authentication to LDAP. This ensures that the incoming identity is
validated.

30 Configuration, Administration, and Security

b. Set the authenticationConfig using the following syntax:
1dap[s]://server[:port]/baseDN[? [uid_attr][?[base|sub]]]
For example:

1dap://1dap.acme.com:389/ou=sales,o=acme.com
1daps://localhost:636/ou=sales,o=acme?cn?base

Idap: (Required) Fixed protocol string.

s (Optional) Specifies whether SSL should be used. Default is not to
use SSL.

server: (Required) The name or IP address of the LDAP server to contact.

port: (Optional) The port to connect to. Default is 389 (non-SSL). For
LDAP servers with SSL enabled, the port is typically 636.

baseDN
(Required) String defining the base distinguished name (DN) of all
users in the directory. If users exist in different subtrees, specify a
common subtree under which a search on the username uniquely
resolves to the required user entry, and set the sub attribute.

uid_attr:
(Optional) String defining the attribute to which the incoming
username maps, typically uid, CN, or e-mail address. Default is uid.

base | sub:
(Optional) Defines whether to perform a base or subtree search. If
base is defined, the authentication is faster because the DN of the
user can be constructed from the uid_att, username, and baseDN
values. If sub is selected, a search must be performed before the DN
can be resolved. Default is sub.

C. Set the authorization to LDAP. This ensures that the incoming identity is
checked for group membership in LDAP.

d. Set the authorizationConfig using the following syntax:

1dap[s]://server[:port]/groupDN[? [member_attr]
[?[base|sub] [?[x-userBaseDN=baseDN,
x-uid_attr=uid_attr]]]]

For example:

1dap://1dap.acme.com:389/cn=A11 Sales,ou=acmegroups,
o=acme.com?uniquemember?sub?x-userBaseDN=ou=sales%2co=ibm.com,
x-uid_attr=emailaddress

Idap: (Required) Fixed protocol string
s (Optional) Specifies whether SSL is used. Default is not to use SSL.
server: (Required) The name or IP address of the LDAP server to contact.

port: (Optional) The port to connect to. Default is 389 (non-SSL). For
LDAP servers with SSL enabled, the port is typically 636.

groupDN

(Required) Fully defined distinguished name of the group in which
users must be members to be granted access.

member_attr:
(Optional) The attribute of the group used to filter the search.
Default is to look for both member and uniquemember attributes.

The following options are required only if authentication has not preceded
the authorization, and if the authentication configuration string has not

Security 31

been specified. If the authentication configuration string has been specified,
the following parameters are ignored and those provided by the baseDN,
uid_attr, and [base | sub] for authentication are used instead:

base | sub:
(Optional) Defines whether to perform a base or subtree search. If
base is defined, the authentication is faster because the DN of the
user can be constructed from uid_att + username + baseDN. If sub
is selected, a search must be performed before the DN can be
resolved. Default is sub.

baseDN
(Optional) String defining the base distinguished name of all users
in the directory. Must be preceded by the string x-userBaseDN. Any
commas in the BaseDN must be rendered as %2c.

x-uid_attr:
(Optional) String defining the attribute to which the incoming
username should map, typically uid, CN, or e-mail address. Default
is uid. Must be preceded by the string x-uid_attr.

When you submit the command from a batch (.bat) file or command (.cmd) file,
if the LDAP URL includes an extension with LDAP URL “percent hex hex”
escaped characters (for example, a comma replaced by %2c, or a space replaced
by %20), the percent signs must be escaped from the batch interpreter with an
extra percent sign (%%). For example:

mgsicreateconfigurableservice WBRK_BROKER -c SecurityProfiles -o LDAP_URI_FUN

-n authentication,authenticationConfig,authorization,authorizationConfig -v
"LDAP,\"1dap://1dap.acme.com:389/ou=sales,o=acme.com?emailaddress?sub\",TRUE,
LDAP,\"1dap://1dap.acme.com:389/cn=A11 Sales,ou=acmegroups,
o=acme.com?report?base?x-BaseDN=ou=sales%%2co=acme.com,
x-uid_attr=emailaddress\""

The selected group must be defined on the LDAP server, and all of the required
users must be members of the group.

3. If you need to reconfigure the security profile after it has been created, use the
mgsichangeproperties command.

Creating a security profile using the Message Broker Toolkit:

You can use the Broker Administration perspective in the Message Broker Toolkit
to create a security profile for LDAP.

1. In the workbench, switch to the Broker Administration perspective.

2. Right-click the broker in the Domains view of the Broker Administration
perspective. A menu is displayed.

3. Click Open Security Profiles in the menu. The Security Profiles window is
displayed, containing a list of existing security profiles for the broker on the
left, and a pane in which you can configure the profile on the right.

4. Click Add to create a new profile and add it to the list. You can edit the name
of the security profile by highlighting it in the list and pressing F2.

5. Configure the security profile using the entry fields on the right side of the

pane:
a. Select the type of Authentication required. This can be LDAP, TFIM, or
NONE.

b. If you have selected LDAP for authentication, edit the following fields in
the LDAP Parameters section:

 LDAP Host

32 Configuration, Administration, and Security

f.

g.

h.

¢ LDAP baseDN
* LDAP uid attr
¢ LDAP search Scope

The values that you enter in the LDAP Parameters fields create a
configuration string, which is displayed in the Authentication Config field.
For information about the valid values for the parameters, see |”Creating a|
lsecurity profile using mqsicreateconfigurableservice” on page 30

Select the type of Mapping required. This can be either TFIM or NONE.

If you have selected TFIM for mapping, type the URL of the TFIM server in
the TFIM Configuration field of the TFIM Parameters section.

The value that you specify in the TFIM Configuration field creates a
configuration string, which is displayed in the Mapping Config field.

Select the type of Authorization required. This can be LDAP, TFIM, or
NONE.

If you have selected LDAP for authorization, edit the following fields in the
LDAP Parameters section:

* LDAP Host

* LDAP baseDN

* LDAP uid attr

* LDAP search Scope

* LDAP group baseDN
* LDAP group member.

The values that you enter in the LDAP Parameters fields create a
configuration string, which is displayed in the Authorization Config field.
For information about the valid values for the parameters, see |”Creating 5'
[security profile using mgsicreateconfigurableservice” on page 30.|

In the Propagation field, specify whether or not you require the identity to
be propagated. The default is False.

In the Password Value field, select the way in which the password is
displayed in the properties folder. The options are:

PLAIN
The password appears in the Properties folder as plain text.

OBFUSCATE
The password appears in the Properties folder as base64 encoding.

MASK
The password appears in the Properties folder as four asterisks

(****)'

. Click Finish to deploy the security profile to the broker.

To delete an existing security profile, select the profile in the list and then click
Delete.

Creating a security profile for TFIM V6.1

You can create a security profile for Tivoli Federated Identity Manager (TFIM) V6.1
for any combination of the following functions: authentication, authorization, and
mapping. You can use either the mgsicreateconfigurableservice command or an
editor in the Broker Administration perspective of the Message Broker Toolkit to
create the security profile.

Creating a profile using mqsicreateconfigurableservice:

Security 33

To create a security profile that uses TFIM V6.1, you can use the
mgsicreateconfigurableservice command by setting the configuration parameter to
the URL of the TFIM server. For example: http://tfimserver.mycompany.com:9080

To create a security profile that uses TFIM for mapping, enter the following
command:

mgsicreateconfigurableservice brokername -c SecurityProfiles -o profilename
-n mapping,mappingConfig -v TFIM,http://tfimserver.mycompany.com:9080

If the URL specifies an address beginning with https://, an SSL secured
connection is used for requests to the TFIM server. For example, to create a
security profile that uses an HTTPS connection to TFIM for mapping, enter the
following command:

mgsicreateconfigurableservice brokername -c SecurityProfiles -o profilename
-n mapping,mappingConfig -v TFIM,https://tfimserver.mycompany.com:9443

where https://tfimserver.mycompany.com:9443 is the address of the TFIM server.
If TFIM is selected for more than one operation (for example, for authentication
and mapping), the TFIM server URL must be identical for all the operations, and is
therefore specified only once.

The following example creates a security profile that uses TFIM for authentication,
mapping, and authorization:

mgsicreateconfigurableservice WBRK6 DEFAULT BROKER -c SecurityProfiles -o TFIM

-n authentication,mapping,authorization,propagation,mappingConfig
-v TFIM,TFIM,TFIM,TRUE,http://tfimhostl.ibm.com:9080

Creating a profile for TFIM V6.1 using the Message Broker Toolkit:

You can use the Broker Administration perspective of the Message Broker Toolkit
to create a security profile for using TFIM.

1. Right-click the broker in the Domains view of the Broker Administration
perspective. A menu is displayed.

2. Click Open Security Profiles in the menu. The Security Profiles window is
displayed, containing a list of existing security profiles for the broker on the left
and, on the right, a pane in which you can configure the profile.

3. Click Add to create a new profile and add it to the list. You can edit the name
of the security profile by highlighting it in the list and pressing F2.

4. Configure the security profile using the entry fields on the right side of the
pane:

a. Select the type of Authentication, Mapping, and Authorization required. If
you select TFIM for any of these options, the TFIM Configuration field at
the bottom of the pane is enabled.

b. If you have selected TFIM for authentication, mapping or authorization,
type the URL of the TFIM server into the TFIM Configuration field. The
URL that you enter forms a configuration string, which is displayed in one
or more of the configuration fields (Authentication Config, Mapping
Config, and Authorization Config) depending on the entry fields that have
TFIM selected.

For more information about the valid values for the configuration
parameter, see [“Creating a profile using mgsicreateconfigurableservice” on|

|Eage 33.|

c. In the Propagation field, specify whether you require the identity to be
propagated. The default is False.

34 Configuration, Administration, and Security

d. In the Password Value field, select the way in which the password is
displayed in the properties folder. The options are:

PLAIN
The password is shown in the Properties folder as plain text.

OBFUSCATE
The password is shown in the Properties folder as base64 encoding.

MASK
The password is shown in the Properties folder as four asterisks

(****)'

5. Click Finish to deploy the security profile to the broker.

Configuring identity extraction in a message flow

Configure the broker to extract the identity from a message and pass it through the
message flow.

Before you start:

Check that an appropriate security profile exists or create a new security profile.
See [“Creating a security profile” on page 29|

Input nodes can retrieve identity from the bitstream.

* An MQInput node retrieves the Userldentifier element from the message
descriptor (MQMD) and puts it into the Identity Source Token element of the
Properties folder. At the same time, it sets the Identity Source Type element to
username and the Identity Source Issued By element to MQMD.PutApplName
(the put application name).

* An HTTPInput node retrieves the BasicAuth header from the HTTP request,
decodes it, and puts it into the Identity Source Token and Password elements in
the Properties folder. At the same time, it sets the Identity Source Type element
to username + Password and the Identity Source Issued By element to the HTTP
header UserAgent property.

* A SOAPInput node retrieves either the appropriate tokens as defined by the
configured WS-Security policy sets and bindings, or (if they are not set) the
underlying transport headers definition, then populates the Identity Source
fields in the Properties folder.

In some cases, the information extracted from the transport headers is not set or is
insufficient to perform authentication or authorization. For example, for
authentication to occur, a Username + Password type token is required; however,
with WebSphere MQ, only a username is available, which means that the incoming
identity has to be trusted. However, you can increase security by applying
transport-level security using WebSphere MQ Extended Security Edition.

If the transport header cannot provide the required identity credentials, the

information must be provided as part of the body of the incoming message. To

enable the identity information to be taken from the body of the message, you

must specify the location of the information by using the Security tab on the HTTP

or MQ input nodes.

1. In Identity Token Type, specify the type of identity token that is in the
message. The type can have one of the following values:

* Transport Default
¢ Username

Security 35

e Username + Password
* X.509 Certificate

The default is Transport Default.

In Identity Token Location, specify the location in the message where the
identity is specified. This string is in the form of an ESQL path or XPath
expression, and must resolve to a token with the type Username, Username +
Password, or X.509 Certificate.

If you leave this option blank, the identity is retrieved from the transport
header location. For example, for MQ the identity is retrieved from the
MQMD.Userldentifier transport header.

In Identity Password Location, enter the location in the message where the
password is specified. This string is in the form of an ESQL path or XPath
expression, and must resolve to a string containing a password. This option can
be set only if the Identity Token Type is set to Username + Password.

If you leave this option blank, the password is taken from the transport header
if it is provided. For example, with Websphere MQ it is not set.

In Identity IssuedBy Location, specify a string or path expression to show
where (in the message) information about the issuer of the identity is held. This
string is in the form of an ESQL Path, XPath expression, or literal string
defining where the identity was defined.

If you leave this blank, the transport header value is used, if there is one. For
example, for MQ the MQMD.PutAppIName value is used.

(Optional) Ensure that all input nodes share the same information by
promoting the properties to the message flow.

To enable the extraction of an identity in the message flow, select a security profile:

1.

4.
5.

In the Message Broker Toolkit, right-click the BAR file, then click Open with -
Broker Archive Editor.

Click the Manage and Configure tab.

Click the flow or node on which you want to set the security profile. The
properties that you can configure for the message flow or for the node are
displayed in the Properties view.

In the Security Profile Name field, select a security profile.

Save the BAR file.

Configuring identity authentication

You can configure a message flow to use either Lightweight Directory Access
Protocol (LDAP) or Tivoli Federated Identity Manager (TFIM) V6.1 for identity
authentication.

Before you start:

Check that an appropriate security profile exists, or create a new security profile.
See [“Creating a security profile” on page 29|

For information about configuring authentication with LDAP or TFIM V6.1, see:

+ |“Configuring authentication with LDAP” on page 37|

+ [“Configuring authentication with TFIM V6.1” on page 38|

36 Configuration, Administration, and Security

Configuring authentication with LDAP
This topic describes how to configure a message flow to perform identity
authentication using Lightweight Directory Access Protocol (LDAP).

Before you start:
Before you can configure a message flow to perform identity authentication using

LDAP, you need to check that an appropriate security profile exists, or create a
new security profile. See [‘Creating a security profile for LDAP” on page 30,

To authenticate the identity of a user or system, the broker attempts to connect to
the LDAP server using the username and password associated with the identity. To
do this, the broker needs the following information:

* To resolve the username to an LDAP entry, the broker needs to know the base
distinguished name (base DN) of the accepted login IDs. This is required to
enable the broker to differentiate between different entries with the same name.

* If the identities do not all have a common base DN, but can be uniquely
resolved from a subtree, the DN can be specified in the broker configuration.
When a subtree search has been specified, the broker must first connect to the
LDAP server and search for the given username in order to obtain the full
username distinguished name (DN) to be used for authentication. If your LDAP
directory does not permit login of unrecognized IDs, and does not grant search
access rights on the subtree, you must set up a separate authorized login ID that
the broker can use for the search. Use the mgsisetdbparms command to specify
a username and password. For example:

mgsisetdbparms -n ldap::LDAP -u username -p password

or
mgsisetdbparms -n ldap::<servername> -u username -p password

where <servername> is your base LDAP server name, for example,
1dap.mydomain.com.

If you specify Tdap::LDAP, it creates a default setting for the broker, which the
broker attempts to use if you have not explicitly used the mqsisetdbparms
command to create a login ID for a specific <servername>. All servers that do not
have an explicit 1dap: :servername entry then start using the credentials in the
Tdap::LDAP entry. This means that any servers that were previously using
anonymous bind by default will start using the details in 1dap: : LDAP.

The username that you specify in the -u parameter must be recognized by the
LDAP server as a complete user name. In most cases this means that you need
to specify the full DN of the user. Alternatively, by specifying a username to be
anonymous, you can force the broker to bind anonymously to this LDAP server.
This might be useful if you have specified a non-anonymous bind as your
default (Idap::LDAP). For example:

mgsisetdbparms -n ldap::<servername> -u anonymous -p password

In this case, the value specified for password is ignored.
Steps for enabling LDAP authentication:
To enable an existing message flow to perform identity authentication, use the
Broker Archive editor to select a security profile that uses LDAP for authentication.
You can set a security profile on a message flow or on individual input nodes. If

no security profile is set for the input nodes, the setting is inherited from the
setting on the message flow.

Security 37

1. Switch to the Broker Application Development perspective.

2. In the Broker Development view, right-click the BAR file and then click Open
with > Broker Archive Editor.

3. Click the Manage and Configure tab.

4. Click the flow or node on which you want to set the security profile. The
properties that you can configure for the message flow or for the node are
displayed in the Properties view.

5. In the Security Profile Name field, select a security profile that uses LDAP for
authentication.

6. Save the BAR file.

For a SOAPInput node to use the identity in the WS-Security header (rather than
an underlying transport identity) an appropriate policy set and bindings must also

be defined and specified. For more information, see

If the message identity does not contain enough information for authentication, the
information must be taken from the message body. For example, if a password is
required for authentication but the message came from WebSphere MQ with only a
username, the password information must be taken from the message body. For
more information, see [“Configuring identity extraction in a message flow” on page]

Configuring authentication with TFIM V6.1

You can configure a message flow to perform identity authentication by using
Tivoli Federated Identity Manager (TFIM) Vé.1.

Before you start:

Before you can configure a message flow to perform identity authentication, you
need to check that an appropriate security profile exists, or create a new security
profile. See [“Creating a security profile for TFIM V6.1” on page 33|

When you use TFIM V6.1 for authentication, a request is made to the TFIM trust
service with the following three parameters, which select the module chain:

* Issuer = Properties.IdentitySourcelssuedBy

* Applies To = The Fully Qualified Name of the Flow: <Brokername>.<Execution
Group Name>.<Message Flow Name>

* Token = Properties.IdentitySourceToken

For more information about these parameters, see [Authentication, Mapping, and|
[Authorization with TFIM and TAM” on page 14|

For further information about how to configure TFIM, see the [[BM Tivoli Federated]
[[dentity Manager Information Center|

Steps for enabling TFIM authentication:

To enable an existing message flow to perform identity authentication, use the
Broker Archive editor to select a security profile that uses TFIM for authentication.
You can set a security profile on a message flow or on individual input nodes. If
no security profile is set for the input nodes, the setting is inherited from the
setting on the message flow.

1. Switch to the Broker Application Development perspective.

38 Configuration, Administration, and Security

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?toc=/com.ibm.tivoli.fim.doc/toc.xml
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?toc=/com.ibm.tivoli.fim.doc/toc.xml

2. In the Broker Development view, right-click the BAR file, then click Open with
> Broker Archive Editor.

3. Click the Manage and Configure tab.

4. Click the flow or node on which you want to set the security profile. The
properties that you can configure for the message flow or for the node are
displayed in the Properties view.

5. In the Security Profile Name field, select a security profile that uses TFIM for
authentication.

6. Save the BAR file.

For a SOAPInput node to use the identity in the WS-Security header (rather than
an underlying transport identity) an appropriate policy set and bindings must also

be defined and specified. For more information, see

If the message identity does not contain enough information for authentication, the
information must be taken from the message body. For example, if a password is
required for authentication but the message came from WebSphere MQ with only a
username, the password information must be taken from the message body. For
more information, see [“Configuring identity extraction in a message flow” on page|

Configuring identity mapping

Configure Tivoli Federated Identity Manager (TFIM) to map the incoming security
token and, if required, to authenticate and authorize it.

Before you start:

Before you can configure a message flow to perform identity mapping, you need to
check that an appropriate security profile exists, or create a new security profile.
For information about security profiles, see [“Creating a security profile” on page

To configure TFIM V6.1 to map the incoming security token, you need to create a
custom module chain in TFIM, which performs the security operations. The TFIM
configuration controls the token type that is returned from the mapping.

When you use TFIM for mapping, a request is made to the TFIM trust service with
the following three parameters, which select the module chain:

* Issuer = Properties.IdentitySourcelssued By

* AppliesTo = The fully qualified name of the flow: Brokername.Execution Group
Name.Message Flow Name

* Token = Properties.IdentitySourceToken

For information on how to configure TFIM, see the [[BM Tivoli Federated Identity]
[Manager Information Center

Follow these steps to enable an existing message flow to perform identity
mapping.

Using the Broker Archive editor, select a security profile that has mapping enabled.
You can set a security profile on a message flow or on individual input nodes. If
no security profile is set for the input nodes, the setting is inherited from the
setting on the message flow.

Security 39

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?toc=/com.ibm.tivoli.fim.doc/toc.xml
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?toc=/com.ibm.tivoli.fim.doc/toc.xml

1. In the Message Broker Toolkit, right-click the BAR file, then click Open with -
Broker Archive Editor.

2. Click the Manage and Configure tab.

3. Click the flow or node on which you want to set the security profile. The
properties that you can configure for the message flow or for the node are
displayed in the Properties view.

4. In the Security Profile Name field, enter the name of a security profile that has
mapping enabled.

5. Save the BAR file.

Configuring authorization

You can configure the broker to use either Lightweight Directory Access Protocol
(LDAP) or Tivoli Federated Identity Manager (TFIM) to authorize an identity in a
message flow.

Before you start:

Check that an appropriate security profile exists, or create a new security profile.
See [“Creating a security profile” on page 29|

For information about configuring authorization for LDAP or TFIM V6.1, see:

+ |“Configuring authorization with LDAP”|

* |“Configuring authorization with TFIM V6.1” on page 41|

Configuring authorization with LDAP
This topic describes how to configure a message flow to perform authorization on
an identity using Lightweight Directory Access Protocol (LDAP).

Before you start:
Before you can configure a message flow to perform authorization, you need to

check that an appropriate security profile exists, or create a new security profile.
See |“Creating a security profile for LDAP” on page 30|

When LDAP is used for authorization, the broker needs to determine whether the
incoming username is a member of the given group. To do this, the broker requires
the following information:

* To resolve the username to an LDAP entry, the broker needs to know the base
distinguished name (Base DN) of the accepted login IDs. This is required to
enable the broker to differentiate between different entries with the same name.

* To get an entry list from a group name, the group name must be the
distinguished name of the group, not just a common name. An LDAP search is
made for the group, and the username is checked by finding an entry matching
the distinguished name of the user.

* If your LDAP directory does not permit login by unrecognized IDs, and does
not grant search access rights on the subtree, you must set up a separate
authorized login ID that the broker can use for the search. Use the
mgsisetdbparms command to specify a username and password:

mgsisetdbparms -n ldap::LDAP -u username -p password

or

mqgsisetdbparms -n ldap::<servername> -u username -p password

40 Configuration, Administration, and Security

where <servername> is your base LDAP server name. For example:
1dap.mydomain.com.

If you specify 1dap::LDAP, it creates a default setting for the broker, which the
broker attempts to use if you have not explicitly used the mgsisetdbparms
command to create a login ID for a specific <servername>. All servers that do not
have an explicit 1dap: :servername entry then start using the credentials in the
Tdap: :LDAP entry. This means that any servers that were previously using
anonymous bind by default will start using the details in 1dap: : LDAP.

The username that you specify in the -u parameter must be recognized by the
LDAP server as a complete user name. In most cases this means that you need
to specify the full DN of the user. Alternatively, by specifying a username to be
anonymous, you can force the broker to bind anonymously to this LDAP server.
This might be useful if you have specified a non-anonymous bind as your
default (Idap::LDAP). For example:

mgsisetdbparms -n ldap::<servername> -u anonymous -p password
In this case, the value specified for password is ignored.
Steps for enabling LDAP authorization:

To enable an existing message flow to perform authorization using LDAP, use the
Broker Archive editor to select a security profile that has authorization enabled.
You can set a security profile on a message flow or on individual input nodes. If
no security profile is set for the input nodes, the setting is inherited from the
setting on the message flow.

1. Switch to the Broker Application Development perspective.

2. In the Broker Development view, right-click the BAR file and then click Open
with > Broker Archive Editor.

3. Click the Manage and Configure tab.

4. Click the flow or node on which you want to set the security profile. The
properties that you can configure for the message flow or for the node are
displayed in the Properties view.

5. In the Security Profile Name field, select a security profile that uses LDAP for
authorization.

6. Save the BAR file.

For a SOAPInput node to use the identity in the WS-Security header (rather than
an underlying transport identity) an appropriate policy set and bindings must also

be defined and specified. For more information, see

Configuring authorization with TFIM V6.1
You can configure a message flow to perform authorization on an identity by using
Tivoli Federated Identity Manager (TFIM) Vé.1.

Before you start:

Before you configure a message flow to perform authorization with TFIM V6.1:

¢ Check that an appropriate security profile exists, or create a new security profile.
See |“Creating a security profile for TFIM V6.1” on page 33|

* Define the required users and groups in TFIM.

Security 41

The broker security manager issues an authorization request to the TFIM trust
service with the following three parameters, which select the TFIM module chain
to be used:

* Issuer = Properties.IdentitySourcelssuedBy

* Applies To = The Fully Qualified Name of the Flow: <Brokername>.<Execution
Group Name>.<Message Flow Name>

* Token = Properties.IdentitySourceToken

Authorization is performed with TFIM using an instance of the TFIM
AuthorizationSTSModule in the selected module chain. The TFIM
AuthorizationSTSModule must be set with Mode = Other. This
AuthorizationSTSModule authorizes a user by checking an Access Control List
(ACL) from Tivoli Access Manager (TAM). TFIM performs the authorization check
by verifying that the action "i" (invoke) has been granted in an ACL for the
WebService action group.

The ACL is found starting from the root of the TAM object space using a path
formed from the Authorization module Web service protected object name
parameter, followed by the Port Type and Operation Name from the authorization
request. When the broker makes an authorization request to TFIM, the Port Type
and Operation Name parameters have the following values:

* PortType:<Message flow name>

* Operation "MessageFlowAccess"

Therefore, the ACL is found at this location in the TAM object space:
/<WSProtectedObjectName>.<MessageFlowName>. "MessageFlowAccess"

For more information about this process and the parameters, see [“Authentication |
[Mapping, and Authorization with TFIM and TAM” on page 14

Steps for enabling TFIM authorization:

To enable an existing message flow to perform authorization with TFIM, use the
Broker Archive editor to select a security profile that has authorization enabled.
You can set a security profile on a message flow or on individual input nodes. If
no security profile is set for the input nodes, the setting is inherited from the
setting on the message flow.

1. Switch to the Broker Application Development perspective.

2. In the Broker Development view, right-click the BAR file, then click Open with
> Broker Archive Editor.

3. Click the Manage and Configure tab.

4. Click the flow or node on which you want to set the security profile. The
properties that you can configure for the message flow or for the node are
displayed in the Properties view.

5. In the Security Profile Name field, select a security profile that has
authorization enabled.

6. Save the BAR file.
For a SOAPInput node to use the identity in the WS-Security header (rather than
an underlying transport identity) an appropriate policy set and bindings must also

be defined and specified. For more information, see

42 Configuration, Administration, and Security

In addition to configuring Message Broker to perform authorization with TFIM,
you must configure TFIM and TAM. For information about how to do this, see the
following topics:

+ [“Creating a module chain in TFIM V6.1”|

* [“Configuring TAM for authorization using TFIM V6.1.”]

For further information on how to configure TFIM, see the [[BM Tivoli Federated|
[[dentity Manager Information Center|

Creating a module chain in TFIM V6.1:

This topic describes how to create a module chain in Tivoli Federated Identity
Manager (TFIM) V6.1.

To enable Message Broker to use TFIM V6.1 for authorization, you need to
configure TFIM to process the security request from the message flow. To do this
you need to create a module chain in TFIM to handle the request:

1. Create a Custorn module chain, and ensure that the chain performs all the
actions required (Authenticate, Map, Authorize).

2. Set the Issuer and AppliesTo properties of the module chain, so that it is invoked
for the requests from the message flow. When the broker makes a request to
TFIM, the Port Type and Operation Name parameters have the following
values:

* PortType:<Message flow name>
¢ Operation "MessageFlowAccess"

The RequestType is always set to Validate.

3. To perform authorization in a module chain, add an instance of the
Authorization module in other mode, which allows the module parameter Web
Service protected object name to be set for the Tivoli Access Manager (TAM)
configuration.

When you have created the module chain in TFIM, see [“Configuring TAM for
[authorization using TFIM V6.1”| for information on how to configure TAM to
process authorization requests from TFIM.

Configuring TAM for authorization using TFIM Vé6.1:

This topic describes how to configure Tivoli Access Manager (TAM) to enable
authorization using Tivoli Federated Identity Manager (TFIM) V6.1.

To configure TAM to process an authorization request from TFIM, complete the
following steps. The examples relate to the TAM Version 6.01 pdadmin utility:

1. Check that the action group used by the TFIM authorization module is
available. The action group used is WebService:

action group Tist
If WebService is not listed, create it:
action group create WebService

2. Display the action in the action group used by the TFIM authorization module.

The action used is "i”:
action Tist WebService
”neen

If action "i” <label> 0 is not listed, create it. The value of <label> can vary:
action create i <label> 0 WebService

Security 43

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?toc=/com.ibm.tivoli.fim.doc/toc.xml
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?toc=/com.ibm.tivoli.fim.doc/toc.xml

3. Create the Access Control List (ACL) that will be used to grant access to one or
more message flows. First, create the ACL and give the administrators access to
it. In this example, iv-admin is the administration group and sec_master is the
main administrator:
acl create <AclName>
acl modify <AclName> set Group iv-admin TcmdbsvaBRx1[WebService]i
acl modify <AcIName> set User sec_master TcmdbsvaBRx1[WebService]i

4. Grant access to all authenticated users, or specific groups, by adding them to
the ACL. Grant any authenticated identity access:
acl modify <AclName> set Any-other Trx[WebService]i
To add a specific group:
acl modify <AcTName> set group <GroupName> Trx[WebService]i

5. Define protected object spaces in TAM for authorization of message flows:

a. Create the application container object as the root of the protected object
space. This is the name that is used to link an instance of a TFIM
AuthorizationSTSModule (within a module chain) into the TAM object
space. The container object name is specified to match the Web Service
protected object name parameter on a TFIM Authorization module.
objectspace create /<ContainerObjectName> <Description> 14

b. Create the container objects in the tree for each broker message flow that is
being authorized. The message flow name is used by TFIM to locate a point
in the TAM Object Space tree for Authorization, through the attached ACL.
The message flow name is passed as the PortType in the WS-Trust request
to TFIM. Use the following command to create the object tree node
representing each flow to be authorized:

object create /<ContainerObjectName>/<FlowName> <Description> 11 ispolicyattachable yes

The ispolicyattachable parameter applies to all levels, so you can attach an
ACL at any level.

c. Create the leaf object that represents the authorized object to grant access to
the message flow. This is the fixed string MessageFlowAccess, which the
broker sends to TFIM through the TFIM OperationName extension to the
WS-Trust request. A fixed name (MessageFlowAccess) is used instead of a
true operation name, because the broker does not necessarily know at the
input node which operation a flow is going to perform. The command
syntax is:

object create /<ContainerObjectName>/<F1owName>/MessageFlowAccess <Description> 12 ispolicyattachable yes

44

where <FlowName> has been created in a previous step.

6. Attach the ACL to the relevant node in the protected object space tree. Each
node in the object space inherits ACLs from its parent, and a lower level ACL
can override a higher level one. Use the following command syntax to attach
an ACL to a node in the object space:
acl attach /<ObjectSpacePath> <AcTName>
To attach an ACL to the leaf node:

acl attach /<ContainerObjectName>/<F1owName>/MessageFlowAccess <AclName>

For further information about configuring TAM, see the [[BM Tivoli Access|
[Manager Information Center

Configuring for identity propagation
To enable a message flow to perform identity propagation, the input nodes must
extract the identity and the output node must propagate it.

Configuration, Administration, and Security

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.itame.doc/welcome.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.itame.doc/welcome.htm

Before you start:

Before you can configure a message flow to perform identity propagation, you
need to check that an appropriate security profile exists, or create a new security
profile. See [Creating a security profile” on page 29)

An input node extracts security tokens if it is configured with a security profile at
deployment time. An output node propagates an identity if it is configured with a
security profile that enables propagation at deployment time.

To enable a message flow to perform identity propagation:

Using the Broker Archive editor, select a security profile that has identity
propagation enabled. You can set a security profile on a message flow or on
individual input and output nodes. If no security profile is set for the input and
output nodes, the setting is inherited from the setting on the message flow.

1. Switch to the Broker Application Development perspective.

2. In the Broker Development view, right-click the BAR file, then click Open with
> Broker Archive Editor.

3. Click the Manage and Configure tab.

4. Click the flow or node on which you want to set the security profile. The
properties that you can configure for the message flow or for the node are
displayed in the Properties view.

5. In the Security Profile Name field, select a security profile that has identity
propagation enabled.

6. Save the BAR file.

For a SOAPRequest or SOAPAsyncRequest node, you can define an appropriate
policy set and bindings to specify how the propagated identity is placed in the

WS-Security header (rather than the underlying transport headers). For more
information, see

If the message identity does not contain enough information for identity
propagation, you can use any of the following methods to acquire the necessary
information:

* Take the information from the message body. For example, if the message comes
from WebSphere MQ with only a username token, and the output is an HTTP
request node requiring a Username + Password token, the password might be
present in the body of the incoming message. For more information, see
[‘Configuring identity extraction in a message flow” on page 35,

* Configure an identity mapper using TFIM. For more information, see the
[Tivoli Federated Identity Manager Information Center]

* Use ESQL or Java to set the Mapped Identity fields in the Properties tree.

Diagnosing security problems

This topic explains how to find out why access to a secured flow has been denied.

By default, security exceptions are not processed in the same way as other errors
(see [“Security exception processing” on page 17). Security exceptions are not
logged to the system event log, to prevent a security denial of service attack filling
the logs and destabilizing the system.

Security 45

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?toc=/com.ibm.tivoli.fim.doc/toc.xml
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?toc=/com.ibm.tivoli.fim.doc/toc.xml

This means that, by default, you cannot diagnose security exceptions in the same
way as other errors. To see what might be causing the security exceptions, you can
do either of the following things:

* Select the Treat Security Exceptions as normal exceptions property on the input
nodes.

e Use the user trace.

The following steps show you how to use the user trace to find out why access to
a secured message flow has been denied:

1. Use the mgsireloadsecurity command to clear the security cache, so that the
traced request goes to the security provider rather than using a result held in
the cache. This ensures that the reason codes returned from the security
provider are displayed in the traced exception.

2. Enable user trace for the message flow, using either the workbench or the
mgsichangetrace command (see [Starting user trace| for more information).

3. Resend the request that has been rejected by the security provider.

4. Stop the user trace, using either the workbench or the mgsichangetrace
command.

5. Use the mgsireadlog command to examine the trace information that was
recorded by the user trace. This trace information contains the error codes
provided by the broker and the security provider.

Setting up broker domain security

You must consider several security aspects when you are setting up a broker
domain that includes brokers running on Windows, Linux, or UNIX platforms.

For an introduction to various aspects of security, see [“Security overview” on page]

This section does not apply to z/OS. Refer to [“Setting up z/0S security” on page]
and [“Summary of required access (z/0S)” on page 706 for information about
setting up broker domain security on z/OS.

Before you start setting up security for your broker domain, refer to |”P1anning fo;l
[security when you install WebSphere Message Broker” on page 28 which contains
links to security information that you need before, during, and after installation of
WebSphere Message Broker.

Use the following list of tasks as a security checklist. Each item comprises a list of
reminders or questions about the security tasks to consider for your broker
domain. The answers to the questions provide the security information that you
require to configure your domain components, and also give you information
about other security controls that you might want to employ.

+ [“Creating user IDs” on page 47]

» |“Considering security for the workbench” on page 48|

+ ["Considering security for a broker” on page 50|

+ [“Considering security for a Configuration Manager” on page 53|

* [“Configuring security for domain components” on page 56
* |“Changing the security domain for the User Name Server” on page 58|
* [“Implementing SSL authentication” on page 58|

* |“Enabling topic-based security” on page 79

+ [“Using security exits” on page 81|

+ |“Implementing HTTP tunneling” on page 82|

46 Configuration, Administration, and Security

+ |“Implementing quality of protection” on page 82|
+ [“Database security” on page 82

Creating user IDs

When you plan the administration of your broker configuration, you might have to
define one or more user IDs for the tasks associated with particular roles.

Some operating systems, and other products, impose restrictions on user IDs:

* On Windows systems, user IDs can be up to 12 characters long, but on Linux,
UNIX, and z/OS systems, they are restricted to eight characters.

¢ Database products might also restrict user IDs to eight characters; for example
DB2® has this restriction. If you have a mixed environment, ensure that the user
IDs that you use are limited to a maximum of eight characters.

* Ensure that the case (upper, lower, or mixed) of user IDs is consistent. In some
environments, uppercase and lowercase user IDs are considered the same, but in
other environments, user IDs of different case are considered unique.

For example, on Windows systems, the user IDs 'tester' and 'TESTER' are
identical; on Linux and UNIX systems, they are recognized as different user IDs.

* Check the validity of spaces and special characters in user IDs to ensure that, if
used, these characters are accepted by all relevant systems and products that
you install.

For example, on Windows, you can create user IDs that include spaces.
However, DB2 does not accept these user IDs. If you run the mgsicreatebroker
command, which creates the broker database, the requests to create tables in the
database fail.

Consider the following roles:

* Administrator user IDs that can issue mqsi* commands. See the following topics:

- [“Deciding which user accounts can process broker commands” on page 51|

— [“Deciding which user accounts can execute User Name Server commands” on|

[page 80|

— [“Deciding which user accounts can process Configuration Manager|
commands” on page 53|

* Service user IDs under which components run. See the following topics:

— [“Deciding which user account to use for the broker service ID” on page 52|

— [“Deciding which user account to use for the User Name Server service ID” on|

[page 80|

— [“Deciding which user account to use for the Configuration Manager service|

[D” on page 54|

On all platforms, you must add broker service user IDs to the mgbrkrs local
group.
 User IDs that access broker databases:

1. Select the user IDs with which you intend to access the database used by
your broker. Ensure that the user ID is not more than eight characters long.
When you use a DB2 database, use a local user ID to access the database. If
you create brokers in a domain environment where you use a domain user
ID for the service user ID, set the database ID to a local ID that is authorized
to access databases.

2. Authorize your selected user IDs to access the broker database. See
[“Authorizing access to broker and user databases” on page 133 for
information about how to complete this task.

Security 47

3. When you create your broker, identify the selected user ID using the -u and
-p options on the mgsicreatebroker command.

+ Workbench users. See [’Considering security for the workbench”| for information
about checking and securing connections from the workbench.

* Publishers and subscribers. See [“Enabling topic-based security” on page 79|

If you are running a Configuration Manager with one user ID and a broker with a
different user ID on another system, you might see an error message when you
deploy message flows and message sets to the broker. To avoid this error, complete
the following steps:

* Ensure that the broker service user ID is a member of the mqm and mgbrkrs
groups.

* Define the user ID for the broker on the system on which the Configuration
Manager is running.

* Define the user ID for Configuration Manager on the system on which the
broker is running.

* Ensure that all IDs are in lowercase so that they are compatible between
computers.

Considering security for the workbench
Set up appropriate levels of security for the workbench.

When the workbench is started, domain information is sent with the user ID of the
workbench user to the Configuration Manager. You can choose whether to check
that information or ignore it when a user is being verified.

When you create an access control list (ACL), you can use either the -a or the -m
parameter of the mgsicreateaclentry command to specify whether the domain
information is to be checked as part of the user verification. If you specify the -a
parameter, the specified user name can connect from any computer. If you specify
the -m parameter, you allow the user to connect from a single, specified, computer.

For the highest level of security, check the domain information for each user and
configure security for the connection between the Configuration Manager and the

workbench.

Ensure that the IDs of the users who run the workbench are not more than eight
characters long.

Consider the following factors when you are setting up security for the workbench:

* |“Checking domain information”]

* |“Ignoring domain information” on page 49|

* |“Securing the channel between the workbench and the Configuration Manager”|

on page 49|

Checking domain information

Increase security by specifying that the domain information that is sent with the
user name to the Configuration Manager is checked as part of the user verification.

48 Configuration, Administration, and Security

For example, assume that you are running the Configuration Manager on a

computer named WKSTN1, which is a member of a domain named DOMAIN1.

Users from DOMAIN?2 also want to use the workbench. Complete the following

steps:

1. Add all domain users or groups to the local group names that you use in your
ACLs.

2. Specify the -m parameter on the mqsicreateaclentry command to ensure that
the domain is considered when verifying the user. The -m parameter allows the
user to connect from a single, specified, computer.

If you are running a Configuration Manager with one user ID and a broker with a
different user ID on another computer, you might see an error message when you
are trying to deploy message flows and message sets to the broker. To avoid this
problem:

 Ensure that the broker service user ID is a member of the mgqm and mqbrkrs
groups.

* Define the broker service user ID on the computer where the Configuration
Manager is running.

* Define the Configuration Manager user ID on the computer where the broker is
running.

* Ensure that all user IDs are in lowercase so that they are compatible between
computers.

Go to[“Securing the channel between the workbench and the Configuration|

| Manager. ”|

Ignoring domain information

If you do not check the domain information associated with the user name,
security is reduced.

You can allow users to be verified without checking the domain information by
specifying the -a parameter of the mgsicreateaclentry command. This parameter
allows the specified user name to connect from any computer.

If your workbench users are on a local domain, add them to the local groups that
you use in your ACLs, and then follow the steps in [‘Securing the channel between|
[the workbench and the Configuration Manager.”|

If your users are from another domain, make the other domain a trusted domain
of the computer on which the Configuration Manager is running, then add the
groups and users from the trusted domain to the local groups of the Configuration
Manager.

Securing the channel between the workbench and the
Configuration Manager

If you want to secure the connection, you must update the configuration of the
SVRCONN channel between the Configuration Manager and the workbench to
include the security options that you want.

When you create the Configuration Manager, a default SVRCONN channel,

SYSTEM.BKR.CONFIG, is created. This channel supports connections from one or more
remote clients to the Configuration Manager. Clients that are running on the same

Security 49

computer as the Configuration Manager connect directly to the queue manager;
they do not require a connection through a channel.

You can use the default SVRCONN channel for your workbench clients, or create a
new one. If you use a different channel, you must set the new name in the
connection properties.

Implement one or both of the following options:

* Implement SSL security on the channel. You must have the appropriate software
to manage SSL certificate stores; for example, you can install either the
WebSphere MQ Client or the Server, and use the IBM Key Management tools for
the client (workbench). You can use either JKS or PKCS12 stores.

— Use WebSphere MQ Explorer or the runmgsc command to update the
SVRCONN definition to specify the required value in the SSLCIPH attribute.

— In the workbench, switch to the Broker Administration perspective.
- Right-click the domain connection and click Properties.
- Select the cipher suite that matches the value you set for SSLCIPH.

- Enter the full path and name for the keystore and truststore, or click
Browse to search for them.

— Add the queue manager certificate to the workbench truststore.

— If you want server-only (one way) certification, set the SVRCONN channel
attribute SSLCAUTH to OPTIONAL.

— If you want mutual (two way) certification:

- Set the SVRCONN channel attribute SSLCAUTH to REQUIRED.

- Add the client (workbench) certificate to the queue manager's truststore.
— Start the domain connection in the workbench.

For further details about setting up SSL configuration, see [“Enabling SSL on the|
[WebSphere MQ Java Client” on page 77|

For more information about configuring connections to be secured with SSL, see
the [WebSphere MQ Java Client developerWorks® articlel

* Create and enable a pair of security exits to run at the workbench and
Configuration Manager ends of the SVRCONN channel that connects the two
components. Program these exits to verify workbench users with the security
manager on the computer on which the Configuration Manager is running.

For more information about creating and enabling security exits, refer to
[“Security exits” on page 20,

Considering security for a broker

Consider several factors when you are deciding which users can execute broker
commands, and which users can control security for other broker resources.

Although most security for the broker and broker resources is optional, you might
find it appropriate to restrict the tasks that some user IDs can perform. You can
then apply greater control to monitor changes.

When you are deciding which users are to perform the different tasks, consider the
following steps:

1. [“Deciding which user accounts can process broker commands” on page 51|

2. [“Deciding which user account to use for the broker service ID” on page 52|

50 Configuration, Administration, and Security

http://www.ibm.com/developerworks/websphere/library/techarticles/0510_fehners/0510_fehners.html

3. [‘Setting security on the broker queues” on page 52|

4. [“Enabling topic-based security in the broker” on page 53|

5. [“Securing the broker registry” on page 53|

Deciding which user accounts can process broker commands

Decide which permissions are required for the user IDs that:
* Create, change, list, delete, start, and stop brokers
* Display, retrieve, and change trace information

Answer the following questions:
1. Is your broker installed on a Linux or UNIX operating system?
a. No: Go to the next question.
b. Yes: Ensure that your user ID has the following characteristics:
* It is a member of the mqgbrkrs group

* If it will be used to create or delete a broker, it is a member of the mqm
group
Go to [“Deciding which user account to use for the broker service ID” on|

|Bage 52.|

2. Are you processing broker commands under a Windows local account?

a. No: Go to the next question.

b. Yes: Assume that your local account is on a computer named, for example,
WKSTNI.

Ensure that your user ID has the following characteristics:
It is a member of the mqgbrkrs group.

* If it will be used to create a broker, the user ID is defined in your local
domain.

o If it will be used to create or start a broker, the user ID is a member of
the Administrators group (for example, WKSTNI\Administrators).

o If it will be used to create or delete a broker, the user ID is a member of
the mgm group.

Go to [“Deciding which user account to use for the broker service ID” on|

|}3age 52.|

3. Are you processing broker commands under a Windows domain account?

a. Yes: Assume that your computer named, for example, WKSTN1, is a
member of a domain named DOMAINT.

Ensure that the user ID has the following characteristics:
* It is a member of the mqgbrkrs group.

* If it will be used to create a broker, the user ID is defined in your local
domain.

o If it will be used to create or start a broker, the user ID is a member of
the Administrators group. For example, if you create a broker with user
ID DOMAIN1\userl, ensure that DOMAINI\userl is a member of
WKSTN1\Administrators.

o If it will be used to create or delete a broker, the user ID is a member of
the mgm group.

Go to [“Deciding which user account to use for the broker service ID” on|

|Bage 52.|

Security 51

Deciding which user account to use for the broker service ID

When you run the mgsistart command with a user ID that is a member of the
mgm and mgbrkrs groups, the user ID under which you run the mgqsistart
command becomes the user ID under which the broker component process will
run.

Answer the following questions:
1. Is your broker installed on a Linux or UNIX operating system?
a. No: Go to the next question.
b. Yes: Ensure that the user ID is a member of the mgbrkrs group.

Go to [“Setting security on the broker queues.”|

2. Do you have one or more brokers running on this Windows system?
a. No: You can choose a service ID for the broker. Go to the next question.

b. Yes: On the Windows platform, all brokers must run with the same service
ID. Use your existing service ID when you create the broker.

3. Do you want your broker to run under a Windows local account?
a. No: Go to the next question.
b. Yes: Ensure that your user ID has the following characteristics:
* It is defined in your local domain.
* It is a member of the mqbrkrs group.

* It has been granted the Logon as a service privilege in the Local Security
Policy in Windows, which you can access by selecting Control Panel ~»
Performance and maintenance » Administrative Tools » Local Security
Policy.

Go to[“Setting security on the broker queues.”|

4. Do you want your broker to run under a Windows domain account?
a. No: Go to the next question.
b. Yes: Assume that your computer named, for example, WKSTNI, is a

member of a domain named DOMAIN1. When you run a broker using, for
example, DOMAIN1\userl, ensure that:

* Your user ID has been granted the Logon as a service privilege (from the
Local Security Policy).

* DOMAIN1\userl is a member of DOMAIN1\Domain mqgbrkrs group.

¢ DOMAINI\Domain mgbrkrs is a member of WKSTN1\mgbrkrs.

¢ The user ID has been granted the Logon as a service privilege in the Local
Security Policy in Windows, which you can access by selecting Control

Panel » Performance and maintenance » Administrative Tools » Local
Security Policy.

Go to [“Setting security on the broker queues.”|

Setting security on the broker queues

When you run the mgsicreatebroker command, the local mqbrkrs group is granted
access to internal queues whose names begin with the characters
SYSTEM.BROKER. Do not change this ACL; it is required for the broker to
function correctly.

The Configuration Manager that controls the broker puts messages to
SYSTEM.BROKER.ADMIN.QUEUE. If your Configuration Manager is on the same
computer as your broker, its service ID is in the mqbrkrs group, therefore no

52 Configuration, Administration, and Security

further action is required. If the Configuration Manager is on a different computer,
ensure that its service ID is defined to the computer that is running the broker, and
ensure that it has WebSphere MQ access to put messages to
SYSTEM.BROKER.ADMIN.QUEUE.

If you use collectives for publish/subscribe, other brokers in your domain must

put messages to SYSTEM.BROKER.INTERBROKER.QUEUE. Therefore, their
service IDs require authority to put messages to that queue.

Enabling topic-based security in the broker
Perform this task by responding to the following question:

Do you want to enable topic-based security in the broker?

1. Yes: Go to [“Enabling topic-based security” on page 79

2. No: Go to[“Considering security for a Configuration Manager.”|

Securing the broker registry

Broker operation depends on the information in the broker registry, which you
must secure to guard against accidental corruption. The broker registry is stored in
the Windows registry or the Linux or UNIX file system. Set your operating system
security options so that only user IDs that are members of the group mgbrkrs can
read from or write to brokername/CurrentVersion and all subkeys.

Considering security for a Configuration Manager

Determine the security characteristics and group membership required for user IDs
to perform tasks associated with the Configuration Manager.

Consider the characteristics and group membership required for user IDs that
perform the following functions:

* Run as a service user ID (running the Configuration Manager)
* Process Configuration Manager commands

* Access the Configuration Manager queues.

An ACL is associated with the Configuration Manager itself. Users or groups that
have full-control membership of the Configuration Manager's ACL implicitly have
full-control membership of all other ACLs. Full-control membership of the
Configuration Manager's ACL also allows users or groups to modify the ACLs for
any object, including the Configuration Manager.

Read the appropriate sections in this list:

1. [“Deciding which user accounts can process Configuration Manager commands”

2. |"“Deciding which user account to use for the Configuration Manager service ID"]

on page 54|

3. [‘Setting security on the Configuration Manager's queues” on page 55|

4. [“Running the Configuration Manager in a domain environment” on page 55|

Deciding which user accounts can process Configuration
Manager commands

During this task you decide what permissions are required for the user IDs that:
* Create, change, list, delete, start, and stop a Configuration Manager

Security 53

* Display, retrieve, and change trace information.

Answer the following questions:

1. Is your Configuration Manager running on a Linux or UNIX operating system?
a. No: Go to the next question.
b. Yes: Ensure that your user ID is a member of the mqgbrkrs group.

Go to[“Deciding which user account to use for the Configuration Manager|

|service ID”|

2. Are you running Configuration Manager commands under a Windows local
account?

a. No: Go to the next question.

b. Yes: Assume that your local account is on a computer named, for example,
WKSTNI. When you create a Configuration Manager, ensure that your user
ID is defined in your local domain. When you create or start a
Configuration Manager, ensure that your user ID is a member of
WKSTN1\ Administrators.

Go to[|“Deciding which user account to use for the Configuration Manager]

|§ervice ID”|

3. Are you running Configuration Manager commands under a Windows domain
account?

a. Yes: Assume that your computer named, for example, WKSTN1, is a
member of a domain named DOMAIN1. When you create a Configuration
Manager using, for example, DOMAIN1\userl, ensure that
DOMAINT1\userl is a member of WKSTN1\ Administrators.

Go to[“Deciding which user account to use for the Configuration Manager|

|service ID”|

Deciding which user account to use for the Configuration
Manager service ID

When you run the mgsistart command with a user ID that is a member of the
mqgm and mgbrkrs groups, the user ID under which you run the mgsistart
command becomes the user ID under which the Configuration Manager
component process will run.

Answer the following questions:

1. Is your Configuration Manager running on a Linux or UNIX operating system?
a. No: Go to the next question.
b. Yes: Ensure that your user ID is a member of the mqbrkrs group.

Go to |“Setting security on the Configuration Manager's queues” on page 55,

2. Do you want your Configuration Manager to run under a Windows local
account?

a. No: Go to the next question.
b. Yes: Ensure that your user ID has the following characteristics:
* It is defined in your local domain
* It is a member of the mqgbrkrs group
* It is a member of the mqm group
* It is a member of the Administrators group

54 Configuration, Administration, and Security

* It has been granted the Logon as a service privilege in the Local Security
Policy in Windows, which you can access by selecting Control Panel >
Performance and maintenance > Administrative Tools > Local Security
Policy.

Go to [“Setting security on the Configuration Manager's queues.”|

3. Do you want your Configuration Manager to run under a Windows domain
account?

a. Yes: Assume that your computer named, for example, WKSTN1, is a
member of a domain named DOMAIN1. When you run a Configuration
Manager using, for example, DOMAIN1\userl, ensure that:

1) userl is defined in DOMAIN1

)
2) DOMAIN1\userl is a member of DOMAINI\Domain mqgbrkrs
3) DOMAIN1\userl is a member of WKSTN1\mqm
4) DOMAIN1\Domain mqbrkrs is a member of WKSTN1\mgbrkrs
5) DOMAIN1\userl is a member of WKSTN1\ Administrators
6) The user ID (userl) has been granted the Logon as a service privilege in

the Local Security Policy in Windows, which you can access by selecting
Control Panel > Performance and maintenance > Administrative Tools
> Local Security Policy.

Go to |[“Setting security on the Configuration Manager's queues.”|

Setting security on the Configuration Manager's queues

When you run the mgsicreateconfigmgr command, the mgbrkrs group is granted
access authority to the following queues:

SYSTEM.BROKER.CONFIG.QUEUE
SYSTEM.BROKER.CONFIG.REPLY
SYSTEM.BROKER.ADMIN.REPLY
SYSTEM.BROKER.SECURITY.QUEUE
SYSTEM.BROKER.MODEL.QUEUE.

Brokers and User Name Servers communicate with the Configuration Manager
through these queues. If they run on the same computer as the Configuration
Manager, you do not need to do anything else to enable them to communicate.
However, if they are running on a different computer, you must ensure that their
service ID exists on the computer that is running the Configuration Manager, and
either add that user account to the mgbrkrs group or grant it explicit MQ access to
put messages to the Configuration Manager's queues.

Administrators using either commands or the Toolkit need the authority to put
messages to the Configuration Manager's queues. You can use the
mgsicreateaclentry command to create the required access to WebSphere MQ.

Go to["Running the Configuration Manager in a domain environment.”]

Running the Configuration Manager in a domain environment
o If iou want to enable domain awareness, go to [“Tenoring domain information”|

« If you want to disable domain awareness, go to [‘Checking domain information”]
_on page 48.

Security 55

Configuring security for domain components

Configure access control lists (ACLs) to control access to runtime resources.

When you have created the runtime resources (for example, the brokers and
execution groups) and secured the transport connection, you must configure access
control lists (ACLs) to control which objects can be accessed by which user IDs.
Default access, which you have until you have configured the ACLs, is Full control
access for the Configuration Manager service ID only.

To configure your ACLs:

1. Decide which objects you want to control, by referring to the hierarchy of ACLs
that can be defined.

2. Use the mgsicreateaclentry command to define permissions for each object that
requires non-default access.

3. Optional: If you are a publish/subscribe user, you can define other ACLs for
application-level access to publish and subscribe on specified topics. These are
also controlled by the mgsicreateaclentry command, but are not required for
administration.

When the ACLs have been configured, users of the workbench and commands are
able to work with objects associated with the domain. The control that the users
have over the objects (Full control, View, Deploy, or Edit) depends on the access
that you have granted to them in the access control list entries.

The following diagram shows an example hierarchy of access control list entries:

CMP
|
RootTopic Subscriptions PubSubTopology
| |
Broker1 Broker2
!_I_\ !_I_\
Eg1A Eg1B Eg2A Eg2B

The following examples show how this hierarchy works in practice.
Example 1

UserA has no access control entries. Therefore, UserA cannot manipulate any
objects in the hierarchy, or see any of the objects defined in it.

Example 2

56 Configuration, Administration, and Security

UserB has an ACL entry that gives Deploy authority to the execution group EglA.
This entry gives UserB implied View authority to PubSubTopology and Brokerl.
UserB must be able to view PubSubTopology and Brokerl (for example, in the
Message Broker Toolkit) to be able to deploy to EglA.

Because UserB does not have any ACL entries for PubSubTopology or Brokerl,
UserB does not inherit access to the other broker or execution groups in the
hierarchy. In practice, this means that UserB can see that there is another execution
group defined on the broker Brokerl but cannot see any details (including the
name of the execution group). Similarly, UserB can see that another broker exists
within the topology, but cannot see any details. UserB has no access to RootTopic
or to Subscriptions (the subscriptions table).

The following command creates the ACL entry for UserB:
mgsicreateaclentry testcm -u UserB -a -x D -b Brokerl -e EglA

The mgsilistaclentry command then displays the following information:
BIP17781: userb -USER - D - Brokerl/EglA - ExecutionGroup

Example 3
UserC has an ACL entry that gives View authority for the Configuration Manager

Proxy (CMP), and an ACL entry that gives Full authority for Brokerl. These entries
give UserC the following authorities:

CMP View
RootTopic View
Subs View

Topology View
Brokerl Full

EglA Full
EglB Full
Broker2 View
Eg2A View
Eg2B View

The following commands create the ACL entries for UserC:

mgsicreateaclentry testcm -u UserC -a -x V -p
mgsicreateaclentry testcm -u UserC -a -x F -b Brokerl

The mgsilistaclentry command then displays the following information:

BIP17781: userc - USER - V - ConfigManagerProxy - ConfigManagerProxy
BIP17781: userc - USER - F - Brokerl - Broker

Example 4

UserD has an ACL entry that gives Full control authority for the CMP API, and an
ACL entry that gives View authority for Brokerl. The View authority to access
Brokerl means that UserD does not inherit Full control authority for Brokerl. This
use of View ACL entries is useful because it allows users who usually have full
control over a given object to reduce their access temporarily, to prevent accidental
deletion or deployment. If users need full control of the object, removing the View
entry restores Full control authority, so that they can perform the operations that
they need, and then restore the View entry. UserD has the following authorities:

Security 57

CMP Full
RootTopic Full
Subs Full
Topology Full
Brokerl View

EglA View
EglB View
Broker2 Full
Eg2A Full
Eg2B Full

The following commands create the ACL entries for UserD:

mgsicreateaclentry testcm -u UserD -a -x F -p
mgsicreateaclentry testcm -u UserD -a -x V -b Brokerl

The mgsilistaclentry command then displays the following information:

BIP17781: userd - USER - F - ConfigManagerProxy - ConfigManagerProxy
BIP17781: userd - USER - V - Brokerl - Broker

The following command can then delete the ACL entries for UserD:

mgsideleteaclentry testcm -u UserD -a -b Brokerl

Changing the security domain for the User Name Server

You can change the security domain only if you are not using domain awareness.
To change the security domain currently in use for your User Name Server, use the
[‘mgsichangeusernameserver command” on page 526

Implementing SSL authentication

Use SSL authentication to enhance security in your broker environment.

The following topics contain instructions for implementing SSL authentication:

* |“Setting up a public key infrastructure”|

* [“Configuring the broker to use SSL with JMS nodes” on page 68|

+ |“Implementing SSL authentication on z/0S” on page 64|

+ |“Configuring SOAPInput and SOAPReply nodes to use SSL (HTTPS)” on page|
70
* |“Configuring SOAPRequest and SOAPAsyncRequest nodes to use SSL (HTTPS)’]

on page 71|

* |“Enabling SSL for the Real-time nodes” on page 71|

+ |“Configuring HTTPInput and HTTPReply nodes to use SSL (HTTPS)” on page]
&
+ [“Configuring an HTTPRequest node to use SSL (HTTPS)” on page 76|
* |“Enabling SSL on the WebSphere MQ Java Client” on page 77|

* |[“Enabling SSL for the Real-time nodes” on page 71|

Setting up a public key infrastructure
Configure keystores, truststores, passwords, and certificates to enable SSL
communication, Pub/Sub authentication for JMS/IP, and Web Services Security.

Before you start: Decide how you will use the public key infrastructure (PKI). You
can configure keystores and truststores at either broker level (one keystore, one
truststore, and one personal certificate for each broker) or at execution group level

58 Configuration, Administration, and Security

(one keystore, one truststore, and one personal certificate for each execution
group). Execution groups that do not have PKI configured use the broker-level PKI
configuration. The HTTP nodes support PKI configuration only at broker level; the
SOAP nodes support both levels.

This topic uses the command line tool, gsk7cmd, to create and populate keystores
and truststores. The gsk7cmd tool is a part of the Global Secure Toolkit, supplied
with WebSphere MQ. Other options, supplied with the WebSphere Message Broker
JVM, include:

* A command-line tool, keytool.
* A graphical tool, iKeyman.

To create the infrastructure, complete the following tasks:

[“Creating a keystore file or a truststore”

[‘Creating a self-signed certificate for test use”

[“Importing a certificate for production use” on page 60|

[Viewing details of a certificate” on page 60|

[“Extracting a certificate” on page 61

[‘Adding a signer certificate to the truststore” on page 61|

[Listing all certificates in a keystore” on page 62|

[‘Configuring PKI at broker level” on page 63|

© O N Ok wDNd=

[‘Configuring PKI at execution group level” on page 63|

Creating a keystore file or a truststore:

The keystore file contains the personal certificate for the broker or for the execution
group. You can have only one personal certificate in the keystore. You can store
signer certificates in the same file, or create a separate file, known as a truststore.

1. Set the JAVA_HOME environment variable, for example:
set JAVA_HOME=C:\WMB61\6.1\jrelb
2. Issue the following command:

gsk7cmd -keydb -create
-db keystore_name
[-pw password]
-type jks

The password argument is optional. If you omit it, you are prompted to enter a
password. For example:

gsk7cmd -keydb -create

-db myBrokerKeystore.jks

-type jks
A password is required to access this key database.
Please enter a password:

Creating a self-signed certificate for test use:
Use self-signed certificates only for testing SSL, not in production.

Enter the following command:

gsk7cmd -cert -create
-db keystore_name
[-pw password]
-label cert_label
-dn "distinguished_name"

Security 59

For example:

gsk7cmd -cert -create
-myBrokerKeystore. jks
-Tabel MyCert

-dn "CN=MyBroker.Server,0=I1BM,0U=ISSW,L=Hursley,C=GB"

A password is required to access this key database.
Please enter a password:

Importing a certificate for production use:

Import a personal certificate from a certificate authority for production use.

Issue the following command:

gsk7cmd -cert -import
-db pkcs12 file name
[-pw pkcs12_password]
-label label
-type pkcsl12
-target keystore_name
[-target_pw keystore password]

For example:

gsk7cmd -cert -import

-db SOAPListenerCertificate.pl2

-Tabel soaplistener

-type pkcsl12

-target myBrokerKeystore.jks

-target_pw myBrokerKpass
A password is required to access this key database.
Please enter a password:

Viewing details of a certificate:

Issue the following command:

gsk7cmd -cert -details
-db keystore_name
[-pw password]
-Tabel label

For example:

gsk7cmd -cert -details

-db myKeyStore.jks

-Tabel MyCert
A password is required to access this key database.
Please enter a password:

Label: MyCert

Key Size: 1024

Version: X509 V3

Serial Number: 4A D7 39 1F
Issued By: MyBroker.Server
ISSW

1BM

Hursley, GB

Subject: MyBroker.Server
ISSW

1BM

Hursley, GB

Valid From: 15 October 2009 16:00:47 o'clock BST To:

60 Configuration, Administration, and Security

15 October 2010 16:00:47 o'

clock BST

Fingerprint: 98:5D:C4:70:A0:28:84:72:FB:F6:3A:D2:D2:F5:EE:8D:30:33:87:82
Signature Algorithm: 1.2.840.113549.1.1.4

Trust Status: enabled

Extracting a certificate:

Generate a copy of a self-signed certificate that you can import as a trusted (or
signer certificate) into a truststore file. Use this procedure only for testing, not
production.

Certificates can be extracted in two formats:

* Base64-encoded ASCII data (.arm). This format is convenient for inclusion in
XML messages, and transmission over the Internet.

* Binary DER data (.der).

Issue the following command:

gsk7cmd -cert -extract
-db keystore_name
-pw keystore_passwd
-label label
-target file_name
[-format ascii | binary]

For example:

gsk7cmd -cert -extract
-db myBrokerKeystore.jks
-pw myKeyPass
-Tabel MyCert
-target MyCert.arm
-format ascii

You can then view the certificate in a text editor, such as Notepad:

notepad MyCert.arm

----- BEGIN CERTIFICATE-----
MIICIzCCAYygAwIBAgIEStc5HzANBgkghkiGIwOBAQQFADBWMQswCQYDVQQGEwJHQjEQMA4GATUE
BxMHSHVyc2x1eTEMMAoGA1UEChMDSUJNMQOWCwYDVQQLEWRJUINXMRgwFgYDVQQDEWINeUJyb2t1
ci5TZXJ2ZXIwHhcNMDkxMDE1IMTUWMDQ3WhcNMTAXMDE IMTUwMDQ3WjBWMQswCQYDVQQGEwWJHQFEQ
MA4GATUEBXMHSHVyc2x1eTEMMA0GA1UEChMDSUJNMQOWCwYDVQQLEWRJUINXMRgwFgYDVQQDEWIN
eUdyb2t1ci5TZXJ2ZXIwgZ8wDQYJIKoZIhvcNAQEBBQADGYOAMIGJA0GBAMWKK5KFLWC29YSHLXT f
hdoCgqFeytH110sZesdi8hEPXKs0zs30Qta2b0GZyUbBkh4tNeUHNWE9o7Hx2/SfziPQRKUWIOSR
F/6FPaHGezRkkaLJGX3uEhjt/2+n5t0JGytnKWaWJTpzdmZ79c0XjFv083q3yXPYjKzq8rS1iVBf
AgMBAAEWDQYJKoZIhvcNAQEEBQADgYEAQEjpvZkjRcg3AHqYARWbSMtXVWFFyoHShjymR8IdUR0Q
DCGZ2jsv3kxQLADaCX0BYgohGJAHS7PzkQoHUCiHROkusyuAt1IMNYbhEcs+BYAzvsSzlay4oiqCw
Qs3aeNLVOb9c1RyzbuKYZ10uX59GATfGVLvyk6vQ/g7wPVLATVgc=

----- END CERTIFICATE-----

Adding a signer certificate to the truststore:

Add a signer certificate to the truststore of a broker or execution group.

The following steps show how to add an extracted certificate as signer certificate to
the truststore file. Adding the broker self-signed certificate to a broker or execution
group truststore enables request nodes (HTTP or SOAP) to send test messages to
input nodes (HTTP or SOAP) when the flows are running on the broker or

execution group.

Issue the following command:

Security 61

gsk7cmd -cert -add
-db truststore_name
[-pw password]
-Tabel label
-file file_name
-format [ascii | binary]

For example:

gsk7cmd -cert -add
-db myBrokerTruststore.jks
-Tabel CACert
-file TRUSTEDPublicCerticate.arm
-format ascii

You can view details of the certificate:

gsk7cmd -cert -details -db myBrokerTruststore.jks -label CACert
A password is required to access this key database.
Please enter a password:

Label: CACert

Key Size: 1024

Version: X509 V3

Serial Number: 49 49 23 1B

Issued By: VSRIBK

ISSW

IBM

GB

Subject: VSR1BK

ISSW

1BM

GB

Valid From: 17 December 2008 16:04:43 o'clock GMT To: 17 December 2009 16:04:43
o'clock GMT

Fingerprint: CB:39:E7:D8:1D:C0:00:A1:3D:B1:97:69:7A:A7:77:19:6D:09:C2:A7
Signature Algorithm: 1.2.840.113549.1.1.4

Trust Status: enabled

Listing all certificates in a keystore:

Issue the following command:

gsk7cmd -cert -Tist
-db keystore_name

For example:

gsk7cmd -cert -Tist

-db myBrokerKeystore.jks
A password is required to access this key database.
Please enter a password:

Certificates in database: myBrokerKeystore.jks
verisign class 1 public primary certification authority - g3
verisign class 4 public primary certification authority - g3
verisign class 1 public primary certification authority - g2
verisign class 4 public primary certification authority - g2
verisign class 2 public primary certification authority
entrust.net global client certification authority
rsa secure server certification authority
verisign class 2 public primary certification authority - g3
verisign class 2 public primary certification authority - g2
verisign class 3 secure server ca
verisign class 3 public primary certification authority
verisign class 3 public primary certification authority - g3
verisign class 3 public primary certification authority - g2
thawte premium server ca

62 Configuration, Administration, and Security

verisign class 1 public primary certification authority
entrust.net global secure server certification authority
thawte personal basic ca

thawte personal premium ca

thawte personal freemail ca

verisign international server ca - class 3

thawte server ca

entrust.net certification authority (2048)

cacert

entrust.net client certification authority

entrust.net secure server certification authority
soaplistener

mycert

Configuring PKI at broker level:

Define the broker registry properties that identify the location, name, and
password of the keystore and truststore files.

1. Start the broker:
mqsistart broker_name
2. Display the current settings of the broker registry properties:

mgsireportproperties broker_name
-0 BrokerRegistry
-r

3. Set the keystore property:

mgsichangeproperties broker_name
-0 BrokerRegistry
-n brokerKeystoreFile
-v C:\WMB\MQSI\6.1\MyBrokerKeystore.jks

4. Set the truststore property:

mgsichangeproperties broker_name
-0 BrokerRegistry
-n brokerTruststoreFile
-v C:\WMB\MQSI\6.1\MyBrokerTruststore.jks

5. Stop the broker:
mqsistop broker_name
6. Set the password for the keystore:

mqsisetdbparms broker_name
-n brokerKeystore::password
-u ignore
-p keystore_pass

7. Set the password for the truststore:

mqsisetdbparms broker_name
-n brokerTruststore::password
-u ignore
-p truststore_pass

8. Start the broker:
mqsistart broker_name
9. Display and verify the broker registry properties:

mgsireportproperties broker_name
-0 BrokerRegistry —r

Configuring PKI at execution group level:

Define the ComIbmJVMManager properties for the required execution group to
identify the location, name, and password of the keystore and truststore files.

1. Start the broker.

Security 63

10.

11.

mgsistart broker_name
Display the current settings of the ComIbmJVMManager properties.

mgsireportproperties broker_name
-e exec_grp_name
-0 ComIbmJVMManager -r

Set the keystore property.

mgsichangeproperties broker_name
-e exec_grp_name
-0 ComIbmJVMManager
-n keystoreFile
-v C:\WMB\MQSI\6.1\MyBrokerexec_grp_name Keystore.jks

Set the keystore password key property. The value for this property is in the
format any_prefix_name: :password. This value is used to correlate the
password defined in the mgsisetdbparms command.
mgsichangeproperties broker_name

-e exec_grp_name

-0 ComIbmJVMManager

-n keystorePass
-v exec_grp_nameKeystore: :password

Set the truststore property.

mgsichangeproperties broker_name
-e exec_grp_name
-0 ComIbmJVMManager
-n truststoreFile
-v C:\WMB\MQSI\6.1\MyBrokerexec grp name Truststore.jks

Set the truststore password key property. The value for this property is in the
format any_prefix_name: :password. This value is used to correlate the
password defined in the mgsisetdbparms command.
mgsichangeproperties broker_name

-e exec_grp_name

-0 ComIbmJVMManager

-n truststorePass
-v exec_grp_nameTruststore::password

Stop the broker.
mqsistop broker_name
Set the password for the keystore.

mqsisetdbparms broker_name
-n exec_grp_nameKeystore: :password
-u ignore
-p keystore_pass

Set the password for the truststore.

mqsisetdbparms broker_name
-n exec_grp_nameTruststore::password
-u ignore
-p truststore_pass

Start the broker.
mqsistart broker_name
Display and verify the ComlbmJVMManager properties.

mgsireportproperties broker_name
-e exec_grp_name
-0 ComIbmJVMManager -r

Implementing SSL authentication on z/OS

Use SSL authentication to enhance security in your broker environment.

64 Configuration, Administration, and Security

Complete the following tasks to implement SSL authentication for brokers running
on z/0S.

1. [“Generate a broker certificate using RACF as the Certification Authority|
(z/0OS)”

2. |“Create and initialize the broker keystore and truststore (z/OS)” on page 66|
3. [‘Configure WebSphere Message Broker on z/OS for SSL” on page 67|

Generate a broker certificate using RACF as the Certification Authority (z/OS):

You can use RACF as the Certification Authority (CA) for internal certificates in
your enterprise.

To generate broker certificates, take the following steps:

1. Create the RACF CA signer certificate. This self-signed certificate is used to
sign any other personal certificates created or requested in RACEF. This step is
required once.

2. Export the RACF CA signer certificate in CERTDER format. This certificate
must be extracted without private keys; CERTDER is a binary format that
guarantees that no private keys are exported.

3. Create the broker personal certificate. A copy of the certificate and of the
private keys is maintained in RACF for future reissue or validation. This
certificate must be associated with the broker user ID. Create a personal
certificate for each broker or execution group for which you want to enable
SSL.

4. Export the broker personal certificate in PKCS12DER format. PKCS12DER is a
password-protected, binary format that contains the broker certificate and its
private keys. You will later import it into the broker keystore; see |”Create andl
finitialize the broker keystore and truststore (z/OS)” on page 66|

Example commands for each step are as follows:
1. Create the RACF CA signer certificate. For example:

RACDCERT CERTAUTH GENCERT +
SUBJECTSDN(CN('RACF Cert Authority') T('PROD') +
OU('RACF Group') +
0('IBM') +
L("HURSLEY') SP('WINCHESTER') C('GB')) +
KEYUSAGE (CERTSIGN) +
WITHLABEL('RACFCA') +
NOTAFTER(DATE(2020/01/30)) +
SIZE(1024)

2. Export the RACFCA certificate in CERTDER format. For example:

RACDCERT CERTAUTH EXPORT(LABEL(RACFCA')) +
DSN('CSQP.CSQPBRK.CACERT.DER') FORMAT(CERTDER)

OPUT 'CSQP.CSQPBRK.CACERT.DER' +
'/u/CSQPBRK/ss1/csqpbrk.ca.der' +
BINARY CONVERT(NO)

The OPUT command is optional. It is used to copy the certificate into a HFS
file before FTP to another server.

3. Create the broker personal certificate. For example:

RACDCERT ID(CSQPBRK) +
GENCERT SUBJECTSDN(CN('BROKER.HTTP.CSQPBRK') T('PROD') +
OU('ISSW') O('IBM') +
L('HURSLEY') SP('WINCHESTER') C('GB')) +

Security 65

WITHLABEL (' CSQPBRKCERT') SIZE(1024) +
SIGNWITH(CERTAUTH LABEL('RACFCA')) +
KEYUSAGE (HANDSHAKE DATAENCRYPT DOCSIGN) +
NOTAFTER (DATE (2020/01/30))

4. Export the broker certificate in PKCS12 format. For example:

RACDCERT ID(CSQPBRK) EXPORT(LABEL('CSQPBRKCERT')) +
DSN('CSQP.CSQPBRK.PERSCERT.P12") +
FORMAT (PKCS12DER) PASSWORD('changeit')

OPUT 'CSQP.CSQPBRK.PERSCERT.P12' +
'/u/CSQPBRK/ss1/csqpbrk.pers.pl2' +
BINARY CONVERT(NO)

What to do next: [Create the broker keystore and import the personal certificate|
[and RACF CA signer certificates.|

Create and initialize the broker keystore and truststore (z/OS):
Create a keystore and import your personal certificate and signer certificates.

Before you start:

* |Create the necessary certificates |

Note: Due to export restrictions, the IBM JDKs ship with a set of restricted policy
files that limit the size of the cryptographic keys that are supported. To
overcome these restrictions, use the unrestricted policy files in the
$JAVA_HOME/Tib/security directory:

* local_policy.jar
* US_export_policyjar

The unrestricted policy files are the same for the IBM JDK 1.4.2, IBM JDK 5,
and IBM JDK 6. These files are in the JAVA_HOME/demo/jce/policy-files/
unrestricted directory.

This topic describes how to use the same file as keystore and truststore. To specify
different files, complete the process twice:

* Do not import signer certificates into the keystore.
* Do not import personal certificates into the truststore.

The tasks use keytool to create the keystore. An alternative is the ikeyman
graphical tool, which requires an X Window System.

The following are the steps required to create and initialize the broker keystore:

1. Create the keystore. keytool requires a dummy key to be created to force the
creation of the keystore file. The dummy key is deleted after the keystore is
created.

2. Import the CA signer certificate or certificates. These are certificates that have
signed certificates of client applications that connect to the WebSphere Message
Broker and that are accepted as trusted applications.

Example commands for each step are as follows:

1. Create the JKS keystore. For example:

/usr/1pp/java/J5.0/bin/keytool -genkey
-alias DUMMY
-keystore /u/CSQPBRK/ss1/csqpbrkKeystore.jks

66 Configuration, Administration, and Security

-storetype jks

-dname "CN=DUMMY,OQU=BROKER,0=I1BM,L=Hursley,C=GB"
-storepass changeit

-keypass changeit

2. Delete the dummy key. For example:
/usr/1pp/java/J5.0/bin/keytool -delete
-alias DUMMY

-keystore /u/CSQPBRK/ss1/csqpbrkKeystore.jks
-storepass changeit

3. Optional: Import the CA signer certificates. Omit this step if you require
separate files for a keystore and truststore, and are creating a keystore. For
example:

/usr/1pp/java/J5.0/bin/keytool -import
-keystore /u/CSQPBRK/ss1/csqpbrkKeystore.jks
-storepass changeit
-alias RACFCA
-file /u/CSQPBRK/ss1/csqpbrk.ca.der -v

4. Optional: Import the broker personal certificate. Omit this step if you require
separate files for a keystore and truststore, and are creating a truststore. For
example:

/usr/1pp/java/J5.0/bin/keytool -import
-keystore /u/CSQPBRK/ss1/csgbrkKeystore.jks
-storepass changeit
-alias CSQPBRK
-file /u/CSQPBRK/ss1/csqpbrk.pers.pl2
-v
-pkcs12
-keypass changeit
-nopromp

5. List the contents of the broker keystore. For example:

/usr/1pp/java/J5.0/bin/keytool -list
-keystore /u/CSQPBRK/ss1/csgbrkKeystore.jks
-storepass changeit

What to do next: [“Configure WebSphere Message Broker on z/0S for SSL."]|

Configure WebSphere Message Broker on z/OS for SSL:
Define the location of the keystore and truststore, set passwords, and enable SSL.

Before you start: complete the following tasks:
* [“Generate a broker certificate using RACF as the Certification Authority (z/0S)”]

on page 65|

+ [“Create and initialize the broker keystore and truststore (z/OS)” on page 66|

The process is essentially the same as on Windows and UNIX. This topic describes
how to enable SSL at broker level; it can also be done at execution group level for
the SOAP nodes. See [“Configuring SOAPInput and SOAPReply nodes to use SSLJ
(HTTPS)” on page 70| and [Configuring SOAPRequest and SOAPAsyncRequest|
nodes to use SSL (HTTPS)” on page 71| for a description of the process on
distributed platforms.

To execute the following commands, you can run the BIPCHPR job in the broker
component library.

1. Define the location of the keystore. This example shows how to define a
keystore at broker level. For example:

Security 67

BPXBATSL PGM -
/usr/1pp/mqsi/V6RIMO/bin/-
mgsichangeproperties -
CSQPBRK -
-0 BrokerRegistry -
-n brokerKeystoreFile -
-v /u/CSQPBRK/ss1/csqgbrkKeystore.jks

2. Define the location of the truststore. For example:

BPXBATSL PGM -
/usr/1pp/mqsi/V6RIMO/bin/-
mgsichangeproperties -
CSQPBRK -
-0 BrokerRegistry -
-n brokerTruststoreFile -
-v /u/CSQPBRK/ss1/csqgbrkKeystore.jks

3. Enable the HTTPS Connector. For example:

BPXBATSL PGM -
/usr/1pp/mgsi/V6RIMO/bin/-
mqgsichangeproperties -
CSQPBRK —
-b httplistener -
-0 HTTPListener -
-n enableSSLConnector -
-v true
4. Optional: Enable client authentication. For example:
BPXBATSL PGM -
/usr/Tpp/mqsi/V6RIMO/bin/-
mgsichangeproperties -
CSQPBRK —
-b httplistener -
-0 HTTPSConnector -
-n clientAuth -
-v true

5. Stop the broker. You must stop the broker before you can define passwords.
6. Define the keystore password. For example:

BPXBATSL PGM -
/usr/Tpp/mgqsi/V6RIMO/bin/-
mqgsisetdbparms -
CSQPBRK —
-n brokerKeystore::password —
-u ignore -
-p changeit
7. Define the truststore password. For example:
BPXBATSL PGM -
/usr/Tpp/mqsi/V6RIMO/bin/-
mqgsisetdbparms -
CSQPBRK —
-n brokerTruststore::password —
-u ignore -
-p changeit

8. Start the broker.
9. Verify and test your configuration.

Configuring the broker to use SSL with JMS nodes
Configure your broker to work with a JMS provider that supports JMS clients that
can connect by using the Secure Sockets Layer (SSL) protocol.

Before you start: Create a keystore file to store the broker's certificates:
[a public key infrastructure” on page 58

68 Configuration, Administration, and Security

The JMS 1.1 Specification states that JMS does not provide features for controlling
or configuring message integrity or message privacy. J]MS providers typically
support these additional features, and provide their own administration tools to
configure these services. Clients can get the appropriate security configuration as
part of the administered objects that they use.

If you want to apply SSL security to the JMS connections created by the three
built-in nodes JMSInput, J]MSOutput, and JMSReply, check the documentation
supplied by your chosen JMS provider. The configuration of the JNDI administered
objects that are used by the JMS nodes is specific to each JMS provider.

The three built-in nodes JMSInput, JMSOutput, and JMSReply are referred to in
this topic by the generic term JMS nodes; apply the information and instructions
here to the specific type of node that you are using.

One example of a JMS provider that provides SSL support for connecting JMS
clients is TIBCO Enterprise Message Service (EMS). The following sections describe
the authentication model used for JMS nodes, with specific reference to TIBCO
EMS, and provide information about how to connect JMS nodes to a TIBCO EMS
JMS Server securely by using SSL:

1. [“SSL authentication model for the JMS nodes’]
2. |“Configuring your JMS nodes to use SSL-enabled JNDI administered obijects”|

SSL authentication model for the JMS nodes:

The JMS provider TIBCO EMS supports Java clients that can use either the Java
Secure Sockets Extension (JSSE) Java package, or an SSL implementation supplied
by Entrust. For details about the services provided, see the documentation
provided with your chosen package.

TIBCO EMS supports a number of different authentication scenarios, but JMS
nodes can use only client authentication to the server. In this scenario, the TIBCO
EMS server requests the client's digital certificate during an SSL handshake, and
checks its issuer against the server's list of trusted Certificate Authorities. If the
authority is not in the server's list, further communications are prevented with the
JMS node.

Therefore, you must configure the EMS server to explicitly enable client
authentication of the SSL certificates in its configuration file; configure the JNDI
administered SSL JMS connection factories for the same level of support.

Configuring your JMS nodes to use SSL-enabled JNDI administered objects:

The JMS nodes use JNDI to look up a connection factory object that is used to
create JMS connections to a TIBCO EMS server.

1. Configure the JMS node property Connection factory name to specify a
pre-configured connection factory that is enabled for SSL connectivity.

Make sure that you have set the appropriate parameters in the corresponding
SSL JMS connection factory definition:

* Enable client authentication
* Specify the SSL protocol in the server URL
* Set other parameters to define the support your require.

See the provider's documentation for information about how to generate this
JNDI administered object:

Security 69

2. Configure the JMS node property Location JNDI Bindings with the URL that
points to the JNDI bindings containing the JNDI administered objects for SSL
connectivity.

For TIBCO EMS, this URL takes the following format:
tibjmsnaming://server_name:ssl_port
* server_name is the host name of the computer where the server is installed.

* ssl_port is the server port for SSL connectivity; typically, this is port 7243 for
a TIBCO EMS server.

3. Make the TIBCO EMS client JAR files available to the broker to which you
deploy the message flow that includes your JMS nodes. Use the
mgsicreateconfigurableservice or the mgsichangeproperties command to set the
JMSProviders configurable service property jarsURL to point to the directory
that contains the JMS provider's client JAR files and the SSL vendor's JAR files.

If you are using JSSE for the SSL support, the following JAR files are typically
located in the jarsURL directory:

* jsse.jar

* net.jar

* jcert.jar

e tibcrypt.jar

You can find standard non-SSL client JAR files in the same location.

Configuring SOAPInput and SOAPReply nodes to use SSL
(HTTPS)

Configure the SOAP nodes to communicate with other applications that use
HTTPS by creating a keystore file, and configuring the broker to use SSL.

Before you start: Set up a public key infrastructure (PKI) at broker or execution
group level: [‘Setting up a public key infrastructure” on page 58

Follow these steps to configure the SOAPInput and SOAPReply nodes to
communicate with other applications using HTTP over SSL:

1. [“Configuring HTTP listener properties for an execution group”’]

2. ['Testing your configuration” on page 71|

Configuring HTTP listener properties for an execution group:

You do not need to set properties to enable the HTTP listener for an execution
group, but can optionally change values.

1. Optional: Enable Client Authentication (mutual authentication):

mqsichangeproperties broker_name

-e execution _group_name

-0 HTTPSConnector

-n clientAuth -v true

2. Optional: Change the SSL protocol. The default protocol for the SOAPInput

node is TLS. Issue the following command to change it to SSL:
mgsichangeproperties broker_name

-e execution_group_name

-0 HTTPSConnector

-n ss1Protocol -v SSL

If you have changed any of the HTTP listener properties for the execution group,
take the following steps:

1. Restart the broker.

70 Configuration, Administration, and Security

2. Use the following command to display HTTP listener properties:

mgsireportproperties broker_name
-e execution_group_name
-0 HTTPSConnector -r

Testing your configuration:

Use the [SOAP Nodes|sample to test your configuration. You can view samples

only when you use the information center that is integrated with the Message
Broker Toolkit.

1. Import the sample.
2. Enable SSL in the SOAPNodesSampleConsumerFlow message flow:
a. Open the Invoke_submitOP subflow.

b. Change the HTTPTransport properties for the SOAPRequest node. Set an
https Web service URL, and change other SSL properties as necessary.
3. Enable SSL in the SOAPNodesSampleProvider message flow. Select Use HTTPS
in the HTTP Transport properties panel.
4. Refresh the BAR file and deploy.

5. Test the sample.

Configuring SOAPRequest and SOAPAsyncRequest nodes to
use SSL (HTTPS)

Configure the SOAPRequest and SOAPAsyncRequest nodes to communicate with
other applications that use HTTP over SSL.

Before you start: Set up a public key infrastructure (PKI) at broker or execution
group level: |“Setting up a public key infrastructure” on page 58

Configuring the nodes:

1. On the HTTP Transport page of the properties for the node, set the Web Service
URL to point to the HTTP server to call.

2. Set other SSL properties as appropriate.
Test your configuration.

Testing your configuration:

Use the [SOAP Nodes|sample to test your configuration. You can view samples

only when you use the information center that is integrated with the Message
Broker Toolkit.

1. Import the sample.
2. Enable SSL in the SOAPNodesSampleConsumerFlow message flow:
a. Open the Invoke_submitOP subflow.

b. Change the HTTPTransport properties for the SOAPRequest node. Set an
https Web service URL, and change other SSL properties as necessary.

3. Enable SSL in the SOAPNodesSampleProvider message flow. Select Use HTTPS
in the HTTP Transport properties panel.

4. Refresh the BAR file and deploy.
5. Test the sample.

Enabling SSL for the Real-time nodes
Use optional authentication services between JMS clients and Real-timelnput and
Real-timeOptimizedFlow nodes.

Security 71

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.SOAPNodes.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.SOAPNodes.doc/doc/overview.htm

In a default configuration, SSL authentication services are disabled.

To configure the product to use the SSL authentication services, complete the
following steps:

* Configure and start a User Name Server in a broker domain.

* Configure each Real-timelnput node to use authentication, and set your chosen
authentication protocol in each of the brokers that is to use the authentication
services.

* Edit a file that specifies client user IDs and passwords.
* Specify the names of the files that are required to implement the SSL protocol.

* For Real-time nodes when using multiple execution groups, set the
sslKeyRingFile and sslPassphraseFile properties on each execution group
separately using the mgsichangeproperties command.

Configuring the User Name Server:

The User Name Server distributes to the brokers passwords that are required to
support these authentication protocols.

To configure the User Name Server to support authentication, specify the following
two parameters on either the mgsicreateusernameserver or the
mgsichangeusernameserver command:

e AuthProtocolDataSource describes the location of an local file that contains the
information that is required to support the authentication protocols.

* The j flag indicates whether the file that is pointed to by
theAuthProtocolDataSource parameter contains group and group membership
information in addition to password information.

* Set the - flag if you want to support both authentication and publish/subscribe
access control in your broker domain, and you want to draw user and group
information from a file rather than from the operating system.

* Use the AuthProtocolDataSource parameter to specify the source of any
protocol-related information. For example, you can specify the name of a file
that contains user ID and password information. The user ID and password
information in this file must exactly mirror the operating system user ID and
password definitions. Make sure that you set the appropriate file system security
for this password file.

* The default location of this file is the WebSphere Message Broker home
directory. If you store the file in another location, specify the full path definition
of the location of the file.

e Stop and restart the User Name Server to implement the changes.

Use the -d flag on the mgsichangeusernameserver command to disable this option.
Configuring a broker:

Configure a broker to support WebSphere Message Broker authentication services.
Specify two authentication and access control parameters and use the workbench
to configure the appropriate Real-timelnput nodes and the sets of protocols that

are to be supported on the broker.

The following steps show you how to do this.
1. Switch to the Broker Application Development perspective.

2. For each message flow in the Message Flow Topology:

72 Configuration, Administration, and Security

a. Select the Real-timelnput or Real-timeOptimizedFlow node to open the
Properties view. The node properties are displayed.

b. Select Authentication.
3. For each broker in the Broker Topology:
a. Select the broker to open the Properties view. The broker properties are
displayed.
b. Enter the required value in Authentication Protocol Type.

Choose any combination of the options P, M, S, and R; for example, S, SR,
RS, R, PS, SP, PSR, SRM, MRS, and RSMP are all valid combinations of
options.

The order in which you specify the options is significant; the broker chooses
the first option that the client supports. If you want the broker always to
support the strongest protocol that the client supports, choose RSMP.

c. If you have chosen S or R as one of the options in Authentication Protocol
Type, specify the SSL Key Ring File Name and the SSL Password File
Name.

Click OK.

Use the mgsicreatebroker or mgsichangebroker command, with the
following two parameters, to configure the broker:

UserNameServerQueueManagerName (-s)
This parameter defines the name of the queue manager that it
associated with the User Name Server. Specify this parameter if you
require authentication services, publish/subscribe access control
services, or both.

Publish/Subscribe Access Control Flag (-j)
Set this flag in addition to specifying the
UserNameServerQueueManagerName parameter if you want to
use publish/subscribe access control services.

Use of the authentication services in the broker is enabled at the IP input
node level, not by a parameter on these commands.

Sample password files:

Two sample files, password.dat and pwgroup.dat, are supplied with WebSphere
Message Broker.

* pwgroup.dat is a sample file that can be used when you set the -j flag.
* password.dat is a sample file that can be used in the default case.

The file password.dat has the following layout:
This is a password file.

Each line contains two required tokens delimited by
commas. The first is a user ID, the second is that user's
password.

#USERNAME PASSWORD

subscriber,subpw
admin,adminpw
publisher,pubpw

This file complements the user and group information that is retrieved by the User
Name Server from the operating system. User names that are defined in the file,
but are not defined in the operating system, are treated as unknown by the broker

Security 73

domain. User names that are defined in the operating system, but are not defined
in the password file, are denied access to the system.

The file pwgroup.dat contains group information in addition to user and password
information. Each user entry includes a list of group names that specify the groups
that contain the user.

The file pwgroup.dat has the following layout:

#This is a password file.

#Each 1ine contains two or more required tokens delimited by
#commas.The first is a user ID and the second is that user's
#password. A1l subsequent tokens

#specify the set of groups that the user belongs to.

#USERNAME PASSWORD GROUPS
subscriber,subpw,groupl,group2,group3
admin,adminpw,group2
publisher,pubpw,group2,group4

As mentioned above, this file can be used to provide the only source of user,
group, and password information for the broker domain.

To deploy updated user and password information to the broker network if this
information is drawn from an operating system file, stop the User Name Server
and the brokers, update the file, and then restart the User Name Server and the
brokers.

If passwords are drawn from the operating system, updates are automatically
distributed to the brokers. Use normal operating system management tools to
change users or passwords.

Authentication in the JMS client:

For client applications that use WebSphere MQ classes for Java Message Service
Version 6.0 or later, the client application supports two levels of authentication.

You can configure a TopicConnectionFactory to support either a
MQJMS_DIRECTAUTH_BASIC authentication mode or a
MQJMS_DIRECTAUTH_CERTIFICATE authentication mode. The
MQJMS_DIRECTAUTH_BASIC authentication mode is equivalent to a level of PM,
and the MQJMS_DIRECTAUTH_CERTIFICATE authentication mode is equivalent
to a level of SR.

If you have successfully configured authentication services for a Real-timelnput
node, a JMS client application must specify its credentials when creating a
connection. To make a connection for this configuration, the JMS client application
supplies a user ID and password combination to the
TopicConnectionFactory.createTopicConnection method; for example:

factory.createTopicConnection("userl", "userlpw");

If the application does not specify these credentials, or specifies them incorrectly, it
receives a JMS wrapped exception containing the MQJMS error text.

74 Configuration, Administration, and Security

Configuring HTTPInput and HTTPReply nodes to use SSL
(HTTPS)

Configure the HTTPInput and HTTPReply nodes to communicate with other
applications that use HTTPS by creating a keystore file, configuring the broker to
use SSL, and creating a message flow to process HTTPS requests.

Before you start: Set up a public key infrastructure (PKI) at broker level by
following the instructions in [“Setting up a public key infrastructure” on page 58|

Follow these steps to configure the HTTPInput and HTTPReply nodes to
communicate with other applications using HTTP over SSL:

1. |Configure the broker to use SSL|
2. [Create a message flow]|

3. [Test your configuration|

Configuring the broker to use SSL:

Complete the following steps:
¢ Turn on SSL support in the broker, by setting a value for enableSSLConnector

mqgsichangeproperties broker name
-b httplistener -o HTTPListener
-n enableSSLConnector -v true

¢ Optional: Specify the port on which the broker listen for HTTPS requests.

mqsichangeproperties broker name
-b httplistener -o HTTPSConnector
-n port -v Port to listen on for https

On UNIX systems, only processes that run under a privileged user account (in
most cases, root) can bind to ports lower than 1024. For the broker to listen on
these ports, the user ID of the broker service must be root.

¢ Optional: Enable Client Authentication (mutual authentication):

mgsichangeproperties broker_name -b httplistener -o HTTPSConnector
-n clientAuth -v true

1. Restart the broker after changing one or more of the HTTP listener properties.
2. Use the following commands to display HTTP listener properties:

mqsireportproperties broker_name -b httplistener -o Al1ReportableEntityNames -a
mgsireportproperties broker_name -b httplistener -o HTTPListener -a
mgsireportproperties broker_name -b httplistener -o HTTPSConnector -a

Creating a message flow to process HTTPS requests:

You can create a simple message flow to use HTTPS by connecting an HTTPInput
node to an HTTPReply node. The two most important properties to set on the
HTTPInput node are:

* Path suffix for URL; for example, /* or /testHTTPS.

e Use HTTPS.

/* means that the HTTPInput node matches against any request that is sent to the
HTTP listener on a designated port. This option is useful for testing purposes, but
is not suitable for production systems.

You can now deploy the message flow to the broker. If all other steps have been
followed up to this point, a BIP3132 message appears in the local system log (on
Windows, the event log) stating that the HTTPS listener has been started.

Security 75

You can now test the system.
Testing your configuration:

The simplest method of testing whether HTTPS is configured correctly is to use a
Web browser to make a request to the broker over HTTPS.

Start a Web browser and enter the following URL:
https://localhost:7083/testHTTPS

Change values in the URL to reflect the changes that you have made in your

broker configuration; for example, the port number. When a window is displayed

asking you to accept the certificate, select Yes. The browser refreshes the window

and displays an empty HTML page:

* In Mozilla browsers, the empty HTML page looks like the following example:
<htmi1>

<body/>
</html>

* In Internet Explorer, the following information is displayed:

XML document must have a top Tevel element. Error processing resource
"https://Tocalhost:7083/testHTTPS"

These responses mean that a blank page was returned, indicating that the setup
worked correctly. To add content to the empty page, you can add a Compute node
to the flow.

You can use another HTTPS client to process HTTPS requests. Read the
documentation for the client to find out how to configure it to make client
connections over SSL.

You can also use another HTTPS client, such as a Java or .net client, instead of the
Web browser. Depending on the type of client, you might need to export the
certificate (which was created with keytool) from the HTTP listener's keystore file,
then import it into the client's keystore. Read the client documentation to find out
how to configure the client to make client connections over SSL.

Configuring an HTTPRequest node to use SSL (HTTPS)
Configure the HTTPRequest node to communicate with other applications that use
HTTP over SSL.

Before you start: Set up a public key infrastructure (PKI) at broker level:
[up a public key infrastructure” on page 58|

This topic describes the steps that you need to follow when configuring an
HTTPRequest node on a Windows system. The steps that you must follow on
other operating systems are almost identical.

To enable an HTTPRequest node to communicate using HTTP over SSL, an HTTPS
server application is required. The information provided in this topic shows how
to use the [HTTPInput node for SSIas the server application, but the same details
also apply when you are using any other server application.

Complete the following sub-tasks:

1. [“Creating a message flow to make HTTPS requests” on page 77|

2. ['Testing your example” on page 77|

76 Configuration, Administration, and Security

Creating a message flow to make HTTPS requests:

The following message flow creates a generic message flow for converting a
WebSphere MQ message into an HTTP Request:

1. Create a message flow with the nodes MQInput->HTTPRequest->Compute-
>MQOutput.

2. On the MQInput node, set the queue name to HTTPS.IN1 and create the
WebSphere MQ queue.

3. On the MQOutput node, set the queue name to HTTPS.OUT1 and create the
WebSphere MQ queue.

4. On the HTTPRequest node, set the Web Service URL to point to the HTTP
server to call. To call the HTTPInput node, use https://localhost:7083/
testHTTPS.

5. On the Advanced properties tab of the HTTPRequest node, set the Response
message location in tree property to OutputRoot. BLOB.

6. On the Compute node, add the following ESQL code:

CREATE COMPUTE MODULE test_https_Compute

CREATE FUNCTION Main() RETURNS BOOLEAN

BEGIN
-- CALL CopyMessageHeaders();
CALL CopyEntireMessage();
set OutputRoot.HTTPResponseHeader = null;
RETURN TRUE;

END;

CREATE PROCEDURE CopyMessageHeaders() BEGIN
DECLARE I INTEGER;
DECLARE J INTEGER;
SET I = 1;
SET J = CARDINALITY(InputRoot.*[]);
WHILE I < J DO
SET OQutputRoot.*[I] = InputRoot.*[I];
SETI =1+ 1;
END WHILE;
END;

CREATE PROCEDURE CopyEntireMessage() BEGIN
SET OutputRoot = InputRoot;
END;
END MODULE;

The message flow is now ready to be deployed to the broker and tested.
Testing your example:

To test that the example works, complete the following steps:

1. Follow the instructions in [“Configuring HTTPInput and HTTPReply nodes to|
[use SSL (HTTPS)” on page 75)including testing the example.

2. Deploy the HTTPRequest message flow.
3. Put a message to the WebSphere MQ queue HTTPS.INI. If successful, a

message appears on the output queue. If the process fails, an error appears in
the local error log (which is the event log on Windows).

Enabling SSL on the WebSphere MQ Java Client

The WebSphere MQ Java Client supports SSL-encrypted connections over the
server-connection (SVRCONN) channel between an application and the queue
manager. Configure SSL support for connections between applications that use the
CMP API (including the Message Broker Toolkit) and a Configuration Manager.

Security 77

For one-way authentication, when the client CMP application authenticates the
Configuration Manager, perform the following steps:

1. Generate or obtain all the appropriate keys and certificates. You must include a
signed pkes12 certificate for the server and the appropriate public key for the
certificate authority that signed the pkcs12 certificate.

2. Add the pkesl2 certificate to the queue manager certificate store and assign it
to the queue manager. Use the standard WebSphere MQ facilities; for example,
WebSphere MQ Explorer.

3. Add the certificate of the certificate authority to the JSSE truststore of the Java
Virtual Machine (JVM) at the CMP application end using a tool such as
Keytool.

4. Decide which cipher suite to use and change the properties on the
server-connection channel by using WebSphere MQ Explorer, to specify the
cipher suite to be used. This channel has a default name of SYSTEM.BKR.CONFIG;
this name is used unless you have specified a different name on the Create a
Domain Connection panel or Domain Properties panel; see [“Creating a domain|
connection” on page 265|and [“Modifying domain connection properties” onl|

[page 267.|

5. Add the required parameters (cipher suite, for example) to the CMP
application. If a truststore other than the default is used, its full path must be
passed in by the truststore parameter.

When you have performed these steps, the CMP application connects to the
Configuration Manager if it has a valid signed key that has been signed by a
trusted certificate authority.

For two-way authentication, when the Configuration Manager also authenticates
the CMP application, perform the following additional steps:

1. Generate or obtain all the appropriate keys and certificates. You must include a
signed pkcs12 certificate for the client and the appropriate public key for the
certificate authority that signed the pkcs12 certificate.

2. Add the certificate of the certificate authority to the queue manager certificate
store by using the standard WebSphere MQ facilities.

3. Set the server-connection channel to always authenticate. Specify
SSLCAUTH(REQUIRED) in runmgsc, or in WebSphere MQ Explorer.

4. Add the pkes12 certificate to the JSSE keystore of the JVM at the CMP
application end by using a tool such as Keytool.

5. If you are not using the default keystore, its full path must be passed into the
CMP through the keystore parameter

When you have performed these steps, the Configuration Manager allows the CMP
application to connect only if that application has a certificate signed by one of the
certificate authorities in its keystore.

You can make further restrictions by using the sslPeerName field; for example, you
can allow connections only from certificate holders with a specific company or
department name in their certificates. In addition, you can invoke a security exit
for communications between the CMP applications and the Configuration
Manager; see [“Using security exits” on page 81|

78 Configuration, Administration, and Security

Enabling topic-based security

If your applications use the publish/subscribe services of a broker, you can apply
an additional level of security to the topics on which messages are published and
subscribed. This topic-based security is managed by the User Name Server.

Before you start:

Before you create a User Name Server, refer to [“Considering security for a User]
Name Server.”]

To enable topic-based security, complete the following steps:

1. Create a User Name Server. For more information, refer to [‘Creating a User]
[Name Server” on page 215

2. On the mgsicreatebroker command (or the mqsichangebroker command if you
are using an existing broker), select the -j flag and set the -s parameter to the
name of the queue manager for the User Name Server .

3. Set the -s parameter on the mgsicreateconfigmgr or mgsichangeconfigmgr
command to the name of the queue manager for the User Name Server.

4. Create ACLs for the topics that require additional security. For more
information, see [“Creating ACL entries” on page 99

5. Ensure that the broker's service user ID has authority to perform the following
actions:

a. Get messages from each input queue included in a message flow
b. Put messages to any output, reply, and failure queues included in a
message flow.

6. Ensure that the user IDs under which publish and subscribe applications run
have sufficient authority to put messages to and get messages from message
flow queues:

a. Authorize publish applications to put messages to the input queue of the
message flow.

b. Authorize applications that register subscriptions to put messages to the
SYSTEM.BROKER.CONTROL.QUEUE queue.

c. Authorize subscribe applications to get messages from the queue to which
messages are published.

d. Authorize publish and subscribe applications to get messages from the
reply queue.

If you are issuing publish/subscribe requests from a JMS client, additional security
options are available. Refer to [SSL authentication” on page 26 |[“Quality off
[protection” on page 27, and [“Authentication services” on page 93|

Go to|‘Considering security for a Configuration Manager” on page 53|

Considering security for a User Name Server
Complete this task by answering the following question:

Have you enabled topic-based security in your broker?

1. No: Go to [“Considering security for a Configuration Manager” on page 53

2. Yes: You need a User Name Server. Go to [“Deciding which user accounts can|
fexecute User Name Server commands” on page 80

Security 79

Deciding which user accounts can execute User Name Server
commands

During this task you decide which permissions are required for the user IDs that:
* Create, change, list, delete, start, and stop a User Name Server

* Display, retrieve, and change trace information.

Answer the following questions:

1. Is your User Name Server installed on a Linux or UNIX operating system?
a. No: Go to the next question.
b. Yes: Ensure that the user ID is a member of the mqbrkrs group.

Go to[“Deciding which user account to use for the User Name Server]

|§ervice ID.”|

2. Are you executing User Name Server commands under a Windows local
account?

a. No: Go to the next question.

b. Yes: Assume that your local account is on a computer named, for example,
WKSTNI1. When you create a User Name Server, ensure that your user ID is
defined in your local domain. When you create or start a User Name Server,
ensure that your user ID is a member of WKSTN1\ Administrators.

Go to[“Deciding which user account to use for the User Name Server|

|service ID.”|

3. Are you executing User Name Server commands under a Windows domain
account?

a. Yes: Assume that your computer named, for example, WKSTN1, is a
member of a domain named DOMAINI1. When you create a User Name
Server using, for example, DOMAIN1\userl, ensure that DOMAIN1\userl
is a member of WKSTN1\ Administrators.

Go to[“Deciding which user account to use for the User Name Server]

|§ervice ID.”|

Deciding which user account to use for the User Name Server
service ID

When you set the service ID with the -i option on the mgsicreateusernameserver or
mgsichangeusernameserver command, you determine the user ID under which the
User Name Server component process runs.

Answer the following questions:

1. Is your User Name Server installed on a Linux or UNIX operating system?
a. No: Go to the next question.
b. Yes: Ensure that the user ID is a member of the mgbrkrs group.

Go to [“Setting security on the User Name Server's queues” on page 81|

2. Do you want your User Name Server to run under a Windows local account?
a. No: Go to the next question.
b. Yes: Ensure that your user ID has the following characteristics:
* It is defined in your local domain

* It is a member of the mqbrkrs group

80 Configuration, Administration, and Security

* It has been granted the Logon as a service privilege in the Local Security
Policy in Windows, which you can access by selecting Control Panel >
Performance and maintenance > Administrative Tools > Local Security
Policy.

Go to [“Setting security on the User Name Server's queues”]

3. Do you want your User Name Server to run under a Windows domain
account?

a. Yes: Assume that your computer named, for example, WKSTN1, is a
member of a domain named DOMAIN1. When you run a User Name
Server using, for example, DOMAIN1\userl, ensure that:

¢ The user ID (userl) has been granted the Logon as a service privilege in
the Local Security Policy in Windows, which you can access by selecting
Control Panel > Performance and maintenance > Administrative Tools
> Local Security Policy

* DOMAIN1\userl is a member of DOMAIN1\Domain mqbrkrs

* DOMAIN1\Domain mgbrkrs is a member of WKSTN1\mgqbrkrs.

Go to [“Setting security on the User Name Server's queues.”]

Setting security on the User Name Server's queues

When you run the mqsicreateusernameserver command, the mqbrkrs group gets
access authority to the following queues:

SYSTEM.BROKER.SECURITY.QUEUE
SYSTEM.BROKER.MODEL.QUEUE

Only the broker and the Configuration Manager require access to the User Name
Server's queues.

Go to[“Running the User Name Server in a domain environment.”|

Running the User Name Server in a domain environment

When the users that issue publish and subscribe commands are domain users, set
the -d option on the mgsicreateusernameserver command to the domain those
users come from. All users that issue publish and subscribe commands must come
from the same domain.

Using security exits

Define a security exit on the WebSphere MQ channel when you create a domain
connection.

To create a security exit on the WebSphere MQ channel that you define for
communications between the Message Broker Toolkit and the Configuration
Manager that controls the domain, you must define a security exit when you create
the connection.

1. Switch to the Broker Administration perspective.

2. Click File » New » Domain Connection. The Create a Domain Connection
wizard opens.

3. Enter the values for Queue Manager Name, Host, and Port that you want to
use.

4. Enter the Security Exit Class name. The name must be a valid Java class name.

5. Set the JAR File location for the Security Exit that is required on this
connection. Click Browse to find the file location.

Security 81

The security exit is started every time a message passes across the connection.

Alternatively, use SSL to communicate between the Configuration Manager Proxy
iCMPi and the Configuration Manager; see ['Implementing SSL authentication” on|
page 58.

Implementing HTTP tunneling

HTTP tunneling support in the broker is activated by selecting the Use HTTP
Tunneling option within the properties for the [Real-timeInput node| or
Real-timeOptimizedFlow node] Optional settings are also configured using the
“mgsichangeproperties command” on page 461

Once set, HTTP tunneling is administered using the [“mgsichangeproperties|
[command” on page 461| with the httpProtocolTimeout and httpDispatchThreads
options.

Implementing quality of protection

The enableQoPSecurity option of the mgsichangeproperties command enables
quality of protection. By default, quality of protection is enabled if any of the
quality of protection settings have been changed from n or none. The levels of
message protection are defined using the sysQoPLevel and isysQoPLevel options
also in the [“mgsichangeproperties command” on page 461

From the broker properties window, you can set the values for temporary topics
using:

¢ Temporary Topic Quality of Protection

* Sys Topic Quality of Protection

* ISys Topic Quality of Protection .

The default value is none, or you can select one of the following values from each

of the drop-down lists:

* Channel Integrity (preventing hackers from inserting or deleting messages
without being detected)

* Message Integrity (preventing hackers from changing the content of a message
without being detected)

* Encrypted for Privacy (preventing hackers from looking at the content of a
message).

The value selected is the same for all users and is independent of the user
currently selected.

Database security

You must set up a database for each broker, and you can access databases from the
message flows that you deploy to your brokers, and must therefore consider the
steps you might want to take to secure that access.

You must authorize the following IDs for each broker:

* Authorize each broker service user ID for create and update tasks on the
database that contains the broker internal tables.

* Authorize all data source user IDs that you have specified by using
mgsicreatebroker or mqsisetdbparms command to access those databases from
deployed message flows.

82 Configuration, Administration, and Security

If you have run the Default Configuration wizard or the [“mgsicreatedb command”]
on Windows to create a Derby database, you do not have to set up
security authorization. Refer to [‘Using Derby databases on Windows” on page 130|
for more information.

You can define and modify database security by using a number of commands,
depending on the database that you are working with:

+ [“mgsicreatebroker command” on page 540|

+ |[“mgsichangebroker command” on page 429

* [“mgsisetdbparms command” on page 677]

WebSphere Message Broker does not provide special commands to administer
databases. Discuss your database security requirements with the database
administrator for the database manager that you are using, or refer to the
documentation provided by your database supplier.

For further information about possible security requirements, and examples of
setting up security for DB2 and Oracle databases, see [Authorizing access to
[proker and user databases” on page 133

Setting up z/OS security

On z/0S, you must complete several security configuration tasks before
WebSphere Message Broker can work correctly.

The steps you need to follow are described in this topic and also in the following
topics:

* [“Setting up DB2 security on z/0S” on page 85|
+ [“Setting up WebSphere MQ” on page 86|
* [“Setting up workbench access on z/0S” on page 86|

+ [“Creating Publish/Subscribe user IDs” on page 87|

* |[“Enabling the Configuration Manager on z/OS to obtain user ID information”|

on page 82|

Decide on the started task names of the broker, Configuration Manager, and User
Name Server. These names are used to set up started task authorizations, and to
manage your system performance.

Decide on a data set naming convention for your WebSphere Message Broker
PDSEs. A typical name might be WMQI.MQP1BRK.CNTL or MQS.MQP1UNS.BIPCNTL,
where MQP1 is the queue manager name. You must give the WebSphere Message
Broker, WebSphere MQ, DB2, and z/OS administrators access to these data sets.
You can give these professionals controlled access in several ways, for example:

* Give each user individual access to the specific data set.

* Define a generic data set profile, defining a group that contains the user IDs of
the administrators. Grant the group control access to the generic data set profile.

If you intend to use Publish/Subscribe, define a group called MQBRKRS and connect
the started task user IDs to this group.

Define an OMVS group segment for this group so that the User Name Server can

extract information from the External Security Manager (ESM) database to enable
you to use Publish/Subscribe security.

Security 83

Each broker needs a unique ID for its DB2 tables. This ID can be:

* A unique started task user ID; you could use the broker name as the started task
user ID.

A unique group for the broker (for example MQP1GRP) which has defined all
necessary DB2 authorities. The broker started task user ID and the WebSphere
Message Broker administrator are both members of this group.

* A shared started task user ID and a unique group specified to identify the DB2
tables to be used with the ODBC interface. Use the broker name as the group
name.

Define an OMVS segment for the started task user ID and give its home directory
sufficient space for any WebSphere Message Broker dumps. Consider using the
started task procedure name as the started task user ID. Check that your OMVS
segment is defined by using the following TSO command:

LU userid OMVS

The command output includes the OMVS segment, for example:

USER=MQP1BRK NAME=SMITH, JANE OWNER=TSOUSER
CREATED=99.342 DEFAULT-GROUP=TSOUSER PASSDATE=01.198
PASS-INTERVAL=30

UID=0000070594
HOME=/u/MQP1BRK
PROGRAM=/bin/sh
CPUTIMEMAX=NONE
ASSIZEMAX=NONE
FILEPROCMAX=NONE
PROCUSERMAX=NONE
THREADSMAX=NONE
MMAPAREAMAX=NONE

The command:
df -P /u/MQP1BRK

displays the amount of space used and available, where /u/MQP1BRK is the value
from HOME (on a previous line). This command shows you how much space is
currently available in the file system. Check with your data administrators that this
space is sufficient. You require a minimum of 400 000 blocks available if a dump is
taken.

Associate the started task procedure with the user ID to be used. For example, you
can use the STARTED class in RACF®. The WebSphere Message Broker and z/0S
administrators must agree on the name of the started task.

WebSphere Message Broker administrators need an OMVS segment and a home
directory. Check the setup previously described.

The started task user IDs and the WebSphere Message Broker administrators need
access to the install processing files, the component-specific files, and the home
directory of the started task. During customization, the file ownership can be
changed to alter group access. This change might require super user authority.

When the service user ID is root, all libraries loaded by the broker, including all
user-written plug-in libraries, and all shared libraries that they might access, also

84 Configuration, Administration, and Security

have root access to all system resources (for example, file sets). Review and assess
the risk involved in granting this level of authorization.

For more information about various aspects of security, see [“Security overview” onl|

Setting up DB2 security on z/0S

This is part of the larger task of setting up security on z/OS.

The user ID of the person running the DB2 configuration jobs must have UPDATE
access to the component PDSE, READ/EXECUTE access to the installation
directory, and READ/WRITE/EXECUTE access to the broker-specific directory.

A user needs SYSADM or SYSCTRL authority to run the DB2 configuration jobs.

You cannot share DB2 tables between brokers; each broker must have its own DB2
tables. The format of the table names is:

table_owner.table_name
where table_owner is known as the table owner.

When the broker starts up, the started task user ID is used to connect to DB2 using
ODBC. The ODBC statement Set current SQLID is used to set the ID to
table_owner; the table owner ID specifies which tables to use. You have two
options in setting up the IDs:

1. Make the table owner the same as the started task user ID. This means that
each broker must have a different user ID. Check that the started task user ID
specified has access to SYSIBM tables. From a TSO user with no system
administration authority, use SPUFI to issue the following commands:

select * from SYSIBM.SYSTABLES;
select * from SYSIBM.SYSSYNONYMS;
select * from SYSIBM.SYSDATABASE;

and resolve any problems.

2. Make the table owner different from the started task user ID. For this to work
the started task needs to be able to issue the Set current SQLID request. The
easiest way to do this is to create a RACF group with the same name as the
table owner, and connect the started task user ID to this group.

Check that the group ID specified has access to SYSIBM tables. From a TSO user
with no system administration authority, use SPUFI to issue the following
commands:

SET CURRENT SQLID="WMQI';

select * from SYSIBM.SYSTABLES;

select * from SYSIBM.SYSSYNONYMS;
select = from SYSIBM.SYSDATABASE;

and resolve any problems (WMQI is the name of the group). You might need to
connect the TSO user IDs of the DB2 administrators to the group.

If you have a unique group for each broker (and not a unique started task user
ID), the started task user ID must be connected to the group for the ODBC
request set currentsqlid to work successfully.

The DB2 administrator user ID must have access to one of the programs DSNTEP2
or DSNTIAD, or equivalent.

Security 85

The started task user ID must be authorized to connect to DB2. The started task
user ID needs a minimum of READ access to the subsystem.RRSAF profile in the
DSNR class, if present. In this case, subsystem is the DB2 subsystem name. For
example, the following RACF command lists all the resources in DSNR class:

RLIST DSNR =*

The started task user ID needs EXECUTE authority to the DSNACLI plan or
equivalent.

The DB2 subsystem started task user ID needs authority to create data sets with
the high level qualifier specified in the DB2_STOR_GROUP_VCAT value.

Setting up WebSphere MQ

This is part of the larger task of setting up security on z/OS, and gives details of
the authorities that your user ID needs to perform the required operations.

The user ID of the person running the create component (BIPCRBK, BIPCRCM, and
BIPCRUN) jobs needs UPDATE access to the component PDSE, READ/EXECUTE
access to the installation directory, and READ/WRITE/EXECUTE access to the
component directory:.

If you do not use queue manager security, you do not need to read the rest of this
topic. Topic [“Creating the broker component” on page 201| provides detailed
statements on how to protect your queues.

The broker , Configuration Manager, and the User Name Server need to be able to
connect to the queue manager.

By default, the broker's internal queues, which all have names of the form:
SYSTEM.BROKER. *

should be protected. These names cannot be changed. Restrict access to the broker,
Configuration Manager, and User Name Server started task user IDs, and to
WebSphere Message Broker administrators.

If you are running a Configuration Manager on z/OS, remote users connecting
from either the Message Broker Toolkit or from a Configuration Manager Proxy
application need to be authorized to connect to the queue manager through the
channel initiator and require PUT and GET access to
SYSTEM.BROKER.CONFIG.QUEUE and SYSTEM.BROKER.CONFIG.REPLY

If you are using Publish/Subscribe, subscribers must have authority to PUT to
SYSTEM.BROKER.CONTOL.QUEUE.

You can control which applications can use queues used by message flows.
Applications must be able to PUT and GET to queues defined in all nodes.

Setting up workbench access on z/0OS

Access to the workbench is controlled from Windows or Linux on x86.

The workbench must run on Windows or Linux on x86.

See [“Considering security for a Configuration Manager” on page 53| for further
information.

86 Configuration, Administration, and Security

Creating Publish/Subscribe user IDs
This task is part of the larger task of setting up security on z/OS.

A User Name Server can only see user IDs that have been enabled to use UNIX
System Services facilities. To ensure that your user or group information can be
seen by your User Name Server, you must comply with the following instructions:

* Define user IDs with OMVS(UID(nnnnn)...) and their default group with
OMVS(GID(nnnnn)).

* Define groups with OMVS(GID(nnnnn)).

Enabling the Configuration Manager on z/OS to obtain user ID
information

This topic lists the steps you need to complete, to enable the Configuration
Manager on z/OS to correctly obtain the list of user IDs for a particular group
from the External Security Manager (ESM) database.

When connecting to the Configuration Manager, the local user ID on the
connecting machine is sent to the Configuration Manager for the purposes of
broker domain authorization. This user ID is checked against the Configuration
Manager Access Control Lists (ACL) to determine the level of authorization.

For any group ACLs defined, the Configuration Manager queries the local ESM
database for a list of user IDs defined to that group. The Configuration Manager
then tries to match any user ID connecting to it, with this list, to grant the correct
authorization to the broker domain.

For the Configuration Manager on z/OS to obtain this list of user IDs, the group
and any user IDs must have an OMVS segment defined.

User IDs

* If you have suitable authorization, you can use the following Security Server
(formerly RACF) command to display OMVS information about a user:
LU id OMVS

 If you have suitable authorization, you can use the following Security Server
command to give a user ID an OMVS segment:
ALTUSER id OMVS(UID(xxx))

Groups

* If you have suitable authorization, you can use the following Security Server
command to display OMVS information about a user:

LG group OMVS

* If you have suitable authorization, you can use the following Security Server
command to give a group an OMVS segment:

ALTGROUP id OMVS(GID(xxx))
See the OS/390 Security Server (RACF) Security Administrator’'s Guide (or the

appropriate documentation for an external security manager installed on the
system) for details.

Security 87

If the group, or any of the defined user IDs in that group, are not found by the
Configuration Manager (either because they do not exist, or because they do not
have an OMVS segment), the Configuration Manager is not able to authorize the
user attempting the connection.

Publish/subscribe security

Security services are provided for your publish/subscribe domain.
* Topic-based security

Access to messages on particular topics is controlled using access control lists
(ACLs).

* Authentication services using real-time nodes

An authentication protocol is used by a broker and a client application to
confirm that they are both valid participants in a session.

* Message protection using real-time nodes

Message protection provides security options to prevent messages from being
read or modified while in transit.

These services operate independently of each other, but before you can use any of
these services, you must create a User Name Server and include it in your domain.

To use one of these services, use the mgsicreatebroker or mgsichangebroker
command to configure a broker with the -s parameter to specify the name of the
queue manager that hosts the User Name Server.

In addition, to use topic-based security, specify the publish/subscribe access
control flag (5 parameter) on the mgsicreatebroker or mgsichangebroker command.

Topic-based security

Use topic-based security to control which applications in your publish/subscribe
system can access information on which topics.

For each topic to which you want to restrict access, you can specify which
principals (user IDs and groups of user IDs) can publish to the topic, and which
principals can subscribe to the topic. You can also specify which principals can
request persistent delivery of messages.

Any principal can publish, subscribe, and request persistent delivery of, messages
on any topic whose access you do not explicitly restrict.

Topic-based security is managed by a User Name Server that uses the access
control lists (ACLs) that you create to decide which authorizations are applied.

Principals and the User Name Server

The User Name Server in WebSphere Message Broker manages the set of principals
that are already defined in your network, on behalf of the brokers and the
Configuration Manager, for use in publish/subscribe. On Windows, this list of
users is taken from the domain specified on the mgsicreateusernameserver
command.

The User Name Server is made known to both the broker and the Configuration

Manager by specifying the User Name Server queue manager on the
mgsicreatebroker and mgsicreateconfigmgr commands.

88 Configuration, Administration, and Security

Message brokers within the broker domain interact with the User Name Server to
retrieve the total set of users and groups from which the access control lists are
built and against which the publish/subscribe requests are validated. The
Configuration Manager interacts with the User Name Server to display the users
and user groups in the ACLs that are created using the Topics Hierarchy Editor
that is provided in the Broker Administration perspective of the workbench.

Access control lists

Access control lists are used to define, for any topic and principal, the right of that
principal to publish on, or subscribe to, that topic, or to request persistent delivery
of a publication on that topic.

You can also use the ACL to define the level of message protection that you want
to apply to each topic.

Specify these definitions using the Topics Hierarchy Editor in the Broker
Administration perspective of the workbench.

Access control can be set explicitly for each individual topic. However, if no
explicit ACL is defined for a topic, access control is inherited from an ancestor or
parent topic, as defined by the hierarchical structure of the topic tree. If no topic in
the hierarchy up to the topic root has an explicit ACL, the topic inherits the ACL of
the topic root.

Any defined principal that is known to the User Name Server can be associated
with a topic in this way.

Resolving ACL conflicts

If the principals in your broker domain include one or more users in more than
one group, the explicit or inherited ACL values might conflict. The following rules
indicate how a conflict is resolved:

e If the user has an explicit user ACL on the topic of interest, this always takes
priority and the broker verifies the current operation on that basis.

* If the user does not have an explicit user ACL on the topic of interest, but has
explicit user ACLs against an ancestor in the topic tree, the closest ancestor ACL
for that user takes priority and the broker verifies the current operation on that
basis.

¢ If there are no explicit user ACLs for the user on the topic of interest or its
ancestors, the broker attempts to verify the current operation on the basis of
group ACLs:

— If the user is a member of a group that has an explicit group ACL on the
topic of interest, the broker verifies the current operation on the basis of that
group ACL.

— If the user is not a member of a group that has an explicit group ACL on the
topic of interest, but is a member of a group with explicit group ACLs against
an ancestor in the topic tree, the closest ancestor ACL takes priority and the
broker verifies the current operation on that basis.

— If, at a particular level in the topic tree, the user ID is contained in more than
one group with an explicit ACL, permission is granted if any of the
specifications are positive; otherwise it is denied.

You cannot associate ACLs with topics that include one or more wildcard
characters. However, access from your client application is resolved correctly when
the subscription registration is made, even when that application specifies a
wildcard character in the topic.

Security 89

PublicGroup authorizations

In addition to the groups that you define, WebSphere Message Broker provides an
implicit group, PublicGroup, to which all users automatically belong. This implicit
group simplifies the specification of ACLs in a topic tree. In particular, this group
is used in the specification of the ACL for the topic root. Note that the default
setting of the topic root allows publish and subscribe operations for the
PublicGroup. You can view and change this ACL using the workbench, but you
cannot remove it. It determines the default permissions for the entire topic tree.
You can specify ACLs for the PublicGroup elsewhere in the topic tree, wherever
you want to define permissions for all users.

If you have a principal named Public defined in your existing security
environment, you cannot use this for topic-based security. If you specify this
principal within an ACL, it is equated to PublicGroup and therefore always allows
global access.

maqbrkrs authorizations

WebSphere Message Broker grants special publish/subscribe access control
privileges to members of the mgbrkrs group, and to the corresponding Domain
mgqbrkrs global group if appropriate.

Brokers need special privileges to perform internal publish and subscribe
operations in networks where there is access control. When you create a broker in
such a network, you must specify a user ID that belongs to the group mgbrkrs as
the service user ID for the broker. The mqgbrkrs group is given implicit privileges
so that its members can publish, subscribe and request the persistent delivery of
messages on the topic root (""). All other topics inherit these permissions. If you
attempt to configure an ACL for the mqgbrkrs group using the workbench, this
ACL is ignored by WebSphere Message Broker.

ACLs and system topics
Messages that are used for internal publish and subscribe operations are published

throughout the broker domain using system topics, which begin with the strings
"$SYS" and "$ISYS".

These topics can only published from, and subscribed to, members of the mgbrkrs
group, except for the following two scenarios:

1. If you are migrating topics from WebSphere MQ Publish/Subscribe, you can
configure ACLs on topics that begin with the string "$SYS/STREAM".

2. Clients can subscribe to topics that begin with the string "$SYS"; this means
that applications that provide a management function can subscribe to the
broker for administrative events.

Do not configure ACLs on topics that begin with the string "$ISYS". You are not
prevented from doing so, but the ACLs are ignored.

Setting access control on topics

Any user that has an object-level security ACL that gives full control permission to
the root topic object, can define and manipulate the ACLs that define which
principals can publish on, and subscribe to, which topics. ACLs can also limit
delivery of persistent messages, and define the level of message protection.

All defined principals can be associated with any topic; the permissions that can be
set are shown in the following table:

90 Configuration, Administration, and Security

Option Description

Publish Permits or denies the principal to publish messages on this topic.
Subscribe Permits or denies the principal to subscribe to messages on this topic.
Persistent Specifies whether the principal can receive messages persistently. If the

principal is not permitted, all messages are sent non-persistently. Each
individual subscription indicates whether the subscriber requires
persistent messages.

QoP Level Specifies the level of message protection that is enforced. One of the
following four values can be chosen:

* None

* Channel Integrity

* Message Integrity

* Encrypted

The default value is 'None'.

Persistent access control behavior is not identical to the publish and subscribe
control:

* Clients that are denied Publish access have their publication messages refused.
* Clients that are denied Subscribe access do not receive the publication.

* The persistent access control does not deny the message to subscribers, but
denies them persistence, so denied subscribers always receive messages, subject
to their subscribe access control, but always have the message sent to them
non-persistently, regardless of the persistence of the original message.

Inheritance of security policies

Typically, topics are arranged in a hierarchical tree. The ACL of a parent topic can
be inherited by some or all of its descendent topics that do not have an explicit
ACL. Therefore, it is not necessary to have an explicit ACL associated with each
and every topic. Every topic has an ACL policy which is that of its parent. If all
parent topics up to the root topic do not have explicit ACLs, that topic inherits the
ACL of the root topic.

For example, in the topic tree shown below, the topic root is not shown but is
assumed to have an ACL for PublicGroup whose members can publish, subscribe,
and receive persistent publications. (The symbol "=" means "not".)
Inheriting ACLs in a topic tree

Publish ACL: joe

A » Subscribe ACL: Public Group
Persistent ACL: —1Public Group

Publish ACL: joe
K P '

> Persistent ACL: joe
Publish ACL: allen <-----B
Subscribe ACL: HR, —1Public Group
\ Publish ACL: mary, joe

N-------- » Subscribe ACL: nat
Persistent ACL: Public Group, —1nat

Security 91

The following table shows the ACLs, inherited in some cases, that result from the
topic tree shown in the figure:

Topic Publishers Subscribers Persistent

A only joe everyone no-one

A/P only joe everyone only joe

A/K only joe everyone no-one

A/K/M only joe everyone no-one

A/K/M/N only mary, joe everyone everyone except nat
A/B allen, joe HR no-one

Dynamically created topics

Topics that are not explicitly created by the system administrator, but are created
dynamically when a client publishes or subscribes to messages, are treated in the
same way as those that are created by the system administrator, but they do not
have explicitly defined ACLs. That is, the ACLs for dynamically created topics are
inherited from the closest ancestor in the topic tree that has an explicit policy. It is
therefore not necessary to define leaf topics in the tree if they do not have explicit
ACLs.

ACLs and wildcard topics

With WebSphere Message Broker you cannot associate an explicit security policy
with a wildcard topic. For example, you cannot associate an ACL with topic "A/+",
which represents a two level hierarchy and includes "A/B", "A/K", and "A/P".

However, WebSphere Message Broker does guarantee correct access mediation
when a client application subscribes to a wildcard topic.

For example, the topic "A/+" does not, and cannot, have a security policy explicitly
associated with it. Therefore, "A/+" inherits its policy from "A". Any user can
subscribe to "A/+" because the subscribe ACL includes everyone.

When a message is published on "A/P" or "A/K", the broker delivers it to the user
who subscribed to "A/+". However, when a message is published to "A/B", that
message is only delivered to subscribers who are in the HR group.

If the system administrator changes the subscribe ACL of any topic that matches
"A/+", the broker correctly enforces the ACL when the message is delivered.
Subscribing to a wildcard topic has the semantics to deliver messages on all topics
that match the wild card, and for which the subscriber has authorization to receive
that message.

ACLs and subscription resolution

The broker enforces access control through the topic of the message to be
delivered. Messages are delivered only to those clients that have not had subscribe
access to that topic denied, either explicitly or through inheritance. Because a
subscription can contain a wildcard character, the actual match against the topic
namespace, and hence the topic ACLs, cannot be made when the subscription is
received. The decision to deliver a message to a subscriber is made only when a
specific message with a topic is being processed by the message broker.

Activating topic ACL updates
Updates to a topic ACL do not become active until deployed and activated across
the broker domain from the WebSphere Message Broker workbench.

92 Configuration, Administration, and Security

You must have an object-level security ACL that gives full control permission to
the root topic object.

Authentication services

Authentication services are supported only between client applications that use the
WebSphere MQ Real-time Transport and WebSphere Message Broker
Real-timelnput and Real-timeOptimizedFlow nodes.

The WebSphere Message Broker authentication services verify that a broker and a
client application are who they claim they are, and can therefore participate in a
publish/subscribe session.

Each participant in the session uses an authentication protocol to prove to the
other that they are who they say they are, and are not an intruder impersonating a
valid participant.

The WebSphere Message Broker product supports the following four protocols:
* P - simple telnet-like password authentication

* M - mutual challenge-response password authentication

* S - asymmetric SSL

* R - symmetric SSL

The first two of these protocols and their infrastructure requirements are described
in [“Simple telnet-like password authentication” on page 94| and [“Mutuall
[challenge-response password authentication” on page 95| respectively. Asymmetric
and symmetric SSL protocols are described in [“SSL authentication” on page 26,

The protocols vary in strength, in terms of providing protection against
participants that are not valid participants in the session; P is the weakest and R is
the strongest.

Configuring authentication protocols

The set of protocols that can be supported by a specific broker in the broker
domain can be configured using the workbench. One or more protocols can be
specified for each broker. Use the workbench to enable or disable authentication on
each Real-timelnput node that is defined for a particular broker. When
authentication is enabled at a Real-timelnput node, that node supports the full set
of protocols specified for its corresponding broker. The configuration options are
illustrated in the following diagrams:

Overview of authentication configuration

Security 93

Workbench user

Defines protocol set
for each broker

Enables or disables

authentication for each
Real-timelnput node

Broker

User Name Server

User/Password User / password

information
Table built from the file » User/Password «
specified in

AuthProtocolDataSource

v
Other brokers

Two-stage runtime authentication process

Stage 1 - Determine protocol for session

Application Broker

(Run by User: Dave) User/Password

Protocol

negotiation
PM < MP

Mutual-challenge
Default protocols response protocol
supported by application, chosen for this session
may be overriden
through client settings

Stage 2 - Drive chosen protocol

Application Authenticate Dave

L

Broker

(Run by User: Dave) Allow/Deny

Simple telnet-like password authentication

This protocol can also be described as password in the clear because the password
passes un-encrypted over the network. The client application connects to the
Real-timeInput node using TCP/IP. The input node requests that the client identify
itself. The client sends its "userid" and its password.

This simple protocol relies on both the client and the broker knowing the password
associated with a user ID. In particular, the broker needs access to a repository of
user and password information. The user ID and password information is

94 Configuration, Administration, and Security

distributed by theUser Name Server to all the brokers in a WebSphere Message
Broker product's domain. The User Name Server extracts user and password
information from an operating system file.

The User Name Server approach allows for the centralized maintenance of the
source of users and passwords, with automatic distribution of the information to
brokers, and automatic refreshes of the information if required. It also provides
availability benefits, because user and password information is maintained
persistently at each broker.

Each client application must know its own user ID and keep its password secret.
When creating a connection, a client specifies its credentials as a name/password
combination.

This protocol provides relatively weak security. It does not compute a session key,
and should only be used in environments where there are no "eavesdroppers" and
no untrusted "middle-men".

In the case where user and password information is stored in a flat file on the User
Name Server system, the passwords are stored and distributed "in-the-clear".

The computational load on the client and server is very light.

Mutual challenge-response password authentication

This is a more sophisticated and secure protocol that involves the generation of a
secret session key. Both the client and the server compute this key using the client's
password. They prove to each other that they know this secret through a challenge
and response protocol.

The client must satisfy the server's challenge before the server satisfies the client's
challenge. This means that an attacker impersonating a client can gather no
information to mount an "offline" password guessing attack. Both the client and
the server prove to each other that they know the password, so this protocol is not
vulnerable to "impersonation” attacks.

As in the case of the simple telnet-like password protocol, the broker must have
access to user and password information. Information about the user ID and
password is distributed by the User Name Server to all the brokers in the domain.
The User Name Server extracts user and password information from an operating
system file.

Each client application must know its own user ID and keep its password secret.
When creating a connection, a client specifies its credentials as a name/password
combination.

Computational demands on both client and server are fairly modest.

Message protection

The authentication services provided by WebSphere Message Broker ensure that
only legitimate message brokers and client applications can connect to each other.
However, a hacker might still be able to observe messages in transit or interfere
with messages on established connections. Message protection provides security
options to protect your messages against such activities.

You cannot use message protection if you are using 'simple telnet-like password
authentication'.

Security 95

Because the use of message protection can have an adverse affect on the
performance of your publish/subscribe system, and because security is not equally
important for all messages, you might want to define different levels of message
protection for different messages. You do this by assigning a Quality of Protection
(QoP) value to each topic in your publish/subscribe system.

There a four QoP values. They give the following levels of protection:

n This is the default value. It gives no message protection.

c This provides channel integrity. With this level of protection, hackers are
unable to insert or delete messages without being detected.

m This provides message integrity. With this level of protection, hackers are
unable to change the content of a message without being detected.

e This provides message encryption. With this level of protection, hackers are
unable to look at the content of a message.

The protection levels are cumulative. For example, if you specify message
encryption, you also get message integrity and channel integrity; if you request
message integrity, you also get channel integrity.

If any QoP settings are made, all clients that connect to the broker must use a
security level that supports message integrity or message encryption.

Securing the publish/subscribe domain

Use appropriate options to secure your publish/subscribe domain.

The following topics describe the actions that you can take to secure your
publish/subscribe domain:

* |[“Enabling topic-based security” on page 79|

+ [“Creating ACL entries” on page 99|

* [“Enabling SSL for the Real-time nodes” on page 71|

+ [“Using message protection” on page 102

* [“Securing WebSphere MQ resources” on page 103|

For more information, see [“Publish/subscribe security” on page 88| and [“Security]
[overview” on page 3

Enabling topic-based security

If your applications use the publish/subscribe services of a broker, you can apply
an additional level of security to the topics on which messages are published and
subscribed. This topic-based security is managed by the User Name Server.

Before you start:

Before you create a User Name Server, refer to [‘Considering security for a User]
[Name Server” on page 79

To enable topic-based security, complete the following steps:

1. Create a User Name Server. For more information, refer to [“Creating a User]
[Name Server” on page 215

96 Configuration, Administration, and Security

2. On the mgsicreatebroker command (or the mqsichangebroker command if you
are using an existing broker), select the -j flag and set the -s parameter to the
name of the queue manager for the User Name Server .

3. Set the -s parameter on the mgsicreateconfigmgr or mqsichangeconfigmgr
command to the name of the queue manager for the User Name Server.

4. Create ACLs for the topics that require additional security. For more
information, see |[“Creating ACL entries” on page 99,

5. Ensure that the broker's service user ID has authority to perform the following
actions:

a. Get messages from each input queue included in a message flow
b. Put messages to any output, reply, and failure queues included in a
message flow.

6. Ensure that the user IDs under which publish and subscribe applications run
have sufficient authority to put messages to and get messages from message
flow queues:

a. Authorize publish applications to put messages to the input queue of the
message flow.

b. Authorize applications that register subscriptions to put messages to the
SYSTEM.BROKER.CONTROL.QUEUE queue.

c. Authorize subscribe applications to get messages from the queue to which
messages are published.

d. Authorize publish and subscribe applications to get messages from the
reply queue.

If you are issuing publish/subscribe requests from a JMS client, additional security
options are available. Refer to[‘SSL authentication” on page 26/[“Quality of]
[protection” on page 27, and [“Authentication services” on page 93|

Go to[“Considering security for a Configuration Manager” on page 53

Considering security for a User Name Server

Complete this task by answering the following question:

Have you enabled topic-based security in your broker?

1. No: Go to [“Considering security for a Configuration Manager” on page 53|

2. Yes: You need a User Name Server. Go to [“Deciding which user accounts can|
fexecute User Name Server commands” on page 80.

Deciding which user accounts can execute User Name Server
commands

During this task you decide which permissions are required for the user IDs that:
* Create, change, list, delete, start, and stop a User Name Server
* Display, retrieve, and change trace information.

Answer the following questions:

1. Is your User Name Server installed on a Linux or UNIX operating system?
a. No: Go to the next question.
b. Yes: Ensure that the user ID is a member of the mqbrkrs group.

Go to [“Deciding which user account to use for the User Name Server|
lservice ID” on page 80

Security 97

2. Are you executing User Name Server commands under a Windows local
account?

a. No: Go to the next question.

b. Yes: Assume that your local account is on a computer named, for example,
WKSTN1. When you create a User Name Server, ensure that your user ID is
defined in your local domain. When you create or start a User Name Server,
ensure that your user ID is a member of WKSTN1\ Administrators.

Go to[“Deciding which user account to use for the User Name Server]
lservice ID” on page 80,

3. Are you executing User Name Server commands under a Windows domain
account?

a. Yes: Assume that your computer named, for example, WKSTN]1, is a
member of a domain named DOMAINI1. When you create a User Name
Server using, for example, DOMAIN1\userl, ensure that DOMAIN1\userl
is a member of WKSTN1\ Administrators.

Go to[‘Deciding which user account to use for the User Name Server|
[service ID” on page 80

Deciding which user account to use for the User Name Server
service ID

When you set the service ID with the -i option on the mgsicreateusernameserver or
mgsichangeusernameserver command, you determine the user ID under which the
User Name Server component process runs.

Answer the following questions:

1. Is your User Name Server installed on a Linux or UNIX operating system?
a. No: Go to the next question.
b. Yes: Ensure that the user ID is a member of the mgbrkrs group.

Go to [“Setting security on the User Name Server's queues” on page 81

2. Do you want your User Name Server to run under a Windows local account?
a. No: Go to the next question.
b. Yes: Ensure that your user ID has the following characteristics:
* It is defined in your local domain
* It is a member of the mqbrkrs group

* It has been granted the Logon as a service privilege in the Local Security
Policy in Windows, which you can access by selecting Control Panel >
Performance and maintenance > Administrative Tools > Local Security
Policy.

Go to|“Setting security on the User Name Server's queues” on page 81|

3. Do you want your User Name Server to run under a Windows domain
account?

a. Yes: Assume that your computer named, for example, WKSTNI1, is a
member of a domain named DOMAINI1. When you run a User Name
Server using, for example, DOMAIN1\userl, ensure that:

¢ The user ID (userl) has been granted the Logon as a service privilege in
the Local Security Policy in Windows, which you can access by selecting
Control Panel > Performance and maintenance > Administrative Tools
> Local Security Policy

* DOMAINI\userl is a member of DOMAIN1\Domain mgbrkrs

* DOMAIN1\Domain mgbrkrs is a member of WKSTN1\mgqbrkrs.

98 Configuration, Administration, and Security

Go to [“Setting security on the User Name Server's queues” on page 81

Setting security on the User Name Server's queues

When you run the mqsicreateusernameserver command, the mqbrkrs group gets
access authority to the following queues:

SYSTEM.BROKER.SECURITY.QUEUE
SYSTEM.BROKER.MODEL.QUEUE

Only the broker and the Configuration Manager require access to the User Name
Server's queues.

Go to|“Running the User Name Server in a domain environment” on page 81

Running the User Name Server in a domain environment

When the users that issue publish and subscribe commands are domain users, set
the -d option on the mgsicreateusernameserver command to the domain those
users come from. All users that issue publish and subscribe commands must come
from the same domain.

Creating ACL entries

You must create an access control list (ACL) for each new topic. See
[new topic” on page 294| for more information about doing this.

Enabling SSL for the Real-time nodes

Use optional authentication services between JMS clients and Real-timelnput and
Real-timeOptimizedFlow nodes.

In a default configuration, SSL authentication services are disabled.

To configure the product to use the SSL authentication services, complete the
following steps:

* Configure and start a User Name Server in a broker domain.

* Configure each Real-timelnput node to use authentication, and set your chosen
authentication protocol in each of the brokers that is to use the authentication
services.

* Edit a file that specifies client user IDs and passwords.
* Specify the names of the files that are required to implement the SSL protocol.

* For Real-time nodes when using multiple execution groups, set the
sslKeyRingFile and sslPassphraseFile properties on each execution group
separately using the mqsichangeproperties command.

Configuring the User Name Server

The User Name Server distributes to the brokers passwords that are required to
support these authentication protocols.

To configure the User Name Server to support authentication, specify the following
two parameters on either the mgsicreateusernameserver or the
mgsichangeusernameserver command:

* AuthProtocolDataSource describes the location of an local file that contains the
information that is required to support the authentication protocols.

Security 99

* The -j flag indicates whether the file that is pointed to by
theAuthProtocolDataSource parameter contains group and group membership
information in addition to password information.

* Set the -j flag if you want to support both authentication and publish/subscribe
access control in your broker domain, and you want to draw user and group
information from a file rather than from the operating system.

* Use the AuthProtocolDataSource parameter to specify the source of any
protocol-related information. For example, you can specify the name of a file
that contains user ID and password information. The user ID and password
information in this file must exactly mirror the operating system user ID and
password definitions. Make sure that you set the appropriate file system security
for this password file.

* The default location of this file is the WebSphere Message Broker home
directory. If you store the file in another location, specify the full path definition
of the location of the file.

 Stop and restart the User Name Server to implement the changes.

Use the -d flag on the mgsichangeusernameserver command to disable this option.
Configuring a broker

Configure a broker to support WebSphere Message Broker authentication services.
Specify two authentication and access control parameters and use the workbench
to configure the appropriate Real-timelnput nodes and the sets of protocols that
are to be supported on the broker.

The following steps show you how to do this.
1. Switch to the Broker Application Development perspective.
2. For each message flow in the Message Flow Topology:

a. Select the Real-timelnput or Real-timeOptimizedFlow node to open the
Properties view. The node properties are displayed.

b. Select Authentication.
3. For each broker in the Broker Topology:
a. Select the broker to open the Properties view. The broker properties are
displayed.
b. Enter the required value in Authentication Protocol Type.

Choose any combination of the options P, M, S, and R; for example, S, SR,
RS, R, PS, SP, PSR, SRM, MRS, and RSMP are all valid combinations of
options.

The order in which you specify the options is significant; the broker chooses
the first option that the client supports. If you want the broker always to
support the strongest protocol that the client supports, choose RSMP.

c. If you have chosen S or R as one of the options in Authentication Protocol
Type, specify the SSL Key Ring File Name and the SSL Password File
Name.

d. Click OK.

e. Use the mgsicreatebroker or mqgsichangebroker command, with the
following two parameters, to configure the broker:

UserNameServerQueueManagerName (-s)
This parameter defines the name of the queue manager that it

100 Configuration, Administration, and Security

associated with the User Name Server. Specify this parameter if you
require authentication services, publish/subscribe access control
services, or both.

Publish/Subscribe Access Control Flag (-j)
Set this flag in addition to specifying the
UserNameServerQueueManagerName parameter if you want to
use publish/subscribe access control services.

Use of the authentication services in the broker is enabled at the IP input
node level, not by a parameter on these commands.

Sample password files

Two sample files, password.dat and pwgroup.dat, are supplied with WebSphere
Message Broker.

* pwgroup.dat is a sample file that can be used when you set the -j flag.
* password.dat is a sample file that can be used in the default case.

The file password.dat has the following layout:

This is a password file.

Each line contains two required tokens delimited by
commas. The first is a user ID, the second is that user's
password.

#USERNAME PASSWORD

subscriber,subpw
admin,adminpw
publisher,pubpw

This file complements the user and group information that is retrieved by the User
Name Server from the operating system. User names that are defined in the file,
but are not defined in the operating system, are treated as unknown by the broker
domain. User names that are defined in the operating system, but are not defined
in the password file, are denied access to the system.

The file pwgroup.dat contains group information in addition to user and password
information. Each user entry includes a list of group names that specify the groups
that contain the user.

The file pwgroup.dat has the following layout:

#This is a password file.

#Each Tine contains two or more required tokens delimited by
#commas.The first is a user ID and the second is that user's
#password. ATl subsequent tokens

#specify the set of groups that the user belongs to.

#USERNAME PASSWORD GROUPS
subscriber,subpw,groupl,group2,group3
admin,adminpw,group2
publisher,pubpw,group2,group4

As mentioned above, this file can be used to provide the only source of user,
group, and password information for the broker domain.

Security 101

To deploy updated user and password information to the broker network if this
information is drawn from an operating system file, stop the User Name Server
and the brokers, update the file, and then restart the User Name Server and the
brokers.

If passwords are drawn from the operating system, updates are automatically
distributed to the brokers. Use normal operating system management tools to
change users or passwords.

Authentication in the JMS client

For client applications that use WebSphere MQ classes for Java Message Service
Version 6.0 or later, the client application supports two levels of authentication.

You can configure a TopicConnectionFactory to support either a
MQJMS_DIRECTAUTH_BASIC authentication mode or a
MQJMS_DIRECTAUTH_CERTIFICATE authentication mode. The
MQJMS_DIRECTAUTH_BASIC authentication mode is equivalent to a level of PM,
and the MQJMS_DIRECTAUTH_CERTIFICATE authentication mode is equivalent
to a level of SR.

If you have successfully configured authentication services for a Real-timelnput
node, a JMS client application must specify its credentials when creating a
connection. To make a connection for this configuration, the JMS client application
supplies a user ID and password combination to the
TopicConnectionFactory.createTopicConnection method; for example:

factory.createTopicConnection("userl", "userlpw");

If the application does not specify these credentials, or specifies them incorrectly, it
receives a JMS wrapped exception containing the MQJMS error text.

Using message protection

To use message protection (sometimes known as Quality of Protection (QoP)), set
the enableQopSecurity parameter of the mqsichangeproperties command to true.
The default value of this parameter is false.

To define a level of message protection for $SYS topics, use the sysQopLevel
parameter of the mqsichangeproperties command.

To define a level of message protection for $ISYS topics, use the isysQopLevel
parameter of the mqsichangeproperties command.

Choose one of the following values for these parameters:

n This is the default value. It gives no message protection.

c This provides channel integrity. With this level of protection, hackers
cannot insert or delete messages without being detected.

m This provides message integrity. With this level of protection, hackers
cannot change the content of a message without being detected.

e This provides message encryption. With this level of protection, hackers
cannot look at the content of a message.

102 Configuration, Administration, and Security

Securing WebSphere MQ resources

Secure the WebSphere MQ resources that your broker domain configuration
requires.

This information does not apply to z/OS.

Runtime components depend on a number of WebSphere MQ resources to operate
successfully. You must control access to these resources to ensure that the
components can access the resources on which they depend, and that these same
resources are protected from other users.

Some authorizations are granted on your behalf when commands are issued.
Others depend on the configuration of your broker domain.

* When you issue the command mgsicreatebroker, it grants put and get authority

on your behalf to the group mgbrkrs for the following queues:
SYSTEM.BROKER.ADAPTER.FAILED

— SYSTEM.BROKER.ADAPTER.INPROGRESS

- SYSTEM.BROKER.ADAPTER.NEW

— SYSTEM.BROKER.ADAPTER.PROCESSED

— SYSTEM.BROKER.ADAPTER.UNKNOWN

— SYSTEM.BROKER.ADMIN.QUEUE

- SYSTEM.BROKER.AGGR.CONTROL

- SYSTEM.BROKER.AGGR.REPLY

— SYSTEM.BROKER.AGGR.REQUEST

— SYSTEM.BROKER.AGGR.TIMEOUT

— SYSTEM.BROKER.AGGR.UNKNOWN

— SYSTEM.BROKER.CONTROL.QUEUE

— SYSTEM.BROKER.EDA.COLLECTIONS

— SYSTEM.BROKER.EDA.EVENTS

— SYSTEM.BROKER.EXECUTIONGROUP.QUEUE

— SYSTEM.BROKER.EXECUTIONGROUP.REPLY

— SYSTEM.BROKER.INTERBROKER.MODEL.QUEUE

— SYSTEM.BROKER.INTERBROKER.QUEUE

- SYSTEM.BROKER.MODEL.QUEUE

- SYSTEM.BROKER.TIMEOUT.QUEUE

- SYSTEM.BROKER.WS.ACK

- SYSTEM.BROKER.WS.INPUT

— SYSTEM.BROKER.WS.REPLY

* When you issue the command mgsicreateconfigmgr it grants put and get
authority on your behalf to the group mqbrkrs for the following queues:
- SYSTEM.BROKER.CONFIG.QUEUE

SYSTEM.BROKER.CONFIG.REPLY

SYSTEM.BROKER.ADMIN.REPLY

SYSTEM.BROKER.SECURITY.REPLY

SYSTEM.BROKER.MODEL.QUEUE

* When you issue the command mgsicreateusernameserver, it grants put and get
authority on your behalf to the group mqbrkrs for the following queues:
— SYSTEM.BROKER.SECURITY.QUEUE
— SYSTEM.BROKER.MODEL.QUEUE

* If you have created components to run on different queue managers, the
transmission queues that you define to handle the message traffic between the
queue managers must have put and setall authority granted to the local mgbrkrs
group, or to the service user ID of the component supported by the queue
manager on which the transmission queue is defined.

Security 103

* When you start the workbench, it connects to the Configuration Manager by
using a WebSphere MQ client/server connection. For details of WebSphere MQ
channel security, see "Setting up WebSphere MQ client security" in the Clients
section of the [WebSphere MQ Version 7 Information Center online| or [WebSphere
[MQ Version 6 Information Center online]

* When you create and deploy a message flow that includes nodes which
reference WebSphere MQ queues, grant get, inq, and put authority to the user
ID under which the broker is running.

104 Configuration, Administration, and Security

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

Part 2. Configuring the broker domain

Configuring WebSphere Message Broker .

Planning a broker domain . . .
Considering resource naming conventlons
Designing the WebSphere MQ infrastructure .

Considering performance in the broker domain

Configuring broker and user databases .
Databases overview . .
Creating the broker and user databases

Authorizing access to broker and user databases
Configuring databases for global coordination of
. 135

transactions .
Enabling ODBC connectlons to the databases
Enabling JDBC connections to the databases .
Using retained publications with a Sybase
database . .
Customizing the z/ OS env1ronment
z/0S customization overview . . .
Customizing UNIX System Services on z / OS
DB2 planning on z/OS
WebSphere MQ planning for z/ OS
Resource Recovery Service planning on z/OS
Defining the started tasks to z/OS Workload
Manager (WLM) Lo
Automatic Restart Manager plannlng
Mounting file systems
Checking the permission of the 1nstallatron
directory .
Customizing the version of]ava on z / OS
Checking APF attributes of bipimain on z/OS
Collecting broker statistics on z/OS .
Configuring an execution group address space
as non-swappable on z/OS.
Creating WebSphere Message Broker
components on z/0OS.

WebSphere Message Broker and WebSphere MQ

setup verification .

Configuring broker domain components
Creating a broker . .
Creating an execution group usmg the
mgsicreateexecutiongroup command

Adding an execution group to a broker on z/OS
. 204
. 214
. 215
. 229
. 231
. 233
. 234
. 236

Creating a Configuration Manager
Enabling a User Name Server .

Creating a User Name Server .

Using the Default Configuration w1zard
Using the Command Assistant wizard .
Verifying components

Connecting components .

Tuning the broker . .
Modifying the broker's pubhsh/ subscrlbe
engine. .
Preparing the env1ronment for WebSphere
Adapters nodes . .
Preparing the environment for IMS nodes .
Modifying a broker

Viewing broker properties .

© Copyright IBM Corp. 2000, 2010

. 107
. 107
. 108
. 110

115

. 119
. 121
. 126

133

137

. 154

. 162
. 163
. 164

174

. 176
. 179

180

. 180
. 180
. 181

. 182
. 183

183

. 183

. 184

. 184

. 187

. 188
. 190

. 202

204

. 241

. 243
. 244
. 245
. 248

Changing the operation mode of your broker
Checking the operation mode of your broker
Modifying a Configuration Manager

Viewing Configuration Manager properties
Modifying a User Name Server

Moving from WebSphere Message Broker on a
distributed system to z/OS. .
Deleting an execution group using the
mgsideleteexecutiongroup command

Deleting an execution group from a broker on
z/0S . .

Deleting a broker . . .

Deleting a Configuration Manager

Disabling a User Name Server.

Deleting a User Name Server .

Configuring a broker domain in the workbench

Creating a domain connection . .
Modifying domain connection propertles .
Deleting a domain connection .

Adding a broker to a broker domain

Copying a broker .

Modifying broker propertles

Renaming a broker .
Removing a broker from a broker domaln
Removing deployed children from a broker
Adding an execution group to a broker in the
workbench . .

Copying an execution group .
Modifying execution group properties .
Renaming an execution group .

Deleting an execution group using the Message
Broker Toolkit .

Removing deployed ch1ldren from an executlon

group .

Configuring a pubhsh/ subscrlbe topology

Setting up the broker domain for
publish/subscribe .
Operating a publish/ subscrlbe domaln

Configuring global coordination of transactions
(two-phase commit) .

The transactional model . .

Configuring global coordination w1th DBZ by
using a 32-bit queue manager .

Configuring global coordination w1th DB2 by
using a 64-bit queue manager .

Configuring global coordination with Informlx
by using a 32-bit queue manager .

Configuring global coordination with Informlx
by using a 64-bit queue manager .

Configuring global coordination with Oracle by
using a 32-bit queue manager .

Configuring global coordination with Oracle by
using a 64-bit queue manager .

Configuring global coordination with Sybase

Configuring the workbench

Changing workbench preferences.

248
250

. 250
. 254
. 254

. 256

. 257

. 258
. 259
. 260
. 262
. 263

264

. 265
. 267
. 269
. 269
. 271
. 271
. 272
. 272
. 273

. 274
. 275
. 276
. 276
. 276

. 277
. 277

. 278
. 294

. 296
. 297

. 300

. 303

. 306

. 308

.31

. 315

318

. 321
. 321

105

Changing workbench capabilities.

Changing Broker Administration preferences

Configuring CVS to run with the Message
Broker Toolkit .

Configuring the Message Broker Toolkrt to run

Rational ClearCase

Displaying selected pro]ects in workmg sets .

Changing locales . .
Changing your locale on Lmux and UNIX
systems . .
Changing your locale on Wrndows .
Changing your locale on z/OS
Code page converters .

106 Configuration, Administration, and Security

. 322

322

. 323

. 324
. 324
. 325

. 325
. 327
. 327
. 328

Configuring WebSphere Message Broker

Configure WebSphere Message Broker by creating and setting up all the databases,
components, and connections that are required for a broker domain, to which you
can deploy message flow applications.

If you want to create a simple configuration on Windows or Linux on x86 to learn
about WebSphere Message Broker, and to run the samples in the Message Broker
Toolkit Samples Gallery, run the Default Configuration wizard. The Default
Configuration wizard creates the Default Configuration, which is a basic broker
domain, including a broker database, a broker, a Configuration Manager, and a
queue manager. See [“Using the Default Configuration wizard” on page 229

You can view samples only when you use the information center that is integrated
with the Message Broker Toolkit.

To configure WebSphere Message Broker:
1. [Plan the system|
2. [Create and configure the databases}

3. If iou are configuring a broker domain on z/0OS, [Customize the z/OS|

environment

4. Ensure that you have the correct authorization and permissions to create and
access components. For more information, see [Authorization for configuration|
[tasks” on page 17| and [‘Setting up broker domain security” on page 46

5. |Create the components]

6. If you are using the Message Broker Toolkit, [Configure the broker domain in|

7. If you want the broker domain to support publish/subscribe messaging,
[Configure the domain for publish/subscribe messaging]

Planning a broker domain

When you start to plan a broker domain, you must first consider your resource
naming conventions, the design of the WebSphere MQ infrastructure, and factors
that might affect system performance.

The following topics describe these factors:

* [“Considering resource naming conventions” on page 108|
* |“Designing the WebSphere MQ infrastructure” on page 110
* |“Considering performance in the broker domain” on page 115

You must also consider your domain component requirements:

1. Brokers: The number of brokers that you require in your broker domain
depends on the following factors:

a. Performance: What is the required message throughput? See
Imessage flow throughput” on page 117

What is the size of the messages that are being processed? Larger messages
take longer to process. A few brokers handling many messages might

© Copyright IBM Corp. 2000, 2010 107

degrade overall performance of the broker domain. See

[performance in the broker domain” on page 115

b. Operation mode: The mode in which your broker is working, can affect the
number of execution groups and message flows that you can deploy, and
the types of node that you can use. See [‘Restrictions that apply in each|
foperation mode” on page 384/ (This option does not apply to brokers that
you create on z/OS systems.)

c. Application independence: Do you need to isolate applications from each
other? You might want to separate applications that serve different
functions; for example, personnel and finance.

d. Do the brokers need to handle publish/subscribe? See
[publish /subscribe applications}

2. Configuration Manager: This component is an interface between the
configuration repository, the set of brokers in the domain, and the workbench.
It uses WebSphere MQ messages to communicate with the brokers, and thus
many brokers in a broker domain (if poorly designed) can cause congestion at
the Configuration Manager.

If you think your configuration might experience these problems, consider
dividing the brokers into more than one domain where related brokers are kept
together. You can then establish connections with each domain; see

[domain connection” on page 265

3. User Name Server: Consider the following factors if you have a User Name
Server in your broker domain:

a. Performance: If you have many brokers in your broker domain, the requests
that they send to the User Name Server can be handled more quickly if you
configure more than one User Name Server. More than one User Name
Server might also be beneficial, in terms of network traffic, if your broker
domain is complex.

b. Resilience: Although no standby mechanism is provided by WebSphere
Message Broker, you might want to be able to redirect requests to a second
User Name Server if a system error occurs on the system of your first User
Name Server.

Considering resource naming conventions

When you plan a new WebSphere Message Broker network, one of your first tasks
must be to establish a convention for naming the resources that you create within
this network.

Information is provided about the following resources:

° IProduct component naming conventions|

* [WebSphere MQ naming conventions|

+ [Database naming conventions|

Naming conventions for product components and associated
resources

Establish a naming convention for all the WebSphere Message Broker resources in
your broker domain to ensure that names are unique, and that users creating new
resources can be confident of not introducing duplication or confusion.

Consider the names that you use for the following product components and
resources:

Configuration Manager components

108 Configuration, Administration, and Security

When you create a Configuration Manager, give it a name that is unique
on your system. Names must be unique between Configuration Manager
components, and between Configuration Manager components and
brokers. Configuration Manager names are case sensitive except on
Windows platforms.

Broker components

When you create a broker, give it a name that is unique within your broker
domain. You must use the same name for that broker when you create it
on the system in which it is installed (using the command
mgsicreatebroker) and when you create a reference to that broker in the
workbench (in the broker domain topology). The latter is a representation
of the physical broker (created by mgsicreatebroker) in the configuration
repository, and this single name links the two. Broker names are case
sensitive except on Windows platforms.

Execution groups
Each execution group name must be unique within a broker.
Message flows and message processing nodes

Each message processing node must be unique within the message flow it
is assigned to. For example, if you include two MQOutput nodes in a
single message flow, provide a unique name for each one.

Message flow names must be unique within the broker domain. All
references to that name within the broker domain are always to the same
message flow. You can assign the same message flow to many brokers.

Message sets and messages

Each message name must be unique within the message set to which it
belongs.

Message set names must be unique within the broker domain. Any
reference to that name within the broker domain is always to the same
message set. You can therefore assign the same message set to many
brokers.

The User Name Server is not allocated a name when you create it. It is identified
only by the name of the WebSphere MQ queue manager that hosts the services it
provides.

WebSphere MQ naming conventions

All WebSphere Message Broker resources have dependencies on WebSphere MQ
services and objects. You must therefore also consider what conventions to adopt
for WebSphere MQ object names. If you already have a WebSphere MQ naming
convention, use a compatible extension of this convention for WebSphere Message
Broker resources.

When you create a broker or a Configuration Manager, you must specify a queue
manager name. This queue manager is created for you if it does not already exist.

Because the broker and Configuration Manager each use a unique set of

WebSphere MQ queues, they can share one queue manager, if appropriate.
However, every broker must have a dedicated queue manager.

Configuring WebSphere Message Broker 109

If you set up a User Name Server in your broker domain, this also uses a unique
set of WebSphere MQ queues. The User Name Server can therefore also share a
queue manager with a broker, or the Configuration Manager, or both.

Ensure that every queue manager name is unique within your network of
interconnected queue managers, whether or not every queue manager is in your
WebSphere Message Broker network. This ensures that each queue manager can
unambiguously identify the target queue manager to which any given message
must be sent, and that WebSphere Message Broker applications can also interact
with basic WebSphere MQ applications.

WebSphere MQ supports a number of objects defined to queue managers. These
objects (queues, channels, and processes) also have naming conventions and
restrictions.

In summary, the restrictions are:

* All names must be a maximum of 48 characters in length (channels have a
maximum of 20 characters).

* The name of each object must be unique within its type (for example, queue or
channel).

¢ Names for all objects starting with the characters SYSTEM. are reserved for use
by IBM.

Additionally, there is a restriction to the length of the user identifier on each
platform:

+ On AIX®, UNIX systems, and z/OS, the maximum length is eight characters.
* On Windows, the maximum length is 20 characters.

There are a few restrictions for naming resources: see [“Naming conventions for|
[WebSphere Message Broker for z/OS” on page 704

Database naming conventions

Consider the naming conventions you use for databases that you create for
WebSphere Message Broker brokers, and for databases that you create for
application use.

Database tables that are created and maintained by brokers to hold operational and
configuration data can be unique and local to the broker, or can be shared, because
the rows of the tables that are specific to each individual broker incorporate the
name of that broker. You might need to align the naming of all these databases
with other databases that are in use in your broker domain.

Ensure that the databases that you use for application data, which are accessed
through your deployed message flows, are uniquely named throughout your
network, so that confusion and errors are avoided by all your users.

Designing the WebSphere MQ infrastructure

When you design your broker domain, consider the WebSphere MQ resources that
are required to support the components in your domain configuration, and the
applications that connect to the brokers to supply or receive messages.

110 Configuration, Administration, and Security

Runtime components

WebSphere Message Broker runtime components use WebSphere MQ to exchange
internally generated messages that provide information, status, and instructions
that concern the operation of those components. Connections are also required by
each workbench with each Configuration Manager with which it communicates.

Some of these resources that are required are created for you when you create the
components that depend on them. Others depend on the configuration of your
broker domain; you must create these resources yourself.

The requirements associated with each type of component are described in the
following topics:

* [“WebSphere MQ resources for the broker” on page 113|

* [“WebSphere MQ resources for the Configuration Manager” on page 114]

* [“WebSphere MQ resources for the User Name Server” on page 114

Applications and message flows

Your applications exchange messages and other data by communicating with
message flows that are running in the broker. You can connect your applications to
the broker by using one of the supported communications methods. If your
applications are written to use WebSphere MQ, the requirement for the channels or
client connections are determined by the types of nodes that you include in your
message flows. These resources are application-specific, and you must create these
resources yourself.

The following nodes might require WebSphere MQ resources:
* MQInput, MQOutput, and MQOptimizedFlow

* MQReply and MQGet

* Real-timelnput and Real-timeOptimizedFlow

¢ SCADAInput and SCADAOutput

For more information about creating resources, see the Intercommunication section
of the [WebSphere MQ Version 7 Information Center online| or [WebSphere MQ|
[Version 6 Information Center online]

Planning for publish/subscribe application support

WebSphere Message Broker supports WebSphere MQ Version 7.0; both the broker,
and the queue manager it runs on, support publish/subscribe engines, and you
can choose the most suitable option for your publish/subscribe applications.

If you install WebSphere MQ Version 7.0, and either create or migrate your broker
queue managers to this version, you can choose whether the broker's or the queue
manager's publish/subscribe engine controls all publish/subscribe application
messages.

The state of the broker publish/subscribe engine overrides the state of the queue
manager publish/subscribe engine. When you start a broker on a computer on
which you have installed WebSphere MQ Version 7.0, the broker checks the status
of its predefined publish/subscribe configurable service; the default initial
configuration is for the broker to control all publish/subscribe application

Configuring WebSphere Message Broker 111

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

messages. In this default state, the broker checks, and if necessary, resets, the status
of the queue manager's publish/subscribe engine, so that control is retained by the
broker.

If you migrate your broker domain from WebSphere MQ Version 6.0 to
WebSphere MQ Version 7.0, your publish/subscribe clients and applications are
unaffected because the default state of the broker's configurable service ensures
that the publish/subscribe engine of all broker queue managers is disabled.

When you install or migrate to WebSphere MQ Version 7.0, you can choose to use

the queue manager's publish/subscribe engine. Although the two engines provide

similar support, you might prefer to enable the queue manager's publish/subscribe
engine if your environment confirms to one or more of the following scenarios:

* Your applications typically generate a large number of subscriptions. The
broker's publish/subscribe engine can support a maximum of about 25000
subscriptions, but the queue manager's publish/subscribe engine has no
restrictions.

* You want to use high performance publish/subscribe messages with streaming
and non-queue based (put to topic) messages.

* You want a consistent model across your WebSphere MQ domain; for example,
you want to use the WebSphere MQ security model.

* You have a large publish/subscribe application network already in place, based
on WebSphere MQ functions. If you change this network to use the broker's
publish/subscribe engine, you cannot migrate the resources associated with your
applications; that is, the registrations, subscriptions, and retained subscriptions.
In addition, the ACLs you have defined are disabled. You would have to
manually recreate these resources in the broker's match space.

If you decide that the queue manager's publish/subscribe engine provides the best
solution for your environment, the following restrictions apply in the broker
application environment:

¢ The Real-timelnput, Real-timeOptimizedFlow, SCADAInput, and SCADAOutput
nodes are no longer supported. You can deploy message flows that include these
nodes, but when a message is received, the broker throws a recoverable
exception.

* Samples that use these nodes no longer work; for example, the Scribble sample.

* You cannot use the following views in the Broker Administration perspective of
the workbench to manage publish/subscribe resources associated with the
broker:

— Publish/Subscribe Topology

— Topics

— Subscriptions

These views continue to display and interact with the state of publish/subscribe
resources that are associated with the broker's publish/subscribe engine, which
are inactive and irrelevant after you have disabled that engine.

Use WebSphere MQ Explorer for all actions related to resources associated with
the queue manager's publish/subscribe engine.

For more information about the broker's publish/subscribe engine, see
[the broker's publish/subscribe engine” on page 241

For more information about the queue manger's publish/subscribe engine, access
[What's new in publish/subscribe in WebSphere MQ V7.0l For details of other
enhancements and additions, see [What's new in WebSphere MQ V7.0l

112 Configuration, Administration, and Security

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.amqnar.doc/ps22330_.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.mqovervw.doc/mq50030_.htm

WebSphere MQ resources for the broker

Each broker depends on a number of WebSphere MQ resources: some are required,
others are optional, and depend on your environment and requirements. Some of
these resources are created for you, but others you must define for yourself.

WebSphere MQ resources created for you

When you create a broker, the following WebSphere MQ resources are created for

you:

¢ On distributed systems, the queue manager for the broker. Each broker must be
associated with a dedicated queue manager. Specify a queue manager name
when you create the broker. If this queue manager does not exist, it is created
for you.
You can specify the same queue manager for a single broker, a Configuration
Manager, and the User Name Server if you create all three components on the
same computer.

* Fixed-name queues on the queue manager that hosts this broker. These queues
are used by the broker to exchange messages with other components in your
broker domain.

WebSphere MQ resources that you must create yourself

Depending on the setup of your broker, you might need to create some WebSphere
MQ resources yourself. You might need some or all the following resources:

* If you create a broker on z/0OS, you must create the queue manager. See
[‘Creating a broker on z/OS” on page 195| for more details.

e If the broker and Configuration Manager do not share a queue manager, define
the channels and transmission queues to support communication between the
two queue managers.

* If the broker and User Name Server do not share a queue manager, define the
channels and transmission queues to support communication between the two
queue managers.

* Define listener connections on the broker queue manager. You must define one
listener connection for every protocol that your applications use; for example,
TCP/1P.

e If the broker is to communicate with other brokers, for example in a
publish/subscribe network, define the channels and transmission queues to
permit two-way communication between the broker queue managers.

Create WebSphere MQ resources by using one of the following commands and
utilities:

* runmgsc

* The PCF interface

* WebSphere MQ Explorer

For more information about creating resources, see the Intercommunication section
of the [WebSphere MQ Version 7 Information Center online| or [WebSphere MQ)|
[Version 6 Information Center online]

Configuring WebSphere Message Broker 113

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

WebSphere MQ resources for the Configuration Manager

Each Configuration Manager depends on a number of WebSphere MQ resources:
some are required, others are optional and depend on your broker domain
requirements. Some of these resources are created for you: you must define others
yourself.

WebSphere MQ resources created for you

When you create a Configuration Manager, the following WebSphere MQ resources
are created for you:

e On distributed systems, the queue manager that will host this Configuration
Manager. Each Configuration Manager must be associated with a queue
manager. Specify a queue manager name when you create the Configuration
Manager. If this queue manager does not exist, it is created for you.

You can specify the same queue manager for a single broker, a Configuration
Manager, and the User Name Server if you create all three components on the
same computer.

* Fixed-name queues on the queue manager that hosts this Configuration
Manager. These queues are used by the Configuration Manager to exchange
messages with other components in your broker domain.

* A server connection for use by the Workbench.
WebSphere MQ resources that you must create yourself

Depending on the setup of your broker, you might need to create some WebSphere
MQ resources yourself. You might need some or all of the following resources:

* If you create a Configuration Manager on z/0S, you must create the queue
manager. See [“Creating a Configuration Manager on z/0S” on page 209| for
more details.

* Define the transmission queues and channels between the Configuration
Manager and each broker in your domain that the Configuration Manager will
manage, except for a broker that shares its queue manager with this
Configuration Manager.

* If the Configuration Manager and the User Name Server do not share a queue
manager, define the channels and transmission queues to support
communication between the two queue managers.

* Define listener connections on the queue manager associated with this
Configuration Manager for the workbench.

Create WebSphere MQ resources by using any of the following commands and
utilities:

* runmgsc

* The PCF interface

* WebSphere MQ Explorer

For more information about creating resources, see the Intercommunication section
of the [WebSphere MQ Version 7 Information Center online| or [WebSphere MQ|
[Version 6 Information Center online}

WebSphere MQ resources for the User Name Server

Each User Name Server depends on a number of WebSphere MQ resources: some
are required, others are optional and depend on your broker domain requirements.
Some of these resources are created for you: you must define others yourself.

114 Configuration, Administration, and Security

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

WebSphere MQ resources created for you

When you create a User Name Server, the following WebSphere MQ resources are
created for you:

* On distributed systems, the queue manager that will host this User Name
Server. Each User Name Server must be associated with a queue manager.
Specify a queue manager name when you create the User Name Server. If this
queue manager does not exist, it is created for you.

You can specify the same queue manager for a single broker, a Configuration
Manager, and the User Name Server if you create all three components on the
same computer.

* Fixed-name queues on the queue manager that hosts this User Name Server.
These queues are used by the User Name Server to exchange messages with
other components in your broker domain.

WebSphere MQ resources that you must create yourself

Depending on the setup of your broker, you might need to create some WebSphere
MQ resources yourself. You might need some or all of the following resources:

 If you create a User Name Server on z/0OS, you must create the queue manager.
See |“Creating a User Name Server on z/OS” on page 219| for more details.

¢ If the Configuration Manager and the User Name Server do not share a queue
manager, define the channels and transmission queues to support
communication between the two queue managers.

* Define the transmission queues and channels between the User Name Server
and every broker in your domain (apart from the broker that shares a queue
manager with the User Name Server).

* You must define listener connections on the User Name Server's queue manager
for components that do not share its queue manager. You must define one
listener connection for every protocol used.

Create WebSphere MQ resources by using any of the following commands and
utilities:

* runmgsc

* The PCF interface

* WebSphere MQ Explorer

For more information about creating resources, see the Intercommunication section
of the [WebSphere MQ Version 7 Information Center online| or [WebSphere MQ)|
[Version 6 Information Center online]

Considering performance in the broker domain

When you design your broker domain, and the resources associated with the
components, decisions that you make can affect the performance of your brokers
and applications.

Message flows
A message flow includes an input node that receives a message from an
application over a particular protocol; for example, WebSphere MQ. The
message must be parsed by the input node, although some parsers support
partial parsing which might reduce processing, because only the parts of
the message that are referenced are parsed. Other processing in a message

Configuring WebSphere Message Broker 115

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

flow that might affect performance are the amount, efficiency, and
complexity of ESQL, access to databases, and how many message tree
copies are made.

You must consider how you split your business logic; how much work
should the application do, and how much should the message flow do?
Every interaction between an application and a message flow involves I/O
and message parsing, and therefore adds to processing time. Design your
message flows, and design or restructure you applications, to minimize
these interactions.

For more information about these factors, see [Optimizing message flow]|

response times

Messages and message models
The type, format, and size of the messages that are processed can have a
significant effect on the performance of a message flow. For example, if
you process persistent messages, they have to be stored for safekeeping.

You might need to process messages with a well-defined structure; if so,
you can create MRM models for your messages. If you do not plan to
interrogate the structure, you can work with undefined messages, such as
BLOB messages.

If you are working in XML, be aware that it can be verbose, and therefore
produce large messages, but XML message content is easier to understand
than other formats, such as CWF. Field size and order might be important;
these factors can be included in your MRM model.

For more information about these factors, see [Optimizing message flow]|
response times| and [Performance considerations for regular expressions in|

TDS messagesl

Broker configuration and domain topology
You can configure your broker domain to include multiple brokers,
multiple systems, multiple execution groups, and so on. Your configuration
decisions can influence message flow performance, and how efficiently
messages can be processed.

For more information about these factors, see |[“Tuning the broker” on page
D36)" Optimizing message flow throughput” on page 117)and [Performance
considerations for Real-time transport|

All these factors are examined in more detail in the [Designing for Performance]
[SupportPac (IP04)l

For a description of common performance scenarios, review [Resolving problems|
[with performance]

For further articles about WebSphere Message Broker and performance, review
these sources:

* The[Business Integration Zone on developerWorks| This site has a search facility;
enter "performance" and review the links that are returned.

* The[developerWorks article on message flow performance}

+ The|developerWorks article on monitoring resource use}

* AldeveloperWorks article| that describes other available resources, including best
practices, tools, and performance data.

116 Configuration, Administration, and Security

http://www.ibm.com/support/docview.wss?uid=swg24006518
http://www.ibm.com/support/docview.wss?uid=swg24006518
http://www.ibm.com/developerworks/websphere/zones/businessintegration/
http://www.ibm.com/developerworks/websphere/library/techarticles/0406_dunn/0406_dunn.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0407_dunn/0407_dunn.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0403_dunn/0403_dunn.html

Optimizing message flow throughput

Each message flow that you design must provide a complete set of processing for
messages received from a certain source. This design might result in very complex
message flows that include large numbers of nodes that can cause a performance
overhead, and might create potential bottlenecks. You can increase the number of
message flows that process your messages to provide the opportunity for parallel
processing and therefore improved throughput.

The mode that your broker is working in can affect the number of message flows
that you can use; see [‘Restrictions that apply in each operation mode” on page]

You can also consider the way in which the actions taken by the message flow are
committed, and the order in which messages are processed.

Consider the following options for optimizing message flow throughput:

Multiple threads processing messages in a single message flow
When you deploy a message flow, the broker automatically starts an
instance of the message flow for each input node that it contains. This
behavior is the default. However, if you have a message flow that handles
a very large number of messages, the input source (for example, a
WebSphere MQ queue) might become a bottleneck.

You can update the Additional Instances property of the deployed message
flow in the BAR file: the broker starts additional copies of the message
flow on separate threads, providing parallel processing. This option is the
most efficient way of handling this situation, if you are not concerned
about the order in which messages are processed.

If the message flow receives messages from a WebSphere MQ queue, you
can influence the order in which messages are processed by setting the
Order Mode property of the MQInput node:

* If you set Order Mode to By User ID, the node ensures that messages
from a specific user (identified by the Userldentifier field in the MQMD)
are processed in guaranteed order. A second message from one user is
not processed by an instance of the message flow if a previous message
from this user is currently being processed by another instance of the
message flow.

* If you set Order Mode to By Queue Order, the node processes one
message at a time to preserve the order in which the messages are read
from the queue. Therefore, this node behaves as though you have set the
Additional Instances property of the message flow to zero.

For publish/subscribe applications that communicate with the broker over
any supported protocol, messages for a particular topic are published by
brokers in the same order as they are received from publishers (subject to
reordering based on message priority, if applicable). Therefore each
subscriber receives messages from a particular broker, on a particular topic,
from a particular publisher, in the order that they are published by that
publisher.

However, it is possible for messages, occasionally, to be delivered out of
order. This situation can happen, for example, if a link in the network fails
and subsequent messages are routed by another link.

Configuring WebSphere Message Broker 117

If you need to ensure the order in which messages are received, you can
use either the SeqNum (sequence number) or PubTime (publish time
stamp) parameter on the Publish command for each published message, to
calculate the order of publishing.

For more information about the techniques recommended for all MQI and
AMI users, see the Application Programming Reference and Application
Programming Guide sections in the [WebSphere MQ Version 7 Information|
[Center online| or [WebSphere MQ Version 6 Information Center online| for
programs written to the MQI, and the WebSphere MQ Application Messaging
Interface book for programs written to the AMI

The WebSphere MQ Application Messaging Interface book is available from
the [WebSphere MQ Library Web page] (listed under Version 5.3), or from
SupportPac MAOF on the |WebSphere MQ SupportPacs Web page}

See also the Publish/Subscribe User’s Guide section in the [WebSphere MQ)|
Version 7 Information Center online| or [WebSphere MQ Version 6|
[nformation Center online}

WebSphere MQ Everyplace® and SCADA applications use a different
method of message ordering as described in [WebSphere MQ Mobile|
[Transport| and [WebSphere MQ Telemetry Transport]

The broker does not provide message ordering for messages received
across WebSphere MQ Web Services Transport, WebSphere MQ Real-time
Transport, or WebSphere MQ Multicast Transport.

Multiple copies of the message flow in a broker
You can also deploy several copies of the same message flow to different
execution groups in the same broker. This option has similar effects to
increasing the number of processing threads in a single message flow,
although typically provides less noticeable gains.

This option also removes the ability to determine the order in which the
messages are processed, because, if there is more than one copy of the
message flow active in the broker, each copy can be processing a message
at the same time, from the same queue. The time taken to process a
message might vary, and multiple message flows accessing the same queue
might therefore read messages from the input source in a random order.
The order of messages produced by the message flows might not
correspond to the order of the original messages.

Ensure that the applications that receive message from these message flows
can tolerate out-of-order messages.

Copies of the message flow in multiple brokers
You can deploy several copies of the same message flow to different
brokers. This option requires changes to your configuration, because you
must ensure that applications that supply messages to the message flow
can put their messages to the right input queue or port. You can often
make these changes when you deploy the message flow by setting the
message flow's configurable properties.

The scope of the message flow
You might find that, in some circumstances, you can split a single message
flow into several different flows to reduce the scope of work that each
message flow performs. If you do split your message flow, be aware that it
is not possible to run the separate message flows in the same unit of work,

118 Configuration, Administration, and Security

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.ibm.com/software/integration/wmq/library/
http://www.ibm.com/software/integration/support/supportpacs
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

and if transactional aspects to your message flow exist (for example, the
updating of multiple databases), this option does not provide a suitable
solution.

The following two examples show when you might want to split a
message flow:

1. In a message flow that uses a RouteToLabel node, the input queue has
become a bottleneck. You can use another copy of the message flow in
a second execution group, but this option is not appropriate if you
want all of the messages to be handled in the order in which they are
shown on the queue. You can consider splitting out each branch of the
message flow that starts with a Label node by providing an input
queue and input node for each branch. This option might be
appropriate, because when the message is routed by the RouteToLabel
node to the relevant Label node, it has some level of independence
from all other messages.

You might also need to provide another input queue and input node to
complete any common processing that the Label node branches connect
to when unique processing has been done.

2. If you have a message flow that processes very large messages that
take a considerable time to process, you might be able to:

a. Create other copies of the message flow that use a different input
queue (you can set this option up in the message flow itself, or you
can update this property when you deploy the message flow).

b. Set up WebSphere MQ queue aliases to redirect messages from
some applications to the alternative queue and message flow.

You can also create a new message flow that replicates the function of
the original message flow, but only processes large messages that are
immediately passed on to it by the original message flow, that you
modified to check the input message size and redirect the large
messages.

The frequency of commits
If a message flow receives input messages on a WebSphere MQ queue,
you can improve its throughput for some message flow scenarios by
modifying its default properties after you have added it to a BAR file.
(These options are not available if the input messages are received by other
input nodes; commits in those message flows are performed for each
message.)

The following properties control the frequency with which the message
flow commits transactions:

¢ Commit Count. This property represents the number of messages
processed from the input queue before an MQCMIT is issued.

¢ Commit Interval. This property represents the time interval that elapses
before an MQCMIT is started.

Configuring broker and user databases

A broker stores internal performance and operational data in a database that you
must create and configure before you create the broker. You might also choose to
access databases to hold application or business data.

Multiple brokers that are at the same version can store their tables in a single
database schema, if appropriate, even if they are not on the same computer.

Configuring WebSphere Message Broker 119

Databases that hold application or business data are known as user databases, and
are read from and written to by nodes within the message flows that you deploy
to one or more brokers in your domain.

In some situations, and for some applications, you might need to ensure the
integrity of the data that you hold in user databases across multiple systems and
resource managers by coordinating table updates and the writing to one database
with the deletion of data in another. To achieve these goals, you must configure
your databases, your brokers, and your message flows to be globally coordinated.

For more information about the requirement for, and set up of, broker and user
databases, and the restrictions that apply, see |“Databases overview” on page 121

For additional information about setting up databases on z/OS, see
“DB2 planning on z/0S” on page 176/ and |[“Customizing the z/OS environment”)

on page 163.|

The process of making databases available has the following phases:

1. Required: Create and configure a broker database.

If you are migrating from a previous release, you can continue to use the same
broker database, but you must check and update your ODBC configuration to
ensure continued database access. Database access requires different
configuration in each release; see [Migrating from Version 6.0 products| or
[Migrating from Version 5.0 products|

If you are not migrating, you must create and configure a database for each
broker that you create, and you must configure the ODBC resources required
by the broker to connect to that database.

Optional: if you want to deploy publish/subscribe message flow applications,
and you have created a broker database on a Sybase database instance, you
must modify the database to operate successfully in this environment.

2. Optional: Create and configure user databases. If your message flows interact
with databases, you must create and configure those databases ready for
connection by the broker on behalf of the message flows. For user databases,
you can configure ODBC and JDBC connections.

3. Optional: If your user databases contain critical information, coordinate their
updates through a transaction manager.

On distributed systems, the WebSphere MQ queue manager is the transaction
manager that interacts with the resource managers (the database providers). On
z/0S, RRS provides equivalent coordination.

To complete these phases:
1. For a new installation, create and configure the broker database:
a. |Create the databases|

b. [Authorize access to the database}
c. [Enable the ODBC connection}
d

Optional: If you are creating a publish/subscribe broker domain and you are

using a Sybase broker database, [configure the database to support retained|
publications

For an existing broker that you are migrating, follow the instructions in the
appropriate topics in [Migrating and upgrading]

You have now completed the only mandatory step for database configuration;
now you can create and configure your broker domain components:

120 Configuration, Administration, and Security

a. If you have one or more components on z/OS, [customize the z/OS|

b. [Configure broker domain components|
c. [Configure a broker domain in the workbench|
d. Optional: If you want to establish a publish/subscribe network,

[publish /subscribe topologyl

2. Optional: If you want to access user databases from your deployed message
flows, create and configure additional databases and connections:

a. [Create the databases]
b. |Authorize access to the databases}

c. Optional: If you want your databases to participate in globally coordinated
transactions, |configure the databases for global coordination|

d. [Enable an ODBC connection| or [enable a JDBC connection| to each database.

3. Optional: If you want your databases to participate in globally coordinated
transactions, |configure the environment for global coordination|

Databases overview

WebSphere Message Broker brokers use databases for two purposes: broker
databases are used to store internal data about the broker, and user databases contain
your business data. You must create and configure the broker database before you
can create a broker. If you have user databases, you must configure them before
you can access them from your message flow.

WebSphere Message Broker supports the databases that are listed in
‘

tabases| for both broker and user databases. If you configure your message flows
to access user databases, you cannot access some of the data types that are

supported by these databases. The supported data types are defined in
[of values from external sources|

Broker databases

A broker stores configuration and control information in its database. You must
create the broker database before you can create the broker because when the
broker is created, the tables it requires are automatically created and initialized.

BITIN 1f you create a broker on Linux or UNIX systems, depending
on your operating system, you can create the broker database in DB2, Oracle, SQL
Server, or Sybase.

NI On Windows, you can create the broker database in DB2, Oracle, SQL
Server, Sybase, or Derby. See [Supported databases|to check which databases are
supported on your operating system.

If you create a 64-bit execution groups in the broker, the broker database must be a
64-bit database instance.

When you create a broker, the required database tables are created in the default
schema that is associated with the user ID used to access the database. Specify this
user ID when you run the mgsicreatebroker command.

* For DB2 and Oracle, the default behavior is for the schema name to be the same
as the user ID that is used to access the database.

Configuring WebSphere Message Broker 121

* For Sybase and SQL Server, the typical behavior is to use the database-owning
schema, dbo.

You can create a database schema for each broker, or you can configure brokers to
share a database schema if all brokers are at the same version.

WebSphere Message Broker does not require a particular schema or set of table
spaces; you can configure the database and access privileges of the user ID to
choose your own values.

The size of the broker database is not fixed; it depends on the complexity of your
message flows and message sets. If you develop message flows that support many
publishers or subscribers, you might need to increase your initial sizings.

When you have created a broker database, you must enable a connection from the
broker to the database. On all platforms, the broker connects to databases using
ODBC. For 32-bit brokers (Windows and Linux on x86), you must always enable a
32-bit ODBC connection. For 64-bit brokers (all other platforms), you must always
enable a 64-bit ODBC connection. ODBC drivers are supplied with WebSphere
Message Broker.

For more information about enabling 32-bit and 64-bit connections to the broker
database see |“Broker database connections” on page 123|

User databases

User databases are the databases in which you store the business data that is
processed by message flow applications. You can create user databases using any
of the database managers that you can use for broker databases. Additional local
and remote database managers might also be supported for your computer. For
more information, see [Supported databases|and [Database locations}

You must set up connections to the user databases so that the broker can access the
databases on behalf of its deployed message flows. Both ODBC and JDBC
connections are supported; some restrictions apply on some platforms, as described
in the topics in this section. ODBC drivers are supplied and installed with the
broker component. JDBC drivers are not supplied by WebSphere Message Broker;
you must obtain these files from your database vendor. Supported drivers are
listed in [Supported databases]

ODBC connections are specific to either 32-bit or 64-bit mode. You must set up
connections to the user databases depending on whether the message flows that
access the user databases are deployed to 32-bit or 64-bit execution groups, and
whether the message flow transactions are globally coordinated by a 32-bit or a
64-bit queue manager. JDBC connections are not dependent on 32-bit or 64-bit
mode except where stated.

For information about 32-bit and 64-bit connections to user databases, see
[database connections” on page 124

Databases created by the Default Configuration wizard

On Windows or Linux on x86, if you use the Default Configuration wizard to
create the Default Configuration, the wizard automatically creates a broker
database for the broker. On Linux systems, the wizard creates the broker database
using DB2; on Windows, if DB2 is not installed, the wizard uses the Derby

122 Configuration, Administration, and Security

database manager by default, although you can choose to use DB2 if it is installed.

Broker database connections
Create ODBC connections from each broker to its database.

Broker components and execution groups read and write data about internal
operations to a broker database. The number of connections needed depends on
the actions of the message flows that the broker processes. Each broker needs the
following connections:

* Five for internal broker threads.

* One for each Publish/Subscribe neighbor, if you are using retained publications
and the topology has been deployed.

* One for each message flow thread that contains a Publication node, if you are
using retained publications.

* One for each message flow thread that parses MRM messages.

* A further number if you are using SCADA nodes with WebSphere MQ
Everyplace. The exact number to add depends on whether thread pooling is
being used (determined by the Use Thread Pooling property of the SCADAInput
node):

— If Use Thread Pooling is not selected (the default setting) add the number of
SCADA clients that will connect to the SCADAInput node.

— If Use Thread Pooling is selected, add the value in the Max Threads property
of the SCADAInput node. The default value is 500.

If you are using the same database for several brokers, include all brokers in your
calculations.

When you start a broker, it opens all connections that it needs to the broker
database for its own operation. When you stop the broker, it releases all current
database connection handles.

The broker also opens connections to WebSphere MQ queues and to user
databases when it needs to use them, and these connections remain open until:

The connection has been idle for one minute
The broker is stopped

BTSN WIS On Linux, UNIX, and Windows systems, to avoid
breaking global coordination, database connections are released only for message
flows that are not globally coordinated.

On z/08S, database connections for globally coordinated message flows
are also released if the database has not been accessed for one minute.

If you are using DB2 for your database, the default action taken by DB2 is to limit
the number of concurrent connections to a database to the value of the maxappls
configuration parameter. The default for maxappls is 40. Increase this parameter
and the associated parameter maxagents to new values based on your calculations,
if appropriate.

32-bit and 64-bit support requirements

On all platforms that support 32-bit execution groups, the broker needs 32-bit
access to the data source. You must therefore always define a 32-bit ODBC data

Configuring WebSphere Message Broker 123

source name (DSN) for the broker to connect to the broker database; this definition
is required even if the broker has a 64-bit database, in which case you must
present the broker with an environment that provides a 32 bit-compatible interface
to the database (see|“Setting your environment to support 32-bit access to|
[databases” on page 154).

Execution groups on a broker must also be able to connect to the broker database.
A 32-bit execution group on a 32-bit broker can connect to the broker database
using the same 32-bit DSN definition that the broker uses. A 64-bit execution group
on a 32-bit broker, however, needs a 64-bit ODBC connection to be able to connect
to the broker database, therefore you must define a 64-bit ODBC DSN for the
broker database in addition to the broker's 32-bit DSN definition.

When message flow transactions are globally coordinated, the queue manager must
also be able to connect to the broker database; if the transactions are globally
coordinated by a 64-bit queue manager (all WebSphere MQ Version 6 queue
managers on 64-bit platforms are 64-bit), you must define a 64-bit ODBC DSN for
the broker database, even if the broker and the execution group are 32-bit
applications.

On HP-UX on Itanium®, Linux on POWER®, Linux on System 7® and Solaris on
x86-64, a 64-bit broker supports only 64-bit execution groups, therefore an
execution group can access the broker database using the same 64-bit DSN
definition that the broker uses; a 32-bit DSN definition is not required.

For 32-bit and 64-bit requirements when connecting to user databases, see
[database connections.”|

For help when you are deciding whether to create 32-bit DSNs, 64-bit DSNs, or
both, for iour broker database, see [“Enabling ODBC connections to the databases’]

User database connections

User databases contain your business data that is written and accessed by
deployed message flows. You must create connections from the broker to the user
database using ODBC or JDBC.

The broker requires a database connection for each data source name (DSN) that is
referenced in the message flow, even if different DSNs resolve to the same physical
database.

The number of connections to a user database that a broker requires depends on
the actions of the message flows that access the database. For each message flow
thread, a broker that accesses a user database makes one connection for each data
source name (DSN). If a different node on the same thread uses the same DSN, the
same connection is used, unless a different transaction mode is used, in which case
another connection is required. For further information about transactions, see
[Database connections for coordinated message flows]

When you start a broker, and while it is running, it opens connections to
WebSphere MQ queues and to databases. The broker makes the connections when
it needs to use them, and they remain open until:

The message flow has been idle for one minute
The message flow is stopped
The broker is stopped

124 Configuration, Administration, and Security

Database connections from message flows that are not globally coordinated are
released when a flow has no work. For example, a connection is released if the
message flow input queue has no messages, and the database has not been
accessed for one minute.

PNITSN WIS On Linux, UNIX, and Windows systems, to avoid
breaking global coordination, database connections are released only for message
flows that are not globally coordinated.

On z/08S, database connections for globally coordinated message flows
are also released if the database has not been accessed for one minute.

If you are using the same database for business data and for broker internal data,
add the two connection requirements together when you calculate how many
connections are required. For details of broker database connection requirements,
see [“Broker database connections” on page 123

If you are using DB2 for your database, the default action is to limit the number of
concurrent connections to a database to the value of the maxappls configuration
parameter. The default for maxappls is 40. If you believe that the connections that
the broker might require exceeds the value for maxappls, increase this parameter
and the associated maxagents parameter to new values based on your calculations.

If you are using another database, check the database documentation for
information about connections and the limits or restrictions that might apply.

When a message flow is idle, the execution group periodically releases database
connections. Therefore, connections held by the broker reflect its current use of
these resources. This situation allows the broker to respond when a database
quiesces, if the database manager supports quiescing. Not all databases support the
quiesce function, and not all databases quiesce in the same way. Check your
database documentation for information about database quiescing.

32-bit and 64-bit requirements

If you are creating ODBC connections to your user databases, ensure that you
correctly create 32-bit, 64-bit, or both, connections for each DSN. If you are creating
JDBC connections, their use is independent of 32-bit or 64-bit mode.

If a message flow that accesses the user database is deployed to a 32-bit execution
group, you must define a 32-bit ODBC data source name (DSN) for the user
database so that the broker can connect to the user database on behalf of the
message flow.

If the message flow is deployed to a 32-bit execution group and the message flow
transactions are globally coordinated by a 64-bit queue manager (all WebSphere
MQ Version 6 and Version 7 queue managers on 64-bit platforms are 64-bit), you
must define both a 32-bit ODBC DSN and a 64-bit ODBC DSN for the user
database. You must also define a 64-bit ODBC DSN for the broker database; see
[‘Broker database connections” on page 123

If a message flow that accesses the user database is deployed to a 64-bit execution
group, define a 64-bit ODBC DSN for the user database so that the broker can
connect to the user database on behalf of the message flow. You cannot use a 32-bit

Configuring WebSphere Message Broker 125

queue manager to globally coordinate a message flow that is deployed to a 64-bit
execution group, therefore you do not need to define a 32-bit ODBC DSN for the
user database.

For 32-bit and 64-bit requirements when connecting to the broker database, see
[‘Broker database connections” on page 123

For help when you are deciding whether to create 32-bit DSNs, 64-bit DSNs, or
both, for iour user databases, see [“Enabling ODBC connections to the databases”

Creating the broker and user databases

Before you can create a broker, you must create a database in which the broker can
store its internal data. If your message flows create, update, retrieve, or delete
application and business data in one or more user databases, create the databases
before you deploy the message flows to a broker.

If you create more than one broker, you can set their properties to share, and store
their tables in, a single database.

For information about which databases you can use, see [Supported databases]

For information about setting up databases on z/OS, see ["DB2 planning]
fon z/OS” on page 176 and [“Customizing the z/OS environment” on page 163]

To create the databases on distributed systems:

1. If you are creating Oracle databases for 32-bit brokers on Linux and UNIX
systems, run the mgsi_setupdatabase command before you create a database.
For details, see the [“mgsi_setupdatabase command” on page 685 Do not
complete this step for any other database manager, or for Oracle databases on
Windows.

2. Create the databases that you require. Choose a unique name for each broker
database, for example WBRKBKDB, and keep a note of it for when you create
the broker.

* For DB2, follow the instructions in [‘Creating a DB2 database on Windows”|
on page 127| or [“Creating a DB2 database on Linux and UNIX systems” on|

page 128.|

* For Derby, see the [‘mgsicreatedb command” on page 564 Derby database
support is described in [“Using Derby databases on Windows” on page 130,

* For other supported database managers, see the documentation supplied
with that database manager.

3. If you are creating Sybase databases on AIX, run the Sybase profile before you
run mgqsiprofile. For more information about using mgsiprofile to initialize
command environments on Linux and UNIX platforms, see
fenvironment: Linux and UNIX systems|

You have now created a database for your broker or business data.

Next: If you have been following the instructions in [‘Configuring broker and user|
databases” on page 119, the next task is [“Authorizing access to broker and user|
databases” on page 133

126 Configuration, Administration, and Security

Creating a DB2 database on Windows
Use the mgsicreatedb command or the DB2 Control Center to create a DB2
database.

When you create a broker, you specify the user name and password that are used
to connect to the broker database. The process of creating a broker creates the
required broker tables in the user's schema within the broker database if the tables
do not already exist.

DB2 authenticates the user name by using the operating system's user
management; you do not have to define the user name to DB2 itself.

Using the mqsicreatedb command:

To create a database by using the mgsicreatedb command, enter the command at
the command line for each database that you want to create, specifying the
appropriate parameters. You must provide a user name and password that is
known to DB2. Specify that you want to create a DB2 database (not a Derby
database).

For more information about these and other parameters, and for examples of
command use, see the [“mgsicreatedb command” on page 564 |

Using the DB2 Control Center:

To create a database by using the DB2 Control Center:

1. Start the DB2 Control Center by clicking Start > Programs » IBM DB2 »
General Administration Tools » Control Center

2. Expand All Systems in the object tree in the DB2 Control Center until you find
Databases.

3. Right-click Databases and click Create Database » Standard.

4. Enter a name and alias for your database. If you have a naming convention for
databases, choose a compatible name. The alias name can be the same as the
database name. Database names are limited to eight characters. For example,
enter WBRKBKDB.

5. Click Done.
6. When you have completed these steps for each database you create, click OK.

7. Increase the database heap size to ensure that it is sufficient for the broker. This
task is described in [“Changing the database heap size on DB2 broker]
[databases” on page 129

Using other DB2 options:

If you prefer, you can use any other method supported by DB2 to create a database
(including command line or batch files); refer to the DB2 documentation for details
of how to do this.

If you use the DB2 command line to create the databases, you must bind the db2cli
package to the database. You do not have to do this if you used the DB2 Control
Center wizard, the mgsicreatedb command, or if you created the broker with the
Default Configuration wizard.

To bind the package to the database:
1. Open a DB2 Command Line Processor window.

Configuring WebSphere Message Broker 127

2. Connect to the database using the following command:
db2cmd db2 CONNECT to YourDatabaseName
3. Enter the following commands, where C:\ is the drive on which you installed

DB2. You must enter your full DB2 installation path; do not use spaces or
quotation marks.

db2 bind C:\SQLLIB\BND\@db2ubind.1st GRANT PUBLIC
db2 bind C:\SQLLIB\BND\@db2c1i.Tst GRANT PUBLIC

4. Repeat the previous two steps for each database.

Next: If you have been following the instructions in [‘Configuring broker and user
databases” on page 119 the next task is [“Changing the database heap size on DB
broker databases” on page 129)

Creating a DB2 database on Linux and UNIX systems
Create a DB2 database for a broker or user database.

When you create a broker, you specify the user name and password that are used
to connect to the broker database. The process of creating a broker creates the
necessary broker tables in the user's schema within the broker database, if the
tables do not already exist.

DB2 authenticates the user name by using the operating system's user
management; you do not have to define the user name to DB2 itself.

On 64-bit platforms, WebSphere MQ (Version 6.0 and 7.0) performs all transaction
coordination in 64-bit mode. If you require XA coordination, all data sources
connected to DB2 from message flows in both 32-bit and 64-bit execution groups
must connect to 64-bit DB2 instances.

To create a DB2 database on Linux or UNIX:
1. Log on as root.

2. Create a database instance. Use the commands shown here for guidance for the
different platforms.

* On AIX:
/usr/1pp/db2_09 01/instance/db2icrt -u fence userID username
* On Linux, Solaris, or HP-UX:
/opt/IBM/db2/V9.1/instance/db2icrt -u fence_userID username

The username that you specify on this command determines the nominated
owner of the database instance. Log on as this user whenever you perform any
actions against the database instance (for example, creating or modifying a
database). The command examples that are used in this topic assume that you
are logged on as username, and use the tilde () character to indicate this user
ID in the DB2 commands issued.

If you are not logged on as the user that owns the database instance, you must
modify the commands shown to specify explicit ownership by specifying the
owner user ID username following the ™ character wherever it is used in the
examples.

The fence_userID refers to the user ID under which stored procedures run. You
can specify a different ID to the instance owner ID for the database for extra
security and protection, which is achieved because the stored procedure runs
under a different ID, and therefore in a different process, to the database
instance itself.

For further explanation of database ownership, refer to the DB2 library.

128 Configuration, Administration, and Security

3. Log on as username.

4. Create a database (in this example called WBRKBKDB) by using the following
commands (on some platforms, an explicit path name is required).

You must insert a space between the starting period and the tilde character in
the first command shown here:
. ~/sql1ib/db2profile
db2start
db2 create database WBRKBKDB
db2 connect to WBRKBKDB
db2 bind ~/sq11ib/bnd/@db2c1i.1st grant public CLIPKG 5

5. You must increase the database heap size to ensure that it is sufficient for the
broker. This task is described in [“Changing the database heap size on DB2)
[proker databases.”|

6. If you are using 32-bit execution groups, set the environment variable
MQSI LIBPATH32 to include the 32-bit database libraries. See [“Enabling ODBC|
fconnections to the databases” on page 137 for further information about how to
set this variable.

When you issue the command that creates the broker, tables are created within the
database to hold the information required.

Next: If you have been following the instructions in [“Configuring broker and use
databases” on page 119, the next task is [“Changing the database heap size on DB2)
broker databases.”|

Changing the database heap size on DB2 broker databases
Increase the value of the database heap size parameter for each broker database to
ensure that the heap size is sufficient.

Each database in a DB2 instance is associated with a heap (temporary storage) but
the default size of the heap (measured in 4 KB pages) is too low for the broker to
use. Therefore, if you create broker databases in DB2, you must increase the heap
size to at least 900, which gives the broker database 3600 KB of storage space (that
is, 900 multiplied by 4 KB pages).

Using the DB2 Control Center:

To change the database heap size using the DB2 Control Center:
1. Start the DB2 Control Center.

* On Windows, click Start » Programs » IBM DB2 » General Administration
Tools » Control Center

* On Linux and UNIX , enter the following command (ensure that you have
already run the DB2 profile so that the shell is running the DB2
environment):

db2cc
2. For each broker database that you have created:
a. In the tree, right-click the database name, then click Configure Parameters.
b. In the Database Configuration window, click Performance » DBHEAP.
c. Click the cell in the Value column, then click the button labeled ...
d

. In the Change Database Configuration Parameters window, set the value of
the DBHEAP parameter to at least 900 (the maximum value that you can
enter is 60000), then click OK. The new value is displayed in the cell in the
Pending Value column in the Database Configuration window.

Configuring WebSphere Message Broker 129

e. Click OK. The new value is applied and a message is displayed to show
that the heap size was changed successfully.

f. Click Close to close the message and return to the main DB2 Control Center
window.

The heap size of the broker database is changed.

Using the DB2 command line:
1. Open a DB2 command window.

2. Enter the following command. In this example, WBRKBKDB is the name of the
broker database, and 900 is the number of 4 KB pages:

db2 update database configuration for WBRKBKDB using dbheap 900

The heap size of the broker database is changed.

Next: If you have been following the instructions in [‘Configuring broker and user|
databases” on page 119, the next task is [“Authorizing access to broker and user|
databases” on page 133

Using Derby databases on Windows
Set up your environment to access a Derby database.

Derby refers to the DB2 database product that is based on the Apache Derby open
source project from the Apache Software Foundation. Derby database support is
embedded in the broker component on Windows only.

This topic describes the processes, services, IP ports, and database files that are
required to support Derby on Windows.

Security

The Derby database has no associated security controls, and no optimizations have
been performed. For these reasons, do not use Derby in a production environment.

DB2 Run-Time Client use

A broker uses ODBC to connect to databases. Derby is a native Java database
engine without ODBC support. The DB2 Run-Time Client provides the drivers that
allow ODBC to access Derby databases. The DB2 Run-Time Client is used only for
providing and managing the ODBC connection between a broker and the Derby
database. It does not provide a DB2 database and therefore does not consume the
resources that a full DB2 installation typically requires.

Database Instance Manager (managing, creating, deleting, and running
databases)

You must create and start a network server to enable access to Derby databases
through ODBC from external programs. When you create the first Derby database
using the mgsicreatedb command, a Windows service is also created. The service is
called IBM MQSeries® Broker DatabaselnstanceMgr6. It starts automatically when
Windows starts, and starts the network server. The service runs under the user
name that you supplied with the mgsicreatedb command.

All Derby databases that you create using the mgsicreatedb command are served
by one instance of the Database Instance Manager and network server. Before the

130 Configuration, Administration, and Security

network server can function, it requires a TCP/IP port number. The default port
number for Derby is 1527 (use this port when you create a Derby database). You
can specify a different port number when you issue the mgsicreatedb command to
create a Derby database for the first time. However, you cannot subsequently
change the port number after a network server has been set up, without first using
mgsideletedb to remove all Derby databases.

Run the command mqsilist DatabaseInstanceMgr to produce a list all of the
databases that have been created by the mgsicreatedb command. You can remove
the Database Instance Manager and the network server after the last Derby
database has been deleted, using the mgsideletedb command.

If you change the password for the user name under which the Windows service
runs is changed, use the mqsichangedbimgr command to update the service with
the new password. You can also use the mgsichangedbimgr command to change

the user name of the service. Use the mgsistart and mqsistop commands to start

and stop the Database Instance Manager component.

Multiplicity (brokers, Database Instance Managers, installations,
databases)

The number of databases that you can create with the mgsicreatedb command is
limited only by availability of system resources. A maximum of one Database
Instance Manager is created irrespective of how many databases have been created.
If you have installed multiple instances of WebSphere Message Broker on a single
computer, all installations use a single instance of the Database Instance Manager
component.

Removing databases and the Database Instance Manager component

Use the mgsideletedb command to clear all resources created by the mgsicreatedb
command. When the last Derby database is deleted, the Database Instance
Manager and network server are also stopped and removed. If the database files
cannot be deleted using the mgsideletedb command, you can delete them
manually.

Issuing database commands on Windows
On Windows, use special commands to create and delete databases for use by a
broker or by applications.

Only DB2 and Derby databases are supported with the supplied commands:

* [“mgsicreatedb command” on page 564|

* |“mgsideletedb command” on page 591]

* |“mgsichangedbimgr command” on page 444|

The mgsilist command lists the databases that have been created by the
mgsicreatedb command. Only databases created by the mgsicreatedb command can
be deleted by the mgsideletedb command.

The Default Configuration wizard and the Prepare Samples wizard use the
mgsicreatedb command to create the databases for the broker and the samples,
using the default database engine. Therefore, you can list these databases by using
the mgsilist command and specifying the parameter DatabaseInstanceMgr.

Configuring WebSphere Message Broker 131

Use the mgsisetdbparms command to manage the access security for user
databases only. It has no effect on Derby databases, which have no access security
protection, nor on broker databases in general, which are governed by the access
security settings in the broker itself. The rest of this topic applies only to the
mgsicreatedb, mgsideletedb, and mgsichangedbimgr commands.

Supported database engines

If DB2 version 8.1 Fix Pack 7 or later is installed, both DB2 and Derby databases
can be created and used. If DB2 Run-time Client Version 8.2 is installed, only
Derby databases are supported. If an earlier version of DB2 is installed, only DB2
databases can be created.

The mgsicreatedb command has an option to select the database engine to use
(either DB2 or Derby). The default for this option is DB2 unless only DB2 Run-time
Client Version 8.2 is installed, in which case a Derby database is created.

Database Instance manager

The databases that are created by mgsicreatedb are managed by a component
called the Database Instance manager. This component exists only on Windows.
The component stores a list of all the databases created and which database engine
is used for each database. No process or Windows service is required for the
Database Instance manager component, and if you start the component it is not
recognized.

The first time a Derby database is created, a Windows service called IBM MQSeries
Broker DatabaselnstanceMgr6 is created and started. This service is required in
order to access Derby databases. This service can be started or stopped by the
mgsistart and mqsistop commands, and automatically starts when Windows is
started, if necessary. The service is deleted when the last Derby database is deleted.
At most one Database Instance manager Windows service exists, even if you install
WebSphere Message Broker more than once on your Windows computer (multiple
installed instances).

The database commands affect all the databases created in any installed instance
on your Windows computer, regardless of the instance under which they are
created. For example, the command mqgsilist DatabaseInstanceMgré lists all the
databases that have been created by the mgsicreatedb command on this Windows
computer. Use the mgsichangedbimgr command to change the user name and
password under which the Database Instance manager service runs. Run this
command only if passwords change, or if user names are updated after the initial
installation and configuration. For more information, see [“Using Derby databases|
fon Windows” on page 130.]

Creating and deleting databases

Use the mgsicreatedb command to create databases for broker use or for
application use. The Prepare Samples wizard and the Default Configuration
wizard, for example, use the mgsicreatedb command to create their databases on
Windows. When the database is created (in either DB2 or Derby), the ODBC data
source name (DSN) is also created (with the same name).

Because the data source names and the Database Instance manager component are
system wide, you cannot create two databases with the same name, on the same

Windows computer, even if they are for brokers on different installed instances of

132 Configuration, Administration, and Security

WebSphere Message Broker. The mgsicreatedb command warns you if you try to
do so. A database created by the mqsicreatedb command can be deleted by the
mgsideletedb command, even if that database is in use by a broker. See the
command descriptions for more information.

Authorizing access to broker and user databases

When you have created a broker or user database, you must authorize the broker
and its execution groups to access it.

Before you start: [create the databases|

When you run the mgsicreatebroker command, you must specify at least one user
ID for runtime authorization (the service user ID); you can optionally specify a
second user ID that the broker uses when connecting to databases (the data source
user ID). If you do not specify a separate data source user ID for connecting to
databases, the broker uses its service user ID for database access as well.

Specify the service user ID and its password with the -i and -a parameters. Specify
the optional database connection user ID and password with the -u and -p
parameters.

To assign a specific user ID and password for a particular database, you can set up
or change the authorization by using the mgsisetdbparms command.

If you want to change the service user ID or password, or the data source
password, after you have created the broker, use the mgsichangebroker command;
you cannot change the data source user ID.

The user ID that the broker uses to access databases must have the following
authorizations:

e The user ID must be authorized to connect to the database.

* Before you can create a broker, the user ID must have authorization to create
tables in the broker database.

* The user ID must have appropriate privileges on the user database objects that
are accessed by the message flow application; for example, tables, procedures,
and indexes.

If you expect to deploy message flows that participate in globally coordinated
transactions to a broker, you must provide additional authorization. For more
information, see [‘Configuring databases for global coordination of transactions” on|

The way that you authorize access depends on the database manager that you are
using, and the platform on which you have created the database. The instructions
might also vary from release to release of a single database. Consult your database
administrator, or see the documentation for the appropriate database when you
perform this task.

The following sections provide examples of the steps that you can take to provide
the required authorization for specific databases:

+ ["DB2 authorization” on page 134|

+ [“Oracle authorization” on page 134

Configuring WebSphere Message Broker 133

DB2 authorization

To authorize access to a DB2 database, you can use either the DB2 Control Center
or the DB2 command line:

e To use the DB2 Control Center:

1.
2.
3.

7.
8.

Start the DB2 Control Center.

Expand the object tree until you find the database that you created.

Expand the tree under the database then click the User and Group Objects
folder. The DB Users and DB Groups folders are displayed in the right
pane.

In the right pane, right-click the DB Users folder then click Add. The Add
User notebook opens.

From the list, click the user ID that you want to authorize to access the
database (for example, mqsiuid). The user ID that you select must be the user
ID that you specify to be used for access to this database when you create
the broker or run the mgsisetdbparms command. The user ID must exist on
the operating system before you can select it; if it does not exist, define the
user ID on the operating system.

Select the appropriate options from the choices in the dialog box that is
labeled Choose the appropriate authorities to grant to the selected user for
the database. The following options are available:

Connect database

Create tables

Create packages

Register functions to run in database manager process
Click OK. The authorities are granted. The dialog box closes.
Close the DB2 Control Center.

¢ To use the DB2 command line:

1.
2.

Open a DB2 command window.

Connect to the database with a user ID that has DB2 system administration
(SYSADM or DBADM) authority. Substitute the correct database and ID in
the following example command:

db2 connect to broker_db user SysAd_id

Run the following command to grant the required privileges to the user ID
that the broker will use to connect to the database. Substitute the correct ID
for your broker in the following example command, if you are not using
mgsiuid:

db2 grant connect, createtab, bindadd, create_external_routine on

database to user mgsiuid

Next: If you have been following the instructions in [“Configuring broker and user|

databases” on page 119 the next task is [“Configuring databases for globall

coordination of transactions” on page 135

Oracle authorization

You must have database administrator (DBA) privileges to authorize access to an
Oracle database.

To authorize access to an Oracle database:

1. Log on as the Oracle database administrator (DBA) to the database using
SQL*Plus.

134 Configuration, Administration, and Security

2. Modify the privileges of the user ID that you have specified for database

connection to ensure that the broker can successfully access the database. If you
are authorizing access to the broker database, give the user ID sufficient
privilege to allow the creation of, and updates to, the broker tables:

GRANT CREATE SESSION TO dbid;

GRANT CREATE TABLE TO dbid;

If appropriate, increase the quota (disk space) available for table spaces
associated with this database.

Next: If you have been following the instructions in [“Configuring broker and user|

databases” on page 119, the next task is [“Configuring databases for globall

coordination of transactions.”

Configuring databases for global coordination of transactions

If your message flow interacts with a user database, and you want to globally
coordinate the updates made to the database with other actions within the message
flow, configure your databases for global coordination.

Before you start: [Create your database|and Jauthorize access to it}

If you restart a user database while the broker is still running, you must also
restart the broker. The broker cannot detect that the database has stopped, and
WebSphere MQ therefore retains its old connections to the database. When the
database starts again, the broker tries, and fails, to use these connections.

To configure databases for coordinated message flows, follow the instructions
relevant to your database manager:

DB2

+ [informix®
* [racld
* Bybasd

Configuring DB2 for global coordination of transactions

You must complete these steps for databases that you connect to with an ODBC or
a JDBC connection.

You must have database administrator (DBA) privileges to perform the following
tasks.

To configure DB2 database instances for global coordination of transactions:

1.

| Windows Windows and Linux on x86 systems only: for each 32-bit
instance that is involved in the global coordination, run the following
commands to set the Transaction Process Monitor name (TP_MON_NAME) to
MQ:

db2 update dbm cfg using TP_MON_NAME MQ

db2stop
db2start

L__UNIX__| On Linux and UNIX systems (except for Linux on x86), do
not set this variable for 32-bit or 64-bit instances.

Ensure that you have adequate connection resources and find out from the
broker administrator whether the broker uses TCP/IP or shared memory to
connect to databases.

Configuring WebSphere Message Broker 135

To use TCP/IP connections, see the example in the section about message
SQL1224N in [Resolving problems when using databases]

To enable extended shared memory:
a. On the DB2 server, run the following commands:

export EXTSHM=ON

db2set DB2ENVLIST=EXTSHM

db2stop

db2start
b. Ensure that shared memory support is enabled in the broker environment.
For more information, see [“Configuring global coordination with DB2 byI
using a 32-bit queue manager” on page 300| or [“Configuring global|
coordination with DB2 by using a 64-bit queue manager” on page 303

3. If you are connecting a broker on a distributed platform to a DB2 instance on
z/0S, you must configure DB2 Connect " to enable support for global
coordination. Ensure that you have already configured a DB2 alias to represent
the database by using DB2 Connect.

Perform the following tasks on the system that hosts the broker:

a. Turn on the Connection Concentrator by configuring the DB2 database
manager configuration parameters so that the value of the
MAX_CONNECTIONS parameter is greater than the value of the
MAX_COORDAGENTS parameter:

db2 update dbm cfg using MAX_CONNECTIONS max_connections_value

where max_connections_value is greater than the existing value of the
MAX_COORDAGENTS parameter.

b. Define the SPM name as the name of the system that hosts the broker:
db2 update dbm cfg using SPM_NAME host_name

where host_name is the TCP/IP name of the system that hosts the broker.
c. Stop, then restart DB2 on the system that hosts the broker to apply the
changes:

db2stop
db2start

DB2 Connect is now configured to enable global coordination of message
flows that are deployed to the broker (on a distributed platform) and that
access DB2 on z/OS.

The DB2 database instances are now configured for global coordination.

Next: See [“Configuring global coordination of transactions (two-phase commit)” on|

|Eage 296.|

Configuring Informix for global coordination of transactions

You must complete these steps for databases that you connect to with an ODBC
connection only.

You must have database administrator (DBA) privileges to perform the following
task.

To configure Informix databases for global coordination of transactions ensure that
the databases are created with a log option; for example:

CREATE DATABASE mydb WITH LOG

136 Configuration, Administration, and Security

The Informix databases are now configured for global coordination.

Next: See [“Configuring global coordination of transactions (two-phase commit)” on|

lpage 296

Configuring Oracle for global coordination of transactions

You must complete these steps for databases that you connect to with an ODBC
connection only.

You must have database administrator (DBA) privileges to perform the following
tasks.

To configure Oracle databases for global coordination of transactions:

1. If you are using WebSphere MQ Version 6 to globally coordinate transactions,
ensure that the JAVA_XA package is present on the Oracle database. Typically
you can perform this task by running the scripts initjvm.sql and initxa.sql,
which are supplied with the Oracle installation; your database administrator
can tell you if these scripts have been run. For more information, see the Oracle
product documentation.

2. Ensure that the user ID that the broker uses to access the database has the
necessary Oracle privileges to access the DBA_PENDING_TRANSACTIONS
view. You can grant the required access by using, for example, the following
Oracle SQLPLUS command:

grant select on DBA_PENDING_TRANSACTIONS to userid;

The Oracle databases are now configured for global coordination.

Next: See [“Configuring global coordination of transactions (two-phase commit)” on|

lpage 296

Configuring Sybase for global coordination of transactions

You must complete these steps for databases that you connect to with an ODBC
connection only.

You must have database administrator (DBA) privileges to perform the following
tasks.

To configure Sybase databases for global coordination of transactions, ensure that
the user ID that the broker uses to access the database has been granted the Sybase

role of dtm_tm_role.

The Sybase databases are now configured for global coordination.

Next: See [“Configuring global coordination of transactions (two-phase commit)” on|

|Eage 296.|
Enabling ODBC connections to the databases

Set up the resources and environment that the broker requires for Open Database
Connectivity (ODBC) connections to broker and user databases on distributed
systems.

Configuring WebSphere Message Broker 137

The broker uses ODBC to connect to the broker database. You must define ODBC
data source names (DSNs) for the broker database on each computer that hosts a
broker. You can configure both ODBC and Java Database Connectivity (JDBC)
connections for access to user databases:

* To set up ODBC connections to the broker database, and to user databases,
follow the instructions in this section.

+ To set up JDBC connections to user databases, see [“Enabling JDBC connections|
[to the databases” on page 154

* On z/0S systems, see [Data sources on z/0S| for information about enabling
connections to databases. You do not have to follow the tasks described in this
section.

BTSN On Linux and UNIX systems, the actions that you must take
to define the connections between the broker and the broker database depend on
whether the broker internal components operate in 32-bit or 64-bit mode. You must
define either a 32-bit ODBC DSN, or a 64-bit ODBC DSN, as appropriate, for the
broker to connect to the broker database.

All execution groups that you create on a broker must also be able to connect to
the broker database. If the execution group matches the operational mode of the
broker, the execution group can connect to the broker database using the same
DSN definition that the broker uses. If a 64-bit broker also supports 32-bit
execution groups (for example, on AIX), you must also define a 32-bit ODBC
connection to support connections from 32-bit execution groups to the broker
database. This 32-bit connection is required in addition to the 64-bit ODBC
definition, even if you do not create 32-bit execution groups.

Because 64-bit connections need 64-bit database instances, you can use 32-bit
database instances only on computers with a broker running in 32-bit mode.
Migrate all 32-bit database instances to 64-bit instances on all platforms that
support 64-bit operation.

When you define the DSNs, consider the following two factors that determine
whether you must define a 32-bit DSN for the database, a 64-bit DSN, or both:

* Whether the execution group and the database instance operate in 32-bit or
64-bit mode

e Whether you plan to globally coordinate message flow transactions

BITEN On Linux and UNIX systems, DSNs are defined in a plain text
file on the computer that hosts the broker. Set up ODBC connections for the broker
to connect to the broker database and all user databases:

* On Linux on x86, which supports only 32-bit execution groups, you must copy
and edit the odbc32.1ini file. Set the ODBCINI environment variable to point to
your file.

* On platforms that support both 32-bit and 64-bit operations:

— If you access 64-bit DSNs from 64-bit execution groups, copy and edit the
odbc64.1ini file. Set the ODBCINI environment variable to point to your
odbc64.ini file.

— In addition, if you access 32-bit DSNs from 32-bit execution groups, you must
also copy and edit the odbc32.1ini file. Set the ODBCINI32 environment
variable to point to your odbc32.1ini file.

* On platforms that support 64-bit operations only, copy and edit the odbc64.ini
file. Set the ODBCINI environment variable to point to your file.

138 Configuration, Administration, and Security

Delete the ODBCINI64 environment variable if it exists; it is not required by
Version 6.1 brokers.

For more information about the 32-bit and 64-bit considerations, see |”Broker|
[database connections” on page 123|and [“User database connections” on page 124

When you have defined the appropriate DSNs, you must also configure the
environment so that the broker can access the correct database libraries; for more
information, see [‘Setting your environment to support 32-bit access to databases”|

|on page 154.|

The sample ODBC .1ini files that are supplied, and the information contained in
these configuration topics, include all the connection parameters that are supported
for connections to your databases. Additional parameters that are provided by the
DataDirect drivers are not tested or supported in a broker environment; consider
your requirements carefully before specifying other parameters in your tailored
ODBC .ini files.

To enable connections on distributed systems:
1. Define the ODBC DSNs according to your platform:

NI On Windows:
Windows provides only 32-bit support. Follow the instructions in
[‘Connecting to a database from Windows systems” on page 140,

BIT®N On Linux and UNIX systems:
Depending on your broker configuration, for each database you might
have to define a 32-bit ODBC DSN, a 64-bit ODBC DSN, or both.

Use the following tables to check which DSNs you must define, and
follow the links for the appropriate instructions.

32-bit execution group 64-bit execution group
32-bit broker Broker database: Not possible
Linux on x86 User database:
64-bit broker Broker database: and | Broker database:
i
AIX, Solaris on SPARC, User database:
HP-UX on PA-RISC, Linux | User database:
on x86-64
64-bit broker Not possible Broker database:
HP-UX on Itanium, Linux on User database:
POWER, Linux on System z,
Solaris on x86-64

The following tables provide links to topics for connecting databases when you
are using global coordination and a 64-bit queue manager. All WebSphere MQ
Version 6 and Version 7 queue managers on 64-bit platforms run in 64-bit
mode.

Configuring WebSphere Message Broker 139

32-bit execution group 64-bit execution group
64-bit broker Broker database: and | Broker database:
AIX, Solaris on SPARC, User database:
HP-UX on PA-RISC, Linux User database: and
on x86-64
64-bit broker Not possible Broker database:
HP-UX on Itanium, Linux on User database:
POWER, Linux on System z,
Solaris on x86-64

The following table provides links to topics for connecting databases when you
are using global coordination and a 32-bit queue manager. All WebSphere MQ
Version 6 and Version 7 queue managers on 32-bit platforms run in 32-bit

mode.
32-bit execution group 64-bit execution group
32-bit broker Broker database: Not possible
Linux on x86 User database:
64-bit broker Not possible Not possible
All other platforms

You have now configured the ODBC DSN for your broker database and the
ODBC DSNss for your user databases.

2. Configure the environment for issuing console commands and for running the
broker so that it can access the required database libraries. For more
information, see [‘Setting your environment to support 32-bit access to|
[databases” on page 154

You have now enabled the broker to make connections to the broker database and
to your user databases.

Next: If you have been following the instructions in [“Configuring broker and user]
[databases” on page 119)and you use Sybase for your broker database, the next
task is [“Using retained publications with a Sybase database” on page 162
(optional). If you do not use Sybase for your broker database, the next task is
[‘Configuring global coordination of transactions (two-phase commit)” on page 296|
(optional).

Connecting to a database from Windows systems
To enable a broker to connect to a database, define the ODBC data source name
(DSN) for the database.

Before you start: check that you have set up your environment so that the broker
can connect to the database. Most database managers set up the required

environment when you install, but others supply a database profile that you must
run. For information about environments and running database profiles, see
[up a command environment: Windows platforms}

Configure an ODBC data source using the ODBC Data Source Administrator:
1. Click Start » Control Panel » Administrative Tools » Data Sources (ODBC).
2. Click the System DSN tab and click Add.

140 Configuration, Administration, and Security

3. Complete the steps in the following sections for the databases that you are
working with.

If you need more information about a particular database product, see the
product-specific documentation.

The Default Configuration wizard and the database commands to create a broker,
or a database, on Windows, automatically create the ODBC data source names
(DSNss) for you.

DB2 UDB

Define a data source for DB2 UDB:

1. Select the driver IBM DB2 ODBC DRIVER.
Enter the data source name (DSN) and description.
Select the correct database alias from the list.

oo

Click Finish to save your definition.

5. Click OK to close the ODBC Data Source Administrator.

You must register the data source as a system data source.

If you prefer, you can use the Configuration Assistant instead of the ODBC
Data Source Administrator:

1. Open the DB2 Configuration Assistant.

2. Right-click the database and select Change Database.

3. Select Data Source.
4

. Select Register this database for ODBC. Select the system data source
option.
Click Finish.

6. The Test Connection dialog opens automatically and you can test the
various connections.

o

Informix Dynamic Server
Define a data source for Informix Dynamic Server:

1. Select the driver IBM INFORMIX ODBC DRIVER.
2. On the Connection tab, specify:
* The Informix server name.
* The machine host name.
* The Informix network service name (as defined in the services file).
* The network protocol (for example, olsoctcp).
e The Informix data source name.
* The user identifier to access the data source within.
 The password for that user identifier.
3. Click Apply.
4. Click Test Connection to check your supplied values.
5. Click OK to close the ODBC Data Source Administrator.
Microsoft SQL Server
Define a data source for Microsoft SQL Server:

1. Select the driver for the version of SQL Server that you are using:
¢ SQL Server for SQL Server 2000. The driver level must be Version
3.60, or later.
* SQL Native Client for SQL Server 2005.

2. Specify a name and description.

Configuring WebSphere Message Broker 141

3. Select the correct server from the list.

4. Click Finish to save your definition.

5. Click OK to close the ODBC Data Source Administrator.
Oracle

Define a data source for Oracle:

1. Select the driver MQSeries DataDirect Technologies 5.30 32-BIT
Oracle.

The ODBC Oracle Driver Setup dialog box opens.
2. On the General tab:

a. Enter the DSN name, description, and server name (where the
server name is the "Service Name" that resolves to a "Connect
Descriptor", for example through a mapping in the TSNAMES.ORA
file).

b. Select the appropriate Oracle client version from the list.

3. On the Advanced tab:
a. Select Enable SQLDescribeParam.

b. Select Procedure Returns Results. The resultant ODBC definition
in the Windows registry has a string value called
ProcedureRetResults with the value 1.

Click OK to close the ODBC Data Source Administrator.
Click Start » Run.

Type REGEDIT in the Open field and click OK.

In the Registry Editor, navigate to the correct location.

* On Windows 32-bit editions: HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\
ODBC.INI

* On Windows 64-bit editions: HKEY_LOCAL_MACHINE\SOFTWARE\
Wow6432Node\ODBC\ODBC. INI

8. Expand that location, and right-click your DSN entry. Select New -~
String Value.

N o o s

9. Specify WorkArounds for the string name.
a. Right-click WorkArounds.
b. Select Modify.
c. Type the data value 536870912.
10. Close the Registry Editor.
Sybase Adaptive Server Enterprise
Define a data source for Sybase Adaptive Server Enterprise:

1. Select the driver MQSeries DataDirect Technologies 5.30 32-BIT
Sybase Wire Protocol.

2. Enter the DSN name, description, and network address of the server.

3. Select Enable Describe Parameter. This parameter is on the Advanced
tab.

4. Ensure the Prepare Method setting is 1 - Partial. This parameter is
on the Performance tab.

5. Click Start > Run.
Type REGEDIT in the Open field and click OK.

7. In the Registry Editor, navigate to the correct location:

o

142 Configuration, Administration, and Security

* On Windows 32-bit editions: HKEY LOCAL_MACHINE\SOFTWARE\ODBC\
ODBC. INI

* On Windows 64-bit editions: HKEY_LOCAL_MACHINE\SOFTWARE\
Wow6432Node\ODBC\ODBC. INI
8. Expand that location, and right-click your DSN entry. Select New -
String Value. Specify SelectUserName for the string, and set the value
to 1.
9. Right-click your DSN again, and select New > String Value. Specify
EnableSPColumnTypes for the string, and set the value to 2.

10. Close the Registry Editor.
You have now configured your ODBC data source names on Windows.

Next: Configure the environment for issuing console commands, and for running
the broker, so that the broker can access the required database libraries. For more
information, see |“Setting your environment to support 32-bit access to databases”|

|on page 154.|

Connecting to a database from Linux and UNIX systems: 32-bit
requirements

To enable a broker to connect to a database, define the ODBC data source name
(DSN) for the database.

Before you start:

* Ensure that the database has been created, see [“Creating the broker and user]
[databases” on page 126

e Ensure that the broker is authorized to access the database, see
[access to broker and user databases” on page 133

* Check that you have set up your environment so that the broker can access the
database; you might have to run a database profile supplied by the database
vendor. For further information, see [Setting up a command environment: Linux|
[and UNIX systems]

On Linux and UNIX systems, an ODBC Driver Manager exists, but no graphical
application is available to help you configure the ODBC DSNSs. To enable a 32-bit
ODBC connection, define each database as a DSN in a plain text file (called
odbc32.1in1i) on the computer that hosts the broker.

Define 32-bit DSNs in the following situations:
 If a message flow is deployed to a 32-bit execution group, define a 32-bit DSN
for the broker and user databases.

* If you are using Linux on x86; the broker runs as a 32-bit application on this
32-bit platform.

To configure a 32-bit DSN for a database:

1. Copy the odbc32.1ini sample file that is supplied in the install_dir/0DBC32/
V5.3 directory to a location of your choice; for example, copy the file to your
user ID's home directory. Each broker service user ID on the system can
therefore use its own DSN definitions.

See the sample file contents in|“odbc32.ini sample file” on page 359,

2. Ensure that the odbc32.1ini file has file ownership of mqm:mgbrkrs, and has the
same permissions as the supplied odbc32.1ini sample file.

3. Set the ODBCINI32 environment variable to point to your odbc32.1ni file,
specifying a full path and file name.

Configuring WebSphere Message Broker 143

For Linux on x86 only, use the ODBCINI environment variable.

4. On AIX, HP-UX, Solaris on SPARC, and Linux on x86-64, set the 32-bit library
search path environment variable MQSI_LIBPATH32 to show the location of the

32-bit libraries for the database manager that you are using. For example, on
AIX:

export
MQSI_LIBPATH32=$MQSI_LIBPATH32:DB2 instance_directory/sql1ib/1ib32

On Linux on x86 only, set the 32-bit library search path LD_LIBRARY_PATH to
show the location of the 32-bit libraries for the database manager.

5. If you are using a DB2 database instance that is installed on AIX, a single
process can make a maximum of 10 connections using shared memory to a DB2
database. Therefore, if you deploy more than one or two message flows at the
same time, you might see connection failures characterized by the DB2 error
message SQL1224N. The connection errors are reported in the system log from
the broker's execution group.

To resolve this issue, use a TCP/IP connection to the database instance; see
[DB2 error message SQL1224N is issued when you connect to DB2| for details.

6. Edit the final stanza in the odbc32.1ini file (the [ODBC] stanza) to specify the
location of the ODBC Driver Manager, and to control tracing. The exact details
in the stanza depend on the operating system.

To ensure that you edit the correct odbc32.1ini file, open the file in the vi text
editor by using the following command:

vi $ODBCINI32

or vi $0DBCINI on Linux on x86.

a. In InstallDir, add the WebSphere Message Broker installation location to
complete the fully qualified path to the ODBC directory. If you do not set
this value correctly, the ODBC definition will not work.

b. In Trace, set the value to 0; if your IBM service representative asks you to
enable ODBC trace, set the value to 1.

c. In TraceOptions, set the value to 3.

d. In TraceFile, type the fully-qualified path and file name to which the ODBC
trace is written. Trace files can become large; specify a directory with plenty
of free disk space.

e. In TraceDll, add the WebSphere Message Broker installation location to
complete the fully qualified path to the ODBC trace DLL.

f. Accept the default values that are shown in the sample odbc32.1ini file for
all the other entries in the stanza. For example:

e On AIX:

Rz dddddsdsdsdsdsdsdsddddadadadadad
s###### Mandatory information stanza #####
Rigidsdddaddddsdsdsdsdsdsdaddddsdadadadad

[oDBC]

s# To turn on ODBC trace set Trace=1

Trace=0

TraceOptions=3

TraceFile=<A Directory with plenty of free space to hold trace ouput>/odbctrace32.out
TraceD11=<Your Broker install directory>/0DBC32/V5.3/1ib/odbctrac.so

InstallDir=<Your Broker install directory>/0DBC32/V5.3

UseCursorLib=0

IANAAppCodePage=4

UNICODE=UTF-8

144 Configuration, Administration, and Security

7. Edit the first stanza in the odbc32.1ini file (the [ODBC Data Sources] stanza) to
list the DSN of each database. For example:

* On AIX:

Riddsdtsdssdssdpsdsddsdtsdtadsdadadaadiad

s###### List of data sources stanza #######
Rittsdtsdssdssdssdgddsdtsdtsdsdsdasdaddad

[ODBC Data Sources]

DB2V8DB=IBM DB2 Version 8 ODBC Driver

DB2V9DB=IBM DB2 Version 9 ODBC Driver
ORACLEDB=DataDirect 5.3 Oracle Driver
ORACLERACDB=DataDirect 5.3 Oracle Driver (Real Application Clusters)
SYBASEDB=DataDirect 5.3 Sybase Wire Protocol
SYBASEDBUTF8=DataDirect 5.3 Sybase UTF8 Wire Protocol
SQLSERVERDB=DataDirect 5.3 SQL Server Wire Protocol
INFORMIXDB=IBM Informix ODBC Driver

List all your DSNs in your odbc32.1in1 file, regardless of the database manager.
You can define multiple DSNs to resolve to the same database; however, if you
are using global coordination of transactions, do not use this option because it
might cause data integrity problems.

8. For each database that you listed in the [ODBC Data Sources] stanza, create a
stanza in the odbc32.1ni file after the [ODBC Data Sources] stanza. The entries
in the stanza depend on the database manager. The information for different
operating systems can differ; for example, the file paths to the drivers.

For a DB2 Version 8 database instance

a.
b.

In Driver, add the full path of your DB2 installation.

In Description, type a meaningful description of the database. This
field is for information only, and does not affect the connection.

In Database, type the DB2 alias. The data source name must be the
same as the database alias name. If you are using a remote DB2
database, set up your client-server connection to resolve this alias to
the correct database. For more information, see the DB2
documentation.

For example, on AIX:

;# DB2 version 8 stanza

[DB2V8DB]

Driver=<Your DB2 v8 install directory>/1ib/1ibdb2.a
Description=DB2V8DB DB2 ODBC Database
Database=DB2V8DB

For a DB2 Version 9 database instance

a.
b.

In Driver, add the full path of your DB2 installation.

In Description, type a meaningful description of the database. This
field is for information only, and does not affect the connection.

In Database, type the DB2 alias. The data source name must be the
same as the database alias name. If you are using a remote DB2
database, set up your client-server connection to resolve this alias to
the correct database. For more information, see the DB2
documentation.

For example, on AIX:

;# DB2 version 9 stanza

[DB2V9DB]

Driver=<Your DB2 v9 install directory>/1ib32/1ibdb2.a
Description=DB2V9DB DB2 ODBC Database
Database=DB2V9DB

For an Oracle database:

Configuring WebSphere Message Broker 145

a. In Driver, add the WebSphere Message Broker installation location
to complete the fully qualified path to the driver that is shown in
the sample odbc32.1ni file.

b. In Description, type a meaningful description of the database. This
field is for information only, and does not affect the connection.

C. In ServerName, type the Oracle Service Name or Connect
Descriptor that resolves to the target Oracle database; for example,
through a mapping in the TSNAMES.ORA file.

d. Accept the default values that are shown in the sample odbc32.1ini
file for all the other entries in the stanza. For example:

e On AIX:

;# Oracle stanza

[ORACLEDB]

Driver=<Your Broker install directory>/0DBC32/V5.3/1ib/UKor823.s0
Description=DataDirect 5.3 Oracle Driver

EnableDescribeParam=1

OptimizePrepare=1

ServerName=<Your Oracle Net Service name>

WorkArounds=536870912

ProcedureRetResults=1

ColumnSizeAsCharacter=1

For an Oracle database that uses Real Application Clusters:

a. In Driver, add the WebSphere Message Broker installation location
to complete the fully qualified path to the driver that is shown in
the sample odbc32.1ni file.

b. In Description, type a meaningful description of the database. This
tield is for information only, and does not affect the connection.

c. In ServerName, type the Oracle Real Application Cluster Service
Name or Connect Descriptor that resolves to the target Oracle
database; for example, through a mapping in the TSNAMES.ORA file.

d. Accept the default values that are shown in the sample odbc32.ini
file for all the other entries in the stanza.

For example on AIX:

;# Oracle Real Application Clusters stanza

[ORACLERACDB]

Driver=<Your Broker install directory>/0DBC32/V5.3/1ib/UKor823.s0
Description=DataDirect 5.3 Oracle Driver

EnableDescribeParam=1

OptimizePrepare=1

ServerName=<Your Oracle Net Service Name defined for the RAC>
WorkArounds=536870912

ProcedureRetResults=1

ColumnSizeAsCharacter=1

For a Sybase database:

a. In Driver, add the WebSphere Message Broker installation location
to complete the fully qualified path to the driver that is shown in
the sample odbc32.1ni file.

b. In Description, type a meaningful description of the database. This
field is for information only, and does not affect the connection.

c. In Database, type the name of the database to which to connect by
default. If you do not specify a value, the default is the database
that is defined by your system administrator for each user.

146 Configuration, Administration, and Security

d. In NetworkAddress, type the network address of your Sybase ASE
server (which is required for local and remote databases). Specify an
IP address or server name in the following format:

<Your Sybase Server Name>,<Your Sybase Port Number>

For example, Sybaseserver,5000. You can also specify the IP
address directly; for example, 199.226.224.34,5000. You can find
the port number in the Sybase interfaces file, which is named
interfaces on Linux and UNIX systems.

e. Accept the default values that are shown in the sample odbc32.1ini
file for all the other entries in the stanza. For example:

* On AIX:

;# Sybase Stanza

[SYBASEDB]

Driver=<Your Broker install directory>/0DBC32/V5.3/1ib/UKase23.s0
Description=DataDirect 5.3 Sybase Wire Protocol

Database=<Your Database Name>

ServerName=<Your Sybase Server Name>

EnableDescribeParam=1

OptimizePrepare=1

SelectMethod=0

NetworkAddress=<Your Sybase Server Name>,<Your Sybase Port Number>
SelectUserName=1

ColumnSizeAsCharacter=1

EnabTeSPCoTumnTypes=2

If you want to use a UNICODE UTFS8 Sybase data source, add the
following line to the end of your Sybase stanza:

Charset=UTF8

For an SQL Server database:

a. In Driver, add the WebSphere Message Broker installation location
to complete the fully qualified path to the driver that is shown in
the sample odbc32.1ni file.

b. In Description, type a meaningful description of the database. This
field is for information only, and does not affect the connection.

c. In Address, type the network address of your database server
(which is required for local and remote databases). Specify an IP
address or server name in the following format:

<Your SQLServer Machine Name or IP address>,<Your SQLServer Port Number>

d. In Database, type the name of the database to which to connect by
default. If you do not specify a value, the default is the database
that is defined by your system administrator for each user.

e. Accept the default values that are shown in the sample odbc32.ini
file for all the other entries in the stanza.

For example, on AIX:

;# UNIX to SQL Stanza

[SQLSERVERDB]

Driver=<Your Broker install directory>/0DBC32/V5.3/1ib/UKmsss23.s0
Description=DataDirect 5.3 SQL Server Wire Protocol

Address=<Your SQLServer Server Name>,<Your SQLServer Port Number>
Database=<Your Database Name>

AnsiNPW=Yes

QuoteId=No

ColumnSizeAsCharacter=1

For an Informix database:

Configuring WebSphere Message Broker 147

a. In Driver, add the full path of your Informix installation to
complete the fully qualified path to the driver shown in the sample
odbc32.ini file.

b. In Description, type a meaningful description of the database. This
field is for information only and does not affect the connection.

C. In ServerName, type the name of the Informix IDS server.
d. In Database, type the name of the database on the IDS server.
For example, on AIX:

;# Informix stanza

[INFORMIXDB]

Driver=<Your Informix Client Directory>/1ib/c1i/ic1it09b.so
Description=IBM Informix ODBC Driver
ServerName=<YourServerName>

Database=<Your Database Name>

9. Ensure that you have edited all three parts of the odbc32.ini file:
¢ The [ODBC Data Source] stanza at the top of the odbc32.1ini file.
* A stanza for each data source.
* The [ODBC] stanza at the end of the odbc32.1ini file.

If you do not configure all three parts correctly, the ODBC DSNs are not valid,
and the broker cannot connect to the database.

You have now configured 32-bit ODBC database connections.

Next: Configure the environment for issuing console commands, and for running
the broker, so that the broker can access the required database libraries. For more
information, see |“Setting your environment to support 32-bit access to databases”]

|on page 154.|

Connecting to a database from Linux and UNIX systems: 64-bit
requirements

To enable a broker to connect to a database, define the ODBC data source name
(DSN) for the database.

Before you start:

* Ensure that the database has been created, see [“Creating the broker and user]
[databases” on page 126

e Ensure that the broker is authorized to access the database, see
[access to broker and user databases” on page 133

* Check that you have set up your environment so that the broker can access the
database; you might have to run a database profile supplied by the database
vendor. For further information, see [Setting up a command environment: Linux|
fand UNIX systems]

Important:

* Before you can create a broker, you must define the 64-bit ODBC data source
name (DSN) that the broker will use to connect to the broker database, because
the broker is a 64-bit application.

* You must define a 64-bit ODBC DSN for the broker database even if you intend
to use 32-bit execution groups, because parts of the broker need 64-bit access to
the data source. For more information, see [“Connecting to a database from|
[Linux and UNIX systems: 32-bit requirements” on page 143

* If the message flows that are deployed to the broker access one or more user
databases, you must define a 64-bit DSN for each user database.

148 Configuration, Administration, and Security

* If you are using 32-bit execution groups, you might also need to define a 32-bit

DSN for your broker and user databases. For more information, see|“Enabling]

[ODBC connections to the databases” on page 137

The ODBC Driver Manager has no graphical application to help you to configure
the ODBC DSNs. To enable a 64-bit ODBC connection, you must define each
database as a DSN in a plain text file called odbc64.ini on the computer that hosts
the broker. For more information, see [“Enabling ODBC connections to the

[databases” on page 137

To configure a 64-bit DSN for a database:

1.

Copy the odbc64.ini sample file that is supplied in the install_dir/0DBC64/
V5.3 directory to a location of your choice; for example, copy the file to the
home directory for your user ID . Each broker service user ID on the system
can therefore use its own DSN definitions.

See the sample file contents in [‘odbc64.ini sample file” on page 367,

Ensure that the odbc64.1ini file has file ownership of mgm:mgbrkrs and has the
same permissions as the supplied sample file.

Set the ODBCINI environment variable to point to your odbc64.1ini file,
specifying a full path and file name.

If you are connecting to DB2 or Informix databases, set the library search path
environment variable to show the location of the 64-bit libraries for the
database manager that you are using.

For more information about the library search path, ask your database
administrator (DBA), or see the documentation for your database manager.

The library search path environment variable depends on your platform:
. PEEEM On Linux and Solaris, set LD _LIBRARY PATH.
« BNZUSN On HP-UX, set SHLIB_PATH.

. On AIX, set LIBPATH.

Updates to the library search path are not required for other supported
databases.

If you are using a DB2 database instance that is installed on AIX, a single
process can make a maximum of 10 connections using shared memory to a
DB2 database. Use TCP/IP mode to connect to the database instance; see
ferror message SQL1224N is issued when you connect to DB2}

Edit the final stanza in the odbc64.1ini file, the [ODBC] stanza, to specify the
location of the ODBC Driver Manager and to control tracing. The exact details
in the stanza depend on the platform.

To ensure that you edit the correct odbc64.1ini file, you can open the file in
the vi text editor using the following command:

vi $0DBCINI

a. In InstallDir, add the WebSphere Message Broker installation location to
complete the fully qualified path to the ODBC directory. If you do not
specify this value correctly, the ODBC definition will not work.

b. In Trace, set the value to 0; if your IBM service representative asks you to
enable ODBC trace, set the value to 1.

c. In TraceOptions, set the value to 3.

d. In TraceFile, type the fully qualified path and file name to which the
ODBC trace is written. Trace files can become large; specify a directory
with plenty of free disk space.

Configuring WebSphere Message Broker 149

e. In TraceDll], add the WebSphere Message Broker installation location to
complete the fully qualified path to the ODBC trace DLL.

f. Accept the default values shown in the sample odbc64.ini file for all the
other entries in the stanza.

For example on AIX:

Ridddzdzdsdsdsdsdsdsdaddsdddzdsdadadadadadd
s###### Mandatory information stanza ######
Ridzdzdzdsdsdsdsdadddaddddddddsdadsdadadadd

[oDBC]
;# To turn on ODBC trace set Trace=1
Trace=0
TraceOptions=3
TraceFile=<A Directory with plenty of free space to hold trace output>/odbctrace64.out
TraceD11=<Your Broker install directory>/0DBC64/V5.3/1ib/odbctrac.so
InstallDir=<Your Broker install directory>/0DBC64/V5.3
UseCursorLib=0
IANAAppCodePage=4
UNICODE=UTF-8
7. Edit the first stanza in the odbc64.1ini file, the [ODBC Data Sources] stanza, to
list the DSN of each database.

For example on AIX:

Riddddsadsddsddsddddasdasdaddaadaddsddsd
s#### List of data sources stanza ######
Riddsdsadsddsadsddaddaddaddaddaadaddsddsd

[ODBC Data Sources]

DB2DB=IBM DB2 ODBC Driver

ORACLEDB=DataDirect 5.3 64bit Oracle Wire Protocol

ORACLERACDB=DataDirect 5.3 64bit Oracle Wire Protocol (Real Application Clusters)
SYBASEDB=DataDirect 5.3 64bit Sybase Wire Protocol

SYBASEDBUTF8=DataDirect 5.3 64bit Sybase UTF8 Wire Protocol
SQLSERVERDB=DataDirect 5.3 64bit SQL Server Wire Protocol

INFORMIXDB=IBM Informix ODBC Driver

List all your DSNs in your odbc64.ini file, regardless of the database
manager. You can define multiple DSNs to resolve to the same database;
however, if you are using global coordination of transactions, do not use this
option because it might cause data integrity problems.

8. For each database that you listed in the [ODBC Data Sources] stanza, create a
stanza in the odbc64.1ini file after the [ODBC Data Sources] stanza. The
entries in the stanza depend on the database manager. Slight differences also
occur between operating systems, for example the file paths to the drivers.

For a DB2 database instance:
a. In Driver, accept the value as shown in the sample odbc64.ini file.

b. In Description, type a meaningful description of the database. This
field is for information only and does not affect the connection.

c. In Database, type the DB2 alias. The data source name must be the
same as the database alias name. If you are using a remote DB2
database, you must set up your client-server connection to resolve
this alias to the correct database. For more information, see the
DB2 documentation.

For example, on AIX:

;# DB2 stanza

[DB2DB]

DRIVER=Tibdb2Wrapper64.so
Description=DB2DB DB2 ODBC Database
Database=DB2DB

150 Configuration, Administration, and Security

For an Oracle database:

a.

In Driver, add the WebSphere Message Broker installation location
to complete the fully qualified path to the driver shown in the
sample odbc64.ini file.

In Description, type a meaningful description of the database. This
tield is for information only and does not affect the connection.

In HostName, type the name or IP address of the machine that is
hosting your Oracle system.

In PortNumber, type the number of the port on which your Oracle
server is listening on the machine you specified in HostName.

In SID, type the Oracle service name that you want to connect to
on the system you specified in HostName.

Accept the default values shown in the sample odbc64.ini file for
all the other entries in the stanza.

For example on AIX:

;# Oracle stanza

[ORACLEDB]

Driver=<Your Broker install directory>/0DBC64/V5.3/1ib/UKora23.so
Description=DataDirect 5.3 64bit Oracle Wire Protocol
HostName=<Your Oracle Server Machine Name>
PortNumber=<Port on which Oracle is listening on HostName>
SID=<Your Oracle SID>

CatalogOptions=0

EnableStaticCursorsForLongData=0

ApplicationUsingThreads=1

EnableDescribeParam=1

OptimizePrepare=1

WorkArounds=536870912

ProcedureRetResults=1

ColumnSizeAsCharacter=1

For an Oracle database that uses Real Application Clusters:

a.

In Driver, add the WebSphere Message Broker installation location
to complete the fully qualified path to the driver shown in the
sample odbc64.1ini file.

In Description, type a meaningful description of the database. This
field is for information only and does not affect the connection.

In HostName, type the name or IP address of the machine that is
hosting your Oracle system.

In PortNumber, type the number of the port on which your Oracle
server is listening on the machine you specified in HostName.

In ServiceName, type the Oracle Real Application Cluster service
name that you want to connect to on the system you specified in
HostName.

In AlternateServers, provide a list of alternative locations for this
service. Each location specification consists of three parts, separated
by colons. Enter these values as one continues string; the text in
this example has been split to improve readability.
HostName=<Alternative host name>

:PortNumber=<0Oracle listner port on alternative server>
:ServiceName=<Service name on the alternative server>

If you want to specify more than one AlternateServer, separate each
additional location specification with a comma.

Configuring WebSphere Message Broker 151

g. Accept the default values shown in the sample odbc64.1ini file for
all the other entries in the stanza.

For example on AIX:

;# Oracle Real Application Clusters stanza

[ORACLERACDB]

Driver=<Your Broker install directory>/0DBC64/V5.3/1ib/UKora23.so
Description=DataDirect 5.3 64bit Oracle Wire Protocol

HostName=<Your Oracle Server Machine Name>

PortNumber=<Port on which Oracle is listening on HostName>
ServiceName=<Your Oracle Real Application Cluster Service Name>
AlternateServers=(<Your alternative host name>:PortNumber=<Port on which
Oracle is listening on the alternative host>:ServiceName=<Your Oracle Real
Application

Cluster Service Name>)

CatalogOptions=0

EnableStaticCursorsForLongData=0

ApplicationUsingThreads=1

EnableDescribeParam=1

OptimizePrepare=1

WorkArounds=536870912

ProcedureRetResults=1

ColumnSizeAsCharacter=1

For a Sybase database:

a. In Driver, add the WebSphere Message Broker installation location
to complete the fully qualified path to the driver shown in the
sample odbc64.1ini file.

b. In Description, type a meaningful description of the database. This
field is for information only and does not affect the connection.

c. In Database, type the name of the database to which you want to
connect by default. If you do not specify a value, the default value
is the database defined by your system administrator for each user.

d. In NetworkAddress, type the network address of your Sybase ASE
server (this address is required for local and remote databases).
Specify an IP address or server name as follows:

<Your Sybase server name or IP address>,<Your Sybase port number>

For example: Sybaseserver,5000. You can also specify the IP
address directly, for example 199.226.224.34,5000. You can find
the port number in the Sybase interfaces file that is named
interfaces.

e. Accept the default values shown in the sample odbc64.1ini file for
all the other entries in the stanza.

For example on AIX:

;# Sybase Stanza

[SYBASEDB]

Driver=<Your Broker install directory>/0DBC64/V5.3/1ib/UKase23.s0
Description=DataDirect 5.3 64bit Sybase Wire Protocol
Database=<Your Database Name>

ApplicationUsingThreads=1

EnableDescribeParam=1

OptimizePrepare=1

SelectMethod=0

NetworkAddress=<Your Sybase Server Name>,<Your Sybase Port Number>
SelectUserName=1

ColumnSizeAsCharacter=1

EnableSPColumnTypes=2

If you want to use a UNICODE UTF8 Sybase data source, add the
following line to the end of your Sybase stanza:

152 Configuration, Administration, and Security

9.

10.

Charset=UTF8

For an SQL Server database

a. In Driver, add the WebSphere Message Broker installation location
to complete the fully qualified path to the driver shown in the
sample odbc64.ini.

b. In Description, type a meaningful description of the database. This
field is for information only and does not affect the connection.

c. In Address, type the network address of your database server (this
address is required for local and remote databases). Specify an IP
address or server name as follows:

<Your SQLServer machine name or IP address>,<Your SQLServer port number>

d. In Database, type the name of the database to which you want to
connect by default. If you do not specify a value, the default value
is the database defined by your system administrator for each user.

e. Accept the default values shown in the sample odbc64.1ini file for
all the other entries in the stanza.

For example, on AIX:

;# UNIX to SQLServer stanza

[SQLSERVERDB]

Driver=<Your Broker install directory>/0DBC64/V5.3/1ib/UKmsss23.s0
Description=DataDirect 5.3 64bit SQL Server Wire Protocol
Address=<Your SQLServer Server Name>,<Your SQLServer Port Number>
AnsiNPW=Yes

Database=db

QuotedId=No

ColumnSizeAsCharacter=1

For an Informix database

a. In Driver, accept the value as shown in the sample odbc64.1ini file.

b. In Description, type a meaningful description of the database. This
tield is for information only and does not affect the connection.

c. In ServerName, type the name of the Informix IDS server.

d. In Database, type the name of the database to which you want to
connect by default. If you do not specify a value, the default value
is the database that is defined by your system administrator for
each user.

For example, on AIX:

;# Informix Stanza

[INFORMIXDB]

Driver=TibinfWrapper64.so
Description=IBM Informix ODBC Driver
ServerName=<Your Informix Server Name>
Database=<Your Database Name>

Ensure that you have edited all three parts of the odbc64.1ini file:

¢ The [ODBC Data Source] stanza at the top of the odbc64.1ini file.

* A stanza for each data source.

* The [ODBC] stanza at the end of the odbc64.1ini file.

If you do not configure all three parts correctly, the ODBC DSNs do not work
and the broker is unable to connect to the database.

If you are running DB2 Version 9.1 or later on HP-UX on PA-RISC, export
environment variable MQSI_SIGNAL_EXCLUSIONS in the broker
environment:

export MQSI_SIGNAL_EXCLUSIONS=10

Configuring WebSphere Message Broker 153

You have now configured database connections from 64-bit applications on Linux
and UNIX.

Next: Configure the environment for issuing console commands, and for running
the broker, so that the broker can access the required database libraries. For more
information, see |“Setting your environment to support 32-bit access to databases.”|

Setting your environment to support 32-bit access to databases
When you have configured your ODBC data source names (DSNs), you must also
configure the environment so that you can issue console commands, and the
brokers that you start can access the required database libraries. For example, if
you have a DB2 database, you must add the DB2 client libraries to your library
search path.

WIS On Windows platforms, the environment is typically set up for you
when you install the database product, and no further action is required. However,
some database managers provide a database profile that you must run to enable
the connection from the broker; for further information, see [Setting up a command]
fenvironment: Windows platforms}

BTSN On Linux and UNIX systems, run a profile for each database
you want to access. For example, on DB2 you must run db2profile; other database
vendors have similar profiles. For further information, see [Setting up a command|
[environment: Linux and UNIX systems|

Next: If you have been following the instructions in |[“Configuring broker and user]
[databases” on page 119)and you use Sybase for your broker database, the next
task is |[“Using retained publications with a Sybase database” on page 162
(optional). If you do not use Sybase for your broker database, the next task is
[“Configuring global coordination of transactions (two-phase commit)” on page 296|
(optional).

Enabling JDBC connections to the databases

Configure connections to a user database through a JDBCProvider service.

Use a JDBC connection from Java programs that are associated with a
JavaCompute node or a user-defined node that is written in Java.

You must also set up JDBC connections if you include DatabaseRetrieve or
DatabaseRoute nodes in your message flows.

If you configure a JDBC type 4 connection from an application running on a Linux,
UNIX, or Windows system, you can configure your broker and queue manager to
include interactions with the databases in globally-coordinated transactions. On
z/0S, JDBC connections can be broker-coordinated only.

The information provided in this section is independent of whether your operating
systems, brokers, execution groups, queue managers, and databases operate in
32-bit or 64-bit mode, except where stated.

When you write Java classes for a JavaCompute node or a user-defined node, your
code must comply with the following restrictions:

* Do not include any code that performs a COMMIT or a ROLLBACK function.

154 Configuration, Administration, and Security

* Do not close the connection to the database. The broker manages all connections,
and closes a connection if it is idle for approximately one minute, or if the
message flow completes.

To configure JDBC type 4 connections:
1. [Set up your JDBC provider definition|

. Optional: |Set up security

2
3. Optional: [Configure for global-coordination of transactions|
4

. Optional: If your broker is running on a Windows system, fauthorize access to|
[[DBCProvider resources]

Next: If you have been following the instructions in [“Configuring broker and user]
databases” on page 119 | the next task is [“Setting up a JDBC provider for type 4|

connections."|

When you have completed configuration of the databases, add or modify Java
code in your JavaCompute or user-defined nodes to access the database that is
identified in the JDBCProvider service.

Setting up a JDBC provider for type 4 connections
Use the mgsicreateconfigurableservice or the mqgsichangeproperties command to
configure a JDBC provider service.

Before you start:

e |Create a broker

* |Create your database following the database documentation|

When you include a DatabaseRetrieve, DatabaseRoute, JavaCompute, or Java
user-defined node in a message flow, and interact with a database in that node, the
broker must establish a connection with the database to fulfill the operations that
are performed by the node. You must define a JDBCProvider configurable service
to provide the broker with the information that it needs to complete the
connection.

A JDBCProvider configurable service supports connections to one database only;
you must create a service for each database that your Java applications connect to.

1. Identify the type of database for which you require a JDBCProvider service.

Supported JDBC drivers and databases are shown in [Supported databases}
support for globally coordinated (XA) transactions is restricted on some
platforms and for some databases.

2. Run the mgsireportproperties command to view the list of available
JDBCProvider services. Substitute the name of your broker in place of
broker_name.

mgsireportproperties broker_name -c JDBCProviders -a -o AllReportableEntityNames

The command response lists all the JDBCProvider configurable services that are
defined. If you have not created your own definitions, the following list of
default supplied services is shown:

» DB2

* Informix

e Informix_With_Date_Format

* Microsoft_SQL_Server

¢ Oracle

e Sybase_]JConnect6_05

Configuring WebSphere Message Broker 155

If you are connecting to an Informix database:

* Use Informix_With_Date_Format for compatibility with client applications
that are dependent on the date format connection attribute that was used by
earlier versions of Informix servers.

* Use Informix for client applications that are not dependent on the date
format attribute.

3. View the contents of the relevant JDBCProvider service definition. For example,
run the following command to display the supplied Oracle definition:

mgsireportproperties broker_name -c JDBCProviders -o Oracle -r

The command response lists all the properties for the Oracle definition. If you
have not changed this definition, the properties are set to initial values, some of
which you must change to create a viable definition. For example, the property
databaseName is set to default_Database_Name, and you must change it to
identify the specific database that you want to connect to.

A JDBCProvider service has the following properties:

* connectionUrlFormat. A pattern that represents the connection URL
definition, which is specific to a particular database type. For example, the
pattern for DB2 is defined with the following content:

jdbc:db2://[serverName] : [portNumber] /[databaseName] :user=[user] ;password=[password] ;

The pattern is used and completed by the broker at run time when it
connects to the database. The values in brackets, for example [serverName],
are substituted by the broker into the pattern by using the values that you
have specified on the mgsicreateconfigurableservice, mgsichangeproperties,
or mgsisetdbparms commands.

If you are using one of the supplied JDBCProvider services, do not use the
mgsichangeproperties command to change the pattern itself; changes made
to the pattern might cause unpredictable results.

If you use the mgsicreateconfigurableservice command to define your own
JDBCProvider service, use the mgsireportproperties command to check that
the content of the connectionUrlFormat string exactly matches the default
supplied provider for the database type that you are using.

In addition, if you are working on z/0OS, and are using the JCL files
BIPCRCS and BIPCHPR to define your JDBCProvider service, ensure that
your 3270 emulator is configured to use the same code page that the broker
is running in. If the code pages do not match, the connectionUrlFormat
string pattern that you define might not be recognized correctly by the
broker.

* connectionUrlFormat Attrl-5. If the defined URL pattern for a database
contains non-standard JDBC data source properties, such as a server
identifier, specify these properties in addition to the standard attributes by
using one of five general-purpose connection URL attributes. For example:

— If connectionURLFormat = jdbc:oracle:thin:[user]/
[password]@[serverName]:[portNumber]:[connectionUrlFormatAttrl],
connectionUrlFormatAttrl must contain an Oracle server identifier, which
you must supply by defining the value for the property
connectionUrlFormatAttrl on the mgsicreateconfigurableservice or
mgsichangeproperties command. The broker can then substitute all the
required values into the required pattern.

— If connectionURLFormat = jdbc:informix-sqli:/ /
[serverName]:[portNumber]/
[databaseName]:informixserver=[connectionUrlFormatAttrl];
user=[user];password=[password], connectionUrlFormatAttrl must

156 Configuration, Administration, and Security

contain the name of the Informix instance on the server (typically
specified by the INFORMIXSERVER environment variable). This value is
case sensitive.

databaseName. The name of the database to which the data source entry
enables connections; for example, employees.

databaseType. The database type; for example, DB2.
databaseVersion. The database version; for example, 9.1.
description. An optional property to describe the data source definition.

environmentParms. ForDB2 only. An optional property specifying a list of
datasource properties of the form name=value each separated by a semicolon.

jarsURL. The local directory path, on the system on which the broker is
running, where the JAR file that contains the type 4 driver class is located.

In addition, a Storage Area Network disk can be used for the directory path,
but a mapped network drive to a remote computer cannot be used.

portNumber. The port number on which the database server is listening; for
example, 50000.

securityldentity. A unique security key to perform a second broker registry
lookup to find an entry under the broker security identities, which store the
encrypted password for the user on the associated host system; for example,
mysecurityldentity.

Create a security identity by using the mgsisetdbparms command, as
described in [“Securing a JDBC type 4 connection” on page 158 The value of
securityldentity (for example, mysecurityldentity) must match the value that
you specify following the prefix jdbc:: for the parameter -n on that
command.

The security identity provides a user ID and password value pair, which are
used to access the specified data source defined for a given JDBCProvider
service entry. This property is ignored if the connection URL does not contain
both a user ID and password pair, which require property values to be
substituted for such inserts. The DataSourceUserld and DataSourcePassword
properties under which the broker was created are used under the following
conditions:

— If the securityldentity is blank, or if you have not changed it from the
default value default_User@default_Server, but the identity is required for
the connection URL pattern.

— If you have entered a valid unique security identity key, but it cannot be
found under the DSN key.

On z/0S, you must specify a user ID and password with
appropriate authorization to access the database. Do not use the
broker-started-task user ID for this purpose. (Assign a password to a
started-task user ID only after considering all the potential security
implications.)

serverName. The name of the server; for example, host1.

type4DatasourceClassName. The name of the JDBC data source class name
that is used to establish a type 4 connection to a remote database, and to
coordinate transaction support. For example, specify

com.ibm.db2.jcc. DB2XADataSource for DB2, or specify

oracle jdbc.xa.client.OracleXADataSource for Oracle. You must always specify
the XA class name, even if you do not use coordinated transactions.

Configuring WebSphere Message Broker 157

* typed4DriverClassName. The name of the JDBC type 4 driver class name that
is used to establish a connection. For example, specify
com.ibm.db2.jcc.DB2Driver for DB2, or specify oracle.jdbc.OracleDriver for
Oracle.

4. If you want to use the provided definition, run the mqgsichangeproperties

command to replace default values with the values specific to your database
and environment. If you are in any doubt about the required values, consult
your database administrator, or check the documentation that is provided with
your chosen database. Some values depend on how and where you have
installed the database product; for example, the property jarsURL identifies the
location of the JAR files supplied and installed by the database provider.

If you want to create a new configurable service, perhaps because you want to

retain the supplied service as a template for future definitions, run the
mgsicreateconfigurableservice command to create the definition.

mgsicreateconfigurableservice broker_name -c JDBCProviders -o provider_name
-n list of properties -v list of values

Enter the command on a single line; the example has been split to enhance
readability.

Specify all the properties that are required by the database provider that you
have chosen. To specify a list of properties and values, separate the items after
each flag with a comma. For example, -n databaseName,databaseType -v
EmployeeDB,DB2. If you do not specify all the properties on the
mgsicreateconfigurableservice command, you can update them later with the
mgsichangeproperties command.

When you have set up your JDBCProvider service, you must stop and restart
the broker.

Next: if required, set up security for the JDBC connection, set up the environment
to include the JDBCProvider service in globally coordinated transactions, or both.

Securing a JDBC type 4 connection
Set up security for the JDBC connection if required by the database provider.

Before you start: [Set up your JDBC provider definition|

Some databases require all access to be associated with a known user ID; for others
this association is optional. For example, DB2 requires a data source login name
and password on all connections. If the database requires secure access to be
defined, or if you choose to implement security in an optional situation, complete
the task described here.

1.

Identify the user ID that you want to associate with the JDBC connection, or
create a user ID with a password, following the appropriate instructions for
your operating system and database.

Run the mgsisetdbparms command to associate the user ID and password with
the security identity that is associated with the database that you will access
using the JDBCProvider configurable service. Use the following command
format:

mqsisetdbparms broker_name -n security_identity -u userID -p password

For example, if you want user ID myuserid with a password of secretpw to
access a database on broker BROKERI, run the following command:

mqgsisetdbparms BROKER1 -n jdbc::mySecuritylIdentity -u myuserid -p secretpw

In the example, the mySecurityldentity is prefixed with jdbc:: to indicate the
type of the connection for which the user ID and password are defined.

158 Configuration, Administration, and Security

3. Update the corresponding securityldentity property for the JDBCProvider
configurable service to associate the connection with the security identity that
you have defined. Use the following command format:

mgsichangeproperties broker_name -c JDBCProviders -o service_name -n securityldentity -v security identity

For example, if you are using the supplied JDBCProvider definition for Oracle:
mgsichangeproperties BROKER1 -c JDBCProviders -o Oracle -n securityldentity -v mySecurityldentity

You can use the same user ID and password definition for more than one
JDBCProvider service if appropriate; specify the same security identity that you
specified on the mgsisetdbparms command as the value for the
securityldentity property in each JDBCProvider service definition that uses the
same access security.

Next: if you are setting up a connection on Windows, see [“Authorizing access to]
DBC type 4 JDBCProvider resources on Windows” on page 161 Otherwise, see
“Configuring a JDBC type 4 connection for globally coordinated transactions.”|

Configuring a JDBC type 4 connection for globally coordinated
transactions

If you want the database that you access through a JDBC type 4 connection to
participate in globally coordinated transactions, set up the appropriate
environment.

Before you start: [Set up your JDBC provider definition|

Updates that you make to a database across a JDBC type 4 connection can be
coordinated with other actions taken within the message flow, if you set up the
resources to support coordination.

Complete the following steps:

1. Check that the definition of your JDBCProvider service is appropriate for
coordinated transactions.

For example, to set up the required JDBC classes:

* For DB2, set type4DatasourceClassName to
com.ibm.db2.jcc.DB2XADataSource and type4DriverClassName to
com.ibm.db2.jcc.DB2Driver

* For Oracle, set type4DatasourceClassName to
oracle.jdbc.xa.client.OracleXADataSource and type4DriverClassName to
oracle.jdbc.OracleDriver

Consult your database administrator or the documentation provided by your
database supplier, to confirm that all the JDBCProvider service properties are
set appropriately. For example, a database supplier might require secure access
if it is participating in coordinated transactions.

2. Define the switch file and the database properties:

a. BIZ®N On Linux and UNIX systems, open the gm.ini file for
the broker queue manager with a text editor. Add the following stanza for
each database:

XAResourceManager:
Name=Database_Name
SwitchFile=JDBCSwitch
XAOpenString=JDBC_DataSource
Thread0fControl=THREAD

Configuring WebSphere Message Broker 159

Database_Name is the database name (DSN) of the database defined to the
JDBCProvider configurable service (for example, specified by -n
databaseName -v Database_Name on the mgsichangeproperties command).

JDBCSwitch is a fixed generic name that represents the switch file for XA
coordination. Use this value, or another single fixed value, in each stanza;
the specific switch file that the queue manager uses is defined by the
symbolic links you create in the next step.

JDBC_DataSource is the identifier of the JDBCProvider configurable service
(the value that you specified for the -o parameter on the
mgsichangeproperties command).

Define a stanza for each database (DSN) that you connect to from this
broker. You must create separate definitions even if the DSNs resolve to the
same physical database. Therefore, you must have a stanza for each
JDBCProvider configurable service that you have defined, because each
service can define the properties for a single database.

b. M On Windows systems, open WebSphere MQ Explorer and select
the queue manager for your broker, for example BROKERQM.

Open the XA resource manager page, and modify the attributes to create
the definition of the database. The attributes are the same as those shown
for Linux and UNIX; Name, SwitchFile, XAOpenString, and
ThreadofControl. Leave the additional attribute, XACloseString, blank.

Enter the fully qualified file name in SwitchFile; install_dir\bin\
JDBCSwitch.d11.

3. Set up queue manager access to the switch file:
a. BITEN On Linux and UNIX systems, create a symbolic link to
the switch files that are supplied in your install_dir/1ib directory.

install_dir is the directory to which you installed the broker component. The
default location for this directory is /opt/ibm/mgsi/6.1 on Linux or
/opt/IBM/mgsi/6.1 on UNIX systems.

Set up links in the /var/mgm/exits directory, or the /var/mqm/exits64
directory, or both. The file names for each platform are shown in the
following table.

Platform 32-bit file 64-bit file

AIX 11bJDBCSwitch.so 11bJDBCSwitch64.so
HP-UX on Itanium 1ibJDBCSwitch.so
HP-UX on PA-RISC 11bJDBCSwitch.s] 11bJDBCSwitch64.s1
Linux on POWER 11bJDBCSwitch.so
Linux on System z 1ibJDBCSwitch.so
Linux on x86 1ibJDBCSwitch.so

Linux on x86-64 11bJDBCSwitch.so 11bJDBCSwitch64.so
Solaris on SPARC 11bJDBCSwitch.so 11bJDBCSwitch64.so
Solaris 11bJDBCSwitch.so
on x86-64

Specify the same name of the switch file, JDBCSwitch or your own value, in
both the /exits and /exits64 directories. For example, on AIX:

160 Configuration, Administration, and Security

In -s install_dir/1ib/1ibJDBCSwitch.so /var/mgm/exits/JDBCSwitch
and

In -s install_dir/1ib/11bJDBCSwitch64.so /var/mgm/exits64/JDBCSwitch

b. MM On Windows systems, copy the JDBCSwitch.d11 file from the
install_dir\bin directory to the \exits subdirectory in the WebSphere MQ
installation directory.

4. Configure the message flow that includes one or more nodes that access
databases that are to participate in a globally coordinated transaction.

a. Open a workbench session.
b. Switch to the Broker Application Development perspective.

C. Add the message flow that includes the node or nodes that connect to the
database that is to participate in a globally coordinated transaction to a new
or existing BAR file.

Build the BAR file.

Click the Configure tab, select the message flow that you have added, and
select the Coordinated Transaction check box.

Next: If your broker is running on Windows, lauthorize the broker and its queue
[manager to access resources associated with the JDBCProvider configurable servicel

If you have been following the instructions in|“Configuring broker and user]
[databases” on page 119)and your broker is running on Linux or UNIX, the next
task is [“Using retained publications with a Sybase database” on page 162|
(optional).

Authorizing access to JDBC type 4 JDBCProvider resources on
Windows

Authorize the broker and queue manager to access shared resources that are
associated with the JDBCProvider. This task is required only if you want the
database updates to be included in globally coordinated transactions on Windows
systems.

Before you start: [Set up your JDBC provider definition}

When the queue manager coordinates transactions, both queue manager and
broker access shared memory to control a connection to the databases with which
the message flow interacts. Therefore, they require the same access control of the
shared memory. One method to achieve this control is to use the same ID for the
broker service ID and the queue manager administrative ID.

Complete the following steps on the Windows system on which the broker is

running:

* If you defined the broker queue manager when you created the broker by
running the mgsicreatebroker command, the two components share the same
administrative 1D, defined as the broker service ID, and you do not have to take
further action.

* If you specified an existing queue manager when you created the broker, check
that its administrative ID is the same ID as the one used for the service ID of the
broker. If the ID is not the same, change the queue manager ID to be the same
as the broker service ID:

1. Click Start » Run and enter dcomenfg. The Component Services window
opens.

Configuring WebSphere Message Broker 161

2. In the left pane, expand Component Services > Computers > My Computer
and click DCOM Config.

3. In the right pane, right-click the WebSphere MQ service labeled IBM
MQSeries Services, and click Properties.

4. Click the Identity tab.

5. Select This user and enter the user ID and password for the broker service
ID to associate that ID with the queue manager.

6. Click OK to confirm the change.

Next: If you have been following the instructions in [“Configuring broker and user|
databases” on page 119 |the next task is [“Using retained publications with a Sybase|

database”| (optional).

Using retained publications with a Sybase database

If you have created a broker that uses a Sybase database, and you expect extensive
use of retained publications with multiple topics, apply row-level locking to the
retained publications table in the database. If you do not plan to use retained
publications, or expect their use to be infrequent, you do not have to make this
change.

If you do not apply row-level locking, and your use of retained publications is too
great, the broker will experience deadlock problems.

To apply row-level locking:
1. At a command prompt enter the following command:
isql -Umgsiuid -Pmqgsipw
If you have authorized another user ID and password for broker access to this
database, substitute your values for mqsiuid and mgsipw in this command.
2. Connect to the broker database with this command:
use WBRKBKDB

If you have created your broker database with a different name, substitute your
broker database name for WBRKBKDB in this command.

3. Update the retained publications table to use row-level locking with this
command:

alter table mgsiuid.BRETAINEDPUBS lock datarows

If the owner of this database instance is not mqsiuid, substitute the correct
schema name in this command.

4. Apply the change with this command:
go

You can check that the change has been successfully applied by entering the
commands:

sp_help BRETAINEDPUBS
go

The locking scheme is displayed: Tock scheme datarows.

If the change has not completed, it is displayed as: Tock scheme allpages.

162 Configuration, Administration, and Security

Customizing the z/0S environment

If you are planning to use a z/OS environment, consider whether to create your
components on z/OS. You must also complete a number of tasks to configure your
environment.

Although you might be installing only one broker initially, you might want to
consider how the product will be used in your organization in a few years time.
Planning ahead makes developing your WebSphere Message Broker configuration
easier.

You might consider creating the Configuration Manager on z/OS to manage the
broker domain:

* In a new installation of WebSphere Message Broker, or

* If you are migrating from an earlier version of the product, where the
Configuration Manager was previously on Windows.

If you want to run a Configuration Manager on z/OS, you can either:

* Connect to the Message Broker Toolkit directly, if you have the optional
WebSphere MQ Client Attach feature installed; see [“Connecting directly to a
[Configuration Manager on z/0S” on page 185)or

¢ Connect through an intermediate queue manager (for example, on Windows)
and define the necessary WebSphere MQ components to communicate with the
z/0S queue manager; see [‘Connecting to a z/OS Configuration Manager|
[through an intermediate queue manager” on page 186,

If you are using publish/subscribe with security, you also require a User Name
Server, which can be on z/OS or another platform. The User Name Server is an
optional component.

The following rules apply to the configuration:

* Queue managers must be interconnected, so that information from the User
Name Server can be distributed to the brokers on other queue managers.

+ A broker requires access to a queue manager and to DB2. See [Database contents|
for details of the DB2 database user tables that are created.

* A Configuration Manager and User Name Server require access to a queue
manager only.

¢ A broker cannot share its queue manager with another broker, but a broker can
share a queue manager with a Configuration Manager, a User Name Server, or
both.

* You cannot use WebSphere MQ shared queues to hold data related to
WebSphere Message Broker as SYSTEM.BROKER queues, but you can use
shared queues for your message flow queues.

You can find details of the WebSphere MQ queues that are created and used by
WebSphere Message Broker on z/0OS in [“mgsicreatebroker command” on page 540

When planning to work in a z/OS environment, you must complete the following
tasks:

* Create started task procedures for each broker, User Name Server, and
Configuration Manager that you plan to use. These procedures must be defined,
in the started task table, with an appropriate user ID.

Configuring WebSphere Message Broker 163

* Decide on your recovery strategy. As part of your systems architecture, you
must have a strategy for restarting systems if they end abnormally. Common
solutions are to use automation products like NetView® or the Automatic Restart
Manager (ARM) facility. You can configure WebSphere Message Broker to use
ARM.

* Plan for corequisite products, including UNIX System Services, Resource
Recovery Services (RRS), DB2, WebSphere MQ, and Java.

* Ensure that the runtime library system (RTLS) for the broker is turned off in the
default options of the Language Environment for the system. This setting is
required because the broker code is compiled using XPLINK, and XPLINK
applications cannot be started while RTLS is active.

e Collect broker statistics on z/OS.

See the following topics for more information:

* |“z/0S customization overview”]

+ [“Customizing UNIX System Services on z/0S” on page 174

* ["DB2 planning on z/OS” on page 176|

* |“WebSphere MQ planning for z/OS” on page 179

+ [“Resource Recovery Service planning on z/0OS” on page 180|

* |[“Defining the started tasks to z/OS Workload Manager (WLM)” on page 180|
+ [“Automatic Restart Manager planning” on page 180

+ [“Mounting file systems” on page 181]

* |“Checking the permission of the installation directory” on page 182

+ [“Customizing the version of Java on z/0S” on page 183|
+ [“Checking APF attributes of bipimain on z/OS” on page 183|
» |“Collecting broker statistics on z/0S” on page 183|

+ [“Configuring an execution group address space as non-swappable on z/0S” on|

page 184]

For an overview of how to create WebSphere Message Broker components, see
[‘Creating WebSphere Message Broker components on z/0OS” on page 184) To
verify your configuration, see [“WebSphere Message Broker and WebSphere MQ)
[setup verification” on page 187

z/OS customization overview

After you have used SMP/E to install WebSphere Message Broker for z/OS, the
installed executable code is located inside the file system. JCL samples are located
in the PDS <h1g>.SBIPSAMP, the JCL procedures are located in the PDS
<h1g>.SBIPPROC, and load module for synchronizing statistics with SMF are located
in the PDS <h1qg>.SBIPAUTH.

The following diagram gives an overview of the post-installation process.

164 Configuration, Administration, and Security

Installation Customization

Installation
Directory

R
N

SBIPSAMP [—|
PDSE

R
N

SBIPPROC
PDSE

Component
Directory
WebSphere
MQ

R
N

SBIPAUTH
PDSE

Started Task
JCL

To perform the customization, update and submit the required JCL. All necessary
JCL is supplied to create the runtime environments of your broker, Configuration
Manager, and User Name Server. You start the broker, Configuration Manager, or
User Name Server using one of the supplied JCL files, which is run as a started
task.

For more information, see:

[“Installation directory on z/0S”|

+ [“Components on z/0S”|

+ [“Component directory on z/OS” on page 166|

* [“Component PDSE on z/0S” on page 166|

+ ["XPLink on z/0S” on page 167

+ |“Binding a DB2 plan to use data-sharing groups on z/0OS” on page 167

+ [“Using the file system on z/OS” on page 168|

* [“Event log messages on z/OS” on page 168

* [“Security considerations on z/OS” on page 168|

* [“Overview of message serialization on z/OS” on page 169

Installation directory on z/OS
On z/0S, the SMP/E installation places all the product executable files into a
directory of a file system under UNIX System Services (USS).

For further information on mounting file systems and allocating space, including
performance considerations, see ["Mounting file systems” on page 181

Components on z/OS
A component is a set of runtime processes that perform a specific set of functions,
and can be a broker, a Configuration Manager, or a User Name Server.

Configuring WebSphere Message Broker 165

A broker processes messages, a Configuration Manager acts as an interface
between the configuration repository and the set of brokers in the domain, and a
User Name Server extracts information from a security product and makes it
available to brokers and the workbench.

A broker that is running has a control address space and one additional address
space for each deployed execution group. When the control address space is
started, the broker component is started automatically. This behavior can be
changed by an optional start parameter in the started task.

A Configuration Manager and User Name Server each have a single address space.
When the address space is started, the components are started automatically. This
behavior can be changed by an optional start parameter in the started task.

The component name is the external name of the component and is used, for
example, in the WebSphere Message Broker workbench.

Each component requires a name, which is usually the name of the started task
that runs the component. This is typically the queue manager name with a suffix
of the facility; for example:

* MQP1BRK for the broker
* MQPIUNS for the User Name Server
* MQP1CMGR for the Configuration Manager

You only need a User Name Server if you are using publish/subscribe security.
This User Name Server can exist anywhere in the network, including z/OS.

Each component has its own runtime environment in UNIX System Services and
needs its own WebSphere MQ queue manager.

However, a broker, Configuration Manager, and User Name Server can share a
single queue manager. A broker component also needs access to a database.

Component directory on z/0S
The component directory is the root directory of the component's runtime
environment.

The component directory is also referred to as ComponentDirectory in some instances
within the code. Both the WebSphere Message Broker administrator and the
component require read and write access to the component directory.

An example directory for each of the three components follows:
* /mgsi/brokers/MQP1BRK for the broker

e /mgsi/uns/MQP1UNS for the User Name Server

» /mgsi/configmgrs/MQP1CMGR for the Configuration Manager

For further information on mounting file systems and allocating space, including
performance considerations, see [“Mounting file systems” on page 181

Component PDSE on z/0S

On z/0S, the component PDSE contains jobs customized for a single component.
These jobs are used to create and administer the component.

166 Configuration, Administration, and Security

The members specific to a component type are copied from<h1q>.SBIPSAMP and
<h1g>.SBIPPROC to the component PDSE. These are then customized for the
component.

The broker started-task user ID requires read access to its component PDSE at run
time.

You must not share a PDSE across more than one SYSplex or GRSplex.

XPLink on z/OS

XPLink is a z/OS technology used by the C and C++ compilers to reduce the cost
of function calling for programs written in these languages.

Many products, including WebSphere Message Broker for z/OS, use XPLink
technology to improve their performance. To ensure the highest possible
performance gains, WebSphere Message Broker requires as many as possible of the
software components it uses to be XPLink-compliant. These include the broker,
Java runtime, ODBC, and z/OS Language Environment.

The WebSphere Message Broker broker has been compiled by IBM to use XPLink
technology and has been link-edited within the SMP/E environment to call the
appropriate XPLink routines of the software components it uses. Normally, these
XPLink-enabled components are configured during their customization, and the
broker needs only to locate the appropriate libraries to become XPLink-enabled.

Binding a DB2 plan to use data-sharing groups on z/0OS

During customization, you can specify which plan name to use, or use the default
DSNACLI. If you are using XPLINK, the default plan is called DSNACLX. If you want
your broker to access DB2 data-sharing groups other than its own, the DSNACLI
plan must be bound in a special way. If the broker uses one data sharing group,
but might want to access tables on DSNONE and DSNTWO, which are in different
data-sharing groups, amend the DB2 supplied job DSNTIJCL to do the following:

BIND PACKAGE (DSNAOCLI)MEMBER(DSNCLICS)ISOLATION(CS)

BIND PACKAGE (DSNAOCLI)MEMBER(DSNCLINC)ISOLATION(NC)

BIND PACKAGE (DSNAOCLI)MEMBER(DSNCLIRR)ISOLATION(RR)

BIND PACKAGE (DSNAOCLI)MEMBER(DSNCLIRS)ISOLATION(RS)

BIND PACKAGE (DSNAOCLI)MEMBER(DSNCLIUR)ISOLATION(UR)

BIND PACKAGE (DSNAOCLI)MEMBER(DSNCLIC1)

BIND PACKAGE (DSNAOCLI)MEMBER(DSNCLIC2)

BIND PACKAGE (DSNAOCLI)MEMBER(DSNCLIF4)

BIND PACKAGE (DSNAOCLI)MEMBER(DSNCLIMS)

BIND PACKAGE (DSNAOCLI)MEMBER(DSNCLIQR)

BIND PACKAGE (DSNONE.DSNAOCLI)MEMBER(DSNCLICS)ISOLATION(CS)
BIND PACKAGE (DSNONE.DSNAOCLI)MEMBER(DSNCLINC)ISOLATION(NC)
BIND PACKAGE (DSNONE.DSNAOCLI)MEMBER(DSNCLIRR) ISOLATION(RR)
BIND PACKAGE (DSNONE.DSNAOCLI)MEMBER (DSNCLIRS)ISOLATION(RS)
BIND PACKAGE (DSNONE.DSNAOCLI)MEMBER(DSNCLIUR)ISOLATION(UR)
BIND PACKAGE (DSNONE.DSNAOCLI)MEMBER(DSNCLIC1)

BIND PACKAGE (DSNONE.DSNAOCLI)MEMBER(DSNCLIC2)

BIND PACKAGE (DSNONE.DSNAOCLI)MEMBER (DSNCLIF4)

BIND PACKAGE (DSNONE.DSNAOCLI)MEMBER(DSNCLIMS)

BIND PACKAGE (DSNONE.DSNAOCLI)MEMBER(DSNCLIQR)

BIND PACKAGE (DSNTWO.DSNAOCLI)MEMBER(DSNCLICS)ISOLATION(CS)
BIND PACKAGE (DSNTWO.DSNAOCLI)MEMBER(DSNCLINC)ISOLATION(NC)
BIND PACKAGE (DSNTWO.DSNAOCLI)MEMBER (DSNCLIRR)ISOLATION(RR)
BIND PACKAGE (DSNTWO.DSNAOCLI)MEMBER(DSNCLIRS)ISOLATION(RS)
BIND PACKAGE (DSNTWO.DSNAOCLI)MEMBER (DSNCLIUR)ISOLATION(UR)
BIND PACKAGE (DSNTWO.DSNAOCLI)MEMBER(DSNCLIC1)

BIND PACKAGE (DSNTWO.DSNAOCLI)MEMBER(DSNCLIC2)

BIND PACKAGE (DSNTWO.DSNAOCLI)MEMBER (DSNCLIF4)

Configuring WebSphere Message Broker 167

BIND PACKAGE (DSNTWO.DSNAOCLI)MEMBER (DSNCLIMS)
BIND PACKAGE (DSNTWO.DSNAOCLI)MEMBER(DSNCLIQR)
BIND PLAN(DSNACLI)-

PKLIST(*.DSNAOCLI.DSNCLICS -

% .DSNAOCLI.DSNCLINC -

.DSNAOCLI.DSNCLIRR -

.DSNAOCLI.DSNCLIRS -

.DSNAOCLI.DSNCLIUR -

.DSNAOCLI.DSNCLICI -

.DSNAOCLI.DSNCLIC2 -

.DSNAOCLI.DSNCLIF4 -

.DSNAOCLI.DSNCLIMS -

.DSNAOCLI.DSNCLIQR)

EE I I

Using the file system on z/0OS

If you have more than one MVS image, consider how you will use the file system.
You can share files in a file system across different members of a sysplex. The file
system is mounted on one MVS image and requests to the file are routed to the
owning system using XCF from systems which do not have it mounted.

This is part of the larger task of customizing your z/OS environment.

Moving a broker, User Name Server, or Configuration Manager from one image to
another is straightforward and the files for each component can be shared.

However, there is a performance overhead when using files shared between images
in a file system because the data flows through the Coupling Facility (this is true
for trace and other diagnostic data).

For further information on mounting file systems and allocating space, including
performance considerations, see |“Mounting file systems” on page 181]

Space requirements:

For details of the disk space required, see [“Disk space requirements on z/OS” on|
|o; e 710.

Event log messages on 2/0S
This is part of the larger task of customizing your z/OS environment.

On z/0S, all address spaces have a job log where BIP messages issued by
WebSphere Message Broker appear. Additionally, all messages appear on the
syslog and important operator messages are filtered to the console using MPF
(Message Processing Facility).

To prevent the operator's console receiving unnecessary BIP messages, you must
configure MPF to suppress all BIP messages, with the exception of important
messages. Note that you do not need to have the USS SYSLOG configured.

Security considerations on z/OS
This is part of the larger task of customizing your z/OS environment.
The role of the WebSphere Message Broker administrator includes customizing and

configuring, running utilities, performing problem determination, and collecting
diagnostic materials. People involved in these activities need WebSphere Message

168 Configuration, Administration, and Security

Broker authorities. You must set up some security for WebSphere Message Broker
to work properly. The information that you need to do this is in [“Setting up z/OS9|
[security” on page 83

Overview of message serialization on z/0S

Some messaging transactions depend on the exact sequence of messages from a
queue, and for that sequence to be maintained in the event of a failure of the
queue manager. In these instances you must serialize the access to those messages.

Serialization of messages is achieved through the use of specialized connection
options, and a unique connection token when the application that empties the
messages from a queue issues a connect call to the WebSphere MQ queue manager
that owns that queue.

A typical situation in which WebSphere Message Broker can exploit this feature is
the case where multiple brokers, with multiple execution groups, are each running
message flows that empty from a shared input queue. If one broker queue
manager fails, the message flow can be automatically started on another broker
while maintaining the transactional integrity and original sequencing of the
messages on the shared queue.

The following examples demonstrate how these features can be applied:

1. [“Serialization of input between separate brokers on z/0S"]

2. [‘Serialization of input between separate execution groups running on the same|
broker on z/OS” on page 171]

3. [‘Serialization of input in an execution group on z/0OS” on page 172|

Note the following;:

* In each of the first two examples there are two brokers configured, referred to as
MQO1BRK and MQO2BRK; the broker's respective queue managers are called MQO1 and
MQO2.

¢ The queue managers participate in the same queue sharing group. Each queue
manager has a shared queue INQueue.QSG that has been defined with a
disposition of QSG, and a local queue called INQueue

¢ The queue managers can be running in the same Logical Partition (LPAR) or
separate LPARs.

* The Coupling Facility shown in the following diagrams is a zSeries® component
that allows z/OS WebSphere MQ queue managers in the same system image, or
different system images, to share queues.

Serialization of input between separate brokers on z/OS: This example
demonstrates that only one input node at a time takes messages from a shared
queue when the same serialization token is used by message flows running on
separate brokers.

An identical message flow MyFlowA is deployed to an execution group called
MYGroupA on each broker. Note that the message flows do not have to be identical;
the significant point is that an identical serialization token is used in both flows.

The simple message flow in this example consists of an MQInput node connected to
an MQOutput node. The MQInput node in both message flows gets messages from the
shared queue INQueue.QSG; the node attribute Serialization Token is configured
as MyToken123ABC in both MQInput nodes.

Configuring WebSphere Message Broker 169

The message flow property additional Instances takes the default value of zero
in both message flows, which ensures that input is serialized within the flow.

MQO01BRK

LPAR 1 LPAR 2

MQ02BRK

input

MyFlowA

MyFlowA

A
connect

InQueue.QSG

N
connect

InQueue.QSG

InQueue.QSG

1]

Coupling|Facility

Queue Sharing Group

A typical sequence of events for this example follows:

1.

The first broker MQO1BRK starts and runs message flow MyFTowA in execution
group MyGroupA. The input node MyInputNode connects to queue manager MQO1
using a serialization token MyToken123ABC. The input node successfully opens
shared queue INQUeue.QSG and gets input messages.

The second broker MQO2BRK starts and begins to run its copy of message flow
MyFlowA in execution group MyGroupA. The Input node MyInputNode attempts to
connect to queue manager MQO2 , also using a serialization token MyToken123ABC.

The following SDSF console message is logged:

BIP26561 MQO2BRK MyGroupA 17 UNABLE TO OPEN QUEUE
"INQueue.QSG' ON WEBSPHERE BUSINESS INTEGRATION QUEUE
MANAGER 'MQO2': COMPLETION CODE 2; REASON CODE 2271.

: ImbCommonInputNode (759) BECAUSE SERIALIZATION TOKEN
MyToken123ABC is already in use. NO USER ACTION REQUIRED.

Note that this message is output every 30 minutes.

Message flow MyFlowA in execution group MyGroupA running on broker MQO2BRK
is unable to process input because the serialization token it has passed is
already in use within the queue sharing group. This is indicated by the reason
code 2271 (MQRC_CONN_TAG_IN_USE) in message bip2623.

Broker MQO1BRK stops. Message flow MyFlowA in execution group MyGroupA in
broker MQO2BRK2 is now able to get messages from the shared queue
INQueue.QSG.

A sequence of SDSF console messages is logged, of which the following two are
relevant:
BIP20911 MQO2BRK MyGroupA 17 THE BROKER HAS

RECONNECTED TO WEBSPHERE BUSINESS INTEGRATION
SUCCESSFULLY : ImbCommonInputNode(785)

BIP91421 MQO1BRK © THE COMPONENT HAS STOPPED. :
ImbControlService(594)

170 Configuration, Administration, and Security

The preceding sequence of events also occurs should broker MQO1BRK fail, rather
than stop through a request from the operator, or if a new broker configuration is
deployed to MQO1BRK that deletes or modifies message flow MyFTowA.

This arrangement can also be used where the requirement is to migrate message
processing between brokers running in different z/OS system images that are
attached to the same Coupling Facility.

Serialization of input between separate execution groups running on the same
broker on z/OS:

This example demonstrates that only one MQInput node at a time is allowed to take
messages from a shared queue when the same serialization token is used by
message flows running in separate execution groups on the same broker.

An identical message flow MyFlowA is deployed to two execution groups called
MYGroupA and MYGroupB on broker MQO1BRK.

In this case it is not a requirement that the queue manager participates in a queue
sharing group. The input queue INQueue is defined as Tocal with disposition QMGR.

As in [“Serialization of input between separate brokers on z/0S” on page 169

* Note that the message flows do not have to be identical; the significant point is
that an identical serialization token is used in both flows.

* The simple message flow in this example consists of an MQInput node connected
to an MQOutput node. The MQInput node in both message flows gets messages
from the shared queue INQueue.QSG; the node attribute Serialization Token is
configured as MyToken123ABC in both MQInput nodes.

¢ The message flow property additional Instances takes the default value of zero
in both message flows, which ensures that input is serialized within the flow.

MQO1BRK

MyGroupA

MyGroupB \

E i MyFlowA MyFlowB E ?

|nput input

InQueue.QSG

MQO1

connect connect

A typical sequence of events for this example follows:

1. Broker MQO1BRK starts and the first message flow to begin is MyF1owA in
execution group MyGroupA. The MQInput node MylInputNode connects to queue
manager MQO1 using the serialization token MyToken123ABC. The MQInput node
successfully opens shared queue INQUeue and gets input messages.

Configuring WebSphere Message Broker 171

2. The second execution group MyGroupB starts and message flow MyFlowA in
execution group MyGroupB begins. The MQInput node MyInputNode now attempts
to connect to queue manager MQO1 using serialization token MyToken123ABC. The
following SDSF console message is logged:

BIP26561 MQO1BRK MyGroupB 11 UNABLE TO OPEN QUEUE

"INQueue' ON WEBSPHERE BUSINESS INTEGRATION QUEUE

MANAGER 'MQO1': BECAUSE SERIALIZATION TOKEN

MyToken123ABC is already in use. NO USER ACTION REQUIRED
Message flow MyFlowA in execution group MyGroupB is unable to process input
because the serialization token it has passed is already in use within the queue
manager (by the MQInput node in message flow MyFlowA in execution group
MyGroupA). This is indicated by the reason code 2271 (MQRC_CONN_TAG_IN_USE) in
message bip2623.

3. The first execution group is deleted or cancelled.
If the first execution group is cancelled by the operator, abends, or is deleted

during a redeployment of the broker configuration, the input node in the
second execution group is now able to get input messages from queue INQueue.

A sequence of SDSF console messages is logged, of which the following one is
relevant:

BIP2091I MQO1BRK MyGroupB 11 THE BROKER HAS
RECONNECTED TO WEBSPHERE BUSINESS INTEGRATION
SUCCESSFULLY : ImbCommonInputNode(785)

Message flow MyFlowA in execution group MyGroupB is now able to recover
processing of messages from the shared queue INQueue.QSG.

Note that, although serialization of input can be achieved in a similar manner by
configuring the input queue for exclusive input, this does not ensure message
integrity during a recovery situation. This can be achieved only through the use of
the serialization token as described in this example.

Serialization of input in an execution group on z/OS:
To allow concurrent processing within a message flow, while still serializing

messages between message flows in separate execution groups, the scope of the
serialization token is restricted within a single execution group.

MQO1BRK

/ MyGroupA \

E 3 MyFlowA MyFlowB E ?

|nput

connect connect

InQueue.QSG

MQo1

This example demonstrates that the serialization token is restricted within a single
execution group running on a broker::

172 Configuration, Administration, and Security

* Two MQInput nodes in separate message flows (in this case MyFlowA and MyF1owB
) are running within the same execution group MyGroupA. Both MQInput nodes
concurrently get messages from the shared input queue even though they are
using the same serialization token.

 If serialization is required within a single message flow, the message flow
attribute additional instances must be set to zero which is the default setting.
However, if greater throughput is required and serialization of input within the
flow is not important, you can set additional instances to a value greater than
zero.

* The use of the serialization token attribute on the MQInput node does not
serialize input between message flows operating within the same execution
group. However, setting the attribute has no adverse affect on the processing
within that execution group

* In this way it is possible to maximize throughput in a message flow on one
broker while still serializing input between brokers. This is useful where the
requirement is to have one or more brokers acting as an immediate standby,
should the currently active broker need to be stopped for servicing, or fail
unexpectedly.

Serialization token - user tasks on z/OS:

Configure shared input queues and define serialization tokens for message flows.
Configure a shared input queue for message flows

The broker makes use of WebSphere MQ queue-sharing groups on z/0OS.

Queue managers that can access the same set of shared queues form a group called
a queue-sharing group (QSG) and they communicate with each other by means of
a coupling facility (CF) that stores the shared queues. A shared queue is a type of
local queue whose messages can be accessed by one or more queue managers that
are in a QSG.

To further enhance the availability of messages in a QSG, WebSphere MQ detects
if another queue manager in the group disconnects from the CF in an unusual way,
and completes pending units of work for that queue manager where possible; this
is known as peer recovery.

To understand more fully the concepts of shared-queues and queue-sharing
groups, see the Concepts and Planning Guide section of the [WebSphere MQ Version 7|
[[nformation Center online| or [WebSphere MQ Version 6 Information Center online]
and perform the following steps:

* Add a QSG to the DB2 tables
* Add a queue manager to a QSG

¢ Create the shared queue as a member of the QSG
Define a serialization token

Define the same value for the serialization token attribute for each MQInput node
that is required to access the shared queue.

For the situations described in the preceding text to work you must:

* Ensure that the Coupling Facility Structure is at CFLEVEL(3) or above, and that
you set RECOVER=YES.

Configuring WebSphere Message Broker 173

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

If you do not do this, when an MQInput node attempts to get a message from
the shared queue, the action fails with the WebSphere MQ return code BIP2048
(MQRC_PERSISTENT_NOT_ALLOWED)

* Set the Backout Threshold for the shared queue to at least 2.

This value prevents input messages that are in progress being sent to the Dead
Letter Queue because, during recovery, a message is restored to the input queue
before another broker is able to get it and resume processing.

Customizing UNIX System Services on z/OS

WebSphere Message Broker requires the setup of some UNIX System Services
(USS) system parameters.

This task is part of the larger task of customizing your z/OS environment.

You can use the SETOMVS operator command for dynamic changes or the
BPXPRMxx PARMLIB member for permanent changes. See the z/OS UNIX System
Services section in the [z/OS VIR7.0 LibraryCenter

Use the D OMVS,0 command to display your current OMVS options.

Do not include the broker addresses if you use the IEFUSI exit to limit the region
size of OMVS address spaces.

Set the UNIX System Services parameters shown in the following table.

Depends on the definitions of message flows.

Description Parameter Value

The maximum core dump file size (in bytes) | MAXCORESIZE 2 147 483 647

that a process can create. Allow an unlimited

size.

The CPU time (in seconds) that a process is | MAXCPUTIME 2 147 483 647

allowed to use. Allow an unlimited CPU

time.

The address space region size. Set to the size | MAXASSIZE > 1073 741 824

of the biggest address space.
A minimum value of 393 216 000 bytes is
required.

Specifies the maximum number of threads MAXTHREADS The value of MAXTHREADS and

that a single process can have active. MAXTHREADTASKS | MAXTHREADTASKS depends on your

application. To calculate the value needed for

each message flow:

1. Multiply the number of input nodes by
the number of instances (additional
threads +1).

2. Sum the values of all message flows, then
add 10 to the sum.

3. Add to the sum the number of threads
used for each HTTP listener.

Deploying a message flow that starts an execution group in a new address space
uses USS Semaphore and SharedMemorySegment resources. Each new address
space uses a semaphore and SharedMemorySegment. The SharedMemorySegment
is deleted immediately after the new address space has started, but the semaphore
remains for the life of the new address space.

174 Configuration, Administration, and Security

http://publibz.boulder.ibm.com/libraryserver/zosv1r7/

Certain USS system parameters can affect the start of a new execution group
address space, if you set them incorrectly. These parameters include:

* IPCSEMNIDS
* IPCSHMNIDS
* [PCSHMNSEGS

You must have a minimum of three semaphores for each execution group address
space that is started.

You must set IPCSEMNIDS to a value four times the number of potential execution
group address spaces on a system.

You must have one SharedMemorySegment for each execution group address
space that is started. You must set IPCSEMNIDS to a value that exceeds the
number of potential execution group address spaces on a system.

A control address space (BIPSERVICE and BIPBROKER processes) can be attached
to many SharedMemorySegments - potentially, one for each execution group
address space started for that broker. You must set IPCSHMNSEGS to a value that
exceeds the potential number of execution groups for each broker.

Ensuring sufficient space for temporary files

The environment variable TMPDIR is the path name of the directory being used
for temporary files. If it is not set, the z/OS shell uses /tmp.

When starting WebSphere Message Broker components, sufficient space is required
in the directory referenced by TMPDIR. In particular, Java requires sufficient space
to hold all JAR files required by WebSphere Message Broker.

If you do not allocate sufficient space, the execution group address spaces abend
with a 2C1 code.

Allow at least 50 MB of space in this directory for broker components and 10 MB
of space for Configuration Manager components. More space might be needed if
you deploy large user-defined nodes or other JAR files to the broker component.

Defining WebSphere Message Broker files as shared-library programs

If you plan to deploy to more than one execution group on z/0OS, the amount of
storage required by the execution group address spaces can be reduced by setting
the shared-library extended attribute on the following files:

/usr/1pp/mqsi/bin/=*

Jusr/Tpp/mqsi/1i1/=

Jusr/1pp/mqsi/Tib/=*

Jusr/1pp/mgsi/Tib/whirf/*

/usr/Tpp/mqsi/Tib/whimb/*

To set the shared-library attribute, use the extattr command with the +1 option. For
example:

extattr +1 /usr/lpp/mgsi/bin/*

To find out if the shared-library extended attribute has been set, use the Is -E
command. For example, use the command Is -E bipimain to generate the following
response:

-rwxr-x--- a-1- 1 USER GROUP 139264 Mar 15 10:05 bipimain

Configuring WebSphere Message Broker 175

where 1 (lowercase L, as in a-1-) shows that the program is enabled to run in a
shared address space.

Use the following command to check that you have enough SHRLIBRGNSIZE to
contain all the shared-library programs that are to be used on the system:

/D OMVS,LIMITS

DB2 planning on z/0OS

This is part of the larger task of customizing your z/OS environment and is
relevant only to the broker.

The Configuration Manager and User Name Server do not require access to DB2.

WebSphere Message Broker for z/OS accesses DB2 tables by using ODBC. To
connect to DB2 using ODBC, the location name of the DB2 subsystem is used.

See the DB2 Administration > Data Sharing section of the [DB2 Information Center]
(z/OS)| for more details.

You must give certain user IDs access to DB2 resources:

* DB2 systems administrator
1. Create database, storage groups, and table spaces (BIPCRDB).
2. Drop database (BIPDLDB)

* Administrator for the broker database (DBA). This should be the WebSphere
Message Broker administrator.

1. Create tables and indexes (BIPCRBK)
2. Create tables, drop tables, and create indexes (BIPMGCMP)
* Broker started task user ID:

1. SQL to select, insert, and delete rows from the broker database tables, and
select from DB2 system tables.

¢ WebSphere Message Broker administrator and other users

1. SQL to select, insert, and delete rows from the broker database tables, and
select from DB2 system tables.

When your DB2 system starts up, message DSNLOO4I DDF START COMPLETE is
displayed. The location name is displayed just after this message. When you
customize a broker component on z/OS, you create a dsnaoini file called BIPDSNAO
in the broker PDSE. It contains necessary information to establish the ODBC
connection.

See the Programming DB2 > Programming for ODBC section of the [DB2 Information|
for more details.

Avoid using a data source name that is the same as the subsystem ID or data
sharing ID. If the same name is used, this might affect the granularity of directives
on connection with the database.

If you choose to use the same value for the data source name and subsystem ID,
you must edit BIPDSNAO in the broker PDSE so that the Datasource and Subsystem
keywords are in one section.

See the Programming DB2 > Programming for ODBC section of the [DB2 Information|
enter (z/OS)|for more details.

176 Configuration, Administration, and Security

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp

During customization, you can specify which plan name to use, or use the default
DSNACLI. If you want your broker to access DB2 data-sharing groups other than its
own, the DSNACLI plan must be bound in a special way. Check the wildcard
location is specified by using SPUFI and issuing the following command:

select * from SYSIBM.SYSPACKLIST where planname ='DSNACLI';
Rebind if the location column is blank and not '*"'.
You should also check that DSNACLI is in the SYSIBM.SYSPLAN table.

You can get significant performance benefits if you use the CACHE DYNAMIC SQL
facility of DB2, because this eliminates the need to reprocess DB2 statements.

See CACHEDYN=YES in the Programming DB2 > Application Programming and SQL
section of the [DB2 Information Center (z/OS)| for more details.

If your user database is configured to use a comma as a decimal separator using
the DSNHDECP module, you will find there is a restriction. If there is a mismatch
between DB2 and the locale settings of the user ID under which the broker runs
(specifically LC_NUMERIC), your user database updates can be unpredictable.
LC_NUMERIC is set through the LC_ALL setting in the BIPBPROF member, and therefore
the environment file. The following list details the four possibilities:

 If DB2 is configured to use a period as a decimal point and LC_NUMERIC is set to
a value that indicates a period decimal point; user database updates should
work correctly.

 If DB2 is configured to use a comma as a decimal point and LC_NUMERIC is set to
a value that indicates a comma decimal point; user database updates should
work correctly.

 If DB2 is configured to use a period as a decimal point and LC_NUMERIC is set to
a value that indicates a comma decimal point; user database updates can lead to
unpredictable behavior.

 If DB2 is configured to use a comma as a decimal point and LC_NUMERIC is set to
a value that indicates a period decimal point; user database updates can lead to
unpredictable behavior.

You can use the DB2 security mechanism, or, if you are using z/OS 1.6 and DB2
Version 8, use an external security manager; for example, RACF.

DB2 security mechanism

The most practical way of managing access to a broker's DB2 resources is to define
two RACF groups and connect users to these groups. For example, RACF groups
MQP1ADM and MQP1USR are defined for broker MQP1BRK as follows:

 For group MQP1ADM
1. Grant this group DBADM authority for the broker database.

2. Typically owned by the WebSphere Message Broker administrator; user IDs
must be added to this group who need to submit BIPCRBK to create a broker,
or BIPMGCMP to migrate a broker.

 For group MQP1USR

1. Give this group access to manipulate rows in the broker tables and allow
select access to DB2 system tables. For example:
GRANT DELETE, INSERT, SELECT, UPDATE

ON TABLE
DB2_TABLE_OWNER.BSUBSCRIPTIONS

Configuring WebSphere Message Broker 177

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp

,DB2_TABLE_OWNER.BPUBLISHERS
,DB2_TABLE_OWNER.BCLIENTUSER
,DB2_TABLE_OWNER.BTOPOLOGY
,DB2_TABLE_OWNER.BNBRCONNECTIONS
,DB2_TABLE_OWNER.BRETAINEDPUBS
,DB2_TABLE_OWNER.BACLENTRIES
,DB2_TABLE_OWNER.BMQPSTOPOLOGY
,DB2_TABLE_OWNER.BUSERNAME
,DB2_TABLE_OWNER. BGROUPNAME
,DB2_TABLE_OWNER.BUSERMEMBERSHIP
,DB2_TABLE_OWNER.BROKERAA
,DB2_TABLE_OWNER.BROKERAAEG
,DB2_TABLE_OWNER.BROKERRESOURCES
,DB2_TABLE_OWNER.BRMINFO
,DB2_TABLE_OWNER.BRMRTDINFO
,DB2_TABLE_OWNER.BRMRTDDEPINFO
,DB2_TABLE_OWNER.BRMWFDINFO
,DB2_TABLE_OWNER.BRMPHYSICALRES
,DB2_TABLE_OWNER.BAGGREGATE
,DB2_TABLE_OWNER.BMULTICASTTOPICS

TO MQP1USR;

GRANT SELECT
ON TABLE
SYSIBM.SYSTABLES
» SYSIBM.SYSSYNONYMS
,SYSIBM.SYSDATABASE
TO MQP1USR;
2. If a message flow issues a CALL statement to invoke a stored procedure, add
select access to the following DB2 system tables:
GRANT SELECT
ON TABLE
SYSIBM.SYSROUTINES
»SYSIBM.SYSPARMS
TO MQP1USR;
3. Connect the broker started task user ID and the WebSphere Message Broker
administrator to this group, and connect any other users who might need
access to the tables, for example those submitting BIPRELG to run the

mgsireadlog| command.

The following conditions apply:

* When accessing DB2 resources, you specify a CURRENT SQLID as a DB2 command,
or through the BIPDSNAO member.

If this ID is a group, DB2 checks to see if your user ID is connected to this
group, and if it is, you inherit the access from the group; if the user ID is not in
the group, you get SQL code -551. If your ID is in multiple groups, the highest
authorities are used.

* For BIPCRDB and BIPDLDB the CURRENT SQLID is specified as a command in the
JCL. For all other JCL it is specified in BIPDSNAO.

* If you do not use groups to define permissions, but use a specific user ID to
define the permissions to individual user IDs, if the granting user ID is removed
from DB2, the permissions that it gave are also removed. This action can prevent
other users working.

* When the BIPDLDB job drops the broker DB2 database, it also deletes any Image
Copy references to itself that you currently have. If you restore the broker in
future you need to reinstate the Image Copy references.

178 Configuration, Administration, and Security

If this ID is a group, DB2 checks to see if your user ID is connected to this group,
and if it is, you inherit the access from the group; if the user ID is not in the
group, you get SQL code -551. If your ID is in multiple groups, the highest
authorities are used.

If you do not use groups to define permissions, but use a specific user ID to define
the permissions to individual user IDs, if the granting user ID is removed from
DB2, the permissions that it gave are also removed. This action can prevent other
users working.

See|“z/0S JCL variables” on page 717 for further information on the WebSphere
Message Broker for z/OS jobs that are supplied.

WebSphere MQ planning for z/0S

This is part of the larger task of customizing your z/OS environment.

You are required to have a separate WebSphere MQ queue manager for each
broker, User Name Server (although you would typically have only one User
Name Server in your environment), and Configuration Manager.

A broker, User Name Server, and Configuration Manager however, can share the
same queue manager.

All WebSphere Message Broker for z/OS system queues are defined during
customization.

Your queue manager must have a dead-letter queue. Check that this queue exists
by using the WebSphere MQ command:

+cpf DIS QMGR DEADQ

Check that the queue exists by using the command:
+cpf DIS QL(name) STGCLASS

Then use the:
+cpf DIS STGCLASS(...)

to check the STGCLASS value is valid. If the queue manager does not have a valid
dead-letter queue, you must define one.

Set up your channel initiator to use distributed queuing. You must create channels
between the z/OS queue manager and the queue manager of your Configuration
Manager (if not on z/OS). If you are using Publish/Subscribe security, you also
need access to the queue manager used by the User Name Server, which can be on
z/0OS or on another platform. You must successfully start channels between the
various queue managers before you can test that the broker is working. When
configuring the transmission queues between the brokers on z/OS and the
Configuration Manager, ensure that you set the maximum message size of the
queues to 100 MB. This limit allows large reply messages concerning deployment
to be returned to the Configuration Manager. See [“Creating a domain connection”]

for details.

Creating and deleting components on z/OS requires the command server on the
WebSphere MQ queue manager to be started. This component is normally started
automatically (refer to the see the z/OS System Administration Guide section of the

Configuring WebSphere Message Broker 179

WebSphere MQ Version 7 Information Center online| or [WebSphere MQ Version 6|
Information Center online|for more details).

The command server requires a reply-to queue based on
SYSTEM.COMMAND.REPLY.MODEL; by default, this model queue is defined as
permanent dynamic. However, if you leave the queue defined in this way, each
time you run a create or delete component command these reply-to queues remain
defined to the queue manager. To avoid these queues persisting, you can set the
SYSTEM.COMMAND.REPLY.MODEL queue as temporary dynamic.

Resource Recovery Service planning on z/OS

This is part of the larger task of customizing your z/OS environment.

WebSphere Message Broker for z/OS uses Resource Recovery Service (RRS) to
coordinate changes to WebSphere MQ and DB2 resources. Ensure it is configured
and active on your system, because your broker cannot connect to DB2 unless RRS
is active.

Refer to the following manuals for detailed information about RRS: z/OS VIR5.0
MVS Setting Up a Sysplex and z/OS VIR5.0 MVS Programming: Resource Recovery
SA22-7616.

Defining the started tasks to z/0S Workload Manager (WLM)

This is part of the larger task of customizing your z/OS environment.

If you are running z/OS in Workload mode, change the classification rules to add
the started task names of the brokers, User Name Server, and Configuration
Manager to the Started Task Control (STC) subsystem types, for example MQP1BRK,
MQP1UNS, and MQP1CMGR to the OMVS subsystem types.

If you are running in compatibility mode, add the broker and User Name Server
address spaces to the IEAICSxx member in SYS1.PARMLIB. For example, for a
broker MQP1BRK, use the commands:

SUBSYS=STC
TRXNAME=MQP1BRK,PGN=35,RPGN=2010
SUBSYS=0MVS

TRXNAME=MQP1BRK% (1) ,PGN=35,RPGN=2011
../* Broker address spaces*/

The %(1) represents jobs that begin with MQP1BRK and have one character
following it. Define the priority of the broker lower than DB2 and WebSphere MQ.

Automatic Restart Manager planning
This is part of the larger task of customizing your z/OS environment.

WebSphere Message Broker for z/OS allows you to register a component to the
Automatic Restart Manager (ARM).

When customizing a component, you register it with ARM by editing the following
environment variables in the component profile:

180 Configuration, Administration, and Security

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

Description Name

Switch that determines whether ARM is MQSI_USE_ARM

used (YES or NO).

ARM element name MQSI_ARM_ELEMENTNAME
ARM element type MQSI_ARM_ELEMENTTYPE

By default components do not register to ARM; the initial setting is
MQSI_USE_ARM=NO. You can override this default value by setting MQSI_USE_ARM=YES
and providing an ARM element name and type.

MQSI_ARM_ELEMENTNAME must be a maximum of eight characters in length, because
WebSphere Message Broker adds a prefix of SYSWMQI. For example, if you supply
the value MQP1BRK to ARM_ELEMENTNAME, the element you define in your ARM policy
is SYSWMQI_MQP1BRK.

To enable automatic restart you must also:

* Set up an ARM couple data set.

* Define the automatic restart actions that you want z/OS to perform in an ARM
policy.

e Start the ARM policy.

The following manuals provide detailed information about ARM couple data sets,
including samples:

e z/OS MVS Programming: Sysplex Services Guide
* z/OS MVS Programming: Sysplex Services Reference
e z/OS MVS Setting up a Sysplex

You can access these manuals from the [z/OS V1R7.0 LibraryCenter

Mounting file systems

WebSphere Message Broker requires several directories to be defined on the file
system at run time.

++HOME++ is the location of the environment file (ENVFILE) used to create the
runtime environment in which WebSphere Message Broker runs.

++INSTALL++ refers to the WebSphere Message Broker installation directories.

++COMPONENTDIRECTORY++ is the location where all deployed configuration is written
to and read from by the WebSphere Message Broker runtime libraries.

++JAVA++ is the location of the Java installation.

++MQPATH++ is the location of theWebSphere MQ installation.

Because WebSphere Message Broker can run in a shared file system sysplex
environment, it is important for performance reasons that these directories are

mounted locally to the LPAR in which WebSphere Message Broker is started.

To create a directory in an already mounted file system use the mkdir command.
For example:

mkdir -p /mgsi/brokers/MQP1BRK

Configuring WebSphere Message Broker 181

http://publibz.boulder.ibm.com/libraryserver/zosv1r7/

To mount a new file system, follow the instructions given in the z/OS UNIX System
Services Planning manual.

From USS, use the following instructions:

mkdir -p /mgsi/brokers/MQP1BRK
mount -f MQSI.BROKER.MQP1BRK /mqsi/brokers/MQP1BRK

From TSO, use the following instructions:

ALLOCATE DATASET('MQSI.BROKER.MQP1BRK') DSNTYPE(HFS) SPACE(5,5) DIR(1) CYL

FREE DATASET('MQSI.BROKER.MQP1BRK")

MOUNT FILESYSTEM('MQSI.BROKER.MQP1BRK') TYPE(HFS)
MOUNTPOINT('/mqsi/brokers/MQP1BRK")

Note that the preceding ALLOCATE command is an example; the dataset should be
allocated the correct amount of storage as described in |[“Disk space requirements|
fon z/0S” on page 710|

Checking the permission of the installation directory
This is part of the larger task of customizing your z/OS environment.

You must ensure that the appropriate user IDs, for example, the WebSphere
Message Broker Administrator and all component Started Task user IDs, have
READ and EXECUTE permission to the WebSphere Message Broker installation
directory.

Using group access control to set these permissions.

1. Display the permissions on the installation directory using the 1s command.
1s -1 /usr/1pp/mgsi
This command displays lines like the following response:
drwxr-xr-x 2 TSOUSER MQM 8192 Jun 17 09:54 bin

In this example, MQM is the group associated with the directory. Those user
IDs requiring permission to the directory must be a member of this group.

This example also shows the permissions defined for the directory. User
TSOUSER has rwx (READ, WRITE, and EXECUTE), group MQM has rx, and any
other user ID has rx.

2. Ensure that the user IDs requiring permission have a group that matches that
of the installation directory. Use the following command, where userid is the
ID you want to check:

id <userid>

3. If the installation directory does not have a valid group, use the command
chgrp to set the group of the directory:
chgrp -R <group> <pathname>

For example:
chgrp -R MQSI /usr/1pp/mgsi

You must be the owner of the group or have superuser authority to use this
command.

4. 1If the installation directory does not have the correct permissions for the group
(READ / EXECUTE), use the command chmod to change the permissions:

chmod -R g=rx <pathname>

182 Configuration, Administration, and Security

For example:
chmod -R g=rx /usr/lpp/mgsi

Customizing the version of Java on z/0S

Check the version of Java in your enterprise, and change it, if necessary.
This task is part of the larger task of customizing your z/OS environment.
WebSphere Message Broker supports Java Version 5 (SR5) (also known as Java 1.5.)

To check the current version of Java in a broker component:
1. Change to the bin directory in which you installed your Java product.

For example, if Java is installed in /usr/1pp/java, change to the
/usr/1pp/java/bin directory, and type ./java -fullversion. You receive the
following response, or a response with similar content:

java version "1.5.0"

Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0)

Classic VM (build 1.5.0 J2RE 1.5.0 IBM z/0S Persistent Reusable VM build cml42-20040917
(JIT enabled: jitc))

The response in this example confirms that Java 1.5.0 is the current version,
which is the minimum level required for this platform.

2. If you want to set, or change, the current Java version, edit JAVAHOME in the
profile for the component (BIPBPROF for a broker, BIPUPROF for a User Name
Server, BIPCPROF for a Configuration Manager).

Because the version of Java used is defined in the component profile, you can
specify a different version for each component.

For further details about component profiles, see [“Creating WebSphere Message]
[Broker components on z/OS” on page 184

3. Run BIPGEN to incorporate the changes that you make.
4. Restart the component to pick up changes to the ENVFILE.

Checking APF attributes of bipimain on z/OS

This task is part of the larger task of setting up your z/OS environment.

Use the extattr command to display the attributes of the object bipimain. For
example:

extattr /usr/l1pp/mgsi/bin/bipimain

The attribute APF authorized must be set to YES. If it is not, use extattr +a
bipimain to set this attribute. For example:

extattr +a /usr/lpp/mgsi/bin/bipimain

You must have the appropriate authorization to issue this command.

Collecting broker statistics on z/0S

If you need to write broker statistics to SMF, you need to have the library
<HLQ>.SBIPAUTH in your STEPLIB.

This library and all the libraries in the STEPLIB concatenation need to be APF
authorized.

Configuring WebSphere Message Broker 183

You can use the [‘mgsichangeflowstats command” on page 451| with 0=SMF for this
purpose.

You must not share a PDSE across more than one SYSplex or GRSplex.

Configuring an execution group address space as
non-swappable on z/0OS

Because broker execution groups run as processes in UNIX System Services they
cannot be set as NOSWAP in the PPT.

Instead, you can set the following environment variables in the broker
environment file so that some, or all, of the address spaces of the broker execution

groups request that they become non-swappable by the system; see [‘Creating the

fenvironment file” on page 200| for further information on adding an environment
variable to a broker.

MQSI_NOSWAP=yes

sets the address spaces of all the execution groups to be non-swappable.
MQSI_NOSWAP_egname=yes

issues a request to the system, for each execution group labelled egname, that the
address space be set as non-swappable.

MQSI_NOSWAP_uuid=yes

issues a request to the system, for each execution group with the UUID labelled
uuid, that the address space be set as non-swappable.

In order for the above requests to succeed, the broker's started task ID needs READ
access to the BPX.STOR.SWAP facility class through their external security manager,
for example, RACE.

When an application makes an address space non-swappable, it can cause
additional real storage in the system to be converted to preferred storage. Because
preferred storage cannot be configured offline, using this service can reduce the
installation's ability to re-configure storage in the future.

Creating WebSphere Message Broker components on z/0S

An overview of how you create WebSphere Message Broker components on z/OS.
Before you start

Before starting this task, you must have installed:

* WebSphere MQ for z/OS, with the optional JMS feature applied; for example,
mounted at /usr/Tpp/mgm.

* WebSphere Message Broker for z/OS, with a broker file system mounted; for
example, /usr/Tpp/mgsi.

If you want to connect a Message Broker Toolkit directly to the Configuration
Manager on z/0OS, you must install the optional WebSphere MQ Client Attach
feature.

If you do not have the WebSphere MQ Client Attach feature installed, you can
connect the Message Broker Toolkit through an intermediate queue manager.

184 Configuration, Administration, and Security

Read through all the sub topics in the [“Customizing the z/OS environment” on|
section, and follow the guidance within those topics.

1. Determine the customization information for your environment. The following
list of topics contains tables of information that needs to be gathered before you
can proceed with creating a broker domain on z/OS. Complete the information
that your enterprise requires.

If necessary, discuss the requirements with your system, DB2, and
WebSphere MQ administrators.

e Broker:

— [“Installation information - broker and User Name Server” on page 195|

- |"DB2 information” on page 196|

- [“Component information - broker” on page 196|

¢ Configuration Manager:

— [“Installation information - Configuration Manager” on page 210|

- [“Component information - Configuration Manager” on page 210|

e User Name Server:

- [“Installation information - broker and User Name Server” on page 195

— ["Component information - User Name Server” on page 220|

2. Set up security for the started task user IDs. Start with |“Setting up z/OS|
[security” on page 83|

3. Plan your DB2 requirements. Start with ["DB2 planning on z/OS” on page 176

4. Create the broker by carrying out the tasks listed in [“Creating a broker on|
[z/0S” on page 195/Start with |[“Creating the broker PDSE” on page 197

5. Create the Configuration Manager by carrying out the tasks listed in |“Creatin§|

a Configuration Manager on z/OS” on page 209.|Start with |“Creating the|

Configuration Manager PDSE” on page 211

a. Set up the connections between the Message Broker Toolkit and the
Configuration Manager.

* If you are using the WebSphere MQ Client Attach feature, see
[“Connecting directly to a Configuration Manager on z/0S.”|

* If you are connecting through an intermediate queue manager; see
“Connecting to a z/OS Configuration Manager through an intermediate]
queue manager” on page 186/

6. Optionally, create the User Name Server by carrying out the tasks listed in
“Creating a User Name Server on z/OS” on page 219 Start with
User Name Server PDSE” on page 220.]

Connecting directly to a Configuration Manager on z/OS
You can create a direct connection to a Configuration Manager in several ways.

You can connect from:
* The Message Broker Toolkit.
* A Configuration Manager Proxy (CMP) application.

* One of the WebSphere Message Broker commands used for the Configuration
Manager; for example, mqsicreateexecutiongroup.

All of these options connect over a WebSphere MQ server-connection channel. The
default name for this is SYSTEM.BKR.CONFIG, but you can use another value. You
can connect directly to this channel only if you have the optional WebSphere MQ
Client Attach feature installed.

Configuring WebSphere Message Broker 185

Alternatively, you can connect through an intermediate queue manager; see
“Connecting to a z/OS Configuration Manager through an intermediate queue]

manager. ”|

Before you start

Before starting this task, you must have set up your system components, as
described in [“Creating WebSphere Message Broker components on z/0S” on page|

Set up the connections between the Message Broker Toolkit and the Configuration
Manager by carrying out the following tasks:

1. Verify that your queue manager and channel initiator are running and that the
channel initiator is listening on the appropriate port.

For more information see your WebSphere MQ documentation.

2. Ensure that your Configuration Manager is running; see [‘Starting and stopping]
la Configuration Manager on z/0OS” on page 342

3. Ensure that your user ID has been given the appropriate authorization on the
z/0S Configuration Manager.

In SDSE, grant FULL domain access to user ID testl. For all machines enter:
'/F WMQxCFG,CA U=testl,A=YES,P=YES,X=F'

To grant access to a specific machine for user testl, enter:
'/F WMQxCFG,CA U=testl,M=mymachine,P=YES,X=F'

4. Create a new domain connection; see [“Creating a domain connection” on page

Connecting to a zZ/OS Configuration Manager through an
intermediate queue manager

Connect a Message Broker Toolkit to a z/OS Configuration Manager without the
need for the WebSphere MQ Client Attach feature.

You must use an intermediate queue manager on another platform to make this
connection; for example, Windows.

When carrying out this task, see your WebSphere MQ documentation for more
information.

Before you start

Before starting this task, you must have set up your system components, as

described in [“Creating WebSphere Message Broker components on z/0S” on page|

1. Set up the connections between the Message Broker Toolkit and the
Configuration Manager by carrying out the following tasks:

a. Verify that your queue manager and channel initiator are running and that
the channel initiator is listening on the appropriate port.

For more information, see your WebSphere MQ documentation.

b. Ensure that your user ID has been given the appropriate authorization on
the z/OS Configuration Manager.

In SDSF, grant FULL domain access to user ID testl. For all z/OS systems,
enter:

'/F WMQXCFG CA U=testl,A=YES,P=YES,X=F'

186 Configuration, Administration, and Security

To grant access to a specific system for user ID testl, enter:
'/F WMQxCFG CA U=testl,M=mymachine,P=YES,X=F'
2. Connect the intermediate queue manager to the z/OS queue manager using

WebSphere MQ channels and a transmission queue. The connection must be
bidirectional.

3. Ensure that you have started all the channels.

4. Create a server connection on the Windows queue manager. The default name
for this connection is SYSTEM.BKR.CONFIG, but you can use another value for the
WebSphere Message Broker client connection. The Message Broker Toolkit
connects to a server connection of this name on the identified queue manager.

5. Start the Configuration Manager on z/OS; see [“Starting and stopping al
[Configuration Manager on z/0S” on page 342]

6. Start the Message Broker Toolkit on Linux on x86 or Windows.

7. Create a new domain connection; see [“Creating a domain connection” on pagel

8. Enter the following connection parameters for the domain connection:

hostname = (intermediate machine name; for example, localhost)
port = (listener port for intermediate queue manager; for example, 1414)
queue manager = (z/0S queue manager; for example, MQO5)

9. Right click Domain and select Connect to connect the Message Broker Toolkit
to the z/OS Configuration Manager.

WebSphere Message Broker and WebSphere MQ setup
verification

Whenever a component (that is a broker, User Name Server, or Configuration
Manager) starts, a basic component verification runs automatically.

This verification checks the following items:
* Basic WebSphere MQ information

¢ DB2 information

* Registry information

* Setup verification

The verification check of DB2 information when a broker starts requires access to
the tables SYSIBM.DUMMY1, SYSIBM.DUMMYU and SYSIBM.DUMMYA. Check
that you have defined these tables in your DB2 subsystem before you start the
broker.

If an error is found the component does not start. All output from the verification
step is written to the component JOBLOG.

You must also validate that the entire WebSphere Message Broker system that you
have installed is running correctly; that is, there are no errors in the system and the
system is performing as expected. This check is especially important when you are
installing WebSphere Message Broker for the first time.

Download and review WebSphere Message Broker SupportPac IP13.

This SupportPac provides:

* Tools to help test WebSphere Message Broker flows running on z/OS. These
tools provide:

— Put and get user messages

Configuring WebSphere Message Broker 187

— Measurement of the elapsed time
— CPU time used to process the messages
— Recommendations on the environment configuration.

* Guidelines on designing flows for evaluation, to reduce the need for
applications outside of the WebSphere Message Broker environment.

* WebSphere Message Broker flows, which allow you to compare the throughput
you achieve in your environment with the results achieved at IBM. Using the
tools supplied in WebSphere Message Broker SupportPac IP13 can give suggestions
as to why the results might be different.

Access WebSphere Message Broker SupportPac [IP13| online.

Configuring broker domain components

Create and configure the components that you want on the operating system of
your choice.

Before you start:

Ensure that the following requirements are met:

* Your user ID has the correct authorizations to perform the task. The
authorizations are defined in [‘Security requirements for administrative tasks” onl|
_ae 755,

« W On Windows: you have created a user ID to be used as the service
user ID. This ID is specified during component creation and is used to run the
component (the Configuration Manager, broker, and User Name Server).

For more information about user ID authorization and creation, refer to
[“Planning for security when you install WebSphere Message Broker” on page 28

* You have initialized the command environment on distributed systems; see
[Setting up a command environment|

To create, modify, or delete a WebSphere Message Broker component:

1. Select the task for the component and action that you require from the list of
tasks in this topic.

2. Select the operating system that you require from within the task.

Alternatively:

1. In the information center table of contents, select the top-level container for the
component and the action that you require; for example,
[Configuration Manager” on page 204

2. Expand the container.

3. Select the operating system that you require from the list of topics.

On Windows, you can create, modify, and delete physical components by using
[Command Assistant wizard]|

If you want a default broker domain configuration on Linux on x86 or Windows,
you can use the Default Configuration wizard. The Default Configuration wizard

creates all the components that you need to start exploring WebSphere Message
Broker and run the supplied samples. For more information, see

[Default Configuration wizard” on page 229 .|

188 Configuration, Administration, and Security

http://www.ibm.com/support/docview.wss?rs=171&uid=swg24006892&loc=en_US&cs=utf-8

When you have created your physical components, you can configure the broker
domain either by using the workbench, or programmatically by using the
Configuration Manager Proxy Java APIL

The following set of tasks describes how to create and configure component
databases, and how to create, modify, and delete the physical broker domain
components and associated resources by using the command line. For information
about how to complete these tasks by using the CMP AP], see
[applications using the CMP}

This collection of tasks uses specific resource names and user IDs. These names are
examples only; you can use your own names. Follow existing naming conventions
for WebSphere MQ and other resources.

* [“Creating a broker” on page 190

* |“Creating an execution group using the mgsicreateexecutiongroup command” on|

page 202|

[“Adding an execution group to a broker on z/OS” on page 204

+ [“Creating a Configuration Manager” on page 204|

[“Enabling a User Name Server” on page 214|

[‘Creating a User Name Server” on page 215|

* [“Using the Default Configuration wizard” on page 229|

[“Using the Command Assistant wizard” on page 231]

+ [“Verifying components” on page 233|

[‘Connecting components” on page 234|

[“Tuning the broker” on page 236]

[“Modifying the broker's publish/subscribe engine” on page 241]

* |“Preparing the environment for WebSphere Adapters nodes” on page 243|

* |“Preparing the environment for IMS nodes” on page 244|

+ ["“Modifying a broker” on page 245

* [“Viewing broker properties” on page 248|

+ [“Changing the operation mode of your broker” on page 248§|

[‘Checking the operation mode of your broker” on page 250)

[“Modifying a Configuration Manager” on page 250)

+ [“Viewing Configuration Manager properties” on page 254

[‘Modifying a User Name Server” on page 254|

* [“Moving from WebSphere Message Broker on a distributed system to z/0S” on|

page 256|

* |“Deleting an execution group using the mqsideleteexecutiongroup command” on|

page 252|

[‘Deleting an execution group from a broker on z/OS” on page 258|

[‘Deleting a broker” on page 259

[‘Deleting a Configuration Manager” on page 260

[‘Disabling a User Name Server” on page 262

[‘Deleting a User Name Server” on page 263)|

Configuring WebSphere Message Broker 189

Creating a broker

You can create brokers on every platform that is supported by WebSphere Message
Broker. The broker runs as a 64-bit application on all platforms except Linux on
x86, Windows, and z/OS.

Before you start:

Complete the following tasks:

* Ensure that your user ID has the correct authorizations to perform the task.
Refer to [“Security requirements for administrative tasks” on page 755

e On distributed systems, you must set up your command-line environment
before creating a broker, by running the product profile or console; refer to
[Setting up a command environmen

* On z/0S, you must create and start the queue manager for this broker before
you create the component.

* You must create the broker database before you create the broker; the tables in
which the broker stores its internal data are created automatically when you
create the first broker to use that database. Subsequent brokers that you create
specifying the same database and database user ID share these tables; the rows
within the tables are qualified by a unique identifier (UUID) for each broker.

Although you can install different versions of the product on a single computer,
you must ensure that brokers that share a database are at the same version (and
are migrated at the same time, if appropriate).

Create a broker by using the command line on the computer on which you have
installed the broker component. On Windows and Linux on x86, you can
alternatively use the Command Assistant in the Message Broker Toolkit to
complete this task.

* You must give the broker a name that is unique within the broker domain. You
must also ensure that the broker name is unique on a single computer, if you
have created multiple domains on that computer.

* Broker names are case sensitive on all supported platforms, except Windows.

* You must associate each broker with its own dedicated WebSphere MQ queue
manager.

* Brokers can access only local queue managers, so you cannot create a broker on
a queue manager that is on a remote system.

The mode in which your broker is working, can affect the number of execution
groups and message flows that you can deploy, and the types of node that you can
use. See [“Restrictions that apply in each operation mode” on page 384

To create a broker, follow the link for the appropriate platform.
+ [Linux and UNIX|

:

:

Using WebSphere MQ trusted applications
Configure a broker to run as a WebSphere MQ trusted application.

Before you start:

You must complete the following tasks:

190 Configuration, Administration, and Security

* Ensure that your user ID is a member of the mqm group. On HP-UX and
Solaris, specify the user ID mqm as the service user ID when you create the
broker. On Windows, use any service user ID that is a member of mqm. Refer to
[‘Security requirements for administrative tasks” on page 755

* Review the restrictions that WebSphere MQ places on trusted applications that
apply to your environment. See the section "Connection to a queue manager
using the MQCONNX call" in the Application Programming Guide section of the
WebSphere MQ Version 7 Information Center online| or [WebSphere MQ Version|
6 Information Center online]

You can configure a broker to run as a trusted (fastpath) application on all
supported platforms except z/OS, where the option is not applicable. If the broker
is configured as a trusted application, it runs in the same process as the
WebSphere MQ queue manager agent, and all broker processes benefit from an
improvement in the overall system performance.

A broker does not run as a trusted application by default; you either create a
trusted application by using the [“mgsicreatebroker command” on page 540 or
modify an existing broker by using the|“mgsichangebroker command” on pagel

Configuring a broker as a trusted application does not affect the operation of
WebSphere MQ channel agents or listeners. For more information about running
these as trusted applications, see the section "Running channels and listeners as
trusted applications" in the Intercommunication section of the [WebSphere MQ)|
Version 7 Information Center online] or [WebSphere MQ Version 6 Information|

Center onlingl

Take care when deploying user-defined nodes or parsers. Because a trusted
application (the broker) runs in the same operating system process as the queue
manager, a user-defined node or parser might compromise the integrity of the
queue manager. Consider fully the restrictions that apply to your environment and
test user-defined nodes and parsers in a non-trusted environment before deploying
them in a trusted broker.

You can either configure a broker to run as a trusted application when you create
it, or modify an existing broker.

* To create a broker on a command line, run the mgsicreatebroker command with
the -t flag, which specifies that the broker is created as a trusted application.

For example, enter the following command to create a broker called
WBRK_BROKER as a trusted application:

mgsicreatebroker WBRK_BROKER -i wbrkuid -a wbrkpw-q WBRK_QM -n WBRKBKDB -u wbrkuid -p wbrkpw -t

See |“Creating a broker” on page 190| for more detailed information about how to
create a broker for your platform.

¢ To modify an existing broker:
1. Run the mgsistop command on the command line to stop the broker.

2. Run the mgsichangebroker command with the -t flag. For example, enter the
following command to modify a broker called WBRK_BROKER to run as a
trusted application:

mgsichangebroker WBRK_BROKER -t

You might have to change the service user ID and password, if you did not
originally create the broker to use an appropriate service user ID.

Configuring WebSphere Message Broker 191

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

See [“Modifying a broker” on page 245| for more detailed information about
how to modify a broker for your platform.

3. Restart the broker by using the mgsistart command. The broker restarts with
fastpath set.

Creating a broker on Linux and UNIX systems

On Linux and UNIX systems, create brokers on the command line; on Linux on
x86, you can also create brokers in the Message Broker Toolkit by using the
Command Assistant wizard.

Before you start:

* Ensure that you have created the broker database. If you are not sure, check
with your database administrator (DBA).

 If you want to configure the broker as a WebSphere MQ trusted application, see
[“Using WebSphere MQ trusted applications” on page 190

* Read ["Considering security for a broker” on page 50|

* Check which operation mode you are licensed to use. If you do not set a mode,
the automatic default is enterprise mode; see [Operation modes|

When you create a broker, the command creates the specified queue manager if it
does not exist. The broker database must exist, but the tables in which the broker
stores its internal data are created automatically when the first broker to use that

database is created. Subsequent brokers that are created using the same database

and database user ID share these tables.

To create a broker:

1. Ensure that the user ID that the broker uses to connect to the broker database is
authorized to create tables in the broker database. If you are not sure, check
with your database administrator (DBA). The broker connects to the broker
database by using the user ID and password that you specify in the -i and -u
parameters of the mgsicreatebroker command when you create the broker.

For more information, see [“Authorizing access to broker and user databases’]

2. Define the ODBC data source name (DSN) of the broker database to enable the

broker to make a connection. Multiple brokers on the same host can use the
same ODBC DSN to connect to the same broker database.

For more information, see [“Enabling ODBC connections to the databases” on|
|o; e 137.

3. Ensure that you are logged in using a user ID that has authority to run the
mgsicreatebroker command.

4. Run the mgsiprofile script to set up the command environment for the broker:
. install_dir/bin/mgsiprofile

You must run this script before you can run the WebSphere Message Broker
commands.

For more information, see [Setting up a command environment|

5. Run the SQL profile that was created when the broker database was created.
For example, if the broker database is a DB2 instance, run the db2profile. For
more information, see [“Setting your environment to support 32-bit access to|
[databases” on page 154

6. Use the mgsicreatebroker command to create the broker.

192 Configuration, Administration, and Security

For example, if you want to create a broker called WBRK_BROKER on a queue
manager called WBRK_QM with a broker database that has the data source
name WBRKBKDB, enter the following command:

mgsicreatebroker WBRK BROKER -q WBRK QM -i wbrkuid -a wbrkpw -n WBRKBKDB -u dbuid -p dbpw

where:

* wbrkuid and wbrkpw are the user name and password under which the broker
runs.

* dbuid and dbpw are the user name and password that the broker uses to
access the broker database and create tables to store its internal data.

If you want to add a User Name Server to your broker domain, create the
broker with the additional -s and -j parameters on the mgsicreatebroker
command. For more information, see [“Enabling a User Name Server” on page|

For more information about the command options, and for more examples, see
[“mgsicreatebroker command” on page 540

7. To enable function that becomes available in WebSphere Message Broker fix
packs, use the -f parameter on the mgsichangebroker command. For more
information, see [‘mgsichangebroker command” on page 429

You have created a broker.

Next: Complete the following tasks:
1. Start the broker by using the mgsistart command.

2. Create other resources and components that you want to include in your
domain.

w

Create a WebSphere MQ infrastructure to connect the components together; see
[‘Connecting components” on page 234

4. Add the broker to the broker domain:

* To add the broker by using the workbench, see [“Adding a broker to a broker]|
[domain” on page 269

* To add the broker by using the Configuration Manager Proxy Java API, see
[Creating domain objects using the Configuration Manager Proxyl

When you have completed these tasks, you can create the resources that you want
to associate with the broker; for example message flows. You can create and work
with resources by using either the workbench or the CMP APL

Creating a broker on Windows
On Windows, you can create brokers on the command line or by using the
Command Assistant wizard in the workbench.

Before you start:

* Ensure that the broker database has been created. If you are not sure, check with
your database administrator (DBA).

* If you want to configure the broker as a WebSphere MQ trusted application, see
[“Using WebSphere MQ trusted applications” on page 190,

+ Read [“Considering security for a broker” on page 50

¢ Check which operation mode you are licensed to use. If you do not set a mode,
the automatic default is enterprise mode; see [Operation modes|

Configuring WebSphere Message Broker 193

When you create a broker, if the WebSphere MQ queue manager does not exist,
the queue manager is automatically created. The broker database must exist, but
the tables in which the broker stores its internal data are created automatically
when the first broker to use that database is created. Subsequent brokers that you
create specifying the same database and database user ID share these tables.

To create a broker by using the Command Assistant wizard, see
[Command Assistant wizard” on page 231

To create a broker by using the command line, complete the following steps:

1. Ensure that the user ID that the broker uses to connect to the broker database is
authorized to create tables in the broker database. If you are not sure, check
with your database administrator (DBA). The broker connects to the broker
database using the user ID and password that you specify in the -i and -u
parameters of the mqsicreatebroker command when you create the broker.

For more information, see [“Authorizing access to broker and user databases’]

2. Define the ODBC data source name (DSN) of the broker database to enable the
broker to make a connection. Multiple brokers on the same host can use the
same ODBC DSN to connect to the same broker database.

For more information, see [“Enabling ODBC connections to the databases” on|
-ae 137.

3. Open a WebSphere Message Broker command prompt for the runtime
installation in which you want to create the broker. For more information about
initializing the runtime environment, see [Command environment: Windows|
Elatformsf

4. Use the mgsicreatebroker command to create the broker.

For example, if you want to create a broker called WBRK_BROKER on a queue
manager called WBRK_QM with a broker database that has the data source
name WBRKBKDB, enter the following command:

mgsicreatebroker WBRK_BROKER -i wbrkuid -a wbrkpw
-q WBRK_QM -n WBRKBKDB -u dbuid -p dbpw

where:

* wbrkuid and wbrkpw are the user name and password under which the broker
runs.

* dbuid and dbpw are the user name and password that the broker uses to
access the broker database and create tables to store its internal data.

If you want to add a User Name Server to your broker domain, create the
broker with the additional -s and -j parameters on the mgsicreatebroker
command. For more information, see [“Enabling a User Name Server” on page|

For more information about the command options, see [“mgsicreatebroker]
fcommand” on page 540

5. To enable function that becomes available in WebSphere Message Broker fix
packs, use the -f parameter on the mgsichangebroker command. For more
information, see [‘mgsichangebroker command” on page 429

You have created a broker.

Next: Complete the following tasks:
1. Start the broker by using the mgsistart command.

194 Configuration, Administration, and Security

2. Create other resources and components that you need.

3. Create a WebSphere MQ infrastructure to connect the components together; see
[‘Connecting components” on page 234

4. Add the broker to the broker domain:

* To add the broker by using the workbench, see [“Adding a broker to a broker|
[domain” on page 269

* To add the broker by using the Configuration Manager Proxy Java API, see
[Creating domain objects using the Configuration Manager Proxyl

When you have completed these tasks, you can create the resources that you want
to associate with the broker; for example message flows. You can create and work
with resources by using either the workbench or the CMP APL

Creating a broker on z/0S

Create the broker component and the other resources on which it depends.

To create your broker, perform the following tasks in order:

[“Collecting the information required to create a broker”]
[Creating the broker PDSE” on page 197
[Creating the broker directory on z/0S” on page 19§|

[‘Customizing the broker component data set” on page 198|

[‘Customizing the broker JCL” on page 199

[‘Creating the environment file” on page 200

[“Priming DB2” on page 200

[“Creating the broker component” on page 201|

© o N Ok N =

[‘Copying the broker started task to the procedures library” on page 202|

To enable function that becomes available in WebSphere Message Broker fix packs,
use the -f parameter on the mgsichangebroker command. For more information,
see [‘mgsichangebroker command” on page 429 |

Collecting the information required to create a broker:
This is part of the larger task of creating a broker on z/OS.

You must complete the information in each of the tables, at the following links,
before continuing;:

* |“Installation information - broker and User Name Server”|

* |“DB2 information” on page 196|

+ [“Component information - broker” on page 196|

Installation information - broker and User Name Server:

Decide on the values for the list of the JCL variables for your system; an example
installation value is provided for each one.

Collect the information shown in the Description column, and complete the values
that you require for your particular system. You can see a complete list of the
variables that you can customize in[‘z/OS JCL variables” on page 717

Description

CL variable Example installation Your installation value
P
value

Configuring WebSphere Message Broker 195

Fully qualified name of the N/A <hlg>.SBIPPROC
product's SBIPPROC data set

Fully qualified name of the N/A <hlq>.SBIPSAMP
product's SBIPSAMP data set

File system directory where the | ++INSTALL++ /usr/lpp/mgqsi

product has been installed

The letter for the language in | ++LANGLETTER++" E (English) E
which you want messages

shown.

Locale of environment where | ++LOCALE++ C

commands are run by

submitting JCL

Time zone of environment ++TIMEZONE++ GMTOBST

where commands are run by

submitting JCL

Location of Java installation ++JAVA++ /usr/lpp/java/IBM/J1.5
WebSphere MQ high-level ++WMQHLQ++ MQM.V600

qualifier

Location of IBM XML Toolkit ++XMLTOOLKIT++ /usr/lpp/ixm/IBM/
installation xml4c-5_6

Notes:

1. You must include the XML Toolkit Library in the BROKER STEPLIB or
the system LINKLIST.

2. See the WebSphere MQ documentation for a list of supported national

languages.

DB2 information:

Collect the information explained in the Description column and complete the
values you require for your particular system. You can see a complete list of
variables that you can customize in [‘z/OS JCL variables” on page 717

Description JCL variable Example installation Your installation
value value

DB2 high-level qualifier ++DB2HLQ++. SYS2.DB2.V810

DB2 run library value ++DB2RUNLIB++ DSN810PK.RUNLIB.LOAD

DB2 subsystem identifier ++DB2SUBSYSTEM++ DFK4

DB2 plan name ++DB2DSNACLIPLAN++ DSNACLI

DB2 program value ++DB2SAMPLEPROGRAM++ DSNTEP2

DB2 plan value ++DB2SAMPLEPROGRAMPLAN++ | DSNTEP81

DB2 location value of the DB2 | ++DB2LOCATION++ DSN810PK

subsystem

DB2 converter ++DB2CONVERSION++ SINGLE

DB2 user ID for the component | ++DB2CURRENTSQLID++ MQPIBRK

and commands

DB2 table owner user ID ++DB2TABLEOWNER++ MQP1BRK

Component information - broker:

196 Configuration, Administration, and Security

Decide on the details of your broker component.

Collect the information shown in the Description column and complete the values
you require for your particular system. You can see a complete list of variables you
can customize in [“z/OS JCL variables” on page 717

Description JCL variable Example component value | Your
component
value

Home directory of the file ++HOME++ /u/mgplusr/mqplbrk

system for the broker user ID

++HOME++ must refer to a unique
directory for each component, even
if your user ID is shared between
different components.

Queue Manager associated ++QUEUEMANAGER++ MQP1

with the broker

File system directory where ++COMPONENTDIRECTORY++ /mqsi/brokers/MQP1BRK

the broker is to exist

Broker name ++COMPONENTNAME++ MQP1BRK

Data set where all JCL relevant | ++COMPONENTDATASET++ TESTDEV.BROKER.MQP1BRK
to the broker is saved

Profile name ++COMPONENTPROFILE++ BIPBPROF BIPBPROF
Name of the Started Task JCL; |++STARTEDTASKNAME++ MQP1BRK

can be a maximum of eight

characters

Name of the broker DB2 ++DB2DATABASE++ DMQP1BRK

database

Name of the broker DB2 ++DB2STORAGEGROUP++ MQP1STOR

storage group

Name of the broker DB2 buffer | ++DB2BUFFERPOOL++ BPO

pool

DB2 index buffer pool ++DB2INDEXBP++ BPO

DB2 LOB table buffer pool ++DB2LOBBP++ BPO

mgsicreatebroker options ++OPTIONS++ Any additional optional

parameters for the
mgsicreatebroker command

Creating the broker PDSE:
This is part of the larger task of creating a broker on z/OS.

Each broker requires a PDSE or a PDS. A PDSE is preferable to a PDS because free
space is available without the need to compress the data set.

Create the broker PDSE, for example using option 3.2 on ISPF. The name of the
PDSE must be the same as the JCL variable ++COMPONENTDATASET++. Allocate a data
set that has the following characteristics:

* Eight directory blocks

* 15 tracks (or 1 cylinder) of 3390 DASD with a record format of fixed blocked 80
A suitable block size (for example 27920)

* A data set type of 1ibrary

Configuring WebSphere Message Broker 197

Creating the broker directory on z/OS:
This is part of the larger task of creating a broker on z/OS.

Before you start

Before starting this task, you must have completed [“Collecting the information|
required to create a broker” on page 195|and [‘Creating the broker PDSE” on page|

157]

1. Use the TSO command OMVS to get into OMVS.
2. Create the broker root directory using the command:

mkdir -p <ComponentDirectory>

The name of the directory must be the same as the JCL variable
++COMPONENTDIRECTORY++.

3. Display the contents of the directory, which is currently empty, using the
command:

1s -d1 /var/wmqi/MQP1BRK
4. Display the permissions on the directory using the command:
1s -al /var/wmqi/MQP1BRK
5. Ensure that the user ID of the person doing the customization has a group that

matches the group of the directory. Use the following command, where userid
is the ID you want to check:

id <userid>
6. Check that the directory has a valid group, and that the group has rwx

permissions. If they do not, use the following command to set the group of the
directory:

chgrp <group> <pathname>

For example:
chgrp WMQI /var/wmqi/MQP1BRK

You must be the owner of the group, or have superuser authority, to use this
command.

7. To give the group READ, WRITE, and EXECUTE access, use the following
command:

chmod g=rwx <pathname>

For example:
chmod g=rwx /usr/wmqi/MQP1BRK

8. To display the amount of space used and available, use the following
command:

df -P /var/wmqi/MQP1BRK
Customizing the broker component data set:
This is part of the larger task of creating a broker on z/OS.

Before you start

Before starting this task, you must have completed [“Collecting the information|
[required to create a broker” on page 195

198 Configuration, Administration, and Security

Create the broker data set in TSO, identified by ++COMPONENTDATASET++, as
instructed in the following steps:

1. Copy the members specified in [‘Broker PDSE members originating inl|
[<hlg>.SBIPSAMP” on page 713| from <hlq>.SBIPSAMP to ++COMPONENTDATASET++.
Ensure that you copy only the listed files.

2. Copy the members specified in [“Broker PDSE members originating in|
[<hlg>.SBIPPROC” on page 713|from <h1g>.SBIPPROC to ++COMPONENTDATASET++.
Ensure that you copy only the listed files.

3. Copy all the listed files from <h1g>.SBIPPROC to ++COMPONENTDATASET++.

Customizing the broker JCL:
This subtask is part of the larger task of creating a broker on z/OS.

Before you start

Before starting this task, you must have completed [‘Customizing the broker]
[component data set” on page 198

All JCL has a standard header, which includes the following items:
* A brief description of its function.

* A description where further information can be found, relating to the function of
the JCL.

 If appropriate, a topic number.
* The section listing the JCL variables themselves.

Each JCL file defines its own STEPLIB.

Some JCL files, for example BIPRELG, might require DB2 defined in the STEPLIB for
a broker component. If the component is a Configuration Manager or a User Name
Server, remove all DB2 references because DB2 is not required.

You can customize the files using an ISPF edit macro that you have to tailor, or
you can change each of the PDSE members manually.

BIPEDIT is a REXX program that you can use to help you customize your JCL.
After you have customized BIPEDIT, you can run this REXX program against the
other JCL files to change their JCL variables.

When you update BIPBPROF (the broker profile), the changes are not accessible until
you run BIPGEN to copy the profile to the file system and create the ENVFILE. You
must run BIPGEN each time you update BIPBPROF for the changes to take effect.

1. Customize the renamed BIPEDIT file. Use the information you collected in:

* [“Installation information - broker and User Name Server” on page 195

+ [“DB2 information” on page 196|

+ [“Component information - broker” on page 196|

2. Activate the renamed BIPEDIT file before you customize other JCL files, by
running the following TSO command:

ALTLIB ACTIVATE APPLICATION(EXEC) DA('COMPONENTDATASET')

where 'COMPONENTDATASET' is identical to ++COMPONENTDATASET++.

This command is active for the local ISPF session for which it was issued. If
you have split screen sessions, the other sessions are not able to use this

Configuring WebSphere Message Broker 199

command. If you use ISPF option 6 to issue the command, use ISPF option 3.4
to edit the data set, which enables you to use the edit command.

3. Edit each JCL file. Run the renamed BIPEDIT file by typing its name on the
command line (for example MQO1EDBK). Instead of editing a member, you might
want to View it until you have resolved all problems in your REXX program.
Alternatively, you can Cancel the Edit session instead of saving it.

You must set a value for all the variables listed in the JCL; if you do not do so,
the JCL does not work correctly.

Some JCL files include ++OPTIONS++ for a command; you must replace them with
additional optional parameters specific to the command on z/OS, or remove them.
Typically, you must replace or remove these options in addition to running
BIPEDIT. If you do not require additional options, remove ++OPTIONS++ by using the
following command:

"c ++OPTIONS++ "' all"
where ' ' represents two single quotation marks.

Save the edit macro and run this macro against all the members except the edit
macro itself.

If the user ID submitting the BIPCRBK command has the appropriate DB2 and
WebSphere MQ authorities, you can ignore the optional mgsicreatebroker
parameters -1, -2, and -3.

If you expect different administrators to create the DB2 and WebSphere MQ
resources, you can consider using one of these optional parameters; see
[‘mgsicreatebroker command” on page 540 for further information.

You must be aware that another process might be using the current ENVFILE,
therefore you must consider whether updating the current ENVFILE in the file
system might have other effects.

Creating the environment file:

This is part of the larger task of creating a broker on z/OS.

Before you start

Before starting this task, you must have completed [“Customizing the broker JCL"|

1. Review the BIPBPROF member. If you define parameters for all users, you can
configure BIPBPROF to use these parameters.

For example, if the time zone option TZ is set as a system-wide parameter for
all users, you can remove it from BIPBPROF.

2. Submit member BIPGEN. Review the job output and make sure that the
environment file in the output contains the parameters that you expect.

If you change BIPBPROF, or system-wide parameters, you must submit BIPGEN
again to pick up the changes.

Priming DB2:

This is part of the larger task of creating a broker on z/OS.

200 Configuration, Administration, and Security

The broker uses DB2 tables to hold its internal data. These tables are defined in
table spaces, which in turn, are defined within a DB2 database.

Data from tables is accessed through in-memory buffer pools, and typically you
have different buffer pools for:

¢ Different applications
* Indexes

* Tables

* LOB tables

The DASD volumes that can be used by a database are defined using a storage
group (STOGROUP). Your DB2 systems administrator can tell you which buffer pools
and storage groups to use.

The BIPCRDB job issues commands that require the following authorities:
* CREATESG - to create a storage group
* CREATEDBA - to create the database

You might also need authority to grant use of a buffer pool.
If you have any problems with this job, you can edit and customize member
BIPDLDB to delete the database. You can run the BIPCRDB job again when you have

resolved the problems.

Before you start

Before starting this task, you must have completed |“Creating the environment file”|

1. Edit the BIPCRDB job.

2. Review and change the BUFFERPOOL and INDEXBP buffer pools on the CREATE
DATABASE statement

3. Change the buffer pool specification on the CREATE LOB TABLESPACE statements
to a value suitable for your enterprise.

4. Submit BIPCRDB from your broker PDSE. You need the authority described
earlier to submit the DB2 job.

BIPCRDB creates the DB2 StorageGroup, Database, and Table Spaces but does
not create any tables or indexes.

The steps in the BIPCRDB job must complete with return code zero.
Creating the broker component:

When you are creating a broker on z/OS, one of the tasks is to create the broker
component.

Before you start

Before starting this task, you must have completed [“Priming DB2” on page 200

If the user ID submitting the BIPCRBK command has the appropriate DB2 and
WebSphere MQ authorities, you can ignore the optional mgsicreatebroker
parameters -1, -2, and -3. If it is your intention to have different administrators
create the DB2 and WebSphere MQ resources, you can consider using one of these
optional parameters; see [“mgsicreatebroker command” on page 540| for further
information.

Configuring WebSphere Message Broker 201

1. Submit job BIPCRBK with option -1. This job creates the files and directories that
are placed in the default storage group. You must run this job first; to run this
job you need authority to access the broker root directory.

2. Edit BIPCRBK and submit the job with option -2. This job creates the
WebSphere MQ queues. If you do not have the requisite authority, ask your
WebSphere MQ system administrator to run the job.

3. Edit BIPCRBK and submit the job with option -3. This job creates the DB2 tables.
If you do not have the requisite authority, ask your DB2 system administrator
to run the job.

4. Ensure that the jobs have run successfully by:
Checking the STDOUT stream in the JOBLOG.

Viewing STDOUT for any errors and checking for BIP80711: Successful
command completion.

If you encounter any problems, delete the broker and re-create it using the
following procedure. You must have the appropriate authority to run the jobs.

1. Edit and configure job BIPDLBK.

2. Run job BIPDLBK with the same option, or options, that caused the problems
when you ran the BIPCRBK job.

3. Correct the problems and run the BIPCRBK job again.
Copying the broker started task to the procedures library:
This is part of the larger task of creating a broker on z/OS.

Before you start

Before starting this task, you must have completed [“Creating the broker|
fcomponent” on page 201

1. Ensure that the user ID for the broker started task is defined and that the

broker procedure is associated with the user ID. If you are using a security
manager, for example RACF, update the started class for your broker. See
“Setting up z/0S security” on page 83| and [‘Summary of required access|
(z/OS)” on page 706/ for more information.

2. Copy the Started Task JCL (BIPBRKP) to the procedures library, for example
USER.PROCLIB.

Creating an execution group using the
mgsicreateexecutiongroup command

When you create a broker, it has a default execution group. If you want additional
execution groups, you must create them explicitly.

You must create an execution group before you can deploy message flows and
related resources to a broker.

Before you start: Complete the following tasks:

* [“Creating a broker” on page 190|

+ |“Adding a broker to a broker domain” on page 269

* |“Connecting to and disconnecting from the broker domain on z/0S” on page

534

202 Configuration, Administration, and Security

You must create an execution group before you can deploy message flows and
related resources to a broker.

The mode that your broker is working in can affect the number of execution
groups that you can use; see [“Restrictions that apply in each operation mode” on|
page 384.

Use one of the following methods to complete this task:
* The mgsicreateexecutiongroup command.

This task describes this method.
e The workbench.

This task is described in [“Adding an execution group to a broker in the]
[workbench” on page 274

* The CMP APL

This task is described in [Developing applications that use the Configuration|
[Manager Proxy APl

For information about why you might want to create multiple execution groups,
see [Execution groups|

To add an execution group to a broker on z/0S, see [“Adding an execution group|
[to a broker on z/OS” on page 204

To add an execution group on Linux, UNIX, and Windows systems:

1. Open a command prompt that has the environment configured for your current
installation.

2. Enter the following command to add the execution group:
mgsicreateexecutiongroup -i host -p 1414 -q QMGR -b BROKER —e EG1

where:

host The host name or IP address of the Configuration Manager for the
domain on which the broker resides.

1414 The port on which the queue manager for the Configuration Manager
is listening.
OMGR

The name of the queue manager for the Configuration Manager.

BROKER
The name of the broker.

EG1 The name of the execution group that you want to create.

If you prefer, you can define the connection parameters in a connection file.

See the mgsicreateexecutiongroup command description for more details about
these options.

On completion of this task, you have requested that the Configuration Manager
creates an execution group on the broker when it is next deployed.

Next: You can deploy message flows to the execution group by using the
workbench.

Configuring WebSphere Message Broker 203

Adding an execution group to a broker on z/0S

When you create a broker, it has a default execution group. If you want additional
execution groups, you must create them explicitly.

Before you start: Complete the following tasks:

* [“Creating a broker” on page 190|

* |“Adding a broker to a broker domain” on page 269

+ [“Connecting to and disconnecting from the broker domain on z/OS” on page]

539

When you create a broker, it has a default execution group. If you want additional
execution groups, you must create them explicitly, by using one of the following
methods:

* The BIPCREG job to run the mgsicreateexecutiongroup command.
This task describes this method.
¢ The workbench.

This task is described in [*Adding an execution group to a broker in the
[workbench” on page 274

* The CMP APL

This task is described in [Developing applications that use the Configuration|
[Manager Proxy API|

For more details about why you might want to create multiple execution groups,
see [Execution groups|

To add an execution group to a broker on Linux, UNIX, and Windows systems, see
“Creating an execution group using the mgsicreateexecutiongroup command” onl|

page 202.|

To add an execution group to a broker on z/OS:

1. Configure the BIPCREG job to specify the properties for the execution group to
be created.

2. Run the BIPCREG job.

On completion of this task, you have requested that the Configuration Manager
creates an execution group on the broker when the next deployment request is
sent.

Next: You can deploy message flows to the execution group by using the
workbench.

Creating a Configuration Manager

You can create a Configuration Manager on every platform that is supported by
WebSphere Message Broker.

Before you start:

Complete the following tasks:

* Ensure that your user ID has the correct authorizations to perform the task.
Refer to [“Security requirements for administrative tasks” on page 755.|

204 Configuration, Administration, and Security

+ For platforms other than z/OS, see [‘Considering security for a Configuration|
[Manager” on page 53 for information about security matters relevant to a
Configuration Manager during the configuration task.

To create a Configuration Manager, follow the link for the appropriate platform.

* On distributed systems, you must set up your command-line environment
before creating a Configuration Manager, by running the product profile or
console; refer to [Setting up a command environmen

* On z/0S, you must create and start the queue manager for this Configuration
Manager before you create the component.

Create a Configuration Manager using the command line on the system where the
Configuration Manager component is installed. On Windows and Linux on x86,
you can alternatively use the Command Assistant in the Message Broker Toolkit to
complete this task.

To create a Configuration Manager, follow the link for the appropriate platform.
o |AIXI

N

:

y

* /0

EI ii ii
-
pas

Creating a Configuration Manager on AIX

BISN The following steps show you how to create a Configuration Manager.

1. Run '. <install_dir>/bin/mgsiprofile' to source the mgsiprofile script and
set up the environment for a single targeted runtime. You must do this before
you can run any of the WebSphere Message Broker commands.

2. Log on using your user ID. If you use the su command to switch user from
root, enter su - <user ID> to run your user profile.

3. Enter the following command to create the Configuration Manager:
mgsicreateconfigmgr CMGRO1 -i wbrkuid -a wbrkpw -q WBRK_QM

If you are using different names or values for any parameter on this command,
you must replace the appropriate values with your own.

In the command above:

CMGRO01
Is the name of the Configuration Manager that you are creating.

wbrkuid
Is the service user ID that is used to run the Configuration Manager.

wbrkpw
Is the password for the service user ID.

WBRK_QM
Is the name of the WebSphere MQ queue manager that will host the
Configuration Manager. This is created if it does not exist.

On completion of this task, you have:
* Created a Configuration Manager.
* Created and started a WebSphere MQ queue manager called WBRK_QM.

Configuring WebSphere Message Broker 205

* Created and set up the WebSphere MQ resources required by the Configuration
Manager, and defined these on the queue manager. This includes the default
dead-letter queue (DLQ), which is automatically enabled by running the
mgqsicreateconfigmgr command.

* Set up the authorizations that the Configuration Manager requires to access
WebSphere MQ resources.

Now that you have created the Configuration Manager, you are ready to:

1. Create and start the WebSphere MQ queue manager channels that are required
to connect WebSphere Message Broker components (brokers, User Name
Servers, and Configuration Manager). This allows components in your broker
domain that are supported by different queue managers to exchange messages
and communicate effectively. Refer to|“Connecting components” on page 234

2. Create a broker domain connection using the workbench. Refer to

[domain connection” on page 265

Creating a Configuration Manager on HP-UX

BZISN The following steps show you how to create a Configuration Manager.

1. Run '. <install_dir>/bin/mgsiprofile' to source the mgsiprofile script and
set up the environment for a single targeted runtime. You must do this before
you can run any of the WebSphere Message Broker commands.

2. Log on using your user ID. If you use the su command to switch user from
root, enter su - <user ID> to run your user profile.

3. Enter the following command to create the Configuration Manager:
mgsicreateconfigmgr CMGRO1 -i wbrkuid -a wbrkpw -q WBRK_QM

If you are using different names or values for any parameter on this command,
you must replace the appropriate values with your own.

In the command above:

CMGRO01
Is the name of the Configuration Manager that you are creating.

wbrkuid
Is the service user ID that is used to run the Configuration Manager.

wbrkpw
Is the password for the service user ID.

WBRK_QM
Is the name of the WebSphere MQ queue manager that will host the
Configuration Manager. This is created if it does not exist.

On completion of this task, you have:
¢ Created a Configuration Manager.
* Created and started a WebSphere MQ queue manager called WBRK_QM.

* Created and set up the WebSphere MQ resources required by the Configuration
Manager, and defined these on the queue manager. This includes the default
dead-letter queue (DLQ), which is automatically enabled by running the
mgsicreateconfigmgr command.

* Set up the authorizations that the Configuration Manager requires to access
WebSphere MQ resources.

Now that you have created the Configuration Manager, you are ready to:

206 Configuration, Administration, and Security

1. Create and start the WebSphere MQ queue manager channels that are required
to connect WebSphere Message Broker components (brokers, User Name
Servers, and Configuration Manager). This allows components in your broker
domain that are supported by different queue managers to exchange messages
and communicate effectively. Refer to|“Connecting components” on page 234

2. Create a broker domain connection using the workbench. Refer to

[domain connection” on page 265.|

Creating a Configuration Manager on Linux

Follow the steps detailed in this task for creating a Configuration Manager
onLinux platforms.

To create a Configuration Manager.

1. Run '. <install_dir>/bin/mgqsiprofile' to source the mgsiprofile script and
set up the environment for a single targeted runtime. You must do this before
you can run any of the WebSphere Message Broker commands.

2. Log on using your user ID. If you use the su command to switch user from
root, enter su - <user ID> to run your user profile.

3. Enter the following command to create the Configuration Manager:
mgsicreateconfigmgr CMGRO1 -i wbrkuid -a wbrkpw -q WBRK_QM
If you are using different names or values for any parameter on this command,
you must replace the appropriate values with your own.
In the command above:

CMGRO1
Is the name of the Configuration Manager that you are creating.

wbrkuid
Is the service user ID that is used to run the Configuration Manager.

wbrkpw
Is the password for the service user ID.

WBRK_QM
Is the name of the WebSphere MQ queue manager that will host the
Configuration Manager. This is created if it does not exist.

On completion of this task, you have:
* Created a Configuration Manager.
* Created and started a WebSphere MQ queue manager called WBRK_QM.

* Created and set up the WebSphere MQ resources required by the Configuration
Manager, and defined these on the queue manager. This includes the default
dead-letter queue (DLQ), which is automatically enabled by running the
mgqsicreateconfigmgr command.

* Set up the authorizations that the Configuration Manager requires to access
WebSphere MQ resources.

Now that you have created the Configuration Manager, you are ready to:

1. Create and start the WebSphere MQ queue manager channels that are required
to connect WebSphere Message Broker components (brokers, User Name
Servers, and Configuration Manager). This allows components in your broker
domain that are supported by different queue managers to exchange messages
and communicate effectively. Refer to|“Connecting components” on page 234

Configuring WebSphere Message Broker 207

2. Create a broker domain connection using the workbench. Refer to

[domain connection” on page 265

Creating a Configuration Manager on Solaris

BTN The following steps show you how to create a Configuration Manager.

1. Run '. <install_dir>/bin/mgsiprofile' to source the mgsiprofile script and
set up the environment for a single targeted runtime. You must do this before
you can run any of the WebSphere Message Broker commands.

2. Log on using your user ID. If you use the su command to switch user from
root, enter su - <user ID> to run your user profile.

3. Enter the following command to create the Configuration Manager:
mgsicreateconfigmgr CMGRO1 -i wbrkuid -a wbrkpw -q WBRK_QM

If you are using different names or values for any parameter on this command,
you must replace the appropriate values with your own.

In the command above:

CMGRO01
Is the name of the Configuration Manager that you are creating.

wbrkuid
Is the service user ID that is used to run the Configuration Manager.

wbrkpw
Is the password for the service user ID.

WBRK_QM
Is the name of the WebSphere MQ queue manager that will host the
Configuration Manager. This is created if it does not exist.

On completion of this task, you have:
* Created a Configuration Manager.
* Created and started a WebSphere MQ queue manager called WBRK_QM.

* Created and set up the WebSphere MQ resources required by the Configuration
Manager, and defined these on the queue manager. This includes the default
dead-letter queue (DLQ), which is automatically enabled by running the
mgsicreateconfigmgr command.

* Set up the authorizations that the Configuration Manager requires to access
WebSphere MQ resources.

Now that you have created the Configuration Manager, you are ready to:

1. Create and start the WebSphere MQ queue manager channels that are required
to connect WebSphere Message Broker components (brokers, User Name
Servers, and Configuration Manager). This allows components in your broker
domain that are supported by different queue managers to exchange messages
and communicate effectively. Refer to [‘Connecting components” on page 234

2. Create a broker domain connection using the workbench. Refer to
[domain connection” on page 265

Creating a Configuration Manager on Windows

BTN You create a Configuration Manager using the command line. Create the
Configuration Manager on the system where the Configuration Manager
component is installed.

208 Configuration, Administration, and Security

Use the mqsicreateconfigmgr command. The parameters on this command provide
the Configuration Manager with all the additional information it requires to be
ready for action as soon as it is started .

To create a Configuration Manager:

1.

Open a WebSphere Message Broker command prompt for the desired runtime.

2. Enter the following command to create the Configuration Manager:

mgsicreateconfigmgr CMGRO1 -i wbrkuid -a wbrkpw -q WBRK_QM

If you are using different names or values for any parameter on this command,
you must replace the appropriate values with your own.

In the command above:

CMGRO01
Is the name of the Configuration Manager that you are creating. This is
an optional parameter; if you do not specify it, the default is
'ConfigMgr'".

wbrkuid
is the service user ID used to run the Configuration Manager.

This ID must be a member of the mgm, mgbrkrs and Administrators
groups.

wbrkpw
Is the password for the service user ID.

WBRK_QM
Is the name of the WebSphere MQ queue manager that will host the
Configuration Manager. This is created if it does not exist.

On completion of this task, you have:

Created a Configuration Manager and added its Windows service to the Services
(viewable from the Control Panel).

Created and started a WebSphere MQ queue manager called WBRK_QM.
Created and set up the WebSphere MQ resources required by the Configuration
Manager, and defined these on the queue manager. This includes the default
dead-letter queue (DLQ), which is automatically enabled by running the
mgsicreateconfigmgr command.

Set up the authorizations that the Configuration Manager requires to access
WebSphere MQ resources.

Defined a service user ID wbrkuid, and database password wbrkpw.

Now that you have created the Configuration Manager, you are ready to:

1.

Create and start the WebSphere MQ queue manager channels that are required
to connect WebSphere Message Broker components (brokers, User Name
Servers, and Configuration Manager). This allows components in your broker
domain that are supported by different queue managers to exchange messages
and communicate effectively. Refer to|“Connecting components” on page 234

Create a broker domain connection using the workbench. Refer to

[domain connection” on page 265.|

Creating a Configuration Manager on z/0S
Create the Configuration Manager component and the other resources on which it
depends.

Configuring WebSphere Message Broker 209

To create your Configuration Manager, perform the following tasks in order.

1. [“Collecting the information required to create a Configuration Manager on|

2/0S"]

[‘Creating the Configuration Manager PDSE” on page 211]

[“Creating the Configuration Manager directory on z/OS” on page 211|

[‘Customizing the Configuration Manager component data set” on page 212|

[‘Customizing the Configuration Manager JCL” on page 212|

[‘Creating the Configuration Manager component” on page 213

N ook

“Copying the Configuration Manager started task to the procedures library” on|

page 214|

Collecting the information required to create a Configuration Manager on z/OS:

This is part of the larger task of creating a Configuration Manager on z/OS.

You need to complete the information in each of the following tables before
continuing:

+ [“Installation information - Configuration Manager”)

+ [“Component information - Configuration Manager”]

Installation information - Configuration Manager:

This topic gives installation details of the Configuration Manager.

Collect the information shown in the Description column and complete the values
you require for your particular system. You can see a complete list of variables you
can customize in |“z/OS JCL variables” on page 717

Description JCL variable Example installation Your installation value
value

Fully qualified name of the N/A <hlq>.SBIPPROC

product's SBIPPROC dataset

Fully qualified name of the N/A <hlq>.SBIPSAMP

product's SBIPSAMP dataset

File system directory where the | ++INSTALL++ /usr/lpp/mgsi

product has been installed

WebSphere MQ high-level ++WMQHLQ++ MQOQM.V600

qualifier

Location of Java installation ++JAVA++ /usr/lpp/java/IBM/]J1.5

Location of IBM XML Toolkit ++XMLTOOLKIT++ /usr/lpp/ixm/IBM/

installation xmldc-5_6

Locale of environment where ++LOCALE++ C

commands are run by

submitting JCL

Time zone of environment ++TIMEZONE++ GMTOBST

where commands are run by

submitting JCL

WebSphere MQ file system ++MQPATH++ /usr/lpp/mqm

install directory

Component information - Configuration Manager:

210 Configuration, Administration, and Security

Collect the information shown in the Description column and complete the values
you require for your particular system. You can see a complete list of variables you
can customize in [“z/OS JCL variables” on page 717 |

Description JCL variable Example component value Your
component
value

Configuration Manager name | ++COMPONENTNAME++ MQP1CMGR

Configuration Manager's user | ++HOME++ /u/mgplusr/mqplemgr

ID file system home directory

++HOME++ must refer to a unique
directory for each component,
even if your user ID is shared
between different components.

File system directory where ++COMPONENTDIRECTORY++ | /mgsi/configmgrs/

the Configuration Manager is MQP1CMGR

to exist

Data set where all JCL relevant | ++COMPONENTDATASET++ TESTDEV.CMGR.MQP1CMGR

to the Configuration Manager

is saved

Profile name ++COMPONENTPROFILE++ BIPCPROF BIPCPROF

Name of the Started Task JCL; | ++STARTEDTASKNAME++ MQP1CMGR

can be a maximum of 8

characters

mgsicreateconfigmgr options | ++OPTIONS++ Any additional optional

parameters for the
mgqsicreateconfigmgr
command

Creating the Configuration Manager PDSE:

This is part of the larger task of creating a Configuration Manager on z/OS.

Create the Configuration Manager PDSE, for example using option 3.2 on ISPE
The name of the PDSE must be the same as the JCL variable
++COMPONENTDATASET++. Allocate a data set with:

* Eight directory blocks
* 15 tracks (or 1 cylinder) of 3390 DASD with a record format of fixed blocked 80
* A suitable block size (for example 27920)
* A data set type of 1ibrary

Creating the Configuration Manager directory on z/OS:

This is part of the larger task of creating a Configuration Manager on z/OS.

Before you start

To complete this task, you must have completed the following tasks:

* [“Collecting the information required to create a Configuration Manager onl|

2/0S” on page 210

+ [“Creating the Configuration Manager PDSE”]

Create the Configuration Manager directory manually using:

Configuring WebSphere Message Broker

211

mkdir <ComponentDirectory>

The name of the directory must be the same as the JCL variable
++COMPONENTDIRECTORY++.

Use the chmod command to set the required authorizations. See [‘Creating the
[proker directory on z/OS” on page 198| for more information.

Customizing the Configuration Manager component data set:
This is part of the larger task of creating a Configuration Manager on z/OS.

Before you start

Before starting this task, you must have completed [“Collecting the information|
[required to create a Configuration Manager on z/0OS” on page 210

Create the Configuration Manager data set in TSO, identified by
++COMPONENTDATASET++, as instructed below:

1. Copy BIPCPROF from <h1g>.SBIPSAMP to ++COMPONENTDATASET++.

2. Copy the members specified in [“Configuration Manager PDSE members|
foriginating in <hlg>.SBIPPROC” on page 716| from <h1g>.SBIPPROC to
++COMPONENTDATASET++. Ensure that you copy only the listed files.

3. Customize the JCL.

Customizing the Configuration Manager JCL:
This is part of the larger task of creating a Configuration Manager on z/OS.

Before you start

Before starting this step, you must have completed [“Customizing the
[Configuration Manager component data set.”|

* A brief description of its function.

* A description where further information can be found, relating to the function of
the JCL.

* If appropriate, a topic number.

* The section listing the JCL variables themselves.

Each JCL file defines its own STEPLIB. Some JCL files, for example BIPRELG, might
require DB2 defined in the STEPLIB for a broker component. This must be removed
from the JCL if the component is either a Configuration Manager or User Name
Server, because it is not required.

You can customize the files using an ISPF edit macro that you have to tailor, or
you can make changes to each of the PDSE members manually.

BIPEDIT is a REXX program that you can use to help you customize your JCL.
After you have customized BIPEDIT you can run this REXX program against the
other JCL files to change their JCL variables.

When you update BIPCPROF (the Configuration Manager profile), the changes are
not accessible until you run BIPGEN to copy the profile to the file system and create

212 Configuration, Administration, and Security

the ENVFILE. You must do this each time you update BIPCPROF for the changes to
take effect, which happens when you restart the Configuration Manager.

Do not set either of the optional pass parameters (-1 or -2) in BIPCRCM at this time
because you want to create the registry and the WebSphere MQ queues.

1. Customize the renamed BIPEDIT file. Use the information you collected in:

+ |“Installation information - Configuration Manager” on page 210|

+ [“Component information - Configuration Manager” on page 210|

2. Activate the renamed BIPEDIT file before you customize any other JCL files. Do
this by running the following TSO command:

ALTLIB ACTIVATE APPLICATION(EXEC) DA('COMPONENTDATASET')

where 'COMPONENTDATASET' is identical to ++COMPONENTDATASET++.

This command is active for the local ISPF session for which it was issued. Note
that if you have split screen sessions, the other sessions are not able to use this.
If you use ISPF option 6 to issue the command, use ISPF option 3.4 to edit the
data set; this enables you to use the edit command.

3. Edit each JCL file. Run the renamed BIPEDIT exec by typing its name on the
command line (for example MQO1EDCM). Instead of editing a member, you might
want to View it until you have resolved any problems in your REXX program.
Alternatively, you can Cancel the Edit session instead of saving it.

You must set a value for all the variables listed in the JCL; if you do not do so,
the JCL will not work correctly.

Some JCL files include ++OPTIONS++ for a command; you must replace them with
additional optional parameters specific to the command on z/OS, or remove them.
It is likely that you will have to do this in addition to running BIPEDIT. If you do
not require any additional options, remove ++0PTIONS++ using the following
command:

"c ++OPTIONS++ '' all"
where ' ' represents two single quotation marks.

Save the edit macro and run this macro against all of the members except the edit
macro itself.

You need to be aware that another process might be using the current ENVFILE, so
you need to consider whether updating the current ENVFILE in the file system will
have any impact.

Creating the Configuration Manager component:

This is part of the larger task of creating a Configuration Manager on z/OS.

Before you start

Complete [“Customizing the Configuration Manager JCL” on page 212

If the user ID submitting the BIPCRCM command has the appropriate

WebSphere MQ authorities, you can ignore the optional mgsicreateconfigmgr
parameters -1 and -2. If you expect that a different administrator will create the
WebSphere MQ resources, consider using one of these optional parameters; see the
[‘mgsicreateconfiemer command” on page 553| for further information.

Configuring WebSphere Message Broker 213

1. Submit job BIPCRCM with option -1. This job creates the Configuration Manager
together with the files and directories that are placed in the registry. To run this
job, you must have authority to access the Configuration Manager.

2. Edit BIPCRCM and submit the job with option -2. This job creates the
WebSphere MQ queues. If you do not have the requisite authority, ask your
WebSphere MQ system administrator to run the job.

3. Ensure that the jobs have run successfully:
Check the STDOUT stream in the JOBLOG.

View STDOUT for any errors and checking forBIP80711: Successful
command completion.

If you encounter any problems, delete the Configuration Manager and recreate it
using the following procedure. You must have the appropriate authority to run the
jobs.

1. Edit and configure job BIPDLCM.

2. Run job BIPDLCM with the same option, or options, that caused the problems
when you ran the BIPCRCM job.

3. Correct the problems and run the BIPCRCM job again.

The BIPCRCM job can take several minutes to run, depending on the content of the
remote database.

Copying the Configuration Manager started task to the procedures library:
This is part of the larger task of creating a Configuration Manager on z/OS.

Before you start

Before starting this task, you must have completed [“Creating the Configuration|
[Manager component” on page 213

Copy the Started Task JCL (BIPCMGRP) to the procedures library, for example
USER.PROCLIB.

Enabling a User Name Server

If you require a User Name Server as a component of your broker domain, you
must create the necessary connections between the broker, Configuration Manager,
and User Name Server, so that they can communicate effectively.

Specify additional parameters on the mqsicreatebroker and mqsicreateconfigmgr
commands, before you create the User Name Server. The following steps show you
how to do this.

1. Create a broker with the additional -s and -j parameters on the
mgsicreatebroker command. These parameters allow the broker to
communicate with the WebSphere MQ queue manager for the User Name
Server, and also enable the broker for publish/subscribe access control.

If you have created the broker without these parameters, modify the broker,
defining the -s and -j parameters. Refer to ['Modifying a broker” on page 245,

2. Create a Configuration Manager with the additional -s parameter on the
mgqsicreateconfigmgr command. This parameter allows the Configuration
Manager to communicate with the WebSphere MQ queue manager for the User
Name Server.

214 Configuration, Administration, and Security

If you have created the Configuration Manager without this parameter, modify
the Configuration Manager, defining the -s parameter. Refer to
[Configuration Manager” on page 250

Now that you have made the required changes to the broker and Configuration
Manager, you can create the User Name Server, and thus enable publish/subscribe
services.

Creating a User Name Server

You can create a User Name Server on every platform that is supported by
WebSphere Message Broker.

Before you start:

Complete the following tasks:

* Ensure that your user ID has the correct authorizations to perform the task.
Refer to [“Security requirements for administrative tasks” on page 755

* Create a broker and Configuration Manager, with the additional parameters on
the mgsicreatebroker and mgsicreateconfigmgr commands to allow them to
communicate with the User Name Server. Refer to [“Enabling a User Name]
[Server” on page 214

* On distributed systems, you must set up your command-line environment
before creating a User Name Server, by running the product profile or console;
refer to [Setting up a command environment]

¢ On z/0S, you must create and start the queue manager for this User Name
Server before you create the component.

Create a User Name Server using the command line on the system where the User
Name Server component is installed. On Windows and Linux on x86, you can
alternatively use the Command Assistant in the Message Broker Toolkit to
complete this task.

To create a User Name Server, follow the link for the appropriate platform.

E

i~
@
>

M n
° Tl

3

E’-‘. > 2

=215y

allz g
o

Creating a User Name Server on AIX

The following steps show you how to create a User Name Server.

1. Log on using your user ID. If you use the su command to switch user from
root, enter su - <user ID> to run your user profile.

2. Enter the following command to create the User Name Server:
mgsicreateusernameserver -i wbrkuid -a wbrkpw -q WBRK_UNS_QM

If you are using different names or values for any parameter on this command,
you must replace the appropriate values with your own.

In the command above:

Configuring WebSphere Message Broker 215

wbrkuid
Is the service user ID that is used to run the User Name Server.

wbrkpw
Is the password for the service user ID.

WBRK_UNS_QM
Is the name of the WebSphere MQ queue manager for the User Name
Server. This is created if it does not exist.

On completion of this task, you have:

* Created a User Name Server.

* Created a default startup status of manual for the User Name Server.

* Created and started a WebSphere MQ queue manager called WBRK_QM.

* Created and set up the WebSphere MQ resources required by the User Name
Server, and defined these on the queue manager. This includes the default
dead-letter queue (DLQ), which is automatically enabled by running the
mgsicreateusernameserver command.

Now that you have created the User Name Server, you are ready to create and
start the WebSphere MQ queue manager channels that are required to connect
WebSphere Message Broker components (brokers, User Name Servers, and
Configuration Manager). This allows components in your broker domain that are
supported by different queue managers to exchange messages and communicate
effectively. Refer to [‘Connecting components” on page 234

Creating a User Name Server on HP-UX

BTSN The following steps show you how to create a User Name Server.

1. Log on using your user ID. If you use the su command to switch user from
root, enter su - <user ID> to run your user profile.

2. Enter the following command to create the User Name Server:
mgsicreateusernameserver -i wbrkuid -a wbrkpw -q WBRK_UNS_QM

If you are using different names or values for any parameter on this command,
you must replace the appropriate values with your own.

In the command above:

wbrkuid
Is the service user ID that is used to run the User Name Server.

wbrkpw
Is the password for the service user ID.

WBRK_UNS_QM
Is the name of the WebSphere MQ queue manager for the User Name
Server. This is created if it does not exist.

On completion of this task, you have:

* Created a User Name Server.

* Created a default startup status of manual for the User Name Server.

* Created and started a WebSphere MQ queue manager called WBRK_QM.

* Created and set up the WebSphere MQ resources required by the User Name
Server, and defined these on the queue manager. This includes the default
dead-letter queue (DLQ), which is automatically enabled by running the
mgqsicreateusernameserver command.

216 Configuration, Administration, and Security

Now that you have created the User Name Server, you are ready to create and
start the WebSphere MQ queue manager channels that are required to connect
WebSphere Message Broker components (brokers, User Name Servers, and
Configuration Manager). This allows components in your broker domain that are
supported by different queue managers to exchange messages and communicate
effectively. Refer to [‘Connecting components” on page 234

Creating a User Name Server on Linux
Follow the steps described in this task to create a User Name Server on Linux
platforms.

1. Log on using your user ID. If you use the su command to switch user from
root, enter su - <user ID> to run your user profile.

2. Enter the following command to create the User Name Server:
mgsicreateusernameserver -i wbrkuid -a wbrkpw -g WBRK_UNS_QM

If you are using different names or values for parameters on this command,
you must replace the appropriate values with your own.

In the command shown:

wbrkuid
Is the service user ID that is used to run the User Name Server.

wbrkpw
Is the password for the service user ID.

WBRK_UNS_QM
Is the name of the WebSphere MQ queue manager for the User Name
Server. The queue manager is created if it does not exist.

On completion of this task, you have:

* Created a User Name Server.

¢ Created a default startup status of manual for the User Name Server.

* Created and started a WebSphere MQ queue manager called WBRK_QM.

* Created and set up the WebSphere MQ resources required by the User Name
Server, and defined these resources on the queue manager. These queues include
the default dead-letter queue (DLQ), which is automatically enabled by running
the mgsicreateusernameserver command.

Now that you have created the User Name Server, you are ready to create and
start the WebSphere MQ queue manager channels that are required to connect
WebSphere Message Broker components (brokers, User Name Servers, and
Configuration Manager). The channels are required by the components in your
broker domain, that are supported by different queue managers, to exchange
messages and communicate effectively. For further information, see

fcomponents” on page 234

Creating a User Name Server on Solaris
Follow the steps described in this task to create a User Name Server on Solaris
platforms.

1. Log on using your user ID. If you use the su command to switch user from
root, enter su - <user ID> to run your user profile.

2. Enter the following command to create the User Name Server:
mgsicreateusernameserver -i wbrkuid -a wbrkpw -q WBRK_UNS_QM

If you are using different names or values for parameters on this command,
you must replace the appropriate values with your own.

Configuring WebSphere Message Broker 217

In the command shown:

wbrkuid
Is the service user ID that is used to run the User Name Server.

wbrkpw
Is the password for the service user ID.

WBRK_UNS_QM
Is the name of the WebSphere MQ queue manager for the User Name
Server. The queue manager is created if it does not exist.

On completion of this task, you have:

* Created a User Name Server.

* Created a default startup status of manual for the User Name Server.

* Created and started a WebSphere MQ queue manager called WBRK_QM.

* Created and set up the WebSphere MQ resources required by the User Name
Server, and defined these resources on the queue manager. These queues include

the default dead-letter queue (DLQ), which is automatically enabled by running
the mgsicreateusernameserver command.

Now that you have created the User Name Server, you are ready to create and
start the WebSphere MQ queue manager channels that are required to connect
WebSphere Message Broker components (brokers, User Name Servers, and
Configuration Manager). The channels are required by the components in your
broker domain, that are supported by different queue managers, to exchange
messages and communicate effectively. For further information, see

[components” on page 234

Creating a User Name Server on Windows
Follow the steps described in this task to create a User Name Server on Windows
platforms.

1. Open a command prompt.
2. Enter the following command to create the User Name Server:
mgsicreateusernameserver -i wbrkuid -a wbrkpw -q WBRK_UNS_QM

If you are using different names or values for parameters on this command,
you must replace the appropriate values with your own.

In the command shown:

wbrkuid
Is the service user ID that is used to run the User Name Server.

wbrkpw
Is the password for the service user ID.

WBRK_UNS_OM
Is the name of the WebSphere MQ queue manager for the User Name
Server. The queue manager is created if it does not exist.

On completion of this task, you have:

* Created a User Name Server.

* Created a default startup status of manual for the User Name Server.

* Created and started a WebSphere MQ queue manager called WBRK_QM.

* Created and set up the WebSphere MQ resources required by the User Name
Server, and defined these resources on the queue manager. These queues include

218 Configuration, Administration, and Security

the default dead-letter queue (DLQ), which is automatically enabled by running
the mgsicreateusernameserver command.

Now that you have created the User Name Server, you are ready to create and
start the WebSphere MQ queue manager channels that are required to connect
WebSphere Message Broker components (brokers, User Name Servers, and
Configuration Manager). The channels are required by the components in your
broker domain, that are supported by different queue managers, to exchange
messages and communicate effectively. For further information, see

omponents” on page 234.
p pag

Creating a User Name Server on z/0S
Create the User Name Server component and the other resources on which it
depends.

To create your User Name Server, perform the following tasks in order.

[“Collecting the information required to create a User Name Server on z/0S’]
[‘Creating the User Name Server PDSE” on page 220
[‘Creating the User Name Server directory on z/OS” on page 221|

[‘Creating the User Name Server runtime environment on z/0S” on page 221

[‘Customizing the User Name Server component data set” on page 222|

[‘Customizing the User Name Server JCL” on page 222|

[‘Creating the User Name Server component” on page 223|

© N oAb~

“Copying the User Name Server started task to the procedures library” on page
224

Collecting the information required to create a User Name Server on z/OS:
This is part of the larger task of creating a User Name Server on z/0S.

You need to complete the information in each of the following tables before
continuing:

* [“Installation information - broker and User Name Server” on page 195|

+ “Component information - User Name Server” on page 220|

Installation information - broker and User Name Server:

Decide on the values for the list of the JCL variables for your system; an example
installation value is provided for each one.

Collect the information shown in the Description column, and complete the values
that you require for your particular system. You can see a complete list of the
variables that you can customize in [‘z/OS JCL variables” on page 717

Description JCL variable Example installation Your installation value
value

Fully qualified name of the N/A <hlg>.SBIPPROC

product's SBIPPROC data set

Fully qualified name of the N/A <hlq>.SBIPSAMP

product's SBIPSAMP data set

File system directory where the | ++INSTALL++ /usr/lpp/mqgsi

product has been installed

Configuring WebSphere Message Broker 219

The letter for the language in | ++LANGLETTER++> E (English) E
which you want messages

shown.

Locale of environment where | ++LOCALE++ C

commands are run by

submitting JCL

Time zone of environment ++TIMEZONE++ GMTOBST

where commands are run by

submitting JCL

Location of Java installation ++JAVA++ /usr/lpp/java/IBM/]1.5
WebSphere MQ high-level ++WMQHLQ++ MQOM.V600

qualifier

Location of IBM XML Toolkit | ++XMLTOOLKIT++ /usr/lpp/ixm/IBM/
installation xmldc-5_6

Notes:

1. You must include the XML Toolkit Library in the BROKER STEPLIB or

the system LINKLIST.

2. See the WebSphere MQ documentation for a list of supported national

languages.

Component information - User Name Server:

Collect the information shown in the Description column and complete the values
you require for your particular system. You can see a complete list of variables you
can customize in [“z/OS JCL variables” on page 717

options

parameters for the
mgqsicreateusernameserver
command

Description JCL variable Example component value |Your component
value
User Name Server's user ID ++HOME++ /u/mqplusr/mqgpluns
file system home directory
++HOME++ must refer to a unique
directory for each component,
even if your user ID is shared
between different components.
File system directory where the | ++COMPONENTDIRECTORY++ | /mgsi/uns/MQP1UNS
User Name Server is to exist
Data set where all JCL relevant | ++COMPONENTDATASET++ TESTDEV.UNS.MQP1UNS
to the User Name Server is
saved
Profile name ++COMPONENTPROFILE++ BIPUPROF BIPUPROF
Name of the Started Task JCL; |++STARTEDTASKNAME++ MQP1UNS
can be a maximum of 8
characters
mgqsicreateusernameserver ++OPTIONS++ Any additional optional

Creating the User Name Server PDSE:

This is part of the larger task of creating a User Name Server on z/OS.

220 Configuration, Administration, and Security

Create the User Name Server PDSE, for example using option 3.2 on ISPE. The
name of the PDSE must be the same as the JCL variable ++COMPONENTDATASET++.
Allocate a data set with:

* Eight directory blocks

* 15 tracks (or 1 cylinder) of 3390 DASD with a record format of fixed blocked 80
A suitable block size (for example 27920)

* A data set type of 1ibrary

Creating the User Name Server directory on z/OS:
This is part of the larger task of creating a User Name Server on z/OS.
Before you start

To complete this task, you must have completed the following tasks:

+ [“Collecting the information required to create a User Name Server on z/0S” on|

page 219|

+ [“Creating the User Name Server PDSE” on page 220

Create the User Name Server directory manually using:
mkdir <ComponentDirectory>

The name of the directory must be the same as the JCL variable
++COMPONENTDIRECTORY++.

Use the chmod command to set the required authorizations. See |“Creating the

[proker directory on z/0S” on page 198| for more information.

Creating the User Name Server runtime environment on z/OS:
This is part of the larger task of creating a User Name Server on z/OS
Before you start

To complete this task, you must have completed the following task:

* [“Creating the User Name Server directory on z/0S.”|

Use the mqsicreateusernameserver command to create a User Name Server and its
runtime environment. The command syntax is:

mgsicreateusernameserver -q QueueManagerName [-r RefreshInterval] [-1] [-2]

where:

-q QueueManagerName
is a required parameter and is the name of the WebSphere MQ queue manager
associated with your User Name Server, for example MQP1.

-t Refreshlnterval
is an optional parameter and is the interval, specified in seconds, at which the
User Name Server interrogates the security subsystem for changes to user or
group attributes. If an interval is not specified, the User Name Server default
interval of 60 seconds is used.

-1 is an optional parameter and is the registry pass; this creates only the User
Name Server registry.

Configuring WebSphere Message Broker 221

-2 is an optional parameter and is the WebSphere MQ pass; this creates only the
User Name Server WebSphere MQ queues.

You will be asked to confirm that the parameters you enter are correct. Enter Y to
confirm, or N to change the parameters. If you choose to change the parameters,
run mgqsicreateusernameserver again.

Check that you are using the correct installation path, particularly if you are
customizing the system after applying maintenance to an alternate set of
WebSphere MQ Integrator Broker libraries. If you are applying service to the
broker, you might want a different installation path.

The functionality of this command is not the same as on distributed platforms,
because no WebSphere MQ-related definitions are performed. You have to follow
further steps to complete the User Name Server creation and customization.
Customizing the User Name Server component data set:

This is part of the larger task of creating a User Name Server on z/OS.

Before you start

Before starting this task, you must have completed [“Collecting the information|
[required to create a User Name Server on z/0OS” on page 219

Create the User Name Server data set in TSO, identified by ++COMPONENTDATASET++,

as instructed below:

1. Copy BIPUPROF from <hlg>.SBIPSAMP to ++COMPONENTDATASET++.

2. Copy the members specified in [“User Name Server PDSE members originating]
[in <hlg>.SBIPPROC” on page 715| from <h1g>.SBIPPROC to
++COMPONENTDATASET++. Ensure that you copy only the listed files.

3. Customize the JCL.

Customizing the User Name Server JCL:
This is part of the larger task of creating a User Name Server on z/OS.

Before you start

Before starting this task, you must have completed |“Customizing the User Name]
[Server component data set.”|

All JCL has a standard header, comprising:
* A brief description of its function.

* A description where further information can be found, relating to the function of
the JCL.

* If appropriate, a topic number.

* The section listing the JCL variables themselves.

Each JCL file defines its own STEPLIB. Some JCL files, for example BIPRELG, might
require DB2 defined in the STEPLIB for a broker component. This must be removed

from the JCL if the component is either a Configuration Manager or User Name
Server, because it is not required.

222 Configuration, Administration, and Security

You can customize the files using an ISPF edit macro that you have to tailor, or
you can make changes to each of the PDSE members manually.

BIPEDIT is a REXX program that can be used to assist you in customizing your
JCL. Once you have customized BIPEDIT you can run this REXX program against
the other JCL files to change their JCL variables.

When you update BIPUPROF (the User Name Server profile), the changes are not
accessible until you run BIPGEN to copy the profile to the file system and create the
ENVFILE. You must do this each time you update BIPUPROF for the changes to take
effect.

Do not set either of the optional pass parameters (-1 or -2) in BIPCRUN at this time
because you want to create the registry and the WebSphere MQ queues.

1. Customize the renamed BIPEDIT file. Use the information you collected in:

* [“Installation information - broker and User Name Server” on page 195

+ [“Component information - User Name Server” on page 220|

2. Activate the renamed BIPEDIT file before you customize any other JCL files. Do
this by running the following TSO command:

ALTLIB ACTIVATE APPLICATION(EXEC) DA('COMPONENTDATASET')

where 'COMPONENTDATASET' is identical to ++COMPONENTDATASET++.

This command is active for the local ISPF session for which it was issued. Note
that if you have split screen sessions, the other sessions are not able to use this.
If you use ISPF option 6 to issue the command, use ISPF option 3.4 to edit the
data set; this enables you to use the edit command.

3. Edit each JCL file. Run the renamed BIPEDIT exec by typing its name on the
command line (for example MQO1EDUN). Instead of editing a member, you might
want to View it until you have resolved any problems in your REXX program.
Alternatively, you can Cancel the Edit session instead of saving it.

You must set a value for all the variables listed in the JCL; if you do not do so,
the JCL will not work correctly.

Some JCL files include ++OPTIONS++ for a command, these must be replaced with
additional optional parameters specific to the command on z/OS, or removed. It is

likely that you will have to do this in addition to running BIPEDIT. If you do not
require any additional options, remove ++0PTIONS++ using the following command:

"c ++OPTIONS++ '' all"
where ' ' represents two single quotation marks.

Save the edit macro and run this macro against all the members except the edit
macro itself.

You need to be aware that another process might be using the current ENVFILE, so
you need to consider whether updating the current ENVFILE in the file system will
have any impact.

Creating the User Name Server component:

This is part of the larger task of creating a User Name Server on z/OS.

Before you start

Configuring WebSphere Message Broker 223

Before starting this task, you must have completed [“Customizing the User Name]
[Server JCL” on page 222

If the user ID submitting the BIPCRUN command has the appropriate

WebSphere MQ authorities, you can ignore the optional
mgqsicreateusernameserver parameters -1 and -2. If it is your intention to have a
different administrator create the WebSphere MQ resources, you can consider

using one of these optional parameters; see |‘mgsicreateusernameserver command”
on page 569 for further information.

1. Submit job BIPCRUN with option -1. This job creates the User Name Server
together with the files and directories which are placed in the registry. You
must run this job first, and to do this you need authority to access the User
Name Server.

2. Edit BIPCRUN and submit the job with option -2. This job creates the
WebSphere MQ queues. If you do not have the requisite authority, ask your
WebSphere MQ system administrator to run the job.

3. Ensure that the jobs have run successfully by:
Checking the STDOUT stream in the JOBLOG.

Viewing STDOUT for any errors and checking forBIP80711: Successful
command completion.

If you encounter any problems, delete the User Name Server and recreate it using
the following procedure. Note that you need the appropriate authority to run the
jobs.

1. Edit and configure job BIPDLUN.

2. Run job BIPDLUN with the same option, or options, that caused the problems
when you ran the BIPCRUN job.

3. Correct the problems and run the BIPCRUN job again.
Copying the User Name Server started task to the procedures library:
This is part of the larger task of creating a User Name Server on z/OS.

Before you start

Before starting this task, you must have completed [“Creating the User Name]
[Server component” on page 223)|

Copy the Started Task JCL (BIPUNSP) to the procedures library, for example
USER.PROCLIB.

Connecting the User Name Server to the WebSphere Message
Broker network
This task is part of the larger task of creating a User Name Server.

Before you start

To complete this task on z/OS, you must have completed the following task:

+ [“Starting and stopping the User Name Server on z/0S” on page 344

To enable communication between all the components, define and start
WebSphere MQ channels between the following components:

* Configuration Manager, queue manager and the User Name Server queue
manager.

224 Configuration, Administration, and Security

* Configuration Manager and the broker queue manager.
* User Name Server queue manager and the broker queue managers.

* All brokers used in publish/subscribe.

You connect a User Name Server to another component in the same way as you
connect the Configuration Manager to another component. This task is described in
detail in [“Connecting components” on page 234.|

The Configuration Manager requests user IDs and group information from the
User Name Server. The WebSphere Message Broker administrator defines Access
Control Lists (ACLs) on the workbench. These ACLs are sent to each broker using
WebSphere MQ channels following a deploy.

For further details of connecting your User Name Server to a broker and enabling
Publish/Subscribe, refer to [“Configuring Publish/Subscribe security.”|

Configuring Publish/Subscribe security:

Refer to the following tasks:

* [“Connecting the User Name Server to a broker”]

+ [“Connecting the User Name Server to a broker on z/OS” on page 226
[‘Starting the WebSphere MQ channels and listeners” on page 227
[“Enabling applications to use Publish/Subscribe” on page 228|

[“Enabling applications to use Publish/Subscribe security on z/0S” on page 228|

Connecting the User Name Server to a broker:
Before you start:

To complete this task, you must have completed the following task:

* |“Creating a User Name Server” on page 215|

You need to make the broker known to the User Name Server. You can do this
using either of the following methods.

* Create a broker and specify s=UserNameServerQueueManagerName on the
mgqsicreatebroker command.

* Change an existing broker using the mqsichangebroker command.

If the User Name Server is not connected to the broker's queue manager, you need
channels between the broker's queue manager and the User Name Server's queue
manager. You need channels between the Configuration Manager queue manager
and the broker's queue manager to receive message flows and Access Control Lists.

Change the Configuration Manager to use the queue manager name used by the
User Name Server. You can use the mqsicreateconfigmgr or mqsichangeconfigmgr
commands to set this value.

On the Topics panel in the workbench, you can view user information sent from
the User Name Server.

Check that the User Name Server has registered the Configuration Manager. For
more information on implementing topic-based security using the workbench, see
[“Enabling topic-based security” on page 79

Configuring WebSphere Message Broker 225

Example startup messages:

When a broker starts for the first time, and a User Name Server queue manager
has been specified, and no response has ever been received from the User Name
Server, you will receive the following message:

+BIP9141W UserNameServer 0 The component was started.

When the User Name Server starts and indicates that it has registered with the
broker, you will receive the following message:

18:17:18.54 BIP9141W: The component was started.

18:17:18.57 BIP2001I: The WebSphere Message Broker service has started, process ID 196827.

18:17:24.31 BIP8201I: User Name Server starting with refresh interval 60.

18:17:28.21 BIP8204I: User Name Server is registering a client with UUID
12345678-1234-1234-1234-123456789abc, and cache version 0.

Connecting the User Name Server to a broker on z/OS:
Before you start:

To complete this task, you must have completed the following task:

* |“Creating a User Name Server on z/0OS” on page 219

You need to make the broker known to the User Name Server. You can do this
using either of the following methods.

* Create a broker and specify -s UserNameServerQueueManagerName on the
mgsicreatebroker command.

* Change an existing broker using the mqsichangebroker command.

If the User Name Server is not connected to the broker's queue manager, you need
channels between the broker's queue manager and the User Name Server's queue
manager. You need channels between the Configuration Manager queue manager
and the broker's queue manager to receive message flows and Access Control Lists.

Check the z/OS console for the message BIP8204, which is issued when the User
Name Server has successfully registered a client.

Change the Configuration Manager to use the queue manager name used by the
User Name Server on z/OS, or another supported platform. You can use the
mgqsicreateconfigmgr or mqsichangeconfigmgr commands to set this value.

On the Topics panel in the workbench, you can view user information sent from
the User Name Server.

Check that the User Name Server has registered the Configuration Manager. Also,
check the z/OS console for message BIP8204, which is issued when the User Name
Server has successfully registered a client. For more information on implementing
toi ic-based security using the workbench, see [“Enabling topic-based security” on|

page 79.
Example startup messages:
When a broker starts for the first time, and a User Name Server queue manager

has been specified, and no response has ever been received from the User Name
Server, you will receive the following message:

+BIP9141W UserNameServer 0 The component was started.

226 Configuration, Administration, and Security

18:17:18.54 BIP9141NW:
18:17:18.57 BIP2001I:
18:17:24.31 BIP8201I:
18:17:28.21 BIP82041:

When the User Name Server starts and indicates that it has registered with the
broker, you will receive the following message:

The component was started.

The WebSphere Message Broker service has started, process ID 196827.
User Name Server starting with refresh interval 60.

User Name Server is registering a client with UUID

12345678-1234-1234-1234-123456789abc, and cache version 0.

Starting the WebSphere MQ channels and listeners:

This topic tells you how to start the channels and listeners on Linux, UNIX
systems and Windows platforms.

To complete the connection between two components that are supported by
different queue managers, start the server channels that you created in
[‘Connecting the User Name Server to a broker on z/OS” on page 226,

Before you can do that, you need to start the WebSphere MQ listeners that are to

receive the messages sent out from these channels.

Note: All the examples use port 1414, the default WebSphere MQ port. You must

ensure that you use the port space in the channel definition and that this
port is not in use by another application.

UNIX systems:

1. To start a listener enter the following command in a shell window:
runmglsr -t tcp -p 1414 -m WBRK_QM

2. To start a sender channel, enter the following command in a shell window:
runmgchl -c BROKER.CONFIG -m WBRK_QM

LINUX systems:
* If you are using WebSphere MQ Version 6.0, listeners and channels can be

started using the WebSphere MQ Explorer, in the same way as with Windows

tforms, as described in [“Windows platforms using WebSphere MQ Version|
6 77

* If you are using WebSphere MQ Version 5, listeners and channels must be
started by entering commands in a shell window, as described in this section.

1. To start a listener, enter the following command in a shell window:
runmglsr -t tcp -p 1414 -m WBRK_QM

2. To start a sender channel, enter the following command in a shell window:
runmgchl -c BROKER.CONFIG -m WBRK_QM

Windows platforms using WebSphere MQ Version 6:

If you are using WebSphere MQ Version 6.0, start listeners and channels using
WebSphere MQ Explorer.

1. To start a listener as a background task:

a. Click Start » Programs » IBM WebSphere MQ > WebSphere MQ Explorer.

b. In the left pane expand the queue manager, expand Advanced, and selec
Listeners

c. Right-click Listeners > New » TCP Listener..., enter a name for the listen
then click Finish. A new listener is created with transport type TCP and
(default) port number 1414.

Configuring WebSphere Message Broker

t

er,

227

d. Right-click the new listener and click Start to start it.

2. To start the sender channels as background tasks using WebSphere MQ
Explorer expand the queue manager, expand Advanced, and select Channels.

3. If you prefer, you can start listeners and channels as foreground tasks:
a. To start a listener, enter the following command on the command line:
runmglsr -t tcp -p 1414 -m WBRK_CONFIG_QM
b. To start channels, enter the following commands:
runmqchl -m WBRK_UNS_QM -c WBRK_UN_TO_ BR

runmgchl -m WBRK_QM -c WBRK_BR_TO_UN
Windows platforms using WebSphere MQ Version 5:

If you are using WebSphere MQ Version 5, start the listeners using WebSphere MQ
Services, and start channels by entering commands on the command line.

1. To start a listener as a background task:
a. Click Start » Programs » IBM WebSphere MQ » WebSphere MQ Services.

b. Expand the left pane and select the queue manager WBRK_CONFIG_QM to
display its services in the right pane.

c. If the listener is displayed, right-click and select All Tasks »> Start to start
the listener.

d. If the listener is not displayed:

1) Right-click the queue manager and select New > Listener. A new
listener is created with (default) transport type TCP and (default) port
number 1414.

2) Right-click the new listener and select Start to start it.

2. If you prefer, you can start a listener as a foreground task. Enter the following
command on the command line:

runmglsr -t tcp -p 1414 -m WBRK_CONFIG_QM
3. To start the channels as foreground tasks, enter the following commands:
runmgchl -m WBRK_UNS_QM -c WBRK_UN_TO_BR

runmgchl -m WBRK_QM -c WBRK_BR_TO_UN
Enabling applications to use Publish/Subscribe:

If WebSphere MQ queue security is enabled, users who want to subscribe need
UPDATE authority to put to the SYSTEM.BROKER.CONTROL.QUEUE on the User
Name Server's queue manager. Publish/Subscribe users also need UPDATE
authority to allow them to use input and output queues in message flow nodes.

Enabling applications to use Publish/Subscribe security on z/OS:

This topic lists the steps that you need to complete to enable applications to use
Publish/Subscribe security on z/OS.

 For the User Name Server on z/OS to extract user ID and group information
from the External Security Manager (ESM) database, user IDs and groups must
have an OMVS segment defined.

* To use publish/subscribe security, you need to have an ESM group defined
called mqbrkrs. This group needs to have an OMVS segment defined. The user
ID of the started task needs to be in this group.

* If you are using RACF, use the LG group OMVS command. For example:

228 Configuration, Administration, and Security

LG MQBRKRS OMVS

User IDs:

* If you have suitable authorization, you can use the following RACF command to
display OMVS information about a user:

LU id OMVS

* To give a user ID an OMVS segment, you can use the following RACF command
if you have suitable authorization:
ALTUSER id OMVS(UID(xxx))

Groups:

* You can use the following RACF command to display OMVS information about
a group if you have suitable authorization:

LG group OMVS

* To give a group an OMVS segment you can use the following RACF command
if you have suitable authorization:

ALTGROUP id OMVS(GID(xxx))

Refer to the OS/390 Security Server (RACF) Security Administrator’s Guide (or the
appropriate documentation for an external security manager installed on the
system) for details.

If an application tries to use publish/subscribe with security, and the user ID is not
found by the User Name Server (either because the user ID does not exist or the
user ID does not have an OMVS segment), the message BIP7017W is written to the
SYSLOG.

If an application tries to use publish/subscribe with security, and the user ID is
found by the User Name Server, but an access control list denies access to the
topic, either of the following messages are written to SYSLOG:

BIP7025 User does not have permission to subscribe to a topic.
BIP7026 User does not have publish permission on a topic.

Using the Default Configuration wizard

Use the Default Configuration wizard to set up and test a basic broker domain
configuration.

Before you run the Default Configuration wizard:

* You must install the Message Broker Toolkit and all the runtime components on
this computer.

¢ Access the Default Configuration wizard through the Message Broker Toolkit,
which is available on Linux on x86 and Windows only.

« WIITEE On Windows, you must have Administrator privileges, and your user
ID must be a local ID (not a domain ID).

¢ A database must be available, and your user ID must be authorized to create
databases:

- On Linux on x86, install DB2 Enterprise Server.

— NS On Windows, install either DB2 Enterprise Server or the ODBC
Drivers for Apache Derby (to use the embedded Derby database).

By using the Default Configuration wizard, you set up a basic configuration on
your local computer so that you can explore the product and run the samples that
are supplied in the Samples Gallery. You can also remove the default configuration,
if it exists, that has been set up on your logon account.

Configuring WebSphere Message Broker 229

+ [“Creating the default configuration”]
+ [“Removing the default configuration” on page 231]|

The default configuration is described in more detail in the Installation Guide,
which also describes how you can verify your installation by using the sample
programs; see [Installation Guide}

Creating the default configuration

The wizard creates the following resources:

¢ A broker domain with a broker named WBRK61_DEFAULT BROKER and a
Configuration Manager named
WBRK61_DEFAULT_CONFIGURATION_MANAGER.

* A WebSphere MQ queue manager named
WBRK61_DEFAULT_QUEUE_MANAGER

* A database named DEFBKD61 to be used by the broker.

On Windows, the wizard defaults to whatever database manager is available.
The database that is used is recorded on the Default Configuration Summary
page. Details of the database manager are also written to the log file that is
created by the wizard.

1. On Windows, the Default Configuration wizard starts automatically at the end
of the installation of WebSphere Message Broker. You can start the wizard
manually from the Message Broker Toolkit Welcome page, which is displayed
the first time you start the Message Broker Toolkit. If the Welcome page is not
displayed, open it in the Message Broker Toolkit by clicking Help » Welcome.

2. Click Get Started on the Welcome page, then click Create the Default
Configuration.

3. Click Start the Default Configuration wizard. The Default Configuration
wizard is displayed.

4. The Welcome page of the wizard describes what is about to happen. Enter your
password to log on, and click Next to continue. You can click Cancel at any
time to cancel the creation of the default configuration.

The wizard checks that the default configuration is not already installed.

5. The Default Configuration Summary page lists the resources that will be
created. The information field in this page confirms whether Derby has been set
as the default broker database on Windows. It also suggests an alternative
option of installing and configuring an enterprise database server instead. Click
Next to continue.

6. The Default Configuration Progress page lists the background configuration
actions as they occur, and indicates successful completion. You can cancel the
creation of the default configuration by clicking Cancel. The wizard backs out
all the configuration tasks and displays the progress and success of the process.
The configuration process is written to a log file in the Eclipse workspace
directory:

. user_home_directory/1BM/wmbt61/workspace/.metadata/
DefaultConfigurationWizard.log

o W user _home _directory\IBM\wmbt61\workspace\.metadata\
DefaultConfigurationWizard.log

If the default configuration is set up successfully, you see an appropriate
message. If errors occur, you see an appropriate message and the wizard backs
out all the configuration tasks. If an error occurs during the back out process,
the wizard displays a list of resources that you must remove manually.

230 Configuration, Administration, and Security

7. You can use the samples to verify the default configuration. Launch Samples
Wizard when finished is selected by default. Click Finish to open the Prepare
the Samples wizard.

If you do not want to open the Prepare the Samples wizard, clear Launch
Samples Wizard when finished before clicking Finish.

If you are viewing this information from within the Message Broker Toolkit,
you can open the samples manually by clicking the following sample:

Alternatively, click Help » Samples Gallery, and expand Application samples
+» Message Broker.

You can view samples only when you use the information center that is
integrated with the Message Broker Toolkit.

Removing the default configuration

1. Start the Default Configuration wizard from the Message Broker Toolkit
Welcome page, which is displayed after you start the Message Broker Toolkit. If
the Welcome page is not displayed, open it in the Message Broker Toolkit by
clicking Help » Welcome.

2. Click Get Started on the Welcome page, then click Create the Default
Configuration.

3. Click Remove the Default Configuration wizard. The Default Configuration
wizard is displayed.

4. The Welcome page of the wizard describes what is about to happen. You can
click Cancel at any time to cancel the removal of the default configuration.
The wizard checks that the default configuration is already installed.

5. The Remove Default Configuration Summary page lists the resources that will
be removed. Click Next to continue.

6. The Default Configuration Progress page lists the removal actions as they occur,
and indicates successful completion. The removal process is written to a log file
in the Eclipse workspace directory:

. user_home_directory/IBM/wmbt61/workspace/.metadata/
DefaultConfigurationWizard.log

« BTN user_home_directory\1BM\wmbt61\workspace\.metadata\
DefaultConfigurationWizard.log

7. A message confirms that the default configuration has been removed
successfully. Click Finish to close the wizard.

If errors occur during the removal of the default configuration, the wizard
displays the errors, and also writes them to the log file. Follow the advice in
the log, and try each step again.

If you experience problems when you are using the wizard to remove the default
configuration, you might have to remove the default configuration manually. For
more information, see [You experience problems with the default configuration|

Using the Command Assistant wizard

Use the Command Assistant wizard to create, modify, and delete physical runtime
components.

Before you start:

Configuring WebSphere Message Broker 231

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.pager.doc/doc/overview.htm

* The Message Broker Toolkit and all runtime components must be installed on
this system. The Command Assistant wizard is available through the toolkit, and
is available on Windows only.

* You must have administration privileges.

Use the Command Assistant wizard to create, modify, and delete the following
physical runtime components:

* Brokers

* Configuration Managers

* User Name Servers

By using the wizard, you access the equivalent command-line command through a
graphical interface:

* [“mgsicreatebroker command” on page 540 |/“mgsicreateconfiemer command” on|
page 553 and |‘mgsicreateusernameserver command” on page 569

* [“mgsichangebroker command” on page 429)J|“mgsichangeconfiemer command”|
on page 439 [and [“mgsichangeusernameserver command” on page 526|

+ |“mgsideletebroker command” on page 583)“mgsideleteconfigmer command” on|
page 586 and [‘mgsideleteusernameserver command” on page 595

The wizard displays a series of panels that lead you through the task that you
want to complete. The wizard provides help, in the banner at the top of each
panel, that indicates what actions you can take to complete the panel and continue.
Not every optional parameter on each of these commands is supported through
the wizard; if you are using some of the more advanced features (for example,
setting or modifying LDAP directory access for a broker), you must use the
command-line interface.

Use the buttons displayed at the bottom of each panel to move Back to the
previous panel, to move to the Next panel, to Finish working with the wizard, or
to Cancel the current action and end the wizard.

1. Switch to the Broker Application Development perspective or the Broker
Administration perspective.

2. Select File » New » Other. The New dialog opens.

3. Select Command Assistant Wizard within the Broker Administration -
Getting Started category and click Next. The wizard opens and displays its
first panel.

4. Select the type of component that you want to work with. The wizard checks
which components have been installed on this system. You must select a value
from the available list; you cannot enter a different value.

5. Navigate to the Name input field. If the wizard has found any existing
components of the type that you entered, it shows these resources in this field.
If no components of this type exist, or you want to create a component, enter
a new unique name in this field, following the naming restrictions enforced by
the product and any naming conventions that are in use in your environment.
The name of a resource is not case-sensitive. If a resource of the same name

exists, but with characters in a different case to the name that you typed into
this field, the characters you typed are overwritten with the existing name.

6. Navigate to the Action input field and choose the action that you want to
complete. The wizard prevents you from entering an invalid action for the
resource that you have entered in the Name field. For example, if you have

232 Configuration, Administration, and Security

entered a name that the wizard has not found on this system, you can choose
only to create a resource. If the resource exists, you can choose to modify it or
delete it.

7. If you have more than one installation of the product on this system, select
the correct value in the Location field. This field displays the home directory
of the installation identified by the wizard:

* If only one installation exists on this system, the directory is displayed, and
the field is read-only.

* If you have specified an existing, uniquely named, resource in the Name
field, the wizard displays the location of the installation that is associated
with that resource, and the field is read-only.

* If more than one installation exists, and might be the target for your
request, select the correct location in this field.

8. Click Next. The wizard displays the next panel, the content of which depends
on your choices so far.

Use the help that is displayed by the wizard on each panel, and navigate
through the entry fields, selecting or entering text where appropriate.

If you enter a password, the characters are displayed as asterisk characters in
the entry field to increase security.

9. When you have completed the entry field on the panel, click Next. The wizard
displays a summary that shows you the commands that will be run, and all
additional actions that will be taken.

10. Check the information in the summary; if it is correct, click Next.
If you want to change anything, click Back to return to a previous panel and
change your input.

11. The wizard starts processing your request. If the action succeeds, the wizard
displays messages in the summary panel.
If an action fails, the wizard reports the error in a message dialog. If you
know what is causing the error, and can fix it, correct the error and click Yes.
The wizard reissues the command.
If you do not know what is causing the error, or you cannot fix it, click No.
The wizard backs out any actions that have already completed and returns
your system to its initial state.

12. Click Finish to end the wizard, or click Next to return to the first page and
select another task to complete.

Verifying components
Use the mgsilist command to display the components that you have created on
your computer.

If you run the mgsilist command with no parameters, a list of components that
you have created for the current installation is displayed, with their corresponding
queue manager:

BIP8099I: Broker: brokername - queuemanagername

BIP8099I: ConfigMgr: configmgrname - queuemanagername
BIP8099I: UserNameServer: UserNameServer - queuemanagername

BIP8071I: Successful command completion
You can also use this command to display a list of components that you have

created for all concurrent installations on this computer. For example, you might
have installed both Version 6.0 and Version 6.1 for assessment and migration.

Configuring WebSphere Message Broker 233

mgsilist -a
On z/0S, only brokers can be displayed.

Connecting components
Create connections between the Configuration Manager, the brokers, and the User
Name Server, if you have created a User Name Server as a component of your
broker domain.

Before you start:

Complete the following tasks:

+ |“Creating a Configuration Manager” on page 204|

* [“Creating a broker” on page 190|

* (Optional) [“Creating a User Name Server” on page 215|

The following steps describe how to make connections between the Configuration
Manager, the brokers, and the User Name Server, if you have created a User Name
Server as a component of your broker domain.

If the components in your broker domain are supported by different queue
managers, you must establish WebSphere MQ connections between those queue
managers to enable messages to be exchanged. Every broker must be able to
exchange messages with the User Name Server that provides user name services
for the broker.

If your broker domain components all run on the same system, and use a single
queue manager, you do not need to create any WebSphere MQ connections
between those components. If you have more than one broker, each broker must
have its own queue manager; brokers cannot share a queue manager.

To achieve the required connection, complete the following steps. All the steps are
illustrated with MQSC examples. You can use any appropriate method for defining
these resources. These examples assume that the queue managers are called COMP1
and COMP2.

In the following steps, the value of 104857600 for maxmsg1 is an example. Check the
appropriate WebSphere MQ documentation to confirm the value for maxmsgl that
you can use on your platforms.

You must set the maxmsg1 attribute only on the transmission queue that sends
messages from the queue manager associated with the Configuration Manager to
the queue manager associated with the broker.

1. Define a transmission queue on the queue manager for each component. These
transmission queues collect messages ready for transmission between
components. The transmission queue must have the same name as the queue
manager to which it transmits messages (that is COMP1 and COMP2 for this
example). Set the maxmsg1 attribute to its maximum value.

For example, on queue manager COMP1:
define glocal('COMP2') usage(XMITQ) maxmsgl (104857600) replace
On queue manager COMP2:

define glocal('COMP1') usage(XMITQ) replace

234 Configuration, Administration, and Security

2. Define the channels for the connection. Use sender-receiver pairs of channels
for all two-way communications between queue managers that host WebSphere
Message Broker components.

a. Define the sender channel on the queue manager of the first component
(Sender(3)). This sender channel transports messages sent by the first
component to the second component.

Allocate connection names according to your WebSphere MQ network
conventions, and specify the protocol that you are using for this connection
and the port on which the listener is listening.

For example, on queue manager COMP1:

define channel('COMP1_TO _COMP2') chltype(sdr) trptype(tcp)
conname ('WBRKSYS1(1415)"') xmitq('COMP2"')
maxmsgl (104857600) replace

where the command parameters have the following meanings:
* channel and chltype define the name and type of the channel
* trtype defines the transmission protocol

+ conname defines the host name of the target computer and the port
number that the computer is listening on

* xmitq names the transmission queue for the channel

* maxmsgl defines the maximum supported message length

* replace specifies that any existing definition of the named channel is
replaced

For more information about WebSphere MQ commands and parameters, see
the Script (MQSC) Command Reference section of the [WebSphere MQ Version|
7 Information Center online| or [WebSphere MQ Version 6 Information|

Center onlinel

b. Define a receiver channel on the queue manager of the first component
(Receiver(2)). Messages sent by the second component to the first
component are received by this channel.

This receiver channel must have the same name as the sender channel on
COMP2, defined in Step 2c. For example, on queue manager COMP1:
define channel('COMP2_TO COMP1') chltype(rcvr) trptype(tcp)
maxmsgl (104857600) replace

c. Define the sender channel on the second queue manager of the component
(Sender(1)). This sender channel transports messages sent by the second
component to the first component.

Allocate connection names according to your WebSphere MQ network
conventions, and you must specify the protocol you are using for this
connection.

For example, on queue manager COMP2:

define channel('COMP2_TO _COMP1') chltype(sdr) trptype(tcp)
conname ('WBRKSYS1(1414) ') xmitq('COMP1')
maxmsgl (104857600) replace

d. Define a receiver channel on the second queue manager of the component
(Receiver(4)). Messages sent by the first component to the second
component are received by this receiver channel.

This receiver channel must have the same name as the sender channel on
COMP2, defined in Step 2a. For example, on queue manager COMP2:

define channel('COMP1_TO COMP2') chltype(rcvr) trptype(tcp)
maxmsgl (104857600) replace

Configuring WebSphere Message Broker 235

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

3. Create and start a listener for each protocol in use. Create the listener in
WebSphere MQ Explorer, or use the DEFINE LISTENER MQSC command. For
more information see [‘Starting the WebSphere MQ channels and listeners” on|
-ae 227

4. Start the sender channels (1) and (3) on the respective queue managers. You can
set up channel initiators for these channels. Setting up receiver channels
reduces processor load by allowing the channels to stop when there is no
message traffic, but ensures automatic startup when there are messages to
transport.

You can set up a single receiver channel on the queue manager that hosts the
Configuration Manager to support all sender channels created for the brokers.
Setting up a single receiver channel requires a single definition on the
Configuration Manager and a single sender definition on each broker, the sender
definitions on each broker must have the same name on each broker. You can also
use this receiver channel on the Configuration Manager to support
communications from the User Name Server, if you have created a User Name
Server as a component of your broker domain.

All WebSphere MQ connections between WebSphere Message Broker components,
and between clients and WebSphere Message Broker components, can be set up
using one of the communications protocols supported by WebSphere MQ (TCP/IP
and SNA on all operating systems; also, NetBIOS and SPX on Windows).

Tuning the broker

You can complete several tasks that enable you to tune different aspects of the
broker performance.

Before you start:

Ensure that the following requirements are met:

* Your user ID has the correct authorizations to perform the task. Refer to
[‘Security requirements for administrative tasks” on page 755

Select the tasks that are relevant to your enterprise:
* |“Setting the JVM heap size”|
+ |“Increasing the stack size on Windows, Linux, and UNIX systems” on page 237|

* |“Increasing the stack size on z/OS” on page 237

+ [“Publish/subscribe performance tuning” on page 238

+ [“Setting configuration timeout values” on page 240

Setting the JVM heap size
When you start an execution group, it creates a Java virtual machine (JVM) for
executing a Java user-defined node.

You can pass parameters to the JVM to set the minimum and maximum heap sizes;
the default maximum heap size is 256 MB. To give more capacity to a message
flow that is going to process large messages, reduce the minimum JVM heap size
to allow the main memory heap to occupy more address space.

Increase the maximum heap size only if you use Java intensively with, for
example, user-defined nodes.

236 Configuration, Administration, and Security

Use caution when you set the maximum heap size, because the Java Runtime
Environment takes the values for its initial, maximum, and current heap sizes to
calculate how frequently it drives garbage collection. A large maximum heap size
drives garbage collection less frequently. If garbage collection is driven less
frequently, the heap size associated with the execution group continues to grow.

Use the information on JVM parameter values on the mgsichangeproperties
command to set the heap size that you require.

Increasing the stack size on Windows, Linux, and UNIX systems
Increase the stack size on Windows, Linux, and UNIX systems by setting the
MQSI_THREAD_STACK_SIZE environment variable to an appropriate value.

When you restart brokers that are running on the system, they use the new value.

The value, in bytes, of MQSI_THREAD_STACK_SIZE that you set is used for
every thread that is created in a DataFlowEngine process. If the execution group
has many message flows assigned to it, and you set a large value for
MQSI_THREAD_STACK_SIZE, the DataFlowEngine process needs a large
amount of storage for the stacks.

Set this environment variable to at least 48 KB. The default values are:

Linux and UNIX

1 MB
z/OS 50 KB
Windows

Determined by the operating system.
Increasing the stack size on z/OS

Change the stack size on z/OS by altering or adding the Language Environment
(LE) _CEE_RUNOPTS environment variable in the component profile.

Broker components on z/OS are compiled using the XPLINKage (extra
performance linkage), which adds optimization to the runtime code. However, if
the initial stack size is not large enough, stack extents are used. 128 KB is used in
each extent. Ensure that you choose a large enough downward stack size because
the performance of XPLINK can be adversely affected when stack extents are used.

To determine suitable stack sizes, you can use theLanguage Environment® Report
Storage tool.

To use this tool, use the RPTSTG option with the _CEE_RUNOPTS environment
variable to test a message flow. Set this option in the component profile
(BIPBPROF for a broker) during the development and test of message flows that
are intended for production; for example:

export _CEE_RUNOPTS=XPLINK\(ON\),RPTSTG(ON)

You can then override the default values for the stack sizes on z/OS by altering or
adding the _CEE_RUNOPTS environment variable in the component profile.

To update the component profile, take the following steps:
1. Stop the component.
2. Make the necessary changes to the profile.

Configuring WebSphere Message Broker 237

3. Submit BIPGEN to re-create the ENVFILE.
4. Restart the component.

For example, you can change the default values of 50 K and 512 K in the following
line:
export _CEE_RUNOPTS=XPLINK(ON),THREADSTACK(ON,50K, 15K, ANYWHERE ,KEEP,512K, 128K)

When you use the RPTSTG option, it increases the time that an application takes
to run, so use it as an aid to the development of message flows only, and not in
your final production environment. When you have determined the correct stack
sizes needed, remove this option from the _CEE_RUNOPTS environment variable.

XPLINK stacks grow downward in virtual storage while the standard linkage
grows upward. To avoid affecting performance by switching between downward
stack space and upward stack space during run time, compile user-defined
extensions using the XPLINK option where possible. If your message flow uses
user-defined extensions that have been compiled with the standard linkage
convention, set a suitable value for the upward stack size.

Publish/subscribe performance tuning
Tune your brokers, and the databases that they use, to handle a large number of
subscriptions.

WebSphere Message Broker supports up to 25 000 subscriptions on a broker. The
following sections describe some of the actions that you can take to tune your
brokers and databases to handle these subscriptions efficiently.

Brokers

Change the broker property jymMaxHeapSize. The default value for this property
is 256 MB.

The value of this property must be large enough for all of the topics in the
subscriptions. For example, if you have 10 000 subscriptions, each for a topic that
uses 20 KB of storage, set the value of the jymMaxHeapSize property to at least
200 MB.

Use the ['JVM parameter values” on page 511|information within the
mgsichangeproperties command to increase the value of the jymMaxHeapSize
property to 512 MB. You must specify the value in bytes, as shown in this example:

mqgsichangeproperties brokername -o ComIbmJVMManager -n jvmMaxHeapSize -v 536870912
where brokername is the name of your broker.

The Configuration Manager uses the list of subscriptions, which might be stored
on your local hard disk:

« WM On Windows systems, the directory is created at ALLUSERSPROFILE%\
Application Data\IBM\MQSI where %ALLUSERSPROFILE% is the environment
variable that defines the system working directory. The default directory
depends on the operating system:

— On Windows XP and Windows Server 2003: C:\Documents and Settings\Al1
Users\Application Data\IBM\MQSI

— On Windows Vista and Windows Server 2008: C:\ProgramData\IBM\MQSI

The actual value might be different on your computer.

238 Configuration, Administration, and Security

. BIIIN On Linux and UNIX systems, the directory is created at
/var/mgsi.

The directory must be at least twice the size of the topic space; that is, for 10 000
subscriptions that each use 20 KB, the size of the directory must be at least 512
MB.

Databases

The broker stores its subscription information in its database. You might need to
tune your database to handle the maximum 25 000 subscriptions.

Jl Windows |l UNIX | Two limits are significant when using DB2. Both

limits affect the ability to successfully restart the broker.

— The first limit occurs when there are approximately 1000 subscriptions. The
DB2 parameter APP_CTL_HEAP_SZ must be set to a high value to enable
the broker to query its database at startup; a value of 8192 is typically large
enough for 1000 subscriptions. You can change the value by starting a db2
command prompt, and issuing the command db2 update db cfg using
APP_CTL_HEAP_SZ 8192. You might then need to end any connections to the
database.

— The second limit occurs at approximately 8000 subscriptions. When the broker
attempts to start, the following error might be reported in the system log:

Database error: SQL State '54028';

Native Error Code '-429';

Error Text '[IBM][CLI Driver][DB2/LINUX] SQLO429N The maximum number of concurrent
LOB locators has been exceeded. SQLSTATE=54028 '.

This error is caused by a limit to the number of LOB handles in DB2. To
overcome this problem, you require a patch in DB2; you need to edit file
db2cli.ini.

BIIEN On Linux and UNIX systems, this file is located in
{DB2InstanceHome}/sql11ib/cfg/db2cTi.ini..

P On Windows 32-bit editions, this file is located in C:\Program
Files\IBM\SQLLIB\db2cli.ini..

WM On Windows 64-bit editions, this file is located in C:\Program
Files(x86)\IBM\SQLLIB\db2cli.ini.
Add the following lines to the file:

[{Database name}]
PATCH2=50
LobCacheSize=1048576

The PATCH line instructs DB2 to free up LOB locators after it has used them,
and the LobCacheSize parameter adjusts the total memory that is available to
LOB locators; in this case 1 GB. You might then need to restart the DB2
instance.

. On z/0S, if you are using DB2 Version 8, a database limit occurs at
approximately 15 000 subscriptions. To overcome this, modify the value of
NUMLKUS. A value of 20000 can support 25 000 subscriptions.

Collectives

When a subscription is made to a broker that is a member of a collective, or that is
directly linked to another broker, all brokers that are connected to the broker create

Configuring WebSphere Message Broker 239

a proxy subscription. The total number of proxy subscriptions and direct
subscriptions must be less than 25 000 for each of your brokers. This limit has
implications on how you plan your broker topology.

For example, consider a collective of N brokers.

To maximize connectivity, you connect an instance of a client to each broker with
each of those instances subscribing to the same unique topic. Therefore, for N
brokers, each unique topic has N clients.

In this situation, each broker has a subscription to each client that is connected to
it, and also a proxy subscription to each of the other brokers in the collective.

Therefore, each broker has N subscriptions for every unique topic (one for the
client that is directly connected, and N-1 for the proxy subscriptions to all of the
other brokers). If there are T unique topics, ensure that N*T <= 25 000. That is, if
you have 1000 unique topics, restrict the size of your collective to a maximum of
25 brokers.

Setting configuration timeout values
Change timeout values that affect configuration tasks in the broker.

Before you start:

Read [Deployment overview| to understand the conditions under which these
timeout values apply.

The broker processes configuration requests from the Configuration Manager:

* User requests. When you issue a command against the broker, for example
mgsideploy.
* Internal requests.

Several factors affect the time that a broker takes to apply and respond to these
requests. These factors include the load on the computer on which the broker is
running, network delays between components, and the work that execution groups
are performing at the time the request is received. The number of message flows in
an execution group, and their complexity, and large message sets, might also affect
the time taken.

You can change the length of time that a broker can take to perform these actions
by using two parameters that you can set on the mgqsicreatebroker and
mgsichangebroker commands. The combined default value for these parameters is
approximately 6 minutes (360 seconds).

During development and test of message flows and broker configurations,
experiment with the values that you set for these timeout parameters to determine
appropriate values for your resources.

* -g ConfigurationChangeTimeout

This value defines the maximum time (in seconds) that is allowed for a user
configuration request to be processed, and defaults to 5 minutes (300 seconds).
The value is affected by the system load (including processor use), and by the
load of each execution group. If the request is not completed in this time, the
broker generates warning message BIP2066, but continues to implement the
change. The broker records further diagnosis information in the system and
event logs.

240 Configuration, Administration, and Security

e -k InternalConfigqurationTimeout

This value defines the maximum time (in seconds) that is allowed for an internal
configuration change to be processed and defaults to 1 minute (60 seconds). For
example, it defines the length of time that the broker can take to start an
execution group before a response is required.

The broker starts an internal process to start an execution group and to make all
the message flows active. Part of this initialization is performed serially (one
execution group at a time), therefore if the change affects more than one
execution group, the time required increases. If an execution group exceeds this
timeout value, the broker generates a warning message BIP2080. However, the
initialization continues and the execution group is started. The broker records
further diagnosis information in the system and event logs.

The sum of the values of ConfigurationChangeTimeout and the
InternalConfigurationTimeout parameters represents the maximum length of time
that a broker can take to process a deployed configuration message before it
generates a negative response. Check that typical configurations complete
successfully within the time that you have specified, to minimize warning
messages.

Look for warning messages in the Broker Administration perspective in the Alerts
view. When all messages disappear, the deployment has completed. If you start a
deployment and record how long it takes for all messages to disappear from the
Alerts view, you can use this time interval as the basis for setting these timeout
values.

If the broker is on a production system, increase the values for both
ConfigurationChangeTimeout and InternalConfigurationTimeout parameters to allow for
application messages that are currently being processed by message flows to be
completed before the configuration change is applied. Also consider increasing the
value if you have merged message flows into fewer execution groups that you are
using for testing.

If the broker is on a development or test system, you might want to reduce
timeout lengths (in particular, the value of the ConfigurationChangeTimeout
parameter) to improve perceived response times, and to force a response from a
broker that is not showing expected behavior. However, reducing the timeout
values decreases the probability of deploying a configuration change successfully.

Modifying the broker's publish/subscribe engine

Check or change the state of the broker's publish/subscribe engine.

Before you start:

e Start the broker by using the mgqsistart command.

You can control the state of the broker's publish/subscribe engine by modifying
the predefined configurable service.

+ [“Checking the status of the broker's publish/subscribe engine”

+ |“Disabling the broker's publish/subscribe engine” on page 242|

* [“Enabling the broker's publish/subscribe engine” on page 243|

Checking the status of the broker's publish/subscribe engine
View the status of the broker's publish/subscribe engine to check if the broker or
its queue manager is handling publish/subscribe application messages.

Configuring WebSphere Message Broker 241

Before you start:
* Start the broker by using the mgsistart command.

To check the status of the configurable service for the broker's publish/subscribe

engine:

1. Run the mgsireportproperties command to view the status of the
PublishSubscribe configurable service:

mgsireportproperties WBRK61 DEFAULT_BROKER -c PublishSubscribe -o AT1ReportableEntityNames -r
The response to this command includes the status of the psmode parameter:

» If psmode is set to enabled (the default value), the broker's
publish/subscribe engine is active and is handling all publish/subscribe
application messages; publications, subscriptions, registrations, and retained
subscriptions.

* If psmode is set to disabled, the broker's publish/subscribe engine is
inactive; all publish/subscribe application messages are being handled by the
broker's queue manager.

You can disable the broker's publish/subscribe engine only if you have
installed WebSphere MQ Version 7.0 on this computer.

The setting for the broker's publish/subscribe engine always takes precedence,

and the broker ensures that the state of the queue manager's publish/subscribe

engine is compatible:

* If you start a broker for which psmode is set to enabled, it sets the status of
the queue manager's publish/subscribe engine to DISABLED.

* If you start a broker for which psmode is set to disabled, it sets the status of
the queue manager's publish/subscribe engine to ENABLED.

2. If the reported status is not correct for your broker domain, and you want to

change the status of the broker's publish/subscribe engine, see |“Disab1ing thEl
broker's publish/subscribe engine”| or [“Enabling the broker's publish /subscribe|
engine” on page 243

If you change the status, you must restart the broker for that change to take
effect.

Disabling the broker's publish/subscribe engine
Configure your broker to give control of publish/subscribe applications to the
broker's queue manager.

Before you start:

¢ Check that you have installed WebSphere MQ Version 7.0 on this computer. You
can disable the broker's publish/subscribe engine only if you have created or
migrated the queue manager to Version 7.0.

* Check that the Command Server on this queue manager is started (this
component must be active if the queue manager's publish/subscribe engine is to
be used)

* Check that the broker service ID has permission to process PCF commands. If
the broker service ID is not a member of the mqm group, use the setmqaut
command to set permission for PCF command processing;:
setmgaut -m <QMgrName> -n SYSTEM.ADMIN.COMMAND.QUEUE -t queue -g mgbrkrs
+browse +get +ing +put +set +setall +passall +passid +chg +dsp

setmgaut -m <QMgrName> -n SYSTEM.DEFAULT.MODEL.QUEUE -t queue -g mgbrkrs
+browse +get +ing +put +set +setall +passall +passid +chg +dsp

e Start the broker by using the mgqsistart command.

242 Configuration, Administration, and Security

To disable the broker's publish/subscribe engine:
1. Run the mgsichangeproperties command to change the status of the
PublishSubscribe configurable service:
mgsichangeproperties WBRK61 DEFAULT_BROKER -c PublishSubscribe -o Interface -n psmode -v disabled
2. Stop the broker by using the mgsistop command.
3. Start the broker by using the mgsistart command. The broker checks the status
of its publish/subscribe engine. Now that it is disabled, it updates the status of

the queue manager and hands over control of all publish/subscribe clients and
applications.

4. If appropriate, you must ensure that all your publish/subscribe clients
reregister their subscriptions with the WebSphere MQ Version 7.0 queue
manager publish/subscribe engine.

When this task has completed successfully, all publish/subscribe application
messages and operations are managed by the queue manager.

Enabling the broker's publish/subscribe engine
Configure your broker to gain control of publish/subscribe applications from the
WebSphere MQ Version 7.0 queue manager.

Before you start:

¢ Check that you have installed WebSphere MQ Version 7.0 on this computer. If
not, the broker's publish/subscribe engine is permanently enabled and you
cannot change its state.

* Check that the broker service ID has permission to process PCF commands. If
the broker service ID is not a member of the mqm group, use the setmqaut
command to set permission for PCF command processing:

setmgaut -m <QMgrName> -n SYSTEM.ADMIN.COMMAND.QUEUE -t queue -g mgbrkrs
+browse +get +ing +put +set +setall +passall +passid +chg +dsp
setmgaut -m <QMgrName> -n SYSTEM.DEFAULT.MODEL.QUEUE -t queue -g mgbrkrs
+browse +get +ing +put +set +setall +passall +passid +chg +dsp

* Start the broker by using the mgsistart command.

To enable the broker's publish/subscribe engine:

1. Run the mgsichangeproperties command to change the status of the
PublishSubscribe configurable service:

mgsichangeproperties WBRK61 DEFAULT_BROKER -c PubTishSubscribe -o Interface -n psmode -v enabled
2. Stop the broker by using the mgsistop command.

3. Start the broker by using the mgsistart command. The broker checks the status
of its publish/subscribe engine. Now that it is enabled, it updates the status of
the queue manager and takes control of all publish/subscribe application
messages and operations.

When this task has completed successfully, all publish/subscribe application
messages and operations are managed by the broker.

Preparing the environment for WebSphere Adapters nodes

Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).

Before you start:

Configuring WebSphere Message Broker 243

Read [WebSphere Adapters nodes}

To enable the WebSphere Adapters nodes in the broker runtime environment,
configure the broker with the location of the EIS provider JAR files and native
libraries. (On Windows, the location of the JAR files cannot be a mapped network
drive on a remote Windows computer; the directory must be local or on a Storage
Area Network (SAN) disk.)

1. The WebSphere Adapters nodes require libraries from the EIS vendors. For
more information on how to obtain and use these libraries, see
[message flow applications that use WebSphere Adapters|

2. Use the following commands to make the JAR files and shared libraries
available to the WebSphere Adapters nodes.

* To set up the dependencies, use the following command.

mgsichangeproperties broker name -c EISProviders -o EIS type -n jarsURL -v jar directory
mgsichangeproperties broker name -c EISProviders -o EIS type -n nativelibs -v bin directory

For example:

mgsichangeproperties brké -c EISProviders -o SAP -n jarsURL -v c:\sapjco\jars
mgsichangeproperties brk6 -c EISProviders -o SAP -n nativelLibs -v c:\sapjco\bin

After you have run the mgsichangeproperties command, restart the broker so
that the changes take effect.

* To report the dependencies, use the following command.
mgsireportproperties broker name -c EISProviders -o EIS type -r

For example:
mgsireportproperties brk6 -c EISProviders -o SAP -r
* On z/0S, run this command by customizing and submitting BIPJADPR.

When you have set up the environment for the WebSphere Adapters nodes, you
can perform the preparatory tasks that are listed in [Developing message flow]|
[applications that use WebSphere Adapters|

Preparing the environment for IMS nodes

Before you can use the IMS nodes, you must set up the broker runtime
environment so that you can access the IMS system.

Before you start:

Read [[BM Information Management System (IMS")|

Complete the following steps to ensure that WebSphere Message Broker can
connect to the IMS system.

1. Ensure that IMS Connect is installed and started on the IMS system.

2. Set the connection details for each IMS system to which you want to connect.
You can set these details in two ways:

* Configure the properties on the IMSRequest, as described in [[MSRequestj

* Define a configurable service for each IMS system to which you want to
connect.

For example, to create an IMSConnect configurable service for the IMS
instance IMSA that is running on test.ims.ibm.com, port 9999, run the
mgsicreateconfigurableservice command as shown:

244 Configuration, Administration, and Security

mgsicreateconfigurableservice WBRK61 DEFAULT BROKER -c IMSConnect -o myIMSConnectService
-n Hostname,PortNumber,DataStoreName -v test.ims.ibm.com,9999,IMSA

For details about how to create, change, and report configurable services, see
[‘Changing connection details for IMS nodes” on page 491) You can also
configure connection properties on the IMS node.

3. Set security details. You can set the security details in two ways:
* Configure the properties on the IMSRequest.
* Use the mgsisetdbparms command to set security details in the broker store.

For example, to associate a user ID and password pair with an IMS Connect
connection, run the mgsisetdbparms command as shown:

mqsisetdbparms WBRK61 DEFAULT_BROKER -n ims::mySecurityldentity -u myuserid -p mypassword

Modifying a broker

Modify a broker by using the command line on the system where the broker
component is installed.

Before you start:

You must have completed the following tasks:

* Ensure that your user ID has the correct authorizations to perform the task; see
[“Security requirements for administrative tasks” on page 755

e [Create a broker

¢ On Windows, Linux, and UNIX systems, you must set up your command-line
environment before performing this task by running the product profile or
console; see [Setting up a command environmen

NN On Windows, you can also use the Command Assistant to complete this
task.

The parameters you can change on the broker affect the physical broker that was
created by using the command line.

You can also modify the broker in the workbench, where you can change broker
properties, such as configuration timeouts.

Choose the appropriate task for your platform from the following links:

+ ["“Modifying a broker on Windows, Linux, and UNIX systems”]
+ ["“Modifying a broker on z/0S” on page 247|

Modifying a broker on Windows, Linux, and UNIX systems
Use the mgsichangebroker command on Windows, Linux, and UNIX to modify
your broker.

Before you start:

You must have completed the following task for the appropriate platform:

* |“Creating a broker on Linux and UNIX systems” on page 192|

+ [“Creating a broker on Windows” on page 193|

BTN On Windows, you can also use the Command Assistant to complete this
task.

Configuring WebSphere Message Broker 245

To modify a broker on Windows, Linux, and UNIX:
1. Stop the broker by using the mgsistop command.

2. Enter the mgsichangebroker command, specifying the broker name and one or
more parameters that you want to change.

mgsichangebroker brokername

<<-i ServiceUserID> -a ServicePassword>

<-p DatabaseSourcePassword> <-s UserNameServerQueueManagerName>
<-j | -d> <-t | -n> <-1 UserLilPath> <-g ConfigurationTimeout>
<-k ConfigurationDelayTimeout> <-v StatisticsMajorInterval>

<-P httpListenerPort> <-y TdapPrincipal> <-z ldapCredentials>
<-c ICUconverterpath> <-x userExitPath> <-e activeUserExits>
<-0 operationMode> <-r UserLilPath64> <-b UserExitPath64>

<-f functionlevel>

where:

brokername
Is the broker name.

-i Is the service user ID that is used to run the broker.

-a Is the password for the service user ID.

P Is the password for the broker database user ID.

-s Is the WebSphere MQ queue manger for the User Name Server

- Indicates that publish/subscribe access control is to be enabled for this
broker.

-d Indicates that publish/subscribe access control is not enabled for this
broker.

-t Indicates that the broker runs as a WebSphere MQ trusted application.

-n Indicates that the broker must cease to run as a WebSphere MQ trusted
application.

-1 Indicates from where LIL (loadable implementation libraries) files are
loaded.

-g Is the maximum time (in seconds) to allow a broker to process a
deployed message.

-k Is the maximum time (in seconds) to allow a broker to process a
minimum size deployed message.

-V Is the time (in minutes) for the duration of the interval for collecting

statistics archive records.
-P Is the port that the broker HTTP listener will use.

The broker starts this listener when a message flow that includes HTTP
nodes or Web Services support is started

-y Is the user principal for access to an LDAP directory.

-z Is the user password for access to LDAP.

-c Is a delimited set of directories to search for additional code page
converters.

-X Is the path that contains the location of all user exits to be loaded for
32-bit execution groups in this broker.

-e Is the list of active user exits.

-0 Is the operation mode that the broker will use.

246 Configuration, Administration, and Security

-r Indicates from where 64-bit LIL (loadable implementation libraries) files
are loaded (not applicable on Linux on x86 or Windows).

-b Is the path that contains the location of all user exits to be loaded for
64-bit execution groups in this broker (not applicable on Linux on x86
or Windows).

-f Indicates the maximum function level of your broker that you want to
enable.

For example:

* To change the user ID that is used to run the broker, enter the following
command:
mqsichangebroker WBRK_BROKER -i wbrkuid -a wbrkpw

* To change the configuration timeout, enter the following command:
mgsichangebroker WBRK BROKER -g 500

For further information about these parameters, and more examples, see

“mgsichangebroker command - Windows, Linux, and UNIX systems” on page|
430.

3. Restart the broker by using the mgsistart command. The broker restarts with
the new properties.

You cannot change all the parameters with which you created a broker. If you
cannot change a property by using the mqsichangebroker command, delete the
broker and create another broker with the new properties.

Modifying a broker on z/0OS

Use the mgsichangebroker command on z/OS to modify your broker.
Before you start:

You must have completed the following task:

* [“Creating a broker on z/0S” on page 195|

To modify a broker:

1. Ensure that the broker is running.

2. Stop the broker components by issuing the following command:
/F BROKERNAME, PC

3. When the broker has stopped, use the MVS MODIFY command with the
changebroker parameters that you want to change. For example:

/F <BROKERNAME>,cb g=100,k=200

4. Restart the broker components by issuing the following command:
/F BROKERNAME, SC
The broker now uses the changed parameters.

You cannot change all the parameters with which you created a broker. If you
cannot modify a parameter that you want to change by using the changebroker
command, delete the broker and create a new one. By creating another broker you
can redefine all the parameters.

You can change the following parameters:

g ConfigurationChangeTimeout

k InternalConfigurationTimeout

Configuring WebSphere Message Broker 247

s UserNameServerQueueManagerName

1 UserLilPath

v StatisticsMajorInterval

P HTTPListenerPort

j publish/subscribe access control is to be enabled.
d publish/subscribe access control is not enabled.
y LdapPrincipal

z LdapCredentials

c ICUConverterPath

X UserExitPath

e ActiveUserExits

f functionlevel

For further information about these parameters, see [‘mgsichangebroker command -
[z/0S” on page 435

Viewing broker properties
You can view broker properties by using the mgsireportbroker command.

Before you start:

You must have completed the following tasks:

* Ensure that your user ID has the correct authorizations to perform the task; see
[‘Security requirements for administrative tasks” on page 755

e |Create a broker

* On Windows, Linux, and UNIX systems, you must set up your command-line
environment before performing this task by running the product profile or
console; see [Setting up a command environment}

Use the mgsireportbroker command or domain to view all the properties
associated with a broker. The command shows both parameters entered on the
command line and viewable in the workbench.
1. Run the mgsireportbroker command. For example, to view the properties of the
broker SOAPBR, run the following command:
mqsireportbroker SOAPBR
2. View responses of the mgsireportbroker command to check on current settings.
Examples are given in [‘mgsireportbroker command” on page 647,

3. If you want to make any changes, run the mgsichangebroker command,
specifying the required parameters.

Changing the operation mode of your broker

Change the operation mode in which your broker is working by using the
mgsimode command.

You must change your broker configuration to ensure that your brokers are

running in the operation mode for which you have purchased a license. You can
change the mode to starter, adapter, or enterprise.

248 Configuration, Administration, and Security

When you view the broker domain in the workbench, the current mode of each
broker is displayed. If the resources deployed to a broker exceed the permitted
amounts, the display indicates these violations. You cannot change the broker
mode in the workbench; you must use the mqsimode command to make changes.

1. Open a command prompt.

. On Linux, run the mgsiprofile command to initialize the command
environment.

« I On Windows, click Start » Programs » IBM WebSphere Message
Brokers 6.1 > Command Console to open a command console.
2. Run the mgsimode command with the -o parameter to change the value of the
run time, and the -b parameter to restrict the command to a single broker; see
[“mgsimode command” on page 631

3. Check for error messages. If you attempt to re-configure the broker to a mode
which is not sufficient for the deployed resources, the mgsimode command
issues a warning indicating that changing the mode is not allowed. Resolve any
violations, if required; see [Resolving problems that occur during deployment of|

message flows

4. (Optional) Run the mgsimode command again to confirm that there are no
violations.

See further examples of changing the mode of your broker:

+ [“Example: Changing the operation mode of your broker” on page 636|
p

* |“Example: Changing the Trial Edition to the full edition” on page 635|

Moving from Trial Edition
You want to convert from Trial Edition mode to an alternative edition.

Before you start: Contact your IBM representative to upgrade your license.

To ensure that all brokers are no longer created in trial mode, you must install the
full package. If you leave your installation in the Trial Edition, all brokers that you
create are created in trial mode by default.

1. Stop all components by using the mgsistop command, and close all Message
Broker Toolkit sessions.
2. Uninstall the trial package; you do not need to uninstall the Message Broker

Toolkit. The resources that you have defined are retained when you uninstall
and reinstall the product. Your Message Broker Toolkit data is not affected by

changing the runtime components. For more information about this task, see
ninstalling]

3. Install only the broker component of the full package; for details of installation
tasks, see [Installation Guide}

4. Open a command prompt:

. On Linux and UNIX, run the mgsiprofile command to initialize the
command environment.

« WM On Windows, click Start » Programs » IBM WebSphere Message
Brokers 6.1 > Command Console to open a command console.
5. Ensure that your brokers and Configuration Manager are started; see |”Startina
and stopping a broker” on page 339| and [‘Starting and stopping a|
Configuration Manager” on page 341

Configuring WebSphere Message Broker 249

6. Use the mgsimode command without the -b parameter to change the mode of
all your brokers with a single command. Specify the mode that you require for
your brokers by setting the -o parameter (Mode_Type) to enterprise, starter, or
adapter.

mgsimode —i localhost —p 2414 —q WBRK_QM —o Mode_Type

For example, to change all your brokers to run in enterprise mode, run the
following command:

mgsimode —i localhost —p 2414 —q WBRK_QM —o enterprise

where WBRK_QM is the queue manager associated with your Configuration
Manager.

All brokers that you create in the future are created in enterprise mode, unless you
specify otherwise.

Next: Ensure that you upgrade other required products (for example,
WebSphere MQ and DB2) if you have trial versions of those products.

You must change your broker configuration to ensure that your brokers are
running in the operation mode for which you have purchased a license; see
[‘Changing the operation mode of your broker” on page 248

Checking the operation mode of your broker

Use the mgsimode command to find out the operation mode of your broker.

Run the mgsimode command to report the mode that is being used by your
broker. Use the -b parameter to specify the name of your broker.

Running this command also reports all mode violations.

For example:
mgsimode —i localhost —p 1414 —q WBRK_QM —b Broker_Name

where -i (IP address), -p (port), and -q (queue manager) parameters represent the
connection details for the queue manager associated with your Configuration
Manager.

If your broker is running in starter mode, and the name of your broker is
Broker_Name, this command displays the following messages:

BIP1044: Connecting to the Configuration Manager's queue manager...
BIP1045: Connecting to the Configuration Manager...

BIP1807: Discovering mode information from broker 'Broker Name'...
BIP1802: Broker 'Broker_Name' is in starter mode.

BIP8071: Successful command completion.

Modifying a Configuration Manager

Modify a Configuration Manager by using the command line on the system where
the Configuration Manager component is installed.

Before you start:

You must complete the following tasks:

* Ensure that your user ID has the correct authorizations to perform the task. See
[‘Security requirements for administrative tasks” on page 755|

250 Configuration, Administration, and Security

+ [“Creating a Configuration Manager” on page 204|

* On Windows, Linux, and UNIX systems, you must set up your command-line
environment before performing this task, by running the product profile or
console; see [Setting up a command environment|

Modify a Configuration Manager using the command line on the system where the
Configuration Manager component is installed. On Windows, you can also use the
Command Assistant to complete this task.

Parameters that are required in order to start, stop and migrate the Configuration
Manager (such as the service user ID and password, and the connection
parameters to a configuration database for migration) can be modified only by
using the command line on the system where the Configuration Manager
component is installed.

Parameters that control a running Configuration Manager or domain (such as the
set of broker references stored in the Configuration Manager) can be modified
using the Message Broker Toolkit or a Configuration Manager Proxy application,
which might or might not be on the same workstation as the Configuration
Manager component.

Follow the link for the appropriate platform.

+ ["Modifying a Configuration Manager on Linux and UNIX systems”]

+ ["“Modifying a Configuration Manager on Windows” on page 252

* ["“Modifying a Configuration Manager on z/0OS” on page 252|

If you need to transfer the Configuration Manager onto another queue manager,
follow the steps described in [“Moving the Configuration Manager to a new queue]
[manager” on page 253

Modifying a Configuration Manager on Linux and UNIX systems

The following steps show you how to modify a Configuration Manager's service
user ID, service password, database password, User Name Server queue manager,
and the maximum JVM heap size, on Linux and UNIX systems:

1. Stop the Configuration Manager using the mqsistop command.
2. Enter the mqgsichangeconfigmgr with the parameters you want to change:

mgsichangeconfigmgr configmgrName <<-i ServiceUserID> -a ServicePassword>
<-p DatabasePassword> <-s UserNameServerQueueManagerName> <-j MaxJVMHeapSize>

where:

configmgrName
Is the Configuration Manager name.

-i Is the service user ID that is used to run the Configuration Manager.
-a Is the password for the Configuration Manager user 1D.

P If an existing DB2 database from a pervious version of the product has
not yet been migrated, use this option to set the password used to
access the database.

-s Is the WebSphere MQ queue manger for the User Name Server.

-j Is the maximum Java virtual machine heap size, in megabytes
(minimum 64).

Configuring WebSphere Message Broker 251

For example, to modify the Configuration Manager so that it can communicate
with the User Name Server, enter the following command at the command
prompt:

mgsichangeconfigmgr CMGRO1 -s WBRK_UNS QM

3. Restart the Configuration Manager using the mqsistart command. The
Configuration Manager restarts with the new properties.

If you cannot change a property, delete the Configuration Manager then create a
new one with the new property. Creating a new Configuration Manager does not
cause any loss of data as long as the previous Configuration Manager's database
tables were not deleted (for example, by specifying the -n parameter on the
mgqsideleteconfigmgr command).

Modifying a Configuration Manager on Windows

The following steps show you how to modify a Configuration Manager's service
user ID, service password, database password, User Name Server queue managet,
and the maximum JVM heap size, on Windows:

1. Stop the Configuration Manager using the mqsistop command.
2. Enter the mqsichangeconfigmgr with the parameters you want to change:

mgsichangeconfigmgr configmgrName <<-i ServiceUserID> -a ServicePassword>
<-p DatabasePassword> <-s UserNameServerQueueManagerName> <-j MaxJVMHeapSize>

where:

configmgrName
Is the Configuration Manager name. This is optional.

-i Is the service user ID that is used to run the Configuration Manager.

-a Is the password for the Configuration Manager user ID.

P If an existing DB2 database from a pervious version of the product has
not yet been migrated, use this option to set the password used to
access the database.

-s Is the WebSphere MQ queue manger for the User Name Server.

- Is the maximum Java virtual machine heap size, in megabytes

(minimum 64).
For example, to modify the Configuration Manager so that it can communicate
with the User Name Server, enter the following command at the command
prompt:
mgsichangeconfigmgr CMGRO1 -s WBRK_UNS_QM

3. Restart the Configuration Manager using the mgsistart command. The
Configuration Manager restarts with the new properties.

If you cannot change a property, delete the Configuration Manager then create a
new one with the new property. Creating a new Configuration Manager does not
cause any loss of data as long as the previous Configuration Manager's database
tables were not deleted (for example, by specifying the -n parameter on the
mgqsideleteconfigmgr command).

Modifying a Configuration Manager on z/0OS
Before you start:

To complete this task, you must have completed the following task:

252 Configuration, Administration, and Security

+ [“Creating a Configuration Manager on z/0S” on page 209

The following steps show you how to modify a Configuration Manager's database
password, User Name Server queue manager, and the maximum JVM heap size:

1. At the command prompt, issue the stopcomponent command to stop the
Configuration Manager.

2. When it has stopped, use the MODIFY command with the changeconfigmgr
parameters that you want to change. Note that you can abbreviate
changeconfigmgr to cc. For example:

MODIFY <configurationmanagername>,changeconfigmgr s=WBRK_UNS_QM
3. At the command prompt issue the startcomponent command.
The Configuration Manager now uses the changed parameters.

You cannot change all the parameters with which you created a Configuration
Manager. If you cannot modify a parameter that you need to change using the
changeconfigmger command, delete the Configuration Manager and then create a
new one. This will allow you to redefine all the parameters.

The parameters that you can change are:

s= Is the WebSphere MQ queue manger for the User Name Server.
j= Is the maximum Java virtual machine heap size, in megabytes (minimum
64).

See [“mgsichangeconfiemer command” on page 439| for further information on
these parameters.

Moving the Configuration Manager to a new queue manager

The following steps show you how to move the Configuration Manager to a new
queue manager that is on the same computer or on a different computer:

1. Use the mqsicreateconfigmgr command to create a new Configuration
Manager that uses the new queue manager. Do not specify a database name.

2. If possible, stop all brokers in the domain using the mqsistop command.
3. Stop the original Configuration Manager using the mqsistop command.

4. Back up the original Configuration Manager using the mqsibackupconfigmgr
command.

5. On the computer that contains the new Configuration Manager, use the
mgqsirestoreconfigmgr command to overwrite the new Configuration
Manager's repository with the one that you backed up.

6. Start the new Configuration Manager using the mqsistart command.

7. Perform a complete deployment of the topology, using the Message Broker
Toolkit, the mgsideploy command, or the Configuration Manager Proxy.

8. Connect to theConfiguration Manager using the Configuration Manager Proxy
API Exerciser. For each broker in the domain, right-click and select
Resubscribe to Status Topics.

9. If you stopped the brokers in the domain in Step @ start them using the
mgqsistart command as soon as deployment is initiated, so that the
deployments can now be processed.

10. If it was not possible to stop the brokers in Step @ ensure that any messages
on the original Configuration Manager's queue manager's
SYSTEM.BROKER.ADMIN.QUEUE are transferred manually to the new
Configuration Manager's queue manager's SYSTEM.BROKER.ADMIN.QUEUE.

Configuring WebSphere Message Broker 253

This is the queue that brokers use to communicate their status to the
Configuration Manager and if any status change event occurred between

stopping the original Configuration Manager in Step [3 on page 253 and the
complete deployment in Step [7 on page 253} any messages that report a
change in status will have been sent to the old Configuration Manager.

Viewing Configuration Manager properties

You can view Configuration Manager properties by using the mgsireportconfigmgr
command.

Before you start:

You must complete the following tasks:

* Ensure that your user ID has the correct authorizations to perform the task. See
[‘Security requirements for administrative tasks” on page 755|

* |“Creating a Configuration Manager” on page 204|

* On Windows, Linux, and UNIX systems, you must set up your command-line
environment before performing this task, by running the product profile or
console; see [Setting up a command environmen

Use the mgsireportconfigmgr command or domain to view all the properties
associated with a Configuration Manager. The command shows both parameters
entered on the command line and viewable in the workbench.

1. Run the mgsireportconfigmgr command. For example, to view the properties of
the Configuration Manager SOAPCM, run the following command:
mgsireportconfigmgr SOAPCM

2. View responses of the mgsireportconfigmer command to check on current
settings. Examples are given in [‘mgsireportconfigmgr command” on page 651

3. If you want to make any changes, run the mgsichangeconfigmgr command,
specifying the required parameters.

Modifying a User Name Server

Before you start:

You must complete the following tasks:

* Ensure that your user ID has the correct authorizations to perform the task.
Refer to [“Security requirements for administrative tasks” on page 755|

* |“Creating a User Name Server” on page 215|

¢ On Windows, UNIX systems, and Linux, you must set up your command-line
environment before performing this task, by running the product profile or
console; refer to [Setting up a command environment]

Modify a User Name Server using the command line on the system where the
User Name Server component is installed. On Windows, you can also use the
Command Assistant to complete this task.

Follow the link for the appropriate platform.

+ ["Modifying a User Name Server on Linux and UNIX systems” on page 255|

* ["“Modifying a User Name Server on Windows” on page 255|

* ["“Modifying a User Name Server on z/0OS” on page 256|

254 Configuration, Administration, and Security

Modifying a User Name Server on Linux and UNIX systems

To modify a User Name Server on Linux and UNIX systems; AIX, HP-UX, Linux

on System z, Linux on x86 and Solaris:

1. Stop the User Name Server using the mqsistop command.

2. Enter the mqgsichangeusernameserver command with the parameters that you
want to change: mgsichangeusernameserver <<-i ServiceUserID> <-a

ServicePassword> <-d SecurityDomainName> <-r RefreshInterval> <-g
AuthProtocolDataSource> <> | -0> where:

-i Is the service user ID that is used to run the User Name Server

-a Is the password for the User Name Server user ID.

-d Is the security domain that the User Name Server uses on the Windows
platform.

-r Is the number of seconds between each refresh of the User Name

Server internal cache.

- Indicates that groups and group memberships are defined in the data
source for the authentication protocol, rather than being drawn from
the operating system.

-0 Indicates that groups and group memberships are drawn from the
operating system, rather than being defined in the data source for the
authentication protocol.

-g Is the name of the data source required by the authentication protocol.

For example, to change the number of seconds between each refresh of the
User Name Server internal cache, enter the following command at the
command prompt:

mgsichangeusernameserver -r 2000

3. Restart the User Name Server using the mqsistart command. The User Name
Server restarts with the new properties.

If you cannot change a property using mqsichangeusernameserver, delete the User
Name Server and then create a new one with the required properties.

Modifying a User Name Server on Windows

BTN To modify a User Name Server:
1. Stop the User Name Server using the mqsistop command.

2. Enter the mqsichangeusernameserver command with the parameters you want
to change:
mgsichangeusernameserver <<-i ServiceUserID> <-a ServicePassword>

<-d SecurityDomainName> <-r RefreshInterval> <-k AuthProtocoltype>
<-j AuthProtocolModule> <-g AuthProtocolDataSource>

where:

-i Is the service user ID that is used to run the User Name Server

-a Is the password for the User Name Server user ID.

-d Is the security domain that the User Name Server uses.

-r Is the number of seconds between each refresh of the User Name
Server internal cache.

-k Indicates that the authentication protocol is supported by brokers.

Configuring WebSphere Message Broker 255

- Indicates that the authentication services product library is to be used.
-g Indicates the name and location of the password file used to source any
protocol related information.

For example, to change the number of seconds between each refresh of the
User Name Server internal cache, enter the following command at the
command prompt:

mgsichangeusernameserver -r 2000

3. Restart the User Name Server using the mqsistart command. The User Name
Server restarts with the new properties.

If you cannot change a property using mqsichangeusernameserver, delete the User
Name Server and then create a new one with the new properties.

Modifying a User Name Server on 2/0S
Before you start:

To complete this task, you must have completed the following task:

* [“Creating a User Name Server on z/0OS” on page 219

To modify a User Name Server.

1. At the command prompt issue the stopcomponent command to stop the User
Name Server.

2. When it has stopped, use the MODIFY command with the
changeusernameserver parameters that you want to change. For example:

MODIFY <usernameserver>,changeusernameserver r=2000
3. At the command prompt issue the startcomponent command.
The User Name Server now uses the changed parameters.

You cannot change all the parameters with which you created the User Name
Server: if you cannot modify a parameter that you need to change using the
changeusernameserver command, delete the User Name Server and then create a
new one. This will allow you to redefine all the parameters.

Moving from WebSphere Message Broker on a distributed
system to z/0S

Define resources for WebSphere Message Broker for z/OS and move your message
flow applications.

Read the following topics for guidance on what action you might want to take in
moving part of your operations to z/OS:

+ |“z/0S customization overview” on page 164

* [“Customizing the z/OS environment” on page 163|

* |“Creating a broker on z/0S” on page 195|

+ [“Creating a User Name Server on z/0S” on page 219

* |“Creating a Configuration Manager on z/OS” on page 209|

+ |“Administration in z/0S” on page 701

After reviewing your requirements, re-create your broker and User Name Server
on z/0S and deploy your message flows and execution groups to the broker on

256 Configuration, Administration, and Security

z/0S. If you have extended WebSphere Message Broker in a distributed
environment with user-defined parsers or message processing nodes, port them to
run under z/OS.

Also consider the following points:

¢ Floating point conversion: z/OS runs under z/OS floating point format, so
floating point operations on z/OS run in a different range and accuracy from
distributed systems.

¢ Administration commands are partially implemented as console commands and
partially as JCL commands. Some commands provide both options.

* Event log messages: All address spaces have a JOBLOG where messages appear.
In addition to this, all messages appear on the SYSLOG, with important operator
messages being filtered to the console through MPF (Message Processing
Facility).

For information about message flow transactionality, see [Message flo
transactions

Moving user applications

You can write your own applications to work with WebSphere Message Broker. If
these applications use the common subset of functionality of all WebSphere
Message Broker brokers, no migration is necessary. If you are using functionality
that is available on some WebSphere Message Broker systems only, for example
message segmentation and WebSphere MQ message groups, be aware that
WebSphere Message Broker for z/OS does not provide support for this migration.

Deleting an execution group using the
mgsideleteexecutiongroup command
Use the command line to delete an execution group from the broker.

Before you start: Complete the following tasks:

+ [“Adding a broker to a broker domain” on page 269

* |“Connecting to and disconnecting from the broker domain on z/0S” on page|
336

* |“Creating an execution group using the mgsicreateexecutiongroup command” on|

[page 202|

You can use one of the following methods to complete this task:

¢ The mgsideleteexecutiongroup command.
This task describes this method.
¢ The workbench.

This task is described in [“Deleting an execution group using the Message Broker|
[Toolkit” on page 276

* The CMP APL

This task is described in [Developing applications that use the Configuration|
[Manager Proxy API|

To delete an execution group from a broker on z/OS systems, see
fexecution group from a broker on z/0S” on page 258

Configuring WebSphere Message Broker 257

To delete an execution group from a broker using the command line on Linux,
UNIX, and Windows systems:

1. Open a command prompt that has the environment configured for this version
of WebSphere Message Broker.

2. Enter the following command to delete the execution group:
mgsideleteexecutiongroup -i host -p 1414 -q QMGR -b BROKER —e EG1

where:

host The host name or IP address of the Configuration Manager for the
domain on which the broker resides.

1414 The port on which the queue manager for the Configuration Manager
is listening.

OMGR
The name of the queue manager for the Configuration Manager.

BROKER
The name of the broker.

EG1 The name of the execution group that you want to delete.
If you prefer, you can define the connection parameters in a connection file.

See the mgsideleteexecutiongroup command description for more details about
these options.

On completion of this task, you have requested that the Configuration Manager

deletes an execution group from the broker when the next deployment request is
sent.

Deleting an execution group from a broker on z/OS
Use the JCL job BIPDLEG to delete an execution group from the broker.

Before you start:

You must complete the following tasks:

+ |“Adding a broker to a broker domain” on page 269

* |“Connecting to and disconnecting from the broker domain on z/0S” on page
B34

+ |Add an execution group to a broker on z/OS|

~

You can use one of the following methods to complete this task:

* The BIPDLEG job to run the mgsideleteexecutiongroup command.
This task describes this method.

¢ The workbench.

This task is described in [“Deleting an execution group using the Message Broker|
[Toolkit” on page 276 |

* The CMP APL

This task is described in [Developing applications that use the Configuration|
[Manager Proxy API}

258 Configuration, Administration, and Security

To delete an execution group to a broker on Linux, UNIX, and Windows systems,
see [“Deleting an execution group using the mgsideleteexecutiongroup command”|

|0n page 257.|

To delete an execution group to a broker on z/OS:

1. Configure the BIPDLEG job to specify the properties for the execution group to
be deleted.

2. Run the BIPDLEG job.

On completion of this task, you have requested that the Configuration Manager
deletes an execution group from the broker when the next deployment request is
sent.

Deleting a broker

Delete a broker using the command line on the system where the broker
component is installed.

Before you start:

You must complete the following tasks:

* Check that your user ID has the correct authorizations to perform the task; for
details, see [’Security requirements for administrative tasks” on page 755

+ Remove the broker from the broker domain in the workbench (“Removing a
[proker from a broker domain” on page 272).

On Windows, you can also use the Command Assistant to complete this task.

On Windows, Linux, and UNIX systems, you must set up your command-line
environment before deleting a broker, by running the product profile or console;
see [Setting up a command environment|

You can remove the broker from the broker topology using the workbench, but the
physical broker is not deleted until the broker is physically deleted from the
command line.

Follow the link for the appropriate platform:

* [“Deleting a broker on Linux and UNIX systems”)

+ [“Deleting a broker on Windows” on page 260)

* [“Deleting a broker on z/0S” on page 260|

Deleting a broker on Linux and UNIX systems
Delete the physical broker component.

To delete a broker on Linux and UNIX systems:

1. Remove the broker from the broker domain, in the workbench. Refer to
[‘Removing a broker from a broker domain” on page 272

2. Stop the broker by using the mgsistop command.
3. Enter the following command to delete the broker:
mgsideletebroker WBRK_BROKER
where WBRK_BROKER is the broker name.

On completion of this task, you have:

Configuring WebSphere Message Broker 259

¢ Removed the broker data from the database.

* Removed the record for the component in the broker registry. It is therefore
removed from the list of components that are displayed when you run the
mgsilist command.

Deleting a broker on Windows
Delete the physical broker component.

NI To delete a broker:

1. Remove the broker from the broker domain, in the workbench. Refer to
['Removing a broker from a broker domain” on page 272

2. Stop the broker by using the mgsistop command.
3. Enter the following command to delete the broker:
mgsideletebroker WBRK BROKER
where WBRK_BROKER is the broker name.

On completion of this task, you have:
* Stopped the Windows service that runs the broker.
* Removed the broker data from the database.

* Removed the record for the component in the broker registry. It is therefore
removed from the list of components that are displayed when you run the
mgsilist command.

Deleting a broker on z/0OS
Delete the physical broker component.

To delete a broker:

1. Remove the broker from the broker domain, in the workbench. For details of
this task, see ['Removing a broker from a broker domain” on page 272

2. Stop the broker, by stopping the started task.

3. Customize and submit the following delete jobs in your component PDSE to
delete WebSphere MQ and DB2 definitions:

Delete jobs Description

BIPDLBK Delete component including WebSphere MQ
broker queues and channels and rows in the
DB2 database

BIPDLDB Drop the broker DB2 database, storage
group, and table spaces.

Note:

a. Not all files are deleted from the component directory in the file
system.

b. When the BIPDLDB job drops the broker DB2 database, it also deletes
any Image Copy references to itself that you currently have. If you
restore the broker in future, you must also reinstate the Image Copy
references.

Deleting a Configuration Manager
Before you start:

260 Configuration, Administration, and Security

Ensure that your user ID has the correct authorizations to perform the task. Refer
to [“Security requirements for administrative tasks” on page 755|

Delete a Configuration Manager using the command line on the system where the
Configuration Manager component is installed. On Windows, you can also use the
Command Assistant to complete this task.

On Windows, UNIX systems, and Linux, you must set up your command-line
environment before deleting a Configuration Manager, by running the product
profile or console; refer to [Setting up a command environmen

Follow the link for the appropriate platform:

* [“Deleting a Configuration Manager on Linux and UNIX systems”]

* |“Deleting a Configuration Manager on Windows]

* [“Deleting a Configuration Manager on z/0S” on page 262|

Deleting a Configuration Manager on Linux and UNIX systems

You delete the Configuration Manager using the command line. The Configuration
Manager can be deleted only from the system where the Configuration Manager
component is installed.

You can delete a Configuration Manager without also deleting your domain
connection parameters in the workbench. If you want to delete a Configuration
Manager and create a new one, you can keep your connection parameters in the
workbench, even if you specify different parameters when creating the new
Configuration Manager. When you reconnect to your domain in the workbench
your new settings are displayed.

To delete a Configuration Manager on Linux and UNIX systems:

1. Stop the Configuration Manager using the [“mgsistop command” on page]
@ommand.

2. Delete the Configuration Manager using the [“mgsideleteconfigmgr command”]

command.

On completion of this task, you have:

* Removed the record for the component in the broker registry. It is therefore
removed from the list of components displayed by issuing the
fcommand” on page 609 command.

* Preserved all internal data associated with the Configuration Manager, unless
iou specify the -n parameter on the [‘mgsideleteconfigmgr command” on page]

command.
Deleting a Configuration Manager on Windows

You delete the Configuration Manager using the command line. The Configuration
Manager can be deleted only from the system where the Configuration Manager
component is installed.

You can delete a Configuration Manager without also deleting your domain
connection parameters in the workbench. If you want to delete a Configuration
Manager and create a new one, you can keep your connection parameters in the
workbench, even if you specify different parameters when creating the new
Configuration Manager. When you reconnect to your domain in the workbench
your new settings will be displayed.

Configuring WebSphere Message Broker 261

MM To delete a Configuration Manager:

1. Stop the Configuration Manager using the [“mgsistop command” on page 693|
command.

2. Delete the Configuration Manager using the [“mgsideleteconfigmgr command”]

command.

On completion of this task, you have:

* Stopped the Windows service that runs the Configuration Manager.

* Removed the record for the component in the broker registry. It is therefore
removed from the list of components displayed by issuing the
[command” on page 609 command.

* Preserved all internal data associated with the Configuration Manager, unless
ou specify the -n parameter on the [“mgsideleteconfiemer command” on page|
h

command.
Deleting a Configuration Manager on z/OS

To delete a Configuration Manager:
1. Stop the Configuration Manager, by stopping the started task.

2. Customize and submit the following delete jobs in your component PDSE to
delete WebSphere MQ definitions:

Delete jobs Description

BIPDLCM Delete component including WebSphere MQ
broker queues and channels.

Note that not all files are deleted from the component directory in the file
system.

Disabling a User Name Server

When you delete a User Name Server you disable publish/subscribe services
within the broker domain.

To delete a User Name Server from the broker domain, remove the connections
between the broker, Configuration Manager, and User Name Server. This ensures
that the broker and Configuration Manager do not continue to communicate with
the User Name Server.

Modify the broker and Configuration Manager using the mqsichangebroker and
mgqsichangeconfigmgr commands, before you delete the User Name Server. The
following steps show you how to do this.

* Modify the broker by removing the reference to the queue manager for the User
Name Server. Use the mqsichangebroker command to modify the -s and -d
parameters:

"n

1. Specify an empty string (two double quotation marks, ””) on the -s

parameter.
2. Specify the -d parameter to disable publish/subscribe access for the broker.

This ensures that the broker does not try to communicate with the User Name
Server.

* Modify the Configuration Manager by removing the reference to the queue
manager for the User Name Server. Use the command to modify the -s

262 Configuration, Administration, and Security

parameter, by specifying an empty string (two double quotation marks, “”). This
ensures that the Configuration Manager does not try to communicate with the
User Name Server.

Now that you have made the required changes to the broker and Configuration

Manager, you can delete the User Name Server, and thus disable publish/subscribe
services.

Deleting a User Name Server

Before you start:

You must complete the following task:

* Ensure that your user ID has the correct authorizations to perform the task.
Refer to [“Security requirements for administrative tasks” on page 755|

* Modify the broker and Configuration Manager so that they do not continue to
communicate with the User Name Server. See ['Disabling a User Name Server”]
for details of the changes you must make.

Delete a User Name Server using the command line on the system where the User
Name Server component is installed. On Windows, you can also use the Command
Assistant to complete this task.

On Windows, UNIX systems, and Linux, you must set up your command-line
environment before deleting a User Name Server, by running the product profile or
console; refer to [Setting up a command environment|

Follow the link for the appropriate platform.

+ [“Deleting a User Name Server on Linux and UNIX systems”]

* |“Deleting a User Name Server on Windows"]

* [“Deleting a User Name Server on z/0S” on page 264|

Deleting a User Name Server on Linux and UNIX systems
Delete the physical User Name Server component.

To delete a User Name Server on Linux and UNIX systems; AIX, HP-UX, Linux on
System z, Linux on x86 and Solaris:

1. Stop the User Name Server by using the mqsistop command.
2. Enter the following command to delete the User Name Server:
mgsideleteusernameserver

On completion of this task, you have:

* Deleted the queue associated with the User Name Server on the local queue
manager

¢ Removed the record for the component in the broker registry. It is therefore
removed from the list of components displayed by running the mgsilist
command.

Deleting a User Name Server on Windows
Delete the physical User Name Server component.

P To delete a User Name Server:

1. Stop the User Name Server by using the mgsistop command.

Configuring WebSphere Message Broker 263

2. Enter the following command to delete the User Name Server:
mgsideleteusernameserver

On completion of this task, you have:
* Stopped the Windows service that runs the User Name Server.

* Deleted the queue associated with the User Name Server on the local queue
manager.

* Removed the record for the component in the broker registry. It is therefore
removed from the list of components displayed by running the mgsilist
command.

Deleting a User Name Server on z/0S
Delete the physical User Name Server component.

To delete a User Name Server:
1. Stop the User Name Server, by stopping the started task.

2. Customize and submit the following delete job manually to delete
WebSphere MQ definitions:

Delete jobs Description

BIPDLUN Deletes components WebSphere MQ queues
and channels

Not all files are deleted from the component directory in the file system when you
run this task.

Configuring a broker domain in the workbench

Create the resources for your broker domain in the workbench on Linux on x86 or
Windows.

Before you start:

Created the physical broker domain components. Refer to [“Configuring broker|
[domain components” on page 188 |

This task is the second part of the two-stage process to create and configure your
broker domain. Use the workbench to configure and administer the broker domain
components.

Launch the workbench in one of the following ways:

. From the main menu:
— On Red Hat, click Programming > IBM WebSphere Message Broker Toolkit.
— On SUSE Linux, click All Applications > WebSphere Message Broker
Toolkit.

« WIETM Click Start » IBM Software Development Platform » IBM
WebSphere Message Brokers Toolkit » WebSphere Message Broker Toolkit, or
double-click the shortcut on your desktop labelled 'WebSphere Message Broker
Toolkit'.

* Use the following commands in a command prompt from their location in the
root directory for the package group:

264 Configuration, Administration, and Security

— Linux

./eclipse -product com.ibm.etools.msgbroker.tooling.ide
S \/indows

eclipse.exe -product com.ibm.etools.msgbroker.tooling.ide

See the following tasks for instructions on how to configure a broker domain in the
workbench:

+ [“Creating a domain connection”]

* [“Modifying domain connection properties” on page 267

[‘Deleting a domain connection” on page 269

[“Adding a broker to a broker domain” on page 269

[“Modifying broker properties” on page 271

+ [“Removing a broker from a broker domain” on page 272|

+ ["Removing deployed children from a broker” on page 273|

[“Adding an execution group to a broker in the workbench” on page 274|

[‘Deleting an execution group using the Message Broker Toolkit” on page 276|

+ [“Removing deployed children from an execution group” on page 277

When configuring your broker domain, you are prompted to deploy all changes to
the Configuration Manager. You can set your user preferences to suppress the
prompt to deploy after each change. See [“Changing Broker Administration|
[preferences” on page 322

When you make changes to the broker domain, and deploy to the Configuration
Manager, a short delay might occur before the workspace is updated and the
Configuration Manager tells you that the deploy has worked. The delay depends
on the network configuration, and the number of changes to make to the
configuration of the broker domain during the deployment.

Creating a domain connection

Create a connection to a Configuration Manager so that you can manage the
domain resources.

Before you start:

Complete the following tasks:

* |“Creating a Configuration Manager” on page 204

* Create and start a listener for the Configuration Manager. For details on how to
create and start a listener, follow the instructions for listeners in the topic:
[‘Starting the WebSphere MQ channels and listeners” on page 227

This topic shows you how to:

* Create a domain connection in the workbench by using the Create a Domain
Connection wizard.

* Enter a set of parameters to create a .configmgr file.

* Use the parameters contained within the .configmgr file to connect to the
Configuration Manager, where you can view and edit your broker domain.

To create a domain connection:

1. Switch to the Broker Administration perspective.

Configuring WebSphere Message Broker 265

2. Click New » Domain Connection to open the Domain Connection wizard.
3. Complete the fields in the Create a Domain Connection wizard:

a. The value for the WebSphere MQ Queue Manager Name that the
Configuration Manager is using. This property is mandatory.

b. The Host name or IP address of the machine on which the Configuration
Manager is running (the default is Tocalhost). This property is mandatory.

c. The TCP Port on which the WebSphere MQ queue manager is listening (the
default is 1414). You must enter a valid positive number.

d. Optional: The name of the server-connection channel in the SVRCONN
Channel Name field. The channel has a default name of SYSTEM.BKR.CONFIG.

You can create more than one server-connection channel and define a
different SSL certificate on each channel to enforce; for example, users with
view access on to one channel and users with deploy access on to a different
channel.

You can then create WebSphere MQ exits on each channel to provide
additional authentication of the WebSphere MQ message sent to the
Configuration Manager.

You must create the server-connection channel manually on the queue
manager that hosts the Configuration Manager by using one of the
following options:

¢ The WebSphere MQ runmgsc command to create a channel with options
CHLTYPE (SVRCONN) and TRPTYPE(TCP).

* The WebSphere MQ Explorer to create a server-connection channel with
the transmission protocol set to TCP.

For more information see your WebSphere MQ documentation.

The default name of SYSTEM.BKR.CONFIG is assumed if you do not change
the name, or attempt to delete it. The name of the server-connection channel
is changed only if you enter another name in place of SYSTEM.BKR.CONFIG.

e. Optional: The Class of the Security Exit required to connect to the
WebSphere MQ queue manager. If specified, you must enter a valid Java
class name, but you can leave this field blank if it does not apply to your
domain connection.

f. Optional: The JAR File Location for the Security Exit required to connect to
the WebSphere MQ queue manager. Click Browse to find the file location.
You can leave this field blank if it does not apply to your domain
connection. You must provide a JAR File Location if you enter a Security
Exit Class in the previous step.

g. Optional: The Cipher Suite, Distinguished Names, CRL Name List, Key
Store, and Trust Store parameters are required to enable SSL. For more
information, see [“Implementing SSL authentication” on page 58| The Cipher
Suite field displays available cipher suites. Click More to configure Custom
SSL Cipher Suites in the Broker Administration Preferences window. If a
Cipher Suite is not specified, all of the other fields in the SSL section are
unavailable.

You can configure several domain connections in your workspace. Each
domain connection must address a different Configuration Manager, which
must have a different WebSphere MQ Queue Manager Name, Host name,
or TCP Port number. An error message is displayed in the Create a Domain
Connection wizard if you try to create a second broker domain using the
same Queue Manager Name, Host name, and Port number. You can
configure each Configuration Manager that you access from a single
workbench session to use a different keystore and truststore.

266 Configuration, Administration, and Security

* If you have configured the SVRCONN channel to specify one-way
authentication, you must specify only a truststore in the workbench, and
you do not have to specify a password.

* If you have configured the SVRCONN channel to specify two-way
authentication, you must specify both a keystore and a truststore, and
you must also provide a password to access the keystore.

The default password for a Java keystore (the type used by the
workbench) is changeit; this default password is used by the workbench.

If you want to modify this password, start the Message Broker Toolkit at
the command line, and add the following parameters:

-vmargs -Djavax.net.ss1.keyStorePassword=mypasswd
4. Click Next to begin the domain connection to the Configuration Manager.

5. If you click Cancel, the Create a Domain Connection wizard closes, forcing
disconnection from the domain.

6. After the domain connection has been made, enter:

a. The name of your Project. The project is the container for your domain
connection. If you have not already created a project, you can specify the
name of a new project here. The project is created with the domain
connection.

b. The Connection name. The Connection name is the name that you give to
the .configmgr file that contains the parameters to connect to the
Configuration Manager.

7. Click Finish to create the domain connection.
The new domain connection is added to the Broker Administration Navigator
view, in Domain Connections. The project holds the .configmgr domain connection

file.

The view of the broker domain is displayed in the Domains view.

Modifying domain connection properties

Change the properties of the domain connection to redefine the connection to the
Configuration Manager.

Before you start:

To complete this task, you must have completed the following tasks:

+ [“Creating a domain connection” on page 265|

* Disconnect from the broker domain. Refer to [‘Connecting to and disconnecting]|
[from the broker domain” on page 335/

Modify the parameters of the .configmgr domain connection file that are used to
connect to the Configuration Manager.

To modify the domain connection properties.
1. Switch to the Broker Administration perspective.

2. In the Broker Administration perspective Navigator view, expand Domain
Connections, and open your project.

3. Right-click the .configmgr domain connection file and click Open With -
Domain Connection Editor. From here you can change:

a. The name of the WebSphere MQ queue manager that the Configuration
Manager is using. This property is mandatory.

Configuring WebSphere Message Broker 267

b. The host name or IP address of the machine on which the Configuration
Manager is running. This property is mandatory.

c. The TCP port on which the WebSphere MQ queue manager is listening.
This property must be a valid positive number.

d. Optional: The name of the server-connection channel. The channel has a
default name of SYSTEM.BKR.CONFIG.

You can create more than one server-connection channel and define a
different SSL certificate on each channel to enforce, for example, users with
view access on to one channel and users with deploy access on to a different
channel.

You can then create WebSphere MQ exits on each channel to provide
additional authentication of the WebSphere MQ message sent to the
Configuration Manager.

You must create the server-connection channel manually on the queue
manager of the Configuration Manager by using one of the following
methods:

¢ The runmgsc command, to create a channel with options
CHLTYPE(SVRCONN) and TRPTYPE(TCP).

* WebSphere MQ Explorer, to create a server-connection channel with the
transmission protocol set to TCP.

For more information see your WebSphere MQ documentation.

The default name of SYSTEM.BKR.CONFIG is assumed if you do not change
the name, or attempt to delete it. The name of the server-connection channel
is changed only if you enter another name in place of SYSTEM.BKR.CONFIG.

e. Optional: The name of the Security Exit required to connect to the
WebSphere MQ queue manager. This property must be a valid Java class
name, but it is not mandatory and you can leave it blank, if it does not
apply to your domain connection.

f. Optional: The location of the JAR file for the Security Exit required to
connect to the WebSphere MQ queue manager. Use the Browse button to
find the file location. Leave this field blank if it does not apply to your
domain connection.

You must enter the location of the JAR file if you enter a Security Exit class.

g. Optional: The cipher suite, distinguished names, CRL name list, key store,
and trust store parameters required when enabling SSL (see
[SSL authentication” on page 58| for more information). The cipher suite field
displays available cipher suites. Click More to configure a custom cipher
suite in the Broker Administration perspective preferences window. If you
do not specify a cipher suite, all other fields in the SSL section are
unavailable.

4. Close the editor.
5. You are prompted to save the changes; click Yes. If the broker domain is

connected, you are prompted to disconnect before you can save your changes.
The .configmgr domain connection file is updated with the new parameters.

You can also change the domain connection parameters for a disconnected domain,
from the Domains view. Right-click the disconnected domain and click Edit
Parameters to open the Domain Connection editor. Follow steps 3 to 5 above to
make the changes you require.

268 Configuration, Administration, and Security

Deleting a domain connection

Delete a domain connection to remove the connection to the Configuration
Manager, and the ability to manage a domain through that Configuration Manager.

Before you start:

You must complete the following task:

+ [“Creating a domain connection” on page 265|

To delete a domain connection, delete the corresponding .configmgr file from your
project.

The configuration of the broker domain is stored in the Configuration Manager
and is not affected by deleting the domain connection. If you create a new domain
connection to the same Configuration Manager, the broker domain will be
configured and available for use.

The following steps show you how to delete a domain connection.
1. Switch to the Broker Administration perspective.
2. In the Broker Administration perspective Navigator view:

a. Expand Domain Connections

b. Open the appropriate project.

3. Right-click the domain connection fileconnection name.configmgr, and click
Delete.

4. Click OK at the prompt, to confirm that you want to delete the domain
connection.

If the broker domain in the Domains view is connected, you are prompted to
disconnect from the broker domain before it can be deleted. Click Yes to
disconnect from the broker domain. Clicking Cancel at this prompt, cancels
deletion of the domain connection.

On completion of this task:
e The .configmgr file is removed from the project.

* The view of the broker domain and its hierarchy is removed from the Domains
view.

Adding a broker to a broker domain
Add a broker to a broker domain so that you can manage it in the workbench.

Before you start:

You must complete the following tasks:

* |“Creating a broker” on page 190|

* [“Connecting to and disconnecting from the broker domain” on page 335

Adding a broker to the broker topology creates a broker reference in the
configuration repository; it does not create the physical broker. When you add a
broker, you must use the same name that you used to create the broker.

To add a broker to a broker domain:
1. Switch to the Broker Administration perspective.

Configuring WebSphere Message Broker 269

2. In the Domains view, right-click the default configuration manager, and click
New - Broker Reference.

3. In the Create a Broker Reference wizard:

a. Select the broker domain to which you want to add the broker. If the
selected broker domain is not connected, you are prompted to connect to
the domain. Click OK. If you click Cancel at this prompt, the wizard
remains open.

b. Type the name of the broker.

c. Type the WebSphere MQ Queue Manager Name that the Configuration
Manager is using.

Note:

1) If the WebSphere MQ queue manager is on a separate machine,
make sure that you have performed the steps listed in
[‘Connecting components” on page 234

2) You can associate a WebSphere MQ Queue Manager Name with
only one broker, even if the brokers are in different broker
domains.

Click Next.

Optional: Enter a short or long description for the broker.
Click Finish to add the broker to the broker domain.

You are, by default, prompted to deploy the updated publish/subscribe
topology configuration.

No oo~

You only need to deploy the topology (either Complete or Delta) if you are
using publish/subscribe and want to share publications or subscriptions. For
more information see [Publish/subscribe topology deployment]

If you are not using publish/subscribe, click None. A deployment now (to
associate the broker with the Configuration Manager) is not necessary; the
broker is automatically associated with the Configuration Manager the first
time a broker archive (BAR) file is deployed. See [Deploying a broker archive|

You can set user preferences so that you are not prompted to deploy the
publish/subscribe topology. See [‘Changing Broker Administration preferences”]
Instead, you can choose for either a complete or delta deployment
to be performed automatically. Alternatively, if you are not using

publish/subscribe, you might want to set the preference so that no automatic
deployment takes place.

In the Domains view, the broker is added to the broker domain and a default
execution group is added to the broker.

Adding a broker to the broker topology creates security ACL groups, which give
the user ID full control of the broker and its default execution group. These ACL
groups exist until this broker is removed from the broker domain. The user ID can
be removed from the mqgbr* groups, but the user still has the full control access
level for the broker and its default execution group.

Next:
Add any further execution groups to the broker that you require. Then create,

modify, or reuse message flows, message sets and other required files, and add
them to the broker archive for deploying to the broker.

270 Configuration, Administration, and Security

Copying a broker

You can copy a broker that you have previously added to a broker domain. The
new broker reference can be pasted within the same broker domain only.

Before you start:

You must complete the following task:

+ [“Adding a broker to a broker domain” on page 269

The new broker inherits the same short and long description as the original broker,
and the same execution groups are added; the message flows under the execution
groups of the original broker are not inherited by execution groups of the new
broker. All other broker properties and multicast properties are nof inherited by the
new broker.

The new broker is automatically given a unique broker name, and queue manager
name.

The following steps show you how to copy a broker.
1. Switch to the Broker Administration perspective.

2. In the Domains view, open the broker domain and right-click the broker that
you want to copy. Click Copy.

3. In the broker domain right-click the Broker Topology and click Paste.

4. You are prompted to deploy the updated topology configuration. Click Delta to
perform a delta deploy. If user preferences are not set to prompt, the topology
deploy is automatic.

The new broker reference is added to the broker domain. It inherits the short
and long description and the same execution groups as the original broker.

The new broker is given a unique name in the broker domain, and a new
queue manager name.

The broker that you have just created does not necessarily reference a physical
broker correctly. The workbench does not check if a physical broker exists for the
new broker reference; you must make this check yourself.

To ensure that the broker reference does not contain any errors, rename the broker
and the broker queue manager to be the same names as the names you specified
on the mgsicreatebroker command when you created the physical broker:

* To rename the broker, refer to [“Renaming a broker” on page 272.|

* To rename the broker queue manager, refer to [“Modifying broker properties.”|

Modifying broker properties
Modify broker properties by adding a long or short description, and by
customizing the broker and multicast properties.

Before you start:

To perform this task, you must have completed the following tasks:

+ [“Adding a broker to a broker domain” on page 269

* Start the broker. See [“Starting and stopping a broker” on page 339

To modify the broker properties:

Configuring WebSphere Message Broker 271

1. Switch to the Broker Administration perspective.

2. In the Domains view, right-click the broker that you want to modify, and click
Properties. In the properties window, you can modify:

a. The broker properties.

Click Broker in the left panel of the properties window. For details of all the
broker properties, see [“Broker properties” on page 383

b. The multicast properties.
Expand Multicast in the left panel of the properties window.

Click Advanced to access the advanced multicast properties.

For details of all the multicast properties, see [“Setting up a multicast]
[proker” on page 284

c. The description for the broker.

Click Description in the left panel of the properties window. Enter either a
short or a long description, or both, for the broker.

3. Click OK to save all the modifications to the broker.

An automatic broker configuration deployment is performed immediately to
implement the changed broker properties, except for the broker queue manager
name, and the short and long descriptions, for which deployment is not
required to update the broker properties.

Renaming a broker

You might need to rename a broker (and possibly its queue manager) if your
original attempt at creating a broker reference contained an error.

Before you start:

You must complete the following tasks:

+ [“Adding a broker to a broker domain” on page 269

For further information about rename the broker queue manager, see ["Modifying]
[broker properties” on page 271

Renaming a broker is simpler than deleting and recreating it.

The following steps show you how to rename a broker:
1. Switch to the Broker Administration perspective.

2. In the Domains view, right-click the broker and click Rename. The Rename
Broker dialog is displayed.

3. In the New name field, type the new name of the broker.

The name must be the same name as the name that you specified on the
mgsicreatebroker command.

4. C(Click Finish to rename the broker.

The broker name is updated in the Domains view, and in the Topology editor.

Removing a broker from a broker domain

Removing a broker from a broker domain deletes its broker reference in the
configuration repository. The broker is not deleted from the system when you
perform this task, but it is marked as logically deleted from the configuration
repository.

272 Configuration, Administration, and Security

Before you start:

You must complete the following task:

+ [“Adding a broker to a broker domain” on page 269

If you want to move a broker from one topology to another, you need to delete
and recreate the broker physically (using the mgsideletebroker and
mgsicreatebroker commands) even if the Configuration Manager in both domains
are at the same product and service release level. See [“Deleting a broker” on page]
for further information.

The following steps show you how to remove a broker from a broker domain.
1. Switch to the Broker Administration perspective.

2. In the Domains view, expand the broker domain to reveal the broker that you
want to remove.

To remove more than one broker from the same broker domain, select each
broker while holding down the Ctrl key.

3. Right-click the broker and click Delete.

4. Click OK at the prompt to confirm that you want to remove the broker from
the broker domain.

5. You are, by default, prompted to deploy the updated publish/subscribe
topology configuration.

You only need to [deploy the topology]if you are using publish/subscribe and
want to share publications or subscriptions.

If you are not using publish/subscribe, click None, as a deployment is not
necessary.

You can [set user preferences|so that you are not prompted to deploy the
publish/subscribe topology. Instead, you can choose for either a complete or
delta deployment to be performed automatically. Alternatively, if you are not
using publish/subscribe, you might prefer to set the preference so that no
automatic deployment takes place.

The broker and its execution groups are removed as components of the broker
domain. Confirmation that the broker has been deleted is shown in two places:

e The broker is removed from the Domains view.

* The broker icon is removed from the Broker Topology editor. If the broker was
connected to another broker, this connection is also removed.

To delete the physical broker after you have removed the broker from the domain,
refer to [“Deleting a broker” on page 259

Removing deployed children from a broker

Remove the deployed children from a broker if the synchronization between the
broker and the Configuration Manager falls into an inconsistent state.

Removing deployed children from a broker removes all message flows, message
sets, and all other deployed objects from all execution groups on the selected
broker. All execution groups are deleted. A new default execution is then created
for the broker.

Although these objects are all removed from the broker, they are still available in
the file system and workbench, and can be reused if required.

Configuring WebSphere Message Broker 273

To remove the deployed children from a broker:
1. Switch to the Broker Administration perspective.

2. Expand the broker domain, in the Domains view, to reveal the broker you want
to work with.

3. Right-click the broker, and click Remove Deployed Children.

4. Click OK at the prompt to confirm that you want to delete all execution groups
on the broker.

This action removes all message flows and message sets from all execution
groups, and deletes all execution groups. An automatic broker configuration
deployment is immediately performed for the broker to save the changes.

A BIP08921 information message is displayed, to show that the request was
received by the Configuration Manager. Verify the results of the deployment by
opening the Event Log.

Adding an execution group to a broker in the workbench
Use the workbench to add execution groups to a broker.

Before you start:
+ |Add the broker to the broker domain|
* |Connect to the broker domain|

When you create a broker, it has a default execution group. If you want additional
execution groups, you must create them explicitly.

The mode that your broker is working in can affect the number of execution
groups that you can use; see [‘Restrictions that apply in each operation mode” on|
page 384.

You can use one of three methods to complete this task:
* The workbench

» The mgsicreateexecutiongroup command

¢ The CMP API

This task describes the first method. If you prefer, you can create an execution
group using the command line; see [“Creating an execution group using the
[mgsicreateexecutiongroup command” on page 202 For information about the CMP
API, see [Developing applications that use the Configuration Manager Proxy API|

To add an execution group to a broker:
1. Switch to the Broker Administration perspective.
2. In the Domains view, expand the default configuration manager.
3. Right-click Broker Topology, and click New » Execution Group.
4. In the Create an Execution Group wizard:
a. Select the broker to which you want to add the execution group.

If the selected broker domain is not connected, a Confirm Connection dialog
box prompts you to connect to the domain. If you click OK, the domain is
connected and populated with the defined brokers. If you click Cancel at
this prompt, the wizard remains open.

b. Enter the Execution Group name.

274 Configuration, Administration, and Security

c. Select the Processor Architecture for this execution group to specify if the
execution group process runs as a 32-bit or 64-bit application. Choose one of
the following three options:

* Default. The execution group is created to run in 32-bit mode for systems
that support only 32-bit mode, and 64-bit mode for all other systems
(64-bit mode only or both modes).

* 32 bit. The execution group is created to run in 32-bit mode.
* 64 bit. The execution group is created to run in 64-bit mode.

Do not set a processor architecture that is not supported on the target
broker computer. For details of the support on each operating system, see
[Support for 32-bit and 64-bit platforms]

If you create a 64-bit execution group, the broker's queue manager must
also operate in 64-bit mode. All WebSphere MQ Version 6 and Version 7
queue managers on 64-bit platforms run in 64-bit mode.

To change the default value for this option, which is initially set to Default,
click Window > Preferences » Broker Administration and update the
setting for Execution Group Platform Processor Architecture.

5. Click Next.
6. Optional: Enter a short or long description for the execution group.
7. Click Finish to add the execution group to the broker.

In the Domains view, the execution group is added to the appropriate broker.

Copying an execution group

You can copy an existing execution group from a broker to another broker within
the same broker domain.

Before you start:

You must complete the following tasks:

* |“Adding an execution group to a broker in the workbench” on page 274

+ [“Adding a broker to a broker domain” on page 269

The new execution group inherits the same short and long description as the
original execution group, and is automatically given a new name. The new
execution group does not inherit any other properties of the original execution
group. The message flows in the original execution group are not copied to the
new execution group.

The mode that your broker is working in can affect the number of execution
groups that you can use; see [“Restrictions that apply in each operation mode” on|
page 384,

To copy an execution group:
1. Switch to the Broker Administration perspective.

2. In the Domains view, right-click the name of the execution group that you want
to copy, then click Copy.

3. Right-click the name of the broker to which you want to copy the execution
group, then click Paste. The broker must be in the same broker domain as the
original execution group.

Configuring WebSphere Message Broker 275

A copy of the execution group is created on the broker; the new execution group
has a unique name.

Modifying execution group properties

You can add a long or short description to an execution group. This can be an
execution group that you have added to the broker, or the default execution group.

The following steps show you how to modify execution group properties.
1. Switch to the Broker Administration perspective.

2. In the Domains view, right-click the execution group that you want to modify,
and click Properties. The Execution Group Properties dialog is displayed.

3. Add a long or short description to the execution group.
4. Click OK to add the description.

Renaming an execution group

Before you start:

You must complete the following task:

* |“Adding an execution group to a broker in the workbench” on page 274

You can rename any execution group that you have added to a broker.

To rename an execution group:

1. Switch to the Broker Administration perspective.

2. In the Domains view, right-click the execution group and click Rename. The
Rename Execution Group dialog is displayed.

3. In the New name field, type the new name of the execution group.

4. Click Finish.

5. Deploy a BAR file to the execution group to apply the change to the execution
group. You can use any valid BAR file to do this. For more information about
deploying BAR files, see [Deploying a broker archive file} If you do not deploy a

BAR file to the execution group, the changes that you made in the Message
Broker Toolkit are not applied to the runtime execution group.

The name of the execution group is updated in the Domains view.

Deleting an execution group using the Message Broker Toolkit

Before you start:

You must complete the following task:

* |“Adding an execution group to a broker in the workbench” on page 274

You can delete an execution group from the broker to which it belongs.

A broker must always have at least one execution group; you cannot delete the last
group belonging to a broker.

276 Configuration, Administration, and Security

Instead of employing this method, you can delete an execution group using the
command line; see [“Deleting an execution group using the]
[mgsideleteexecutiongroup command” on page 257 |

The following steps show you how to delete an execution group from a broker.
1. Switch to the Broker Administration perspective.

2. In the Domains view, expand the appropriate broker domain to reveal the
execution group that you want to delete.
To delete more than one execution group from the same broker domain, select
each execution group while holding down the Ctrl key.

3. Right-click the execution group and click Delete.

4. Click OK at the prompt to confirm that you want to delete the execution group
from the broker.

An automatic broker configuration deploy is immediately performed for the
broker parent.

A BIP08921 information message is displayed to show that the request was
received by the Configuration Manager. Verify the results of the deployment by
opening the Event Log.

No message flows or message sets are deleted from the development workspace.
The execution group and its assigned message flows and message sets are deleted
from the Domains view. However, the messages flows and message sets remain in
the Broker Administration Navigator view.

Their assignment reference to the execution group is removed from the
configuration repository.

Removing deployed children from an execution group

Removing deployed children from an execution group removes all message flows,
message sets and all other deployed objects. These are deleted from the execution
group, although they are still available in the file system and toolkit.

To remove the deployed children from a broker:
1. Switch to the Broker Administration perspective.

2. In the Domains view, expand the broker domain to reveal the execution group
with which you want to work.

3. Right-click the execution group, and click Remove Deployed Children.

4. Click OK at the prompt to confirm that you want to remove all message flows
and message sets from the execution group.

An automatic broker configuration deploy is immediately performed for the
broker parent.

A BIP08921 information message is displayed to show that the request was
received by the Configuration Manager. Verify the results of the deployment by
opening the Event Log.

Configuring a publish/subscribe topology

Create and configure the resources that are required to develop a topology for your
publish/subscribe applications and brokers.

Configuring WebSphere Message Broker 277

Follow the information in this section to create a publish/subscribe topology that
is controlled by the broker. The broker publish/subscribe engine must be enabled
for this configuration to be valid. If you have installed WebSphere MQ Version 7.0,
and have decided to enable the queue manager's publish/subscribe engine, this
information here is not appropriate. Refer to WebSphere MQ Version 7.0
documentation for configuration details.

To configure a publish/subscribe topology in the broker domain:
1. Design and configure your broker domain.

For further information, refer to [“Planning a broker domain” on page 107 and
[‘Configuring broker domain components” on page 18§

2. Define the topic trees that you require.

For further information, refer to [Topics| and [“Adding a new topic” on page 294 |

3. Decide which security options to use.

For further information, refer to [“Publish/subscribe security” on page 88 and
[‘Securing the publish/subscribe domain” on page 96.

Setting up the broker domain for publish/subscribe

Refer to the following topics:

[“Creating a broker” on page 190

["Modifying a broker” on page 245|

[“Adding a broker to a broker domain” on page 269

[“Configuring broker domain components” on page 188|

Publish/subscribe topologies

A publish/subscribe topology consists of the brokers, the collectives, and the
connections between them, that support publish/subscribe applications in the
broker domain.

A publish/subscribe application can consist of a network of brokers connected
together. The brokers can all be on the same physical system, or they can be
distributed over several physical systems. By connecting brokers together,
publications can be received by a client on any broker in the network.

This provides the following benefits:

* Client applications can communicate with a nearby broker rather than with a
distant broker, thereby getting better response times.

* By using more than one broker, more subscribers can be supported.

Publications are sent only to brokers that have subscribers that have expressed an
interest in the topics being published. This helps to optimize network traffic.

Broker networks: There are three ways of connecting brokers together to make a
broker domain:

* Brokers can be simply joined together.

* Brokers can be grouped together into collectives, where a collective is a set of
one or more brokers that are directly connected to each other.

* Collectives can be joined together; this is a combination of the previous two
ways of grouping brokers together.

The following diagram shows a network of six collectives.

278 Configuration, Administration, and Security

Collectives: A collective is a set of brokers that are fully interconnected and form

part of a multi-broker network for publish/subscribe applications.

A broker cannot belong to more than one collective. Brokers within the same

collective can exist on physically separate computers. However, a collective cannot

span more than one broker domain.

Each pair of broker queue managers must be connected together by a pair of
WebSphere MQ channels.

The following figure shows a simple collective of three brokers:

T Collective AN
//// \\\
/ Broker A Broker B N
/// \\
N — — —— ————— ———————— [o \
// \\
I Queue manager A |« » Queue manager B 4
i |
|
| !
\ 1
\ 1
\ !
\ /
\ /
\ /
\ /
\\ //
N\ Queue manager C ;
S Broker C o

A collective provides the following benefits:

Configuring WebSphere Message Broker

279

* Messages destined for a specific broker in the same collective are transported
directly to that broker and do not need to pass through an intermediate broker.
This improves broker performance and optimizes inter-broker publish/subscribe
traffic, in comparison with a hierarchical tree configuration.

 If your clients are geographically dispersed, you can set up a collective in each
location, and connect the collectives (by joining a single broker in each
collective) to optimize the flow of publications and subscription registrations
through the network.

* You can group clients according to the shared topics that they publish and to
which they subscribe.

Clients that share common topics can connect to brokers within a collective. The
common publications are transported efficiently within the collective, because
they pass through only brokers that have at least one client with an interest in
those common topics.

* A client can connect to its nearest broker, to improve its own performance. The
broker receives all messages that match the subscription registration of the client
from all brokers within the collective.

The performance of a client application is also improved for other services that
are requested from this broker, or from this broker's queue manager. A client
application can use both publish/subscribe and point-to-point messaging.

* The number of clients per broker can be reduced by adding more brokers to the
collective to share workload within that collective.

When you create a collective, the workbench ensures that the connections that you
make to other collectives and brokers are valid. You are prevented from making
connections that would cause messages to cycle forever within the network. You
are also prevented from creating a collective of brokers that does not have the
required WebSphere MQ connections already defined.

The queue manager of each broker in a collective must connect to every other
queue manager in the collective by a pair of WebSphere MQ channels.

Each broker in the collective maintains a list of its neighbors.

A neighbor can be one of the following:
* a broker in the same collective

* a broker outside its collective to which it has an explicit connection; that is, for
which it is acting as a gateway

The complete list of neighboring brokers forms a broker's neighborhood.

Multicast publish/subscribe: In a publish/subscribe system there are client
applications, some of which are publishers and some of which are subscribers, that
are connected to a network of message brokers that receive publications on a
number of topics, and send the publications on to the subscribers for those topics.

Normally, a separate message is sent to each subscriber of a publication. However,
with multicast, regardless of how many subscribers to a topic there are on a subnet,

only one message is sent. This improves network utilization.

The more subscribers there are in your publish/subscribe system, the greater the
improvement to network utilization there might be if you use multicast.

280 Configuration, Administration, and Security

The subscriber must be a JMS client if you want to use Multicast
publish/subscribe.

To use multicast, you must change some of the properties of the broker. Some of
these properties apply to specific topics, but some properties apply to all Multicast
messages that are controlled by that broker.

For each topic, you can define whether the topic can be multicast, and the IP
address to which Multicast messages are sent.

You can also change those properties in the broker that define, for example, the
following things:

¢ The multicast protocol type
* The port that is used for Multicast messages

e A 'Time To Live (TTL) setting that determines how far from its source a
Multicast packet can be sent

* The size of a Multicast packet
¢ Whether there is a maximum transmission rate and, if there is, its value

* What interface to use for Multicast transmissions

These properties apply to all Multicast messages.

Cloned brokers: A cloned broker is a broker for which you have defined one or
more clones; the subscription table of a cloned broker is replicated to all other
brokers with which it is cloned.

When a subscriber requests a subscription from a cloned broker, the subscription is
also sent to each of the clones of that broker.

Use cloned brokers to improve the availability of your publish/subscribe system.
By defining cloned brokers on different computers, you make sure that a
publication is delivered to a subscriber even when one of the computers is
unavailable.

The diagram shows what happens when Subscriber 1 sends a subscription to
Broker 1, but Broker 1 becomes unavailable; because Broker 1 and Broker 2 have
been defined as clones, the subscription is redirected to Broker 2 and Subscriber 1
gets the publication from Broker 2 instead of Broker 1.

Publisher

v

Redirected Broker 2
subscription (Clone of Broker 1)

v

Subscriber 1

Configuring WebSphere Message Broker 281

If two brokers are clones within a collective, duplicate messages might be sent to
subscribers that are registered with brokers inside that collective.

Use the mgsichangeproperties command to define cloned brokers; the property
clonedPubSubBrokerList is used to do this.

Migrated topologies:

If you have a WebSphere MQ Publish/Subscribe broker network, you can continue
to use this network unchanged.

The introduction of WebSphere Message Broker to your environment, and the
creation of brokers in that broker domain, does not affect your WebSphere MQ
Publish /Subscribe broker domain until you take specific action to connect the two
networks.

If you want to have two separate, independent networks, you do not have to do
anything. You can retain your existing WebSphere MQ Publish/Subscribe network,
and install and configure a WebSphere Message Broker network, without any
interaction.

Heterogeneous networks: A heterogeneous network is a network of brokers, some of
which form a WebSphere MQ Publish/Subscribe network and some of which
belong to the WebSphere Message Broker product.

With the WebSphere Message Broker product, there are two ways in which a
broker can be joined to the WebSphere MQ Publish/Subscribe network; it can be
joined as a leaf node or as a parent node.

Leaf node: 'When a broker is joined as a leaf node, it is joined as a child broker of
another broker in the WebSphere MQ Publish/Subscribe network.

Adding the broker as a leaf node rather than as a parent node causes the new
broker to receive only some of the WebSphere MQ Publish/Subscribe message
traffic that is directed to the brokers for which this new broker is a child broker.

Parent node: 'When a broker is joined as a parent node, it is joined as a parent
broker of one or more brokers in the WebSphere MQ Publish/Subscribe network.

Adding the broker as a parent node rather than as a leaf node causes the new
broker to receive all the WebSphere MQ Publish/Subscribe message traffic that is
directed to the child brokers for which this new broker is the parent broker.

Changing Broker Topology editor properties
You can change or remove the default background image displayed in the editor
area of the Broker Topology editor.

The following steps show you how to change the properties of the Broker
Topology editor.

1. Switch to the Broker Administration perspective.

2. In the Domains view, expand the appropriate broker domain to display its
contents.

3. Double-click Broker Topology to launch the Broker Topology editor.

4. Right-click the editor, then click Properties to display the Broker Topology
editor properties.

282 Configuration, Administration, and Security

5. On the Editor page, you can change the background image file, and modify its
scale factor in a range of 1 to 5. The default value is 3. Alternatively, you can
choose to not display a background image.

6. Optional: On the Description page, you can provide a description for the
background image file.

7. Click OK to save your changes and close the Properties dialog.

All changes that you made to the background image are displayed when the
Properties dialog closes.

Connecting brokers in a collective

A collective is a set of brokers that are fully interconnected and form part of a
multi-broker network for publish/subscribe applications.

You connect brokers in a collective by using either the Message Broker Toolkit or
the Configuration Manager Proxy Java API. This topic describes how to use the
Message Broker Toolkit.

For information about how to use the Configuration Manager Proxy (CMP), see
Developing applications using the CMP|and [Class|
com.ibm.broker.config.proxy.CollectiveProxyl

To following steps show you how to connect brokers in a collective.

1. Define the WebSphere MQ channels between the queue managers of each pair
of the brokers in the collective; use the standard WebSphere MQ facilities (for
example, WebSphere MQ Explorer).

2. Assign the brokers as members of the collective using the Broker Topology
editor in the workbench; the brokers do not have to be connected together
using the connect function.

Tip: Compare the use of collectives with the use of WebSphere MQ cluster queues,
as described in [Developing applications using the CMP|

Deleting a collective

You can delete a collective by using either the Message Broker Toolkit or the
Configuration Manager Proxy Java API This topic describes how to use the
Message Broker Toolkit.

For information about how to use the Configuration Manager Proxy (CMP), see
Developing applications using the CMP| and [Class|
com.ibm.broker.config.proxy.CollectiveProxy]|

The following steps show you how to delete a collective.

1. Switch to the Broker Administration perspective.

2. In the Domains view, expand the appropriate broker domain.

3. Double-click the Topology item to open the Broker Topology editor.
4

. Right-click the collective that is to be deleted and select Delete, or select the
collective that is to be deleted and press the Delete key, or select Delete from
the Edit menu.

The collective is deleted locally, but the delete operation is not completed until
you save or close the editor.

Configuring WebSphere Message Broker 283

Connecting a broker to a collective

You can connect a broker to a collective using either the Message Broker Toolkit or
the Configuration Manager Proxy Java API This topic describes how to use the
Message Broker Toolkit.

For information about how to use the Configuration Manager Proxy (CMP), see
Developing applications using the CMP|and [Class|
com.ibm.broker.config.proxy.CollectiveProxyl|

The following steps show you how to connect a broker to a collective.
1. Switch to the Broker Administration perspective.

In the Domains view, expand the appropriate broker domain.
Double-click the Topology item to open the Broker Topology editor.
In the Broker Topology editor, click the Connection tool.

S

Click the broker to be connected and then click the collective that you want to
connect the broker to.

The connection is added locally, but the connection is only effective after you
have saved, or closed the editor.

Removing a broker from a collective

You can remove a broker from a collective using either the Message Broker Toolkit
or the Configuration Manager Proxy Java API. This topic describes how to use the
Message Broker Toolkit.

For information about how to use the Configuration Manager Proxy (CMP), see
Developing applications using the CMP|and [Class|
com.ibm.broker.config.proxy.CollectiveProxy}

To following steps show you how to remove a broker from a collective.
1. Switch to the Broker Administration perspective.

2. In the Domains view, expand the appropriate broker domain.

3. Double-click the Topology item to open the Broker Topology Editor.
4. Right-click the connection that you want to delete and select Delete.

Setting up a multicast broker

Set up a multicast broker either by using the workbench or by using the
Configuration Manager Proxy Java APL This topic describes how to use the
workbench.

Before you can use multicast, you must define the topics that are capable of being
multicast. See [‘Making topics multicast” on page 290,

For information about how to use the Configuration Manager Proxy (CMP), see
Developing applications that use the Configuration Manager Proxy API|and [Class|
com.ibm.broker.config.proxy.BrokerProxy.MulticastParameterSet|

To enable a broker to handle multicast requests:
1. Switch to the Broker Administration perspective.
2. In the Domains view, expand the appropriate broker domain.
3. Double-click the Topology item to open the Broker Topology editor.

284 Configuration, Administration, and Security

. In the Broker Topology editor, right-click the broker that you want to modify,
and select Properties.

. In the left pane of the properties window, select Multicast.

. Select Multicast Enabled.

. Select Multicast IPv6 Support Enabled if you want to use IPv6. If you do not
select Multicast IPv6 Support Enabled, the IPv6 properties are not available.

. Optional: Modify the following properties; any properties that are not
modified take the default value.

IPv4 Minimum Address
The lowest IPv4 address that the broker can use for its multicast
transmissions.

This address must be in the range 224.0.0.0 through 239.255.255.255
The default value is 239.255.0.0

IPv4 Maximum Address
The highest IPv4 address that the broker can use for its multicast
transmissions.

This address must be in the range 224.0.0.0 through 239.255.255.255
and must not be lower than the value of the Minimum Address.

The default value is 239.255.255.255

IPv4 Broker Network Interface
The name of the network interface over which multicast packets are
transmitted. This name is relevant only when the broker is running on
a host with more than one network interface.

This name can be a host name or an IPv4 address.

The default value is None. If you select the default value, the network
interface used is operating system dependent.

IPv6 Minimum Address
The lowest IPv6 address that the broker can use for its multicast
transmissions.

This address must be in the range £f02:0:0:0:0:0:0:1 through
£02:£EEf:£EEE-FEEEFEEF:CEEEFEFF FEFF

The default value is £f02:0:0:0:0:0:0:1

IPv6 Maximum Address
The highest IPv6 address that the broker can use for its multicast
transmissions.

This address must be in the range £f02:0:0:0:0:0:0:1 through
02 fEff- FEEE- FEEE-FECE-CEEE-£EEF.£fff and must not be lower than the value of
the Minimum Address.

The default value is ff02:ffff:ffff. ffff: feff - fE£f: fEFFEff

IPv6 Broker Network Interface
The name of the network interface over which multicast packets are
transmitted. This name is relevant only when the broker is running on
a host with more than one network interface.

This name can be a host name or an IPv6 address.
The default value is None. If you select the default value, the network

interface used is operating system dependent.

Configuring WebSphere Message Broker 285

Protocol Type
The multicast protocol type.

Valid values are PTL, PGM/IP, and UDP encapsulated PGM.
The default value is PTL.

For more information, see [“Multicast protocol types” on page 290

Data Port
The UDP data port through which multicast packets are sent and
received.

The default value is 34343.

Broker Packet Size
The size, in bytes, of multicast packets.

This size must be in the range 500 through 32000.
The default value is 7000.

Broker Heartbeat Timeout
The broker sends a control packet periodically, approximately every
second, to each client. This packet is used to send control information,
and to keep the heartbeat. The heartbeat timeout value is made
known to the clients to help the clients detect a transmitter or network
failure. If a control packet does not arrive within a number, defined as
twice the value specified by this property, of seconds of the previous
control packet's arrival, a client can suspect that there has been a
transmitter failure or a network failure.

The default value is 20.

Broker Multicast TTL
The maximum number of hops that a multicast packet can make
between the client and the broker. This value is one more than the
maximum number of routers that there can be between the client and
the broker.

The default value is 1, indicating that the multicast packet must
remain local to its originator and does not pass through any routers.
The maximum value is 255.

Do not use a value of 0. In some operating systems using a value of 0
might prevent messages from being received, but in other operating
systems (for example, Windows 2003, Windows XP, and Linux), a
value of 0 does not have this effect.

Overlapping Multicast Topic Behavior
Valid values are Accept, Reject, or Revert.

The default value is Accept.

The Overlapping Multicast Topic Behavior property controls the behavior
of the broker when a client requests a multicast subscription for a
topic that is part of a topic hierarchy containing topics that are
explicitly disabled for multicast.

For example, consider a topic hierarchy where multicast is a topic
with two child topics, xxx that is enabled for multicast, and yyy that is
not enabled for multicast.

The three possible settings are:

Accept
The default value. A matching multicast subscription is

286 Configuration, Administration, and Security

Reject

Revert

accepted and all publications matching the topic, except those
that are specifically excluded, are multicast. In the preceding
example, a multicast subscription to multicast/# receives
messages published on xxx over multicast, but does not
receive any messages published on yyy.

A multicast subscription to a topic with child topics that are
disabled for Multicast is rejected by the broker. Subscriptions
to multicast/# are rejected.

Subscriptions to a topic that is disabled for multicast, or has
child topics that are disabled for multicast, result in unicast
transmission. A multicast subscription to multicast/# receives
messages published on xxx and yyy, but the messages are sent
unicast rather than multicast.

Maximum Key Age
The maximum age, in minutes, of a topic encryption key before it
must be redefined.

The default value is 360.

Optional: In the left pane of the properties window, expand Multicast and
click Advanced. You can now modify the following additional properties:

Broker Transmission Rate Limit Activation
Use the Broker Transmission Rate Limit Activation property in
conjunction with Broker Transmission Rate Limit Value to control
network congestion. Select one of the following values from the menu:

Disabled

Static

The default value. Multicast data is transmitted as fast as
possible. If the rate at which messages are submitted to be
multicast exceeds the server or network limits (that is, the
speed of Ethernet or the host CPU becomes the bottleneck),
these limits define the maximum transmission rate, and
message submissions are stopped until all previously
submitted messages have been sent.

The transmission rate is limited by the value that is specified
in Broker Transmission Rate Limit Value.

If you select Static, you can also select a value for the property
Broker Transmission Rate Limit Value.

Dynamic

The limit on the transmission rate can vary during run time,
depending on congestion conditions and data losses reported
by clients. However, the rate never exceeds the Broker
Transmission Rate Limit Value.

Broker Transmission Rate Limit Value
Limits the overall transmission rate, in kilobits per second, of
multicast packets. This parameter is effective only if the Broker
Transmission Rate Limit Activation property is Static. This property must
not exceed the capabilities of the server or network.

This value must be in the range 10 through 1000000.

Client NACK Back Off Time
The maximum time, in milliseconds, that a client listens for another
clients NACKSs before sending its own NACK.

Configuring WebSphere Message Broker 287

This value must be in the range 0 through 1000.
The default value is 100.

Client NACK Check Period
The time, in milliseconds, between periodic checks of reception status
and sequence gap detection for NACK building.

This value must be in the range 10 through 1000.
The default value is 300.

Client Packet Buffer Number
The number of memory buffers that are created at startup for packet
reception. Having a high number of buffers available improves the
reception performance and minimizes packet loss at high delivery
rates, but requires increased memory use. Each buffer is 33 KB; The
default value of 500 buffers uses approximately 15 MB of main
memory.

If memory use is important, try using different values for this
property and look at the effect on the overall performance of your
application when transmission rates are high.

This value must be in the range 1 through 5000.
The default value is 500.

Client Socket Buffer Size
The size, in kilobytes, of the client's socket receiver buffer. Increasing
this value reduces the number of data packets that might be dropped
by the client receiver.

This value must be in the range 65 through 10000.
The default value is 3000.

Broker History Cleaning Time
The time, in seconds, that is defined for cleaning the retransmission
buffer.

This value must be in the range 1 through 20.
The default value is 7.
This property is not used in Version 6.0.

Broker Minimal History Size
The minimum size, in kilobytes, of a buffer that is allocated to archive
all transmitted packets. This buffer is shared by all reliable topics, and
can be used to recover lost packets.

This value must be in the range 1000 through 1000000.
The default value is 60000.

Broker NACK Accumulation Time
The time, in milliseconds, that NACKSs are aggregated in the broker
before recovered packets are sent.

This value must be in the range 50 through 1000.
The default value is 500.

Maximum Client Memory Size
The maximum amount of memory, in kilobytes, that can be used by
reception buffers in the client.

288 Configuration, Administration, and Security

This property is applicable only to PGM multicast protocols.
The default value is 262144 which represents 256 MB.

Important: Be aware that by increasing the value of a property, for example
Broker Minimal History Size, you increase the amount of memory
that is required by the Java Virtual Machine (JVM). This increase
might cause a JUM Out of Memory error when a subscription to the
broker is attempted for the first time after this change. If this error
occurs, either increase your JVM heap size, or reduce the value of
the property (for example, Broker Minimal History Size) that you
have just increased.

10. Click OK.
11. Restart the broker for the changes that you have made to take effect.

The preferred way to change the broker's multicast configuration is to use the
workbench. However, you can also use the mgsichangeproperties command to
change the broker's properties dynamically for the current environment. The
change does not persist after a restart.

Warning: Any changes to the broker configuration that you make using the
mgsichangeproperties command do not persist. The changes are overwritten with
the configuration that is held in the Configuration Manager whenever the broker
configuration is deployed, the broker is restarted, or an execution group is
restarted.

The following table relates the preceding properties to the corresponding names of
the parameters on the mgsichangeproperties command that support multicast. For
full details of this command, see the [‘mgsichangeproperties command” on page|

Property name

Multicast Enabled

IPv4 Minimum Address

IPv4 Maximum Address

IPv4 Broker Network Interface
Multicast IPv6 Support Enabled
[Pv6 Minimum Address

IPv6 Maximum Address

IPv6 Broker Network Interface

mgqsichangeproperties parameter

multicastEnabled

multicastMinimumIPv4Address

multicastMaximumIPv4Address

multicastMulticastInterface

Not required

multicastMinimumIPv6Address

multicastMaximumIPv6Address

multicastMulticastInterface

Protocol Type multicastProtocol Type

Data Port
Broker Packet Size

multicastDataPort

multicastPacketSizeBytes

Broker Heartbeat Timeout

multicastHeartbeatTimeoutSec

Broker Multicast TTL

multicastMCastSocketTTL

Overlapping Multicast Topic Behavior

multicastOverlappingTopicBehavior

Maximum Key Age

multicastMaxKeyAge

Broker Transmission Rate Limit Activation

multicastLimitTransRate

Broker Transmission Rate Limit Value

multicastTransRateLimitKbps

Client NACK Back Off Time

multicastBackoffTimeMillis

Configuring WebSphere Message Broker

289

Property name mgqsichangeproperties parameter

Client NACK Check Period multicastNackCheckPeriodMillis
Client Packet Buffer Number multicastPacketBuffers

Client Socket Buffer Size multicastSocketBufferSizeKbytes
Broker History Cleaning Time (deprecated in | Not applicable

V6)

Broker Minimal History Size multicastMinimalHistoryKBytes
Broker NACK Accumulation Time multicastNackAccumulationTimeMillis
Maximum Client Memory Size, multicastMaxMemoryAllowedKBytes

To enable multicast for the broker WBRK_BROKER use the following command:

mqsichangeproperties WBRK_BROKER -o DynamicSubscriptionEngine -n multicastEnabled -v true

This command enables the broker for multicast, but does not change any other
properties of the broker.

To enable multicast for the broker WBRK_BROKER, and to restrict the transmission
rate to 50 000 kilobits per second, use the following command:

mgsichangeproperties WBRK BROKER -o DynamicSubscriptionEngine -n multicastEnabled,
multicastLimitTransRate,multicastTransRateLimitKbps -v true,Static,50000

None of the other properties of the broker are changed.
Use commas to separate the properties that are being changed, and their values.
For the changes to be effective, restart the broker.

Multicast protocol types: WebSphere Message Broker supports two different
types of multicast protocol:

* PTL (Packet Transfer Layer)
¢ PGM (PGM/IP and PGM UDP encapsulated)

PTL provides compatibility with WebSphere Business Integration Message Broker
Version 5.0, where it is the only multicast protocol that is supported. For new
multicast deployments, use one of the two PGM multicast protocols.

The broker supports two implementations of the PGM multicast protocol, PGM/IP

and PGM UDP encapsulated. The complexity of your network topology affects

which option you choose:

¢ If your network topology consists of two or more subnets with many receiver
clients in each subnet, use PGM/IP. PGM/IP takes advantage of PGM router
assist support.

* For a simpler network topology, use the PGM UDP encapsulated
implementation, which does not use PGM router assist.

Important: To use PGM/IP, both the broker and the client applications must run
with superuser authority. Because of the security risks that are
associated with running with superuser authority, do not run any other
work on the broker.

Making topics multicast:

290 Configuration, Administration, and Security

To make individual topics, or groups of topics, capable of being multicast you need
to make changes to the topic hierarchy.

To make changes to the topic hierarchy:

1.

o

9.
10.

11.

Switch to the Broker Administration perspective.

2. In the Domains view, expand the appropriate broker domain.
3.
4. In the Topics Hierarchy editor, right-click the topic, or group of topics, that

Double-click Topics to open the Topics Hierarchy editor.

you want to make capable of being multicast, and select Properties.
In the left panel of the Properties for Topics window, select Multicast.

Select Enabled for the topic root, or child topic root, in the Multicast property
that you want to enable:

For the topic root, the options are either Enabled or Disabled. The default is
Disabled.

For a child topic root, the options are Inherit, Enabled, or Disabled. The
default is Inherit.

Automatic Multicast IPv4 Address is selected by default. If you clear
Automatic Multicast IPv4 Address you must type in the name of the IPv4
MC Group Address. This property is mandatory.

Automatic Multicast IPv6 Address is cleared by default. You can type in the
name of the [Pv6 MC Group Address.

Optional: Select Encrypted.

Select the Quality of Service that you require. The options are Reliable or
Unreliable. The default is Reliable.

Click OK.

Handling high-volume publish/subscribe activity on z/OS:

Brokers that handle large numbers of retained subscriptions or publications can use
up all the IRLM storage that is allocated by default for DB2 locks. Using up all the
IRLM storage might cause problems when you try to restart the broker.

The following actions might prevent you from using up all the IRLM storage and
thereby avoid problems when you try to restart the broker:

1.

2.

Tune the publish/subscribe topology:

a. Balance execution groups across more brokers; by balancing execution
groups across more brokers, you cause fewer execution groups to require to
start at the same time and to have concurrent locks for the same DB2
subsystem.

b. Put the brokers in publish/subscribe collectives; by putting the brokers in
collectives, you reduce the number of subscriptions in a single broker table,
and also reduce the amount of concurrent access to DB2. See
[“Publish /subscribe topologies” on page 278| for more information.

Increase the IRLM storage that is available:

a. Set the value of MAXCSA so high that the ECSA that is required by the
IRLM never reaches this value. Because IRLM gets storage only when it
needs it, choose a value that is higher than you expect IRLM to require.

b. If you are unable to choose a value of MAXCSA that is sufficiently high that
it cannot be exceeded by the ECSA that is required by the IRLM, use the
option PC=YES on the START irlmproc command. By using this option, you
cause the IRLM to place in its private address space the control block

Configuring WebSphere Message Broker 291

structures that relate to locking. See the [DB2 Information Center (z/OS)|
(Versions 8 and 9) for more information.

Note: There might be a slight (approximately 1 to 2 percent) performance
degradation when you use the PC=YES option on the START irlmproc
command.

Setting up cloned brokers

Each broker that is to be cloned with other brokers must be told which brokers are
to be its clones.

J Vindows | BITEN To set up three brokers (brokerl with queue
manager QM1, broker2 with queue manager QM2, and broker3 with queue
manager QM3) to be clones of each other, as shown in the diagram below, use
the mgsichangeproperties command for each of the brokers:

1. mgsichangeproperties brokerl -e default -o DynamicSubscriptionEngine
-n clonedPubSubBrokerList -v \"broker2,QM2,broker3,QM3\"

2. mgsichangeproperties broker2 -e default -o DynamicSubscriptionEngine
-n clonedPubSubBrokerList -v \"brokerl,QM1,broker3,QM3\"

3. mgsichangeproperties broker3 -e default -o DynamicSubscriptionEngine
-n clonedPubSubBrokerList -v \"brokerl,QM1,broker2,QM2\"

. To set up three brokers (brokerl with queue manager QM1, broker2
with queue manager QM2, and broker3 with queue manager QM3) to be clones
of each other, as shown in the diagram below, use the mqsichangeproperties
command for each of the brokers:

1. mgsichangeproperties brokerl -e default -o DynamicSubscriptionEngine
-n clonedPubSubBrokerList -v "broker2,QM2,broker3,QM3"

2. mgsichangeproperties broker2 -e default -o DynamicSubscriptionEngine
-n clonedPubSubBrokerList -v "brokerl,QM1,broker3,QM3"

3. mgsichangeproperties broker3 -e default -o DynamicSubscriptionEngine
-n clonedPubSubBrokerList -v "brokerl,QM1,broker2,QM2"

Broker 1,
QM1

Broker 2, Broker 3,
QM2 QM3

A
h 4

Adding a cloned broker

To add a broker to a set of cloned brokers, use the mqsichangeproperties
command to define the brokers that are its clones, and to tell each of the other
brokers that it has a new clone.

S Windows BIT®N To add broker4 (with queue manager QM4) to a
set of three cloned brokers (brokerl with queue manager QM1, broker2 with
queue manager QM2, and broker3 with queue manager QM3), use the following
mgqsichangeproperties commands:

292 Configuration, Administration, and Security

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp

1.

2.

3.

4.

mqgsichangeproperties broker4 -e default -o DynamicSubscriptionEngine
-n clonedPubSubBrokerList -v \"brokerl,QM1,broker2,QM2,broker3,QM3\"

mgsichangeproperties brokerl -e default -o DynamicSubscriptionEngine
-n clonedPubSubBrokerList -v \"+broker4,QM4\"
mqgsichangeproperties broker2 -e default -o DynamicSubscriptionEngine
-n clonedPubSubBrokerList -v \"+broker4,QM4\"

mgsichangeproperties broker3 -e default -o DynamicSubscriptionEngine
-n clonedPubSubBrokerList -v \"+broker4,QM4\"

. To add broker4 (with queue manager QM4) to a set of three cloned
brokers (brokerl with queue manager QM1, broker2 with queue manager QM2,
and broker3 with queue manager QM3), use the following
mgqsichangeproperties commands:

1.

2.

mqgsichangeproperties broker4 -e default -o DynamicSubscriptionEngine
-n clonedPubSubBrokerList -v "brokerl,QM1,broker2,QM2,broker3,QM3"

mgsichangeproperties brokerl -e default -o DynamicSubscriptionEngine
-n clonedPubSubBrokerList -v "+broker4,QM4"

mgsichangeproperties broker2 -e default -o DynamicSubscriptionEngine
-n clonedPubSubBrokerList -v "+broker4,QM4"

mgsichangeproperties broker3 -e default -o DynamicSubscriptionEngine
-n clonedPubSubBrokerList -v "+broker4,QM4"

Deleting a cloned broker

To delete a broker from a set of cloned brokers, use the mqsichangeproperties
command to delete the brokers that were its clones, and to tell each of the other
brokers that one of its clones has been deleted.

| Windows | PT3N To delete broker3 from a set of three cloned
brokers (brokerl with queue manager QM1, broker2 with queue manager QM2,
and broker3 with queue manager QM3), as shown in the diagram below, use the
following mgqsichangeproperties commands:

1.

2.

3.

mgsichangeproperties brokerl -e default -o DynamicSubscriptionEngine
-n clonedPubSubBrokerList -v \"-broker3\"

mgsichangeproperties broker2 -e default -o DynamicSubscriptionEngine
-n clonedPubSubBrokerList -v \"-broker3\"

mgsichangeproperties broker3 -e default -o DynamicSubscriptionEngine
-n clonedPubSubBrokerList -v \"\"

To delete broker3 from a set of three cloned brokers (brokerl with
queue manager QM1, broker2 with queue manager QM2, and broker3 with
queue manager QM3), as shown in the diagram below, use the following
mgqsichangeproperties commands:

1.

2.

mgsichangeproperties brokerl -e default -o DynamicSubscriptionEngine
-n clonedPubSubBrokerList -v "-broker3"

mgsichangeproperties broker2 -e default -o DynamicSubscriptionEngine
-n clonedPubSubBrokerList -v "-broker3"

mgsichangeproperties broker3 -e default -o DynamicSubscriptionEngine
-n clonedPubSubBrokerList -v ""

Configuring WebSphere Message Broker 293

Broker 1,
QM1

Broker 2,
QM2

Operating a publish/subscribe domain

After you have set up your publish/subscribe broker domain, you might want to
create or delete topics, or view the current status of your subscriptions.

For information about how to do this, refer to the following topics:

+ [“Adding a new topic”|

* |“Deleting a topic” on page 295|

* [“Querying subscriptions” on page 295|

Adding a new topic
You can define a new topic explicitly by using either the Message Broker Toolkit or
the Configuration Manager Proxy Java APL

This topic describes how to use the Message Broker Toolkit. For information about
how to use the Configuration Manager Proxy (CMP), see [Developing applications|
[using the CMP|and [Class com.ibm.broker.config.proxy.TopicProxy]

You can define a new topic implicitly by sending to the message broker a Publish
command that specifies the new topic.

However, to define a new topic explicitly, do the following:

Switch to the Broker Administration perspective.

In the Domains view, expand the appropriate broker domain.
Double-click on the Topics item to open the Topics Hierarchy editor.

PO Dd -

Right-click Topics in the topics hierarchy that is displayed by the Topics
Hierarchy Editor.

5. From the menu shown, click Create Topic; a topic window opens that shows
the topic hierarchy.

6. In the topic hierarchy, select the topic that you want to be the parent topic of
the topic that you are creating. In the lower pane of the topic window, type
the name of your new topic.

7. Click Next; the next wizard page opens. The pane on the left of this window
shows all the principals (groups and users) that are defined.

8. Select the groups and users that you want to relate to your new topic and
click the> icon between the two panes of the window; the pane on the right of
the window is updated with the groups and users that you have chosen.

9. For each principal selected in the right-hand pane, you can set Publish,
Subscribe, and Persistent attributes by choosing a value from the
corresponding list.

294 Configuration, Administration, and Security

By selecting more than one principal, you can choose values for a set of
principals.

10. Click Finish to insert the topic into the topic hierarchy and update the access
control list (ACL) for the topic. The ACL is in a table with four columns that
are entitled Principal, Publish, Subscribe, and Persistent. The rows of the table
show the properties of each principal that is relevant to the topic.

The topic is created locally, but the change is not effective until you have
saved or closed the editor.

When saving or closing the editor, you might be prompted to deploy the new
topics hierarchy or the deployment might be automatic, depending on the
Perform topics deploy after change preference.

Deleting a topic
You can delete a topic by using either the Message Broker Toolkit or the
Configuration Manager Proxy Java APIL

This topic describes how to use the Message Broker Toolkit. For information about
how to use the Configuration Manager Proxy (CMP), see [Developing applications|
[using the CMP|and |Class com.ibm.broker.config.proxy.TopicProxy}

To delete a topic:

1. Switch to the Broker Administration perspective.

2. In the Domains view, expand the appropriate broker domain.
3. Double-click Topics to open the Topics Hierarchy Editor.
4

. In the Topics Hierarchy editor, right-click the topic that you want to delete, and
select Delete; alternatively, select the topic that you want to delete and press
the Delete key, or select Delete from the Edit menu.

The topic is deleted locally, but the delete is not effective until you do a save.

Querying subscriptions
You can query a subscription by using either the Message Broker Toolkit or the
Configuration Manager Proxy Java APL

This topic describes how to use the Message Broker Toolkit. For information about
how to use the Configuration Manager Proxy (CMP), see [Developing applications|
[using the CMP|and |Class com.ibm.broker.config.proxy.TopicProxy]

To query a subscription:
1. Switch to the Broker Administration perspective.

2. In the Domains view, click Subscriptions from the list of domain objects
shown; the Subscriptions Query Editor opens in the workbench.

You can also open the editor by double-clicking the Subscriptions item in the
tree, or by right-clicking the Subscriptions item and clicking Open, or by
clicking the Subscriptions item and clicking Enter.

3. Fill in the fields that are required to generate your subscriptions query.
To generate your query, you might not need to fill in all the fields shown.

4. Click Query. The results of your query are displayed in the lower part of the
edit window.

Configuring WebSphere Message Broker 295

Configuring global coordination of transactions (two-phase commit)

Globally coordinate message flow transactions with a transaction manager to
ensure the data integrity of transactions. On distributed systems, the WebSphere
MQ queue manager that is associated with the broker performs the transaction
manager role.

Before you start:

Read [Message flow transactions| to understand how the broker handles
transactions. Depending on the external resource managers that the broker will
access during the processing of its deployed message flows, you must complete the
appropriate resource-dependent set of tasks to ensure that all resources are

configured correctly. For example, you might have to |create and configure|

You, or your message flow developer, must also ensure that the message flows
deployed to the broker are set up to support coordination. The tasks involved in
configuring the message flows correctly are described in
[transactionality for message flows|

You can access the following external resources in a message flow transaction:
¢ WebSphere MQ queues and messages

¢ Databases

* JMS providers

On distributed platforms, the default behavior of the broker is to manage all
message flow transactions by using a one-phase commit approach. In many
contexts this approach is sufficient, but if your business requires assured data
integrity and consistency (for example, for audit reasons, or for financial
transactions), you can configure the broker and its WebSphere MQ queue manager
to manage the message flow transactions in a two-stage commit approach, by
using the XA protocol standard.

You configure the WebSphere MQ queue manager by updating its qm.ini file, to
add definitions of the additional resource managers with which you want
WebSphere MQ to coordinate updates.

On z/0S, all transactions are globally coordinated by Resource Recovery
Service (RRS), therefore the instructions in this topic do not apply. However, you

must ensure that RRS is available; see [“Resource Recovery Service planning onl|
[z/OS” on page 180

To configure your system for global coordination of transactions:

1. If your message flows access external resources, and those resources can
participate in coordinated transactions, ensure that those resources are
configured for global coordination. For example, if your message flows access
databases, see [“Configuring databases for global coordination of transactions”]

|on page 135.|

Tasks for other resources depend on the resource manager; see the appropriate
documentation for further information.

2. Configure the broker environment so that the broker queue manager
coordinates transactions. The steps to configure the broker environment depend
on the database manager that you are using and, if your databases are

296 Configuration, Administration, and Security

connected with ODBC, whether the broker queue manager and the execution
group are 32-bit or 64-bit. (JDBC connections are not dependent on 32-bit or
64-bit.)

If you are using shared memory to connect directly to a 64-bit database
instance, you must use a 64-bit queue manager to globally coordinate
transactions (all WebSphere MQ Version 6 queue managers on 64-bit platforms
are 64-bit). A 32-bit queue manager cannot connect directly to a 64-bit database
instance.

+ |[“Configuring global coordination with DB2 by using a 32-bit queue|
manager” on page 300|

+ [“Configuring global coordination with DB2 by using a 64-bit queue]
manager” on page 303|

+ [“Configuring global coordination with Informix by using a 32-bit queue
manager” on page 306|

* [“Configuring global coordination with Informix by using a 64-bit queue]
manager” on page 308

+ |[“Configuring global coordination with Oracle by using a 32-bit queue
manager” on page 311

+ [“Configuring global coordination with Oracle by using a 64-bit queue]
manager” on page 315|

+ [“Configuring global coordination with Sybase” on page 318§|

When you have completed these steps, your message flows are processed by using
global coordination, which is managed by the queue manager.

You must complete all the steps correctly; if you do not, global coordination will
not work.

For an example of how you can use WebSphere MQ to globally coordinate
transactions, look at the following sample:

.

You can view samples only when you use the information center that is integrated
with the Message Broker Toolkit.

The transactional model

The transactional model describes the way in which you can use transactions in
message flows to accomplish certain tasks and results.

A message flow consists of the following constituent parts:

* An input source

* The message flow or logic, which is defined by a sequence of nodes
* Zero or more external resources that are accessed during the flow

¢ Zero or more output targets

The following steps represent a typical sequence of events in the message flow
transaction:

1. A message is taken from the input source; for example, a queue.

2. Data is read from or written to one or more external resources; for example, a
database.

3. A message is sent to an output target; for example, a queue.

Configuring WebSphere Message Broker 297

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.errorhandler.doc/doc/overview.htm

4. The system quiesces and waits for the next input message.

During this sequence of events, the state of the data in the system changes,
regardless of the number of external resources that the message flow accesses, and
whether it generates an output message.

Consider the following diagram:

----- X=========X===X=======X==m=mmmmm—mm = X=m == X—m ===
1 2 3 4 5 6

The line represents the data in the system as time passes. At time 1, a message
arrives and is taken from the input source. At times 2, 3, 4, and 5, data is used to
update external resources; for example, a database table or an output queue.
Changes in the state of the data are indicated in the diagram by the x symbol. At
time 6, the output messages are sent and the system is inactive. Between these
events, the state of the data does not change; this state is indicated in the diagram
by the = symbol.

If a failure occurs on the system (for example, a loss of power to the computer on
which the broker is running), the changes to the state of external resources that
were made before the failure have been implemented, but no more changes take
place after the failure. This situation is unacceptable in certain circumstances; for
example, if a system failure occurs when making a payment from a current
account to a mortgage account, the payment might be taken from the current
account, but it is not added to the mortgage account.

Transactions

To avoid the problem that is described previously, the broker and the external
resource managers with which it works, have a transactional model. The broker
starts a transaction when data is received by an input node in the message flow,
and completes when the processing on that data is finished. For more details about
message flow transactions, see [Message flow transactions}

As processing proceeds in a transaction, additional data is recorded that allows the
original state to be restored in the event of a failure. The following diagram
illustrates the state of this extra data:

————— X=========K==s=x==s==sss=syxsssssssssssssx=sssXe-o--
1 2 3 4 5 6

The line in the diagram represents the extra data in the system as time passes. At
time 1, input data arrives from the input source; for example, a queue. Before time
1, no extra data exists in the system; this state is indicated in the diagram by the -
symbol. After time 1, the state represents the fact that data has been received from
the input source, so that it can be restored, if necessary. At times 2, 3, 4, and 5, data
is used to update external resources such as databases or files. Again, the state of
the extra data changes so that the changes to those external resources can be
undone, if necessary. At time 6, the output messages are sent, the system is
inactive, and extra data in the system no longer exists.

Between these events, the state of the extra data does not change; this state is
indicated by the = symbol. If a failure occurs between time 1 and time 6, the extra
data is used to restore the original state of the data held by the external resources.
Therefore, effectively, no output data has been written to the output target, none of
the external resources have been updated, and the input data has not been

298 Configuration, Administration, and Security

received from the input source. If no failure occurs, the changes become permanent
at time 6 (an undo operation that follows a subsequent failure will not undo the
changes).

This mode of operation is known as coordinated transaction mode. The successful
completion of a transaction is known as its commit. Unsuccessful completion is
known as rollback.

Uncoordinated auxiliary transactions

The key feature of the coordinated transaction mode of operation is that, regardless
of where or when the failure appears, either all of the changes to external resources
that are associated with one input message are made, or none of the changes are
made. However, this behavior is not always suitable, as the following examples
illustrate:

* You want to create an audit log of all attempts at processing. The log entries
must be committed, even when updates to other resources are rolled back.

* You want to send an acknowledgment or non-acknowledgment message back to
the originator of the messages that you are processing, according to whether the
message processing succeeds or fails. These messages must be sent even when
the updates to other resources are rolled back.

If your message flows have requirements like these, you can configure message
flows to change one or more resources in a separate, or auxiliary, transaction. Not
all resource managers support this type of transaction.

For some resources, an auxiliary transaction is automatically started; for example,
each database connection starts a transaction that is specific to that database, and
all updates made in that transaction can be committed or rolled back.

The behavior of an auxiliary transaction is shown in the following diagram:

MAIN ----- X=========x===K======s)=sss=ssssssssX=sssK-----
1 2 4 5 8 9

Ist AUX --==—=—==—==-= X======)========Kemmeea=
3 6 7

The MAIN line represents the main transaction, which includes the extra data that
is recorded to restore the original state if necessary. The 1st AUX line represents an
auxiliary transaction. At time 3, an external resource is updated, and another
update is made at time 6. At time 7, the message flow determines that all the
changes that must be made under the auxiliary transaction are complete, and it
commits the changes.

If the message flow fails before time 7, the state of the system would be unchanged
because both transactions would be rolled back. If failure occurs after time 7 but
before time 9, the auxiliary transaction would already have been committed.
However, the main transaction would be rolled back. If a failure has not occurred
by time 9, both transactions are committed.

Database auxiliary transactions

You can use more than one auxiliary transaction, and make a number of updates
to database tables that can be committed or rolled back. You can then make
additional changes to the same database tables, or to different tables, then commit
or rollback these changes.

Configuring WebSphere Message Broker 299

Each database that you use has its own auxiliary transaction; therefore, if the
message flow updates tables that belong to different database instances (different
data source names), an auxiliary transaction exists for each database. You can
optionally commit or roll back these auxiliary transactions individually. Updates
that have not been committed or rolled back when the message flow completes (at
time 9 in the example shown previously) are committed or rolled back
automatically by the broker, according to whether the processing succeeded or
failed.

Some databases types, such as DB2 on AIX, do not allow both coordinated and
uncoordinated transactions in the same database instance. In these cases, you must
create separate database instances. Configure one database instance for coordinated
transactions, and configure the second instance for uncoordinated transactions.

Use the ESQL COMMIT and ROLLBACK statements to commit and roll back
auxiliary database transactions. Obtain operations outside the main transaction by
specifying the UNCOORDINATED keyword on the individual database statements
(for example, the INSERT and UPDATE statements).

Queue auxiliary transactions

Not all queuing systems have the database capability that is described in the
previous section. With WebSphere MQ, each individual uncoordinated read or
write operation to a queue has an implied commit action. Therefore, you cannot
put two messages, then decide to commit both or roll back both. The COMMIT
and ROLLBACK statements therefore operate only on databases.

Nodes

The previous sections refer to message flows, but not to nodes. The way in which a
message flow is divided into nodes has no effect on transactions. For operations on
databases, an unlimited number of nodes can make updates to the main
transaction, and to an unlimited number of auxiliary transactions, without
restriction.

Configuring global coordination with DB2 by using a 32-bit
queue manager

Configure your broker environment to globally coordinate message flow
transactions with updates in DB2 databases under the control of a 32-bit queue
manager.

Before you start:
* Ensure that the databases are configured for global coordination of transactions;
see [“Configuring databases for global coordination of transactions” on page 135

All WebSphere MQ Version 7 and Version 6 queue managers on 32-bit platforms
run in 32-bit mode. 32-bit queue managers can coordinate transactions only in
32-bit mode and can coordinate message flows that are deployed only to 32-bit
execution groups.

To configure your broker environment for global coordination by using a 32-bit
queue manager as the transaction manager:

1. Decide whether the broker will connect to databases by using TCP/IP or
shared memory.

For more information about TCP/IP connections, see the example in the section
about message SQL1224N in [Resolving problems when using databases]

To enable shared memory:

300 Configuration, Administration, and Security

a. Stop the broker by running the following command, where broker is the
name of your broker:

mgsistop broker

b. Run the following command to ensure that the broker is run in an
environment with the extended memory variable exported:
export EXTSHM=0ON

C. Restart the broker by running the following command, where broker is the
name of your broker:
mgsistart broker

d. On the DB2 server, ensure that shared memory support is turned on. For

more information, see [“Configuring databases for global coordination of|
[transactions” on page 135

On Linux on x86, run the mgsimanagexalinks command.

Configure the broker queue manager with XA resource manager information
for each database that is involved in the transaction that the queue manager
will globally coordinate. If the message flows reference message dictionaries, or
contain Publication nodes, you must use the same method to define XA
resource manager information for the broker database and for the user
databases.

On Linux on x86:

a. Open the queue manager's qm.ini file in a text editor. The gm.ini file is
located at /var/mgm/qmgrs/queue_manager_name/qm.ini, where
queue_manager_name is the name of the queue manager that is associated
with the broker.

b. At the end of the gm.ini file, paste the following stanza:

XAResourceManager:
Name=DB2
SwitchFile=install_dir/sample/xatm/db2swit
XAOpenString=db=MyDataSource ,uid=MyUserId,pwd=MyPassword,toc=t
XACloseString=
ThreadOfControl=THREAD
€. On the SwitchFile line of the stanza, replace install_dir with the full path to
the installation location of the WebSphere Message Broker instance.

The switch file is supplied by WebSphere Message Broker.
d. On the XAOpenString line, replace the following values with values that
are appropriate for your configuration:

* MyDataSource is the name of the data source to which you want to
connect.

* MyUserld must be the user name that the broker uses to connect to the
database.

You can define the user name that the broker uses in a number of ways;
make sure that you specify the correct name in this file. The broker
determines the user name by checking the following conditions in the
order listed:

1) A specific user name and password for this data source name (DSN),
that you have defined by running the mgsisetdbparms command.

2) A default user name and password for all DSNs, that you have
defined by specifying the -u parameter on the mgsicreatebroker
command.

3) The broker service user name, which you define with the -i parameter
on the mgsicreatebroker command

Configuring WebSphere Message Broker 301

* MyPassword is the password that is associated with the user name.
e. Accept the default values for all the other lines in the stanza. For example:

XAResourceManager:

Name=DB2

SwitchFile=/opt/mqsi/sample/xatm/db2swit
XAOpenString=db=MYDB,uid=wbrkuid,pwd=wbrkpw,toc=t
XACloseString=

ThreadOfControl=THREAD

NI On Windows:

a. From the Start menu, open WebSphere MQ Explorer.

b. Open the queue manager's Properties dialog box, then open XA resource
managers.

. In the SwitchFile field, enter the full path to the switch file, as shown in the
following example where install_dir is the location in which the broker is
installed:

install_dir\sample\xatm\db2swit.d11

d. In the XAOpenString field, paste the following string:
db=MyDataSource ,uid=MyUserId,pwd=MyPassword,toc=t

e. In the XAOpenString field, replace the values with values that are
appropriate for your configuration:

* MyDataSource is the name of the data source to which you want to
connect.

* MyUserld must be the user name that the broker uses to connect to the

database.

You can define the user name that the broker uses in a number of ways;

make sure that you specify the correct name in this file. The broker

determines the user name by checking the following conditions in the

order listed:

1) A specific user name and password for this data source name (DSN),
that you have defined by running the mgsisetdbparms command.

2) A default user name and password for all DSNs, that you have
defined by specifying the -u parameter on the mgsicreatebroker
command.

3) The broker service user name, which you define with the -i parameter
on the mgsicreatebroker command

* MyPassword is the password that is associated with the user name.

For example:
db=MYDB,uid=wbrkuid,pwd=wbrkpw,toc=t
f. Accept the default values for all the other fields on the page.
4. Stop then restart the queue manager to apply the changes, because gm.ini is
read only while the queue manager is running.
To stop and restart the queue manager, enter the following commands, where
queue_manager_name is the name of the queue manager:

endmgm queue_manager_name

strmgqm queue_manager_name

When the queue manager restarts, check the queue manager log for all
warnings that are associated with the restart. The log files are located in
/var/mqm/qmgrs/queue_manager_name/errors, where queue_manager_name is the
name of the queue manager that you restarted. When the queue manager
restarts successfully, the changes that you made to gm.ini are applied.

302 Configuration, Administration, and Security

DB2 is now configured for global coordination with a 32-bit queue manager
coordinating transactions.

Next: you can deploy globally coordinated message flows to the broker.

Configuring global coordination with DB2 by using a 64-bit
queue manager

Configure your broker environment to globally coordinate message flow
transactions with updates in DB2 databases under the control of a 64-bit queue
manager.

Before you start:
* Ensure that the databases are configured for global coordination of transactions,
see [“Configuring databases for global coordination of transactions” on page 135

All WebSphere MQ Version 7 and Version 6 queue managers on 64-bit platforms
run in 64-bit mode. 64-bit queue managers can coordinate transactions only in
64-bit mode. If the broker uses a 64-bit queue manager, you can globally
coordinate message flows that are deployed to either 64-bit or 32-bit execution
groups, but if you are using 32-bit execution groups, you must define the data
source name of the user database in both odbc32.ini and odbc64.1ini. If the broker
uses a 64-bit queue manager, or has a 64-bit execution group, the databases to
which the broker connects must also be 64-bit mode.

To configure your broker environment for global coordination by using a 64-bit
queue manager as the transaction manager:

Follow the instructions appropriate to your execution groups:

+ [“32-bit execution groups’]

* [“64-bit execution groups” on page 304

32-bit execution groups

To configure the broker's queue manager to coordinate message flows that are
deployed to a 32-bit execution group:

1. BIT@N On Linux (except Linux on x86) and UNIX systems, run
the mgsimanagexalinks command.

2. Configure the broker queue manager with XA resource manager information
for each database that is involved in the transaction that the queue manager
will globally coordinate. If the message flows reference message dictionaries, or
contain Publication nodes, you must use the same method to define XA
resource manager information for the broker database and for the user
databases.

BIT®N On Linux (except Linux on x86) and UNIX:

a. Open the queue manager's qm.ini file in a text editor. The gm.ini file is
located at /var/mgm/qmgrs/queue_manager _name/qm.ini, where
queue_manager_name is the name of the queue manager that is associated
with the broker.

b. At the end of the gm.ini file, paste the following stanza:

Configuring WebSphere Message Broker 303

XAResourceManager:

Name=DB2

SwitchFile=db2swit

XAOpenString=db=MyDataSource ,uid=MyUserld,pwd=MyPassword,toc=t
XACloseString=

ThreadOfControl=THREAD

The switch file is supplied by WebSphere Message Broker.

c. On the XAOpenString line, replace the following values with values that
are appropriate for your configuration:

* MyDataSource is the name of the data source to which you want to
connect.

* MpyUserld must be the user name that the broker uses to connect to the
database.

* MyPassword is the password that is associated with the user name.
d. Accept the default values for all the other lines in the stanza. For example:

XAResourceManager:
Name=DB2
SwitchFile=db2swit
XAOpenString=db=MYDB,uid=wbrkuid,pwd=wbrkpw,toc=t
XACloseString=
ThreadOfControl=THREAD
3. Stop then restart the queue manager to apply the changes, because gm.ini is

read only while the queue manager is running.

To stop and restart the queue manager, enter the following commands, where
queue_manager_name is the name of the queue manager:

endmgm queue_manager_name

strmgqm queue_manager_name

When the queue manager restarts, check the queue manager log for all
warnings that are associated with the restart. The log files are located in
/var/mgm/qmgrs/queue_manager_name/errors, where queue_manager_name is the
name of the queue manager that you restarted. When the queue manager
restarts successfully, the changes that you made to gm.1ini are applied.

DB2 is now configured for global coordination with a 64-bit queue manager
coordinating transactions.

Next: you can deploy globally coordinated message flows to the broker.
64-bit execution groups

To configure the broker's queue manager to coordinate message flows that are
deployed to a 64-bit execution group:

1. BTN On Linux (except Linux on x86) and UNIX, run the
mgsimanagexalinks command.

2. Configure the broker queue manager with XA resource manager information
for each database that is involved in the transaction that the queue manager
will globally coordinate. If the message flows reference message dictionaries, or
contain Publication nodes, you must use the same method to define XA
resource manager information for the broker database and for the user
databases.

BIT@N On Linux (except Linux on x86) and UNIX:

304 Configuration, Administration, and Security

a. Open the queue manager's qm.ini file in a text editor. The gm.ini file is
located at /var/mgm/qmgrs/queue_manager _name/qm.ini, where
quene_manager_name is the name of the broker that is associated with the
queue manager.

b. At the end of the gm.ini file, paste the following stanza:

XAResourceManager:

Name=DB2

SwitchFile=db2swit

XAOpenString=db=MyDataSource ,uid=MyUserId,pwd=MyPassword,toc=t
XACloseString=

Thread0fControl=THREAD

The switch file is supplied by WebSphere Message Broker.

c. On the XAOpenString line, replace the following values with values that
are appropriate for your configuration:

* MyDataSource is the name of the data source to which you want to
connect.

* MyUserld must be the user name that the broker uses to connect to the
database.

You can define the user name that the broker uses in a number of ways;
make sure that you specify the correct name in this file. The broker
determines the user name by checking the following conditions in the
order listed:

1) A specific user name and password for this data source name (DSN),
that you have defined by running the mgsisetdbparms command.

2) A default user name and password for all DSNs, that you have
defined by specifying the -u parameter on the mgqsicreatebroker
command.

3) The broker service user name, which you define with the -i parameter
on the mgsicreatebroker command

* MyPassword is the password that is associated with the user name.
d. Accept the default values for all the other lines in the stanza. For example:

XAResourceManager:
Name=DB2
SwitchFile=db2swit
XAOpenString=db=MYDB,uid=wbrkuid,pwd=wbrkpw,toc=t
XACloseString=
ThreadOfControl=THREAD
3. Stop then restart the queue manager to apply the changes, because gm.ini is
read only while the queue manager is running.

To stop and restart the queue manager, enter the following commands, where
queue_manager_name is the name of the queue manager:

endmgm queue_manager_name

strmgm queue_manager_name

When the queue manager restarts, check the queue manager log for all
warnings that are associated with the restart. The log files are located in
/var/mgm/qmgrs/queue_manager_name/errors, where queue_manager_name is the
name of the queue manager that you restarted. When the queue manager
restarts successfully, the changes that you made to gm.1ini are applied.

DB2 is now configured for global coordination with a 64-bit queue manager
coordinating transactions.

Next: you can deploy globally coordinated message flows to the broker.

Configuring WebSphere Message Broker 305

Configuring global coordination with Informix by using a
32-bit queue manager

Configure your broker environment to globally coordinate message flow
transactions with updates in Informix databases under the control of a 32-bit queue
manager.

Before you start:
* Ensure that the databases are configured for global coordination of transactions,
see [“Configuring databases for global coordination of transactions” on page 135

All WebSphere MQ Version 7 and Version 6 queue managers on 32-bit platforms
run in 32-bit mode. 32-bit queue managers can coordinate transactions only in
32-bit mode and can coordinate message flows that are deployed only to 32-bit
execution groups.

To configure your broker environment for global coordination by using a 32-bit
queue manager as the transaction manager:

1. PNTT3N On Linux on x86, Linux on x86-64, and UNIX, run the
mgsimanagexalinks command.

2. Configure the broker queue manager with XA resource manager information
for each database that is involved in the transaction that the queue manager
will globally coordinate. If the message flows reference message dictionaries, or
contain Publication nodes, you must use the same method to define XA
resource manager information for the broker database and for the user
databases.

PTT#E On Linux on x86, Linux on x86-64, and UNIX::

a. Open the queue manager's qm.ini file in a text editor. The gm.ini file is
located at /var/mgm/qmgrs/queue_manager _name/qm.ini, where
queue_manager_name is the name of the queue manager that is associated
with the broker.

b. At the end of the gm.ini file, paste the following stanza:

XAResourceManager:
Name=INFORMIX
SwitchFile=infswit
XAOpenString=DB=MyDatabase\ ; RM=MyResourceManager\
USER=MyUserId\ ; PASSWD=MyPassword
Thread0fControl=PROCESS
c. On the XAOpenString line, replace the following values with values that
are appropriate for your configuration:

* MyDatabase is the name of the database to which you want to connect.
* MyResourceManager is the name of the Informix IDS Server.

* MpyUserld must be the user name that the broker uses to connect to the
database.

You can define the user name that the broker uses in a number of ways;
make sure that you specify the correct name in this file. The broker
determines the user name by checking the following conditions in the
order listed:

1) A specific user name and password for this data source name (DSN),
that you have defined by running the mgsisetdbparms command.

2) A default user name and password for all DSNs, that you have
defined by specifying the -u parameter on the mgqsicreatebroker
command.

306 Configuration, Administration, and Security

3) The broker service user name, which you define with the -i parameter
on the mgsicreatebroker command

* MyPassword is the password that is associated with the user name.
d. Accept the default values for all the other lines in the stanza. For example:

XAResourceManager:

Name=INFORMIX

SwitchFile=infswit

XAOpenString=DB=MYDB\;RM=idsserver\;
USER=wbrkuid\ ; PASSWD=whrkpw

ThreadOfControl=PROCESS

NI On Windows:
a. From the Start menu, open WebSphere MQ Explorer.

b. Open the queue manager's Properties dialog box, then open XA resource
managers.

c. In the SwitchFile field, enter the full path to the switch file, as shown in the
following example, where install_dir is the location in which the broker is
installed:

install_dir\sample\xatm\infswit.d11
d. In the XAOpenString field, paste the following string:

DB=MyDatabase ;RM=MyResourceManager;
USER=MyUserId;PASSWD=MyPassword

e. In the XAOpenString field, replace the values with values that are
appropriate for your configuration:

* MyDatabase is the name of the database to which you want to connect.
* MyResourceManager is the name of the Informix IDS Server.

¢ MyUserld must be the user name that the broker uses to connect to the
database.

* MyPassword is the password that is associated with the user name.

For example:
DB=MYDB;RM=idsserver;USER=wbrkuid;PASSWD=wbrkpw
f. Accept the default values for all the other fields on the page.

3. Stop then restart the queue manager to apply the changes, because gm.ini is
read only while the queue manager is running.
To stop and restart the queue manager, enter the following commands, where
queue_manager_name is the name of the queue manager:
endmgm queue_manager_name
strmqm queue_manager_name
When the queue manager restarts, check the queue manager log for all
warnings that are associated with the restart. The log files are located in
/var/mgm/qmgrs/queue_manager_name/errors, where queue_manager_name is the
name of the queue manager that you restarted. When the queue manager
restarts successfully, the changes that you made to gm.1ini are applied.

Informix is now configured for global coordination with a 32-bit queue manager
coordinating transactions.

Next: you can deploy globally coordinated message flows to the broker.

Configuring WebSphere Message Broker 307

Configuring global coordination with Informix by using a
64-bit queue manager

Configure your broker environment to globally coordinate message flow
transactions with updates in Informix databases under the control of a 64-bit queue
manager.

Before you start:
* Ensure that the databases are configured for global coordination of transactions,
see [“Configuring databases for global coordination of transactions” on page 135

All WebSphere MQ Version 7 and Version 6 queue managers on 64-bit platforms
run in 64-bit mode. 64-bit queue managers can coordinate transactions only in
64-bit mode. If the broker uses a 64-bit queue manager, you can globally
coordinate message flows that are deployed to either 64-bit or 32-bit execution
groups, but if you are using 32-bit execution groups, you must define the data
source name of the user database in both odbc32.1ini and odbc64.ini. If the broker
uses a 64-bit queue manager, or has a 64-bit execution group, the databases to
which the broker connects must also be 64-bit mode.

Follow the appropriate instructions for your execution groups:

+ [“32-bit execution groups’]

* [“64-bit execution groups” on page 309

32-bit execution groups

To configure the broker's queue manager to coordinate message flows that are
deployed to a 32-bit execution group:

1. BITEN On all Linux platforms except Linux on x86, and on UNIX
systems, run the mgsimanagexalinks command.

2. Configure the broker queue manager with XA resource manager information
for each database that is involved in the transaction that the queue manager
will globally coordinate. If the message flows reference message dictionaries, or
contain Publication nodes, you must use the same method to define XA
resource manager information for the broker database and for the user
databases.

M@ On all Linux platforms except Linux on x86, and on UNIX:

a. Open the queue manager's gqm.ini file in a text editor. The gm.ini file is
located at /var/mgm/qmgrs/queue_manager _name/qm.ini, where
queue_manager_name is the name of the broker that is associated with the
queue manager.

b. At the end of the gm.ini file, paste the following stanza:

XAResourceManager:

Name=INFORMIX

SwitchFile=infswit

XAOpenString=db=MyDatabase\ ;RM=MyResourceManager\;
USER=MyUserId\ ; PASSWD=MyPassword

Thread0fControl=PROCESS

The switch file is supplied by WebSphere Message Broker.

c. On the XAOpenString line, replace the following values with values that
are appropriate for your configuration:

* MyDatabase is the name of the database to which you want to connect.
* MyResourceManager is the name of the Informix IDS Server.

308 Configuration, Administration, and Security

* MyUserld must be the user name that the broker uses to connect to the
database.

You can define the user name that the broker uses in a number of ways;
make sure that you specify the correct name in this file. The broker
determines the user name by checking the following conditions in the
order listed:

1) A specific user name and password for this data source name (DSN),
that you have defined by running the mqsisetdbparms command.

2) A default user name and password for all DSNs, that you have
defined by specifying the -u parameter on the mqsicreatebroker
command.

3) The broker service user name, which you define with the -i parameter
on the mgsicreatebroker command

* MyPassword is the password that is associated with the user name.
d. Accept the default values for all the other lines in the stanza. For example:

XAResourceManager:

Name=INFORMIX

SwitchFile=infswit

XAOpenString=db=MYDB\ ;RM=idsserver\;
USER=wbrkuid\ ; PASSWD=wbhrkpw

Thread0fControl=PROCESS

3. Stop then restart the queue manager to apply the changes, because gm.ini is

read only while the queue manager is running.

To stop and restart the queue manager, enter the following commands, where
queue_manager_name is the name of the queue manager:

endmgm queue_manager_name

strmgm queue_manager_name

When the queue manager restarts, check the queue manager log for all
warnings that are associated with the restart. The log files are located in
/var/mgm/qmgrs/queue_manager_name/errors, where queue_manager_name is the
name of the queue manager that you restarted. When the queue manager
restarts successfully, the changes that you made to qm.ini are applied.

Informix is now configured for global coordination with a 64-bit queue manager
coordinating transactions.

Next: you can deploy globally coordinated message flows to the broker.

64-bit execution groups

To configure the broker's queue manager to coordinate message flows that are
deployed to a 64-bit execution group:

1.

BIT@ On all Linux platforms except Linux on x86, and on UNIX

systems, run the mgsimanagexalinks command.

Configure the broker queue manager with XA resource manager information
for each database that is involved in the transaction that the queue manager
will globally coordinate. If the message flows reference message dictionaries, or
contain Publication nodes, you must use the same method to define XA
resource manager information for the broker database and for the user
databases.

BTN On all Linux platforms except Linux on x86, and on UNIX:

Configuring WebSphere Message Broker 309

a. Open the queue manager's gqm.ini file in a text editor. The gm.ini file is
located at /var/mgm/qmgrs/queue_manager _name/qm.ini, where
queue_manager_name is the name of the broker that is associated with the
queue manager.

b. At the end of the gm.ini file, paste the following stanza:

XAResourceManager:

Name=INFORMIX

SwitchFile=infswit

XAOpenString=db=MyDatabase\ ;RM=MyResourceManager\;
USER=MyUserId\ ;PASSWD=MyPassword

Thread0fControl=PROCESS

The switch file is supplied by WebSphere Message Broker.

c. On the XAOpenString line, replace the following values with values that
are appropriate for your configuration:

* MyDatabase is the name of the database to which you want to connect.
* MyResourceManager is the name of the Informix IDS Server.

* MpyUserld must be the user name that the broker uses to connect to the
database.

You can define the user name that the broker uses in a number of ways;
make sure that you specify the correct name in this file. The broker
determines the user name by checking the following conditions in the
order listed:

1) A specific user name and password for this data source name (DSN),
that you have defined by running the mgsisetdbparms command.

2) A default user name and password for all DSNs, that you have
defined by specifying the -u parameter on the mgqsicreatebroker
command.

3) The broker service user name, which you define with the -i parameter
on the mgsicreatebroker command

* MyPassword is the password that is associated with the user name.
d. Accept the default values for all the other lines in the stanza. For example:

XAResourceManager:

Name=INFORMIX

SwitchFile=infswit

XAOpenString=db=MYDB\;RM=idsserver\;

USER=wbrkuid, pwd=wbrkpw
Thread0fControl=PROCESS
3. Stop then restart the queue manager to apply the changes, because gm.ini is

read only while the queue manager is running.
To stop and restart the queue manager, enter the following commands, where
queue_manager_name is the name of the queue manager:

endmqm queue_manager_name

strmqm queue_manager_name

When the queue manager restarts, check the queue manager log for all
warnings that are associated with the restart. The log files are located in
/var/mgm/qmgrs/queue_manager_name/errors, where queue_manager_name is the
name of the queue manager that you restarted. When the queue manager
restarts successfully, the changes that you made to gm.ini are applied.

Informix is now configured for global coordination with a 64-bit queue manager
coordinating transactions.

Next: you can deploy globally coordinated message flows to the broker.

310 Configuration, Administration, and Security

Configuring global coordination with Oracle by using a 32-bit
queue manager

Configure your broker environment to globally coordinate message flow
transactions with updates in Oracle databases under the control of a 32-bit queue
manager.

Before you start:
* Ensure that the databases are configured for global coordination of transactions;
see [“Configuring databases for global coordination of transactions” on page 135

Complete this task to configure the broker environment when the broker uses a
32-bit queue manager.

All WebSphere MQ Version 7 and Version 6 queue managers on 32-bit platforms
run in 32-bit mode. 32-bit queue managers can coordinate transactions only in
32-bit mode and can coordinate message flows that are deployed only to 32-bit
execution groups.

To configure your broker environment for global coordination by using a 32-bit
queue manager as the transaction manager with the DataDirect drivers:

1. PTTE On Linux on x86, Linux on x86-64, and UNIX, run the
mgsimanagexalinks command.

2. On Linux on x86 and Linux on x86-64, run the mqsi_setupdatabase
command.

3. Configure the broker queue manager with XA resource manager information
for each database that is involved in the transaction that the queue manager
will globally coordinate. If the message flows reference message dictionaries, or
contain Publication nodes, you must use the same method to define XA
resource manager information for the broker database and for the user
databases.

PTT#E On Linux on x86, Linux on x86-64, and UNIX:

a. Open the queue manager's qm.ini file in a text editor. The gm.ini file is
located at /var/mgm/qmgrs/queue_manager _name/qm.ini, where
quene_manager_name is the name of the broker that is associated with the
queue manager.

b. Add one of the following stanzas to the end of the qm.ini:
¢ If you are not using Oracle Real Application Clusters:

XAResourceManager:
Name=OracleXA
SwitchFile=SwitchFileName
XAOpenString=0RACLE_XA+SQLNET=MyNetServiceName
+HostName=MyHos tName
+PortNumber=MyPortNumber
+Sid=MySID
+ACC=P/MyUserId/MyPassword
+sestm=100+threads=TRUE
+DataSource=MyDataSourceName
+DB=MyDataSourceName+K=2+
XACloseString=
ThreadOfControl=THREAD

* If you are using Oracle Real Application Clusters:

XAResourceManager:
Name=0racTleXA
SwitchFile=SwitchFileName
XAOpenString=0RACLE_XA

Configuring WebSphere Message Broker 311

+SQLNET=MyNetServiceNameForCluster
+HostName=MyHos tName
+PortNumber=MyPortNumber
+ServiceName=MyServiceName
+ACC=P/MyUserId/MyPassword
+sestm=100+threads=TRUE
+DataSource=MyDataSourceName
+DB=MyDataSourceName+K=2+

XACloseString=

ThreadO0fControl=THREAD

c. On the SwitchFile line of the stanza, replace SwitchFileName with the name
of the appropriate switch file. The switch file is supplied by WebSphere
Message Broker and varies by operating system. The following table shows
the name of the switch file for each operating system.

Operating system Switch file
HP-UX on PA-RISC UKor8dtc23.s1
All other platforms UKor8dtc23.so

d. On the XAOpenString line, replace the following values with values that
are appropriate for your configuration:
* MyHostName is the name of the TCP/IP host that hosts the Oracle
database.
e MyPortNumber is the TCP/IP port on which the Oracle database is
listening.
¢ MySID is the Oracle System Identifier (SID) of the database.
* MyUserld must be the user name that the broker uses to connect to the
database.
You can define the user name that the broker uses in a number of ways;
make sure that you specify the correct name in this file. The broker
determines the user name by checking the following conditions in the
order listed:
1) A specific user name and password for this data source name (DSN),
that you have defined by running the mgsisetdbparms command.
2) A default user name and password for all DSNs, that you have
defined by specifying the -u parameter on the mgqsicreatebroker
command.

3) The broker service user name, which you define with the -i parameter
on the mgsicreatebroker command

* MyPassword is the password that is associated with the user name.
* MyDataSourceName is the ODBC data source name for the database.

* MyNetServiceName is the Net Service Name defined for the connect
descriptor to your data source.

* MyNetServiceNameForCluster is the Net Service Name defined for the
connect descriptor to your cluster. This value is “WMBSERVICE” in the
tnsnames example entry shown.

* MyServiceName is the value set for the Service Name in the stanza
referenced by MyNetServiceNameForCluster. This value is “racxa.test.com”
in the tnsnames example entry shown.

An example entry in tnsnames.ora might contain the following content:

WMBSERVICE =
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP) (HOST=haracl) (PORT=1521))
(ADDRESS = (PROTOCOL = TCP) (HOST=harac2) (PORT=1521))

312 Configuration, Administration, and Security

(CONNECT_DATA =
(SERVER = DEDICATED)
(SERVICE_NAME = racxa.test.com)

)

e. Accept the default values for all the other lines in the stanza. For example:

¢ On AIX:
— If you are not using Oracle Real Application Clusters:

XAResourceManager:

Name=0racleXA

SwitchFile=UKor8dtc23.s0

XAOpenString=0RACLE_XA+SQLNET=diaz
+HostName=diaz.hursley.ibm.com
+PortNumber=1521+Sid=diaz
+ACC=P/wbrkuid/wbrkpw
+sestm=100+threads=TRUE
+DataSource=MYDB+DB=MYDB+K=2+

XACloseString=

ThreadOfControl=THREAD

— If you are using Oracle Real Application Clusters:

XAResourceManager:

Name=0racleXA

SwitchFile=UKor8dtc23.so0

XAOpenString=0RACLE_XA+SQLNET=WMBSERVICE
+HostName=diaz.hursley.ibm.com
+PortNumber=1521+ServiceName=racxa.test.com
+ACC=P/wbrkuid/wbrkpw
+sestm=100+threads=TRUE
+DataSource=MYDB+DB=MYDB+K=2+

XACloseString=

ThreadOfControl=THREAD

NI On Windows:

a.
b.

From the Start menu, open WebSphere MQ Explorer.

Open the Properties dialog box for the queue manager, then open XA

resource managers.

In the SwitchFile field, enter the full path to the switch file, as shown in the

following example where install_dir is the location in which the broker is

installed:

install_dir\bin\UKor8dtc23.d11

In the XAOpenString field, paste the following string:

* If you are not using Oracle Real Application Clusters:

ORACLE_XA+SQLNET=MyNetServiceName
+HostName=MyHos tName
+PortNumber=MyPortNumber
+Sid=MySID
+ACC=P/MyUserId/MyPassword
+sestm=100+threads=TRUE
+DataSource=MyDataSourceName
+DB=MyDataSourceName+K=2+

* If you are using Oracle Real Application Clusters:

ORACLE_XA+SQLNET=MyNetServiceNameForCluster
+HostName=MyHos tName
+PortNumber=MyPortNumber
+ServiceName=MyServiceName
+ACC=P/MyUserId/MyPassword
+sestm=100+threads=TRUE
+DataSource=MyDataSourceName
+DB=MyDataSourceName+K=2+

Configuring WebSphere Message Broker

313

e. In the XAOpenString field, replace the values with values that are
appropriate for your configuration:

* MyHostName is the name of the TCP/IP host that hosts the Oracle
database.

* MyPortNumber is the TCP/IP port on which the Oracle database is
listening.
e MySID is the Oracle System Identifier (SID) of the database.

* MyUserld must be the user name that the broker uses to connect to the
database.

You can define the user name that the broker uses in a number of ways;
make sure that you specify the correct name in this file. The broker
determines the user name by checking the following conditions in the
order listed:

1) A specific user name and password for this data source name (DSN),
that you have defined by running the mgsisetdbparms command.

2) A default user name and password for all DSNs, that you have
defined by specifying the -u parameter on the mgqsicreatebroker
command.

3) The broker service user name, which you define with the -i parameter
on the mqsicreatebroker command

* MyPassword is the password that is associated with the user name.
* MyDataSourceName is the ODBC data source name for the database.

* MyNetServiceName is the Net Service Name defined for the connect
descriptor to your data source.

* MyNetServiceNameForCluster is the Net Service Name defined for the
connect descriptor to your cluster. This value is “WMBSERVICE” in the
tnsnames example entry shown.

* MyServiceName is the value set for the Service Name in the stanza
referenced by MyNetServiceNameForCluster. This value is “racxa.test.com”
in the tnsnames example entry shown.

An example entry in tnsnames.ora might have the following content:

WMBSERVICE =
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP) (HOST=haracl) (PORT=1521))
(ADDRESS = (PROTOCOL = TCP) (HOST=harac2) (PORT=1521))
(CONNECT_DATA =
(SERVER = DEDICATED)
(SERVICE_NAME = racxa.test.com)

)

For example:
* If you are not using Oracle Real Application Clusters:

ORACLE_XA+SQLNET=diaz
+HostName=diaz.hursley.ibm.com
+PortNumber=1521+Sid=diaz
+ACC=P/wbhrkuid/wbrkpw
+sestm=100+threads=TRUE
+DataSource=MYDB+DB=MYDB+K=2+

* If you are using Oracle Real Application Clusters:

ORACLE_XA+SQLNET=WMBSERVICE
+HostName=diaz.hursley.ibm.com
+PortNumber=1521

314 Configuration, Administration, and Security

+ServiceName=racxa.test.com
+ACC=P/wbrkuid/wbrkpw
+sestm=100+threads=TRUE
+DataSource=MYDB+DB=MYDB+K=2+

f. Accept the default values for all the other fields on the page.

4. Stop then restart the queue manager to apply the changes, because gm.ini is
read only while the queue manager is running.

To stop and restart the queue manager, enter the following commands, where
queue_manager_name is the name of the queue manager:

endmgm queue_manager_name

strmgm queue_manager_name

When the queue manager restarts, check the queue manager log for all
warnings that are associated with the restart. The log files are located in
/var/mqm/qmgrs/queue_manager_name/errors, where queue_manager_name is the
name of the queue manager that you restarted. When the queue manager
restarts successfully, the changes that you made to gqm.ini are applied.

Oracle is now configured for global coordination with a 32-bit queue manager
coordinating transactions.

Next: you can deploy globally coordinated message flows to the broker.

Configuring global coordination with Oracle by using a 64-bit
queue manager

Configure your broker environment to globally coordinate message flow
transactions with updates in Oracle databases under the control of a 64-bit queue
manager.

Before you start:
+ [Ensure that you have configured the databases for global coordination of|

transactionsl

All WebSphere MQ Version 7 and Version 6 queue managers on 64-bit platforms
run in 64-bit mode. 64-bit queue managers can coordinate transactions only in
64-bit mode. If the broker uses a 64-bit queue manager, you can globally
coordinate message flows that are deployed to either 64-bit or 32-bit execution
groups, but if you are using 32-bit execution groups, you must define the data
source name of the user database in both odbc32.1ini and odbc64.ini. If the broker
uses a 64-bit queue manager, or has a 64-bit execution group, the databases to
which the broker connects must also be 64-bit mode.

To configure your broker environment for global coordination by using a 64-bit
queue manager as the transaction manager with the DataDirect drivers:

1. BIT®N On Linux and UNIX, run the mgsimanagexalinks
command.

2. PTTEE On Linux on x86-64, Solaris on SPARC, HP-UX on
PA-RISC, and AIX, run the mgqsi_setupdatabase command.

3. Configure the broker queue manager with XA resource manager information
for each database that is involved in the transaction that the queue manager
will globally coordinate. If the message flows reference message dictionaries, or
contain Publication nodes, you must use the same method to define XA
resource manager information for the broker database and for the user
databases.

Configuring WebSphere Message Broker 315

BAITEN On Linux (except Linux on x86) and UNIX:

a. Open the queue manager's gqm.ini file in a text editor. The gm.ini file is
located at /var/mgm/qmgrs/queue_manager _name/qm.ini, where
queue_manager_name is the name of the broker that is associated with the
queue manager.

b. Add one of the following stanzas to the end of the qm.ini file:

* If you are not using Oracle Real Application Clusters:

XAResourceManager:
Name=OracleXA
SwitchFile=SwitchFileName
XAOpenString=0RACLE_XA
+SQLNET=MyNetServiceName
+HostName=MyHos tName
+PortNumber=MyPortNumber
+Sid=MySID
+ACC=P/MyUserId/MyPassword
+sestm=100+threads=TRUE
+DataSource=MyDataSourceName
+DB=MyDataSourceName+K=2+
XACloseString=
ThreadOfControl=THREAD

* If you are using Oracle Real Application Clusters:

XAResourceManager:
Name=0racleXA
SwitchFile=SwitchFileName
XAOpenString=0RACLE_XA

+SQLNET=MyNetServiceNameForCluster

+HostName=MyHos tName
+PortNumber=MyPortNumber
+ServiceName=MyServiceName
+ACC=P/MyUserId/MyPassword
+sestm=100+threads=TRUE

+DataSource=MyDataSourceName

+DB=MyDataSourceName+K=2+
XACToseString=
ThreadOfControl=THREAD

C. On the SwitchFile line of the stanza, replace SwitchFileName with the name
of the appropriate switch file. The switch file is supplied by WebSphere
Message Broker and varies by operating system. The following table shows
the name of the switch file for each operating system.

Operating system Switch file
HP-UX on PA-RISC UKor8dtc23.s1
All other platforms UKor8dtc23.so

d. On the XAOpenString line, replace the following values with values that
are appropriate for your configuration:

316 Configuration, Administration,

MyHostName is the name of the TCP/IP host that hosts the Oracle
database.

MyPortNumber is the TCP/IP port on which the Oracle database is
listening.

MySID is the Oracle System Identifier (SID) of the database.

MyUserld must be the user name that the broker uses to connect to the
database.

and Security

You can define the user name that the broker uses in a number of ways;
make sure that you specify the correct name in this file. The broker
determines the user name by checking the following conditions in the
order listed:

1) A specific user name and password for this data source name (DSN),
that you have defined by running the mgsisetdbparms command.

2) A default user name and password for all DSNs, that you have
defined by specifying the -u parameter on the mqsicreatebroker
command.

3) The broker service user name, which you define with the -i parameter
on the mgsicreatebroker command

* MyPassword is the password that is associated with the user name.
* MyDataSourceName is the ODBC data source name for the database.

* MyNetServiceName is the Net Service Name defined for the connect
descriptor to your data source.

* MyNetServiceNameForCluster is the name for the connect descriptor to
your cluster. This value is “WMBSERVICE” in the tnsnames example
entry shown.

* MyServiceName is value set for the Service Name in the stanza referenced
by MyNetServiceNameForCluster. This value is “racxa.test.com” in the
tnsnames example entry shown.

An example entry in tnsnames.ora might have the following content:

WMBSERVICE =
(DESCRIPTION =
(ADDRESS = (PROTOCOL
(ADDRESS = (PROTOCOL
(CONNECT_DATA =
(SERVER = DEDICATED)
(SERVICE_NAME = racxa.test.com)

TCP) (HOST=haracl) (PORT=1521))
TCP) (HOST=harac2) (PORT=1521))

)

e. Accept the default values for all the other lines in the stanza. For example:
¢ On AIX:
— If you are not using Oracle Real Application Clusters:

XAResourceManager:

Name=0racleXA

SwitchFile=UKor8dtc23.so0

XAOpenString=0RACLE_XA+SQLNET=diaz
+HostName=diaz.hursley.ibm.com
+PortNumber=1521+Sid=diaz
+ACC=P/wbrkuid/wbrkpw
+sestm=100+threads=TRUE
+DataSource=MYDB+DB=MYDB+K=2+

XACloseString=

ThreadOfControl=THREAD

— If you are using Oracle Real Application Clusters:

XAResourceManager:

Name=0racleXA

SwitchFile=UKor8dtc23.so0

XAOpenString=0RACLE_XA
+SQLNET=WMBSERVICE
+HostName=diaz.hursley.ibm.com
+PortNumber=1521
+ServiceName=racxa.test.com
+ACC=P/wbrkuid/wbrkpw

Configuring WebSphere Message Broker 317

+sestm=100+threads=TRUE

+DataSource=MYDB+DB=MYDB+K=2+
XACloseString=
ThreadOfControl=THREAD

4. WIS On AIX (for 64-bit execution groups only), set the environment
variable DDTEK_XA_DYNAMIC_REGISTRATION=1 if you want to enable Oracle data
sources for use in global coordination from a queue manager and broker to

perform dynamic XA registration. Set the environment variable before starting
WebSphere MQ or the broker.

5. Stop then restart the queue manager to apply the changes, because qm.ini is
read only while the queue manager is running.

To stop and restart the queue manager, enter the following commands, where
queue_manager_name is the name of the queue manager:

endmgm queue_manager_name

strmgm queue_manager_name

When the queue manager restarts, check the queue manager log for all
warnings that are associated with the restart. The log files are located in
/var/mqm/qmgrs/queue_manager_name/errors, where queue_manager_name is the
name of the queue manager that you restarted. When the queue manager
restarts successfully, the changes that you made to gm.ini are applied.

Oracle is now configured for global coordination with a 64-bit queue manager
coordinating transactions.

Next: You can deploy globally coordinated message flows to the broker.

Configuring global coordination with Sybase

Configure your broker environment to globally coordinate message flow
transactions with updates in Sybase databases under the control of a queue
manager.

Before you start:
+ [Ensure that the databases are configured for global coordination of transactions}

All WebSphere MQ Version 7 and Version 6 queue managers on 32-bit platforms
run in 32-bit mode. 32-bit queue managers can coordinate transactions only in
32-bit mode and can coordinate message flows that are deployed only to 32-bit
execution groups.

All WebSphere MQ Version 7 and Version 6 queue managers on 64-bit platforms
run in 64-bit mode. 64-bit queue managers can coordinate transactions only in
64-bit mode. If the broker uses a 64-bit queue manager, you can globally
coordinate message flows that are deployed to either 64-bit or 32-bit execution
groups, but if you are using 32-bit execution groups, you must define the data
source name of the user database in both odbc32.ini and odbc64.1ini. If the broker
uses a 64-bit queue manager, or has a 64-bit execution group, the databases to
which the broker connects must also be 64-bit mode.

To configure your broker environment for global coordination using a
WebSphere MQ queue manager as the transaction manager with the DataDirect

drivers:
1. BIZEN On Linux and UNIX, run the mgsimanagexalinks
command.

318 Configuration, Administration, and Security

2. Configure the broker queue manager with XA resource manager information
for each database that is involved in the transaction that the queue manager
will globally coordinate. If the message flows reference message dictionaries, or
contain Publication nodes, you must use the same method to define XA
resource manager information for the broker database and for the user
databases.

PNTT®® On Linux and UNIX:

a. Open the queue manager's qm.ini file in a text editor. The gm.ini file is
located at /var/mqm/qmgrs/queue_manager _name/qm.ini, where
queue_manager_name is the name of the broker that is associated with the
queue manager.

b. At the end of the gm.ini file, paste the following stanza:

XAResourceManager:
Name=SYBASEXA
SwitchFile=SwitchFileName
XAOpenString=-NSYBASEDB -AMyServerName ,MyPortNumber -Uuid -Ppwd -K2
XACloseString=
ThreadOfControl=THREAD

c. The switch file is supplied by WebSphere Message Broker and varies by
operating system. The following table shows the name of the switch file for
each operating system.

Operating system Switch file path
HP-UX on PA-RISC UKasedtc23.s]

All other Linux and UNIX platforms (except |UKasedtc23.so
Linux on System z)

d. On the XAOpenString line, replace the following values with values that
are appropriate for your configuration:

* MyServerName is the name of the TCP/IP host that hosts the Sybase ASE
server.

* MyPortNumber is the TCP/IP port on which the Sybase ASE server is
listening.

* uid must be the user name that the broker uses to connect to the
database.

You can define the user name that the broker uses in a number of ways;
make sure that you specify the correct name in this file. The broker
determines the user name by checking the following conditions in the
order listed:

1) A specific user name and password for this data source name (DSN),
that you have defined by running the mgsisetdbparms command.

2) A default user name and password for all DSNs, that you have
defined by specifying the -u parameter on the mqsicreatebroker
command.

3) The broker service user name, which you define with the -i parameter
on the mgsicreatebroker command

* pwd is the password that is associated with the user name.
e. Accept the default values for all the other lines in the stanza. For example:
* On AIX:

Configuring WebSphere Message Broker 319

XAResourceManager:
Name=SYBASEXA
SwitchFile=UKasedtc23.so
XAOpenString=-NSYBASEDB -Adiaz,1521 -Uwbrkuid -Pwbrkpw -K2
XACloseString=
ThreadOfControl=THREAD

* On HP-UX on PA-RISC:

XAResourceManager:

Name=SybaseXA

SwitchFile=UKasedtc20.s]

XAOpenString=-NSYBASEDB -Adiaz,1521 -Uwbrkuid -Pwbrkpw -K2
XACloseString=

Thread0fControl=THREAD

NS On Windows:

a. From the Start menu, open WebSphere MQ Explorer.
b. Open the Properties dialog box for the queue manager, then open XA
resource managers.

c. In the SwitchFile field, enter the full path to the switch file, as shown in the
following example where install_dir is the location in which the broker is
installed:

install_dir\bin\ukase23.d11
d. In the XAOpenString field, paste the following string:
-NSYBASEDB -AMyServerName ,MyPortNumber -WWinsock -Uuid -Ppwd -K2

e. In the XAOpenString field, replace the values with values that are
appropriate for your configuration:

e install_dir is the location in which the broker is installed.

¢ MyServerName is the name of the TCP/IP host that hosts the Sybase ASE
server.

s MyPortNumber is the TCP/IP port on which the Sybase ASE server is
listening.

* uid must be the user name that the broker uses to connect to the
database.

You can define the user name that the broker uses in a number of ways;
make sure that you specify the correct name in this file. The broker
determines the user name by checking the following conditions in the
order listed:

1) A specific user name and password for this data source name (DSN),
that you have defined by running the mgsisetdbparms command.

2) A default user name and password for all DSNs, that you have
defined by specifying the -u parameter on the mgqsicreatebroker
command.

3) The broker service user name, which you define with the -i parameter
on the mgsicreatebroker command

* pwd is the password that is associated with the user name.

For example:
-NSYBASEDB -Adiaz,1521 -WWinsock -Uwbrkuid -Pwbrkpw -K2
f. Accept the default values for all the other fields on the page.

3. Stop then restart the queue manager to apply the changes, because gm.ini is
read only while the queue manager is running.

To stop and restart the queue manager, enter the following commands, where
queue_manager_name is the name of the queue manager:

320 Configuration, Administration, and Security

endmgm queue_manager_name

strmqm queue_manager_name

When the queue manager restarts, check the queue manager log for all
warnings that are associated with the restart. The log files are located in
/var/mgm/qmgrs/queue_manager_name/errors, where queue_manager_name is the
name of the queue manager that you restarted. When the queue manager
restarts successfully, the changes that you made to gm.ini are applied.

Sybase is now configured for global coordination with your queue manager
coordinating transactions.

Next: you can deploy globally coordinated message flows to the broker.

Configuring the workbench

You can configure various settings in the workbench to suit your requirements and
your working environment.

The following topics show you how to configure aspects of the workbench:

+ |“Changing workbench preferences’]

+ |“Changing workbench capabilities” on page 322|

* |“Changing Broker Administration preferences” on page 322|

+ [“Configuring CVS to run with the Message Broker Toolkit” on page 323

+ |“Configuring the Message Broker Toolkit to run Rational ClearCase” on page
2]

+ |"Displaying selected projects in working sets” on page 324

A minimum display resolution of at least 1024 x 768 is required for some dialog
boxes, such as the Preferences dialog box.

Changing workbench preferences

The workbench has a large number of preferences that you can change to suit your
requirements. Some of these are specific to the product plug-ins that you have
installed within the workbench, including those for WebSphere Message Broker.
Others control more general options, such as the colors and fonts in which
information is displayed.

To access the workbench preferences:
1. Select Window -~ Preferences.

2. Click the plus sign associated with Workbench, typically the first entry in the
left pane. An expanded list of options appears, Select the aspect of the
workbench that you want to modify. These options might be of interest:

Startup and shutdown
Switch on, or off, the prompt at toolkit startup that asks you to confirm
the workspace location. Typically you switch this prompt off, so that it
does not appear, but you can force it to appear next time you start the
workbench if you want to specify a different location.

You can also specify whether to display the dialog box that asks you to
confirm shutdown of the workbench.

Colors and fonts
Change the default fonts and colors that appear in the workbench.

Configuring WebSphere Message Broker 321

Perspectives
On this dialog, your choices include the option to open a new
perspective in a new window.

3. When you have made your changes, click OK to close the Preferences dialog.

Below the Workbench category in the Preference dialog are items that refer
specifically to WebSphere Message Broker resources, such as message flows.
Review the following topics for information about setting preferences and other
values that are specific to your use of these resources:

+ [Message flow preferences|

* |Changing ESQL preferences|

. |Configuring message set preferences|

* [Setting flow debugger preferences|

* |Changing trace settings|

Changing workbench capabilities

You can configure the workbench to disable access to some of the functional
capabilities of WebSphere Message Broker.

Capabilities is an Eclipse concept that allows you to enable or disable the
components of a product. By default, all components of the workbench are
enabled.

To access the workbench capabilities:

1. Select Window - Preferences.

2. Click the plus sign associated with General. An expanded list of options
appears.

3. Click Capabilities. You can use the capabilities that are listed to enable or
disable various product components; the capabilities are grouped according to a
set of predefined categories.

4. Select Message Broker Toolkit from the list of capabilities that is displayed,
and select the Advanced button. A window opens that has a check box for each
of the predefined categories.

5. Select the check boxes for the categories that you want to either enable or

disable; click either the Enable All or Disable All button and click OK. A pane
describes the functionality that is enabled following this action.

The predefined categories for the workbench are listed together with a reference to
more information about the relevant functional area of WebSphere Message Broker:

+ Message Broker Toolkit - Administration. See [“Administering the broker
[domain” on page 335

*+ Message Broker Toolkit - Core. See [Message Broker Toolkit|
+ Message Broker Toolkit - Development. See [Developing applications|

Changing Broker Administration preferences

Change preferences in the Broker Administration perspective.

You can change the following preferences to tailor how you work in the Broker
Administration perspective:

e Show empty projects in the Navigator views.

322 Configuration, Administration, and Security

Warn before deleting alerts.

Show ACL restricted objects in the Navigator views.

Prompt to perform a topology deploy after changes. You can change this option
to never deploy, always a delta deploy, or always a complete deploy.

Prompt to perform a topics deploy after changes. You can change this option to
never deploy, always a delta deploy, or always a complete deploy.

To change Broker Administration perspective preferences:

1.

2. Click Window » Preferences.

o bk w

Expand the Broker Administration category in the left pane.
Make your selections.
Click OK.

Configuring CVS to run with the Message Broker Toolkit

Install CVS as a normal program by following the usual prompts. Not all versions
of CVSNT are supported by Eclipse.

1.

Configure CVS by carrying out the following tasks:

a. Create a directory on your computer, for example, on Windows -
c:\CVSRepository.

b. Start the CVSNT control panel. Select Start > Programs > CVSNT to see the
icon on the desktop.

c. Stop both the CVS Service and the CVS Lock Service.

d. Select the Repositories tag, click Add and create a new repository. Note
that no entry appears on the screen the first time that you do this.

e. Use the ... button on the next window to select the directory that you
created in step [laj and click OK. Note that when CVS has finished
formatting its repository the backslash in the directory name is changed to a
forward slash.

f. Select the Service Status tab and restart both the CVS Service and the CVS
Lock Service.

Enable the CVS Revision tag to be populated in the Eclipse Version fields in the
Message Broker Toolkit. To do this on Windows:

a. Select Window->Preferences
b. Expand the Team section and click CVS

c. Use the drop down in the Default keyword substitution: field and set the
value to ASCII with keyword expansion(-kkv)

Add the WebSphere Message Broker file types to the Eclipse CVS configuration.
To do this:

a. Select File Content in the Team section of the window you opened in step El

b. Click Add and add msgflow as an allowable file extension. Ensure that the
value is set to ASCII.

C. Repeat the above procedure for the following file extensions that the broker
uses:

* esql
e mset
e mxsd

Configuring WebSphere Message Broker 323

If you use CVS to store other file types, for example, COBOL copybooks
add the appropriate file types as well.

d. Click OK when you have finished.

Configuring the Message Broker Toolkit to run Rational
ClearCase

To use Rational® ClearCase with the Message Broker Toolkit, enable the capability
in the Preferences page.

To enable Rational ClearCase in the Message Broker Toolkit:

Click Window - Preferences to open the Preferences window.

Expand General in the left pane, and click Capabilities.

In the Capabilities pane, click Advanced. The Advanced window opens.
Expand Team, and ensure that ClearCase SCM Adapter is selected.
Click OK to close the Advanced window.

Click OK or Apply to apply your changes.

o0, 0N =

After you enable the ClearCase capability, the ClearCase menu is displayed in the
Broker Application Development perspective.

To work with ClearCase:

1. Click ClearCase » Connect to Rational ClearCase.

2. Right-click your project and click Team » Add to Version Control to add your
projects to the ClearCase source control.

3. After you have added your projects to the ClearCase source control, you can
perform ClearCase operations.

Displaying selected projects in working sets

A working set is a logical collection of application projects, that you can use to limit
the number of resources that are displayed in the Broker Development view.
Creating and using a working set allows you to reduce the visual complexity of
what is displayed in the Broker Development view, making it easier to manage
and work with your application projects.

Before you start:

Read about working sets, see |[Resources

To create a new working set:

1. Click the down arrow of the working set field in the Broker development view.
By default this field contains <all resources>. A list is displayed containing
existing working sets (if there are any) and options for editing and deleting
existing working sets, and for creating a new working set.

2. Click New Working Set. The New Working Set window is displayed.

3. Type the name that you want to give to your new working set in the Working
set name field.

4. Select from the displayed list each of the application projects that you want to
include in this working set. You can also include all the projects that are
dependent on your selected application projects, by selecting Automatically
include dependent projects in this working set.

5. Click Finish.

324 Configuration, Administration, and Security

The new working set and its associated resources are displayed in the Broker
Development view.

In addition to creating new working sets, you can also select, edit, and delete
existing working sets using the options in the Broker Development view menu.

Changing locales

You can change the locale for the system on which a runtime component is
installed.

The way in which you change the locale depends on the operating system:
+ |“Changing your locale on Linux and UNIX systems”]

+ [“Changing your locale on Windows” on page 327]

+ [‘Changing your locale on z/0OS” on page 327]

WebSphere Message Broker uses code page converters to support character sets
from different environments. [“Code page converters” on page 328| describes what a
code page converter is, and how to generate new converters.

Changing your locale on Linux and UNIX systems

You can change your system locale on UNIX and Linux systems.

You can set environment variables to control the system locale. You can set these
variables to be system-wide, or on a per-session basis:

LC_ALL
Overrides all LC_#* environment variables with the given value

LC_CTYPE
Character classification and case conversion

LC_COLLATE
Collation (sort) order

LC_TIME
Date and time formats

LC_NUMERIC
Non-monetary numeric formats

LC_MONETARY
Monetary formats

LC_MESSAGES
Formats of informative and diagnostic messages, and of interactive
responses

LC_PAPER
Paper size

LC_NAME
Name formats

LC_ADDRESS
Address formats and location information

LC_TELEPHONE
Telephone number formats

Configuring WebSphere Message Broker 325

LC_MEASUREMENT
Measurement units (Metric or Other)

LC_IDENTIFICATION
Metadata about the locale information

LANG
The default value, which is used when either LC_ALL is not set, or an
applicable value for LC_* is not set

NLSPATH
Delimited list of paths to search for message catalogs

TZ Time zone

LC_MESSAGES and NLSPATH are the most important variables to the broker. These
variables define the language and location of response messages that the broker
uses. The broker profile file, mgsiprofile, sets NLSPATH. Either you, or your system
must set LC_MESSAGES. The value set in LC_MESSAGES must be a value that the
broker recognizes. LC_CTYPE is also important to the broker because it defines the
character conversion that the broker performs when interacting with the local
environment.

If you use common desktop environment (CDE), use this environment to set the
locale instead of setting LANG and LC_ALL directly. The NLSPATH variable respects
either method. Before setting the code page, check that it is one of the

For example, to set WebSphere Message Broker to run in a UTF-8 environment set
the following values in the profile:

LANG=en_US.utf-8
LC_ALL=en US.utf-8

Where en_US sets the language, and utf-8 sets the code page.

You can use the command locale to show your current locale. The command locale
-a displays all the locales that are currently installed on the machine. Make sure
that the locale you select for LANG and LC_ALL is in the list that is returned by the
command locale -a. The values that Tocale uses and returns are case sensitive,
therefore copy them exactly when assigning them to an environment variable.

When you start a broker component, the locale of that component is inherited from
the shell in which it is started. The broker component uses the LC_MESSAGES
environment variable as the search path in the NLSPATH environment variable
(LC_MESSAGES is set when variable LC_ALL is exported).

Messages are sent to the syslog in the code page set by this locale. If you have
multiple brokers that write to this syslog, their messages are in the code page of
the locale in which they were started, for example:

locale syslog code page cesid
pt_BR is08859-1 819
Pt_BR ibm-850 850
PT_BR utf-8 1208

326 Configuration, Administration, and Security

Set the locale of the user ID that runs the syslog daemon to one that is compatible
with the locales of all brokers that write to the syslog on that system, for example,
utf-8. For compatibility, you can set the default locale. On Solaris, set the LANG and
LC_ALL variables in /etc/default/init. On AIX and Linux, these variables are in
/etc/environment. This task is not required on HP-UX.

For full-time zone support in the broker, set the TZ variable using Continent/City
notation. For example set TZ to Europe/London to make London, England the
time zone, or set it to America/New_York to make New York, America the time
zone.

If you want to add a new locale, refer to the operating system documentation for
information about how to complete that task. If the code page of the new locale is

not supported by WebSphere Message Broker you must add it by
[new code page converter” on page 328

Changing your locale on Windows

Change your system locale on Windows to view objects and information in a
different language or code page.

The product components are started as services on Windows, and are therefore
influenced by the system locale. The command-line functions are influenced by the
locale that is set for the current user. WebSphere Message Broker on Windows has
all locale information installed by default. However, you might have to install
additional locale packages, if prompted to do so by the Windows operating system.

To change locale, use one of the following methods:
* Install a locale-specific operating system.
* Alter the system or user locale by selecting Regional Settings in the Control Panel.

Messages are sent to the Event Log in the code page set by the current locale.

You can use the chcp command to change the active console code page. Enter the
command at a command prompt; if you enter chcp without a parameter, it
displays the current setting. If you enter it with a code page, it changes the locale
to that code page.

For example, to check the current code page setting:

C:\>chcp
Active code page: 437

The current page is displayed (437 represents US-ASCII). If you want to change the
value to GB18030, enter:

C:\>chcp 54936
Active code page: 54936

Before you use a code page, search for windows-number where number is the active
code page you want to use in the list of [Supported code pages| If the code page is
not in the list, either use a code page that is in the list, or [generate a new code|

Changing your locale on z/0S

You can change your system locale on z/OS. If you want to change your system
locale on z/0S, set the LANG, LC_ALL, and NLSPATH variables.

Configuring WebSphere Message Broker 327

See [“Installation information - broker and User Name Server” on page 195 and
[“Installation information - Configuration Manager” on page 210| for further
information.

The locale is set in the appropriate component profile (BIPBPROF for the broker,
BIPCPROF for the Configuration Manager, BIPUPROF for the User Name Server) and
you must run BIPGEN to create the component ENVFILE.

You can use the UNIX System Services (USS) executable locale to show your
current locale. The command Tlocale -a displays all the locales currently installed
on the computer. Refer to the operating system documentation for information
about adding new locales. If you add a new locale after you have installed
WebSphere Message Broker, install that locale's message catalogs from the original
install media.

You can set WebSphere Message Broker to operate with a specific code page. Set
the code page after a period in the LANG and LC_ALL variable. This example sets
the locale to En_us and the code page to IBM-1140 (EBCDIC En_us with euro):

LANG=En_us.IBM-1140
LC_ALL=En_us.IBM-1140

Make sure that the selected code page is one of the [Supported code pages| If the
code page is not in the list, either use a code page that is in the list, or [generate af
[new code page converter|

Code page converters

Brokers perform string operations in Universal Character Set coded in 2 octets
(UCS-2). If incoming strings are not encoded in UCS-2, they are converted to
UCS-2 on arrival.

The broker uses international components for Unicode (ICU) code page converters
to convert data. The [Unicode Consortium| has further information on Unicode.

A code page converter is a mapping from the byte sequence in one code page to a
serialized representation of UCS-2, known as UCS Transformation Format 16 bit
form (UTF-16). A code page converter allows the broker to create a UCS-2
representation of an incoming string.

An example of the use of code page converter is:

* A message comes in on a queue from z/0OS, with the WebSphere MQ CCSID
field set to 1047 (LATIN-1 Open Systems without euro). The broker looks up
ibm-1047 and uses the resulting converter to create a UCS-2 representation for
internal use.

WebSphere Message Broker currently supports the code pages listed in
‘

ode pages| If you need support for an additional code page, or if you require a
different variant of a code page, you can extend the broker to support this code

page.

Generating a new code page converter

Generate a code page converter to handle conversions of data that belongs to a
code page that is not in the default set of code pages provided by WebSphere
Message Broker.

Before you start:

328 Configuration, Administration, and Security

http://www.unicode.org/

* Read [‘Code page converters” on page 328 which provides information about
what a code page converter is, and about the code pages that WebSphere
Message Broker supports.

To generate a new code page converter:

1. Create or find a mapping data file with the file extension .ucm for the converter
that you require. You can download .ucm files from the ICU
archive. These mapping data files are available and can be
modified without restriction. An example mapping data file is
ibm-1284_P100-1996.ucm.

2. Rename the .ucm to a file name with the format ibm-number.ucm where number
is a number that you choose to identify the code page. Make sure that this
number is not already used in one of the [Supported code pages} For example,
you could rename ibm-1284_P100-1996.ucm to ibm-1284.ucm.

3. Go to[ICU downloads|and download the binary distribution for your system.
An exact match is not important provided that the binary files are compatible.
If you have problems building the converter, see the [ICU user guide

4. Extract the files from the binary distribution archive into a temporary directory.

5. Copy the library and binary files to a directory in the environment PATH and
LIBPATH. (Alternatively, copy the library and binary files to directory that is
not temporary and modify the environment PATH and LIBPATH to include this
directory.)

6. One of the extracted files is makeconv.exe; use this makeconv tool to convert
the mapping data file (.ucm files) into a binary converter file (.cnv file), by
entering the following command:

makeconv -p ICUDATA mapping file.ucm

where mapping_file.ucm is the mapping data file that you are using.
The name of the binary converter file that makeconv produces is:
icudt32<platform-suffix>_<mapping_file>.cnv

where:
* <platform-suffix> is one of the following values:

— 1 for little-endian ASCII platforms

— b for big-endian ASCII platforms

- e for EBCDIC platforms
* <mapping_file> is the name of the mapping data file that was converted.
To make the .cnv file for ibm-1284.ucm, use the following command:
makeconv -p ICUDATA ibm-1284.ucm

7. Copy the file with the file extension .cnv for the code page that you need, into
a directory that WebSphere Message Broker can access; for example, on UNIX:
/var/mgsi/converters.

8. Associate the broker with the code page converter by entering the name of the
directory where the converter is stored:

* To create a new broker that is associated with the converter, include the -c
parameter on the mqsicreatebroker command.

* To alter an existing broker to recognize the converter, include the -c
parameter on the mgsichangebroker command.

* To affect all the products and the broker command-line tools that are using
ICU, add the directory to the ICU_DATA environment variable. If you have

Configuring WebSphere Message Broker 329

http://dev.icu-project.org/cgi-bin/viewcvs.cgi/charset/data/ucm/
http://dev.icu-project.org/cgi-bin/viewcvs.cgi/charset/data/ucm/
http://icu.sourceforge.net/download/.
http://icu.sourceforge.net/userguide/icudata.html

already used either the mgsicreatebroker command or the mgsichangebroker
command to specify the code page converter to be used, the broker ignores
the ICU_DATA value.

If you are using a converter that matches one of the built-in converters that are
provided with Version 6.0, and that converter is the local code page for the
broker, do not use the mgsicreatebroker command with the -c parameter to set
the converter path. Use the ICU_DATA environment variable instead.

Using converters from a previous level of the product

If you have applications that need a code page that is not in the default set of code
pages that WebSphere Message Broker Version 6.1 supports, you can use a code
page from an earlier version of WebSphere Message Broker.

Before you start:

* Read [“Code page converters” on page 328 |which provides information about
what a code page converter is, and about the code pages that WebSphere
Message Broker supports.

The changes in converters between WebSphere Business Integration Message
Broker Version 5.0 and WebSphere Message Broker Version 6.1 are significant,
therefore the set of converters from the previous level has been included with
WebSphere Message Broker Version 6.1.

To use one of the converters from the previous version:

1. Extract the list of WebSphere Business Integration Message Broker Version 5.0
code page converters from your installation directory to a temporary directory:

* On Windows: extract install_dir\sample\converters\mgsiconverters-
v5.zip

* On Linux: extract install _dir/sample/converters/mgsiconverters-
v5.tar.bz2

* On UNIX: extract install _dir/sample/converters/mgsiconverters-
vhb.tar.gz

where install_dir is the directory you have specified for your WebSphere
Message Broker installation.

2. Find the .cnv file for the code page that you want in the temporary directory,
and copy it to a directory that is accessible by the broker. Give the file a unique
name to make sure that the copied file does not conflict with an existing
converter; do not use a number that is already used in one of the supported
code pages (Supported code pages); for example:

. BTSN On Linux and UNIX systems, copy the file to
/var/mgsi/converters.

« MIIEN On Windows systems, copy the file to ALLUSERSPROFILE%\
Application Data\IBM\MQSI\converters, where ALLUSERSPROFILE% is the
environment variable that defines the system working directory. The default
directory depends on the operating system:

— On Windows XP and Windows Server 2003: C:\Documents and
Settings\A11 Users\Application Data\IBM\MQSI\converters

— On Windows Vista and Windows Server 2008: C:\ProgramData\IBM\MQSI\
converters

The value might be different on your computer.

330 Configuration, Administration, and Security

If the converter is used by ESQL, the converter must be of the form
ibm-<ccsid>, because converters are referenced through their numeric CCSID,
not their name.

Associate the broker with the code page converter by entering the name of the
directory where you have stored the converter.

If you are using a converter that matches one of the built-in converters that are
provided with Version 6.1, and that converter is the local code page for the
broker, do not use the mgqsicreatebroker or mgsichangebroker command with
the -c parameter to set the converter path. Use the ICU_DATA environment
variable instead.

e To create a new broker that is associated with a converter, include the -c
parameter on the mgsicreatebroker command.

* To alter an existing broker to recognize the converter, include the -c
parameter on the mgsichangebroker command; for example:
mgsichangebroker broker_name -c directory

* To affect all the products and the broker command-line tools that use

international components for Unicode (ICU), add the directory to the
ICU_DATA environment variable.

If you have already used either the mgsicreatebroker or mqsichangebroker
command to specify the code page converter to be used, the broker ignores the
ICU_DATA value.

To reproduce the behavior of the previous level of the product, copy the entire
set of converters (*.cnv) and aliases (*.1icu).

Configuring WebSphere Message Broker 331

332 Configuration, Administration, and Security

Part 3. Administering the broker domain

Administering the broker domain . .
Connecting to and disconnecting from the broker
domain .

Connecting to and dlsconnectlng from the broker

domain on z/OS .

Starting and stopping message ﬂows

Starting and stopping a broker .

Starting and stopping a broker on L1nux and
UNIX systems . .
Starting and stopping a broker on Wrndows .
Starting and stopping a broker on z/OS

Starting and stopping a Configuration Manager
Starting and stopping a Configuration Manager
on Linux and UNIX systems
Starting and stopping a Conﬁguratlon Manager
on Windows.

Starting and stopprng a Confrguratron Manager
on z/0S . .

Starting and stopping the User Name Server
Starting and stopping the User Name Server on
Linux and UNIX systems .

Starting and stopping the User Name Server on
Windows.

Starting and stoppmg the User Name Server on
z/0S . .

Starting a WebSphere MQ queue manager as a

Windows service .

Stopping a WebSphere MQ queue manager when

you stop a component . -

Viewing broker domain log 1nformat1on

Refreshing broker domain log information.

Filtering broker domain log information

Saving broker domain log information .

Clearing Event logbroker domain log 1nformat10n

Changing the location of the work path
Changing the location of the work path on
Windows systems .

Changing the location of the Work path on
Linux and UNIX systems .

Changing Event log editor preferences .

Backing up resources .

Backing up the broker domaln on dlstrlbuted
systems

Backing up the broker domarn on z / OS
Backing up the Message Broker Toolkit
workspace Lo

© Copyright IBM Corp. 2000, 2010

. 335

. 335

. 336
. 338
. 339

. 339
. 339
. 340

341

. 341

. 341

. 342
. 343

. 343
. 344
. 344
. 345
. 345
. 346
. 347

. 347
. 348

348

. 349
. 349
. 350
. 350
. 351

. 351
. 352

. 354

333

334 Configuration, Administration, and Security

Administering the broker domain

Administering the broker domain includes the tasks that you operate frequently to
activate and run your broker domain. Choose the method you prefer to administer
your broker domain.

Administration of a broker domain includes the following tasks:

+ [“Connecting to and disconnecting from the broker domain”|

+ |[“Connecting to and disconnecting from the broker domain on z/OS” on page]
336

* |“Starting and stopping message flows” on page 338§|

+ [“Starting and stopping a broker” on page 339

+ [“Starting and stopping a Configuration Manager” on page 341

* |“Starting and stopping the User Name Server” on page 343|

+ [“Starting a WebSphere MQ queue manager as a Windows service” on page 345|

* |“Stopping a WebSphere MQ queue manager when you stop a component” on|

[page 345|

* [“Viewing broker domain log information” on page 346|

[‘Refreshing broker domain log information” on page 347|

[‘Filtering broker domain log information” on page 347

* |“Saving broker domain log information” on page 348|

+ [“Clearing Event logbroker domain log information” on page 34|

* |“Changing the location of the work path” on page 349

+ |“Changing Event log editor preferences” on page 350

+ [“Backing up resources” on page 351]

These tasks can be performed by using one, or more, of the administrative
techniques supported by WebSphere Message Broker:

¢ The Message Broker Toolkit
* The WebSphere Message Broker commands
* The Configuration Manager Proxy Java API

For each task, the administrative techniques that you can use are identified.

Connecting to and disconnecting from the broker domain

You can connect to, and disconnect from, the broker domain by using either the
Message Broker Toolkit or the Configuration Manager Proxy Java APL

Before you start:

You must complete the following task:

+ [“Creating a domain connection” on page 265|

This topic describes how to use the Message Broker Toolkit to connect to the
broker domain. For information about how to use the Configuration Manager
Proxy, see [Connecting to the Configuration Manager using the Configuration|

|!l anager Prole

© Copyright IBM Corp. 2000, 2010 335

Use a domain connection to connect to the broker domain in the workbench.

The following steps show you how to connect to the broker domain and how to
disconnect from the broker domain.

1. To connect to the broker domain:
a. Switch to the Broker Administration perspective.

b. In the Domains view, right-click the broker domain to which you want to
connect, and click Connect. This starts the domain connection to the
Configuration Manager.

When connected, the workbench status line is changed (for example
WBRK_QM®@Iocalhost:1414 is connected). The Broker Topology and Topics
are populated, and the broker domain and broker topology icons change to
reflect the connected state.

On successful connection, the Configuration Manager name is shown in the
Domains view in the form ConfigurationManagerName on
QMgrName@Hostname: PortNumber.

Note: If you click Cancel while the connection is being attempted, the
connection that is in progress stops and the domain returns to its
initial unconnected state.

2. To disconnect from the broker domain:
a. Switch to the Broker Administration perspective.

b. In the Domains view, right click the broker domain from which you want to
disconnect, and click Disconnect. The connection to the Configuration
Manager is broken.

When disconnected, the workbench status line is changed (for example
WBRK_QM@Iocalhost:1414 is not connected). All brokers and topics are

removed from the domains navigator tree, and the broker domain and
broker topology icons change to reflect the disconnected state.

Connecting to and disconnecting from the broker domain on z/OS

How to connect to, and disconnect from, the broker domain on z/OS.
Before you start:

You must complete the following tasks:

* |“Creating a Configuration Manager on z/0OS” on page 209 |

* Create and start a listener for the Configuration Manager. For details on how to
create and start a listener, follow the instructions for listeners in the topic:
[‘Starting the WebSphere MQ channels and listeners” on page 227

Ensure that your Message Broker Toolkit computer and user ID have the
appropriate authorization on the z/OS Configuration Manager.

In SDSE, grant access to your user ID.
1. For this to work on all machines, enter:
'/F <started task name> CA U=<userID>,A=YES,P=YES,X=F'

or to grant access to your user ID for a specific machine, enter:
'/F <started task name> CA U=<userID>,A=YES,M=<machine name>,P=YES,X=F'
2. Verify the previous step by entering:

336 Configuration, Administration, and Security

/F <configmgrname>, LA

This topic shows you how to:

Create a domain connection in the workbench by using the Create a Domain
Connection wizard.

Enter a set of parameters to create a .configmgr file.

Use the parameters contained within the .configmgr file to connect to the
Configuration Manager, where you can view and edit your broker domain.

To create a domain connection:

1.
2.
3.

Switch to the Broker Administration perspective.

In the Domains view, right-click the default Configuration Manager.

Click New » Domain Connection to open the Create a Domain Connection
wizard.

In the Create a Domain Connection wizard, enter:

a.

The value for the Queue Manager Name that the Configuration Manager is
using. This property is mandatory.

The Host name or IP address of the machine on which the Configuration
Manager is running (the default is Tocalhost). This property is mandatory.

The TCP Port on which the WebSphere MQ queue manager is listening (the
default is 1414). This property must be a valid positive number.

Optional: The Class of the Security Exit required to connect to the
WebSphere MQ queue manager. This property must be a valid Java class
name, but you can leave this field empty if it does not apply to your
domain connection. See [“Using security exits” on page 81

Optional: The JAR File Location for the Security Exit required to connect to
the WebSphere MQ queue manager. Click Browse to find the file location.
You can leave this field empty if it does not apply to your domain
connection. You must specify a JAR File Location if you have specified a
Security Exit Class.

Optional: The Cipher Suite, Distinguished Names, CRL Name List, Key
Store, and Trust Store parameters are required when enabling SSL. See
[“Implementing SSL authentication” on page 58| The Cipher Suite field
displays available cipher suites. Click More to configure Custom SSL Cipher
Suites in the Broker Administration Preferences window. If you do not
specify a Cipher Suite, all other fields in the SSL section are unavailable.

You can configure several domain connections in your workspace. Each
domain connection has to address a different Configuration Manager, which
needs to have a different WebSphere MQ Queue Manager Name, Host
name, or TCP Port number. An error message is displayed in the Create a
Domain Connection wizard if you try to create a second broker domain that
has the same Queue Manager Name, Host name, and Port number.

Click Next to begin the domain connection to the Configuration Manager.

If you click Cancel, the Create a Domain Connection wizard closes, forcing
disconnection from the domain.

After the domain connection has been made, enter the following values:

a. The name of your Project. The Project is the container for your domain

connection. If you have not already created a project, you can specify the
name of a new project here. The project is created with the domain
connection.

Administering the broker domain 337

b. The Connection name. The Connection name is the name you give to the
.configmgr file that contains the parameters to connect to the Configuration
Manager.

8. Click Finish to create the domain connection.

The new domain connection is added to the Broker Administration perspective
Navigator view, under Domain Connections. The project holds the .configmgr
domain connection file.

The view of the broker domain is displayed in the Domains view.

Starting and stopping message flows

Use the Message Broker Toolkit to start and stop message flows.

You can start and stop a message flow by using either the Message Broker Toolkit
or the Configuration Manager Proxy Java API. This topic describes how to use the
Message Broker Toolkit. For information about how to use the Configuration

Manager Proxy, see [Navigating broker domains using the Configuration Manager|

Prowy

From the workbench you can start and stop:

* All message flows in all execution groups, assigned to a specific broker.
* All message flows in a specific execution group.
* A single message flow.
1. To start a message flow:
a. Switch to the Broker Administration perspective.

b. In the Domains view, expand your broker domain to locate your message
flow:

* To start all message flows in all execution groups for a broker, right-click
the broker and click Start Message Flows.

 To start all message flows in a specific execution group, right click the
execution group and click Start Message Flows.

¢ To start a single message flow, right-click the message flow and click
Start.

The Configuration Manager sends a message to the broker to start the specified
message flows.

A BIP0892I information message is displayed to show that the Configuration
Manager has received the request.Verify the results of the deployment by
opening the Event Log.

There might be a short delay for the Configuration Manager to respond.

The alert Message Flow is not running is removed from the Alert Viewer.
2. To stop a message flow:

a. Switch to the Broker Administration perspective.

b. In the Domains view, expand your broker domain to locate your message
flow:

* To stop all message flows in all execution groups for a broker, right-click
the broker and click Stop Message Flows.

 To stop all message flows in a specific execution group, right click the
execution group and click Stop Message Flows.

* To stop a single message flow, right-click the message flow, and click
Stop.

338 Configuration, Administration, and Security

c. Open the Event Log for the broker domain. A BIP0892I information message
is displayed to show that the Configuration Manager has received the
request.

There might be a short delay for the Configuration Manager to respond.
The alert Message Flow is not running is added to the Alert Viewer.

Starting and stopping a broker

Run the appropriate command to start or stop a broker.

Before you start:

Ensure that your user ID has the correct authorizations to perform the task.
Refer to [“Security requirements for administrative tasks” on page 755.|

On Linux, UNIX, and Windows systems, you must set up your command-line
environment before performing this task, by running the product profile or
console; refer to [Setting up a command environment,

To start and stop a broker, use the mgsistart and mqsistop commands from the
command line.

Follow the link for the appropriate platform.

+ |“Starting and stopping a broker on Linux and UNIX systems”]

» [“Starting and stopping a broker on Windows”|

+ |“Starting and stopping a broker on z/0S” on page 340|

Starting and stopping a broker on Linux and UNIX systems
Run the appropriate command to start or stop a broker.

1.

Run './install_dir/bin/mgsiprofile' to source the mgsiprofile script and set
up the environment for a single targeted runtime environment. You must
complete this setup before you can run a WebSphere Message Broker
command.

To start a broker, enter the following command on the command line:
mgsistart WBRK_BROKER

Substitute your own broker name for WBRK_BROKER. The broker and its
associated queue manager are started.

Check the system log to ensure that the broker has initialized successfully. The
log contains messages about verification procedures; if all tests are successful,
only an initial start message is recorded. If any verification test is unsuccessful,
the log also includes messages that provide details of the tests that have failed.
If errors have been reported, review the messages and take the suggested
actions to resolve these problems.

To stop a broker, enter the following command on the command line:
mgsistop WBRK_BROKER
Substitute your own broker name for WBRK_BROKER.

You can also request that the broker queue manager is stopped by this
command. Refer to [“Stopping a WebSphere MQ queue manager when you stop|
la component” on page 345

Starting and stopping a broker on Windows

Run the appropriate command to start or stop a broker.

Administering the broker domain 339

1. Open the WebSphere Message Broker command console. When you open the
console, it sets up the environment that you need to run the WebSphere
Message Broker commands.

If you prefer, you can run the install_dir/bin/mgsiprofile command to set
up the environment.

2. To start a broker, enter the following command on the command line:
mgsistart WBRK_BROKER
Substitute your own broker name for WBRK_BROKER.

You can also request that the broker queue manager is started as a Windows
service. Refer to [“Starting a WebSphere MQ queue manager as a Windows|
lservice” on page 345|

The broker and its associated queue manager are started. The command
initiates the startup of the broker's Windows service.

Check the Application Log in the Event Viewer to ensure that the broker has
initialized successfully. The log contains messages about verification
procedures; if all tests are successful, only an initial start message is recorded. If
one or more verification tests are unsuccessful, the log also includes messages
that provide details of the tests that have failed. If errors have been reported,
review the messages and take the suggested actions to resolve these problems.

3. To stop a broker, enter the following command on the command line:
mgsistop WBRK_BROKER
Substitute your own broker name for WBRK_BROKER.

You can also request that the broker queue manager is stopped by this
command. Refer to [“Stopping a WebSphere MQ queue manager when you stop|
la component” on page 345

Starting and stopping a broker on z/OS
Run the appropriate command from SDSF to start or stop a broker.

1. Start the component by using the command /S <broker name>. This command
produces the following output, where MQP1BRK is the name of the broker:
+BIP91411 MQP1BRK O The component was started
Substitute your own broker name for MQP1BRK.
The verification step runs, followed by starting the control process and any
DataFlowEngine (execution group) address spaces.

If the verification step fails, the errors are reported to the STDOUT stream in
the JOBLOG. The control process and DataFlowEngine address spaces are not
started. Review the messages to see what errors have been reported, and take
the suggested actions to resolve these problems.
2. Alternatively, start the control process only by using the command:

/S broker_name,STRTP=MAN
If the verification step fails for any reason, the errors are reported to the
STDOUT stream in the JOBLOG; the control process is not started. Review the
messages to see what errors have been reported, and take the suggested actions
to resolve these problems.

No DataFlowEngine address spaces are started automatically if you specify
STRTP=MAN. If the verification step is successful and the control process starts
successfully, fully start the broker by issuing the console command:

/F <broker name>, SC
3. To stop a broker, run the following command:
/P <broker name>

340 Configuration, Administration, and Security

Starting and stopping a Configuration Manager

Run the appropriate command to start or stop a Configuration Manager.

Before you start:

Ensure that your user ID has the correct authorizations to perform the task; refer
to [“Security requirements for administrative tasks” on page 755

On Linux, UNIX, and Windows systems, you must set up your command-line
environment before performing this task, by running the product profile or
console; refer to [Setting up a command environment]

To start and stop a Configuration Manager, use the mgsistart and mqsistop
commands from the command line.

Follow the link for the appropriate platform.

+ |“Starting and stopping a Configuration Manager on Linux and UNIX systems”]

* |“Starting and stopping a Configuration Manager on Windows"]

+ [“Starting and stopping a Configuration Manager on z/0S” on page 342|

Starting and stopping a Configuration Manager on Linux and
UNIX systems

Run the appropriate command to start or stop a Configuration Manager.

Use the mgsistart and mgsistop commands from the command line.

1.

Run './install_dir/bin/mgsiprofile' to source the mgsiprofile script and set
up the environment for a single targeted runtime. You must do this before you
can run any of the WebSphere Message Broker commands.

To start aConfiguration Manager, enter the following command on the
command line:

mgsistart CMGRO1

Substitute your own Configuration Manager name for CMGRO01. The
Configuration Manager and its associated queue manager are started.

Check the system log to ensure that the Configuration Manager has initialized
successfully. The log contains messages about verification procedures; if all tests
are successful, only an initial start message is recorded. If any verification test
is unsuccessful, the log also includes messages that provide details of the tests
that have failed. If errors have been reported, review the messages and take the
suggested actions to resolve these problems.

To stop a Configuration Manager, enter the following command on the
command line:

mgsistop CMGRO1

Substitute your own Configuration Manager name for CMGRO1.

You can also request that the queue manager that hosts the Configuration

Manager is stopped by this command. Refer to [“Stopping a WebSphere MQ)
[queue manager when you stop a component” on page 345.|

Starting and stopping a Configuration Manager on Windows

Run the appropriate command to start or stop a Configuration Manager.

Use the mgsistart and mgsistop commands from the command line.

Administering the broker domain 341

1. Open the WebSphere Message Brokercommand console. When you open the
console, it sets up the environment that you need to run any of the WebSphere
Message Broker commands.

If you prefer, you can run the install_dir/bin/mgsiprofile command to set
up the environment.

2. To start a Configuration Manager, enter the following command on the
command line:

mgsistart CMGRO1

Substitute your own Configuration Manager name for CMGRO1. If you do not
specify a name, the default of configmgr is used.

You can also request that the queue manager associated with the Configuration
Manager is started as a Windows service. See [“Starting a WebSphere MQ)
[queue manager as a Windows service” on page 345] The Configuration
Manager and its associated queue manager are started. The command initiates
the startup of the Windows service for the Configuration Manager.

Check the Application Log in the Event Viewer to ensure that the
Configuration Manager has initialized successfully. The log contains messages
about verification procedures; if all tests are successful, only an initial start
message is recorded. If any verification test is unsuccessful, the log also
includes messages that provide details of the tests that have failed. If errors
have been reported, review the messages and take the suggested actions to
resolve these problems.

3. To stop a Configuration Manager, enter the following command on the
command line:
mgsistop CMGRO1
Substitute your own Configuration Manager name for CMGRO1. If you do not
specify a name, the default name configmgr is used.

You can also request that the queue manager that hosts this Configuration
Manager is stopped by this command. See [“Stopping a WebSphere MQ queue|
[manager when you stop a component” on page 345,

Starting and stopping a Configuration Manager on z/OS
Run the appropriate command from SDSF to start or stop a Configuration

Manager.

1. Start the component by using the command /S <Configuration Manager name>.
This command produces the following output where CMGRO1 is the name of
the Configuration Manager.
+BIP9141I CMGRO1 © The component was started
Substitute your own Configuration Manager name for CMGRO1.

The verification step runs, followed by starting the control process and the
Configuration Manager process.

If the verification step fails for any reason, the errors are reported to the
STDOUT stream in the JOBLOG; the control process and Configuration
Manager process are not started. Review the messages to see what errors have
been reported, and take the suggested actions to resolve these problems.

2. Alternatively, start the control process only by using the command:

/S configmgr_name ,STRTP=MAN

If the verification step fails for any reason, the errors are reported to the
STDOUT stream in the JOBLOG; the control process is not started. Review the
messages to see what errors have been reported, and take the suggested actions
to resolve these problems.

342 Configuration, Administration, and Security

The Configuration Manager process is not started automatically when
specifying STRTP=MAN. If the verification step is successful and the control
process starts successfully, fully start the Configuration Manager by issuing the
console command:

/F <Configuration
Manager name>, SC

To stop a Configuration Manager, run the following command:
/P CMGRO1
Substitute your own Configuration Manager name for CMGRO1.

Starting and stopping the User Name Server

Run the appropriate command to start or stop the User Name Server.

Before you start:

Ensure that your user ID has the correct authorizations to perform the task.
Refer to [“Security requirements for administrative tasks” on page 755.|

On Windows, UNIX systems, and Linux, you must set up your command-line
environment before performing this task, by running the product profile or
console; refer to [Setting up a command environmen

To start and stop a User Name Server use the mqsistart and mqsistop commands
from the command line.

Follow the link for the appropriate platform.

* |“Starting and stopping the User Name Server on Linux and UNIX systems”]|

+ [“Starting and stopping the User Name Server on Windows” on page 344|

+ |“Starting and stopping the User Name Server on z/0S” on page 344|

Starting and stopping the User Name Server on Linux and
UNIX systems

1.

Run '. <install_dir>/bin/mgsiprofile’ to source the mqsiprofile script and
set up the environment for a single targeted runtime. You must do this before
you can run any of the WebSphere Message Broker commands.

To start a User Name Server enter the following command on the command
line:

mgsistart UserNameServer

The User Name Server and its associated queue manager are started. Check the
syslog to ensure that the User Name Server has initialized successfully. If errors
have been reported, review the messages and take the suggested actions to
resolve these problems.

To stop a User Name Server enter the following command on the command
line:
mgsistop UserNameServer

You can also request that the User Name Server's queue manager is stopped by
this command. Refer to [“Stopping a WebSphere MQ queue manager when youl
[stop a component” on page 345

Administering the broker domain 343

Starting and stopping the User Name Server on Windows

The following steps show you how to start and stop a User Name Server.

1. Run the <install_dir>/bin/mgsiprofile command to set up the environment
for a single targeted runtime. You must do this before you can run any of the
WebSphere Message Broker commands.

2. To start a User Name Server:
a. Enter the following command on the command line:
mgsistart usernameserver

The User Name Server and its associated queue manager are started. The
command initiates the startup of the User Name Server's Windows service.
Check the Application Log of the Windows Event Viewer to ensure that the
User Name Server has initialized successfully. If errors have been reported,
review the messages and take the suggested actions to resolve these
problems.

You can also request that the queue manager that hosts the User Name
Server is started as a Windows service. Refer to [‘Starting a WebSphere MQ)|
[queue manager as a Windows service” on page 345

3. To stop a User Name Server enter the following command on the command
line:
mgsistop usernameserver
You can also request that the queue manager that hosts the User Name Server
is stopped by this command. Refer to [“Stopping a WebSphere MQ queue
[manager when you stop a component” on page 345

Starting and stopping the User Name Server on z/0S

Run the appropriate command from SDSF to start or stop a User Name Server.

1. Start the component by using the command /S <User Name Server name>. This
command produces the following output where MQP1UNS is the name of the
User Name Server:

+BIP9141I MQPIUNS O The component was started
Substitute your own User Name Server name for MQP1UNS.

The verification step runs, followed by starting the control process and the User
Name Server process.

If the verification step fails for any reason, the errors are reported to the
STDOUT stream in the JOBLOG; the control process and User Name Server
process are not started. Review the messages to see what errors have been
reported, and take the suggested actions to resolve these problems.
2. Alternatively, start the control process only by using the command:
/S usernameserver_name ,STRTP=MAN

If the verification step fails for any reason, the errors are reported to the
STDOUT stream in the JOBLOG; the control process is not started. Review the
messages to see what errors have been reported, and take the suggested actions
to resolve these problems.

The User Name Server process is not started automatically when specifying
STRTP=MAN. If the verification step is successful and the control process starts
successfully, fully start the User Name Server by issuing the console command:

/F <User Name Server name>, SC
3. To stop a User Name Server, use the command:
/P <User Name Server name>

344 Configuration, Administration, and Security

Starting a WebSphere MQ queue manager as a Windows service

On Windows, you can start a WebSphere MQ queue manager as a Windows
service to ensure the queue manager starts when you start your other components.

Before you start:

You must complete the following task:

* Stop the queue manager for the WebSphere Message Broker component, using
the endmgm command. If you prefer, you can use the WebSphere MQ Explorer.

When you start a WebSphere Message Broker component (broker, Configuration
Manager, or User Name Server), the [“mgsistart command” on page 686|starts the
associated queue manager if it is not already running.

When you start any of these components on Windows, the component starts as a
service on Windows, but the associated queue manager does not.

You can change the properties of the queue manager service to set the startup type
to automatic to enable the queue manager to run as a Windows service.

This change ensures that the operation of the queue manager is independent of the
logged-on status of the user that starts theWebSphere Message Broker component.

To start a WebSphere MQ queue manager as a Windows service:
1. Click Start » Programs » IBM WebSphere MQ » WebSphere MQ Explorer.

2. In the left pane, right-click the queue manager and select Properties. The
Properties dialog opens. The General properties are displayed.

3. Find the Startup property and set it to Automatic.
4. Click OK. The Properties dialog closes and the change is applied.

5. Restart the queue manager for the component by using the strmgm command
or WebSphere MQ Explorer. The changes to the queue manager's startup type
take effect when you restart Windows.

6. Start the component by using the mgsistart command.

Stopping a WebSphere MQ queue manager when you stop a

component

If you are preparing to stop a broker, Configuration Manager or User Name Server,
you can stop the component's WebSphere MQ queue manager at the same time.

You can specify a -q parameter on the mqsistop command to initiate a controlled
shutdown of the queue manager for a WebSphere Message Broker component.

If you are using a single queue manager to support more than one WebSphere
Message Broker component (a single broker can also be defined on the same queue
manager as a Configuration Manager, or the User Name Server, or both), specify
the -q flag only on the final stop command, having stopped the other components
first. The -q flag initiates a queue manager termination regardless of any other
component currently using that queue manager.

To stop a WebSphere MQ queue manager enter the following command on the
command line:

Administering the broker domain 345

mgsistop WBRK_BROKER -g

where:

WBRK_BROKER is the name of the broker.

-q stops the WebSphere MQ queue manager associated with the component.
The command cannot complete until shutdown of the queue manager has
completed.

Viewing broker domain log information

You can view broker domain log information by using either the Broker
Administration perspective or the CMP APL

Follow the instructions in this topic to use the Broker Administration perspective.
If you prefer to use the CMP API, see [Developing applications that use the|
[Configuration Manager Proxy API|and [Configuration Manager Proxy API|

Broker domain log information is written to the Event log editor.

The Event log editor contains information about events that occur within your
broker domain. These events can be information, errors, or warnings and relate to
your own actions. To view events for a particular broker, look for the name of the
broker in the Source column.

Each event contains the following information:
* Message: The event number.
* Source: Where the event has come from(within the broker domain).

* TimeStamp: The date and time that the event occurred. Time stamps are taken
from the computer that is hosting the Configuration Manager.

* Details: What has caused the event and what action is needed to rectify it.

To view broker domain log information:
1. Switch to the Broker Administration perspective.

2. In the Domains view, expand the broker domain with which you want to work,
to show the Event Log.

3. Double-click the Event Log. All broker domain log information specific to the
broker domain with which you are working is displayed in the Event Log
editor.

If the broker domain is not connected, you are prompted to connect to the
broker domain before the Event Log is opened.

The Event Log editor has two panes called Logs and Details. The top half of
the view lists all the events, in date and time order. The bottom half of the
view shows the details of a specific selected event. You can maximize and
minimize each pane, and toggle between them.

4. Click the event that you want to view in more detail from the top half of the
Event Log view. The details of this event can then be viewed in the bottom half
of the view.

When you filter information, as described in [“Filtering broker domain log|
information” on page 347|a note appears next to the view label to indicate that
a filter has been applied.

346 Configuration, Administration, and Security

Refreshing broker domain log information

Refresh the log that records the events that occur in the broker domain and are
shown in the Event Log editor.

New messages display automatically in the Event Log. However, you can refresh
the Event Log at any time:

1. Switch to the Broker Administration perspective.

2. In the Domains view, expand the appropriate broker domain to display its
components.
3. Double-click on Event Log to open the Event Log editor in the editor area.

4. Right-click in the Logs pane and click Revert. Revert hides only existing
messages; this option does not remove or overwrite existing messages in the
Event Log editor, or in the log in the Configuration Manager.

Filtering broker domain log information

Filter records in the log to view information about specific resources in the broker
domain.

The Event Log, which you can view in the workbench, contains information about
events that occur in a broker domain. For each event, the Event log records the
following details:

* Event type (whether the event is information, an error, or a warning)

* Event source (what caused the event, and where it originates within the broker
domain, for example the Configuration Manager, and specified brokers

* Event time stamp (the date and time when the event occurred)

You can filter on the type, the source and the time stamp of the message, to restrict
the number of log entries that are displayed in the Event Log editor. You can also
filter events, to view a particular set of events. The filter settings that you define
are kept for your next session. A note also appears next to the view label to
indicate that a filter has been applied.

To filter entries, use the Filter Event Log dialog:
1. Switch to the Broker Administration perspective.
2. In the Domains view, open the Event Log for the appropriate broker domain.
3. From the Event Log editor menu, click Event Log editor> Filter Log The Filter
Log dialog opens.
4. In the Filter Log dialog, use the following controls to apply the required filter:
¢ Filter by message type (information, error, or warning).
Select one or more of the three message types.
* Filter by message source.

Select one or more of the possible message sources for all known entries so
far. If you click Deselect All, all sources are cleared.

To view all sources click Select All. All events with the selected sources are
included in the filter dialog table of entries.

e Filter by time stamp.

Click Hide Events generated before and select from the time stamps of all
entries generated to date. The log hides messages that were generated before
the specified time stamp.

Administering the broker domain 347

* Select one or more log entries from those displayed in the table; use the
vertical scroll bar to access additional entries.

* Below the table, click Select All to select all events, or Deselect All to
deselect all events from this table.

* Click Restore Defaults to reset all the options shown to their default values.

In the default view of the Log Filter, all message types are selected, indicating
that messages of all three types are displayed. All message sources are also
selected, indicating that messages of all sources are displayed. The default time
stamp is the one for the oldest known event so far. All events are selected in
the table.
You can combine filtering options (type, source, time stamp). The combinations
that you select are identified in the table; entries are automatically selected or
cleared to indicate the choices that you make. The editor is also updated based
on the tables; selected entries are displayed, cleared entries are hidden.
For incoming new events, the filtering options based on type, source, and time
stamp are applied automatically.

5. To save the current filter settings, click OK. Event filtering is applied, based on
your new settings, and the editor is refreshed.

6. To discard all changes before you save them, click Cancel.

Saving broker domain log information

Save the broker domain log information that is written to the Event log editor in
the workbench.

Event log information is deleted automatically from the Configuration Manager
after 72 hours. You can save the log contents to file if you want to retain them.

1. Switch to the Broker Administration perspective.

2. Open the Event Log for the appropriate broker domain.

3. Right-click in the Event log editor and click Save Log As.

4. Enter an appropriate directory in which to save the log information.

The default file name is Tog.txt. However, you can change the name of this
text file.

You can also save the file in XML format, with .xml file extension.

Each message recorded in the event log is written to the text file with the same
information that is detailed in the event log itself.

To view the saved log, open the 1og.txt file in an appropriate text editor.

Clearing Event logbroker domain log information

Clear Event logbroker domain log information to reduce the size of the log by
using either the workbench or the CMP APL

Follow the instructions in this topic to use the workbench to clear the log. If you
prefer to use the CMP API, see [Developing applications that use the Configuration|
[Manager Proxy API|and [Configuration Manager Proxy API|

To clear all the Event logbroker domain log information from the Event log:
1. Switch to the Broker Administration perspective.
2. Open the Event Log for the appropriate broker domain.

348 Configuration, Administration, and Security

3. In the Event Log editor menu, click Event Log Editor » Clear Log.

If you have set user preference to warn before deleting events, a prompt asks you
to confirm deletion. Click OK.

If you have not set user preferences to warn before deleting events, the event log
is cleared automatically.

When you clear the event log, all recorded events that are in view are deleted
from the repository.

Changing the location of the work path

The work path directory is the location where a component stores internal data,
such as installation logs, component details, and trace output. The shared-classes
directory is also located in the work path directory and is used for deployed Java
code. If the work path directory does not have enough capacity, redirect the
directory to another file system that has enough capacity.

The work path is fixed at installation time so that WebSphere Message Broker can
always find the information that it needs, and always knows where to store new
information.

If you need to change the location (for example, if you do not have enough
capacity on the automatically-designated file system), do not change the path to
the directory; instead, redirect the old work path directory to a new location.

Changing the location of the work path on Windows systems

When you change the location of the work path, you mount the new partition at
the location of the old work path directory.

To change the location of the work path on Windows:

1. Shut down all WebSphere Message Broker services and processes.

2. Create a new partition on the system. The new partition can be on the same
drive as the old work path, or on a different drive.

3. Locate the work path directory for your installation on the local system by
running the following command:
echo %MQSI_WORKPATH%

4. Copy the contents of the work path directory to the new partition.

5. Delete the contents of the old work path directory.

6. Open the Computer Management dialog: click Start » Settings » Control

Panel » Administrative Tools > Computer Management; the Computer
Management dialog opens.

7. In the left pane of the Computer Management dialog, click Disk
Management. The new partition that you added, and any existing partitions,
are listed in the right pane.

8. Right-click the new partition, then click Change Drive Letter and Paths. The
Change Drive Letter and Paths dialog opens.

9. Click Add. The Add Drive Letter or Path dialog opens.

10. Ensure that Mount in the following empty NTFS folder is selected, then
browse to the old work path location.

11. Click OK, then click OK again.

Administering the broker domain 349

Any files that WebSphere Message Broker creates in the work path location are
stored on the new partition.

Changing the location of the work path on Linux and UNIX
systems

When you change the location of the work path, you can either mount the new
partition at the location of the old work path directory, or you can replace the old
work path directory with a soft link that points to the new work path directory.

To change the location of the work path on UNIX and Linux:
1. Shut down all WebSphere Message Broker services and processes.
2. Create a new directory on a suitable file system.

3. Locate the work path directory for your installation on the local system by
running the following command:

echo $MQSI_WORKPATH
4. Copy the contents of the work path directory to the new partition.
5. Delete the contents of the old work path directory.

6. Perform one of the following tasks so that the WebSphere Message Broker
installation uses the new work path location:

* Use the mount command to mount the new work path directory at the
location of the old work path directory.

* Delete the old work path directory and replace it with a soft link. Give the
soft link the same name as the old work path directory and point the link to
the new work path directory.

Any files that WebSphere Message Broker creates in the work path location are
stored in the new location.

Changing Event log editor preferences

You can change preferences for the Event log editor by using the Event log editor.

You can change the following preferences for the Event log editor:

* Choose not to display a warning before deleting log events. The default is to
display a warning.

* Change the color for each type of event (Warning, Information, and Error). You

can choose from a palette of basic colors or define custom colors. The default
color for all events is black.

* Define the style and size of the font used for event details. The default is
Tahoma, regular, 8 point.

To change preferences:

1. Switch to the Broker Administration perspective.

2. Click Window>Preferences.

3. Expand the Broker Administration category in the left pane.
4

. Click Event log editor within the expanded Broker Administration category to
open the Event log editor preferences page.

o

Make your selections.
6. Click OK.

350 Configuration, Administration, and Security

Backing up resources

Establish a backup process to preserve the integrity and consistency of your broker
domain, and provide a mechanism to restore your components and resources.

Brokers rely on a database manager to maintain and control their configuration
data. Brokers, the Configuration Manager, and the User Name Server rely on
WebSphere MQ to transport and guarantee messages between components. You
must establish a backup process that includes these sources of information to
preserve the integrity and consistency of your broker domain.

It is important that you maintain regular backups of your broker domain and
associated databases. Refer to the information supplied with the database that you
are using for details of the relevant database backup procedures.

Consult your database administrator and agree upon the following questions:
* Frequency of backups
* Quiesce backup points to take

Depending upon your workflow, these actions can be hourly, daily, or weekly.
Plan to be always in a position to recover to a specific point in time, whatever

happens. For example, take a backup of the broker domain, and quiesce of the
broker databases, before you install a new application.

The following topics tell you how to back up and restore brokers, the
Configuration Manager and the Message Broker Toolkit workspace:

* |“Backing up the broker domain on distributed systems”]

+ [“Backing up the broker domain on z/OS” on page 352|

* |“Backing up the Message Broker Toolkit workspace” on page 354

Backing up the broker domain on distributed systems

You can back up a broker domain so that it can be restored for migration purposes,
or in the event of an unrecoverable failure. Back up broker domain resources, and
plan for restoration of every broker that is deployed to by the Configuration
Manager.

For more information about carrying out these steps, see the links at the end of
this topic.

Backing up components

To back up the components:
1. Stop each broker.
2. Stop the Configuration Manager.

3. Back up the Configuration Manager data repository using the
mgsibackupconfigmgr command.

4. Back up each broker database.

For example, for a DB2 broker database use the Backup wizard in the DB2
Control Center, or a command like:

DB2 BACKUP DATABASE <broker db> TO "<backup directory>"
5. Back up the system work path.
The work path is platform-specific:

Administering the broker domain 351

« WM On Windows, the directory is ALLUSERSPROFILE%\Application
Data\IBM\MQSI where %ALLUSERSPROFILE% is the environment variable that
defines the system working directory. The default directory depends on the
operating system:

— On Windows XP and Windows Server 2003: C:\Documents and
Settings\A11 Users\Application Data\IBM\MQSI

— On Windows Vista and Windows Server 2008: C:\ProgramData\IBM\MQSI
The actual value might be different on your computer.

. BTN On other distributed platforms, the directory is:
/var/mgsi

Also, back up broker-specific work paths that you have specified with the -w
flag on the [mgsicreatebroker| command.

Restoring components

To restore the components:

1. Stop and remove the existing components in the Configuration Manager
domain.

a. Disconnect from the domain in the Message Broker Toolkit.
b. Stop each broker.

c. Stop the Configuration Manager.

d

. Delete each broker using the mgsideletebroker command, specifying the -w
parameter, which is an optional parameter on Windows and UNIX
platforms that deletes from the work path all files related to these brokers.

e. Delete the Configuration Manager using the mqsideleteconfigmgr
command, specifying the -w and -n parameters. The -n parameter deletes
all data in the configuration repository.

2. Recreate the components.
a. Create the Configuration Manager.
b. Create each broker.

3. Restore the components.
a. Restore all work paths.

b. If you are restoring a Configuration Manager, restore the Configuration
Manager repository by using the mgsirestoreconfigmgr command.

On z/0S only, you must also replace the previously backed-up
service.properties file.

c. Restore each broker database.

For example, for a DB2 broker database use the Restore wizard in the DB2
Control Center, or a command like:

DB2 RESTORE DATABASE <broker db> FROM "<backup directory>" TAKEN AT <datetime>
d. Start the Configuration Manager.
e. Start each broker.
f. Connect to the Configuration Manager in the Message Broker Toolkit.

Backing up the broker domain on z/OS

You can back up a broker domain so that it can be restored for migration purpose