WebSphere Message Broker

Message Models

Version 6 Release 1

<|ll

WebSphere Message Broker

Message Models

Version 6 Release 1

<|ll

Note
FBefore you use this information and the product that it supports, read the information in the Notices appendix.

This edition applies to version 6, release 1, modification 0, fix pack 8 of IBM WebSphere Message Broker and to all
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2000, 2010.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this topic collection. v

Part 1. Developing message models 1

Developing message models. 3

Message modeling3
Working with a message set pro]ect B 1
Working with a messageset.82
Working with a message definition file94
Working with message model objects.96
Creating a multipart message . . . Lo 122
Linking from one message definition f11e to another 123
Working with a message category file 125
Working with data structures 128
Generating documentation from message sets and

message flows . . . e s 142
Generating XML Schemas . N)

Generating a WSDL definition from a message set 145

Part 2. Reference. 147

Message model reference information 149

© Copyright IBM Corp. 2000, 2010

Message set preferences .

Message set properties

Message definition file propertles

Message category properties

Message model object properties .
Deprecated message model object propertles
Additional MRM domain information .
Additional MIME domain information .
Additional IDOC domain information .

. 149
. 151
. 183
. 185
. 186
. 613
. 744
. 789

. 794

Message model task list errors that have a qurck f1x 797

Generated model representations . . 799
Import formats . . . 804
Message model wizards . . 816
Part 3. Appendixes . . 835
Appendix. Notices for WebSphere
Message Broker . . . 837
Trademarks in the WebSphere Message Broker
Information Center .o S . 839
Index . . 841
iii

iv Message Models

About this topic collection

This PDF file has been created from the WebSphere Message Broker Version 6.1 (fix
pack 8 update, July 2010) information center topics. Always refer to the WebSphere
Message Broker online information center to access the most current information.
The information center is periodically updated on the [document update]site and
this PDF and others that you can download from that Web site might not contain
the most current information.

The topic content included in the PDF does not include the "Related Links"
sections provided in the online topics. Links within the topic content itself are
included, but are active only if they link to another topic in the same PDF
collection. Links to topics outside this topic collection are also shown, but result in
a "file not found "error message. Use the online information to navigate freely
between topics.

Feedback: do not provide feedback on this PDF. Refer to the online information to
ensure that you have access to the most current information, and use the Feedback
link that appears at the end of each topic to report any errors or suggestions for
improvement. Using the Feedback link provides precise information about the
location of your comment.

The content of these topics is created for viewing online; you might find that the
formatting and presentation of some figures, tables, examples, and so on are not
optimized for the printed page. Text highlighting might also have a different
appearance.

© Copyright IBM Corp. 2000, 2010 \%

ftp://ftp.software.ibm.com/software/integration/wbibrokers/docs

vi Message Models

Part 1. Developing message

Developing message models .

Message modeling
Message modeling concepts
Why model messages? .

Message domains and parsers

The message model . . .
Physical formats in the MRM domam
Ways to create message definitions
Generate model representations

Working with a message set project
Deleting a message set project .

Working with a message set . .
Configuring message set preferences .
Opening an existing message set
Creating a message set .

Configuring logical properties: Message sets
Working with physical formats . .
Observing 2007 U.S. changes to dayhght savmg
time .

Configuring documentatlon propertles Message
sets .

Deleting a message set

Applying a Quick Fix to a task hst error.

Working with a message definition file .
Opening an existing message definition file.
Creating a message definition file .
Deleting a message definition file .

Working with message model objects.
Adding message model objects .
Configuring message model objects .
Deleting objects .

Creating a multipart message . .

Linking from one message definition frle to another
Include
Import .

Working with a message category flle .

Creating a message category file .

Opening an existing message category file.
Adding a message to a message category .
Deleting a message from a message category
Viewing or conﬁguring message category file
properties .

Deleting a message category f11e .

Working with data structures .

Importing file systems into the workbench
Importing from C . . .
Importing from COBOL copybooks .
Importing from IBM supplied messages
Importing from WSDL .o
Importing from XML DTD .

Importing from XML Schema .

Generating documentation from message sets and

message flows . .

Generating XML Schemas .

Generating XML Schemas .
Generating an XML Schema

© Copyright IBM Corp. 2000, 2010

models

NN WW

. 39
.77
. 81
. 82
. 82
. 82
. 83
. 83
. 86
. 86

.92

.92
. 93
.93
. 94
. 94
. 94
. 96
. 96
.97
. 108
. 122

. 122
123

. 123
. 124
. 125
. 125
. 126
. 126

127

. 127
. 128
. 128
. 129
. 131
. 133
. 135
. 135
. 138
. 140

. 142
. 143
. 143
. 144

Generating a WSDL definition from a message set

145

2 Message Models

Developing message models

This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.

If you are unfamiliar with message models, read the topics that describe the
concepts, starting with [“Message modeling.”| These topics explain when you might
want to model messages, and describe the message modeling objects that you can
use, such as message sets and message definition files.

The WebSphere® Message Broker message model is based on XML Schema. For
more information about XML Schema, see [XML Schema Part 0: Primer]

The following tasks are provided for developing message models:

+ [“Working with a message set project” on page 81|

* [“Working with a message set” on page 82|

* [“Working with a message definition file” on page 94|

+ [“Working with message model objects” on page 96|

* |“Creating a multipart message” on page 122|

[“Linking from one message definition file to another” on page 123|

* [“Working with a message category file” on page 125|

* [“Working with data structures” on page 128

+ [“Generating documentation from message sets and message flows” on page 142

* |“Generating XML Schemas” on page 143

* [“Generating a WSDL definition from a message set” on page 145|

Tip: The workbench provides a set of toolbar icons that invoke wizards that you
can use to create many of the resources that are associated with message
models; for example, a new message set. Hold the mouse pointer over a
toolbar icon to see its function.

The workbench lets you open resource files with other editors. However, use only
the workbench to edit resource files that are associated with message models
because this editor correctly validates all changes that you make to these files.

Message modeling

Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.

Applications typically use a combination of messages, including those that are
defined by the following structures or standards:

e C and COBOL data structures
* Industry standards such as SWIFT or EDIFACT
* XML DTD or Schema

© Copyright IBM Corp. 2000, 2010 3

http://www.w3.org/TR/xmlschema-0/

You can model a wide variety of message formats so that they can be understood
by WebSphere Message Broker message flows.

When the message format is known, the broker can parse an incoming message bit
stream and convert it into a logical message tree for manipulation by a message
flow. After the message has been processed by the message flow, the broker
converts the message tree back into a message bit stream.

The following topics together give an overview of Message modeling:

* ["Message modeling concepts”]|

“Why model messages?” on page 6|

* ["“Message domains and parsers” on page 7|

“The message model” on page 7|

+ [“Physical formats in the MRM domain” on page 39|

“Ways to create message definitions” on page 66|

“Generate model representations” on page 77|

You can import either of the following samples to explore message set projects to
understand how the sample's messages are modeled in different formats.

.

* [Comma Separated Value (CSV)|

The following samples from the Samples Gallery also have message sets supplied:
+ [EDIFAC

Bl

You can view samples information only when you use the information center that
is integrated with the Message Broker Toolkit or the online information center.

Message modeling concepts

4 Message Models

Message modeling is a way of predefining the message formats that are used by
your applications.

When you have created your message models, include them in your broker archive
(BAR) file with the message flows that use those models. Deploy the BAR file to
the broker, which uses your message models to automatically parse and write your
message formats.

When you model messages, you must understand the following concepts:
* Message set projects

* Message sets

* Message definition files

* Web Services Description Language (WSDL) files

* Message categories

* Model importers

* Model editors

* Model generators

* Model validator

* Domains and parsers

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.video.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.csv.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.edifact.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.fix.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.swift.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.x12.doc/doc/overview.htm

Repository

XML XML COBOL
DTD Schema C header copybook WSDL EIS
v v v v v A4
Importers

l—l

=
=
Message Set (@]
kel
messageSet.mset | . Message Set .
file A 7 Editor)
¥
o
7777777777777777777777777 p -
. mxsd e »| Message Definition
files h "1 Editor ()
,,,,,,,,,,,,,,,,,,,,,,,,, ‘ (@)
©
,,,,,,,,,,,,,,,,,,,,,,,,, (/)]
,,,,,,,,,,,,,,,,,,,,,,,,,, (n
el < > WSDL editor o
files >
(O]
P -
,ffff:fffff:ffff:ffffjff,’:'3 q)
.category 3 .| Message Category <
files * g Editor Q
,,,,,,,,,,,,,,,,,,,,,,,,, :—‘ (@p)]
@)
Model v
ode
Validator ;
v
Generators
v v v v
. XML Message
Documentation Schema Dictionary WSDL
XML WMB Web Services
application broker client

A message set project is a specialized project (container) in which you create and
maintain all the resources that are associated with exactly one message set.

A message set is a logical grouping of your messages and the objects that comprise
them (elements, types, groups). A message set contains the following files:

* Exactly one message set file

* Zero or more message definition files

e Zero or more WSDL files

* Zero or more message category files

Developing message models

5

The message set file provides message model information that is common to all the
messages in the message set. You can create this information using the message set
editor.

When you have created a message set, you typically import application message
formats described by XML DTD, XML Schema, WSDL files, C structures, COBOL
structures, or EIS systems, creating and populating message definition files. You can
then edit the logical structure of your messages, and create and edit physical
formats that describe the precise appearance of your message bit stream during
transmission, using the message definition editor. Alternatively, you can create an
empty message definition file and create your messages using just the editor.

When your message definition files are complete, you can then generate the
message set in a form that can be used by a broker, parser, or application. This
might be in one of the following forms:

* A message dictionary for deployment to a broker

¢ An XML Schema for use by an application to validate XML messages, or for
deployment to a broker

* Web Services Description Language (WSDL) for a Web services client, or for
deployment to a broker

* Documentation to give to programmers or business analysts

Messages can be optionally grouped into message categories for convenience . You
can add messages to message categories using the message category editor.

Each time you save a message set file, message definition file, or message category
file, the content is validated to ensure that the message model that you are creating
follows certain rules. There are rules for both the logical structure and the physical
formats. This 'model validation' ensures the integrity of your model, but does not
necessarily prevent you from saving a message model file that is not valid.

WebSphere Message Broker supplies a range of parsers to parse and write message
formats. Each parser is suited to a particular class of messages (for example,
fixed-length binary, delimited text, or XML) known as a message domain. When you
create a message set, you specify which domains the message set supports. This
determines which parsers can be used when you parse and write messages that are
defined within that message set.

Why model messages?

6 Message Models

WebSphere Message Broker supplies a range of parsers to parse and write message
formats. Some message formats are self-defining and can be parsed without
reference to a model. Most message formats, however, are not self-defining, and
the parser must have access to a predefined model that describes the message, if it
is to parse it correctly.

An example of a self-defining message format is XML. In XML the message itself
contains metadata as well as data values, enabling an XML parser to understand
an XML message even if no model is available.

Examples of messages that do not have a self-defining format are binary messages
that originate from a COBOL program, and from SWIFT formatted text messages.
Neither contain sufficient metadata to enable a parser to understand the messages.

Even if your messages are self-defining and do not require modeling, the following
advantages of modeling them might be useful:

¢ Runtime validation of messages. Without a model, a parser cannot check
whether input and output messages have the correct structure and data values.

* Enhanced parsing of XML messages. Although XML is self-defining, without a
model, all data values are treated as strings. If a model is used, the parser
knows the data type of data values, and can cast the data accordingly.

* Improved productivity when writing ESQL. When you are creating ESQL
programs for WebSphere Message Broker message flows, the ESQL editor can
use message models to provide code completion assistance.

* Drag-and-drop operations on message maps. When you are creating message
maps for WebSphere Message Broker message flows, the Mapping editor uses
the message model to populate its source and target views. Without message
models, you cannot use the Mapping editor.

* Reuse of message models, in whole or in part, by creating additional messages
that are based on existing messages.

e Generation of documentation.

* Provision of version control and access control for message models by storing
them in a central repository.

To make full use of the facilities that are offered by WebSphere Message Broker,
model your message formats.

To speed up the creation of message models, importers are provided to read
metadata such as C header files, COBOL copybooks, XML Schema and DTDs,
WSDL files, and EIS metadata, and create message models from that metadata.
Additionally, predefined models are available for common industry standard
message formats such as SWIFT, EDIFACT, X12, FIX, HL7, and TLOG.

Message domains and parsers

WebSphere Message Broker supplies a range of parsers to parse and write message
formats.

A parser is invoked when the bit stream that represents an input message is
converted to the internal form that can be handled by the broker. The internal
form, a logical tree structure, is described in [Logical tree structure} Similarly, a
parser is invoked to convert a logical tree back into a bit stream.

Each parser is suited to a particular class of messages (for example, fixed-length
binary, delimited text, or XML) known as a message domain.

When you create a message set, you specify which message domains the message
set supports. This determines which parsers are used when you parse and write
messages that are defined within that message set.

The parsers that are supplied with WebSphere Message Broker are described in

The message model
The message model consists of the following components.
* Message set projects
* Message sets

Developing message models 7

8 Message Models

* Message definition files
* WSDL files

* Message categories

See ["Message modeling concepts” on page 4| for a summary of these components,
and the relationship between them. See Related Concepts later in this section for a
detailed description of each component.

The majority of your model content is described by message definition files. These
files use XML Schema to represent your messages. XML Schema is an international
standard that defines a language for describing the structure of XML documents. It
is ideally suited to describing the messages that flow between business
applications, and it is widely used in the business community for this purpose.
WebSphere Message Broker uses XML Schema to describe the structure of all kinds
of message format, not just XML.

Each message definition file describes both the logical structure of your messages,
and the physical formats that describe the appearance of your message bit stream
during transmission. If you are using the MRM or IDOC domains, you must
provide physical format information. This tells the parser exactly how to parse the
message bit stream. If you are not using the MRM or IDOC domains, physical
format information is not needed

To understand the different ways that you create and populate message definition
files, see [“Ways to create message definitions” on page 66)See [“Physical formats in|
[the MRM domain” on page 39| for a description of the physical formats that are
available to you.

Message set projects
A message set project is a specialized container in which you create and maintain all
the resources associated with one message set.

The content of a message set project is a single message set folder. If the message
set is modeling messages from EIS systems, the name of the message set project
provides the name of the message set and, optionally, a single Adapters folder. You
can create a message set project using the following methods:

* The New Message Set wizard.
e The Quick Start wizards.

These restrictions apply to message set projects:
* A message set project must contain just one message set.

* A message set project cannot refer to any other message set.

Import either of the following samples from the Samples Gallery to see how
message set resources are stored in a message set project. The sample's message
flow resources are stored separately in a Message Flow project.

.

* |Comma Separated Value (CSV))|

You can view samples information only when you use the information center that
is integrated with the Message Broker Toolkit or the online information center.

Message sets overview
A message set is a container for grouping messages and associated message
resources (elements, types, groups).

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.video.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.csv.doc/doc/overview.htm

A message set is a folder in a message set project that contains a messageSet.mset
file. The name of the folder is the name of the message set. A message set project
can contain just one message set.

When you create a new message set, a new message set project is automatically
created with a name that is the same as that of the message set.

You can base your new message set on an existing message set. In this case, all the
definitions in the existing message set are copied into the new message set.

When you have created your message set, you must specify the following key
properties:

Supported message domains
The message domains that are supported by the message set. The
supported domains determine what is generated for deployment to a
broker, and are used when parsing and writing the messages that are
defined within the message set.

Default message domain
The default domain of the message set.

Use namespaces
Indicates whether the message definitions that you create within the
message set are XML namespace aware.

Message set resources:

Resources in a message set are created as files, and are displayed under the
message set folder in the Broker Development view.

* Message set file messageSet.mset

There is always one, and only one, messageSet.mset file in a message set. This
file contains message model properties that are common to all the content of the
message set. It is also where you define the physical formats that you want for
this message set. These can be Custom Wire Format (CWF), Tagged Delimited
String Format (TDS), and XML Wire Format (XML).

The file is created for you when a new message set is created, and you
manipulate its content with the Message Set Editor.

* Message definition files that have the suffix .mxsd
You can have many message definition files in a message set. Each file contains

the logical model and the associated physical model, in XML Schema form, for a
group of related messages.

 WSDL files that have the suffix .wsd]l

These files are used by the SOAP domain. You can have many WSDL files in a
message set.

* Message category files that have the suffix .category

These files are optional. You can have many message category files in a message
set. A message category provides another way of grouping your messages,
perhaps for documentation purposes, or to assist with generating Web Services
Description Language (WSDL) files.

When you have completed the resources in your message set, you can generate the
content of the message set in a form that can be used by a broker parser or an
application. This might be:

* a message dictionary for deployment to a broker

Developing message models 9

10 Message Models

* XML Schema for use by an application building XML messages, or for
deployment to a broker

* Web Services Description Language (WSDL) for a Web services client, or for
deployment to a broker

* documentation to give to programmers or business analysts
Message set identification:

A message set is identified by the name of the message set folder in the message
set.

When you need to refer to a message set from a message flow (for example, when
setting the Message Set property of an input node), use the message set name.

A message set also has a 13-character identifier that is guaranteed to be unique.
You can use this identifier, instead of the message set name, to refer to a message
set, but only if you are using the MRM or IDOC domains. Other domains do not
recognize the identifier.

A message set also has an alias. An alias can only be used with MRM multipart
messages.

Message set recommendations:

You can have as many message definition files as you want within one message
set, but you should limit your message sets to a few related message definition
files that share the same physical formats.

There are several reasons for this:

* Generation of a message dictionary and other representations is quicker.
* Generated documentation is more manageable.

* MRM physical formats apply to all objects within the message set.

Therefore, for example, if you are using the MRM domain and have an XML
message and an unrelated CWF message modeled in the same message set, CWF
physical format properties are present for all objects. But the CWF properties are
of no interest to the XML message and therefore take default values in those
objects. This can result in unwanted task list warnings.

* Recursion is not permitted for MRM CWF and TDS physical formats.

Therefore, if you are modeling XML messages that have a recursive structure,
you must ensure that recursive XML messages do not share a message set with
MRM CWF or TDS physical formats.

Message set version and keywords:

When you develop a message set, you can define the version of the message set,
and other key information that you want to be associated with it.

After you have deployed the message set in a BAR file, you can view the message
set properties in the workbench. The properties include the deployment and
modification dates and times (the default information that is displayed), and the
additional version or keyword information that you have set.

You can define information to give details of the message set that has been
deployed; therefore, you can check that it is the message set that you expect.

Version
You can set the version of the message set in the Version property.

You can also define a default message set version in the Default version tag of the
message set preferences. All message sets that you create after you have set this
property have this default applied to the Version property at the message set level.

Keywords

You must define keywords in the Documentation property of the message set.
Keywords follow certain rules to ensure that the information can be parsed. The
following example shows the type of information that you can define in the
Documentation property:

$MQSI Author=John Smith MQSI$

The following table contains the information that is displayed by the workbench:

Message set name

Deployment Time 28-Aug-2004 15:04
Modification Time 28-Aug-2004 14:27
Version v1.0

Author John Smith

In this display, the version information has been defined by using the Version
property of the object. If you have not defined version information by using the
Version property, it is omitted from this display.

Restrictions within keywords

Do not use the following characters within keywords, because they cause
unpredictable behavior:

~S L V<2 e =81 ()

You can use these characters in the values that are associated with keywords; for
example:

* $MQSI RCSVER=$id$ MQSI$ is acceptable

» $MQSI $name=Fred MQSI$ is not acceptable

Message definition files
A message definition file contains the messages, elements, types and groups which
make up a message set.

Every message set requires at least one message definition file to describe its
messages. Message definition files use the XML Schema language to describe the
logical format of one or more messages. Extra information in the form of XML
Schema annotations is used to describe any physical formats that you define for the
messages.

Large message sets can contain several message definition files. This keeps the
individual files to a manageable size, making them faster and easier to work with.

Developing message models 11

12 Message Models

Message definition files can be created using the Message Definition Editor, or can
be imported from a range of different file formats as described in [“Importing from|
fother model representations to create message definitions” on page 67|

A message definition file can be associated with a namespace, so that all message
model objects that are declared within the file belong to that namespace.
Namespaces provide a means of avoiding name clashes among similarly named

global objects. They are described in detail in [“Namespaces in the message model”]

One message definition file can reuse message model objects that are defined in
another message definition file. XML Schema provides two mechanisms to do this:

import and include. For more information, see [“Reusing message definition files”|
on page 37.

XML Schema and the message model:

XML Schema is an international standard that defines a language for describing the
structure of XML documents.

The XML Schema language is ideally suited to describing the messages that flow
between business applications, and it is widely used in the business community for
this purpose.

WebSphere Message Broker uses XML Schema 1.0 to describe the logical structure
of messages. At a simple level, the types and elements in the message are modeled
using XML Schema types and elements. However, when the need arises, most of
the advanced modeling features of XML Schema are available for modeling
messages.

Some important restrictions and extensions of XML Schema exist. These are
documented in [Schema restrictions in the message model”| and [’Schema|
fextensions in the message model.”

Further information about XML Schema: For details about XML Schema, see
[Schema Part 0: Primer{ on the [World Wide Web Consortium (W3C)| Web site.

Schema restrictions in the message model:
Some XML Schema 1.0 features are not supported in the message model.

Unsupported XML Schema features: The following feature is accepted, but not
supported, and causes validation errors if it is used in your message model:

¢ Redefines

Further information about XML Schema: For details about XML Schema, see
[Schema Part 0: Primer] on the [World Wide Web Consortium (W3C)| Web site.

Schema extensions in the message model:

The message model provides some facilities that are not specified in the XML
Schema 1.0 specification.

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/

Messages: A message is a global element that represents an entire message (rather
than a structure within a message). Within a message definition file, a message is
represented by a special global element that carries the extra information required
by WebSphere Message Broker.

Composition: The message model adds the following compositions that are beyond
the XML Schema 1.0 specification:

message
A refinement of choice that is allowed to contain only a set of references to
messages within the same message set. Groups and complex types with
composition of message are used when modeling multipart messages.

orderedSet
A set of elements that must appear in the order that they are listed. Groups
are not allowed within an orderedSet. Elements can repeat, but duplicate
elements are not allowed.

unorderedSet
A set of elements that can appear in any order. Groups are not allowed
within an unorderedSet. Unlike an all group, elements within an
unorderedSet are allowed to repeat. However, duplicate elements are not
allowed.

Compositions orderedSet and unorderedSet allow message models that were
produced in earlier versions of the product to be supported.

Physical format information: If one or more physical formats are defined for a
message set, the XML Schema objects within the message set can hold extra
information about how they should be parsed and serialized.

Further information about XML Schema: For details about XML Schema, see m
[Schema Part 0: Primer| on the [World Wide Web Consortium (W3C)| Web site.

Message model objects:

This is an introduction to the objects that make up a message model.

Message
A message describes the structure and content of a set of data that is
exchanged between applications that send and receive the data. A message
is a special kind of complex element.

Simple element
A simple element describes one or more named data fields in a message. It
is based on a simple type (for example, string, integer or float). A simple
element can repeat, and it can define a default or a fixed value.

Simple type
A simple type describes a class of data within a message. It describes the
type of data (for example, string, integer or float) and it can have value
constraints which place limits on the values of any simple elements based
on that simple type.

Complex element
A complex element describes a named complex structure within the message.
The content of a complex element is defined by a complex type. A complex
element can repeat.

Developing message models 13

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/

14 Message Models

Complex type
A complex type describes a complex structure within a message. It contains
elements (simple or complex), attributes, and groups that are organized into a
tree-like hierarchy.

Group A group describes a list of elements with information about how those
elements can appear in a message. Groups can be ordered (sequence or
orderedSet), unordered (all or unorderedSet), or selective (choice or
message). A group can repeat.

Attribute
An attribute describes an XML attribute. Attributes are very similar to
simple elements, but they require special treatment when used with XML
messages. In messages that are not XML messages, attributes are typically
not used, but if they do appear they are treated exactly like a simple
element based on the same simple type.

Global and local objects: Most objects in the message model can be either global or
local. A global object must have a unique name, which is used to refer to the object
from one or more places in the message model. Local objects are defined and used
in only one place in the message model.

Make objects local unless they need to be used in more than one place. This
reduces the probability of name clashes among the global objects in the message
model, and makes the message set easier to work with.

Properties of message model objects: The properties of all message model objects are
listed on the 'properties’ pane of the message definition editor. The properties fall
into three categories:

Logical
The logical properties of an object relate to the format-independent
description of the object called the logical model'. Logical properties
describe what data the object contains without saying anything about how it
is written down.

Physical
The physical properties of an object describe how the object is written
down. These properties control the parsing and writing of the object. There
is one set of physical properties for an object for each physical format in
your message set.

Documentation
This field is present for all message model objects. It provides a standard
place for any description of the object that you might require. Text entered
here does not affect the processing of messages in any way.

Message model objects: messages:

A message describes the structure and content of a set of data that is passed from
one application to another.

A message consists of elements that are organized into a logical structure agreed
by the sending and receiving applications. This logical structure can be modeled
using the Message Definition editor, so that message data can be parsed into a
logical tree and manipulated easily by the broker.

In the message model, a message is always based on a global element. The global
element's complex type describes the contents of the global element, and therefore
describes all of the content of the message.

Multipart messages: If necessary, a message can contain other messages. This is
necessary for modeling certain large and complex messaging standards such as
SWIFT and EDIFACT. Such a message is known as a multipart message. The
contained messages are known as embedded messages.

Message identification: Messages are identified by their name or an alias. The alias
is an optional user-specified string that identifies the (multipart) message. The
name and alias of a message must be unique within a message set.

XML Schema model: In the message definition file, a message is modeled as an
XML Schema global element declaration. Extra information is provided by XML
Schema annotations on the element declaration.

Message model objects: elements:

An element is a named piece of information (a field) within a message, with a
meaning that is agreed by the applications that create and process the message.

An element has a specific meaning that is agreed by the applications that create
and process the message. For example, a message might include a string that your
applications have agreed is a 'Customer Name'. An element is always based on a
type, either simple or complex.

An element:

* Has a business meaning.

* Is an instantiation of a simple or complex type.

* Can be accessed by name from ESQL or Java in a message flow node.

¢ Is further defined by its type; for example, the type defines the range of values
that an element can have.

* Can be defined globally or locally.

Simple and complex elements: Elements can be simple or complex. A simple element
is a single, named piece of information such as 'Age' or 'Customer Name'. A simple
element is based on a simple type that defines its content.

A complex element is a named structure that contains other elements. A complex
element named 'Customer Details' might contain the simple elements 'Age’ and

'‘Customer Name'. A complex element can also contain other complex elements. A
complex element is based on a complex type that defines its content and structure.

Global and local elements: Elements can be global or local. A global element can be
used in several different messages, or even in several places within the same
message. It must be given a unique name by which it can be referenced. A local
element is defined in one position within one complex type or group, and is not
available for reuse elsewhere in the message model.

Optional and repeating elements: Elements can be defined as optional, mandatory,
and repeating, using the properties Min Occurs and Max Occurs. For further
information, see [‘Cardinality: optional, repeating and mandatory elements” on|
-ae 30.

Developing message models 15

16 Message Models

Default and fixed values: An element can be given a default value, so that if no
value is supplied by the message, the default value is used. Alternatively, a fixed
value can be defined, and the element always takes that value. The precise use of
default and fixed values is dependent on the message domain.

Value constraints: An element's value can be constrained using value constraints
which define the range of legal values for the element. The value constraints are
actually associated with the simple type on which the element is based. For further
information, see [“Message model objects: simple types” on page 17| The XML
Schema term for a value constraint is a facet.

Defining substitution groups: If you are modeling XML messages, an element can be
marked as a valid substitute for another element by using the substitution group
property on the element. In this way, groups of elements can be assembled where
any of the elements in the group can substitute for one element, the head element.
For further information, see [“Substitution groups in the message model” on page

Message model objects: types:

Types describe the data content of elements.

Simple types describe simple elements with data types such as string, integer or
dateTime.

Complex types describe complex elements - elements that contain a hierarchy of
other elements.

For more information, see:

+ [“Message model objects: simple types” on page 17

* [“Message model objects: complex types”|

+ ["Message model objects: type inheritance” on page 19|

Message model objects: complex types:
A complex type describes the structure of one or more complex elements.

Complex types are an essential part of every message model because they define
the logical structure of the messages and elements in the model.

What is a complex type for?: Complex types define the structure of the messages
and elements in the message model. By combining elements, attributes, groups and
wildcards, almost any message structure can be modeled.

Contents of a complex type:
Elements

Most complex types contain some elements, and some contain a large
hierarchy of complex elements. The elements within a complex type are
always contained within a group. This group can be local to the complex
type, in which case the Message Definition Editor hides it from view. This
is the usual case.

Alternatively, the group that contains the elements can be a global group,
and this group defines the element content, the composition, and the
content validation for the complex type.

If a complex type is derived from a simple type, it is not allowed to
contain any element content.

Attributes
If you are modeling XML messages, your complex types can contain
attributes. The attributes for a complex type can be local or global, and
they can be contained within an attribute group.

Groups
Groups allow sets of elements to be included in a complex type. The
members of the group are included as peers of the other elements. For
more information about their use, see ["Message model objects: groups” on|

Wildcards
Complex types can contain wildcard elements, which allow unmodeled
elements to appear within any elements that are based on the complex
type. Any such elements must appear at the same position within the
message as the wildcard. Complex types can also contain wildcard
attributes, which allow unmodeled attributes to appear within any
elements that are based on the complex type.

Global and local complex types: Complex types can be global or local. A global
complex type can be used as the basis for more than one complex element. It must
be given a unique name by which it can be referenced. A local complex type is
associated with a single complex element, and is not available for reuse elsewhere
in the message model. Local types do not have a name, and are displayed as
{Local complexType} by the message definition editor.

Composition: The composition of a complex type describes how the members of
the tiie are organized. For more information, see [“Message model objects: groups”]

Controlling validation of type content: The Content validation parameter on a complex
type specifies how strictly the contents of the type should be validated. For more
information, see [“Message model objects: groups” on page 20

Substitution settings: A complex type has parameters that control whether other
types can be derived from it (final) and whether other types can substitute for it
(block). For more information, see [“Substitution groups in the message model” on|
[page 31| and ["Message model objects: type inheritance” on page 19

Message model objects: simple types:

A simple type is an abstract definition of an item of data such as a number, a string
or a date.

The purpose of a simple type is to define the content of one or more simple
elements. Simple types (and any elements that are based on simple types) cannot
contain attributes or child elements. Simple types stand in contrast to complex
types, which define the structure of an element, but typically do not define any
simple data.

Global and local simple types
Simple types can be global or local. A global simple type can be used as the basis
for more than one element. It must be given a unique name by which it can be

referenced. A local simple type is associated with a single element, and is not

Developing message models 17

18 Message Models

available for reuse elsewhere in the message model. Local types do not have a
name.

Variations of simple types
Built-in

XML Schema defines a large number of simple types for you to use,
covering all the standard data types such as strings, integers, decimals, and
floats.

Restriction

You can define your own simple types by deriving from another simple
type (the base type) by restriction. A restriction type can have value
constraints applied to it.

A restriction type can derive from a built-in simple type or a user-defined
simple type.

List

A list type is a way of rendering a repeating simple value. The notation is
more compact than the notation for a repeating element, and offers a way
to have multi-valued attributes.

A list type can be based on a union type (introduced later in this section).
This can describe a space-separated list of items in which each item can be
based on any of the simple types in the union.

A list of lists is not legal. The item type of a list cannot be a list itself, or
derived at any level from another list type, and results in a task list error
in the editor.

A list type can have the facets of minLength, maxLength and length
applied to it. These facets restrict the number of items in the list. To restrict
the values of each item in the list, facets should be applied to the item type
and not to the list itself. The message definition editor provides additional
support for enumeration and pattern facets directly on a List type, to
enable the import of any schema that uses them, but issues a warning that
enumeration and pattern facets are ignored by the broker.

Union
A union type is a union of two or more other simple types.

A union type allows a value to conform to any one of several different
simple types. The simple types that comprise a union type are known as
its member types. There is no upper limit on how many member types can
exist, but there must be at least one. A member type can be defined as a
built-in simple type, a user defined simple type, or a local simple type
defined anonymously within the union type.

A union type can also include list, union, and restricted simple types,
among its members.

MRM domain

The MRM parser does not apply value constraints until the data is in the logical
tree. This means that it is not possible to choose between two simple types that are
derived from the same fundamental type, but have different value constraints (for
example, an integer in the range 1-10 and an integer in the range 11-20). A warning
appears in the task list if this is attempted, and the parser ignores the value

constraints when it resolves the union. The message definition editor provides
additional support for enumeration and pattern facets directly on a Union type, to
enable the import of any schema that uses them, but the editor issues a warning
that enumeration and pattern facets are ignored by the MRM parser.

Value constraints

Any value constraints that are applied to the derived type must further restrict the
base type (and any elements based on it). It is not valid for a derived type to
weaken or remove a value constraint that its base type has defined. If no value
constraints are applied to the derived type, the derived type is almost identical to
its base type, but it is treated as a restriction of the base type in situations where
that is relevant (type inheritance and element substitution).

Message model objects: type inheritance:

The XML Schema language allows a type definition to be based on another type
definition. In this way, a hierarchy of types can be constructed.

This topic outlines the concepts of type inheritance, and highlights some important
issues relating to substitution.

A full discussion of XML Schema type inheritance can be found on the World Wide
[Web Consortium (W3C)| Web site, or in numerous books about XML Schema.

Restriction and extension: A type is a restriction of its base type, if elements of the
derived type have a smaller range of valid values (or valid type members) than
elements of the base type.

For example, a restriction of a complex type might reduce the number of
occurrences of one of its type members, or might omit that type member
completely.

Similarly, a restriction of a simple type might lower the Max Inclusive facet
value, or raise the Min Inclusive facet value.

A type is an extension of its base type if elements of the derived type have a wider
range of valid values (or valid type members) than elements of the base type.

For example, an extension of a complex type might add type members that were
not present in the base type, or might allow a type member to repeat.

Similarly, an extension of a simple type must always be a complex type that is
based on the simple type; you cannot extend a simple type by widening its
range of valid values.

Special rules apply to the derivation of simple types. A simple type cannot extend
another simple type. This ensures that restrictions that are imposed by a simple
type cannot be removed by deriving another simple type from it.

However, a complex type can extend a simple type. This does not affect the range
of valid values of the simple type, but it does allow attributes to be added. The
result of extending a simple type is always a complex type that contains zero or
more attributes.

Developing message models 19

http://www.w3.org/
http://www.w3.org/

20 Message Models

Controlling type inheritance: The final attribute on a complex type can take three
values, with the following effects:

* restriction: It is not valid to derive another complex type from this type by
restriction.

* extension: It is not valid to derive another complex type from this type by
extension.

e all: It is not valid to derive another complex type from this type by either
extension or restriction

Type inheritance and substitution: XML Schema provides two different substitution
mechanisms, both of which use type inheritance information to allow or disallow
substitutions.

Element substitution is controlled by substitution groups, and element substitution
can be blocked or allowed for extension and restriction by settings on either the
element itself or the element's type.

Type substitution allows the type of the element to be defined within the instance
document, using the xsi:type attribute on the element, so that the element's real
type is not known until the element has been partly parsed. This mechanism can
also be blocked or allowed based on the derivation method of the types involved.

Message model objects: groups:

A group is a list of elements that defines how those elements can appear in a
message.

Groups can be ordered (sequence or orderedSet) unordered (all or unorderedSet),
or selective (choice or message). Groups define the composition and content
validation of a set of type members.

What are groups for?: Groups can be used for any of the following purposes:
* To define the entire content of a complex type.

A complex type can refer to a global group that completely defines its content.
(If it does not, the content of the complex type is defined by an anonymous local
group, which is hidden within the Message Definition Editor.)

* To represent a common substructure within more than one type.
Two or more complex types can refer to the same global group, if they both
contain the same subset of elements.

* To change the composition midway through a complex type.

You might have a complex type that is a sequence of three members, but the
second member is a choice of two elements. To model this, a group with
composition set to choice can be inserted as the second member of the sequence.

Contents of a group: Groups can contain complex elements, simple elements,
wildcard elements and groups.

By combining these components, the structure of any message can be modelled.
Wildcard elements can be included to allow unmodelled elements to appear, thus

making the message model robust and flexible.

Global and local groups: Groups can be global or local.

A global group can be used in more than one place in the message model. It
represents a structure that appears in more than one place in the message model. A
global group must be given a unique name by which it can be referenced.

A local group is defined in one position within one group, and is not available for
reuse elsewhere in the message model. Local groups do not have a name, and are
displayed using the group's composition by the message definition editor.

Composition: In XML Schema, a group can have its composition set to sequence,
all, or choice.

* A sequence is a set of elements that must appear in the same order as they are
listed.

* An all group is a set of elements that can appear in any order, and cannot
repeat.

* A choice is a set of elements, only one of which can appear in any given
message.

The message model also allows other compositions: orderedSet, unorderedSet, and
message. For more information, see [“Schema extensions in the message model” on|

Content validation: The Content validation property is applied only if the domain
is MRM or IDOC, and if validation is enabled.

Content validation determines how strictly the content of the group should be
validated. See ['MRM content validation” on page 192 for more details.

Allowable values of the Content validation property are:

Closed
The contents of the group are validated strictly against the model. Only
elements that are defined as children of the group can appear as children.

Open Defined
Elements that are declared within the same message set can appear as
children of the group, even if they are not defined as children.

Open Any elements can appear as children of the group.

The Content validation property does not affect validation in the XMLNSC or
SOAP domains. Validation in these domains follows the rules of XML Schema 1.0.

Message model objects: attributes:
An attribute describes an XML attribute.

Attributes are provided to simplify the modeling of XML messages; if none of your
messages use the XML physical format, use simple elements instead.

Attributes and XML: The most common use for an attribute is to model an XML
attribute within an XML message. In this scenario, each attribute that can appear in
the XML message has a corresponding attribute in the logical message definition.

Attributes in other physical formats: Sometimes a message needs to be parsed as
XML, but written in another physical format (Custom Wire Format or Tagged
Delimited String Format). In this case, any attributes in the message are treated in
exactly the same way as simple elements with the same properties.

Developing message models 21

22 Message Models

Global and local attributes: Attributes can be global or local.

A global attribute can be used in more than one place in the message model. It must
be given a unique name by which it can be referenced.

A local attribute is defined in one position within one complex type, and cannot be
used elsewhere in the message model.

Optional attributes: Attributes can be defined as optional, required or prohibited.
Attributes are not allowed to repeat. For further information, see |”Cardinality:|
[optional, repeating and mandatory elements” on page 30|

Default and fixed values: An attribute can be given a default value so that, if the
attribute is missing from the message, the default is used. Alternatively, a fixed
value can be defined, and the attribute always takes that value. The precise use of
default and fixed values is domain dependent.

Value constraints: An attribute's value can be constrained by using value constraints,
which define the range of legal values for the attribute. Value constraints are
associated with the simple type on which the attribute is based. For more details,
see [“Message model objects: simple types” on page 17)In XML Schema, the term
for value constraint is facet.

Message model objects: wildcard elements:

A wildcard element represents an element that does not appear in the message
model, but which could appear at the same position as the wildcard element in the
message.

Wildcard elements provide a means of adding flexibility to the message model, so
that messages can be parsed even if they do not exactly match the message model.

Wildcard elements can only appear within a complex type or group with
Composition of sequence and Content Validation of closed. Wildcard elements
provide a similar capability to setting the Content Validation property of a complex
type or group to Open or Open Defined.

The Process Content and Namespace properties control the namespace to which
elements appearing in place of the wildcard element must belong.

MRM domain

If you enable validation in your message flow, and your message is in the
MRM domain, wildcard elements are validated against the model
according to the following rules:

* If Process Content is set to strict, only elements that are declared in the
same message set are allowed to appear in place of the wildcard
element.

* If Process Content is set to lax or skip, any element is allowed to appear
in place of the wildcard element.

If the broker is prior to WebSphere Message Broker Version 6.0, the
number of elements permitted to match against the wildcard element is
unpredictable (Min Occurs and Max Occurs are ignored).

Message model objects: wildcard attributes:

A wildcard attribute allows unmodelled attributes to appear in a message.

The Process Content and Namespace properties control the namespace to which
attributes that appear in place of the wildcard must belong.

MRM domain

If you enable validation in your message flow, and your message is in the
MRM domain, wildcard attributes are validated against the model
according to the following rules:

* If Process Content is set to strict, only attributes which are declared in
the same message set will be allowed to appear in place of the wildcard
attribute.

* If Process Content is set to lax or skip, any attribute will be allowed to
appear in place of the wildcard attribute.

Tip: If the namespace property is set to the namespace of the message set,
these rules are then similar to the behavior of the XMLNSC domain in
validating mode.

Message model objects: attribute groups:
An attribute group defines a set of attributes that can appear in a complex type.

An attribute group provides a way to include the same set of attributes in more
than one complex type, without duplicating the definitions.

For example, if most of the elements in your message model have the attributes
‘amount’, 'currency' and 'date’, these could be put into a single attribute group,
which is referenced by all the complex types that use them.

Message model objects: simple type value constraints:

Value constraints refine a simple type by defining limits on the values that it can
represent.

It is often useful to be able to constrain the values that an element or attribute can
take, perhaps to ensure that messages conform to business rules. This topic
describes how to add value constraints to a simple type, in order to constrain the
values of all elements or attributes that are based on that simple type.

The value constraints that are discussed here are modeled by XML Schema facets,
and are associated with a simple type.

Tip: If the message set is deployed to WebSphere Message Broker, elements and
attributes can be validated against value constraints, so that violations are
reported as errors or warnings. The XMLNSC domain uses all the different
types of value constraint when validating. The MRM domain uses a subset;
the restrictions are noted later in this section.

Types of value constraint:

Length Constraints : Length, Min Length, Max Length
Using length constraints, the length of all elements based on the simple
type can be constrained, or even limited to a single value.

Developing message models 23

24 Message Models

Length constraints can be applied to simple types that are derived from
xsd:hexBinary, xsd:base64Binary or xsd:string (including built in schema
types such as xsd:normalisedString).

Length constraints are inherited from ancestor types, and any length
constraints that are defined for a simple type must not relax the constraints
that are imposed by any of its ancestor types. For example, a type
longString' (Max Length=100) cannot be derived from a type 'shortString'
(Max Length=10).

Note: For the MRM domain, by default, Length value constraints are
converted to Max Length constraints when a message set is added
to a BAR file. This avoids WebSphere Message Broker raising
spurious validation errors for fixed-length data structures, where the
strings tend to be padded to fit a fixed-width field. If strict length
validation is required, this default can be changed in the message set
properties by changing the flag Broker treats Length facet as
MaxLength.

Range constraints : Min Inclusive, Max Inclusive, Min Exclusive, Max Exclusive

Range constraints specify the allowable range of values for all elements
that are based on the simple type. Inclusive constraints include the
specified endpoints in the allowed range, whereas exclusive constraints do
not. Range constraints can be applied to simple types that are numeric, or
that relate to calendar and time values. They cannot be applied to strings,
because the ordering of string values depends on the character set that is
used.

Range constraints are inherited from ancestor types, and any range
constraints that are defined for a simple type must not relax the constraints
that are imposed by any of its ancestor types. For example, a type
largeNumber' (Max Inclusive=100) cannot be derived from a type
'smallNumber' (Max Inclusive=10).

Note: For the MRM domain, exclusive constraints cannot be applied to
non-integral types (float, decimal, double, dateTime, and so on).

Enumeration constraints

An enumeration constraint specifies a single allowed value for all elements
that are based on the simple type. A list of allowed values can be specified
by defining more than one enumeration constraint for the same simple
type. Enumeration constraints can be applied to all simple types.

Enumeration constraints are inherited from ancestor types, and any set of
enumeration constraints that are defined for a simple type must not
increase the range of allowed values. For example, a type 'AllColors' (with
enumerations for all colors of the rainbow) cannot be derived from a type
‘MonoColors' (with enumerations for 'black' and 'white' only).

Precision constraints : Total Digits and Fraction Digits

Precision constraints relate only to decimal and integer values. They limit
the number of significant digits (total digits) and, for decimals, the number
of decimal places (fraction digits) for all elements that are based on the
simple type. Precision constraints can be applied to simple types that are
derived from xsd:decimal and xsd:integer.

Precision constraints are inherited from ancestor types, and any precision
constraints that are defined for a simple type must not relax the constraints

Pattern

that are imposed by any of its ancestor types. For example, a type
‘'veryPrecise' (Fraction Digits=10) cannot be derived from a type
notVeryPrecise' (Fraction Digits=1).

Note: For the MRM domain, the broker applies these constraints only to
xsd:decimal and user types that are derived from it; precision
constraints that are applied to an integer simple type are ignored.

constraints

A pattern constraint is a regular expression that specifies a set of allowed
values for all elements that are based on the simple type. Multiple patterns
can be defined for the same simple type, allowing complex validation rules
to be expressed in logically separate parts. Each pattern constraint on a
simple type contributes to the set of allowed values for elements that are
based on the simple type; that is, all the patterns are combined by using
Boolean OR.

As with all value constraints, a simple type can inherit pattern constraints
from the simple type on which it is based. In this case, the set of pattern
constraints that are contributed by each ancestor type must be satisfied, as
well as the set that is contributed by the simple type itself; that is, the sets
of pattern constraints from each level in the type hierarchy are combined
by using Boolean AND.

Note: For the MRM domain, pattern constraints can be applied only to
simple types that are derived from xsd:string.

White space constraints

A white space constraint specifies how a parser should treat white space
for all elements that are based on the simple type.

Note: For the MRM domain, white space constraints are not applied.
Although the MRM physical formats allow white space to be
precisely controlled for each physical format that is defined for the
message, these physical properties are separate from the white space
constraint in the logical model, and are not used for validation
purposes.

Message model object identification:

Objects

in the message model (elements, attributes, types, groups) are identified by

their name only.

This means that no two objects in the same scope are allowed to have the same
name. Name clashes can be avoided more easily if global objects are used only
when necessary. Local objects are not visible outside of the scope of their parent
object, so their names can be re-used without causing a name clash.

Namespaces

If namespaces are enabled for a message set, each message definition file

within the message set can specify a namespace. Namespaces are an XML
Schema mechanism for organizing groups of related objects into a named
‘module.

Global objects in different namespaces are allowed to share the same name.
Therefore, namespaces offer another means of avoiding name clashes
among global objects.

Developing message models 25

26 Message Models

Valid names
Since the message model is based on the XML Schema language, the name
of every message model object must be a valid XML Schema identifier. For
information on what constitutes a valid XML Schema identifier, see
[Schema Part 0: Primer|

For details about XML Schema, see XML Schema Part 0: Primer on the [World Wide
[Web Consortium (W3C)| Web site.

Multipart messages:

A multipart message contains one or more other messages within its structure. The
contained message is sometimes referred to as an embedded message .

A multipart message must contain a group, or a complex type, with its
Composition property set to Message. This group or complex type can contain a
list of references to messages that are allowed to appear at that location in the
message structure, or it might be empty, allowing any message to appear. When a
message is parsed, only one message can appear in that position as an embedded
message.

Message envelopes: A common use of multipart messages is to define an outer
message with a fixed structure. This outer message is called the message envelope.
Within the message envelope a group or complex type is included, as described
above. Examples of message standards that can be modeled using this technique
are EDIFACT, X12, SWIFT, SOAP XML, SAP ALE IDoc, multipart MIME, and
RosettaNet.

Identifying the embedded message: When a multipart message is parsed, the parser
must be able to identify the embedded message; it might be any of the messages
that are referenced by the group or complex type, or it might be a message that is
not referenced by the group or complex type, perhaps from a different message set.
This is achieved using one of four techniques, Automatic, Message Identity, Message
Path, or Manual.

Automatic
Used when parsing XML messages, such as SOAP. The parser
automatically identifies and parses embedded messages using the tag in
the XML document.

Message Identity
Used by the MRM parser. See [“Identifying an embedded message using a|
[Message Identity” on page 27.

Message Path
Used by the MRM parser. See [“Identifying an embedded message using al
[Message Path” on page 29

Manual
Used by the MIME parser. The parser treats embedded messages as
BLOBs. If you want to parse the BLOB using another parser, you must do
so manually using ESQL, or Java, or a ResetContentDescriptor node.

Restrictions: Unless using the Manual identification technique, all embedded
messages must be of the same physical format as the outermost message, and have
the same character set and encoding.

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/

When using the Automatic or Message Path identification techniques, all embedded
messages must be from the same message set as the multipart message.

Identifying an embedded message using a Message Identity:

You can identify an embedded message by using the Message Identity. This
technique is used by the MRM domain, and replaces the use of the Message Key.

The Message Identity technique for identifying embedded messages is useful when
a multipart message has a format such as that shown in the diagram:

In this example, the Message Header and Message Trailer act as an envelope for
the message body. They typically have a fixed structure, although the Message
Body can be defined with many different structures.

A place holder for an embedded message is created by setting the Composition
property of the complex type or group of the Message Body element to Message.
This allows an embedded message to be added at this point within the outer
Message, creating a multipart message.

When using the Message Identity technique to parse such a multipart message, the
embedded message must be identified earlier in the Message Header using a
Message Identity element. This is a string element (or attribute) that precedes the
embedded message in the model and whose Interpret Value As property is set to
Message Identity.

When a multipart message is input to a message flow, the Message Identity
element should have a value that corresponds to either the Name or the Message
Alias of the next embedded message in the bit stream. This enables the MRM
parser to correctly identify the embedded message in the model.

For cases where the Message Identity element value does not match the Name of
the message, use the Message Alias property to specify this value. The MRM
parser tries to match on Name first, and if that fails, it tries to match on Message
Alias.

Once the MRM parser has encountered a Message Identity element, its value
applies to all embedded messages that are contained immediately within the
current message. This does not apply to embedded messages within embedded
messages; any embedded message must have its identity provided by a Message
Identity element within its immediate parent message.

If a second Message Identity element is encountered within the current message,

its value overrides any previously held. This enables different peer embedded
messages to exist within a given message.

Developing message models 27

28 Message Models

Message Identity takes priority over Message Path. If both are specified, Message
Identity is used. You should only use one of these techniques for a given multipart
message.

Embedded messages defined in different message sets

By default, an embedded message is assumed to be defined within the same
message set as the current message. This can be overridden using a Message Set
Identity, which works in a very similar manner to a Message Identity.

An embedded message that is defined within a different message set must have its
message set identified earlier in the message using a Message Set Identity element.
This is a string element (or attribute) that precedes the embedded message in the
model and whose Interpret Value As property is set to Message Set Identity.

When a multipart message is input to a message flow, the Message Set Identity
element should have a value that corresponds to either the Identifier, Name, or
Message Set Alias of the message set that defines the next embedded message in
the bit stream. This enables the MRM parser to correctly identify the message set
to use.

If the Message Set Identity element value does not match the Identifier or Name of
the message set, use the Message Set Alias property to specify this value. The
MRM parser tries to match on Identifier first, then on Name, and finally on
Message Set Alias.

Once the MRM parser has encountered a Message Set Identity element, its value
applies to all embedded messages that are contained within the current message. It
also applies to embedded messages within embedded messages, unless an
embedded message also contains a Message Set Identity element.

If a second Message Set Identity element is encountered within the current
message, its value overrides any previously held. This enables peer embedded
messages to reside within different message sets.

The following example of an X12 message shows the use of both Message Identity
and Message Set Identity. The field that contains 004010X092 within the GS
segment on line 0002 holds the Message Set Identity as a Message Set Alias. The
207 on line 0003 in the ST segment is the Message Identity held as a Message
Alias. The embedded message is from line 0004 to 0015 inclusive.

Note: The line numbers and spaces at the beginning of each line are for illustrative
purposes only and do not exist in the actual message.

0001 ISA*00= *00=* *30+12-3456789 *77
*x9876543-21 *000104+1820*U+00401+000000001*0*T~*: !

0002 GS*HS+HOSP CLAIM+PAYER ADJDEPT+#20000104+1820%1+X+004010X092!

0003 ST*270+1234!

0004 BHT*0022+13%x10001234%19990501%1319!

0005 HLx1%%20*1!

0006 NM1%PR*2+ABCCOMPANY*x*+*PI+842610001!

0007 HL*2%1%21*1!

0008 NM1%1P+2+«BONE AND JOINT CINICx#*%xSV+2000035!REF*N7+234899!

0009 N3%55+«HIGH STREET!

0010 N4xSEATTLE*WA%98123!

0011 HL*3%2%22+0!TRN*1%93175-12547%9877281234!

0012 NM1#IL*1+SMITH*ROBERT#B***MI*11122333301!

0013 REF*1L%599119!

0014 DMG*D8+19430519+M!

0015 DTP*472xRD8+19990501-19990515!EQ*30**FAMISEx17+1234!
0016 GEx1x1!IEA*1+000000001!

Physical format considerations

Both Message Identity and Message Set Identity are applicable to all physical
formats. Versions of the TDS physical format prior to Version 6.0 included
embedded message identification by Message Key, which worked in a similar
manner to Message Identity. Message Key has been deprecated and is superseded
by Message Identity.

Identifying an embedded message using a Message Path:

The Message Path technique for identifying embedded messages is useful when
the multipart message contains no information about the identity of an embedded
message.

This technique is used by the MRM domain.

In the diagram, the Message Header and Message Trailer act as an envelope for the

message body. Typically, they have a fixed structure, but the Message Body can be
defined with many different structures.

Message Body
Message Trailer

A place holder for an embedded message is created by setting the Composition
property of the complex type or group of the Message Body element to Message.
This allows an embedded message to be added at this point within the outer
message, creating a multipart message.

When using the Message Path technique to parse such a multipart message, the
embedded message must be identified by a fixed path to the innermost message
from the outermost message. For this example, this would be:

Message/Message Body

If the path to the innermost message contains intermediate elements, these
intermediate elements must also be included in the path. In the following example,
these elements are shown in bold:

Message/Datal/Datal2/Message Body

This technique can be used to identify nested embedded messages as well, by
simply extending the path. For example:

Message/Datal/Datal2/Message Body/Data2/Inner Message

The path is specified using one or both of two properties, the Message Type
property of a WebSphere Message Broker input node (or MQRFH2 header) and the
Message Type Prefix property of the containing message set. These two properties
are combined to produce a final path that is used to locate embedded messages.

Developing message models 29

30 Message Models

Message Identity takes priority over Message Path. If both are specified, Message
Identity is used. Use only one of these techniques for a given multipart message.

You cannot use the Message Path technique to identify multiple peer embedded
messages.

Embedded messages defined in different message sets

This option is not supported by the Message Path technique.
Physical format considerations

The Message Path technique is applicable to all physical formats.
Cardinality: optional, repeating and mandatory elements:

The number of occurrences of an element can be controlled using the properties
Min Occurs and Max Occurs. Using these properties, an element can be defined as
mandatory, optional or repeating.

Elements: A mandatory element has Min Occurs>= 1. A mandatory element must
occur at least once in an input message.

An optional element has Min Occurs = 0. An optional element can be omitted from
the input message.

A repeating element has Max Occurs> 1 or Max Occurs=-1, which indicates that an
unlimited number of repeats are allowed. A repeating element can occur more than
once in the input message, and all the occurrences must appear together without
any other elements between them.

If a complex type or a group contains two, or more, members that refer to the
same element, the second reference is a duplicate. This is different from a repeating
element, because the two references are typically separated by other members of
the type or group. In the input message, the second occurrence typically does not
appear immediately after the first occurrence. Duplicate element references are not
allowed within types and groups that have compositions of Choice, OrderedSet, or
UnorderedSet.

Attributes: The number of occurrences of an attribute can be controlled by setting
it to required, optional or prohibited.

A required attribute is similar to a mandatory element - it must occur in the input
message.

An optional attribute is similar to an optional element - it can be omitted from the
input message.

A prohibited attribute must not appear in the input message.

An attribute is not allowed to repeat, and duplicate attribute references are not
allowed within an attribute group.

Predefined and self-defining elements and messages:

An instance element is predefined if it is possible for the parser to find a matching
element definition in the message model with an appropriate set of properties and
in the correct context. Otherwise, it is self-defining. Similarly, an entire message is
self-defining if no corresponding message is present in the message model.

Self-defining elements can only be used when the physical format of the message
is a tagged format such as XML or TDS. If your physical format is fixed-length (C
or COBOL records) or untagged delimited (for example, comma separated), you
must ensure that your message model defines every message and every element
that needs to be parsed.

If you have chosen not to model your messages, or if no message sets have been
deployed to the broker, all messages and elements are self-defining. In this
situation, you cannot use message definitions to influence the parsing and writing
of elements; the self-defining elements are parsed and written according to the
default behavior of the parser and writer.

Self-defining elements, and all elements within a self-defining message, are not
validated against value constraints, and any missing fields are not assigned default
or fixed values, and all data is assumed to be string type.

However, if an element can be matched against the message model, the parsing
and the writing of the element is guided by the logical and physical formats that
have been defined. This provides a range of benefits, all of which arise from the
information that is provided to the broker through the message model.

Substitution groups in the message model:

Substitution groups are an XML Schema feature that provides a way of substituting
one element for another in an XML message.

A substitution group is a list of global elements that can appear in place of another
global element, called the head element.

A substitution group is defined by setting the substitution group property on one
global element (the member element) to point at another global element (the head
element). This adds the member element to the substitution group of the head
element.

Tip: If your messages are never rendered as XML, or if you have a simple message
model, use a complex type or a group with Composition set to Choice,
instead of using substitution groups.

Elements

Head elements
A head element is simply an element that can be substituted. When a
message is parsed, one of its member elements can appear in place of the
head element without causing a validation error.

Abstract elements
An abstract element is a head element which must be substituted. The
‘abstract’ attribute on the element indicates this. Typically, abstract elements
have other elements in their substitution group - otherwise they are of little
use. Wherever an abstract element appears in a message definition, a
member of its substitution group must appear instead.

Developing message models 31

32 Message Models

Attributes

The block attribute on elements
The block attribute on an element limits the set of global elements that can
substitute for the element. The block attribute can take any subset of the
values restriction, extension, substitution, or all.

» If the block attribute contains restriction, an element that is based on a
restriction of the element's type cannot substitute for the element.

o If the block attribute contains extension, an element that is based on an
extension of the element's type cannot substitute for the element.

e If the block attribute contains substitution, an element that is a member
of the element's substitution group cannot substitute for the element.

e If the block attribute contains all, all of the above limits apply.

The final attribute on elements
The final attribute on an element limits the set of global elements that can
be a member of the element's substitution group. The final attribute can
take any subset of the values restriction, extension, or all.

e If the final attribute contains restriction, an element that is based on a
restriction of the element's type cannot be in the substitution group of
the element.

e If the final attribute contains extension, an element that is based on an
extension of the element's type cannot be in the substitution group of the
element.

e If the final attribute contains all, both of the above limits apply.

The block attribute on complex types
The block attribute on a complex type limits the set of other types that can
substitute for that type. The block attribute can take values restriction,
extension, or all. The meanings for these values are the same as those
shown for the block attribute on an element above. An element that is a
member of a substitution group can only substitute for the head element if
its type is compatible with the block attribute on the type of the head
element.

Default block and final attributes
A default for the block and final attributes can be set at the message
definition file level. If a default for one or both of these attributes has been
set and the relevant block or final attribute has not been set at the object
level, the default setting is used for that object. You can override the
default setting at the object level.

Message categories
Message category files have the suffix .category. These files are optional. You can
have many message category files in a message set.

A message category provides another way of grouping your messages, perhaps for
documentation or convenience purposes, or for assisting in the generation of Web
Services Description Language (WSDL) files.

A message set category file is created using the New Message Category File
wizard.

When you have created your message category file, you must specify one key
property.

Message Category Kind
This indicates whether the message category is to participate in the
generation of WSDL files. See |“Generate WSDL” on page 80

You can then add messages to the message category file. If the message category is
to participate in WSDL generation, you should assign appropriate values to the
Role Name and Role Type properties of each member message.

Message category identification: The name of a message category is provided by
the name of the .category file. You can change the message category name by
renaming the file.

Namespaces in the message model
Namespaces provide a method to qualify object names.

XML instance documents and XML Schemas can use namespaces.

A single XML instance document can contain elements and attributes that are
defined for, and possibly used by, multiple applications. Two different elements or
attributes within the same document might require the same name. Individual
applications need to be able to recognize the elements and attributes that they are
designed to process. In circumstances such as this, the definitions can be
distinguished from each other by qualifying each element with a different
namespace. This avoids problems of name collision and mistaken recognition.

XML Schemas can define a target namespace. Global elements, attributes, groups
and types that are defined within an XML Schema are qualified by the target
namespace, if it has been defined. Optionally, local elements and attributes can also
be qualified by the target namespace. Therefore, namespaces assist in the
development of a library of XML Schemas that can be developed independently. If
the namespace name that is used for an XML Schema is unique, you do not have
to be concerned about name clashes with objects that are defined within other
XML Schemas.

The scope of a namespace extends beyond that of its containing document and is
identified by a Uniform Resource Identifier (URI). In order to serve its purpose, a
URI must be unique. You might be more familiar with the concept of a Universal
Resource Locator (URL). URIs often use the same syntax as URLs, but the URI
definition is broader than the specification of a URL. This is an example of a URL:
http://mycompany.com/xml_schema

A namespace prefix is declared as a shorthand for the full URI name and this is
used to qualify all elements that belong to that namespace. The prefix to be
substituted for a namespace in an XML instance document or XML Schema is
specified using an xmlns attribute. A default namespace can also be defined using
an xmlns attribute. If a default namespace is defined, any element or attribute with
no prefix is qualified with the default namespace. If no default namespace is
defined, any element or attribute with no prefix is not qualified by a namespace.

The message model
The message model provides the ability to support namespaces within
message sets. However, you can choose whether to enable or disable
namespaces for your message set. If you disable namespaces when you
create your message set, you can enable namespaces later. However, when
you have enabled namespaces for a message set you cannot disable
namespaces.

Developing message models 33

34 Message Models

A single message set which has namespaces enabled can contain a number
of different namespaces. Each namespace is represented by a different
Message Definition File. When you create a Message Definition File, you
can choose whether it has an associated namespace, or whether it is in the
notarget namespace. If you associate a namespace with a Message
Definition File, you must also choose a prefix.

If the Message Definition File has an associated namespace, the following
global objects are qualified with the namespace:

* Elements

* Attributes

 Simple Types

* Complex Types

* Groups

* Attribute Groups

Optionally, local elements and attributes can be qualified with the
namespace.

Objects that are defined within a Message Definition File can reference
objects in other Message Definition Files within the same message set. To
do this, import or include one Message Definition file within another
Message Definition File.

Message parsing and message flows

WebSphere Message Broker parsers that are namespace aware recognize
prefixed names in the XML messages that they parse, and internally map
these to the correct namespace. Elements and attributes can be either
qualified or not qualified with a namespace, as discussed in the message
model section.

If you are using XML format in the MRM domain, elements or attributes
are matched, based on the namespace in the dictionary when the parsed
message is matched against the dictionary that is generated from the
message model. Therefore, for an element or attribute in a message to
match with the dictionary, both its name and its namespace must match.

If you are using the DataObject domain, the SOAP domain, or the
XMLNSC domain (in validating mode), elements or attributes are matched,
based on the namespace in the XML Schema when the parsed message is
matched against the XML Schema that is generated from the message
model. Therefore, for an element or attribute in a message to match the
XML Schema, both its name and its namespace must match.

Support is provided that allows you to specify namespaces when writing
ESQL or Java. It is not necessary to write ESQL or Java that is namespace
aware if you are not using namespaces. However, if you decide to use
namespaces, your message definition files can target any namespace that
you choose, and it is necessary to write namespace-aware ESQL or Java.
The namespace in which an element resides is stored in the message tree
when parsed. This is a logical property and it is held regardless of the
physical wire format in which messages are parsed and written. Syntax has
been added to ESQL to make it easy to reference element's namespaces
using defined prefixes. In Java, XPath expressions are used to reference
elements.

Importing from other formats
The message model allows you to create Message Definition files from
other formats by importing them into the Message Broker Toolkit.

* If you import an XML DTD file, the Message Definition File that is
created is in the notarget namespace.

* If you import an XML Schema file, the target namespace of the created
Message Definition File depends on whether namespaces have been
enabled for the message set.

— If namespaces are enabled, the target namespace of the Message
Definition File that is created is the target namespace of the XML
Schema that is being imported.

— If namespaces are disabled for the message set, the created Message
Definition File is in the notarget namespace. This type of import does
not provide full namespace support. If you are using WebSphere
Message Broker, you do not have to write namespace-aware ESQL or
Java to process an XML message that is parsed against the dictionary
that is generated from this message model. For reasons why you
might want to do this, see [“Importing XML Schema into message sets|
fwith namespaces disabled” on page 70|

¢ If you import a COBOL Copybook or a C Header file, the target
namespace of the created Message Definition File depends on whether
namespaces have been enabled for the message set.

— If namespaces are enabled, the target namespace of the Message
Definition File that is created is the notarget namespace. This default
namespace can be overridden by specifying a target namespace in the
New Message Definition File wizard. For reasons why you might
want to do this, see [“Namespaces with MRM non-XML messages” on|

— If namespaces are disabled for the message set, the Message
Definition File that is created is in the notarget namespace

Further information about XML: On the [World Wide Web Consortium (W3C)|
Web site, see:

+ [Extensible Markup Language (XML)|
* [XML Schema Part 0: Primer|
+ [Namespaces in XML)

Namespaces with MRM XML messages:

The namespace that is associated with a message definition file is part of the
logical layer of the message model.

Therefore, it is not dependent on an XML Wire Format being present. However, if
you have an XML Wire Format, the namespace information from the logical layer
is used to populate some of the properties of the XML Wire Format. If namespaces
are enabled for a Message Set, in the XML Wire Format, a table of namespace
URI/prefix pairs is maintained. This table is initially populated with the
namespaces of all of the Message Definition Files with their prefixes when they
were created.

If your message set has namespaces enabled, the broker does not store the values

of any xmlns attributes in the tree when it parses an XML instance document. It
also does not store the values of any Schema Location and No Namespace Schema

Developing message models 35

http://www.w3.org/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/REC-xml-names/

36 Message Models

Location attributes. When an XML document is written out, the broker regenerates
this information from the properties of the XML Wire Format of the message set.

The table of namespace URI/prefix pairs is used by the MRM Domain when it
produces an XML message. Elements and attributes that are qualified by a
namespace are prefixed with the corresponding prefix from the table. The broker
also manages the output of the corresponding xmlns attributes that map the
prefixes to namespaces. You can choose whether xmlns attributes for all of the
entries in the namespace URI/prefix table are written at the start of the document,
or whether they are only written in the document when required.

If namespaces are enabled for a Message Set, in the XML Wire Format there is a
table of schema locations that map namespace URIs to file names. You can add
entries to this table and you can map a file name to the notarget namespace. If you
are using WebSphere Message Broker, this table is used to produce schemal.ocation
and No Namespace Schema Location attributes at the start of the XML document.

Namespaces with MRM non-XML messages:

The use of namespaces by WebSphere Message Broker is not necessarily limited to
XML message models.

There is one scenario where the use of namespaces by non-XML message models
can simplify the ESQL or Java code that you write. But before describing this
scenario, it is important to understand that the MRM parser, when parsing
messages that are defined in a Message Definition File that has a target namespace,
produces a logical message tree that contains both name and namespace
information. It does this regardless of the physical format of the message. For
non-XML (CWF or TDS) messages, the namespace is obtained from the Message
Definition file.

Consider a transformation scenario where a message from a COBOL application
requires to be transformed into namespace-aware XML; for example, a SOAP XML
message. The transform must map the logical message tree that was created for the
COBOL message to a logical message tree that matches the XML message. If the
COBOL message tree does not contain namespace information, each mapping from
a COBOL field to an XML element must set the namespace for the XML element.
However, if the COBOL message tree already contains the required namespace
information, this mapping is much simpler.

To enable the MRM parser to create namespace information in a message tree that
was created from a CWF or TDS message, you need to specify a target namespace
for the Message Definition File. This must be done as part of the Message
Definition File creation process; you cannot do this after the file has been created.
There are two ways to specify a target namespace. For each of these, make the
target namespace of the Message Definition File the same as the target namespace
of the XML message into which the non-XML message is being transformed.

* If you are creating your non-XML message model by hand in the message editor,
use the New Message Definition File wizard to specify a target namespace.

* If you are importing from COBOL or C, use the New Message Definition File
wizard, or the mgsicreatemsgdefs command options file, to specify a target
namespace.

When dealing with both the message tree for the non-XML message and the
message tree for the XML message, the ESQL or Java code that you write to
perform the transformation must be namespace aware.

Specifying namespaces in the Message Type property:

When using the MRM domain, the Message Type property is used to specify the
name of the message.

The format of a simple message type is {namespace-uri}:name where name is the
name of the message, and namespace-uri. identifies the namespace. The namespace
must be the full URI specification and must be enclosed in braces.

The format {namespace-uri}name (that is, with no colon) is also valid. This
maintains compatibility with previous versions of the broker product.

If you omit {namespace-uri}, the first match for the name that is found in the
model is used. You can do this if namespaces are not enabled for the message set,
or if a name is unique within a message set. However, if a name is not unique, you
must specify the namespace to be sure that the correct match is made in the model.

The following are examples of message types:

* A simple message type for a message in a real target namespace:
{http://www.ibm.com/space}:name

* A simple message type for a message in the notarget namespace: {}:name

* A simple message type for a message in a message set that does not support
namespaces: name

When identifying an embedded message using a message path, a message type
path would be entered as A simple message type for a message in a real target
namespace: {http://www.ibm.com/space}:name

The same name can occur in more than one namespace. To specify that a name is
to be qualified with a specific namespace, the name must be prefixed with the
namespace within the Message Type.

For example a Message Type with a single name would be entered as:
{http://www.ibm.com/space}:id/.../{http://www.ibm.com/space}:name

Reusing message definition files:

One Message Definition File can reuse message model objects defined in another
Message Definition File.

There are two mechanisms that XML Schema provides to do this: import and
include. The namespaces of the two files determine which of import or include
should be used:

Target file has a target Target file has notarget
namespace namespace

Parent file has a target xsd:import xsd:include'

namespace

Parent file has notarget xsd:import xsd:include

namespace

Note: When a target namespace file includes a notarget namespace file, referencing
an object in the target file from the parent file causes the object to appear in
the namespace of the parent file.

Developing message models 37

38 Message Models

When import or include are used, global objects from the target file can be used in
the parent file. For example, an element in the parent file can be given a complex
type defined in the target file.

The namespace of objects in the target file is preserved in the parent file, with the
exception noted in the previous table of a target namespace file that includes a
notarget namespace file. This exception is sometimes called the chameleon
namespace effect.

Chameleon namespaces have limited support when used with the MRM domain.
When referenced in the parent file, the objects in the target file appear in the
namespace of the parent file, but they are assigned default physical format
information. Therefore, physical format information defined in the target file is not
available for use in the parent file. Only use Chameleon Namespaces in the MRM
domain to model XML messages if physical format information has not changed
from the default.

XML Schema provides a variation of xsd:include called xsd:redefine, which is not
supported by WebSphere Message Broker. Using xsd:redefine gives a task list error.
A Quick Fix is offered to convert occurrences of xsd:redefine into xsd:include.

Message model integrity

When you create your model, it is important that it is internally consistent and is
capable of being generated into the form that you want; for example, a message
dictionary or an XML Schema document.

To assist with this, whenever you save a message set file, it is validated as follows:

Logical validation
This validation ensures that the logical model is correct. For message
definition files, this involves ensuring that the rules of XML Schema have
been correctly followed.

Physical validation
This validation ensures that any physical formats that you have specified
for your model have been correctly populated. There is a set of checks for
each of the MRM domain physical formats - CWF, XML and TDS. This
ensures that the MRM parser can parse and write messages that conform
to your model.

Once validation has taken place, any errors or warnings are shown in the
task list. Double clicking on a task list entry opens the file and positions
the editor at the object in error. Organize the task list so that errors are
shown before warnings. In this way, errors are not hidden. The task list
provides a comprehensive filtering capability if you want to hide low
priority warnings, or warnings that you are know about and are
comfortable with.

The generation of a message dictionary or an XML Schema is prevented if
any errors are present. The presence of warnings alone does not prevent
generation, but high priority warnings must be reviewed because a model
that generates such warnings might be incomplete.

Where task list warnings or errors occur, these are listed in the Problems view of
the Broker Application Development perspective. While a majority of these require
you to manually investigate and resolve them, a number of warnings and errors
that meet specific criteria can be repaired using a quick fix process.

Physical formats in the MRM domain

Each message definition file describes both the logical structure of your messages,
and the physical formats that describe the precise appearance of your message bit
stream during transmission.

If you are using the MRM domain or the IDOC domain, physical format
information must be provided, as it tells the parser exactly how to parse the
message bit stream.

You can think of a message as a packet of data that is sent from one place to
another. The sender and receiver of the message will have agreed the structure of
the message and what each field in the message means. This is the platform and
protocol independent logical structure.

The sender and receiver will have also agreed on the physical representation of the
message, how the data is physically laid out on the wire. For example, if you
define a message that conveys information about a debit of an individual's bank
account, it can be represented in different physical forms (examples are XML, or a
fixed structure such as a COBOL copybook). The meaning and data is the same in
both cases: only the physical layout has changed.

If you are using the MRM domain, you can model a variety of different physical
representations using named physical formats.

¢ Use the Custom Wire Format (CWF) physical format to model fixed format
messages from applications that are written in C, COBOL, PL/1 and other
languages. This support includes the ability to create a message model directly
from a C header file or COBOL copybook.

¢ Use the Tagged Delimited String Format (TDS) physical format to model
formatted text messages, perhaps with field content identified by tags or
separated by specific delimiters or both. This support is rich enough to model
industry standards such as SWIFT, EDIFACT and X12.

¢ Use the XML physical format to model XML messages, including those that
exploit XML namespaces. This support includes the ability to create a message
model directly from an XML DTD or XML Schema file.

Different physical representations
The following example shows how a very simple logical message can have
different physical representations.

The logical model defines the structure and order of the message. In the following
example, the three fields are simple integers, and C follows B, which follows A:

int A;
int B;
int C;

* A typical Custom Wire Format representation for this logical message would be
12 bytes of data, with each of A, B and C occupying 4 bytes. Alternatively,
perhaps A is 4 bytes long, but B and C are only 2 bytes long. You supply the
precise physical information for each field in the message as CWF properties.

* TDS allows several different representations to be modeled. Each integer could
be preceded by a tag to identify it and a delimiter to terminate it, as follows:

{A_tag:xxxxxxxx;B_tag:xxxxxxxx;C_tag:Xxxxxxxx}

An alternative might rely on the data being ordered so only the terminating
delimiter needs to be specified, as follows:

Developing message models 39

40 Message Models

[XXXXXXXX 3 XXXXXXXX 3 XXXXXXXX]

You supply the precise identification regime as TDS properties.
* A typical XML representation of this model is as follows:
<Msg><A>XXXXXXXXXXXXXXXX<C>XXxXxxXXxx</C></Msg>

where xxxxxxxx is the value of the integer represented as a string (XML deals
only with strings). An alternative representation might be:

<Msg A="XXXXXXXX" B="XXXXXXXX" C="XXXXXXXX"/>

where the values of the integers are stored as XML attributes rather than XML
elements. You supply the precise XML rendering for each field in the message as
XML properties.

This shows that the logical model is unchanged. It is constant, regardless of the
physical representation that you choose to model on top of it, using the physical
format support provided by the MRM domain. The MRM parser is able to
transform the message from the input physical representation to any number of
output representations, based on the physical format layers that you have defined.

Creating physical formats

When you have created your message set, you can create physical formats. You do
this using the Message Set Editor. When you next save the messageSet.mset file,
any new physical formats are added to all the objects in all the message definition
files in that message set.

The next time you edit an object in a message definition file, you see the physical
formats in the properties hierarchy pane of the Properties tab. If you click on a
physical format for an object, you are presented with a property sheet where you
can enter the information for that physical format for that object.

Not all objects have properties in all physical formats. For example:

* CWF properties only apply to local elements and attributes, and element and
attribute references.

* Complex types and groups only have TDS properties.

* Messages only have XML properties.

These differences occur because of the different nature of each physical format, and
are explained in more detail in the section for each physical format.

There is no limit to the number of physical formats you can create in a given
message set. However there are some recommendations that apply if you want to
mix physical formats of different kinds in the same message set.

Physical formats can be deleted if no longer required.

MRM Custom Wire Format

Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed format data structures or elements, which are not
separated by delimiters.

Within a CWF messaging environment, it is not possible to distinguish one element
from the next without knowledge of the message structure. To correctly determine
the values of individual elements, the following information must be made
available to the message parser:

¢ The order (this is defined in the logical properties)
* The length (can be specified in bytes, characters or character units)
* The cardinality (that is, the number of repeats)

* The type of data contained in each element (this is partly defined in the logical
properties but can be further qualified in the CWF physical format)

* A number of characteristics based upon the logical type of the data

A CWF physical format is typically used to describe messages which are mapped
to a C structure, a COBOL copybook or other programming language data
structure definition.

You can add more than one CWF physical format to a message set, but within that
message set, each physical format must have a unique name. When parsing a CWF
message using the MRM parser, the physical format name specifies the physical
properties that are to be used by the parser.

Adding a CWF physical format to a message set allows you to process input
messages and construct output messages in this format. Messages can be
transformed between CWF and the other physical representations (for example
TDS or XML). Note that while the other physical representations support
self-defining elements (that is elements which do not have a definition in the
logical model) within the MRM domain, the parsing of a CWF message does not.
Consequently, any such self-defining elements are discarded during the output of
messages in CWF format.

Custom wire format: Message model integrity:

When you save a message definition file, the definitions that it contains are
checked to ensure that they make sense and provide sufficient information about
the message. This action is called model validation.

The CWF physical format depends on fixed format data structures. Therefore, the
majority of tests that are applied to a CWF message confirm that each fragment of
a message - and therefore, the message as a whole - has a well-defined length.
Therefore, these tests examine properties such as Length, Length Reference and
Length Units.

Typically, one or other of Length and Length Reference must be set. If Length
Reference is set, it must refer to an element that is of simple type integer and that
appears earlier in the message than the current item.

Tests other than these tend to be both simple and obvious so that, for example, the
message set property First Day of Week has to be the name of a day in the week.

The fact that CWF relies on fixed format data structures also imposes some
limitations on the messages that can be represented:

* CWF cannot represent a message that includes the use of XML Schema wild
cards; this is a consequence of its inability to handle undefined content.

* CWEF cannot represent a message that includes recursive definitions.

* CWEF cannot represent a message that includes the use of substitution groups,
because there is no way to recognize the substituted element.

Custom wire format: NULL handling:

Developing message models 41

42 Message Models

CWEF supports the handling of explicit NULL values within messages, provided
that the logical nillable property of the element is set.

An explicit null is identified by a specific value that identifies an element as being
null.

The Boolean Null Value can be specified at the message set level, and applies to
the Boolean elements of all messages that are defined in that message set. The null
value of all other element types can be specified individually for each element.

CWEF supports the representation of null values using the Encoding Null and
Encoding Null Value element properties. Together, this information controls how
null values are handled by the MRM parser.

The Encoding Null property can be set to one of four values:
NullLogical Value

The Encoding Null Value property is interpreted as a logical value.
Therefore, if its value is set to 0, for example, both 0 and 0.00 are
interpreted as null values.

NullLiteralValue

The Encoding Null Value property is interpreted as a string value.
Therefore, the value of the element in the bit stream must match exactly
the value that is specified to be interpreted as a null value.

NullPadFill

This should be used for fixed length elements. On output, any element
with a null value is padded to the appropriate length with the specified
padding character.

NullLiteralFill

The Encoding Null Value property is interpreted as a single character
string value. Therefore, each character of the value of the element in the bit
stream must match exactly the character value specified to be interpreted
as a null value.

Custom wire format: Multipart messages:

The Custom Wire Format (CWF) supports both the Message Identity technique and
the Message Path technique of identifying embedded messages within a multipart
message.

Alternatively, you can resolve an embedded message by using ESQL or Java to
identify the message. The first message that you reference in this way is assumed
to be the selected message. This technique works in an identical manner to
unresolved choice handling.

Custom wire format: Data Conversion:

The Custom Wire Format supports the conversion of data to a different code page
(for string simple types) or encoding (for numeric simple types), or both.

A message set contains properties to enable the character (CCSID) and numeric
encoding (Byte Order / Float Format) information to be specified. If you generate a
message dictionary for deployment to a WebSphere Message Broker, this

information can be overridden using the appropriate fields of the WebSphere MQ
message header, or other transport header.

Custom wire format: relationship to the logical model:

Some restrictions exist in relation to the logical model for messages that are
defined using the CWF.

Composition: A CWF message is always written with the elements in the sequence
that is specified in the logical message model definition. However, you do not
always have to specify the ESQL or Java that builds the elements in that sequence.
The following rules for coding ESQL are given for each value of the type
Composition property.

Sequence
You must build the output message to match the sequence of the elements
or groups in the message. You can normally do this using ESQL SET
statements to assign a value to each element or type. The first SET
statement sets the value of the first element or type in the message, the
second SET statement sets the value for the second element or type, and so
on. You can vary this sequence of statements using ESQL ATTACH,
CREATE, and MOVE statements.

If the elements or types have default values, and you do not build the
message in the correct sequence, those elements that are built out of
sequence contain their default values, not the values that you set. This is
because elements that are built out of sequence are assumed to be
self-defining and, for CWF, these are discarded when the message is
written to the bit stream.

Ordered Set
You must build the output message to match the sequence of the elements
in the message. You can normally do this using ESQL SET statements to
assign a value to each element. The first SET statement sets the value of
the first element in the message, the next SET statement sets the value for

the second element, and so on. You can vary this sequence of statements
using ESQL ATTACH, CREATE, and MOVE statements.

If the elements have default values, and you do not build the message in
the correct sequence, those elements that are built out of sequence contain
their default values, not the values that you set. This is because elements
that are built out of sequence are assumed to be self-defining and, for
CWEF, these are discarded when the message is written to the bit stream.

Unordered Set
You can build elements of the output message in any sequence. On output,
the elements are written in the order that is specified in the logical
message model definition.

All You can build elements of the output message in any sequence. Each
element must only be present once (that is, it must not repeat). On output,
the elements are written in the order that is specified in the logical
message model definition.

Choice
A choice cannot be resolved purely from the data. The receiving program
must interpret the data and decide which option of the choice the message
instance contains. This process is known as unresolved choice handling. The
first reference in the application to any one of the choice elements resolves
the choice to the option that contains that element.

Developing message models 43

44 Message Models

Message
Mechanisms for the resolution of embedded messages are discussed in the
[‘Custom wire format: Multipart messages” on page 42| topic.

Content validation: CWEF is a fixed format, and all elements must be present in a
message. Therefore, content validation is ignored. On output, all elements must be
set explicitly (for example, using ESQL SET), set implicitly (using a tree copy
function), or must have a default value defined.

Default values: On output of a CWF message in the MRM domain, any element, or
occurrence of an element for which a value has not been set (either explicitly or
implicitly), inherits the element's specified default value. If no default value has
been specified then an exception is thrown.

Min Occurs and Max Occurs: The logical properties Min Occurs and Max Occurs
specify the permitted number of occurrences of an element, or group, in a message.
These properties are used when parsing and writing messages, and when
validating the content of a message.

In CWE, Max Occurs occurrences are expected when parsing, and Max Occurs
occurrences are produced when writing. Default values are used for missing
elements, and any excess elements are discarded.

* A varying number of occurrences (Min Occurs <> Max Occurs) is ignored, Max
Occurs is assumed.

* Optional occurrence (Min Occurs = 0) is ignored, Max Occurs is assumed.
* Always absent (Max Occurs = 0) is allowed.

* An unbounded number of occurrences (Max Occurs = -1) is allowed if the
element or group is the last child in its parent group, and the group is
terminated by the end of the message bit stream. On writing, the writer writes
all occurrences in the message tree, if this number is less than Min Occurs,
additional default values are written.

These rules arise because, in a CWF message format, there are no tags or other
markup that can be used to determine the end of a variable number of repeats.

However this behavior is overridden if the CWF property Repeat Reference is set,
which indicates that the number of occurrences is given instead by an integer
element that occurs earlier in the message. In this case Max Occurs is ignored.

When validating, Min Occurs and Max Occurs are both used to check that the
content of the message tree matches the model.

Simple types — lists and unions: Lists and unions are XML-specific concepts. An
element or attribute of a simple type that is a list or a union will cause a task list
warning if a CWF physical format is present in the message set. The user can
choose whether to make this an error, warning, or information by editing the
Validation preferences. The dictionary generator will omit messages defined to
contain such elements or attributes from the CWF section of the dictionary.

MRM TDS format

The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.

The TDS physical format is designed to model messages that consist of text strings,
but it can also handle binary data. Examples of TDS messages are those that

conform to the ACORD AL3, EDIFACT, HL7, SWIFT, or X12 standards. The TDS
physical format allows a high degree of flexibility when defining message formats,
and is not restricted to modeling specific industry standards; therefore, you can use
the TDS format to model your own messages.

TDS message characteristics: There are a number of features of text string
messages that are common to many formats. This is an overview of the main
features that are supported by the TDS physical format:

Tags The text strings in the message can have a tag or a label preceding the data
value. The tag is a string that uniquely identifies the data value. The TDS
format allows you to associate a tag with each element when you define
the element.

Delimiters and tagged data separators
The message can contain various special characters or strings in addition to
the tags and text string data values. The TDS format supports a number of
different types of special characters or strings.

Some messages have a special character or string that separates each data
value from the next. In the TDS format this is a known as a delimiter.

In formats that have a tag before each data value, the tag can be separated
from its data value by a special character or string. In the TDS format this
is known as a tag data separator.

Group indicators and terminators
A message can be split into a number of substructures in a similar manner
to a COBOL or C structure. You can model each of these substructures
separately by defining groups, complex types or elements for each one.

A substructure can have a special character or string that indicates its start
within the data. This is known in the TDS format as a group indicator.

A substructure can also have a special character or string that indicates its
end in the data. In the TDS format, this is known as a group terminator.

A group indicator and group terminator can also be defined for the whole
message. Group indicators and group terminators are optional for the
message and each substructure.

Fixed length strings
Some text strings within a message can be of fixed length; therefore, a
delimiter between each data value is not necessary. This is supported by
the TDS format.

Fixed length tags
Some tags can be defined as fixed length; therefore, a tag data separator is
not necessary.

Separation types
The TDS property that controls the way text strings are separated is Data
Element Separation. It has several options that let you choose, for example,
whether tags are used, whether strings lengths are fixed or variable, and
what types of text strings are permitted.

The substructures within a message can use different types of data element
separation and use different special characters. Therefore the TDS format
allows you to define different types of data element separation and special
characters for each complex type within the message.

Regular Expressions
If you choose the Use data pattern option for Data Element Separation,

Developing message models 45

you can use regular expressions to identify parts of the message data to be
assigned to sub-fields. This is done by setting the regular expression in the
Data Pattern property.

The following diagram shows an example data message with each of its
components labeled.

\ Delimiter\ \ DeIimiter\

Tag Data
Separator

Tag Data Tag Data
Separator Separator

{Tag1:Data1*Tag2:[Data2+Data3]*Tag3:<Data4Data5>}

Group
Indicator

46 Message Models

|

Group Group
Terminator Terminator

Group Group
Indicator Indicator

* At the top level, each data value has a tag associated with it, each tag is
separated from its data value using a tag data separator of colon (:), and the data
values are separated from each other using the asterisk delimiter (*).

* The group indicator for the message is the left brace ({) and the group terminator is
the right brace (}).

* The data values Data2 and Data3 are in a substructure in which there are no
tags, and each data element is separated from the next using the plus delimiter
(+)- The group indicator for this substructure is the left bracket ([) and the group
terminator is the right bracket (]).

* The data values Data4 and Datab are in a substructure in which the values are
fixed length, and are therefore not separated by a delimiter. The group indicator
for this substructure is the less than symbol (<) and the group terminator is the
greater than symbol (>).

TDS format: Determining the length of simple data values:

The TDS format supports two categories of simple data types: textual and
non-textual.

The Physical Type of an element determines whether it is categorized as textual or
non-textual.

Textual data
Physical Type is either Text or TLOG Specific. For textual data, the Data
Element Separation of the parent complex type or group determines how
the length of the data is determined. See [*TDS format: Data element]
lseparation” on page 47| and its subtopics.

Non-textual data
Elements of all other Physical Types are non-textual. The length of
non-textual data is determined by the Physical Type of the element. For
non-textual data, the Data Element Separation property of the parent
complex type or group does not determine the length, unless Data Element
Separation is Use Data Pattern. See [“TDS format: Data pattern separation|
[types” on page 56| for more information.

The following table describes how the length of data is determined for

each Physical Type.
Physical Type Determination of Length
Text The Data Element Separation of the parent
TLOG Specific complex type or group determines how the

length of the data is determined.

External Decimal Uses the value of the Length property of the
Integer element.
Packed Decimal
F1. oat If Physical Type is Time Seconds, the Length
Time Seconds property is set to 4. If Physical Type is Time

Time Milliseconds Milliseconds, the Length property is set to 8.

In neither case can this value be changed.

Length Encoded String 1 Uses the encoded length value in the data.

Length Encoded String 2

Null Terminated String Uses the null terminator at the end of the
data.

Binary Uses the value of the Length Reference or

Length property of the element.

TDS format: Data element separation:
Data element separation defines how a TDS message is to be parsed.

Data element separation defines which method of identifying data elements is to
be used and how the data elements are constructed. The different methods vary
from full flexibility to fixed format, depending on how they are defined.

The four main types of data element separation are:

Fixed length types
Fixed length types are dependent on each element having a length. See
[“TDS format: Fixed length separation types.”|

Tagged separation types
Tagged separation types are dependent on each element having tag prefix
to identify it. See ["TDS format: Tagged separation types” on page 49

Delimited separation types
Delimited separation types use delimiters to identify the end of one data
elements and the beginning of the next. See [“TDS format: Delimited]
lseparation types” on page 52.|

Data pattern types
Data pattern types use a regular expression to identify each element. See
[“TDS format: Data pattern separation types” on page 56

There is a fifth category, which is different from the four described above:

Undefined separation types
Undefined separation types contain no data elements. They are applicable
to embedded messages only, and should not be used for anything else.
They use none of the TDS type-specific parameters other than Data
Element Separation. See [“Multipart messages” on page 26|

TDS format: Fixed length separation types:

Developing message models 47

48 Message Models

For fixed length separation types, each data value is a fixed length.

For fixed length data element separation types, all textual elements have a length
or length reference, and are padded out to their full length in the bit stream. No
tags or delimiters are used, and each data value directly follows the preceding data
value.

For example:
dataldata200data30

The first element is length 5, the second is length 7 and the third is length 6. The
padding character is "0".

For non-textual elements, the length is determined by the Physical Type of the
element. See [“TDS format: Determining the length of simple data values” on page|

Fixed length type: In fixed length type, all textual elements must have a length or
length reference, and must be written out to that full length. The elements must be
presented in the correct order, and all elements must be written in the bit stream.
This includes all repeats of any repeating element (that is, the Maximum
Occurrences must be written out for each element).

For non-textual elements, the length is determined by the Physical Type of the
element. See [“TDS format: Determining the length of simple data values” on page|

For example:
datalOdata2data2data2data300

The first element is length 6, the second is length 5 and repeats three times, and
the third element is length 7. The padding character is "0".

Applicable parameters: The main parameters for this format are the Length or
Length Reference of the element. All fields must be padded out to their full length
for the bit stream to be correctly specified to the parser.

Tag and delimiter parameters are ignored. Group indicators and terminators are
observed, because they are of fixed length.

Default values are required for each field that might not be set, because then every
field can be produced as output, even if it is not filled with data from the message.

Fixed length AL3 type (Deprecated): This separation type has been deprecated.
ACORD ALS3 support will be provided by a different method in a future release, at
which time this separation type will be removed from service.

Fixed length AL3 types are similar to fixed length types, but follow extra rules that
are specified by the ACORD AL3 format regarding truncation and missing
elements. If elements are missing from the end of an AL3 type, they can be
truncated. They cannot be omitted from the middle of a bit stream. If a field is
missing from the middle of the bit stream, that field is produced for output as the
appropriate length string of the "?" character.

Applicable parameters: The main parameters for this format are the Length or
Length Reference of the element. All fields must be padded out to their full length
for the bit stream to be correctly specified to a parser.

Tag and delimiter parameters are ignored. Group Indicators and Terminators are
observed, because they are of fixed length.

TDS format: Tagged separation types:

For tagged separation types, each data value is preceded by a tag that is specified
as an element property.

The Tag Data Separator, or specific Length of Tag parameter is used to determine
where the tag ends and the data starts. Different methods are used by each
separation type to determine the end of the data.

After considering these two parameters, this topic describes the following
supported tagged separation types:

* [“Tagged Delimited separation”]

* ["Tagged Fixed Length separation” on page 50|

* |“Tagged Encoded Length separation” on page 51

Tagged separation is a flexible format. The elements do not have to occur in a
specific order. They do not all need to be present, and can be absent from any
point in the message.

Tag Data Separator and Tng Lengths: Either Tag Data Separator and Length of Tag
are used by all tagged separation types. But only one of these parameters can be
set at the same time.

The point at which a tag ends and data starts can be determined by one of two
methods. If the Tag Data Separator is set, then this character indicates where the
data ends. For example, the string might be:

tagl:datal
where Tag Data Separator is :

However if the Tag Data Separator is not set and the Length of Tag field is set,
then the tag is the specified length, and is immediately followed by the data. No
separating character is required. For example, the string might be:

tagldatal
where Length of Tag is 4

Tagged Delimited separation: Tagged Delimited separation is a completely flexible
format. Elements are separated by a predefined delimiter. The textual elements are
not of specific lengths. For non-textual elements, the length is determined by the
Physical Type of the element. See [“TDS format: Determining the length of simple|
[data values” on page 46

Applicable parameters: These parameters are used:
¢ Group Indicator indicates the start of a group or complex type.
* Group Terminator indicates the end of a group or complex type.

* Delimiter separates the data elements within a group or complex type.

Developing message models 49

* Tag for each element, indicates the tag needed to precede the data in that field.
* Either Tag Data Separator or Tag Length as described above.

Examples: 1f Tag Data Separator is set to :
{tagl:datal*tag2222222:data2*tag333:data3}

where:

* Group Indicator is {.

¢ Group Terminator is }.

¢ Delimiter is *.

* Tag defined for each element, is tagl (for datal), tag2222222 (for data2), and
tag333 (for data3).

or, for example, if Length of Tag is set to 5

{taglldatal*tag22data2*tag33data3}

where parameters are as above, except:

* Tag, defined for each element (fixed at 5 characters), is tagll (for datal), tag22
(for data2), and tag33 (for data3).

Tagged Fixed Length separation: Although Tagged Fixed Length separation is a
flexible format, the data must be a specific length. This means that a delimiter is
not needed to determine the end of each element.

Applicable parameters: These parameters are used:

* Group Indicator indicates the start of a group or complex type.

* Group Terminator indicates the end of a group or complex type.

* Tag for each element, indicates the tag needed to precede the data in that field.

* For each textual element, Length or Length Reference indicates the length of the
data (this value does not include the length of the tag). For non-textual elements,
the length is determined by the Physical Type of the element. See
[Determining the length of simple data values” on page 46

¢ Either Tag Data Separator or Tag Length as described above.

Examples: If Tag Data Separator is set to :
{tagl:dataltag22222222:data2000tag333:data300}

where:

* Group Indicator is {.

* Group Terminator is }.

e Delimiter is *.

* Tag, defined for each element, is tagl (for datal), tag22222222 (for data2000), and
tag333 (for data300).

* Length, defined for each element, is 5 (datal), 8 (data2000), and 7 (data300).

or, for example, if Length of Tag is set to 5

{taglldataltag22data2000tag33data300}

where parameters are as above, except:

* Tag, defined for each element (fixed at 5 characters), is tagll (datal), tag22
(data2000), and tag33 (data300).

50 Message Models

Tagged Encoded Length separation: This method has both a tag and a length field
before the data. The length field indicates to the parser the length of the data
following it.

The length of this length field is itself defined in the Length of Encoded Length
parameter. Extra lengths to be added in this, such as the length of the field itself, is
set in the Extra Chars in Encoded Length parameter.

Only textual elements and elements with a Binary logical and physical type are
supported within a Tagged Encoded Length separation.

These examples show how the values set in these parameters are applied:

tagA007dataAAAtagBO06dataBBtagC009dataCCCCC

If Length of Tag is 4, Length of Encoded Length is 3, Extra Chars in Encoded
Length is 0, then in this bit stream, TagA is followed by the 3 character long
length field. This indicates that the following data (dataAAA) is 7 characters long.
The next field, tagB is then considered, and so on.

tagA0l2dataAAAAAtagBO10dataBBBtagCOl6dataCCCCCCCCC

If Length of Tag is 4, Length of Encoded Length is 3, Extra Chars in Encoded
Length is 3, then in this bit stream, TagA is followed by the 3-character length
field. This indicates that the following data, plus extra characters, is 12
characters long: length of the length field (3) + length of data (9) = 12. Therefore
the length of the actual data is only 12-3 = 9. The next field, tagB is then
considered, and so on. In each case the length given in the bit stream is 3 greater
than the actual length of the data.

Applicable parameters: These parameters are used:

Group Indicator indicates the start of a group or complex type.
Group Terminator indicates the end of a group or complex type.
Tag for each element, indicates the tag needed to precede the data in that field.

Length of Encoded Length indicates the length of the length field in the bit
stream.

Extra Chars in Encoded Length indicates how many extra characters should be
included in calculating the value for the length field in the bit stream.

Either Tag Data Separator or Tag Length as described above.

Examples: 1f Tag Data Separator is set to :
{taglll1:008dataltag222222222:010data2AAtag3333:009data3A}

where:

Group Indicator is {

Group Terminator is }

Length of Encoded Length is 3

Extra Chars in Encoded Length is 3

Tag, defined for each element, is tagl111, tag222222222, tag3333 respectively

or, for example, if Length of Tag is set to 5
{tagl1008dataltag22010data2AAtag33009data3A}

where parameters are as above, except:

Tag, defined for each element (fixed at 5 characters), is tagll, tag22, tag33
respectively

Developing message models 51

52 Message Models

TDS format: Delimited separation types:

For delimited separation types, a delimiter is used to separate data fields, but there
are no tags present. The data fields need to be given in the correct order in the bit
stream and elements cannot be omitted from the middle of the bit stream.

The All Elements Delimited separation type means that data fields are delimited by
a pre-specified character or string. In this example, four data fields are separated
by an asterisk (*) delimiter:

datal*data2xdata3xdatad

Delimited separation types are restrictive in the ordering and presence of elements:
* The elements must be given in the order specified.

* No element can be omitted in the middle of a group or complex type, because
the parser cannot determine this from the resulting bit stream.

* Elements can sometimes be absent from the end of a complex type or group.

After considering [“Delimiter suppression and truncation rules,”| this topic describes
the following delimited separation types:

* |“All Elements Delimited” on page 53|

* [“Variable Length Elements Delimited” on page 54|

Delimiter suppression and truncation rules:

* Elements cannot be omitted from the middle of a group or complex type. An
absent element results in the inclusion of a zero-length string.

For example, with all elements present, the string might be:
datalxdataz+data3~data4

where Delimiter is *
If data2 is missing, the string would read:
datalxxdata3~datad
* It is possible to suppress the delimiters at the end of a string for absent
elements. The Suppress Absent Element Delimiter property determines whether

this is done. If this property is set to End of Type, this can be done (with one
exception, shown later in this section).

In this case, for the above example with data3 and data4 missing, the string
would read:

datal*data2

That is, the delimiters have been suppressed from the end of this group or
complex type.

¢ If the Suppress Absent Element Delimiter property is set to Never, delimiter
suppression never takes place. The string would read:

datal*data2**

That is, the delimiters have to be present to indicate absent (zero-length)
elements.

An exception to the above rule occurs in the case where the same delimiters are
used at multiple levels in the model.

For example, you have a complex type or group with delimiter * and this
contains an element of another complex type (indicated by the element3 prefix

on data fields in the following example), which also has delimiter *. If both
types use a delimited separation type, with all elements present, you might
have:

datal+~data2~element3Datalxelement3Dataz2+element3Data3+~datad

If element3Data2 and element3Data3 are missing, and the delimiters are
suppressed, it is not possible for the parser to determine which elements are
missing.

Therefore, in this case, you must override the Suppress Absent Element
Delimiter property, and write out all the delimiters to clearly define the message
to the parser. Therefore, the string must be:

datalxdata2xelement3Datal***datad

This restriction also applies where Group Indicators and Group Terminators use
the same character strings as delimiters; otherwise, the bit stream is not clear to
the parser.

All Elements Delimited: In an All Elements Delimited separation type, all elements
are separated by a delimiter; for example:

datal*data2*data3xdatad*datab
where Delimiter is *.

An All Elements Delimited separation type does not use tags or their associated
parameters.

For textual elements, the length is determined by the delimiter, and the Length
property is ignored unless the Observe Element Length property is set.

For non-textual elements, the length is determined by the Physical Type of the
element. See [“TDS format: Determining the length of simple data values” on page

Applicable properties: These properties are used:

* Group Indicator indicates the start of a group or complex type.
* Group Terminator indicates the end of a group or complex type.

* Delimiter indicates the separator between the data elements within a group or
complex type.

* Suppress Absent Element Delimiters indicates whether delimiter suppression is
permitted.

For example:
{datal*data22222*data3}

where:

* Group Indicator is {

* Group Terminator is }

* Delimiter is *

Repeating element rules: If an element needs to be repeated when the separation
type is All Elements Delimited, the Repeating Element Delimiter (RED), is used to

separate the repeated elements.

For example if data2 repeats 5 times:
datal+data2:data2:data2:data2:data2+data3=data4

Developing message models 53

54 Message Models

where:
¢ Delimiter is *

* Repeating Element Delimiter is :

If the Suppress Absent Element Delimiters property is set to End of Type, you can
use delimiter suppression. Therefore, if only the first data2 element was present in
the previous example, the bit stream reads:

datal*data2xdata3xdatad

However, if the Suppress Absent Element Delimiters property is set to Never, the
bit stream reads:

datal*data2::::*data3xdatad

If Delimiter and RED match, two delimiters are output to indicate that the repeat is
ending. Therefore, if the delimiter and RED are *, the bit stream reads:

datal*data2**data3*data4d

Variable Length Elements Delimited: In a complex type with Variable Length
Elements Delimited separation, some elements are determined by their length, and
other elements are delimited. This combination of a delimited and a fixed length
format follows rules that are associated with both formats. Lengths can be given
and used, but they are not mandatory.

* If a length is present for a textual element, it is used, and a delimiter is not
needed to terminate that element. The element must be padded to the correct
length, and cannot exceed that length.

* If no length is given for a textual element, the delimiter is required.

* For non-textual elements, the length is determined by the Physical Type of the
element. See [“TDS format: Determining the length of simple data values” on|

|Eage 46.|

A complex type with Variable Length Elements Delimited separation that contains
only variable length elements resembles a acomplex type with All Elements
Delimited separation. If it contains only fixed length elements, it resembles a Fixed
Length type.

For example:
datal*data2xdata3*data4000datab

where:
* Delimiter is *
* data4 has a length of 8

Applicable properties: The following properties are used:
* Group Indicator indicates the start of a group or complex type.
* Group Terminator indicates the end of a group or complex type.

* Delimiter indicates the separator between the data elements within a group or
complex type.

* Suppress Absent Element Delimiters indicates whether delimiter suppression is
permitted.

* (Optionally) Length or Length Reference indicates the length of a textual
element. If a textual element has a length, this length is used. Because the length

of this element is known, it is not necessary to output a delimiter after it. If the
length is not known, a delimiter is required. A delimiter is never required for a
non-textual element.

In this example, the fourth field (containing data4) is of fixed length 8 and its
padding character is 0:

{datal*data22222*data3*datad000data5}

where:

* Group Indicator is {

* Group Terminator is }
* Delimiter is *

Repeating element rules: The action of a repeating element in a Variable Length
Elements Delimited environment is dependent on the minimum and maximum
number of repeats and whether the element has a length.

Delimited Element Repeating: If a delimited element (that is, an element with no
length) is repeated, a Repeating Element Delimiter (RED) is required and the rules
for All Elements Delimited are followed. A delimiter is therefore required after the
last repeat. Delimiter suppression of this repeat can also occur.

For example, if data2 is repeating:
datal*data2:data2:data2:data2:data2:data2*data3*data4000datab

where:

* Delimiter is *

* Repeating Element Delimiter is :
* data4 has a fixed length of 8

If the Suppress Absent Element Delimiters field is set to End of Type, you can use
delimiter suppression.

If in the above example only the first data2 is present:
datalrdata2+data3=datad000datab

However, if Suppress Absent Element Delimiters is set to Never, the bit stream
reads:

datal*data2:::::*data3xdata4000datab

If the delimiter and RED match, two delimiters are output to indicate that the
repeat is ending. So if the delimiter and RED are both *, the bit stream reads:

datal*data2*xdata3*datad

This also applies for a non-fixed length complex type or group inside a Variable
Length Elements Delimited environment.

Fixed Length Element Repeating: If an element with a defined length (a fixed length
element) is repeating and the minimum occurrences is not the same as maximum
occurrences, an RED is not required, but a delimiter is required after the last
repeat. Delimiter suppression of this repeat can occur.

For example, if data4 (with a fixed length of 8) is repeating, and its minimum
occurrences is 2, maximum occurrences is 4:

Developing message models 55

56 Message Models

datal*data2*data3*datad00datad00datad00datad00+datab
where Delimiter is *

Or, if there are only two occurrences of data4:
datal*data2xdata3*data4000datad000*datab

If an element with a defined length (a fixed length element) is repeated, and the
minimum occurrences is the same as maximum occurrences, an RED is not
required. A delimiter is also not required after the last repeat. Truncation of this
repeat cannot occur and all elements need to be present.

For example, if data4 (with a fixed length of 8) repeats four times:
datalxdataz2+data3rdata4000data4000datad000data4000datab

where Delimiter is *

Or, if there are only two occurrences of dataé4:
datalxdataz2+data3+data4000data40000000000000000000datab

This also applies for a non-fixed length complex type or group inside a Variable
Length Elements Delimited environment.

If a complex type has Variable Length Elements Delimited separation, a delimiter
is always output between an included ('child’) complex element and the next
element even if the separation of the 'child’ complex element is Fixed Length. On
input, the parser accepts the bit stream with or without such a delimiter.

TDS format: Data pattern separation types:

For a data pattern separation type, each data value is matched with a regular
expression that is specified as a property of each element.

The length of both textual and non-textual data is determined by the Data Pattern
property of the element. If the Physical Type of the element is Length Encoded
String 1 or Length Encoded String 2, the regular expression must match both the
encoded length and the following data. The length in the encoded length must be
consistent with the length matched by the regular expression. If the Physical Type
of the element is Null Terminated String, the regular expression must match both
the data and the following null terminator.

The Data Pattern separation type uses a regular expression that is specified for
each element to match the data. The parser matches the data with the regular
expression in the Data Pattern property for that element. TDS parsing in the MRM
parser uses the regular expression in Data Pattern to determine the length of the
element, whether it is repeating, and whether it is present in the bit stream.

No delimiters or tags, other than those coded as part of the regular expression
pattern, are used in the bit stream. See [Using regular expressions to parse datal
felements” on page 774 for an explanation of pattern matching.

For example, if the first three Data Pattern properties are, respectively:
* [A-Z]{1,3}

e [0-9]+

* [a-z]*

and the message data is:
DT31758934information for you

Then, in this example:

* First data element = DT

* Second data element = 31758934

e Third data element = information

The first data pattern means "from one to three characters in the range A to Z", the
second means "one or more characters in the range 0 to 9", and the third means
"zero or more characters in the range a to z". Note how each element's data was
terminated by the first character that did not match the element's Data Pattern.

If the TDS message that is being parsed is encoded in a single-byte code page, the
Data Pattern property can include hexadecimal values. A hexidecimal value is
specified as \xNN, where N is a hexadecimal digit in the range 0 to F. Note,
however, that the value \x00 is not valid.

Performance issues

The parsing required in Data Pattern separation type is the slowest of all the
different separation types because of its complexity.

Therefore, use Data Pattern separation type only when no other separation type
models the message. Do not use it, for example, when you can use Fixed Length
separation type.

Applicable parameters: Only one parameter is used:

Data Pattern for each element, indicates the regular expression that is used for
string matching.

TDS format: Message model integrity:

When you use the TDS wire format, you must conform to a number of rules that
apply to the setting of values of properties. This is necessary to avoid any
discrepancies when processing a message within the specified model.

Rules of TDS physical format properties: Restrictions to message formats are checked.
These restrictions follow the rules specified in [“TDS message model integrity” on|
page 770 Most rules are applied for at least one of these reasons:

Rules for message definition
Some rules are necessary for the message to be defined.

For example, in a Fixed Length separation type all elements must have
some length defined, either directly or by using a Length Reference.
Without this information, it is impossible to tell in the message bit stream
where one data element ends and the next starts.

Rules for nesting
Nesting rules relate to which separation types can be nested inside each
other.

Such rules are applied when an element of a complex type is present
inside another complex type. An example is that it is not possible to have a
Tagged Delimited separation type inside a Fixed Length type. Because a

Developing message models 57

58 Message Models

Tagged Delimited separation type is of variable length, the parent Fixed
Length type would be unable to tell where that particular element ended,
as there would be no length provided. Therefore the message could not be
processed.

Rules linking to the logical model
There are also rules linking TDS to the logical model.

These rules occur where a group composition or group content validation
cannot be used with a particular separation type. Again this is for message
integrity. For example, a separation type of All Elements Delimited cannot
have a group composition of Open, as there is no information as to what
the extra elements represent and where they are in the bit stream.

TDS format: NULL handling;:

NULL handling dictates the way in which the MRM parser for TDS messages
handles elements that have been set to Null.

Null handling only takes place if the logical Nillable property of the element is set.
The rules for whether nulls are permitted are described in[“TDS Null handling]
[options” on page 768

Null properties: The element properties Encoding Null and Encoding Null Value
control how null handling is represented for individual elements.

You can select the Encoding Null property from the enumerated values
NULLPadFill, NULLLogicalValue, NULLLiteralValue, and NULLLiteralFill. The use
of the Encoding Null Value property is dependent on the value that you select for
the Encoding Null property.

NULL values are not defined for schema xsd:hexBinary simple types. The
properties Encoding Null and Encoding Null Value are therefore not set for
xsd:hexBinary types.

NULL values for schema Boolean simple types are defined at the message set level.
The message set property Boolean Null Representation specifies the value to be
used for Boolean Null representation.

TDS format: Multipart messages:

The Tagged/Delimited String Format (TDS) supports both the Message Identity
technique and the Message Path technique of identifying embedded messages
within a multipart message.

The SWIFT, X12 and EDIFACT messaging standards can all be modeled by using
the Message Identity technique.

Versions of the TDS physical format prior to Version 6.0 included embedded
message identification by Message Key which worked in a similar manner to
Message Identity, but which applied to TDS only. The Message Key technique has
been deprecated and is superseded by Message Identity. Warning task list
messages are issued if the use of Message Key is detected, and a task list Quick Fix
might be selected to create the equivalent Message Identity automatically. You
must continue to use Message Key if the MRM parser that you are deploying to is
Version 5.0.

TDS format: Data conversion:

TDS string data is subject only to CCSID conversion.

All TDS message data apart from binary types are handled as strings. All string
data is therefore subject to CCSID conversion only. This includes the special
characters used as delimiters, data separators, and so on.

TDS format: Relationship to the logical model:

TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.

The rules that govern these options are explained in [“Restrictions for nesting|
[complex types” on page 772

These rules exist to ensure the integrity of the message. A combination of
separation type and group composition or group content validation must not lead
to a message that is unclear to a TDS parser.

Default values

In TDS, Default values are only observed by fixed length elements:

Separation Type

Use of Default values

Tagged Delimited
Tagged Fixed Length

Tagged Encoded Length

All Elements Delimited
Data Pattern

Default values are never observed.

Fixed Length
Fixed Length AL3

Default values are observed on output by all elements.
An absent element that has no Default value defined,
will cause an error on writing.

Variable Length Elements Delimited Default values are only observed by fixed length

elements on output. Absent fixed length values must
have a Default value available to them. An absent
element that has no Default value defined, will cause an
error on writing.

Simple types - lists and unions

Lists and unions are XML-specific concepts. An element or attribute of a simple
type that is a list or a union will cause a task list warning if a TDS physical format
is present in the message set. The user can choose whether to make this an error,
warning, or information by editing the Validation preferences. If a dictionary is
generated from the message set, and an attempt is made to parse a TDS message
defined to contain such elements or attributes, a runtime error will occur.

Min Occurs and Max Occurs
The logical properties Min Occurs and Max Occurs specify the permitted number

of occurrences of an element or group in a message. They are used when parsing
and writing messages, and when validating the content of a message.

Developing message models 59

When parsing and writing, the exact interpretation of these properties depends on
the Data Element Separation property of the parent complex type or group as
shown in the following table.

However, this behavior is overridden if the TDS Repeat Reference property is set,
which indicates that the number of occurrences is given instead by an integer
element that occurs earlier in the message. See [‘Repeat reference” on page 61| for
more information.

When validating, Min Occurs and Max Occurs are both used to check that the
content of the message tree matches the model.

Separation type

Interpretation of Min Occurs and Max Occurs

Tagged Delimited
Tagged Fixed Length
Tagged Encoded Length

Min Occurs and Max Occurs are effectively ignored when parsing and writing. When
parsing, the number of occurrences is identified by the tags in the message. When
writing, the writer outputs all occurrences in the message tree.

* A varying number of occurrences (Min Occurs <> Max Occurs) is allowed.
* Optional occurrence (Min Occurs = 0) is allowed.
¢ Always absent (Max Occurs = 0) is allowed.

* An unbounded number of occurrences (Max Occurs = -1) is allowed.

All Elements Delimited

Max Occurs only is used when parsing and writing, in conjunction with the element's
Repeating Element Delimiter property, and the parent type's Suppress Absent Element
Delimiters property.

A varying number of occurrences (Min Occurs <> Max Occurs) is allowed if Suppress
Absent Element Delimiters is set to End of Type.

¢ If the Delimiter is different from the Repeating Element Delimiter, the Delimiter
will signify the end of the occurrences.

e If the Delimiter is the same as the Repeating Element Delimiter, an empty repeat
signifies the end of the occurrences.

¢ In both these cases, Max Occurs is the maximum number of repeats that are
expected.

If Suppress Absent Element Delimiters is Never, all occurrences are expected when
parsing, and produced when writing, although parsing will accept elements being
absent.

Optional occurrence (Min Occurs = 0) is ignored and a delimiter is still expected
when parsing, and produced when writing.

Always absent (Max Occurs = 0) is allowed. No delimiter is expected when parsing,
nor output when writing.

An unbounded number of occurrences (Max Occurs = -1) is only allowed if the
Repeating Element Delimiter is different from the Delimiter. The repeats must be
terminated by the delimiter, or a containing group's Group Terminator or Delimiter,
or by the end of the message bit stream. On writing, the writer outputs all
occurrences in the message tree.

60 Message Models

Separation type

Interpretation of Min Occurs and Max Occurs

Fixed Length
Fixed Length AL3

Max Occurs only is used when parsing and writing. In general, Max Occurs
occurrences are expected when parsing, and Max Occurs occurrences are produced
when writing; default values are used for missing elements, and any excess elements
are discarded.

A varying number of occurrences (Min Occurs <> Max Occurs) is ignored, Max
Occurs is assumed.

Optional occurrence (Min Occurs = 0) is ignored, Max Occurs is assumed.
Always absent (Max Occurs = 0) is allowed.

Fixed Length only. An unbounded number of occurrences (Max Occurs = -1) is
allowed if the element or group is the last child in its parent group, and the group is
terminated by a Group Terminator or a containing group's Group Terminator or
Delimiter or by the end of the message bit stream. On writing, the writer outputs all
occurrences in the message tree, if this number is less than Min Occurs, additional
default values are written.

Variable Length Elements
Delimited

For fixed length simple elements, the rules for Fixed Length separation above are
followed with two differences.

1. A varying number of occurrences (Min Occurs <> Max Occurs) is allowed, the
end of the occurrences being signified by an extra delimiter.

2. An unbounded number of occurrences (Max Occurs = -1) is allowed, the end of
the occurrences being signified by an extra delimiter. On writing, the writer
outputs all occurrences in the message tree, followed by an extra delimiter.

For variable length simple elements, all complex elements and groups, the rules for
All Elements Delimited above are followed.

Data Pattern

Min Occurs and Max Occurs are effectively ignored when parsing and writing. When
parsing, the pattern is matched as many times as possible. When writing, the writer
outputs all occurrences in the message tree. Note that on parsing, if the data pattern
permits a zero length match, and a zero length match occurs, an element is added to
the message tree and the matching terminates to prevent an infinite loop.

A varying number of occurrences (Min Occurs <> Max Occurs) is allowed.

Optional occurrence (Min Occurs = 0) is allowed. Always absent (Max Occurs = 0) is
allowed.

An unbounded number of occurrences (Max Occurs = -1) is allowed.

Repeat reference

The TDS property Repeat reference specifies a field that holds the number of
repeats of an object (Element or Group) within a message. The field that holds the
number of repeats must be within the message before the object that it refers to.

From a parsing perspective, the Repeat reference property replaces the role of the
minOccurs and maxOccurs properties.

If a value for the Repeat reference property is specified for an object, values that
are specified for minOccurs and maxOccurs are ignored when parsing and writing.
However, values that are specified for minOccurs and maxOccurs are used by
logical validation.

Developing message models 61

When parsing and writing, the exact interpretation of the Repeat reference
property depends on the Data Element Separation property of the parent complex
type or group as shown in the following table.

Separation type

Interpretation of Repeat reference

Tagged Delimited

Tagged Fixed Length
Tagged Encoded Length writer outputs all occurrences in the message tree.

Repeat reference is effectively ignored when parsing and writing. When parsing, the
number of occurrences is identified by the tags in the message. When writing, the

All Elements Delimited

Repeat reference is used when parsing and writing, in conjunction with the element's
Repeating Element Delimiter property, and the parent type's Suppress Absent Element
Delimiters property.

A Repeat reference is allowed only if the parent complex type or group has Suppress
Absent Element Delimiters set to Never. All Repeat reference occurrences are expected
when parsing, and produced when writing. However, parsing accepts elements being
absent.

Repeat reference = 0 is allowed. No delimiter is expected when parsing, nor produced
when writing.

Fixed Length
Fixed Length AL3

Repeat reference is used when parsing and writing. Repeat reference occurrences are
expected when parsing, and are produced when writing, with default values used for
missing elements.

Repeat reference = 0 is allowed.

Delimited

Variable Length Elements For fixed length simple elements, the rules for Fixed Length separation above are

followed.

For variable length simple elements, all complex elements and groups, the rules for
All Elements Delimited that are listed above are followed.

Data Pattern

Repeat reference is effectively ignored when parsing and writing. When parsing, the
pattern is matched as many times as possible. When writing, the writer outputs all
occurrences in the message tree. Note that, on parsing, if the data pattern permits a
zero length match, and a zero length match occurs, an element is added to the
message tree and the matching terminates to prevent an infinite loop.

62 Message Models

MRM XML physical format
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.

An XML wire format describes the physical representation of a message that is
written according to the standards given in the W3C [Extensible Markup Language|

XML)| specification. The wire format defines information that is used to parse or

write XML messages in a runtime environment such as a broker. XML versions 1.0
and 1.1 are both supported.

You can add more than one XML physical format to a message set, but within that
message set, each physical format must have a unique name. The default name for
an XML wire format is XML1. The physical format name identifies the definitions
that are to be used by the message broker at run time.

After adding an XML physical format, all XML properties for all existing objects in
the message set are set to default values. Therefore, immediately after adding the
format and deploying the message set to a runtime environment, you can process
XML messages using MRM features.

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml

You can configure XML properties for the message set, and for objects within the
message set. Objects that can have XML properties are messages, elements, and
attributes. For example, a message object can be customized to define a specific
DTD declaration on output; an element can have a tag name assigned to it which
is different from its element name in the model.

Adding an XML wire format to a message set allows you to both process input
messages, and to construct output messages in this format. You can also transform
messages between XML and either CWF or TDS.

XML messages are, by their nature, self-describing: each piece of data is prefixed
by a tag name or an attribute name. Therefore, it is possible for an XML message
instance to contain elements that are not in the definition for that message.

* If such an element exists in the message set, the model objects for that element
are used in parsing or writing the message.

* If the element does not exist in the message set, it is treated as a self-defining
element, and its data type is set to string.

Although it is possible to define an XML message 'by hand', using the Message
Definition Editor, WebSphere Message Broker also provides importers for both
XML Schema and DTD, and these are often quicker and easier than manual
definition.

XML wire format: Message model integrity:

When you save a message definition file, the definitions that it contains are
checked to ensure that they make sense and provide sufficient information about
the message. This action is called model validation.

For XML, these checks mostly concern the uniqueness and validity of XML names
in global elements and attributes, and also for elements and attributes within
complex types or groups.

Tests other than these tend to be both simple and obvious so that, for example, the
message set property First Day of Week has to be the name of a day in the week.

MRM XML physical format: NULL handling;:

The purpose of null handling is to specify how messages will deal with null
values; that is, the absence of a meaningful value for an element.

Null properties for the MRM XML physical format are set for the message set only,
and apply to all the defined objects within the message set, using the four
properties Encoding Null Num, Encoding Null Non-Num, Encoding Null Num Val
and Encoding Null Non-Num Val.

Null handling only takes place if the logical Nillable property of the element is set.
The purpose of these parameters is to specify how messages deal with null values.

In an XML message there are several options. Most obviously an element could
simply omit a value, for example:

<elementl></elementl>

Or, the element could include a distinctive value that means that no real value is
present, for example.

Developing message models 63

64 Message Models

<elementl>null</elementl>

Or, the element could follow XML Schema instance rules:
<elementl xsi:nil="true"/>

The properties Encoding Null Num and Encoding Null Non-Num specify the style
of null handling, for example, that null is represented by an empty element.

The properties Encoding Null Num Val and Encoding Null Non-Num Val provide
a value (if needed) to represent a null value. For an element of type string, this
might be null or unspecified while for a number it might be 0 or 0.0.

MRM XML physical format: Multipart messages:

Identify embedded messages by using either a Message Identity or a Message
Path.

If you are using the MRM XML physical format, an embedded message can be
identified in any of the following ways:

* Message Identity

See |“Identifying an embedded message using a Message Identity” on page 27|
* Message Path
See [“Identifying an embedded message using a Message Path” on page 29

e Automatic

The MRM parser identifies the message by matching the next XML tag in the bit
stream against the XML Name of a message definition.

If you choose the Message Identity or Message Path technique, the MRM parser
still checks that the next XML tag name matches the XML Name of the message
that was identified. If the XML Name does not match, an exception is thrown.

Where you have defined the embedded message in a different message set, you
need to use a Message Set Identity element or attribute value to specify the target
message set.Note that the message sets within which the root and subsequent
embedded messages are defined must be consistent in their use of the 'Use
Namespace' property of the message set. That is, embedded messages that are
defined in a namespace-aware message set and that are contained within a parent
message that is defined in a message set that is not namespace-aware, are not
supported. Similarly, embedded messages that are defined in a message set that is
not namespace-aware and that are contained within a parent message that is
defined in a namespace-aware message set, are not supported.

If the embedded message definition is a complex type, the message definition will
contain a complex element based on that complex type. This complex element will
have its own tag, which will appear in the bit stream before the tag for the
embedded message. If you want to avoid this extra tag, you can create the
embedded message definition from a group, and insert the group at the
appropriate position in the message model.

Tip: Note that the root tag property of an embedded message is not applicable.
MRM XML physical format: relationship to the logical model:

The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.

These restrictions are documented in [“MRM restrictions” on page 745

Default values

The MRM XML physical format ignores default and fixed values on elements and
attributes. If validation is enabled in WebSphere Message Broker, this can lead to
unexpected validation errors for missing elements, even though they have default
or fixed values.

Simple types — unions and lists

The XML properties of an element or attribute of a simple type that is a union or
list vary depending on the members of the union or the itemType of the list. If the
union or list includes a dateTime type (or other date/time related type) the Date
Format field will be displayed. If the union includes a binary type, the Encoding
field will be displayed.

Min Occurs and Max Occurs

The logical properties Min Occurs and Max Occurs specify the permitted number
of occurrences of an element or group in a message. They are used when
validating the content of a message.

When parsing and writing, using the MRM XML physical format, Min Occurs and
Max Occurs are effectively ignored. When parsing, the number of occurrences is
identified by the tags in the message. When writing, the writer outputs all
occurrences in the message tree.

* A varying number of occurrences (Min Occurs <> Max Occurs) is allowed.

* Optional occurrence (Min Occurs = 0) is allowed.

* Always absent (Max Occurs = 0) is allowed

* An unbounded number of occurrences (Max Occurs = -1) is allowed.

When validating, Min Occurs and Max Occurs are both used to check that the
content of the message tree matches the model.

MRM XML physical format: Handling xsi:type attributes:

The prefix "xsi" is the namespace prefix used by convention for the XML Schema
instance namespace. XML documents can contain elements that have an xsi:type
attribute. This behavior provides an explicit data type for the element.

The MRM XML parser in sensitive to xsi:type attributes in the XML document. It
modifies the data type of the element accordingly and adds the xsi:type attribute
into the message tree.

The MRM XML writer is sensitive to xsi:type attributes in the message tree. It
produces xsi:type attributes according to XML Wire Format message set property
Output policy for xsi:type attributes. For example, xsi:type attributes can be
removed, output on all elements or output according to rules specified in the
SOAP standard.

If validation is enabled for a WebSphere Message Broker message flow, the
validation logic is sensitive to xsi:type attributes and uses them to modify the

Developing message models 65

validation of the element. It will also validate the values of xsi:type attributes
using the rules described in [XML Schema Part 1: Structures| on the World Wide
Web Consortium (W3C) website.

There are several important points to remember when parsing and writing XML
documents that contain xsi:type attributes.

* In order to detect and use xsi:type attributes, the message set must be
namespace-enabled. To make a message set namespace-enabled, check the
message set property Use namespaces.

¢ If the value of the xsi:type attribute contains a namespace prefix, the prefix will
be expanded into a fully-qualified URI by the MRM XML parser. If the same
xsi:type attribute is produced later by the MRM XML writer, the same prefix will
not automatically be used for the value. You can control the prefixes used on
output using the Namespace settings list in the XML Wire Format message set
properties. If no prefix is supplied, the XML writer will assign a default prefix.

* If the xsi:type attribute of an element does not resolve to a type in the model,
the behavior depends on whether MRM validation is enabled. If not validating,
the MRM will assume the type of the element is that declared in the model, and
continue. If validating, a validation exception will be thrown.

e If MRM validation is enabled, any required xsi:type attributes must be present in
the message tree at the point when validation is performed. An xsi:type attribute
is required when its value is different from the data type of the element as
defined in the message model (this most commonly occurs when using XML
Schema type derivation).

— If validation is being performed on an input message, the MRM XML parser
ensures that xsi:type attributes appear in the message tree, as described
above.

— If validation is being performed on an output message, you must ensure that
the correct xsi:type attributes appear in the message tree. Ensure that any
required xsi:type attributes are copied from input message tree to output
message tree, or are explicitly created in the output message tree.

* If you are using simple types that are xsd:unions, an xsi:type attribute can be
used to direct the MRM XML parser when resolving the union.

* If you have migrated from an earlier version of WebSphere Message Broker that
was not sensitive to xsi:type attributes, you might notice some changes of
behavior. For example, xsi:type attributes are no longer treated as self-defining
attributes, so they appear in the message tree with the name ‘type' instead of
‘@type'. If your message flow logic is sensitive to xsi:type attributes in the
message tree, change your message flow to comply with the current behavior.

If you want to retain logic from an earlier version of WebSphere Message Broker
in your message flows, this is described in [Message flow migration notes|

For more information about xsi:type attributes, see XML Schema Part 0: Primer] on
the World Wide Web Consortium (W3C) website.

Ways to create message definitions

When you have created a message set, you must populate the message set with
message definitions.

You can populate the message set in one of the following ways:

66 Message Models

http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-0/

* By importing application message formats that are described by XML Schemas,
IBM supplied messages, XML DTD, C structures, COBOL structures, or WSDL
definitions; use the wizards that are started from the New Message Definition
File From wizard.

* By creating empty message definition files, then creating your messages by
using the Message Definition Editor; use the New Message Definition File
wizard.

* By using the Adapter Connection wizard to import EIS metadata.

Additionally, you can import application message formats by using the
mgsicreatemsgdefs or mqsicreatemsgdefsfromwsdl command line utilities.

The mgsicreatemsgdefs command has a bulk import capability, but
mgsicreatemsgdefsfromwsdl imports only one WSDL definition at a time.

Importing from other model representations to create message
definitions

You can add message definitions to your message set by importing application
message formats that already exist.

You can import the following message formats into your message set:
¢ XML Schema files

* IBM supplied messages

* XML DTD files

* C header files

* COBOL copybooks

» WSDL definitions

* EIS metadata

When you import one of these formats, a new message model is created that
consists of the elements, attributes, groups, and types that are required to represent
your message format. You can choose the name of the message definition file; if it
already exists, the content is deleted and recreated as part of the import operation.

The new message model that is created can consist of both logical and physical
information, if appropriate physical formats exist in the message set at the time of
the import.

To find out which wizards to use to import message formats, see |“Ways to create]
[message definitions” on page 66,

You can also import C header files, COBOL copybooks, XML DTD files, or XML
Schema files by using the mgsicreatemsgdefs command line utility. The
mgsicreatemsgdefs command allows you to import several message format files in
a single operation, and allows you to create a message set (based on an existing
message set) into which the message definition files are placed.

WSDL definitions can be imported by using the mgsicreatemsgdefsfromwsdl
command line utility. This utility imports only one WSDL definition at a time.

Client application access to messages: Client applications must have access to

message definitions to be able to construct the messages that they send, and to
interpret the messages that they receive.

Developing message models 67

68 Message Models

* If the message formats have been imported from C or COBOL structures by
using the workbench, your applications can continue to use the same C and
COBOL data structures that were imported to create the message dictionary that
is used by the brokers.

* If the messages are self-defining XML, the client applications must construct
valid messages by using the structures that can be understood by the recipients
of the message.

Importing from XML Schemas to create message definitions:

You can populate a message set with message definitions by importing XML
Schema files, using the New Message Definition File From XML Schema file
wizard, the Start from WSDL and/or XSD files quick start wizard, or the
mgsicreatemsgdefs command line utility.

Each XML Schema file that you import results in a new message definition file
within the message set. The root name of the message definition file defaults to the
root name of the XML Schema file, but the New Message Definition File From
XML Schema file wizard allows you to choose a different root file name.

If the message definition file already exists, you must have permitted overwriting
to occur for the import to proceed, in which case the existing content is deleted
and recreated.

The namespace to which the message definition file created belongs depends on
whether namespaces have been enabled for the message set.

* If namespaces have been enabled, the message definition file belongs to the
target namespace of the XML Schema file that is imported.

¢ If namespaces have not been enabled for the message set, the message definition
file belongs to the noTarget XML namespace irrespective of the target namespace
of the imported XML Schema file and therefore resides in the (default) location
in your workspace. The implications of importing into a message set with
namespaces disabled are described in [“Importing XML Schema into message sets|
[with namespaces disabled” on page 70

A report file is created during the import operation. This is located by default in
the Tog folder of the message set. By default it takes the name of the message
definition file, with .report.txt appended.

Import using the New Message Definition File From XML Schema file wizard: When
you import using the New Message Definition File From XML Schema file
wizard, you can specify which of the global elements or global complex types
within the imported XML Schema file are to be messages within the message
definition file.

You can only import one XML Schema file with each import operation. If your
XML Schema file references other XML Schema files, with import or include
elements, these XML Schema files must be imported into the same message set
using a separate import operation.

Import using the command line: 'When you import using the command line you
have the option of either creating no messages or creating a message for each
global element and global complex type within the imported XML Schema file. The
import operation creates a message and corresponding global element in the
message definition file for each global element you specify. If you do not specify

that messages are to be created, you must create them manually using the message
definition editor after the import has completed.

You can import several XML Schema files in each import operation.

Physical information: As well as creating logical information, the import can also
create physical information. If the message set contains any XML wire format
physical formats, the physical format properties for all XML Wire Format layers is
populated. If the message set does not contain any XML physical formats, only
logical information is created. Also, if you import from the command line, only
logical information is created in the new message set by default. If you want

physical information created as well, see [“Importing from the command line” on|
page 132| for details.

MRM CWEF and TDS physical format properties are not populated and so take
default values.

If you have one or more CWF or TDS layers, the import can cause entries in the
task list, warning you that certain CWF or TDS properties must be set if the XML
structures you have imported are to appear in a CWF or TDS message.

If the CWF or TDS physical formats are not applicable to your XML structures, you
can ignore these task list entries because they are just warnings, they do not
prevent your model being generated in another form; for example, as a message
dictionary.

Command line invocation: The mgsicreatemsgdefs command line utility allows you
to import several XML Schema files in a single operation. All the XML Schema files
must be in single directory, and the directory location must be passed as a
parameter to the utility.

When you import into a message set for which namespaces are not enabled, the
action to take for unsupported constructs can be specified using an XML options
file. This must contain an XML element called <XSD_NO_NS> that holds a set of
information that applies to all XML Schema files that are imported during an
invocation of the utility. A default XML options file, called mqsicreatemsgdefs.xml,
is supplied. If you want to apply different sets of information to different XML
Schema files, you must create multiple XML files and run the utility multiple
times.

When you are importing into a message set for which namespaces are not enabled,
there are two other options that you can specify in the <XSD_NO_NS> element in the
XML options file:

* The prefix to use for the http://www.w3.0rg/2001/XMLSchema-instance
namespace; the default is xsi.

* Additional namespace URI and prefix pairs.

The mgsicreatemsgdefs utility also allows you to create a new message set into
which the message definition files are placed, as part of the import operation. You
can also choose to base the message set created on an existing message set. This
facility enables you to prepare an empty message set that contains a XML physical
format and pre-populated message set level XML properties, which are then copied
into the message set that is created by the import.

Further information about XML Schema: For details about XML Schema, see
[Schema Part 0: Primer| on the [World Wide Web Consortium (W3C)| Web site.

Developing message models 69

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/

70 Message Models

Importing XML Schema into message sets with namespaces disabled:

You can import an XML Schema file with a target namespace even if the message
set does not have namespaces enabled.

When you import an XML Schema file with a target namespace into a message set
for which namespaces have not been enabled, the created message definition file is
placed in the XML no target namespace. In some cases, this action can lead to
name conflicts if global constructs have the same name in different namespaces in
the XML Schema files imported into the same message set. These conflicts cause
error entries in the task list that you must resolve before generating the model in
another format, such as a message dictionary.

Because all the message definition files are in the XML no target namespace, the
namespace information associated with the XML Schema file is lost. However, the
importer provides a limited form of namespace support by prefixing the XML
names in the XML Wire Format layers with a namespace prefix. To allow this
namespace support to work, an imported XML Schema file must specify an xmlns
attribute with a non-empty prefix for the target namespace of the XML Schema file.
This prefix is used in the XML names in the XML Wire Format layers.

Therefore you cannot specify the target namespace of the XML file as the default
namespace. Each namespace in the XML Schema files must use a unique prefix
and the same namespace must always use the same prefix. Any XML instance
documents against which you match any of the forms generated from the model,
must also use the same prefixes for the namespaces.

The XML Schema importer creates a number of optional attributes in an attribute
group to represent namespace information. This attribute group is referenced by
the type of any message. An attribute is created to represent the location of the
XML Schema file, and an attribute is created to represent the mapping of the prefix
to the http://www.w3.0rg/2001/XMLSchema-instance namespace. An attribute is
also created for each xmlns attribute in the XML Schema document.

When importing using the Message Definition File wizard the prefix
http://www.w3.0rg/2001/XMLSchema-instance namespace can be changed and
additional namespace URI/prefix pairs added using the last panel of the Message
Definition File wizard. When you use the mgsicreatemsgdefs command line utility,
the same modifications can be made using the XML options file.

Further information about XML Schema: For details about XML Schema, see m
[Schema Part 0: Primer{ on the [World Wide Web Consortium (W3C)| Web site.

Importing from IBM supplied messages to create message definitions:

You can add messages to a message set by importing IBM supplied messages
using the New Message Definition File From IBM supplied messages wizard.

Each IBM supplied message that you import results in a new message definition
file within the message set. The name of the message definition file defaults to the
name of the IBM supplied message, but the New Message Definition File From
IBM supplied messages wizard allows you to choose a different file name.

See [“Importing from the command line” on page 132| for information about what
IBM supplied messages can be imported.

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/

When you import using the New Message Definition File From IBM supplied
messages wizard, you can specify only one IBM supplied message definition for
each import operation.

If the message definition file already exists, you must have permitted overwriting
to occur for the import to proceed, in which case the existing content is deleted
and recreated.

A report file is generated during the import operation that allows you to examine
what occurred during the import process and check any errors that resulted.

Importing from DTDs to create message definitions:

You can populate a message set with message definitions by importing DTD files,
using either the New Message Definition File From XML DTD file wizard or the
mgsicreatemsgdefs command line utility.

Each XML DTD file that you import results in a new message definition file within
the message set. The root name of the message definition file defaults to the root
name of the XML DTD file, but the New Message Definition File From XML
DTD file wizard allows you to choose a different root file name.

If the message definition file exists, you must have permitted overwriting to occur
for the import to proceed, in which case the existing content is deleted and
recreated.

All message definition files that are created as a result of DTD file import belong
to the noTarget XML namespace and so reside in the (default) location in your
workspace.

A report file is created during the import operation, by default in the Tog folder of
the message set. By default, it takes the name of the message definition file, with
.report.txt appended.

Import using the New Message Definition File From XML DTD file wizard: When you
import using the New Message Definition File From XML DTD file wizard, you
can specify which of the elements within the imported XML DTD file are to be
messages within the message definition file.

You can import only one XML DTD file with each import operation.

Import using the command line: When you import using the command line you
have the option of either creating no messages or creating a message for each
element within the imported XML DTD file. The import operation creates a
message and a corresponding element in the message definition file for each
element that you specify. If you do not specify that messages are to be created, you
must create them manually using the message definition editor after the import
has completed.

You can import several XML DTD files in each import operation.

Physical information: As well as creating logical information, the import can also
create physical information. If the message set contains any XML wire format
physical formats, the physical format properties for all XML Wire Format layers is
populated. If the message set does not contain any XML physical formats, only
logical information is created. Also, if you import from the command line, only

Developing message models 71

72 Message Models

logical information is created in the new message set by default. If you want

physical information created as well, see|“Importing from the command line” on|
page 132 for details.

MRM CWF and TDS physical format properties are not populated and therefore
take default values.

If you have one or more CWF or TDS layers, the import can cause entries in the
task list, warning you that certain CWF or TDS properties must be set if the XML
structures that you have imported are to appear in a CWF or TDS message.

If the CWF or TDS physical formats are not applicable to your XML structures, you
can ignore these task list entries because they are just warnings; they do not
prevent your model being generated in another form, such as a message dictionary.

Command line invocation: The mgsicreatemsgdefs command line utility allows you
to import several XML DTD files in a single operation. All the XML DTD files
must be in single directory, and the directory location must be passed as a
parameter to the utility.

The mgsicreatemsgdefs utility also allows you to create a message set into which
the message definition files are placed, as part of the import operation. You can
also choose to base the message set created on an existing message set. This facility
enables you to prepare an empty message set that contains a XML physical format
and pre-populated message set level XML properties, which are then copied into
the message set that is created by the import.

Further information about XML DTDs: For details about XML DTDs, see the
[Wide Web Consortium (W3C)| Web site.

Importing from C header files to create message definitions:

You can populate your message set with message definitions by importing C
header files, using either the New Message Definition File From C header file
wizard or the mgsicreatemsgdefs command line utility.

Each C header file that you import results in a new message definition file. The
root name of the message definition file defaults to the root name of the C header
file, but the New Message Definition File From C header file wizard allows you
to choose a different root file name.

If the message definition file already exists, you must have permitted overwriting
to occur for the import to proceed, in which case the existing content is deleted
and recreated.

By default, all message definition files that are created as a result of an import
from a C header file belong to the noTarget XML namespace and therefore reside
in the (default) location in your workspace. This default namespace can be
overridden by specifying a target namespace. See [“Namespaces with MRM|
[non-XML messages” on page 36| for reasons why you might want to do this.

In your C header file there are typically one or more C structures. You can select
which of these structures to import. The import operation then imports those
structures, plus any others that they require. All imported structures are converted
into the equivalent elements, groups and types in the message definition file.

http://www.w3.org/
http://www.w3.org/

You can also specify which of the selected structures are to be messages in the
message definition file. The import operation creates a message and a
corresponding global element in the message definition file for each structure that
you specify. If you do not specify that messages are to be created, you must create
them manually using the Message Definition editor after the import has
completed.

If you import using the New Message Definition File From C header file wizard
you can import only one C header file with each import operation. But, if you
import using the command line utility, you can import several C header files in
each import operation.

If your C header file needs any other header files for a successful compilation, you
must provide these and specify their location, because a compilation of your
header file is performed as part of the import operation.

A report file is created during the import operation. This is located by default in
the Tog folder of the message set. By default, it takes the name of the message
definition file, with .report.txt appended.

Physical information: As well as creating logical information, the import can also
create physical information.

If the message set contains any Custom Wire Format (CWF) physical formats, the
physical format properties for all CWF layers are populated.

If the message set does not contain any CWF physical formats, only logical
information is created. Also, if you import from the command line, only logical
information is created in the new message set by default.

XML and TDS physical format properties are not populated and so take default
values.

If you have one or more TDS layers, the import can cause entries in the task list,
warning you that certain TDS properties must be set if the C structures you have
imported were to appear in a TDS message.

If the TDS physical format is not applicable to your C structures, you can ignore
these task list entries because they are just warnings; they will not prevent your
model being generated in another form, such as a message dictionary.

Because physical information is created, the application target environment
(platform and compiler) is important because it governs the way that, for example,
integers appear in the message. You can specify environment specific information
as part of the import operation, and the necessary properties will be set
accordingly. There is a range of environments supported; if your environment is
not shown, choose the closest match and review the created physical information
using the Message Definition Editor after the import has completed.

Command line invocation: The mgqsicreatemsgdefs command line utility allows you
to import several C header files in a single operation. All the C header files must
be placed in the same directory and the directory location passed as a parameter to
the utility.

You provide the necessary environment-specific information, and include file
location information using an XML file. This must contain an XML element called

Developing message models 73

74 Message Models

<C> which holds one set of information that applies to all C header files imported
during an invocation of the utility. A default XML file called
mgsicreatemsgdefs.xml is supplied. If you want to apply different sets of
information to different header files, you must create multiple XML files and run
the utility multiple times.

The mgsicreatemsgdefs utility also allows you to create a new message set into
which the message definition files are placed, as part of the import operation. You
can also choose to base this new message set on an existing message set. This
facility enables you to prepare an empty message set containing a CWF physical
format and message set level CWF properties already populated, which then gets
copied into the message set created by the import.

Importing from COBOL copybooks to create message definitions:

You can populate your message set with message definitions by importing COBOL
copybook files, using either the New Message Definition File From COBOL file
wizard or the mgsicreatemsgdefs command line utility.

Each COBOL copybook that you import results in a new message definition file.
The root name of the message definition file defaults to the root name of the
COBOL copybook file, but the New Message Definition File From COBOL file
wizard allows you to choose a different root file name.

If the message definition file already exists, you must have permitted overwriting
to occur for the import to proceed, in which case the existing content is deleted
and recreated.

By default, all message definition files that are created as a result of COBOL
copybook file import belong to the noTarget XML namespace and therefore reside
in the (default) location in your workspace. This default namespace can be
overridden by specifying a target namespace. See ['Namespaces with MRM|
[non-XML messages” on page 36| for reasons why you might want to do this.

In your COBOL copybook file there are typically one or more level 01 structures.
You can select which of these structures to import. The import operation then
imports those structures, plus any others that they require. All imported structures
are converted into the equivalent elements, groups and types in the message
definition file.

You can also specify which of the selected level 01 structures are to be messages in
the message definition file. The import operation creates a message and
corresponding global element in the message definition file for each structure that
you specify. If you do not specify that messages are to be created, you must create
them manually using the Message Definition Editor after the import has
completed.

If you import using the New Message Definition File From COBOL file wizard,
you can only import one COBOL copybook file with each import operation. If you
use the command line utility, you can import several COBOL copybook files in
each import operation.

If your COBOL copybook file needs any other copybooks in order to compile
successfully, you must provide these in the same directory, because a compilation
of your copybook is performed as part of the import operation.

A report file is created during the import operation. This is located by default in
the Tog folder of the message set. By default it takes the name of the message
definition file, with .report.txt appended.

Physical information: As well as creating logical information, the import can also
create physical information. If the message set contains any Custom Wire Format
(CWF) physical formats, the physical format properties for all CWF layers are
populated. If the message set does not contain any CWF physical formats, only
logical information is created. If you import from the command line, only logical
information is created in the new message set by default. If you want physical
information created as well, see [“Importing from the command line” on page 132]
for details.

XML and TDS physical format properties are not populated and therefore take
default values.

If you have one or more TDS layers, the import can cause entries in the task list,
warning you that certain TDS properties must be set if the COBOL structures that
you have imported were to appear in a TDS message.

If the TDS physical format is not applicable to your COBOL structures, you can
ignore these task list entries because they are just warnings, they will not prevent
your model being generated in another form, such as a message dictionary.

Because physical information is created, the application target environment
(platform and compiler) is important because it governs the way that, for example,
integers appear in the message. You can specify environment specific information
as part of the import operation, and the necessary properties are set accordingly.
There is a range of environments supported; if your environment is not shown,
choose the closest match and review the created physical information using the
Message Definition Editor after the import has completed.

Command line invocation: The mgsicreatemsgdefs command line utility allows you
to import several COBOL files in a single operation. All the COBOL copybook files
must be in single directory, and the directory location passed as a parameter to the
utility.

You provide the necessary environment specific information using an XML file.
This must contain an XML element called <COBOL> that holds one set of
environment specific information that applies to all COBOL copybook files that are
imported during an invocation of the utility. A default XML file called
mgsicreatemsgdefs.xml is supplied. If you want to apply different sets of
information to different copybooks, you must create multiple XML files and run
the utility multiple times.

The mgsicreatemsgdefs utility also allows you to create a new message set into
which the message definition files are placed, as part of the import operation. You
can also choose to base the message set created on an existing message set. This
facility enables you to prepare an empty message set that contains a CWF physical
format and pre-populated message set level CWF properties, which are then
copied into the message set that is created by the import.

Importing WSDL files to create message definitions:

Developing message models 75

76 Message Models

Import WSDL files, using the New Message Definition File From WSDL file
wizard, the Start from WSDL and/or XSD files Quick Start wizard, or the
mgsicreatemsgdefsfromwsdl command.

Each WSDL file that you import results in one or more new message definition
files within the message set. A new message definition file is created for each
namespace that is defined for the message set. The name of the message definition
file defaults to the name of the WSDL file, but the New Message Definition File
From WSDL file wizard allows you to choose a different file name.

If the message definition file exists, you must have permitted overwriting to occur
for the import to proceed. The existing content is deleted and recreated.

The message set that you are importing the WSDL file into must be
namespace-enabled. If it uses the MRM domain, it must have an XML physical
format so that the message set is suitable for the runtime parsing of XML messages
such as SOAP.

Use the report generated during the import operation to see what happened and to
check any errors.

You specify a single WSDL definition for each import operation. If the WSDL
definition consists of a hierarchy of files, you must supply the name of the file that
contains the WSDL service or binding definitions. The WSDL definition that is
imported must contain one or more WSDL bindings for the import to proceed.

Importing using the New Message Definition File wizard

When you import using the New Message Definition File wizard, you can specify
only one WSDL definition for each import operation. A WSDL definition could be
held as one or more WSDL files, which are all imported as a result of importing
the definition. The WSDL definition that is imported must contain one or more
WSDL bindings for the import to proceed.

Importing using the command line

The WSDL command-line importer (mgsicreatemsgdefsfromwsdl) can create a
message set or update an existing one. If the message set project exists, it must be
namespace-enabled and have an XML physical format layer. If the project does not
exist, a new namespace-enabled project is created. If the import succeeds, new
message definition files are added to the message set.

The mgsicreatemsgdefsfromwsdl command allows you to import one WSDL
definition in a single operation.

The mgsicreatemsgdefsfromwsdl command copies the WSDL files it needs into the
workspace before the import runs. These files are the top-level WSDL files and any
imports are resolved using an absolute or relative location. The files are copied
under the specified message set in a folder called importFiles. They are not
removed after the import; the user can later update or run validation on them in
the workbench.

Physical information

An XML physical format layer is required for the MRM domain, and must be
added to an existing message set before importing the WSDL definition.

Relationship of WSDL to Message Model:

If a broker is to communicate with an existing Web service, it typically needs to
send and receive SOAP messages. To take this approach, use the MRM domain.
You must ensure that the broker message model and the WSDL definition used by
the Web service describe the same messages. In general, you can achieve this result
by importing the WSDL for the existing Web service by using the broker tooling.
Currently only WSDL version 1.1 is supported.

Only the WSDL operation, message, and part definitions are represented in the
resulting broker model. Starting with the lowest level, a WSDL definition describes
the following resources:

* A number of logical messages and their constituent parts, which are defined in
terms of XML Schema. The part definitions are imported directly into the
message model to create the corresponding element and type definitions. The
definitions are allocated to message definition files according to the target
namespace of their schema definition. If no targetNamespace is defined on the
<xsd:schema> element, the resulting elements and types have no namespace.

* A number of operations that form the WSDL portType or interface. The
operations define the business payload for the SOAP messages at run time.
Broker messages are created for each possible payload. In the case of rpc-style
WSDL, the message model needs message definitions that correspond to the
WSDL operations themselves. The names of these message definitions are
derived from the WSDL operation name, and their namespace is given by the
namespace attribute on the WSDL <soap:body> definition.

* A SOAP version and encoding style. Message definitions for the SOAP envelope
and, if necessary, the SOAP encoding scheme are imported into the message set.
Currently the WSDL importer assumes the use of SOAP version 1.1. WSDL
version 1.1 can define a Web service that uses SOAP version 1.2, but no standard
method exists to achieve this definition. If your Web service does use SOAP
version 1.2, you might have to remove the SOAP version 1.1 definitions
manually and import the SOAP version 1.2 definitions.

Resulting message model

The resulting model allows the user to parse incoming SOAP messages by using
the MRM XML parser where the message type is Envelope. The message model for
the SOAP envelope defines the outer SOAP wrapper with its constituent Header
and Body sections and a number of attachment points where the various business
payloads can appear. These attachment points are defined with composition
message, allowing the broker messages that are created by the WSDL importer to
appear at these points.

The allowed attachment points are Envelope.Body, Envelope.Header, and
Envelope.Body.Fault.detail. A message from the user's message model might
appear at each point (in the case of the Envelope.Header, multiple messages might
appear). In the case of rpc-style WSDL, the message expected at Envelope.Body is
the automatically-generated message that corresponds to the WSDL operation. In
all other cases, the messages expected are those defined by the WSDL message
parts for each operation.

Generate model representations

After you have created and populated a message set, you can generate a message
model in several different representations for use by a broker, a parser, or your
applications.

Developing message models 77

78 Message Models

The following representations are supported:
* A message dictionary, for deployment to a broker.

* A W3C XML Schema, for use by an application building or processing XML
messages, or for deployment to a broker.

* Web Services Description Language (WSDL), for a Web services client
application, or for deployment to a broker.

* Documentation, to give to programmers or business analysts.

Generation for deployment to a broker takes place automatically when you add
your message set to a Broker Archive (BAR) file.

Generation for other purposes is achieved using the Generate menu actions.

Generate message dictionaries
A message dictionary is data structure that describes all of the messages in a
message set in a form suitable for deployment to the MRM parser.

Purpose of a message dictionary: A dictionary describes the logical structure and
content of a set of messages, and typically contains one or more physical formats
that describe how those messages are serialized in a bit stream. The MRM parser
within WebSphere Message Broker uses this information to parse an incoming
message bit stream into a message tree, or to write a message tree into a physical
bit stream.

Contents of a message dictionary: A message dictionary contains the same
information as the message set from which it was created, but in a compressed
form that the MRM parser within WebSphere Message Broker can understand and
use. A message dictionary contains all the elements in the message set, the
structure of the messages, and all the value constraints. A message dictionary also
contains any physical formats that were defined in the message set.

Generating a message dictionary: Before a message dictionary can be used, it
must be deployed to WebSphere Message Broker. To do this, add the message set
to a BAR file, then deploy the BAR file to a message broker. The generation of the
message dictionary is performed automatically when a message set is added to a
BAR file, if the message set supports the MRM domain.

Before adding a message set to a BAR file, the Message Broker Toolkit performs a
full validation of the message set. If this validation finds any errors, the message
set is not added to the BAR file, and therefore no message dictionary is generated.

Dictionary generation report files:

Whenever a message dictionary is generated, a user log file is also generated and
added to the same BAR file. This file contains informational messages and
warnings that relate to the use of the generated dictionary. Always check this file
after generating a message dictionary.

Generate XML schema
Generate a schema file from a message definition file.

XML schema is a standard way of describing complex message models.

You can generate a schema file for an individual message definition file, or for all
message definition files in a message set. If any XML physical formats have been
defined for the message set, you can select which of these XML wire formats are to
be applied.

e If an XML format has been selected, the physical format information is also
included.

* If no XML format is selected, the generated schema file only contains
information about the logical message model.

You can choose whether 'strict’ or 'lax' schema generation is to be performed. This
is necessary because the logical extensions to the XML schema model provided by
the message definition file cannot be represented in XML schema. So you can
choose either to generate a schema with more strict or more lax validation than the
equivalent validation performed by the message model parser. The affected model
extensions are:

* Content Validation = open
* Content Validation = open defined

* Composition = unordered set

Further information about XML schema: For details about XML schema, see
[XML Schema Part 0: Primer] on the [World Wide Web Consortium (W3C)| Web site.

Validating an XML message against a schema:

The XMLNSC parser can validate an XML message against any deployed XML
schema.

You can validate an XML message against an XML schema when the message is
parsed, when the message is serialized, or at any point within a message flow.

To construct a message flow for schema validation, you must perform the
following tasks:

1. Enable validation at the appropriate point within the message flow. See
[Validating messages

2. Ensure that you have deployed all XML Schema files that are required. See
[‘Deploying an XML Schema.”|

3. Specify the message set in which the schema was deployed; this is done using
the MessageSet property of the message. See|Accessing the Properties tree}

Schemas are deployed within a message set, and are identified by supplying the
message set name in the message properties.

Deploying an XML Schema:

XML Schemas are created as Message Definition Files within a message set that is
then deployed.

To create and deploy a message set for schema validation you must:
1. Create or locate a message set that will contain the schemas.
2. Set the Message Domain property of the message set to XMLNSC.

3. Use the New Message Definition File wizard to create a message definition file
(mxsd) from the XML Schema file (.xsd).

4. Add the message set to a BAR file and deploy the BAR file.

Developing message models 79

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/

80 Message Models

Repeat step 3 for each XML Schema file that you want to deploy.

If your XML Schema imports or includes other XML Schema files, you can use the
mgsicreatemsgdefs command to create all the message definition files in a single
operation.

Generate WSDL

A Web Services Description Language (WSDL) document specifies the interface to a
Web service, and enables a Web service client to invoke it. A WSDL document that
is generated from a message set defines Web service requests and responses in
terms of the messages that you have defined in that message set.

Use message definition files with target namespaces when you generate WSDL. If
you do not, WebSphere Message Broker defaults the target namespace to the
WSDL target namespace.

If the WSDL uses a message from the message definition file, one XML Schema file
is generated for each message definition file in the message set. Within the main
WSDL document, operations are defined in terms of logical messages, which are
themselves defined in terms of the elements and types that are defined in these
XML Schema files.

WSDL operations are grouped into a logical interface or portType, and are then
associated with a binding which defines the physical format of the messages. You
can select only one of the following bindings when you generate WSDL:

* SOAP (over JMS)

* SOAP (over HTTP)

A WSDL service definition specifies the endpoint where the service is available.
You can elect to have the service, binding, and portType definitions generated as a
single file or as separate files, but the XML Schema files are always generated
separately. Tools that consume WSDL are typically more tolerant of the single-file
format.

Relationship to the message model when generating WSDL:

If a broker is to communicate with a Web service client, it must typically accept
SOAP messages. You can model your messages in the MRM domain, and the
message model you deploy to the broker and the WSDL definition used by the
Web service client must describe the same messages.

If the broker has an existing message model (possibly created by importing a C
header file or COBOL copybook), you can export the model to create a
corresponding WSDL definition for use by the client. At the same time, you must
enhance your message model with appropriate definitions for the SOAP envelope
and (for rpc-style) the WSDL operations. Currently only WSDL version 1.1 is
supported.

To generate WSDL, you need:

1. A way of representing the WSDL operations. The message category performs
this service.

2. Away of representing the data for these operations. The message model
performs this service

3. A way of soliciting the Web service end-point and binding details. The WSDL
Generator wizard performs this service.

A message category is required for each WSDL operation. The category specifies a
set of messages from the broker model and associates them with the required
WSDL qualifiers for the specified WSDL operation type.

At run time, the format of the SOAP messages depends on the WSDL style
specified in the wizard. If you select rpc-style, the SOAP Envelope contains a
message that corresponds to a WSDL operation. The WSDL generator adds an
appropriate message definition that corresponds to the WSDL operation to your
message set. If you select document-style, the SOAP envelope contains messages
specified in the category, therefore you do not have to add additional message
definitions to your message set.

Message definitions for the SOAP envelope and, if necessary, the SOAP encoding
scheme, are imported into the message set.

Resulting message model

The resulting model allows incoming SOAP messages to be parsed by the MRM
XML parser, where the message type would be Envelope. The message model for
the SOAP envelope defines the outer SOAP wrapper with its constituent header
and body sections and a number of attachment points where the various business
payloads can appear. These attachment points are defined with composition of
type message, allowing broker messages to appear at these points.

The supported attachment points are Envelope.Body, Envelope.Header and
Envelope.Body.Fault.detail. A message from your message model might appear at
each point (in the case of the Envelope.Header, multiple messages can appear). For
rpc-style WSDL, the message expected at Envelope.Body is the automatically
generated message that corresponds to the WSDL operation; for example, the
message category. In all other cases, the messages expected are those referenced by
the message categories.

Generating message set documentation
Message set documentation describes, in a human-readable format, message
definitions that you have created.

When you have created one or more message definitions, it can be useful to
generate message set documentation for business analysis and for developers who

are involved with the messages.

Message definition files contain both logical and physical definitions for the
message model. The generated documentation describes the logical format only.

The documentation exists as a self-consistent set of HTML pages.

Working with a message set project

Creating and deleting a message set.

Before you begin to develop your message model, you must create a message set.
A message set project is automatically created when you create a message set.

This topic area describes the tasks that are involved in working with a message set.

+ [“Creating a message set” on page 83|

* [“Deleting a message set project” on page 82|

Developing message models 81

Deleting a message set project

Delete a message set project and, optionally, the contents of the associated project
directory.

Before you start:

You must have completed the following task:

* [“Creating a message set” on page 83|

Tip: Close all open windows within the workbench that relate to the message set
project or associated files that you want to delete. If you do not do this, errors
might occur when you try to process objects that no longer exist your
workspace.

This task topic describes how to delete a message set project and, optionally, the
contents of the associated project directory.

To delete a message set project:
1. Switch to the Broker Application Development perspective.

2. In the Broker Development view, right-click the message set project that you
want to delete, then click Delete on the pop-up menu. The Confirm Project
Delete window opens.

3. Choose whether to delete or retain the contents of the project directory. By
default, project directory contents are not deleted. To delete the contents of the
project directory, click Also delete contents; all files and directories that are
associated with the project are deleted.

4. Click Yes to delete the message set project. Alternatively, click No or press Esc
to cancel the deletion.

Working with a message set

Complete a variety of tasks that are involved in working with a message set.

+ |“Configuring message set preferences’]

+ [“Opening an existing message set” on page 83|

+ [“Creating a message set” on page 83|

+ |“Configuring logical properties: Message sets” on page 86|

+ [“Working with physical formats” on page 86|

* |“Configuring documentation properties: Message sets” on page 92|

* ["Deleting a message set” on page 93]

+ |“Applying a Quick Fix to a task list error” on page 93|

Configuring message set preferences

This task topic explains how to make changes to preferences that relate to message
set processing. These preferences are for message set editors, message set model
validation, and importing XML Schema.

To configure message set preferences:
1. Open the Preferences window by clicking Window > Preferences.

2. In the left hand pane, expand Broker Development > Message Sets by clicking
+. This displays the following options:

» Editors

82 Message Models

* Validation
* XML Schema Importer

3. View or make any necessary changes to the preferences for message set
processing. These preferences are shown in the right hand area of the window.

4. When you have finished, click Apply. Alternatively, click Restore Defaults to
return to the default settings for the displayed fields.

5. Close the Preferences window by clicking OK.

Opening an existing message set

Open an existing message set in the Message Set editor so that you can view or
edit its contents.

Before you start:

Create a message set by following the instructions in [‘Creating a message set.”|

Tip: Although you can open resource files with other editors you are advised to
only use the workbench Message Set editor to work with message set files
because this editor correctly validates changes made to the messageSet.mset
files when they are saved. Other editors might not do this.

To open a message set so that you can view or edit its contents:
1. Switch to the Broker Application Development perspective.

2. In the Broker Development view, right-click the messageSet.mset file of the
message set that you are opening then click Open on the pop-up menu. This
opens the Message Set editor for the selected file.

You can now view or edit the file as required.

Creating a message set
Use the New Message Set wizard to create a message set.

The New Message Set wizard also creates a new message set project.

Note: You can also use a Quick Start wizard to create a message set, a message set
project, and other resource files that you need to create a new application.

The New Message Set wizard allows you to select what kinds of message format
you want to model in your message set. The message domain and the physical
format created is inferred from the selection that you make. Note, however, that
you can change the inferred domain using the message set editor.

The options are:

* XML documents (general)

* Web services (SOAP)

* Binary data (for example, C or COBOL structures)
* Text data (for example, CSV, SWIFT, or HL?)

¢ MIME documents other than Web services

¢ Data for WebSphere Adapters

The default value is XML documents (general).

Developing message models 83

84 Message Models

Below the list of message formats there are check boxes corresponding to each of
the message formats. The check box corresponding to the message format that you
selected is not available, but you can select any of the other check boxes to add
other message formats to your message set.

If you later select a different default message domain, the checked state for the
domain that you originally selected as the default does not change, but the check
box is enabled.

As you can now select more than one message domain you can, for example, use
the default value of XML documents (general) together with Binary data (for
example, C or COBOL structures) and Text data (for example, CSV, SWIFT or
HL7). This results in the selection of the XMLNSC and MRM domains (to handle
non-XML documents) within the same message set if you require this functionality.

The mapping between the selection, the domain, and the wire format created is
described in the following table:

Selection Inferred message domain Physical format created
XML documents (general) XMLNSC XML
Web services (SOAP) SOAP and XMLNSC XML
Binary data (for example, C | MRM CWF
or COBOL structures)

Text data (for example, CSV, | MRM TDS
SWIFT, or HL?)

MIME documents other than | MIME None
Web services

Data for WebSphere DataObject None
Adapters

Depending on your selection, an appropriate IBM supplied message will be
imported into the message set.

Note: The XML physical format is created only in case the user switches to MRM
XML.

If you click Finish on the second page of the New Message Set wizard, the
message set that is created has the following default property values:

Property Default value

Message Domain XML documents (general)
Physical Format XML Wire Format (XML1)
Namespace support Enabled

To create a new message set:
1. Switch to the Broker Application Development perspective.

2. Open the New Message Set wizard. To do this, right-click anywhere in the
Broker Development view, then click New > Message Set.

3. In the Message set name field, type the name for the message set that you are
creating. The name that you type is also displayed in the Message set project
name field.

4. Optional: You can choose a different message set project name; to do this, type
this name into the Message set project name field.

5. Optional: You can specify a directory in which you want to store the project
contents. If you do not specify a directory, the default workspace is used. To
specify a directory, first clear the Use default check box, then either type into
the Directory field the location of the directory, or click Browse to see a list of
the folders that you can choose from for the location of the directory.

6. Optional: If you want to create a new message set whose definition is based on
existing message set, click Message Set in the Copy message set contents from
another message set pane and choose from the list of message set definitions
that are shown; then click Finish. The new message set (and the message set
project that contains it) is created immediately and the New Message Set
wizard automatically closes.

7. Optional: If you want to create a message set whose definition is not based on
an existing message set, click Next. You are presented with the next pane which
allows you to choose the type of message data that you want to process.

a. Expand the list shown under Select the type of message data that you will
be working with most often and choose a value from the list shown. The
value that you choose determines the default message domain of the
message set. If you choose XML Documents (general), the default message
domain XMLNSC is used.

b. Optional: You can now select additional types of message data. Under
Select any other types of message data that you will be working with
there are check boxes for each of the following message data types:

e XML documents (general)

* Web services SOAP

* Binary data (for example, C or COBOL structures)
* Text data (for example, CSV, SWIFT or HL?)

* MIME documents other than Web services

¢ Data for WebSphere Adapters

Note: These check boxes correspond to the list of data types from which
you chose the data type that you will be working with most often,
but the check box that corresponds to the data type that you chose
from that list is not available.

By default, all these check boxes are cleared. You can select any, or all of

these check boxes, to add the corresponding data types to your message set.

If you select the check box for text data, either for the type of message data
that you will be working with most often or as another type of message
data that you will be working with, you can additionally choose from the
displayed list of text messaging standards. This list is the same as that given
in the description of the Messaging Standard property in
[message set properties” on page 160 .|

c. Click Next. A new panel is displayed that summarizes some information
about the message set that you have created. Specifically, it lists:

Supported message domains
Physical formats to be created
IBM supplied messages to be imported

8. Click Finish on this page to create the message set, and the message set project
that contains it. The New Message Set wizard closes.

After the New Message Set wizard finishes, the message set editor is opened.

Developing message models 85

You can now create some message definitions in the new message set. You can
either create new message definitions from scratch, or create them based on
existing artifacts such as WSDL, XSD, DTD, C, COBOL files, or EIS metadata. Use
the Message Definition File wizard and the Message Definition File From wizard to
help you with this.

Configuring logical properties: Message sets

Configure the logical properties of a message set using the Message Set editor.
Before you start:

You must have completed the following task:

+ [“Creating a message set” on page 83|

If the messageSet.mset file for the appropriate message set is not already open in
the Message Set editor, you must first open it as described in [“Opening an existing]
[message set” on page 83

This task topic describes how to configure the logical properties of a message set
using the Message Set editor.

To configure the logical properties of a message set:

1. Switch to the Broker Application Development perspective.

2. In the Message Set editor, in the Properties Hierarchy, click Message Set. This
displays the logical properties of the selected message set in the Details view.

3. Configure to your requirements the logical properties that are shown in the
Details view.

Note: Property fields that are disabled cannot be altered. For example, the
Message Set ID field is disabled because the message set ID is generated
automatically when the message set is created; the Message Set ID must
not then be altered.

4. Save your changes by clicking File> Save or by pressing Ctrl+S. Alternatively
click File> Save All or press Ctrl+Shift+S.

Working with physical formats

86 Message Models

If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.

Before you start:

You must have completed the following tasks:

+ |“Creating a message set” on page 83|

* [“Opening an existing message set” on page 83|

This topic area covers the following tasks that relate to working with the physical
properties of a message set:

* “Adding a Custom Wire Format (CWF)” on page 87|
+ [“Configuring Custom Wire Format (CWF) properties: Message sets” on page 87|

+ “Adding a TDS physical format” on page 8§|

[‘Configuring TDS properties: Message sets” on page 88|

[“Adding an XML wire format” on page 89|

+ [“Configuring XML Wire Format properties: Message sets” on page 89|

* [“Renaming a physical format” on page 90|

* |“Applying default physical format settings: Message sets” on page 91|

* [“Removing a physical format” on page 91|

* [“Observing 2007 U.S. changes to daylight saving time” on page 92|
Adding a Custom Wire Format (CWF)

You can add a Custom Wire Format (CWF) physical format layer to a message set
by using the Message Set editor.

Before you start:

You must have completed the following tasks:

* [“Creating a message set” on page 83

+ [“Opening an existing message set” on page 83|

To add a CWF physical format layer to a message set:
1. Switch to the Broker Application Development perspective.

2. In the Message Set editor, in the Properties Hierarchy, open the Add Custom
Wire Format window by right-clicking Custom Wire Formats, then clicking
Add Custom Wire Format.

3. On the Add Custom Wire Format window, specify the name that you want to
use for the new CWF physical format. The default name is 'Binary1l".

Tip: Physical format names must be unique across a message set. You are
recommended to start the name of your new CWF physical format with
'CWF' or 'Binary', because this clearly identifies the type of the physical
format that you are adding in relation to any of the other types.

4. Click OK to add the physical format layer to the message set. Alternatively, if
you decide to cancel the process, click Cancel or press Esc on the keyboard.

Tip: The new physical format layer is added with the relevant default property
values. You can configure the message set properties according to your
requirements, using the appropriate editor.

5. Save your changes either by clicking File> Save or by pressing Ctrl+S.

Configuring Custom Wire Format (CWF) properties: Message
sets

Configure the Custom Wire Format (CWF) properties of a message set using the
Message Set editor.

Before you start:

You must have completed the following tasks:

* [“Creating a message set” on page 83

* [“Opening an existing message set” on page 83|
+ “Adding a Custom Wire Format (CWF)”|

To configure the CWF properties of a message set:
1. Switch to the Broker Application Development perspective.

Developing message models 87

88 Message Models

2. In the Message Set editor, the Custom Wire Formats node of the Properties
Hierarchy shows the name of each of the CWF physical formats that have been
added to the message set. If the physical format names are not in view, expand
Custom Wire Formats by clicking +.

3. Click the chosen CWF physical format so that the properties of this format
appear in the Details view of the Message Set editor.

4. Configure the CWF properties shown in the Details view according to your
requirements.

5. Save your changes either by clicking File> Save or by pressing Ctrl+S.
Alternatively click File> Save All or press Ctrl+Shift+S.

Adding a TDS physical format
Add a Tagged/Delimited String (TDS) physical format layer to a message set using
the Message Set editor.

Before you start:

You must have completed the following tasks:

+ [“Creating a message set” on page 83|

* [“Opening an existing message set” on page 83|

This task topic describes how to add a Tagged/Delimited String (TDS) physical
format layer to a message set using the Message Set editor.

To add a TDS physical format layer to a message set:
1. Switch to the Broker Application Development perspective.

2. In the Message Set editor, in the Properties Hierarchy, open the Add
Tagged/Delimited String Format window by right-clicking Tagged/Delimited
String Formats then clicking Add Tagged/Delimited String Format on the
pop-up menu.

3. In the Add Tagged/Delimited String Format window, specify the name that
you want to use for the new TDS format. The default name is "Text1'.

Tip: Physical format names must be unique across a message set. You are
recommended to start the name of your new TDS physical format with
‘TDS' or "Text', because this clearly identifies the type of the physical
format that you are adding in relation to any of the other types.
4. Click OK to add the physical format to the message set. Alternatively, if you
decide to cancel the process, click Cancel or press Esc on the keyboard.

Tip: The new physical format layer is added with the relevant default property
values. You can configure the message set properties according to your
requirements, using the Message Set editor.

5. Save your changes either by clicking File> Save or by pressing Ctrl+S.

Configuring TDS properties: Message sets
Configure the Tagged/Delimited String (TDS) format properties of a message set
using the Message Set editor.

Before you start:

You must have completed the following tasks:

+ [“Creating a message set” on page 83|

+ [“Opening an existing message set” on page 83|

+ |“Adding a TDS physical format” on page 88|

To configure the TDS physical format properties of a message set, do the following:
1. Switch to the Broker Application Development perspective.

2. In the Message Set editor, the Tagged/Delimited String Formats node of the
Properties Hierarchy shows the name of each of the TDS physical formats that
have been added to the message set. If the physical format names are not in
view, expand Tagged/Delimited String Formats by clicking +.

3. Click the chosen TDS physical format so that the properties of this format
appear in the Details view of the Message Set editor.

4. Configure the TDS properties shown in the Details view according to your
requirements.

5. Save your changes either by clicking File> Save or by pressing Ctrl+S.
Alternatively click File> Save All or press Ctrl+Shift+S.

Adding an XML wire format
You can add an XML wire format physical format layer to a message set by using
the Message Set editor.

Before you start:

You must have completed the following tasks:

+ [“Creating a message set” on page 83|

+ [“Opening an existing message set” on page 83|

This task topic describes how to add an XML wire format physical format layer to
a message set using the Message Set editor.

To add an XML physical format layer to a message set:
1. Switch to the Broker Application Development perspective.

2. In the Message Set editor, in the Properties Hierarchy, open the Add XML Wire
Format window by right-clicking XML Wire Formats, then clicking Add XML
Wire Format on the pop-up menu.

3. On the Add XML Wire Format window, specify the name that you want to use
for the new XML wire format. The default name is 'XML1".

Tip: Physical format names must be unique across a message set. You are
recommended to start the name of your new XML physical format with
XML/, because this clearly identifies the type of the physical format that
you are adding in relation to any of the other types.

4. Click OK to add the physical format layer. Alternatively, if you decide to cancel
the process, click Cancel or press Esc on the keyboard.

Tip: The new physical format layer is added with the relevant default property
values. You can configure the message set properties according to your
requirements, using the appropriate editor.

5. Save your changes either by clicking File> Save or by pressing Ctrl+S.

Configuring XML Wire Format properties: Message sets
Configure the XML Wire Format properties of a message set using the Message Set
editor.

Developing message models 89

90 Message Models

Before you start:

You must have completed the following tasks:

+ [“Creating a message set” on page 83|

+ [“Opening an existing message set” on page 83|

+ [“Adding an XML wire format” on page 89|

To configure the XML wire format properties of a message set:
1. Switch to the Broker Application Development perspective.

2. In the Message Set editor, the XML Wire Formats node of the Properties
Hierarchy shows the name of each of the XML physical formats that have been
added to the message set. If the physical format names are not in view, expand
XML Wire Formats by clicking +.

3. Click the chosen XML physical format so that the properties of this format
appear in the Details view of the Message Set editor.

4. Configure the XML wire format properties shown in the Details view according
to your requirements.

5. Save your changes either by clicking File> Save or by pressing Ctrl+S.
Alternatively click File> Save All or press Ctrl+Shift+S.

Renaming a physical format
Rename a physical format using the Message Set editor.

Before you start:

You must have completed the following tasks:

* [“Creating a message set” on page 83|

* [“Opening an existing message set” on page 83|

This task assumes that you have added one or more physical formats to the
message set that you are working with. For further information see |”Adding a

Custom Wire Format (CWF)” on page 87 or [“Adding an XML wire format” on|

page 89| or [“Adding a TDS physical format” on page 88

This task topic describes how to rename a physical format using the Message Set
editor.

To rename a physical format previously added to the message model:

1. Close all message definition (.mxsd) files that are currently open in the Message
Definition editor, otherwise you will not be able to rename the physical format.

2. Switch to the Broker Application Development perspective.

3. In the Message Set editor, the Properties Hierarchy shows the name of each of
the physical formats that have been added to the message set. If the physical

format names are not in view, expand XML Wire Formats, Custom Wire
Formats, or Tagged/Delimited String Formats by clicking +.

4. Right-click the physical format that you want to rename then click Rename on
the pop-up menu to open the “Rename wire format” window.

5. In the “Rename wire format” window, type the new name for the physical
format. The renaming operation modifies all of the message definition files in
the message set and saves the amended message set file.

6. Click Finish to rename the physical format and save the message set file.

Applying default physical format settings: Message sets
Apply the default settings to a physical format layer that has previously been
added to a message set.

Before you start:

You must have completed the following tasks:

+ [“Creating a message set” on page 83|

* [“Opening an existing message set” on page 83|

The tasks in this topic area assume that you have added one or more physical
formats to the relevant message set. For further information see [“Adding a Custom|
Wire Format (CWF)” on page 87 or [“Adding an XML wire format” on page 89| or
“Adding a TDS physical format” on page 88

To apply the default settings to a physical format that has previously been added
to a message set:

1. Switch to the Broker Application Development perspective.

2. In the Message Set editor, in the Properties Hierarchy, right-click the physical
format to which you want to apply the default settings then click Apply
default physical format settings on the pop-up menu.

The default settings are applied to the physical format that you have selected. No
warning appears beforehand.

Removing a physical format
You can remove a physical format layer from your message set.

Before you start:

You must have completed the following tasks:

+ [“Creating a message set” on page 83|

* [“Opening an existing message set” on page 83|

The tasks in this topic area assume that you have added one or more physical
formats to a message set. For further information see [“Adding a Custom Wire|
Format (CWF)” on page 87 or [“Adding an XML wire format” on page 89| or
“Adding a TDS physical format” on page 88

To remove a physical format layer from your message set:

1. Close any message definition files that are currently open in the Message
Definition editor, otherwise you will not be able to remove the physical format.

2. Switch to the Broker Application Development perspective.

3. In the Message Set editor, the Properties Hierarchy shows the name of each of
the physical formats that have been added to the message set. If the physical
format names are not in view, expand XML Wire Formats, Custom Wire
Formats, or Tagged/Delimited Wire Formats, by clicking +.

4. Right-click the physical format that you want to remove, then click Delete on
the pop-up menu.

Tip: If you decide to proceed with deleting the physical format, all of the

message definition files under the current message set are modified and
the amended message set file is saved.

Developing message models 91

5. Click Finish to remove the physical format, or click Cancel to return to the
Broker Application Development perspective without making any changes.
Pressing Esc also returns you to the Broker Application Development
perspective without making any changes.

Observing 2007 U.S. changes to daylight saving time

Before you start:

You must have completed the following tasks:

+ [“Creating a message set” on page 83|

* [“Opening an existing message set” on page 83|

This task assumes that you have added and configured one or more physical
formats to existing message sets. For further information see:

[physical formats” on page 86

This task describes how to ensure that the message sets observe daylight saving
time (DST) in line with the 2007 U.S. changes.

If your message sets use a named time zone that is not changing DST in line with
the 2007 U.S. changes, you do not need to do anything.

If you are using a GMT-04:00, GMT-05:00, GMT-06:00, GMT-07:00, or GMT-08:00
named time zone with DST, that must observe DST in line with the 2007 U.S.
changes, do the following steps on every computer on which the broker is running:

1. Set the environment variable MQSI_USE_NEW_US_DST to an initial value: Y,
for example.

2. Restart the broker to use the changed DST.

Configuring documentation properties: Message sets

92 Message Models

Document a message set in the workbench.
Before you start:

Complete the following tasks:

+ [“Creating a message set” on page 83|

* [“Opening an existing message set” on page 83|

To configure the documentation for a message set:
1. Switch to the Broker Application Development perspective.

2. In the Message Set editor Properties Hierarchy, click Message set. The
documentation text field appears in the Details view, with all the other logical
properties of the message set.

3. Configure the documentation properties shown in the Details view to your
requirements.

You can use the Documentation property to set user-defined keywords and
their value. These keywords are propagated to the Configuration Manager
when you deploy the message set in a BAR file to a broker. These keywords are
used to give additional information about the message set when you display
deployed message set properties in the workbench. See [“Message set version|
[and keywords” on page 10| for more information.

4. Save your changes by clicking File » Save, or by pressing Ctrl+S. Alternatively,
click File » Save All, or press Ctrl+Shift+S.

Deleting a message set

If you want to delete a message set from your message model, you must delete the
message set project that contains the message set.

1. Switch to the Broker Application Development perspective.

2. In the Broker Development view, right-click the message set project folder that
contains the message set that you want to delete and click Delete on the
pop-up menu. This opens the Confirm Project Delete window, which asks
whether you want to delete the message set project that you have specified.

3. Click Also delete contents to delete the contents of the message set project,
or click Do not delete contents to cancel the deletion of the message set
project. Pressing the Esc key on your keyboard also cancels the deletion of the
message set project.

Important: When you delete a message set project, the action cannot be undone
after you have confirmed the deletion. All folders and associated files
for the message set project are deleted.

Applying a Quick Fix to a task list error

During the creation, migration and manipulation of message definition files,
warnings or errors might occur; these are listed in the Problems view of the Broker
Application Development perspective. Some of these warnings or errors can be
cleared by applying a Quick Fix.

Before you start:

You must have completed the following tasks:

+ [“Creating a message set” on page 83|

+ [“Creating a message definition file” on page 94|

The types of warnings or errors that can be cleared using a Quick Fix are those
where the construct has a broken link, where the construct has a facet that is not
legal, or where the construct has been imported, and where a warning or error has
occurred, but has been kept to ensure the integrity of structure that is being
imported. This allows you to fix the problem in the most appropriate way.

To apply a Quick Fix:
1. Switch to the Broker Application Development perspective.

2. Ensure that the Problems view is visible in the Broker Application
Development perspective of the workbench. If the Problems view is not visible,
from the workbench menu, click Window » Show View > Problems.

3. In the Problems view, right-click the task list warning or error that you want to
apply the Quick Fix to, then click Quick Fix. Note that Quick Fix might not be
available for the problem that you are trying to fix.

4. Step through the windows that are displayed, making the selections that are
required to ensure that the fix is applied in the appropriate way.

When the Quick Fix has successfully been applied to the task list warning or error,
it is removed from the Problems view.

Developing message models 93

Working with a message definition file

Create, open, and delete a message definition file.
Before you start:

You must have completed the following task:

+ [“Creating a message set” on page 83|

This topic area describes the tasks that are involved in working with a message
definition file:

+ “Opening an existing message definition file”]

* [“Creating a message definition file”|

* |“Deleting a message definition file” on page 96|

Opening an existing message definition file

This task topic describes how to open an existing message definition file in the
Message Definition editor; you can then view and edit the contents of the file.

To open an existing message definition file:
1. Switch to the Broker Application Development perspective.

2. In the Broker Development view, right-click the message definition file (file
extension *.mxsd) that you want to open, and select Open. This opens the
Message Definition editor for the message definition file that you have
specified.

Tip: The Eclipse framework lets you open resource files with other editors.
However, you are advised to use only the workbench Message Definition
editor to work with message definition files, because this editor correctly
validates any changes that are made to the message definition files. Other
editors might not do this.

3. View or edit the data in the file as required.

Creating a message definition file

94 Message Models

Creating an empty message definition file to contain your message model objects.
Before you start:

You must have completed the following task:

+ [“Creating a message set” on page 83|

You must create a message definition file before you can create the message model
objects. The message definition file contains the logical and physical model
definitions of the objects in XML Schema form.

You can create the message definition file in one of the following ways:

* Create the message definition file from scratch, see [‘Creating a message]
[definition file from scratch” on page 95|

* Base your message definition file on an existing resource (for example, an XML
Schema file, an IBM® supplied message, an XML DTD file, a C header file, a
COBOL file, or a WSDL file), see [‘Creating a message definition file from an|
fexisting resource” on page 95

* Copy a message definition file from one message set to another.

If you do copy a message definition file from one message set to another, you
must check that the source and target message sets have identical physical
formats, and that namespaces are enabled.

If the source and target namespaces do not have identical formats, the physical
format of the message definition file might be replaced by the default
information applied to the target message set.

Creating a message definition file from scratch
Create an empty message definition file to contain message model objects.

Before you start:

You must have completed the following task:

+ [“Creating a message set” on page 83|

You must create a message definition file before you can create the message model
objects. The message definition file contains the logical and physical model
definitions of the objects in XML Schema form.

To create an empty message definition file from scratch:
1. Switch to the Broker Application Development perspective.
2. Open the New Message Definition File wizard.

To do this, right-click on the message set project in the Broker Development
view that you are adding the message definition file to, and click New>
Message Definition File on the pop-up menu. The Message Definition File
panel of the wizard is displayed. The target message set list is filtered to only
show artifacts in the active working set.

3. Click on the message set, type a name into the File name field, and click Next.
4. Step through the remainder of the wizard, filling in the details as required.

The new empty message definition file, with the name that you have specified and
a file extension of *.mxsd, opens in the Message Definition editor; you can use the
editor to create your own message definitions. If you have chosen to use a target
namespace, a directory structure that is based on the URI that you have supplied is
created. The new message definition file is placed within this directory structure,
which appears in the Broker Development view.

Creating a message definition file from an existing resource

You must create a message definition file before you can create the message model
objects. The message definition file contains the logical and physical model
definitions of the objects in XML schema form.

You must have completed the following task:

+ [“Creating a message set” on page 83|

To create a new message definition file that is based on an existing resource:
1. Switch to the Broker Application Development perspective.
2. Open the appropriate New Message Definition File From wizard.

Right-click on the message set project in the Broker Development view that you
are adding the message definition file to, and click New> Message Definition
File From. A submenu shows the list of resources from which you can choose.

Developing message models 95

3. Choose the resource on which to base your new message definition. Click one
of the following resources:

* XML Schema File

* IBM Supplied Message
* XML DTD File

* C Header File

+ COBOL File

* WSDL File

The first panel of the corresponding wizard is displayed.
4. Step through the remainder of the wizard supplying the details as required.

The new message definition file, with the name that you have specified and a file
extension of *.mxsd, opens in the Message Definition editor; you can use the editor
to create your own message definitions. If you have chosen to use a target
namespace, a directory structure that is based on the URI that you have supplied is
created. The new message definition file is placed within this directory structure,
which appears in the Broker Development view.

Deleting a message definition file

You can delete a message definition file from your message model.

To delete a message definition file from your message model:
1. Switch to the Broker Application Development perspective.

2. In the Broker Development view, right-click the message definition file (file
extension *.mxsd) that you want to delete, then click Delete. Alternatively,
select the message definition file that you want to delete in the Broker
Development view, then, from the menu bar, click Edit » Delete, or press the
Delete key.

3. In the Confirm Resource Delete window, click Yes to delete the message
definition file. Click No, or press the Esc key, to cancel the deletion of the
message definition file.

Important: All files and objects that are associated with the message definition file
are deleted. This action cannot be undone.

Working with message model objects

96 Message Models

Add, configure, and delete objects.
Before you start:

You must have completed the following tasks:

+ [“Creating a message set” on page 83|

+ [“Creating a message definition file” on page 94|

This topic area describes the tasks that are involved in working with message
model objects:

+ |“Adding message model objects” on page 97|

* |“Configuring message model objects” on page 108|

+ [“Deleting objects” on page 122|

Adding message model objects

Various tasks are involved in adding message model objects to a message
definition file.

Before you start:

You must have completed the following tasks:

+ [“Creating a message set” on page 83|

* [‘Creating a message definition file” on page 94
g g

Before starting any of the tasks in this topic area, you must first open the message
definition file to which you want to add message model objects in the Message
Definition editor. See [“Opening an existing message definition file” on page 94| for
further details.

This topic area describes the tasks that are involved in adding message model
objects to a message definition file:

* |“Adding a message”|

+ “Adding a message from a global element” on page 98|

[“Adding a global element” on page 99

[“Adding a local element” on page 99|

“Adding an element reference” on page 100,
g

[“Adding a wildcard element” on page 101
[“Adding a global attribute” on page 101]
[“Adding a local attribute” on page 102|

[“Adding an attribute reference” on page 102|
[‘Adding a wildcard attribute” on page 103)|
[‘Adding a simple type” on page 103|

[“‘Adding a complex type” on page 105|

[“Adding a simple type to an element or attribute” on page 112|

[“Adding a complex type to an element” on page 113|

[“Adding a global group” on page 105|

[“Adding an attribute group” on page 106|

[“Adding a group reference” on page 107|

Adding a message
Add a message to a message model.

Before you start:

You must have completed the following tasks:

+ [“Creating a message set” on page 83|

* [‘Creating a message definition file” on page 94
g g

* |“Opening an existing message definition file” on page 94|

To add a message to your message definition file:
1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development
perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

Developing message models 97

98 Message Models

3. In the Outline view, right-click Messages then click Add Message on the
pop-up menu. A simple message is immediately added to your message model
and is assigned a default name.

4. Either type a new name for the message or press Enter to accept the default.

Tip: When you add a message to your message model, an associated complex
type and global element with the same name as the message are also
created. The global element and the message cannot have different names
and changing the name of one changes the names of both. The complex
type can be renamed.

You can now configure the properties of the message to your exact requirements.
For further information about configuring message model objects see

[message model objects” on page 108

Adding a message from a global element
Add a message from a global element to a message model.

Before you start:

You must have completed the following tasks:

* [“Creating a message set” on page 83|

+ [“Creating a message definition file” on page 94|

* |“Opening an existing message definition file” on page 94|

+ [“Adding a global element” on page 99| (This must be a global element of
complex type)

To add a message from a global element to your message model:
1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click Messages then click Add Message From Global
Element on the pop-up menu to open the Add Message From Global Element
window. This window lists all the global elements of a complex type that are
not already associated with a message.

4. In the Select a global element of complex type that is not already used for a
message list, click the global element that you want to use to create your
message.

5. Click OK. This immediately adds a message with the same name as the
selected global element to your message model.

You can now configure the properties of the message to your exact requirements.
For further information on configuring message model objects see

[message model objects” on page 108

Adding a message from a global type
Add a message from a global type to your message model.

Before you start:

You must have completed the following tasks:

+ [“Creating a message set” on page 83|

* [‘Creating a message definition file” on page 94
g g

* [“Opening an existing message definition file” on page 94|

* [“Adding a global element”| (This must be a global element of complex type)

To add a message from a global type to your message model:
1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development
perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click Messages then click Add Message From Global
Type on the pop-up menu to open the Add Message From Global Type
window. This window lists all the global complex types that are not already
associated with a message.

4. In the Select a global complex type list, click the global complex type that you
want to use to create your message.

5. Click OK. This immediately adds a message with the same name as the
selected global complex type to your message model.

You can now configure the properties of the message to your exact requirements.
For further information on configuring message model objects see

[message model objects” on page 108

Adding a global element

Add a global element to a message model.
Before you start:

You must have completed the following tasks:

+ [“Creating a message set” on page 83|

* [‘Creating a message definition file” on page 94
g 8

* |“Opening an existing message definition file” on page 94|

To add a global element to your message model:

1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development
perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click Elements and Attributes then click Add Global
Element on the pop-up menu. This adds a global element of type string to
your message model, and assigns a default name.

4. Either type a new name for the global element or press Enter to accept the
default.

You can now configure the global element to your requirements. For further
information on configuring message model objects see [“Configuring message|
[model objects” on page 108

Adding a local element
Add a local element to a message, type, group, or complex element.

Before you start:

Developing message models 99

100 Message Models

You must have completed the following tasks:

* |“Creating a message set” on page 83|

+ [“Creating a message definition file” on page 94|

+ [“Opening an existing message definition file” on page 94

This task assumes that you have previously added the relevant message, type,
group, or complex element to your message model.

To add a local element to a message, type, group, or complex element:
1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development
perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click the object (message, complex type, group, or
complex element) to which you are adding a local element then click Add
Local Element on the pop-up menu. A local element of type string is added to
the message model and is assigned a default name.

4. Either type a new name for the local element or press Enter to accept the
default.

You can now configure the local element to your exact requirements. For further
information about configuring message model objects see |“Configuring message
[model objects” on page 108

Adding an element reference
Add an element reference to a message, type, group, or complex element.

Before you start:

You must have completed the following tasks:

* |“Creating a message set” on page 83|

+ [“Creating a message definition file” on page 94|

+ [“Opening an existing message definition file” on page 94

This task assumes that you have previously added the relevant message, type,
global group, or complex element to your message model.

To add an element reference to a message, type, global group, or complex element:
1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development
perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click the object (message, complex type, group, or
complex element) to which you are adding the element reference, then click
Add Element Reference on the pop-up menu. This adds a default element
reference to the message model object that points to an existing global element.
This existing global element might be in the current message definition file or
in a message definition file defined under Includes or Imports for the current
message definition file. For further information about Imports and Includes, see
[‘Linking from one message definition file to another” on page 123

You can now configure the element reference to your exact requirements. For
further information about configuring message model objects see
[message model objects” on page 108

Adding a wildcard element
Add a wildcard element to a message, type, group, or complex element in a
message model.

Before you start:

You must have completed the following tasks:

+ [“Creating a message set” on page 83|

* [“Creating a message definition file” on page 94|

+ “Opening an existing message definition file” on page 94|

You can add a wildcard element to a message, type, group or complex element.
This task assumes that you have previously added the relevant message, type,
group or complex element to your message model.

To add a wildcard element to a message, type, group or complex element:
1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development
perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click the message model object (message, complex
type, group or complex element) to which you are adding the wildcard element
then click Add Wildcard Element on the pop-up menu. A wildcard element is
added and appears in the Outline view.

You can now configure the wildcard element to your exact requirements. For
further information on configuring message model objects see

[message model objects” on page 108

Adding a global attribute
Add a global attribute to your message model.

Before you start:

You must have completed the following tasks:

+ [“Creating a message set” on page 83|

+ [“Creating a message definition file” on page 94|

* |“Opening an existing message definition file” on page 94|

To add a global attribute to your message model:
1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development
perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click Elements and attributes then click Add Global
Attribute on the pop-up menu. A global attribute of type string is immediately
added and is assigned a default name.

4. Either type a new name for the global attribute or press Enter to accept the
default.

Developing message models 101

102 Message Models

You can now configure the global attribute to your requirements. For more
information on configuring message model objects see [“Configuring message
[model objects” on page 108

Adding a local attribute

Add a local attribute to a message, complex type, or complex element.
Before you start:

You must have completed the following tasks:

* |“Creating a message set” on page 83|

+ [“Creating a message definition file” on page 94|

+ “Opening an existing message definition file” on page 94|

You can add a local attribute to a message, complex type, or complex element. This
task assumes that you have previously added the relevant message, complex type,
or complex element to your message model.

To add a local attribute to a message, complex type or complex element:
1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development
perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click the object (message, complex type, complex
element, or attribute group) to which you are adding the local attribute then
click Add Local Attribute on the pop-up menu. A local attribute of type string
is immediately added to the message model object and is assigned a default
name.

4. Either type a new name for the local attribute or press Enter to accept the
default.

You can now configure the local attribute to your requirements. For further
information about configuring message model objects see [“Configuring message|
[model objects” on page 108

Adding an attribute reference
Add an attribute reference to a message, complex type, or complex element.

Before you start:

You must have completed the following tasks:

+ [“Creating a message set” on page 83|

* [“Creating a message definition file” on page 94|

+ [“Opening an existing message definition file” on page 94

You can add an attribute reference to a message, complex type, or complex
element. This task assumes that you have previously added the relevant message,
complex type, or complex element to your message model.

To add an attribute reference to a message, complex type or complex element:
1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development
perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click the message model object (message, complex
type, complex element, or attribute group) to which you are adding the
attribute reference then click Add Attribute Reference on the pop-up menu.
This action adds a default attribute reference to the message model object that
points to an existing global attribute.

You can now configure the attribute reference to your exact requirements. For

further information about configuring message model objects see
[message model objects” on page 108

Adding a wildcard attribute

Add a wildcard attribute to a message, complex type, or complex element.
Before you start:

You must have completed the following tasks:

+ [“Creating a message set” on page 83|

+ [“Creating a message definition file” on page 94|

* |“Opening an existing message definition file” on page 94|

You can add a wildcard attribute to a message, complex type, or complex element.
This task assumes that you have previously added the relevant message, complex
type, or complex element to your message model.

To add a wildcard attribute to a message, complex type or complex element:
1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development
perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click the object (message, complex type, complex
element, or attribute group) to which you are adding the wildcard attribute
then click Add Wildcard Attribute on the pop-up menu. A wildcard attribute
of type string is immediately added to the message model object and is
assigned a default name.

4. Either type a new name for the wildcard attribute or press Enter to accept the
default.

You can now configure the wildcard attribute to your requirements. For further
information about configuring message model objects see [’Configuring message
[model objects” on page 108

Adding a simple type
Add a simple type to your message model.

Before you start:

You must have completed the following tasks:

* [“Creating a message set” on page 83

+ [“Creating a message definition file” on page 94|

+ [“Opening an existing message definition file” on page 94

Developing message models 103

To add a simple type to your message model:
1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development
perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click Types then click either Add Simple Type
Restriction, Add Simple Type List, or Add Simple Type Union on the pop-up
menu.

* For a restriction, a simple type of base type string is added, and assigned a
default name.

* For a list, a simple type of item type string is added, and assigned a default
name.

* For a union, a simple type with a single member type of string is added, and
assigned a default name.

4. Either type a new name for the simple type or press Enter to accept the default.
You can now configure the simple type to your exact requirements.

If the simple type is a restriction:
* You can change the base type using the editor Properties view.

* You can set the value constraints associated with the simple type. See |“Setting
[value constraints” on page 114

* You can replace the base type with a new local simple type. In the Outline view
right-click on the simple type and click one of:

— Add Simple Type Restriction. This option replaces the base type with a new
simple type restriction, with a base type of string. You can configure the
restriction as described in 'If the simple type is a restriction'. The result is that
the original simple type becomes a restriction of a restriction.

— Add Simple Type List. This option replaces the base type with a new simple
type list, with an item type of string. You can configure the list as described
in 'If the simple type is a list'. The result is that the original simple type
becomes a restriction of a list. It appears as a list in the editor, because a
restriction of a list is itself a list, but you can also set certain value constraints.

If the simple type is a list:

* You can change the item type using the editor Properties view.

* You can replace the item type with a new local simple type. In the Outline view
right-click on the simple type and click one of:

— Add Simple Type Restriction. This option replaces the item type with a new
simple type restriction, with a base type of string. You can configure the
restriction as described in 'If the simple type is a restriction'. The result is that
the original simple type becomes a list of a restriction.

— Add Simple Type Union. This option replaces the item type with a new
simple type union, with a single member type of string. You can configure the
union as described in 'If the simple type is a union'. The result is that the
original simple type becomes a list of a union.

If the simple type is a union:

* If the member type of string is not required, in the Outline view right-click on
the string and click Delete.

104 Message Models

* You can add further members to the union. In the Outline view right-click on
the simple type and click one of:

— Add Union Member Type. This option adds a union member that is an
existing simple type. Use the type selection dialog to select the simple type
required.

— Add Local Member Type Restriction. This option adds a union member that
is a new simple type restriction, with a base type of string. You can configure
the restriction as described in 'If the simple type is a restriction' referred to
earlier.

— Add Local Member Type List. This option adds a union member that is a
new simple type list, with an item type of string. You can configure the list as
described in 'If the simple type is a list' referred to earlier.

— Add Local Member Type Union. This option adds a union member that is a
new simple type union, with a single member type of string. You can
configure the new union as described in 'If the simple type is a union'.

* New members are added to the end of the union. To change the order of a
member, in the Outline view select the member and drag it to the required
position in the union. All union members that are existing simple types must
occur ahead of all members that are local restrictions, lists, and unions, so
reordering is subject to this rule.

For further information about configuring message model objects see
[message model objects” on page 108

Adding a complex type

Add a complex type to your message model.
Before you start:

You must already have completed the following tasks:

* [“Creating a message set” on page 83

+ [“Creating a message definition file” on page 94|

* [“Opening an existing message definition file” on page 94

To add a complex type to your message model:
1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development
perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click Types then click Add Complex Type on the
pop-up menu. A complex type is added and is assigned a default name.

4. Either type a new name for the complex type or press Enter to accept the
default.

You can now configure the complex type to your requirements. For further
information on configuring message model objects see [“Configuring message|
[model objects” on page 108

Adding a global group
Add a global group to your message model.

Before you start:

Developing message models 105

106 Message Models

You must have completed the following tasks:

* |“Creating a message set” on page 83|

+ [“Creating a message definition file” on page 94|

+ [“Opening an existing message definition file” on page 94

To add a global group to your message model:
1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development
perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click Groups then click Add Group on the pop-up
menu. A global group is added to your message model and is assigned a
default name.

4. Either type a new name for the global group or press Enter to accept the
default.

You can now configure the global group to your requirements. For further
information about configuring the properties of message model objects see
[‘Configuring message model objects” on page 108

Adding a local group

Add a local group to a message, type, global group, or complex element.
Before you start:

You must have completed the following tasks:

+ [“Creating a message set” on page 83|

+ [“Creating a message definition file” on page 94|

+ |“Opening an existing message definition file” on page 94|

You can add a local group to a message, complex type, group, or complex element.
This task assumes that you have previously added the relevant message, complex
type, group, or complex element to your message model.

To add a local group to a message, complex type, group, or complex element:
1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development
perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click the object (message, complex type, group, or
complex element) to which you are adding the local group then click Add
Local Group on the pop-up menu. A local group is immediately added to the
message model with type composition set to sequence by default.

You can now configure the local group to your requirements. For further
information about configuring message model objects, see [‘Configuring message|
[model objects” on page 108

Adding an attribute group

Add an attribute group to your message model.

Before you start:

You must have completed the following tasks:

+ [“Creating a message set” on page 83|

+ [“Creating a message definition file” on page 94|

+ [“Opening an existing message definition file” on page 94

To add an attribute group to your message model:
1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click Groups then click Add Attribute Group on the
pop-up menu. A global attribute group is added to your message model and is
assigned a default name.

4. Either type a new name for the attribute group or press Enter to accept the
default.

You can now configure the attribute group to your requirements. For further
information about configuring the properties of message model objects see
[‘Configuring message model objects” on page 108

Adding a group reference
You can add a group reference to a message, type, global group, or complex
element.

Before you start:

You must have completed the following tasks:

+ [“Creating a message set” on page 83|

+ [“Creating a message definition file” on page 94|

* |“Opening an existing message definition file” on page 94|

You can add a group reference to a message, complex type, group, or complex
element. This task assumes that you have previously added the relevant message,
complex type, group, or complex element to your message model.

To add a group reference to a message, complex type, group or complex element:
1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development
perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click the object (message, complex type, group, or
complex element) to which you want to add a group reference then click Add
Group Reference on the pop-up menu. A group reference is immediately
added to your message model.

You can now configure the group reference to your requirements. For further
information on configuring the properties of message model objects see
[‘Configuring message model objects” on page 108

Adding an attribute group

Add an attribute group reference to a message model.
Before you start:

Developing message models 107

You must have completed the following tasks:

* |“Creating a message set” on page 83|

+ [“Creating a message definition file” on page 94|

* [“Opening an existing message definition file” on page 9
p g g

To add an attribute group to your message model:
1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click Groups then click Add Attribute Group on the
pop-up menu. An attribute group is added to your message model and is
assigned a default name.

4. Either type a new name for the attribute group reference or press Enter to
accept the default.

You can now configure the attribute group to your requirements using the Message
Definition editor. For further information on configuring the properties of message
model objects see [‘Configuring message model objects.”|

Configuring message model objects

108 Message Models

Various tasks are involved in configuring message model objects
Before you start:

You must have completed the following tasks:

+ [“Creating a message set” on page 83|

* |“Creating a message definition file” on page 94|

+ [“Adding message model objects” on page 97 (You must have added one or more
objects to your message model)

Before starting any of the tasks in this topic area, you must first open the message
definition file for which you want to configure message model objects in the
Message Definition editor. See [“Opening an existing message definition file” on|
for further details.

This topic area describes the tasks that are involved in configuring message model
objects:

+ [“Renaming objects” on page 109|

* |“Reordering objects” on page 109

+ [“Copying objects” on page 110|

+ [“Pasting objects” on page 110|

* [‘Changing the type of an element or attribute” on page 111
g

+ [“Setting value constraints” on page 114|

* |“Configuring logical properties: Message model objects” on page 115|

+ |“Configuring documentation properties: Message model objects” on page 116|

+ |“Configuring physical properties” on page 117]

- [“Configuring Custom Wire Format (CWF) properties: Message model objects”]

on page 112|

- [“Configuring XML Wire Format properties: Message model objects” on page|
120

— [“Configuring TDS properties: Message model objects” on page 118§

- [“Applying default physical format settings: Message model objects” on page]
121

+ [“Deleting objects” on page 122|

Renaming objects
You can rename message model objects in the workbench.

Before you start:

You must have completed the following tasks:

* [“Creating a message set” on page 83

+ [“Creating a message definition file” on page 94|

* [“Opening an existing message definition file” on page 9
p g g

+ |“Adding message model objects” on page 97| (You must have added one or more
objects to your message model)

Objects in the workbench such as files, messages and elements can have different
physical representations. Eclipse handles renaming differently depending on the
object.

Tip: Not all objects can be renamed. For example, you cannot rename wildcards,
local groups, or local types, because they do not have a name.

If an object can be renamed the usual way to do it is as follows:
1. Switch to the Broker Application Development perspective.

2. In the Outline view, right-click the object that you want to rename then click
Rename on the pop-up menu. Alternatively, right-click the object in the
Message Definition editor Overview tab then click Rename on the pop-up
menu. In both cases, depending on the object, either a renaming dialog opens
or you will now be able to edit the name of the object directly.

3. Type the new name for the object.
4. If the renaming dialog is open, either press Enter or click OK.

Reordering objects
Reorder message model objects within a message definition file.

Before you start:

You must have completed the following tasks:

+ [“Creating a message set” on page 83|

* [‘Creating a message definition file” on page 94
g g

* |“Opening an existing message definition file” on page 94|

+ “Adding message model objects” on page 97| (You must have added one or more
objects to your message model)

To reorder objects within a message definition file:
1. Switch to the Broker Application Development perspective.

2. Click the object that you want to move. For example, you could select a local
element within a message in either the Outline view or Properties Hierarchy.

Developing message models 109

110 Message Models

3. Use the mouse to drag the object to its new location.

Tip: As you drag the object and the mouse cursor passes between objects, a
black line appears, showing where the current focus is. If you try to drag
the object to a location that it cannot be moved to (including objects that
are highlighted as the cursor passes over them), the object remains in its
original position when you release it.

Copying objects
You can copy an object in a message definition file, such as a message for a local
element object, or types for a complex type object.

Before you start:

You must have completed the following tasks:

+ [“Creating a message set” on page 83|

* [“Creating a message definition file” on page 9
g g

+ |“Opening an existing message definition file” on page 94|

+ [“Adding message model objects” on page 97 (You must have added one or more
objects to your message model)

To copy an object:
1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development
perspective. If the Outline view is not visible, from the workbench menu, click
Window » Show View > Outline.

3. In the Outline view, right-click the message model object that you want to copy,
then click Copy. Alternatively, right-click the object in the Message Definition
editor Overview tab, then click Copy.

The object is now copied.

Pasting objects
Paste objects that you have previously copied within the same message definition
file

Before you start:

You must have completed the following tasks:

+ [“Creating a message set” on page 83|

+ [“Creating a message definition file” on page 94|

* [“Opening an existing message definition file” on page 9
p g g g

* |“Adding message model objects” on page 97| (You must have added one or more
objects to your message model)

+ [“Copying objects”]

You can paste objects that you have previously copied within the same message
definition file.

You can only copy and paste an object within the same message definition. You
cannot copy an object and paste it into another message definition, either within
the same message set or in a different message set.

To paste an object in the message definition from which you copied it:

1.
2.

4.

Switch to the Broker Application Development perspective.

Ensure that the Outline view is visible in the Broker Application Development
perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

In the Outline view, right-click the location where you are going to paste the
object then click Paste on the pop-up menu. Alternatively, right-click the object
in the Message Definition editor Overview tab then click Paste on the pop-up
menu. The object appears in the new location with a default name which you
can change if you want to.

Either type a new name for the object or press Enter to accept the default.

Note: When you copy and paste objects within the message set, where physical

properties exist for that object, these settings are not pasted, but are set to
default values.

Tip: If you cannot select Paste from either menu, you might be trying to paste to a

location that is not valid. For example, you cannot paste a complex type into
a local element.

Changing the type of an element or attribute
You can change the type to a local element, global element, local attribute, or
global attribute.

Before you start:

You must already completed the following tasks:

* [“Creating a message set” on page 83

+ [“Creating a message definition file” on page 94|

+ [“Opening an existing message definition file” on page 94|

* |“Adding message model objects” on page 97| (You must have added one or more

objects to your message model)

You can change the type of an element or attribute in your message model to
another existing type, or you can create a new simple type or a new complex type.

To change the type of an element or attribute to an existing type:

1.
2.

Switch to the Broker Application Development perspective.

Ensure that the Outline view is visible in the Broker Application Development
perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window » Show View » Outline.

In the Outline view, click the element for which you want to change the type.

Display the Properties tab of the Message Definition editor by clicking
Properties in the lower-left corner of the editor area.

In the Properties Hierarchy click Logical Properties » Global Element (or
Logical Properties » Local Element, Logical Properties > Global Attribute, or
Logical Properties > Local Attribute). If necessary, expand Logical Properties
by clicking +.

In the Details view, in the Type property, click the new type that you require.

Tip: If the type you require is not displayed, you can find it by clicking
(More...) in the list. This displays the Type Selection window with
additional options. If you know which type you require, specify the first

Developing message models 111

112 Message Models

letter in the text box at the top of the Type Selection window. Matching
types are then displayed, making the selection process easier.

7. When you have selected the type that you require, click OK.
The change to the type is applied wherever the element or attribute occurs.

The task above explains how to switch to an existing type. If you want to create a
new simple type or a new complex type, select (New Simple Type Restriction),
(New Simple Type List), (New Simple Type Union), or (New Complex Type) in
the Type list (see step 6 above). For information on how to create a new simple
type or a new complex type see [“Adding a simple type to an element or attribute”]
or [“Adding a complex type to an element” on page 113

Adding a simple type to an element or attribute:

You can add a simple type to a local element, global element, local attribute, or
global attribute.

Before you start:

You must have completed the following tasks:

* |“Creating a message set” on page 83|

* [“Creating a message definition file” on page 94|

* |“Opening an existing message definition file” on page 94|

This task assumes that you have previously added the relevant element or attribute
to your message model.

To add a new simple type:
1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development
perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, click the element to which you want to add a new simple
type.
4. In the Message Definition editor, click the Properties tab.

5. In the Properties Hierarchy, click Logical Properties > Global Element (or
Logical Properties > Local ElementLogical Properties > Global Attribute, or
Logical Properties > Local Attribute).

6. In the Details view, in the Type property, select (New Simple Type
Restriction), (New Simple Type List), or (New Simple Type Union) to open
the relevant New Simple Type window to create a simple type of the type that
you specify.

7. In the New Simple Type window, in the Base Type list, click the type that you
want to use.

8. Optional: If you want to add the new simple type as a global simple type,
select the Create as Global Simple Type check box and specify the name for
your new simple type in the Name field.

9. Click OK. A simple type is immediately added to your message model.

Any changes that you make are reflected throughout where the element to which
you have added a new simple type occurs.

Adding a complex type to an element:

You can add a complex type to a local element, global element, local attribute, or
global attribute.

Before you start:

You must have completed the following tasks:

+ [“Creating a message set” on page 83|

+ [“Creating a message definition file” on page 94|

* [“Opening an existing message definition file” on page 94|

This task assumes that you have previously added the relevant element or attribute
to your message model.

When you add a complex type to an element or attribute, you can either create a
new complex type or derive a new complex type from an existing base type.

To add a new complex type:
1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development
perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, click the element to which you want to add a new
complex type.

4. In the Message Definition editor, click the Properties tab.

5. In the Properties Hierarchy, click Logical Properties > Global Element (or
Logical Properties > Local ElementLogical Properties > Global Attribute, or
Logical Properties > Local Attribute).

6. In the Details view, in the Type list, click (New Complex Type) to display the
New Complex Type window.

7. If you want to create a new local complex type, click Create a Local Complex
Type, in the Composition list, click the option that you require.

8. If you want to derive a new local complex type from an existing base type:
a. Click Derive a new Local Complex Type from existing base type.

b. In the Base Type list, click the base type that you want to use. Depending
on the base type you select, the Composition and Derived By lists might
become active.

c. If the Composition and Derived By lists are active, click the options that
you require in both lists.

9. If you want to add the new complex type as a global complex type, select the
Create as Global Complex Type check box, and specify a name for your new
complex type in the Name field.

10. Click OK to close the New Complex Type window and add the new complex
type to your message model.

Any changes that you make are reflected throughout where the element to which
you are adding the complex type occurs.

Developing message models 113

114 Message Models

Setting value constraints
You can set the value constraints associated with a simple type.

Before you start:

You must have completed the following tasks:

+ [“Creating a message set” on page 83|

* |“Creating a message definition file” on page 94|

+ “Opening an existing message definition file” on page 94|

* |“Adding a simple type” on page 103|or [’Adding a simple type to an element o1
attribute” on page 112] (You must have added one or more global or local simple
types to your message model)

Value constraints are usually associated with a simple type; they refine a simple
type by defining limits on the values which the simple type can represent. To set
the value constraints associated with a simple type:

1. Switch to the Broker Application Development perspective.

2. In the Outline view, click the simple type you are updating. If the Outline view
is not visible, from the workbench menu, click Window » Show View -
Outline.

3. Display the Properties tab of the Message Definition Editor by clicking
Properties in the lower-left corner of the editor area. The Properties Hierarchy
displays the following nodes:

* Logical Properties
* Physical Properties
* Documentation

4. In the Properties Hierarchy under Logical Properties click Value Constraints.
This displays the current value constraints settings for the selected simple type
in the Details pane.

Tip: If Value Constraints is not in view, expand Logical Properties by clicking
+.

5. Set the value constraints for the selected simple type by making the appropriate
changes to the information shown in the Details pane.

Setting an enumeration:

An enumeration restricts which values can be set for the value constraint. For
example, "ABC" and "123". Use this section to create a list of fixed values that the
associated type must match.

To set an enumeration:

1. Click Add to the right of the Enumerations field. This adds an enumeration
that has a default enumeration (for example enumerationl).

2. Type the data that you want to set for this value constraint.
3. Press Enter on your keyboard.
4. Repeat the above steps for each enumeration that you are adding.

Setting a pattern:

Set a pattern to indicate that the value constraint defines a string used as a regular
expression that must be matched by the data in the associated type. The regular
expression syntax supported is XML Schema regular expressions.

See ["Regular expression syntax” on page 776 for a list of supported regular
expression syntax elements.

To set a pattern:

1. Select Add to the right of the Patterns field. This adds a pattern that has a
default pattern (for example patternl) and is in update mode.

2. Type the data that you want to set for this value constraint.
3. Press Enter on your keyboard.
4. Repeat the above steps for each pattern that you are adding.

Configuring logical properties: Message model objects
You can configure the logical properties of an object that has previously been
added to the message model.

Before you start:

You must have completed the following tasks:

+ [“Creating a message set” on page 83|

* [“Creating a message definition file” on page 94|

+ [“Opening an existing message definition file” on page 94

+ “Adding message model objects” on page 97| (You must have added one or more
objects to your message model)

To configure the logical properties of an object that is part of the message model:
1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development
perspective of the workbench and is displaying the following information:

e The name of the message definition file
* Messages

e Types

* Groups

* Elements and Attributes

If the Outline view is not visible, from the workbench menu, click Window -~
Show View - Outline. If the information listed above is not displayed, ensure
that the message definition file is open in the Message Definition editor.
Message definition files have an .mxsd file extension.

3. In the Outline view, select the message model object for which you want to
configure the logical properties:

a. Depending on the type of the object that you are selecting, expand
Messages, Types, Groups or Elements and Attributes as appropriate by
clicking +.

b. Click the object that you want to select within the expanded node.

4. Display the Properties tab of the Message Definition editor by clicking
Properties in the lower-left corner of the editor area. The Properties Hierarchy
displays the following nodes:

* Logical Properties
* Physical Properties

Developing message models 115

116 Message Models

* Documentation

The type (for example, Local Element or Global Element) of the message model
object that you selected in the Outline view is displayed under each of these
nodes.

If the items under Logical Properties are not in view, expand Logical
Properties by clicking +.

5. Display the logical properties of the selected object in the Details view of the
Message Definition editor, by clicking the appropriate item under Logical
Properties.

6. Configure the logical properties of the selected item to your requirements by
making the appropriate changes to the information shown in the Details view.

7. Save your changes by clicking File » Save message_definition_file.mxsd or by
pressing Ctrl+S. Alternatively click FileSave All or press Ctrl+Shift+S.

Configuring documentation properties: Message model objects
You can configure the documentation properties of an object that has previously
been added to the message model.

Before you start:

You must have completed the following tasks:

* [“Creating a message set” on page 83|

+ [“Creating a message definition file” on page 94|

+ [“Opening an existing message definition file” on page 94

+ |“Adding message model objects” on page 97| (You must have added one or more
objects to your message model)

To configure the documentation properties of an object contained within a message
definition file:

1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development
perspective of the workbench and is displaying the following information:

¢ The name of the message definition file
* Messages

¢ Types

* Groups

* Elements and Attributes

If the Outline view is not visible, from the workbench menu, click Window -~
Show View - Outline. If the information listed above is not displayed, ensure
that the message definition file is open in the Message Definition editor.
Message definition files have an .mxsd file extension.

3. In the Outline view, select the message model object for which you want to
configure the documentation properties by doing the following:

a. Depending on the type of the object that you are selecting, expand
Messages, Types, Groups or Elements and Attributes as appropriate by
clicking +.

b. Click the object you want to select within the expanded node.

4. Display the Properties tab of the Message Definition editor by clicking

Properties in the lower-left corner of the editor area. The Properties Hierarchy

displays the following nodes:

* Logical Properties

* Physical Properties
¢ Documentation
The type (for example, Local Element or Global Element) of the message model

object that you selected in the Outline view is displayed under each of these
nodes.

Tip: If the items under Documentation are not in view, expand
Documentation by clicking +.
5. Display the logical properties of the selected object in the Details view by
clicking the appropriate item under Documentation.

6. Configure the documentation properties of the selected item to your
requirements by typing text into the Documentation text field. Right-clicking in
the text field allows you to select options for undoing changes you have made,
cutting or copying text from the text field, pasting text into the text field,
deleting highlighted text or selecting all text in the field.

7. Save your changes by clicking File » Save message_definition_file.mxsd from
the menu or pressing Ctrl+S. Alternatively, from the menu, click File » Save All
or press Ctrl+Shift+S.

Configuring physical properties
Working with the physical properties of message model objects.

Before you start:

You must have completed the following tasks:

+ [“Creating a message set” on page 83|

* [“Creating a message definition file” on page 94|

+ [“Opening an existing message definition file” on page 94

+ “Adding message model objects” on page 97| (You must have added one or more
objects to your message model)

The tasks in this topic area assume that you have added one or more physical
formats to a message set. For further information see [“Adding a Custom Wire|
Format (CWF)” on page 87 or|’Adding an XML wire format” on page 89| or
“Adding a TDS physical format” on page 88

When you have added objects to your message model it is likely that you will
want to configure the physical properties of these objects. The following tasks
relate to configuring the physical properties of message model objects:

* |“Configuring Custom Wire Format (CWF) properties: Message model objects”|

+ [“Configuring XML Wire Format properties: Message model objects” on page 120

+ [“Configuring TDS properties: Message model objects” on page 118§|

* |“Applying default physical format settings: Message model objects” on page 121|

Configuring Custom Wire Format (CWF) properties: Message model objects:

You can configure the Custom Wire Format (CWF) properties of a message model
object by using the Message Definition editor

Before you start:

You must have completed the following tasks:

+ [“Creating a message set” on page 83|

Developing message models 117

118 Message Models

[‘Creating a message definition file” on page 94|

[‘Opening an existing message definition file” on page 94|
[“Adding a Custom Wire Format (CWF)” on page 87|

[“Adding message model objects” on page 97| (You must have added one or more
objects to your message model)

To configure the CWF properties of a message model object:

1.
2.

Switch to the Broker Application Development perspective.

Ensure that the Outline view is visible in the Broker Application Development
perspective of the workbench and is displaying the following information:

e The name of the message definition file
* Messages

¢ Types

e Groups

* Elements and Attributes

If the Outline view is not visible, from the workbench menu, click Window -
Show View - Outline. If the above hierarchy is not displayed, ensure that the
message definition file is open in the Message Definition editor. Message
definition files have an .mxsd file extension.

In the Outline view, select the object for which you want to configure the CWF
properties by doing the following.

a. Depending on the type of the object that you are selecting, expand
Messages, Types, Groups or Elements and Attributes by clicking +.

b. Click the object you that want to select within the expanded node.

Display the Properties tab of the Message Definition editor by clicking
Properties in the lower-left corner of the editor area. In the Message Definition
editor, in the Properties Hierarchy, the name of each of the physical formats
that have been added to the message set appears under Physical Properties.
The object type (for example, Local Element or Global Element) of the message
model object that you selected in the Outline view is displayed under each
physical format shown.

Tip: If the physical formats are not in view in the Properties Hierarchy, expand
Physical Properties by clicking +. By default the CWF physical format is
called Binary1l but could have a user defined name instead.

Under Physical Properties, click the object type for the message model object
that you have chosen to configure under the CWF physical format. The CWF
properties of your selected message model object appear in the Details view.

Configure the CWF properties of the selected object to your requirements by
making the appropriate changes to the information shown in the Details view.

Note: It is not possible to configure disabled fields.

Save your changes by clicking File > Save message_definition_file.mxsd or
pressing Ctrl+S. Alternatively click FileSave All or press Ctrl+Shift+S.

Configuring TDS properties: Message model objects:

You can configure the Tagged/Delimited String (TDS) properties of a message
model object.

Before you start:

You must have completed the following tasks:

+ [“Creating a message set” on page 83|

+ [“Creating a message definition file” on page 94|

+ [“Opening an existing message definition file” on page 94

+ |“Adding a TDS physical format” on page 88|

* [“Adding message model objects” on page 97| (Adding one or more objects to

your message model)

To configure the TDS properties of a message model object:

1.
2.

Switch to the Broker Application Development perspective.

Ensure that the Outline view is visible in the Broker Application Development
perspective of the workbench and is displaying the following information:

* The name of the message definition file
* Messages

e Types

* Groups

* Elements and Attributes

If the Outline view is not visible, from the workbench menu, click Window -~
Show View - Outline. If the above hierarchy is not displayed, ensure that the
message definition file is open in the Message Definition editor. Message
definition files have an .mxsd file extension.

In the Outline view, select the object for which you want to configure the TDS
properties by doing the following:

a. Depending on the type of the object that you are selecting, expand
Messages, Types, Groups or Elements and Attributes by clicking +.

b. Click the object that you want to select within the expanded node.

Display the Properties tab of the Message Definition editor by clicking
Properties in the lower-left corner of the editor area. In the Message Definition
editor, in the Properties Hierarchy, the name of each of the physical formats
that have been added to the message set appears under Physical Properties.
The object type (for example, Local Element or Global Element) of the message
model object that you selected in the Outline view is displayed under each
physical format shown.

Tip: If the physical formats are not in view in the Properties Hierarchy, expand
Physical Properties by clicking +. By default the TDS physical format is
called Textl but could have a user defined name instead.

Select the Properties tab located in the lower-left corner of the Message
Definition editor.

Under Physical Properties, under the TDS physical format, click the object type
for the message model object that you have chosen to configure. The TDS
physical format properties of your selected message model object appear in the
Details view.

Configure the TDS physical format properties of the selected object to your
requirements by making the appropriate changes to the information shown in
the Details view.

Note: It is not possible to configure disabled fields.

Save your changes by selecting File > Save message_definition_file.mxsd from
the menu or press Ctrl+S. Alternatively, from the menu, select File > Save All,
or press Ctrl+Shift+S.

Developing message models 119

120 Message Models

Configuring XML Wire Format properties: Message model objects:
You can configure the XML Wire Format properties of a message model object.
Before you start:

You must have completed the following tasks:

+ [“Creating a message set” on page 83|

+ [“Creating a message definition file” on page 94|

+ |“Opening an existing message definition file” on page 94|

+ [“Adding an XML wire format” on page 89|

* [“Adding message model objects” on page 97| (You must have added one or more
objects to your message model)

To configure the XML Wire Format properties of a message model object:
1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development
perspective of the workbench and is displaying the following information:

¢ The name of the message definition file
* Messages

¢ Types

* Groups

* Elements and Attributes

If the Outline view is not visible, from the workbench menu, click Window -
Show View - Outline. If the above hierarchy is not displayed, ensure that the
message definition file is open in the Message Definition Editor. Message
definition files have an .mxsd file extension.

3. In the Outline view, select the object for which you want to configure the XML
Wire Format properties by doing the following:

a. Depending on the type of the object that you are selecting, expand
Messages, Types, Groups or Elements and Attributes by clicking +.

b. Click the object that you want to select within the expanded node.

4. Display the Properties tab of the Message Definition editor by clicking
Properties in the lower-left corner of the editor area. In the Message Definition
editor, in the Properties Hierarchy, the name of each of the physical formats
that have been added to the message set appears under Physical Properties.
The object type (for example, Local Element or Global Element) of the message
model object that you selected in the Outline view is displayed under each
physical format shown.

Tip: If the physical formats are not in view in the Properties Hierarchy, expand
Physical Properties by clicking +. By default the XML Wire Format is
called XML1 but could have a user defined name instead.

5. Under Physical Properties, under the XML Wire Format, click the object type
for the message model object that you have chosen to configure. The XML Wire
Format properties of your selected message model object appear in the Details
view of the Message Definition editor.

6. Configure the XML Wire Format properties of the selected object to your
requirements by making the appropriate changes to the information shown in
the Details view.

Note: It is not possible to configure disabled fields.

7. Save your changes by clicking File » Save message_definition_file.mxsd or
pressing Ctrl+S. Alternatively select File > Save All from the menu or press
Ctrl+Shift+S.

Applying default physical format settings: Message model objects:

You can apply the default physical format settings to a message model object that
is contained in a message definition file.

Before you start:

You must have completed the following tasks:

* [“Creating a message set” on page 83

+ [“Creating a message definition file” on page 94|

* [“Opening an existing message definition file” on page 94

* |“Adding message model objects” on page 97| (You must have added one or more
objects to your message model)

This task assumes that you have added one or more physical formats to the
relevant message set. For further information see [“Adding a Custom Wire Format]
(CWE)” on page 87| or [“Adding an XML wire format” on page 89 or [“Adding a
TDS physical format” on page 88

To apply the default physical format setting to a message model object previously
added to a message definition file:

1. Switch to the Broker Application Development perspective.

2. In the Outline view, click the object to which you want to apply default
physical format settings.

3. Click the Properties tab located in the lower-left corner of the Message
Definition editor.

4. Check that the Message Definition editor Properties Hierarchy displays the
following information:

* Logical Properties

* Physical Properties (For each of the physical formats that have been added to
the message set, the name of the physical format appears under Physical
Properties. Under each physical format the type of message model object
that you selected is displayed as a child.)

¢ Documentation

Ensure that Physical Properties in the Properties Hierarchy is fully expanded

by clicking +.

5. Right-click on the message model object type underneath the physical format to
which you want to apply the default settings then click Apply default physical
format settings. The default physical format settings for the message model
object that you selected are applied without warning.

6. Save your changes by clicking File » Save message_definition_file.mxsd from
the menu or pressing Ctrl+S. Alternatively, from the menu, click File > Save
All, or press Ctrl+Shift+S.

Developing message models 121

Deleting objects

Delete an object from your message model.
Before you start:

You must have completed the following tasks:

+ [“Creating a message set” on page 83|

+ [“Creating a message definition file” on page 94|

* |“Opening an existing message definition file” on page 94|

+ “Adding message model objects” on page 97| (You must have added one or more
objects to your message model)

To remove objects contained within a message definition file:

1. Ensure that the Outline view is visible in the Broker Application Development
perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

2. In the Outline view, right-click the object that you want to remove then click
Delete on the pop-up menu. Alternatively right-click the object in the Message
Definition editor Overview tab, and then click Delete.

The type of object and the relationship that it has with other objects determines
whether the object is now deleted without a confirmation window appearing,
or whether a confirmation window opens with a list of all the objects that will
be deleted along with the one that you have selected.

3. If a confirmation window opens, click OK to delete the objects.

Tip: You can undo a deletion by selecting Edit> Undo, as long as you have not
saved the changes that you have made.

Creating a multipart message

122 Message Models

A multipart message occurs when you embed a message in another message.
Before you start:

You must have completed the following tasks:

* |“Creating a message set” on page 83|

+ [“Creating a message definition file” on page 94|

* |“Opening an existing message definition file” on page 94|

To create a multipart (embedded) message:

1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development
perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window » Show View -» Outline.

3. In the Outline view, add one of the following objects to your message model:

* A complex type (for further information on completing this task see
fa complex type” on page 105)

* A global group (for further information on completing this task see
la global group” on page 105)

* A local group (for further information on completing this task see
[local group” on page 106)

Tip: You can also use a local ANONYMOUS complex type when creating a
multipart message. For further information see [“Adding a complex type to]
lan element” on page 113
4. Display the Properties tab of the Message Definition editor by clicking
Properties in the lower-left corner of the editor area.
5. In the Properties Hierarchy, under Logical properties, click one of the following
items, depending on which of these you added in step 3:

¢ Complex Type
* Global Group
* Local Group
6. In the Details view, make the following changes to the displayed logical
properties:
a. In the Composition drop-down list, click message.

b. In the Content validation drop-down list, click Open, Closed or Open
Defined, depending on your requirements. Note that if the embedded

message is defined in a different message set, you must click Open. For
further information about using these three options, see ["MRM content

fvalidation” on page 192

Note: There are a number of different ways for the parser to identify an embedded
message within a message bit stream. For further information on identifying
a message within another message refer to the following concept topics.

Linking from one message definition file to another

Add an 'include’, or an 'import' to the file that you want to reference.
Before you start:

You must have completed the following tasks:

+ [“Creating a message set” on page 83|

* [“Creating a message definition file” on page 94|

+ “Opening an existing message definition file” on page 94|

There are two ways to link one message definition file to another: either you can
add an 'include’, or you can add an 'import’, for the file that you want to reference.

To check whether a message definition file currently includes or imports other files:
1. Open the message definition file in the Message Definition editor.
2. In the Outline view, in the displayed hierarchy, select the .mxsd file.

3. In the Properties Hierarchy, expand Imports or Includes as appropriate to
display a list of the other files that the currently selected file includes or
imports.

Include

Use the include option if you want to link to a message definition file with the
same namespace, or if you want to link to a message definition file with no target
namespace from a message definition file with a target namespace (chameleon
behavior). You must also add an include rather than an import if you want to link
a message definition file with no target namespace to another message definition
file that also has no target namespace.

Developing message models 123

Import

124 Message Models

Note: A message definition file can only reference objects in another message
definition file if this other file has been included directly, so you might have
a problem if you try to use the include option to include message definition
files that are themselves included within other message definition files. For
information about ways of resolving this situation, see [Resolving problems|
fwhen developing message models|

This task assumes that you have opened an existing message definition file.

To add an include to a message definition file:
1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development
perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, click the message definition (.mxsd) file name.

4. Display the Properties tab of the Message Definition Editor by clicking
Properties in the lower-left corner of the editor area.

5. In the Properties Hierarchy, right-click Includes then click Add Include on the
pop-up menu. The “Select Message Definition file to include” window opens.

6. In the Message Sets pane, select the message definition file that you want to
include. If the message definition files within your project are not visible in this
pane, expand the project hierarchy by clicking +.

7. Click Finish. The message definition file that you selected in step 4 is included
within the message definition file that you opened before beginning this task.

You use the import option if you want to link a message definition file to another
message definition file in a different namespace. You cannot add an import from
the same namespace. This restriction includes linking from a message definition
file with no target namespace to another message definition file with no target
namespace.

To add an import to a message definition file:

1. Switch to the Broker Application Development perspective.

2. Ensure that the Outline view is visible in the Broker Application Development
perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window » Show View -» Outline.

3. In the Outline view, click the message definition (.mxsd) file name.

4. Display the Properties tab of the Message Definition editor by clicking
Properties in the lower-left corner of the editor area.

5. In the Properties Hierarchy, right-click Imports then click Add Import. The
“Select Message Definition file to import” window opens.

6. In the Message Sets pane, select the message definition file that you want to
import from the workspace. If the message definition files within your project
are not visible in this pane, expand the project hierarchy by clicking +.

7. Click Finish. The message definition file that you selected in step 4 is imported
into the schema of the message definition file that you opened before beginning
this task.

Working with a message category file

This topic area lists the tasks that are involved when working with a message
category file.

[‘Creating a message category file”|

[“Opening an existing message category file” on page 126|

[“Adding a message to a message category” on page 126|

[‘Deleting a message from a message category” on page 127

[“Viewing or configuring message category file properties” on page 127]

[‘Deleting a message category file” on page 128|

Creating a message category file

Create a message category file to add categories that you can use to group
different message sets.

Before you start:

Complete the following task:

[‘Creating a message set” on page 83|

To create a message category file:

1.
2.

Switch to the Broker Application Development perspective.

Right-click in the Broker Development view, then select New » Message
Category File to open the New Message Category File wizard.

Tip: To preselect the message set when the wizard opens, either right-click the
message set to which you are adding the message category file, or select
the message set, before you open the wizard.

In the first pane, select the Category Kind for the type of category that you are
creating.

¢ other. This value indicates that this message category represents a generic
grouping of messages. The Category Usage field is disabled.

* wsdl. This value indicates that this message category represents a WSDL
operation. The specified category name is used as the WSDL operation name.

Note: This use of categories is for compatibility with WebSphere Message
Broker Version 6.0 only.

If you set Category Kind to wsdl, specify the WSDL operation type by selecting
one of the following values for the Category Usage field:

* wsdlirequest-response
* wsdl:solicit-response
* wsdl:one-way

* wsdlnotification

Click Next. In the Message Set Folder field, select a folder under the target
message set for the new message category file to be saved. The message set
folder view is filtered to show only resources in the active working set.

In the File name field, type a name for the new message category file. The file
is automatically given the file extension of .category.

Click Next. Select all messages that you want to add to the new category. Use
Shift-click to select a range of messages, and Ctrl-click to select or clear

Developing message models 125

individual messages. You cannot complete the creation of the category file
without adding one or more messages, and setting the Role Type and Role
Usage values of each message correctly.

8. Click Finish. A message category file is created within the message set folder
that you selected, with the name that you specified and a file extension of
.category.

The new message category file opens in the Message Category editor, so that you
can view and edit it as required.

Opening an existing message category file
This describes how to open an existing message category file in the Message
Category editor so that you can view or edit it.

Before you start:

To complete this task, you must have completed the following task:

+ |“Creating a message category file” on page 125|

To open an existing message category file:
1. Switch to the Broker Application Development perspective.

2. In the Broker Development view, right-click the message category file (with a
file extension of .category) that you want to open, then click Open on the
pop-up menu. This opens the message category file that you have selected in
the Message Category editor.

3. View and edit the message category file as required.

Tip: The Eclipse framework lets you open resource files with other editors. You are
advised to only use the workbench Message Category editor to work with the
message category files because this editor correctly validates changes made to
the files. Other editors might not do this.

Adding a message to a message category

You can add a message to a message category file by using the Message Category
editor.

Before you start:

You must have completed the following tasks:

* ["Adding message model objects” on page 97| (to create at least one message)

* |“Creating a message category file” on page 125|

* [“Opening an existing message category file”|

To add a message to a message category file:
1. Switch to the Broker Application Development perspective.
2. Open the Message Category editor.

3. In the Properties Hierarchy, open the Add Messages window by right-clicking
Message Category, then clicking Add Messages. The Add Messages window
lists all the messages that are available for adding to the message category file.
All messages that are in the message set but have not already been added to
the category are displayed.

126 Message Models

4. Select the message or messages that you would like to add. Use Shift-click to
select a range of messages and Ctrl-click to select or clear individual messages.

5. Click OK. The selected message or messages are added to the message category
and now appear in the Properties Hierarchy.

Tip: Until you save the message category file, you can undo all additions that
you make. To undo a change, right-click Message Category in the
Properties Hierarchy, then click Undo. If you have added multiple
messages, this action removes all the messages that you have added. If
you want to remove a single message, right-click this message, then click
Undo. To redo an addition after undoing it, use the Redo option.

6. Save and validate the additions that you have made to the message category
file by clicking File » Save, or by pressing Ctrl+S.

When you have saved the message category file after adding a message, you can
no longer undo the addition of this message by using the Undo option. To remove
a message after saving your changes, delete the message from the message
category file.

When you have added a message to a message category file, you can configure its

properties, according to your requirements, in the Message Category editor Details
view.

Deleting a message from a message category

Delete a message from a message category file.
Before you start:

To complete this task, you must have completed the following tasks:

* |“Creating a message category file” on page 125|

* “Opening an existing message category file” on page 126|

+ [“Adding a message to a message category” on page 126

To delete a message from a message category file:
1. Switch to the Broker Application Development perspective.

2. In the Message Category editor, in the Properties Hierarchy, right-click the
message that you want to delete, then click Delete on the pop-up menu.

Tip: The message is deleted from the message category file immediately,
without a warning appearing first.

Viewing or configuring message category file properties

This topic describes how to view or configure the properties of a message category
file and associated messages using the Message Category editor.

Before you start:

To complete this task, you must have completed the following tasks:

* |“Creating a message category file” on page 125|

+ [“Opening an existing message category file” on page 126|

* [“Adding a message to a message category” on page 126| (You must have added
one or more messages to your message category file)

Developing message models 127

To configure the properties of a message category file:

1. Switch to the Message Category editor in the Broker Application Development
perspective.

2. To view or configure the properties of a message category, click Message
Category in the Properties Hierarchy. From the Details section of the Message
Category editor you can now view the properties of the message category and
make any changes to the properties that are necessary.

3. To view or configure the properties of a message in the message category file,
click the name of the message in the Properties Hierarchy. From the Details
section of the Message Category editor you can now view the properties of the
message and make any changes to the properties that are necessary.

4. If you have changed any of the properties in the message category or messages,
you can save those changes by selecting File » Save from the menu.

Note: Note that some combinations of Message Category Usage, Role Type and
Role Usage are not valid for WSDL and will result in task list errors being
generated.

Deleting a message category file

You can delete a message category file from your message model.
Before you start:

To complete this task, you must have completed the following task:

+ [“Creating a message category file” on page 125|

To delete a message category file:

1. Switch to the Broker Application Development perspective.

2. In the Broker Development view, right-click the message category file
(*.category file extension) that you want to delete, then click Delete.

Alternatively select the message category file in the Broker Development view,
then either click Edit > Delete, or press the Delete key.

3. On the Confirm Resource Delete window, click Yes to delete the message
category file. Alternatively, to cancel the message category file deletion, either
click No or press the Esc key.

Tip: After you have deleted a message category file, the action cannot be undone.

Working with data structures

128 Message Models

You can create a message definition file in a message set by importing from XML
Schema, XML DTD, IBM supplied messages, WSDL definitions, C header files, and
COBOL copybooks. This topic area describes how to import from these data
structures using the command line or the workbench.

Before you attempt to create a message definition from a data structure, by using
the workbench, you are advised to read [“Importing file systems into the]
[workbench” on page 129

The following tasks topics relate to importing by using the workbench:

* [“Importing from C” on page 131|

* [“Importing from COBOL copybooks” on page 133|

* [“Importing from IBM supplied messages” on page 135|

+ [“Importing from WSDL” on page 135|
* [“Importing from XML DTD” on page 13§|
+ “Importing from XML Schema” on page 140

The following tasks relate to importing by using the command line:

* [“Importing from the command line” on page 132| for C header files, COBOL
Copybooks, XML DTDs and XML Schemas.

* [“Importing WSDL definitions from the command line” on page 136|

Importing file systems into the workbench

You can import file systems into the workbench by using the Import wizard, by
dragging, or by copying.

Before the workbench can use files to create a message definition that is based on a
WSDL definition, XML Schema, XML DTD, C header file, or COBOL copybook,
you must import the files, or copy them into the local file structure.

Use one of the following options to import files for use by your selected message
set project:

* |“Using the Import wizard”|

+ ["“Dragging and dropping” on page 130

+ [“Copying and pasting” on page 130|

You can then select the imported file in the New Message Definition File wizard to
create a message definition that is based on the contents of this file.

Using the Import wizard

Use the Import wizard to import all the files, or a selection of files, from the
specified source.

To import files using the Import wizard:

1. Switch to the Broker Application Development perspective.

2. In the Broker Development view, click the project folder into which you are
going to import the files.

3. Open the Import wizard by clicking File » Import.

4. On the Select page of the Import wizard, click either File System or Archive
file, depending on the type of resource that you are importing.

5. Click Next.

6. On the File System page, in the Directory field, specify the import source.
Either type the source name in the field, or click Browse and select the parent

directory, or compressed file that contains the file or files that you want to
import. Then click OK (directory) or Open (compressed file).

Tip: Directories from which you have recently imported files, are shown in
the list in the Directory field.

7. Using the left and right panes that appear under the Directory field, specify
the folders or files, or both, that you want to import. Consider the following
points when you are making your selections:

* To import the entire contents of a folder, select the check box for this folder
in the left pane. To view secondary folders within a folder, expand the
folder by clicking the plus sign (+).

Developing message models 129

130 Message Models

10.

11.

* To import a specific file or files within a folder, use the right pane to select
the individual files that you want to import. If you select a file or files in
the right pane, the check box for the folder containing these files is grayed
in the left pane to indicate that only some of the files in the folder will be
imported.

¢ To restrict the type of files that you are importing, click Filter Types, then,
on the Select Types window, select the check boxes for the file types that
you want to include, and click OK. If you want to include files with
extensions that are not shown in the list, type these extensions in the Other
Extensions field.

* To select all the folders and files that are shown on the File System page,
click Select All.

* To clear all the folders and files that are currently selected on the File
System page, click Deselect All.

The Select the destination for imported resources field has already been set

to the name of the project folder that you selected in step 2.

Optional: To change the destination project or folder, click Browse to open the
Folder Selection window. Select an alternative project folder by clicking the
folder, then clicking OK.

Optional: To overwrite existing resources and not have a warning displayed,
select the Overwrite existing resources without warning check box. This
check box applies to both compressed files and file systems.

File system import only: Select one of the following options, depending on the
folder structure that you want to create:

* Create complete folder structure
* Create selected folders only
Click Finish.

The files that you selected are imported and are shown in the Broker Development
view under the project folder that you selected.

Dragging and dropping

You can use the drag-and-drop method to import files from your file system into
the workbench. Drag the resources that you are importing to the exact location in
the Broker Development view where you want the resources to be. Do not drag
them onto a blank area in the Broker Development view.

To import files by dragging:

1.

3.

In your file system, locate the file or folder that you want to import into the
workbench.

Drag the file or folder to a specific location in the Broker Development view.
When you are dragging resources into the Broker Development view, the
project or folder into which you are trying to drop the resource is selected.

Ensure that the file or folder is copied into the workbench.

Copying and pasting

You can use the copy and paste function of your operating system as a method of
importing a file system into the workbench.

To import files by copying and pasting:

1.

Locate the file or directory that you want to import into the workbench.

2. Using the copy and paste function in the operating system, copy the file or
directory to your system clipboard.

3. Select the destination for the file or directory in the Broker Development view.
4. From the workbench menu, click Edit » Paste.

The files or directories are copied into the workbench, and placed into the location
that you selected.

Importing from C

This topic describes how to create a new message definition from a C header file
using the New Message Definition File wizard in the workbench.

Before you start:

Complete the following tasks:

+ [“Creating a message set” on page 83|

* [“Importing file systems into the workbench” on page 129|

Be aware of the following points:

* To create a new message definition file from a C header file, the header file must
already be present in the workbench, for example in your message set project.
This allows you to select the header file in the New Message Definition File
wizard.

* The wizard can import C header files with .h, .c and .css extensions. If your
source file has a different extension you must rename it before attempting to
import it.

* If the message set to which you are adding the new message definition file does
not have an Custom Wire Format (CWF) layer only the logical information
appears in the model. You can add the physical layer to the message set before
or after importing a C header file, but you should add the physical layer before
importing it to ensure that it is populated with settings from the C header file.

* You can import a C header file from the command line using
mgsicreatemsgdefs.

The following steps cover both creating a completely new message definition file
and overwriting the contents of an existing file.

To create a message definition file from a C header file:
1. Switch to the Broker Application Development perspective.

2. Open the New Message Definition File wizard by clicking File > New »
Message Definition File from the workbench menu. Alternatively, you can
open the wizard by right-clicking a C header file previously imported into the
workbench and clicking New » Message Definition File on the menu.

3. In the displayed list of options, click C header file then click Next.
4. Step through the remainder of the wizard filling in the details as required.

When you have completed importing the C header file using the wizard:

 Carefully check for any errors in the report that is created when the file is
imported. You can find this report in the 1og directory within the project
containing the message definition that you have attempted to create. The report
has a .c.report.txt file extension, prefixed with the name that you specified for
the new message definition file.

Developing message models 131

* Review the messages shown in the workbench task list to check whether any
new warnings or errors have appeared.

Importing from the command line

This describes how to use the command line importer mqsicreatemsgdefs to
import C, COBOL copybooks, XML DTD or XML Schema in order to populate a
message set with message definitions.

Before you start:

Before you attempt this task, you should read the following information:

s Imgsicreatemsgdefs command|

The command line importer allows you to create a new message set, into which
the message definition files will be placed. When you create a new message set
from the command line, only the logical information is created by default.
However, the command line importer allows you to create a new message set
based on an existing message set. The physical format information from the base
message set is also created in the new message set. If you want physical format
information to be created as well, you must do the following before you invoke the
mgqsicreatemsgdefs command:

1. Using the workbench, create a message set in your workspace that is to be used
as a base message set.

2. To this base message set, add the physical formats that you want to be created
in your new message set.

To import C, COBOL copybooks, XML DTD or XML Schema using the command

line:

1. Close the workbench. This must not be running when you use the command
line importer.

2. Invoke the mgsicreatemsgdefs command from a command prompt specifying
the message set project name, path name of the source files folder, and any
other optional parameters that you require. If you want to add physical formats
to the new message set that the mqsicreatemsgdefs command creates, specify
the base message set that contains these physical formats as the -base
parameter on the import command line.

3. When the command has completed, open mqsicreatemsgdefs.report.txt. This
report is created when you invoke the mqsicreatemsgdefs command and by
default is written to the directory from which you invoked the command. The
report provides you with the following information:

* Details of the parameters that were used when mgqsicreatemsgdefs was
invoked.

¢ The message set level action.
* The name of the file or files that have been imported.

¢ Details of the import process (for example, any warnings that have been
generated and message model objects that have been created).

¢ The number of files imported.

4. Start the workbench and switch to the Broker Application Development
perspective. The message definition file that was created when you invoked
mgqsicreatemsgdefs is visible in the project that you specified.

If an error occurs during the import of a C, COBOL copybook, XML DTD, or XML
Schema file, carefully check any errors that the importer reports. By default, all

132 Message Models

errors are written to the screen and to the log file described above. To gather
additional information about the import, specify the -v (Verbose) command line
parameter. This parameter displays more detailed information as the import
proceeds.

Importing from COBOL copybooks

This topic describes how to create a new message definition from a COBOL data
structure using the New Message Definition File wizard in the workbench.

Before you start:

Complete the following tasks:

+ [“Creating a message set” on page 83|

* [“Importing file systems into the workbench” on page 129|

Be aware of the following points:

* To create a new message definition file from a COBOL data structure, the
COBOL file must already be present in the workbench, for example in your
message set project. You can then select the file in the New Message Definition
File wizard.

* The wizard can import COBOL files with .cb1, .ccp, .cob and .cpy extensions.
If your source file has a different extension, you must rename it before
attempting to import it.

e If the message set to which you are adding the new message definition file does
not have a Custom Wire Format (CWF) layer, or a Tagged/Delimited String
(TDS) format layer, only the logical information appears in the model.

You can add the physical layer to the message set before or after importing a
COBOL data structure but ensure that you add the physical layer before you
import the data structure to ensure that it is populated with settings from the
COBOL copybook.

* You can import a COBOL data structure from the command line using
mgsicreatemsgdefs.

The following steps cover creating a new message definition file and overwriting
the contents of an existing file.

To create a message definition file from a COBOL data structure:
1. Switch to the Broker Application Development perspective.

2. Open the New Message Definition File wizard by clicking File > New -
Message Definition File From from the workbench menu.

Alternatively, you can open the wizard by right-clicking a COBOL copybook
that has already been imported into the workbench and clicking New -
Message Definition File.

3. Click COBOL file, then click Next.
4. Step through the remainder of the wizard supplying the details as required.

For more information, see ["New message definition file wizard: Create a new]|
[message definition file from a COBOL file” on page 821

When you have completed importing the COBOL file using the wizard:

 Carefully check for any errors in the report that is created when the file is
imported. You can find this report in the 1og directory within the project
containing the message definition that you have attempted to create. The report

Developing message models 133

134 Message Models

has a .cobol.report.txt file extension, prefixed with the name that you
specified for the new message definition file.

* Review the messages shown in the workbench task list to check whether any
new warnings or errors have appeared.

Importing from the command line

This describes how to use the command line importer mqsicreatemsgdefs to
import C, COBOL copybooks, XML DTD or XML Schema in order to populate a
message set with message definitions.

Before you start:

Before you attempt this task, you should read the following information:

+ Imgsicreatemsgdefs command|

The command line importer allows you to create a new message set, into which
the message definition files will be placed. When you create a new message set
from the command line, only the logical information is created by default.
However, the command line importer allows you to create a new message set
based on an existing message set. The physical format information from the base
message set is also created in the new message set. If you want physical format
information to be created as well, you must do the following before you invoke the
mgqsicreatemsgdefs command:

1. Using the workbench, create a message set in your workspace that is to be used
as a base message set.

2. To this base message set, add the physical formats that you want to be created
in your new message set.

To import C, COBOL copybooks, XML DTD or XML Schema using the command

line:

1. Close the workbench. This must not be running when you use the command
line importer.

2. Invoke the mqsicreatemsgdefs command from a command prompt specifying
the message set project name, path name of the source files folder, and any
other optional parameters that you require. If you want to add physical formats
to the new message set that the mqsicreatemsgdefs command creates, specify
the base message set that contains these physical formats as the -base
parameter on the import command line.

3. When the command has completed, open mqsicreatemsgdefs.report.txt. This
report is created when you invoke the mqsicreatemsgdefs command and by
default is written to the directory from which you invoked the command. The
report provides you with the following information:

* Details of the parameters that were used when mgqsicreatemsgdefs was
invoked.

* The message set level action.
e The name of the file or files that have been imported.

¢ Details of the import process (for example, any warnings that have been
generated and message model objects that have been created).

* The number of files imported.

4. Start the workbench and switch to the Broker Application Development
perspective. The message definition file that was created when you invoked
mgsicreatemsgdefs is visible in the project that you specified.

If an error occurs during the import of a C, COBOL copybook, XML DTD, or XML
Schema file, carefully check any errors that the importer reports. By default, all
errors are written to the screen and to the log file described above. To gather
additional information about the import, specify the -v (Verbose) command line
parameter. This parameter displays more detailed information as the import
proceeds.

Importing from IBM supplied messages

You can create a new message definition file from an IBM supplied message.
Before you start:

You must have completed the following task:

+ [“Creating a message set” on page 83|

The following steps describe how to create a new message definition file, and how
to overwrite the contents of an existing file.

To create a message definition from an IBM supplied message:
1. Switch to the Broker Application Development perspective.

2. Open the New Message Definition File wizard by clicking File > New -
Message Definition File From on the workbench menu.

3. In the displayed list of options, select IBM supplied message and click Next.

4. Complete the fields of the panel that is displayed by the wizard. See |”Nev_v|
[message definition file wizard: IBM supplied message” on page 818 |

When you have finished the import of the IBM supplied message:

* Carefully check for any errors in the report that is created when the file is
imported. You can find this report in the 1og directory within the project that
contains the message definition that you have created. The report has a
.xsd.report.txt file extension, prefixed with the name that you specified for the
new message definition file.

* Review the messages shown in the workbench task list to check whether any
new warnings or errors are displayed.

Importing from WSDL

You can use the New Message Definition File wizard in the workbench to create a
new message definition from WSDL.

There are two methods for importing from WSDL.:

* Create a message set and use the New Message Definition File wizard. This
method is described here.

« Use the Start from WSDL and/or XSD files Quick Start wizard. See
lapplication based on WSDL or XSD files]

If you choose the first of these options, before you start you must have completed
the following tasks:

* [“Creating a message set” on page 83

+ [“Importing file systems into the workbench” on page 129|

The following steps are required to create a completely new message definition
file, or to overwrite the contents of an existing file.

Developing message models 135

136 Message Models

To create a message definition from a WSDL file (or files):
1. Switch to the Broker Application Development perspective.

2. Open the New Message Definition File From ... wizard by clicking File> New>
Message Definition File From ... on the workbench menu.

3. In the displayed list of options, select WSDL file and click Next. Alternatively,
open the wizard by right-clicking a .wsd1 file that was previously imported
into the workbench and clicking New> Message Definition File From ... on the
menu.

4. Step through the remainder of the wizard filling in the details as required.
You must choose whether the WSDL file, or files, that you want to import are
in the current workspace in the workbench or are outside the workspace.
Check boxes provide options to:

* Copy the source file (or files) into a directory of the message set project. By
default, this check box is cleared.

* Add the SOAP and XMLNSC domains to your message set so that you can
use the SOAP nodes. By default, this check box is selected.

Note:

* The panels and options available in the wizard are dependant on the
settings that you select.

* Some fields in the wizard might not be available. This might be
because the field has a mandatory setting, or because the field has
only one possible value, or because the field is not being used as a
result of other settings that have been made.

When you have finished importing the WSDL file (or files) using the wizard:

* Check carefully for any errors in the report that is created when the file is
imported. You can find this report in the Tog directory within the project that
contains the message definition that you have tried to create. The report has a
<wsd1-file-name>.wsdl.report.txt file descriptor, where <wsd1-file-name> is
the name of the WSDL definition that you are importing.

* Review the messages that are shown in the workbench task list to check whether
any new warnings or errors have appeared.

Note: Any required SOAP Envelope and SOAP encoding message definitions are
automatically added to your message set during the import. If required, you
can also import these manually using the New Message Definition File
wizard by selecting the new option IBM supplied message.

Importing WSDL definitions from the command line
WSDL definitions can be imported using the (mqsicreatemsgdefsfromwsdl)
command.

Before you start:

Before you attempt this task, read the following information:

+ Imgsicreatemsgdefsfromwsdl command]|

The WSDL command line importer allows you to create a new namespace enabled
message set into which the message definition files will be placed. It also allows
you to add message definition files to an existing message set that is namespace
enabled.

If you are adding new message definition files to an existing message set, the
message set must have an XML physical format layer. To improve Web services
interoperability, avoid unnecessary customization of the XML physical format layer
for messages that participate in Web services processes.

When you create a new message set from the command line, only the logical
information is created by default. If you require physical formats in the message
set you have two options:

* Create a new message set based on an existing message set. The physical format
information from the base message set is also created in the new message set.

* Use the workbench to create or open the message set and directly add the
physical formats to the message set prior to importing the WSDL definitions into
it.

Before starting the import, the mqsicreatemsgdefsfromwsdl command copies the
WSDL files that it needs into the workspace. These are the top level WSDL file and
any further files that might be imported by it. The files are copied under the
specified message set in a folder called importFiles and are not removed after the
import finishes. This allows you to update them, or run validation on them, in the
workbench at a later time.

To import WSDL definitions using the command line:

1. Close the workbench. The workbench must not be running when you use the
command line importer.

2. Invoke the mgqsicreatemsgdefsfromwsdl command from a command prompt;
you must specify the message set project name, the path name of the directory
where the top level WSDL file is located, the name of that file, the location of
the workspace, and any other optional parameters that you require. If you want
to add physical formats to the new message set that the
mgqsicreatemsgdefsfromwsdl command creates, specify the base message set
that contains these physical formats as the -base parameter on the import
command line.

3. When the command has completed, check the log file. The name of the log file
is the name that you specified in the command, and it has the file extension
*.wsd1.report.txt. This report is created when you invoke the
mgsicreatemsgdefsfromwsdl command and, by default, it is written to the
directory from which you invoked the command. The report provides you with
the following information:

* Details of the parameters that were used when mqsicreatemsgdefsfromwsdl
was invoked.

¢ The name of the file that has been imported.

* Details of the import process (for example, any warnings that have been
generated and message model objects that have been created).

4. Start the workbench and switch to the Broker Application Development
perspective. The message definition file that was created by the
mgsicreatemsgdefsfromwsdl command is visible in the project that you
specified.

If an error occurs during the import of a WSDL definition, carefully check any
errors that are reported. By default, all errors are written both to the screen and to
the file described above. To gather additional information about the import, specify
the -v (Verbose) command line parameter. This parameter displays more detailed
information as the import proceeds.

Developing message models 137

Importing from XML DTD

138 Message Models

You can create a new message definition from an XML DTD by using the New
Message Definition File wizard in the workbench.

Before you start:

You must have completed the following tasks:

* [“Creating a message set” on page 83|

+ “Importing file systems into the workbench” on page 129|

Before you begin this task, you should be aware of the following points:

* To create a new message definition file from an XML DTD, the DTD file must
already be present in the workbench, for example in your message set project.
This allows you to select the DTD file in the New Message Definition File
wizard.

¢ If the message set to which you are adding the new message definition file does
not have an XML wire format (XML) layer only the logical information appears
in the model. You can add the physical layer to the message set before or after
importing from a XML DTD, but you should add the physical layer before
importing it to ensure that it is populated with settings from the XML DTD.

* It is also possible to import an XML DTD from the command line using
mgsicreatemsgdefs.

¢ The file extension must be .dtd in lowercase.

The following steps cover both creating a completely new message definition file
and overwriting the contents of an existing file.

To create a message definition from an XML DTD:
1. Switch to the Broker Application Development perspective.

2. Open the New Message Definition File wizard by clicking File> New>
Message Definition File from the workbench menu.

3. In the displayed list of options, click XML DTD file to select it then click Next.
4. Step through the remainder of the wizard filling in the details as required.

When you have completed importing the XML DTD using the wizard:

* Carefully check for any errors in the report that is created when the file is
imported. You can find this report in the Tog directory within the project
containing the message definition that you have attempted to create. The report
has a .dtd.report.txt file extension, prefixed with the name that you specified
for the new message definition file.

* Review the messages shown in the workbench task list to check whether any
new warnings or errors have appeared.

The message definition file is created from the XML DTD and is opened in the
Message Definition editor so that you can check the imported information and
make any required changes. While you are checking the newly created message
definition file, review any messages that appear in the workbench task list to see
whether you need to make any corrections to resolve errors or warnings relating to
the new file.

Importing from the command line

This describes how to use the command line importer mqsicreatemsgdefs to
import C, COBOL copybooks, XML DTD or XML Schema in order to populate a
message set with message definitions.

Before you start:

Before you attempt this task, you should read the following information:

+ Imgsicreatemsgdefs command|

The command line importer allows you to create a new message set, into which
the message definition files will be placed. When you create a new message set
from the command line, only the logical information is created by default.
However, the command line importer allows you to create a new message set
based on an existing message set. The physical format information from the base
message set is also created in the new message set. If you want physical format
information to be created as well, you must do the following before you invoke the
mgqsicreatemsgdefs command:

1. Using the workbench, create a message set in your workspace that is to be used
as a base message set.

2. To this base message set, add the physical formats that you want to be created
in your new message set.

To import C, COBOL copybooks, XML DTD or XML Schema using the command

line:

1. Close the workbench. This must not be running when you use the command
line importer.

2. Invoke the mgsicreatemsgdefs command from a command prompt specifying
the message set project name, path name of the source files folder, and any
other optional parameters that you require. If you want to add physical formats
to the new message set that the mqsicreatemsgdefs command creates, specify
the base message set that contains these physical formats as the -base
parameter on the import command line.

3. When the command has completed, open mqsicreatemsgdefs.report.txt. This
report is created when you invoke the mqsicreatemsgdefs command and by
default is written to the directory from which you invoked the command. The
report provides you with the following information:

* Details of the parameters that were used when mgqsicreatemsgdefs was
invoked.

¢ The message set level action.
¢ The name of the file or files that have been imported.

* Details of the import process (for example, any warnings that have been
generated and message model objects that have been created).

¢ The number of files imported.

4. Start the workbench and switch to the Broker Application Development
perspective. The message definition file that was created when you invoked
mgqsicreatemsgdefs is visible in the project that you specified.

If an error occurs during the import of a C, COBOL copybook, XML DTD, or XML

Schema file, carefully check any errors that the importer reports. By default, all
errors are written to the screen and to the log file described above. To gather

Developing message models 139

additional information about the import, specify the -v (Verbose) command line
parameter. This parameter displays more detailed information as the import
proceeds.

Importing from XML Schema

You can use the New Message Definition File wizard in the workbench to create a
new message definition from an XML Schema

140 Message Models

Before you start you must have completed the following tasks:

* [“Creating a message set” on page 83|

* [“Importing file systems into the workbench” on page 129|

Before you begin this task, you should be aware of the following points:

To create a new message definition file from an XML Schema, the schema file
must already exist in the workbench; for example, in your message set project.
This allows you to select the schema file in the New Message Definition File
wizard.

If you are importing a collection of related XML Schema files, you are advised to
use the mgsicreatemsgdefs command. This imports all the XML Schema files in a
single operation, and automatically adjusts the import and include paths.

If the message set to which you are adding the new message definition file does
have an XML wire format layer, but no namespace support, the imported schema
is modified to remove namespaces. For this reason, you should enable
namespace support before importing a schema.

If the message set to which you are adding the new message definition file does
not have an XML wire format layer, but does have namespace support, only the
logical information appears in the model. For this reason, you should add the
physical layer to the message set before importing the schema. This ensures that
the message set is populated with the settings and values from the schema. The
XML Schema is not modified to remove namespaces.

If the message set to which you are adding the new message definition file does
not have an XML wire format layer, and does not have namespace support, only
the logical information appears in the model and the imported schema is
modified to remove namespaces.

If you are working with a message set that does not have namespace support,
you must specify the preferences that apply when you import a schema into the
message set. These preferences allow you to specify how the importer treats
certain individual schema constructs. You can either reject the schema if any
occurrences of the construct are encountered or modify occurrences of the
construct. If you choose modify, the importer modifies all occurrences of the
construct.

The extension to the XML Schema file must be .xsd in lowercase.

The following steps create a completely new message definition file or overwrite
the contents of an existing file.

To create a message definition from an XML Schema file:

1.

Switch to the Broker Application Development perspective.

2. Open the New Message Definition File wizard by clicking File> New>

Message Definition File on the workbench menu. Alternatively, you can open
the wizard by right-clicking an *.xsd file that was previously imported into the
workbench and clicking New> Message Definition File on the menu.

3. In the displayed list of options, click XML Schema file to select it, and then
click Next.

4. Step through the remainder of the wizard, filling in the details as required. The
processing time for importing the XML Schema varies according to the size and
complexity of that schema. In a large and complex schema, it can take some
time to import the file, generate the log file and display any task list warnings
Or errors.

When you have finished importing the XML Schema using the wizard:

* Carefully check the log file for any warnings or errors in the report that is
created when the file is imported. These warnings and error messages give
information about whether the schema failed to import or needed to be modified
to enable it to be successfully imported. You can find this report in the Tog
directory structure within the project that contains the message definition that
you have tried to create. The report has a .xsd.report.txt file extension,
prefixed with the name that you specified for the new message definition file.

* Review the messages that are shown in the workbench task list to check whether
any new warnings or error messages have appeared. Although you might have
imported a perfectly valid schema, the task list will display warnings or error
messages for any errors that exist in the message definition file. The following
situations are examples where messages appear:

— If the XML Schema that you are importing contains xsd:key, xsd:keyref and
xsd:unique constructs, warning messages appear in the task list to tell you
that these constructs are unsupported and will be ignored by the broker. If
you prefer to delete these constructs, open the message definition file in the
Message Definition editor, and delete the constructs as described in
[objects” on page 122 Deleting the constructs also removes the warning
messages from the task list. If you decide not to delete the constructs, they
remain in the message model but are not be deployed to the broker, or used
for any other purpose. The warning messages remain in the task list, but you
can use the message model normally.

— If the XML Schema that you are importing contains xsd:redefine constructs,
error messages appear in the task list to tell you that this construct is
unsupported. If you right-click on the error messages and select Quick Fix,
you can choose to convert the xsd:redefine constructs into xsd:include
constructs. This also removes the error messages.

— If the XML Schema that you are importing contains xsd:attribute constructs
that contain both a fixed value and a default value, error messages appear in
the task list to tell you that this construct is unsupported. However, the
schema is still imported and the fixed value is used, not the default value.
The error messages can be ignored.

— If you are importing a collection of related XML Schema files and the
Message Definition Editor cannot resolve the links between two of the
imported files, messages appear in the task list to say that referenced types or
other objects cannot be found. If this occurs, refer to [Resolving problems|
[when developing message models| for more information.

Importing from the command line

This describes how to use the command line importer mqsicreatemsgdefs to
import C, COBOL copybooks, XML DTD or XML Schema in order to populate a
message set with message definitions.

Before you start:

Developing message models 141

Before you attempt this task, you should read the following information:

+ Imgsicreatemsgdefs command|

The command line importer allows you to create a new message set, into which
the message definition files will be placed. When you create a new message set
from the command line, only the logical information is created by default.
However, the command line importer allows you to create a new message set
based on an existing message set. The physical format information from the base
message set is also created in the new message set. If you want physical format
information to be created as well, you must do the following before you invoke the
mgqsicreatemsgdefs command:

1. Using the workbench, create a message set in your workspace that is to be used
as a base message set.

2. To this base message set, add the physical formats that you want to be created
in your new message set.

To import C, COBOL copybooks, XML DTD or XML Schema using the command

line:

1. Close the workbench. This must not be running when you use the command
line importer.

2. Invoke the mgqsicreatemsgdefs command from a command prompt specifying
the message set project name, path name of the source files folder, and any
other optional parameters that you require. If you want to add physical formats
to the new message set that the mqsicreatemsgdefs command creates, specify
the base message set that contains these physical formats as the -base
parameter on the import command line.

3. When the command has completed, open mqsicreatemsgdefs.report.txt. This
report is created when you invoke the mqsicreatemsgdefs command and by
default is written to the directory from which you invoked the command. The
report provides you with the following information:

* Details of the parameters that were used when mgqsicreatemsgdefs was
invoked.

* The message set level action.
e The name of the file or files that have been imported.

* Details of the import process (for example, any warnings that have been
generated and message model objects that have been created).

* The number of files imported.

4. Start the workbench and switch to the Broker Application Development
perspective. The message definition file that was created when you invoked
mgsicreatemsgdefs is visible in the project that you specified.

If an error occurs during the import of a C, COBOL copybook, XML DTD, or XML
Schema file, carefully check any errors that the importer reports. By default, all
errors are written to the screen and to the log file described above. To gather
additional information about the import, specify the -v (Verbose) command line
parameter. This parameter displays more detailed information as the import
proceeds.

Generating documentation from message sets and message flows

You can generate documentation from your message sets, message flows, message
definition files, message maps, Java™ files, ESQL files, and deployable WSDL files.

142 Message Models

To generate documentation that describes your message sets, message flows,
message definition files, message maps, Java files, ESQL files, and deployable
WSDL files:

1. Switch to the Broker Application Development perspective.

2. In the pop-up menu of the Broker Development view, right-click a message set
project, a message set, a message flow, a message definition file, a Java file, an
ESQL file, or a deployable WSDL file, and select the action Generate
Documentation. The Documentation Generation wizard opens.

3. Provide the information that is requested to describe the documentation report
that you want, and click Next to move to the next panel of the wizard.

4. Step through the wizard, clicking Next to move to a new panel, and clicking

Finish when you have described all the information that you want your report
to document.

Generating XML Schemas

You can generate either a single XML Schema from a message definition file, or
multiple XML Schemas from a message set.

To generate a single XML Schema from a message definition file, see
fan XML Schema” on page 144

To generate multiple XML Schemas (one from each message definition file in a
message set) see [Generating XML Schemas.”

Generating XML Schemas

You can generate an XML Schema for each message definition file in a message set.

You must have completed the following tasks:

* [“Creating a message set” on page 83

* [“Working with a message definition file” on page 94|

+ [“Working with message model objects” on page 96|

Note: WebSphere Message Broker uses XML Schema 1.0 to describe the logical
structure of messages.

Tip: You should replace any deprecated constructs before you generate XML
Schema representations of your models.

1. Switch to the Broker Application Development perspective.

2. In the Broker Development view, right-click the message set folder from which
you want to generate XML Schemas, and click Generate> XML Schemas.

3. The Generate XML Schemas window is displayed, and you must put into the
Zip file name field the name of the compressed file (*.zip file extension) that
you want to contain the generated XML Schemas.

4. Select a destination folder for this compressed file. You can choose a location
either inside or outside the workspace:

* Click Create in a workspace directory and select the required destination
folder from the expanded workspace directory. The contents of the folder
that you select are overwritten.

If you want to create a new folder:
a. Click on the desired location.
b. Click Create New Folder.

Developing message models 143

c. Click OK

* Click Export to an external directory and click Browse to expand the
directory. Select a folder from the expanded directory. The contents of the
folder that you select are overwritten.

If you want to create a new folder:
a. Click on the desired location.

b. Click Make New Folder and type the name of the new folder into the
directory tree.

c. Click OK

5. Optional: Choose from the list given in the XML Wire Format field an XML
wire format that you want to use to generate the XML Schemas.

Tip: You must have previously added one or more XML Wire Format layers to
the message set if you want to use an XML physical format when you
generate XML Schemas. For further information see [“Adding an XML wire]
[format” on page 89

6. If you do not want strict generation of an XML Schema, clear the Strict
generation check box at the bottom of the Generate XML Schemas page. By
default, this check box is selected.

Tip: For further information on strict and lax generation of an XML Schema,
see [“Generate XML schema” on page 78]

7. Click Finish. The compressed file that contains your generated XML Schemas is
created.

Generating an XML Schema

144 Message Models

You can generate an XML schema from a message definition file.
Before you start:

You must have completed the following tasks:

+ [“Creating a message set” on page 83|

* ["Working with a message definition file” on page 94|

+ ["Working with message model objects” on page 96|

Note: WebSphere Message Broker uses XML Schema 1.0 to describe the logical
structure of messages.

Tip: You should replace any deprecated constructs before generating XML Schema
representations of your models.

This task topic describes how to generate an XML Schema from a message
definition file:

1. Switch to the Broker Application Development perspective.

2. In the Broker Development view, right-click the message definition file (*.msxd
file extension) from which you want to generate an XML Schema, then click
Generate > XML Schema on the menu.

3. The Generate XML Schema window is displayed, and the message definition
file that you selected is highlighted. The message definition file list is filtered to
only show artifacts in the active working set. If this is not the message
definition file from which you want to generate an XML Schema, select the
correct message definition file.

4. Optional: From the drop down list at the bottom of the Generate XML Schema
window, select the XML Wire Format that you want to use to generate the XML
Schema.

Tip: You must have previously added one or more XML Wire Format layers to
a message set if you want to use an XML physical format when you
generate XML Schema. For further information see [“Adding an XML wire|
[format” on page 89

5. If you do not want strict generation of an XML Schema, clear the Strict
generation check box at the bottom of the Generate XML Schema page. By
default, this check box is selected.

Tip: For further information on strict and lax generation of XML Schema, see
[‘Generate XML schema” on page 78|

6. Click Next to move to the next page of the wizard.

7. Select a destination folder for the XML Schema. You can choose a location
either inside or outside the workspace:

¢ Click Create in a workspace directory and select the required destination
folder from the expanded workspace directory. The contents of the folder
that you select are overwritten.
If you want to create a new folder:
a. Click on the desired location.
b. Click Create New Folder.
c. Click OK
* Click Export to an external directory and click Browse to expand the
directory. Select a folder from the expanded directory. The contents of the
folder that you select are overwritten.
If you want to create a new folder:
a. Click on the desired location.
b. Click Make New Folder and type the name of the new folder into the
directory tree.
c. Click OK
8. Click Finish. Your XML Schema is generated.
9. Use the Broker Development view to locate the destination folder that you
specified for the generated XML Schema. This folder contains a file with exactly
the same name as your message definition file with the file extension *.xsd.

This is the generated XML Schema. To view this file, right-click it, then click
Open on the menu. This opens the schema editor.

Tip: The Design, Source or Graph tabs located in lower-left corner of the
schema editor provide you with different views of generated XML
Schema.

Generating a WSDL definition from a message set

To ensure the highest interoperability of your Web services, use the document style
of WSDL whenever possible. If rpc style WSDL is necessary, use literal encoding.

Before you start you must already have completed the following tasks:

* [“Creating a message set” on page 83

Developing message models 145

146 Message Models

Replace any deprecated constructs before generating WSDL representations of your
message models.

To generate a WSDL definition:
1. Switch to the Broker Application Development perspective.

2. In the Broker Development view, right-click the folder that contains the
message set file from which you want to generate a Web service definition, and
select Generate > WSDL Definition. This starts the Generate WSDL wizard.

3. Step through the wizard filling in the details as required. Some of the panels
and options are subject to settings that you make within the wizard and might
not always be shown. Also, some fields in the wizard might be greyed out. This
happens when a field has a mandatory setting, or when the field is not used
because of settings that have already been made in other fields.

By default, the wizard creates the WSDL in the message set project. If you are
going to use the WSDL to configure a SOAP node, create the WSDL in the
message set, not the message set project.

On completion of the Generate WSDL wizard, you have generated a WSDL
definition. The file extension for WSDL files is .wsdl, and the file extension for any
imported schema files in multi-file mode (where the WSDL definition is split over
a number of files) is .xsd.

This following is an example of the WSDL that is generated for a JMS binding:

<wsdl:service name="'HTTP'>
<wsd1:port binding='tns:JMSSoapBinding' name='HTTP'>
<wsdlsoap:address
location="'jms:/queue?destination=jms/MyQueue&
connectionFactory=jms/MyCF&
priority=5&
targetService=GetQuote'/>
</wsd1:port>
</wsdl:service>

Note: The various parts of the location string are broken over separate lines for
clarity, but are actually generated as a continuous string without additional
white space.

Part 2. Reference

Message model reference information .

Message set preferences . .

Message Set Editor and Message Defmrtron
Editor preferences . .
Validation of the message model

XML Schema Importer

Message set properties e
Custom Wire Format message set properties .
TDS Format message set properties .

XML Wire Format message set properties .
Documentation properties for a message set .

Message definition file properties.

Message definition file includes propertles
Message definition file imports properties .
Message definition file redefines properties
Documentation properties for all message set
objects.

Message category propertres
Message category member propertles

Message model object properties .

Logical properties for message model ob]ects

Physical properties for message model objects
Documentation properties for all message set
objects.

Message model ob]ect propertles by ob]ect

Deprecated message model object properties .
Logical properties for deprecated message
model objects
Physical properties for deprecated message
model objects
Documentation propertles for all message set
objects.

Deprecated message model ob]ect propertres by
object . . .

Additional MRM domam mformatlon .

MRM restrictions . . .
Data types for elements in an MRM message
Additional CWF information .

Additional XML information .

Additional TDS information

DateTime formats .

Additional MIME domain mformatlon
MIME standard header fields .

MIME parser use and restrictions.

Additional IDOC domain information .
Building the message model for the IDOC
parser .

Field names of the IDOC parser structures

Message model task list errors that have a quick fix
. 799
. 799
. 800
. 802
. 804
. 805
. 807

Generated model representations .
Document generation.
WSDL generation .
XML Schema generation.

Import formats . .
Importing from C: supported features . .
Importing from COBOL: supported features .

© Copyright IBM Corp. 2000, 2010

. 149
. 149

. 149
. 150
. 151
. 151
. 154
. 160
. 176
. 183
. 183
. 184
. 184
. 184

. 185
. 185
. 186
. 186

187
216

. 250
. 250
. 613
. 614
. 617
. 621
. 622

. 744
. 745

746

. 747
. 748
. 751
. 780
. 789
. 789
. 793
. 794

. 794
. 796

797

Importing from WSDL: generated objects and

restrictions

Importing from XML Schema unsupported

features . o
Message model w1zards .

New message definition file w1zards

Generate WSDL wizard .

Export WSDL wizard. .o

Configure New Web Service Usage w1zard

. 812

. 815
. 816
. 816
. 823
. 831
. 832

147

148 Message Models

Message model reference information

Reference information in this section can help you develop and configure message
models.

Message model reference information is available for:

+ ["“Message set preferences”]

* ["“Message set properties” on page 151]

* ["Message definition file properties” on page 183|

* [“Message category properties” on page 185
g

* ["“Message model object properties” on page 186|

* ["“Deprecated message model object properties” on page 613

[“Additional MRM domain information” on page 744|

[“Additional MIME domain information” on page 789

[‘Generated model representations” on page 799|

* [“Import formats” on page 804

* ["Message model wizards” on page 816|

Message set preferences

Preferences for message sets.

Property

Type

Meaning

Default version
tag

String

Provide the default version information you would like to be set in the message
set Version property when you create a new message set.

You can alter a number of the preferences that affect the way certain areas of
message set processing are handled. The areas are:

* ["“Message Set Editor and Message Definition Editor preferences’]

+ [“Validation of the message model” on page 150|

* XML Schema Importer” on page 151

Message Set Editor and Message Definition Editor preferences

While looking at a large message set that contains a number of message definition
files that have different namespaces, or multiple message definition files that have
the same namespace, you might want to view the information in alternative ways
to make it easier for you to visualize the structure of the message set. If you
double click on the global construct, you open the message definition file in which
the global construct is defined.

Message set editor settings

Property Type Meaning

Group by Button Selecting this view groups the global constructs by namespace then by collection
namespace and (for example, Messages, Types, Groups, or Elements and Attributes). Using this
then by view you can visualize all of the constructs that belong to each of the defined
collections namespaces.

© Copyright IBM Corp. 2000, 2010

149

Property Type Meaning
Group by Button Selecting this view groups the global constructs by collection (for example,
collections and Messages, Types, Groups, or Elements and Attributes) then by namespace. Using
then by this view you can visualize which global construct in the message set is defined
namespace in which namespace.

Message definition editor settings
Property Type Meaning
Show base Check box Where your complex type is based on another complex type that is derived by
complex types an extension, selecting this will display the base complex type in the outline

view.

Prefix for String This property allows you to specify a prefix to precede the name of the initial
created complex type in the name of the created message. This prefix applies only to
messages messages created from C or COBOL files. The default value is msg_.

Note, however, that no prefix is applied when a message is created from a C file,
and the selected preprocessing option is SAP ALE IDoc or SAP File IDoc.

Tab Extensions

Click Tab Extensions to display check boxes that allow you to determine what tabs
are enabled for the Message Set Editor, the Message Definition Editor, and the
Message Category Editor. All these check boxes are always selected and cannot be
cleared.

Editor Tab Extensions
Message Set Editor Properties
Message Definition Editor Overview
Properties
Message Category Editor Properties

A control is provided that allows you to choose the order in which the tab
extensions for each of the editors are displayed.

Validation of the message model

150 Message Models

You can customize some of the warning messages that are generated by message
set validation. Use the Message Set Validation Preference page to do this.

Any warning or error that falls into a category from the following list can be
customized according to the relevant category. The customization can affect both
severity and priority.

The severity can be one of the following values:
e Error

* Warning

* Info

¢ Ignore

If the severity is not Ignore, the priority can be one of the following values:

High
Normal

Low

If the severity is Ignore, you cannot change the priority.

Message set validation settings

The categories that you can customize are described in the following list:

Use of deprecated constructs

Messages with abstract global elements

Facet runtime validation differences

Type/Element substitution runtime validation differences

Mixed content runtime validation differences

Wildcard runtime validation differences

Unique Particle Attribution checks

Tagged/Delimited String group content

Zero Custom Wire Format length count

Zero Tagged/Delimited String Format length count

Empty Tagged/Delimited String Format tag

List or Union with Custom Wire Format

List or Union with Tagged/Delimited String Format

Unbounded max occurs with Custom Wire Format

Unbounded max occurs with Tagged /Delimited String Format

XML Schema Importer

Preferences for the message set XML Schema Importer.

You can customize the following categories that affect the way in which an XML
Schema is imported into a message set that does not support namespaces.

Category Modify Reject Accept
Import Converts Import to Include |Import fails if it sees an Not applicable
Import
Redefine Removes the Redefine Import fails if it sees a Redefine imported (gives
statements Redefine task list error)
List Changes type base to Import fails if it sees a List |List imported
xsd:string
Union Changes type base to Import fails if it sees a Union imported

xsd:string

Union

Abstract Complex Type

Sets abstract to false

Import fails if it sees an
Abstract Complex Type

Abstract Complex Type
imported

Abstract Element

Sets abstract to false

Import fails if it sees an
Abstract Element

Abstract Element imported

Message set properties

Message sets have properties that you can set to define their characteristics and the
way in which they are processed.

Message model reference information

151

General message set properties

The following table defines the properties that you can set to customize the
message set.

Property Type Meaning

Default String and The message parser name must match the Message Domain property of any input
message check boxes node that processes messages from the message set, or the <Msd> element value
domain and of any MQRFH2 header that precedes a message from the message set.
Supported

message Choose a value from the list offered for the Default Message Domain property, and
domains select check boxes (from Supported Message Domains) to choose other domains.

You can select as many of these check boxes as you want.

Use the message parser name when you write ESQL field references for

messages in the message set; for example, InputRoot.MRM.Document. The

Mapping editor and the content assist feature of the ESQL editor use the
message parser name when they generate ESQL field references.

You can choose from the following names:

* XMLNSC (the default if you select Finish from page two of the New Message
Set wizard). Choose this domain if you want to model XML messages. You
can deploy the message set to brokers if you want, because the XMLNSC
parser optionally uses the message set at run time.

* MRM. Choose this domain for binary or text messages. You can also use this
domain for XML messages. You must deploy the message set to the brokers
that receive these messages. The deploy action creates a runtime dictionary
against which the MRM parser checks the received message.

* SOAP. Choose this domain for SOAP Web Services.
* DataObject. Choose this domain for data from WebSphere Adapters.

* XMLNS. You might need to choose this domain for some kinds of XML
messages. You do not have to deploy the message set to brokers, because the
XMLNS parser does not use the message set at run time.

* JMSMap. Choose this domain if you want to model a JMS MapMessage
message. You do not have to deploy the message set to brokers, because this
parser does not use the message set at run time.

* JMSStream. Choose this domain if you want to model a JMS StreamMessage
message. You do not have to deploy the message set to brokers, because this
parser does not use the message set at run time.

* MIME. Choose this domain if you want to model a MIME message. You do
not have to deploy the message set to brokers, because the MIME parser does
not use the message set at run time.

* XML. This domain is deprecated. Use the XMLNSC domain instead.
* IDOC. This domain is deprecated. Use the MRM domain instead.

152 Message Models

Property

Type

Meaning

Use namespaces

Check box

Select this property if you want to use namespaces within the message set.
Namespaces provide a method of avoiding naming conflicts where different
document definitions have elements of the same name. For further information

see [INamespaces

By default, this check box is selected.

Using namespaces affects how elements are created in the logical message tree.
Each element in the message tree has both a name and a namespace, so an ESQL
or Java reference to one of these elements has to specify both name and
namespace. Therefore, using namespaces has an effect on the ESQL or the Java
that you write.

Always select this property if you want to use the message set to model XML
messages.

MRM domain

Property

Type

Meaning

Default wire
format

String

(Optional) Specify the default wire format used, only if you select MRM as the
default message domain, or MRM is selected in the list of supported message
domains. The default value is <no default specified>.

If you do not select MRM, either as the default message domain or as one of the
supported message domains, the Default Wire Format property is unavailable.

Message set ID

String

This property is a unique identifier that is automatically generated for you when
you create the message set. You cannot change this property.

Message set
alias

String

Specify an alternative unique value that identifies the message set. This property
is only required if you are using the Message Identity technique to identify
embedded messages. Using this technique, the embedded messages are defined
in this message set but the parent message is defined in a different message set,
and the bit stream does not contain the actual message set name or identifier.

Message type
prefix

String

This property is used when you define multipart messages, specifically when
using the Message Path technique to identify embedded messages.

The value that you specify is used as an absolute or relative path to the
innermost message from the outermost, and is used as a prefix to the value of
the Message Type property that is specified for the outermost message (specified
either in the MQRFH2 header of the message, or in the input node of the
message flow).

If you set a value, it must be in the form id1/id2/.../idnu where id1 is the
identifier of the outermost message, id2 is the identifier of the next element or
message, and idn is the identifier of the innermost message. The default value is
blank (not set).

The following table, describing the use of the message set property Message Type
Prefix, shows how this value is combined with the Message Type property of an
input message.

Broker will treat
Length facet as
MaxLength

Check box

Select this property if you want the COBOL importer to create a maxLength
facet, rather than a length facet, for a fixed length string element.

By default, this check box is selected.

Message model reference information 153

Use of the Message type prefix property

The following table shows the implications of using the property Message type
prefix. The message type or message prefix can describe either elements or

messages.
Message Type property example Message type prefix not set Message type prefix set
Simple Message Type:msg_type Results in the simple Message Results in the path Message Type:
Typemsg_type /msg_prefix_1/.../msg_prefix_n/

msg_type

Path Message Type:msg_type_1/.../ |Results in the path Message Results in the combined path

msg_type_m Type:/msg_type_1/.../msg_type_m Message Type: /msg_prefix_1.../
msg_prefix_n /msg_type 1/.../
msg_type_m

Simple absolute Message Results in the simple Message Results in the simple Message

Type:/msg_type Typemmsg_type Type:msg_type
An error is raised if Message Type
Prefix is set to any value other than
msg_type.

Path absolute Message Results in the path Message Results in the path Message

Type:/msg_type_1/.../msg_type_m Type:/msg_type_1/.../msg_type_m Type:/msg_type_1/.../msg_type_m
An error is raised if all identifiers in
Message Type Prefix do not match
the corresponding identifiers in the
resulting path.

If you are using MRM or IDOC domains, in addition to the main message set
properties, you can update message set properties that are specific to each of the
physical formats. The following reference topics describe these properties.

Custom Wire Format message set properties

The tables define the properties that you can set for a Custom Wire Format
message set.

Some of the message set properties (marked with an asterisk (*)) are relevant only
if the message being processed is not using WebSphere MQ as the transport

protocol.

If the transport protocol is WebSphere MQ), values are derived from the message
headers (for example, MQMD), and the message set properties, if set, are ignored.

Binary representation of boolean values

Property Type Meaning
Boolean True String Enter up to eight hexadecimal digits. Do not include the hexadecimal indicator
Value (0x) preceding this number. Each digit is a half byte. The maximum length is 4

bytes. You must enter an even number of digits (a whole number of bytes). This
value must be different from, but the same length as, the Boolean False Value.
The default value is 00000001.

154 Message Models

Property

Type

Meaning

Boolean False
Value

String

Enter up to eight hexadecimal digits. Do not include the hexadecimal indicator
(0x) preceding this number. Each digit is a half byte. The maximum length is 4
bytes. You must enter an even number of digits (a whole number of bytes). This
value must be different from, but the same length as, the Boolean True Value.
The default value is 00000000.

Boolean Null
Value

String

Enter up to eight hexadecimal digits. Do not include the hexadecimal indicator
(0x) preceding this number. Each digit is a half byte. The maximum length is 4
bytes. You must enter an even number of digits (a whole number of bytes). This
value can be the same as either Boolean True Value or Boolean False Value, or
different. The default value is 00000000.

Output settings

Use these settings when messages are being produced.

Property

Type

Meaning

Byte Alignment
Pad

String

If the xsd:element Custom Wire Format properties Byte Alignment, Leading Skip
Count, and Trailing Skip Count cause bytes to be skipped in the bit stream
when the message is serialized, this property supplies the character to be used in
the skipped positions. Set this character in one of the following ways:

* Select SPACE, NUL, or 0 (the default) from the list of values shown.

* Enter a character between quotation marks, for example "c¢" or 'c, where c is
any alphanumeric character.

¢ Enter a decimal character code in the form YY where YY is a decimal value.

* Enter a hexadecimal character code in the form 0xYY where YY is a
hexadecimal value.

* Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Policy for
Missing
Elements

Enumerated

This property determines the action that is taken by the broker when fields are

missing from the message tree when the message is serialized (for output):

* Use Default Value (the default). If a Default Value exists for the element, write
it; otherwise, throw an exception.

* Use Null Value. If the Nillable property of the element is selected, and an
Encoding Null Value is specified for the element, write the Encoding Null Value
according to the rules that are defined by the Encoding Null property;
otherwise, throw an exception.

155

Message model reference information

Property

Type

Meaning

Truncate fixed
length strings

Check box

This property applies only to output strings.

If this check box is selected, and the element or attribute is a fixed length string
(that is, the logical type is xsd:string and the physical type is Fixed Length
String) that is longer than either the length that is specified in the model or the
length reference, the string is truncated to this length. No exception is raised on
output, unless validation (see [Validating messages) is active.

The end from which data is truncated is determined by the value of the
Justification property. If the value of the Justification property is Left justify, data
is truncated from the right; if the value of the Justification property is Right
justify, data is truncated from the left. However, if the value of the Justification
property is Not applicable, truncation does not occur and an exception occurs if
the string is too long.

If this check box is cleared, an exception occurs if the element or attribute is a
fixed length string (that is, the logical type is xsd:string and the physical type is
Fixed Length String) that is longer than either the length that is specified in the
model, or the length reference. This behavior occurs in releases of the WebSphere
Message Broker earlier than Version 6.1.

By default, this check box is cleared.

Binary representation of decimal values

Property

Type

Meaning

Packed Decimal
Positive Code

Enumerated

Select, from the list, the positive sign that is used for packed decimal numbers.
The default value is C, which indicates that 0x0C is used as the positive sign; this
value is used in most systems. You can also select F, which indicates that 0x0F is
used as the positive sign; this value is used in some systems.

Datetime settings

for 2-digit years

Property Type Meaning
Derive default |Button Select this option if you want the default dateTime format to be determined by
dateTime the logical type of the element or attribute.
format from
logical type You can override this property for an element or attribute within a complex
type.
Use default Button and Select this option if you want to specify a default dateTime format that is fixed
dateTime String for all elements or attributes of logical type dateTime, date, time, gYear,
format gYearMonth, gMonth, gMonthDay, and gDay.
You can override this property for an element or attribute within a complex
type.
For more information, see [“DateTime formats” on page 780.|
Start of century |Integer This property determines how 2-digit years are interpreted. Specify the two

digits that start a 100-year window that contains the current year. For example, if
you specify 89, and the current year is 2002, all 2-digit dates are interpreted as
being in the range 1989 - 2088.

156 Message Models

Property Type Meaning

Days in First Enumerated Specify the number of days of the new year that must fall within the first week.

Week of Year
The start of a year typically falls in the middle of a week. If the number of days
in that week is less than the value specified here, the week is considered to be
the last week of the previous year; therefore, week 1 starts some days into the
new year. Otherwise, it is considered to be the first week of the new year; in this
case, week 1 starts some days before the new year.
Select Use Broker Locale, which causes the broker to get the information from
the underlying platform, or select a number from the list that is displayed.

First Day Of Enumerated Specify the day on which each new week starts.

Week

Select Use Broker Locale, which causes the broker to get the information from
the underlying platform, or select a value from the list that is displayed.

Message model reference information 157

Property

Type

Meaning

Strict DateTime
Checking

Check box

Select this option if you want to restrict dateTimes to a valid dateTime format. If
Strict DateTime Checking is selected, receiving an incorrect dateTime causes an
error.

Strict dateTime checking
Examples of strict dateTime checking are:

* DateTimes are restricted to valid dateTimes only. When you use this
option, a date such as the 35th March is not processed as 4th April,
and 10:79 is not processed as 11:19. Receiving an out-of-band
dateTime, such as these examples, causes an error to occur.

e The number of characters for a numeric dateTime component must
be within the bounds of the corresponding formatting symbols.
Repeat the symbol to specify the minimum number of digits that you
require. The maximum number of digits that is permitted becomes
the upper bound for a particular symbol. For example, day in month
has an upper bound of 31; therefore, a format string of 'd" allows the
values 2 and 21 to be parsed, but does not allow the values 32 and
210. On output, numbers are padded with zeros to the specified
length. A year is a special case; see the message set property Start of
century for 2 digit years. For fractional seconds, the length must
implicitly match the number of format symbols on input. The output
is rounded to the specified length.

* White space is not skipped over. The white space in the input string
must correspond with the same number and position of white space
in the formatting string.

* If data remains that is not parsed in the input string after all the
symbols in the formatting string have been matched, an error occurs.

Lenient dateTime checking
Examples of lenient dateTime checking are:

* The parser converts out-of-band dateTime values to the appropriate
in-band value. For example, a date of 2005-05-32 is converted to
2005-06-01.

* Output of dateTimes always adheres to the symbol count. For
example, a formatting string of yyyy-MM-dd (where '-' is the field
separator) allows one or more characters to be parsed against MM
and dd. Therefore, dates that are not valid - for example, 2005-1-123
and 2005-011-12 - can be entered. The first value of 2005-1-123 is
output as the date 2005-05-03, and the second value of 2005-011-12 is
output as the date 2005-11-12.

¢ The number of the timezone formatting symbol Z is applicable only
to the output dateTime format.

¢ White space is skipped over.

Time Zone

Enumerated

The value that you set for this property is used if the value that you specified
for the Default DateTime Format property does not include Time Zone
information.

The initial value is Use Broker Locale, which causes the broker to get the
information from the underlying platform.

You can change this property by selecting from the list of values.

Daylight Saving
Time

Check box

Select this option if the area in the Time Zone property observes daylight saving
time. If it does not observe daylight saving time, do not select this option.

For example, if an area is selected in Time Zone and this option is not selected,
the value passed represents the time zone without the daylight saving time.

158 Message Models

Property

Type

Meaning

Use input UTC
format on
output

Check box

This property applies to elements and attributes of logical type xsd:dateTime or
xsd:time that contain a dateTime as a string and that have a dateTime format of
I, IU, T, or TU, or that include ZZZ or ZZZU.

Such elements and attributes can specify Coordinated Universal Time (UTC) by
using either the Z character or timezone +00:00 in the value. On input, the MRM
parser remembers the way that UTC was specified.

If this property is selected, and the element or attribute is copied to an output
message, the UTC format is preserved into the output message and overrides the
format that is implied by the dateTime format property.

If this property is cleared, or if the element or attribute was not copied from an
input message, the UTC format in the output message is controlled solely by the
dateTime format property.

Character and numeric encoding for non-WebSphere MQ
messages

Use these settings only for messages with no MQMD.

Property

Type

Meaning

Default CCSID*

Integer

Enter a numeric value for the default Coded Character Set Identifier. The default
is 500.

If the input message is a WebSphere MQ message, the equivalent attribute that
is set for the queue manager is used, and this property is ignored.

Default Byte
Order*

Enumerated

Select either Big Endian (the default) or Little Endian from the list to specify the
byte order of numbers that are represented as binary integers.

In C, this is equivalent to data type short or long. In COBOL, this is equivalent
to a PIC 9, COMP, COMP-4, COMP-5, or BINARY data type.

Your choice must match the encoding with which messages are created.
Typically, Big Endian is the correct option for messages that are created on
UNIX® or z/OS® Little Endian is the correct option for messages that are created
on Windows®.

Do not use this property if the message is received across the WebSphere MQ
transport protocol; in this case, the property is deduced from the MQMD of the
message, or from the encoding of the broker queue manager.

Default Packed
Decimal Byte
Order*

Enumerated

Select Big Endian (the default) or Little Endian from the displayed list to specify
the byte order of numbers that are represented as packed decimal. In COBOL,
this is equivalent to PIC 9 COMP-3 data type. There is no equivalent data type
in C.

Your choice must match the encoding with which messages are created.
Typically, Big Endian is the correct option for messages that are created on UNIX
or z/OS; Little Endian is the correct option for messages that are created on
Windows.

Default Float
Format*

Enumerated

Select one of S390 (the default), IEEE, or Reverse IEEE from the displayed list to
specify the byte order of numbers in the message that are represented as floating
point.

Message model reference information 159

TDS Format message set properties

The following tables show the properties that you can set for a TDS format
message set.

See [“Default TDS message set properties” on page 170| for the default settings of

these properties for each of the industry standards.

Messaging Standard

Property Type Meaning
Messaging Enumerated Specify the standard to be used for this wire format. Select one of the following
Standard values:
* User Defined Text - for text data not based on a standard
s SWIFT
* ACORD AL3
* EDIFACT
» X12
* TLOG
* HL7
* CSV - Comma Separated Values
* User Defined Mixed - for mixed text and binary data
If you are defining your own tagged/delimited messages, or are using a
standard that is not included in the list of values shown, select either User
Defined Text, if all your data is text, or User Defined Mixed, if not all your data
is text.
The value that you select for this property determines the default values of some
of the other properties.
The default is User Defined Text.
Data element separation settings
Property Type Meaning
Group Indicator | String Specify the default value of a special character or string that precedes the data
that belongs to a group or complex type within the bit stream.
Group String Specify the default value of a special character or string that terminates data that
Terminator belongs to a group or a complex type within the bit stream.
Delimiter String Specify the default value of a special character or string that specifies the

delimiter that is used between data elements.

This property applies only to the delimited Data Element Separation methods
(Tagged Delimited, All Elements Delimited, and Variable Length Elements
Delimited).

160 Message Models

Property

Type

Meaning

Suppress
Absent Element
Delimiters

Enumerated

Use this property to select whether you want delimiters to be suppressed for
elements that are missing within a message. Select from:

* End Of Type. Use this option to suppress the delimiter when an element is
missing. For example, if the model has been defined to have up to three
elements and only two are present, the last delimiter can be omitted from the
message.

* Never. Use this option to ensure that even if optional elements are not
present, all delimiters are written out. This option must be used when the
same delimiter is used to delimit parent objects and child objects. For
example, if an optional child element is missing and all the delimiters are the
same, message processing applications cannot tell where the child elements in
a message ends and where the next parent element starts.

Tag Data
Separator

String

Specify the default value of a special character or string that separates the tag
from the data.

If you set the property Tag Data Separator, the Length of Tag property is
ignored.

This property applies only to the tagged Data Element Separation methods
(Tagged Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Length of Tag

Integer

Specify the default length of a tag value. When the message is parsed, this
property allows tags to be extracted from the bit stream.

The Tag Data Separator and Length of Tag properties are mutually exclusive. If
you set the property Tag Data Separator, the Length of Tag property is ignored.

This property applies only to the tagged Data Element Separation methods
(Tagged Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Note: Any value that you set for a group or complex type property overrides the

value that you set for the corresponding message set property.

Character data settings

Property

Type

Meaning

Default CCSID

Integer

CCSID (Coded Character Set Identification) specifies the mapping between
character codes and symbols. You must specify a code set that is supported by
WebSphere Message Broker.

This property stores the default CCSID for the message bit stream, but this value
can be overridden when the message is processed (for example, by the CCSID in
the header of a WebSphere MQ input message).

161

Message model reference information

Property

Type

Meaning

Trim on input

Enumerated

This property applies only to elements and attributes with a physical type of
Text. This property specifies whether a simple element or attribute value is to be
trimmed when it is parsed. The property does not apply to a simple element, or
attribute, with a logical type of Boolean or Binary. All trimming is applied to
element or attribute values before the conversion of the value to its logical type.
This property does not apply when writing elements or attributes.

This property only applies to a simple element, or attribute, that is contained
within a complex type or group that has the Justification property set to Left
Justify or Right Justify, and that satisfies one of the following conditions:

* The Data Element Separation property is set to Fixed Length, Fixed Length
AL3, Tagged Fixed Length, Use Data Pattern, or Tagged Encoded Length.

* The Data Element Separation property is set to Variable Length Elements
Delimited, and the element or attribute has a value set for its model length or
length reference.

* The Data Element Separation property is set to Tagged Delimited or All
Elements Delimited, and the Observe Element Length property is set. The
element or attribute has a model length or length reference value set.

This property can be set to one of the following values:
* No Trim. No characters are trimmed from the element or attribute value.

* Leading White Spaces. White space characters are trimmed from the left of the
element or attribute value.

* Trailing White Spaces. White space characters are trimmed from the right of
the element or attribute value.

* Trim Both. White space characters are trimmed from both the left and the
right of the element or attribute value.

* Trim Padding Chars. Padding characters are trimmed from the element or
attribute value. The padding character is set by the Padding Character
property of the element or attribute. If the Justification property of the element
or attribute is set to Left Justify, the padding characters are trimmed from the
right. If the Justification property of the element or attribute is set to Right
Justify, the padding characters are trimmed from the left. If the Justification
property of the element or attribute is set to Not Applicable, no trimming
takes place.

White space characters include control characters that are in the range from
U+0000 to U+001f and from U+007f to U+009f.

You might need to use this property if you have data input that is mapped to a
numeric simple type. For example, if the input data has leading spaces, you can
set this property to Leading White Spaces to avoid data conversion problems
when you process these fields.

162 Message Models

Property

Type

Meaning

Truncate on
output

Check box

This property applies only to output strings that have a physical type of Text.

The property applies to elements or attributes that have a logical type of
xsd:string and that are contained within a structure with a Data Element
Separation of Fixed Length, Fixed Length AL3, Tagged Fixed Length, Use Data
Pattern, or Variable Length Elements Delimited where a length has been
specified.

If this check box is selected, and the element or attribute has a length that is
longer than the length that is specified in the model or the length reference, the
string is truncated to this length. No exception is raised on output, unless
validation (see [Validating messages) is active.

The end from which data is truncated is determined by the value of the
Justification property. If the value of the Justification property is Left justify, data
is truncated from the right; if the value of the Justification property is Right
justify, data is truncated from the left. However, if the value of the Justification
property is Not applicable, truncation does not occur and an exception occurs if
the string is too long.

If this check box is cleared, an exception occurs if the element or attribute is a
fixed length string (that is, the physical type is Text and a length has been
specified) that is longer than either the length that is specified in the model or
the length reference. This behavior occurs in releases of the WebSphere Message
Broker earlier than Version 6.1.

Escape
Character

Button and
String

Specify the escape character that is used to allow special reserved characters
(such as delimiters) to be included as part of data. You must specify a single
character only, or a mnemonic that represents a single character.

Escape characters apply only in variable length fields.

Escape characters, on parsing, always escape the next character, and are always
removed.

Escape characters, on writing, are inserted in front of all the characters that are
listed in Reserved Characters.

You can specify either an escape character or a quote character, but not both, for
a given message set.

Quote
Character

Button and
String

Specify the quote character that is used to allow special reserved characters
(such as delimiters) to be included as part of data. You must specify a single
character only, or a mnemonic that represents a single character.

Quote characters apply only to variable length fields.

Quote characters, on parsing, must be present at both the start and the end of
the data, and are always removed.

Quote characters, on writing, are added to both the start and end of the data, if
the data contains any character that is listed in the Reserved Characters property.

You can specify either an Escape Character or a Quote Character, but not both,
for a given message set.

Message model reference information 163

Property

Type

Meaning

Reserved
Characters

String

Specify any special reserved characters. Either these reserve characters must be
preceded by the Escape Character, or the data field that contains them must be
delimited by a pair of Quote Characters, if they are to be included as part of the
data. The Escape Character, Quote Character, delimiters, and group indicators
must be included in this list.

If the set of reserved characters is to be updated dynamically (in the case of
EDIFACT and X12 when reserved characters, such as delimiters, are specified in
service strings), you must use the supplied mnemonics to specify characters in
this list.

If you have specified Reserved Characters, an Escape Character or a Quote
Character must also be specified.

Reserved characters apply only in variable length fields.

Reserved characters are not used when parsing.

Numeric settings

Property

Type

Meaning

Decimal Point

String

Specify the character that is used to separate the whole part of a number from
its fraction.

Packed decimal
positive code

String

Controls the positive sign that is used for packed decimal fields.

Valid values are C or E.Specify the character that is used to separate the whole
part of a number from its fraction.

Strict Numeric
Checking

Check box

Use this property in conjunction with the Messaging Standard property, the
Virtual Decimal Point property and the Precision property of an element. Using
this property allows you to apply stricter rules for the checking of numbers.

The rules for Strict Numeric Checking are:

* If the Precision property of an element is set to All Significant Digits , a
decimal separator is present only if the value has a fractional part.

* If the Precision property of an element is set to Explicit Decimal Point, the
decimal separator must always be present, even if the fractional part is
missing.

* If the Precision property of an element is set to Exponential Notation, the
incoming value must be in exponential notation. Exponential notation is only
allowed for floating numbers.

* If the Precision property of an element is set to a specific value, the specific
number of digits after the decimal separator must be present.

+ All values must contain at least one digit in the integer part of the number.

e If a Virtual Decimal Point of an element has been set, the number must not
have a decimal point.

* Except for EDIFACT, the decimal separator can be only the specified value,
and "' is not permitted. For EDIFACT, both "." and the specified separator are
permitted. In this case, the decimal separator must be specified as ',' and the
code permits . to be used.

* Except for exponential functions, only digits 0-9, the decimal separator, the
positive sign, and the negative sign are permitted. For exponential functions
the characters 'e' and 'E' are also permitted. Padding characters are permitted
only if they are in a position to be stripped from the number.

164 Message Models

Property Type Meaning
Derive sign Check box If this property is selected, an unset TDS Signed property attempts to derive its
from logical value from the simple type of the element (integer and decimal simple logical
type types only). For these logical types it applies only to the Integer, External
Decimal, and Packed Decimal physical types.
Default byte Enumerated Controls the byte order of numbers that are represented as binary integers for
order messages with no MQMD.
Valid values are Big Endian or Little Endian.
This property stores the default byte order for numbers that are represented as
binary integers for messages with no MQMD, but this value can be overridden
when the message is processed.
Default packed |Enumerated Controls the byte order of numbers that are represented as packed decimal for
decimal byte messages with no MQMD.
order
Valid values are Big Endian or Little Endian.
This property stores the default byte order of numbers that are represented as
packed decimal for messages with no MQMD, but this value can be overridden
when the message is processed.
Default float Enumerated Controls the format of numbers that are represented as float for messages with
format no MQMD.
Valid values are S390, IEEE, or Reverse IEEE.
This property stores the default format of numbers that are represented as float
for messages with no MQMD, but this value can be overridden when the
message is processed.
Representation of boolean values
Property Type Meaning
Text boolean String Specifies the character that represents the text Boolean true value.
true value
Text boolean String Specifies the character that represents the text Boolean false value.
false value
Text boolean String Specifies the character that represents the text Boolean null value.
null value
Binary boolean |String Specifies a hexadecimal value that represents the binary Boolean true value.
true value
Binary boolean |String Specifies a hexadecimal value that represents the binary Boolean false value.
false value
Binary boolean |String Specifies a hexadecimal value that represents the binary Boolean null value.
null value
Datetime settings
Property Type Meaning
Derive default |Button Select this option if you want the default dateTime format to be determined by

dateTime
format from
logical type

the logical type of the element or attribute.

You can override this property for an element or attribute within a complex
type.

Message model reference information 165

for 2-digit years

Property Type Meaning
Use default Button and Select this option if you want to specify a default dateTime format that is fixed
dateTime String for all elements or attributes of logical type dateTime, date, time, gYear,
format gYearMonth, gMonth, gMonthDay, and gDay.
You can override this property for an element or attribute within a complex
type.
For more information, see [“DateTime formats” on page 780.|
Start of century |Integer This property determines how 2-digit years are interpreted. Specify the two

digits that start a 100-year window that contains the current year. For example, if
you specify 89, and the current year is 2002, all 2-digit dates are interpreted as
being in the range 1989 - 2088.

Days in First
Week of Year

Enumerated

Specify the number of days of the new year that must fall within the first week.

The start of a year typically falls in the middle of a week. If the number of days
in that week is less than the value specified here, the week is considered to be
the last week of the previous year; therefore, week 1 starts some days into the
new year. Otherwise, it is considered to be the first week of the new year; in this
case, week 1 starts some days before the new year.

Select Use Broker Locale, which causes the broker to get the information from
the underlying platform, or select a number from the list that is displayed.

First Day Of
Week

Enumerated

Specify the day on which each new week starts.

Select Use Broker Locale, which causes the broker to get the information from
the underlying platform, or select a value from the list that is displayed.

166 Message Models

Property

Type

Meaning

Strict DateTime
Checking

Check box

Select this option if you want to restrict dateTimes to a valid dateTime format. If
Strict DateTime Checking is selected, receiving an incorrect dateTime causes an
error.

Strict dateTime checking
Examples of strict dateTime checking are:

* DateTimes are restricted to valid dateTimes only. When you use this
option, a date such as the 35th March is not processed as 4th April,
and 10:79 is not processed as 11:19. Receiving an out-of-band
dateTime, such as these examples, causes an error to occur.

e The number of characters for a numeric dateTime component must
be within the bounds of the corresponding formatting symbols.
Repeat the symbol to specify the minimum number of digits that you
require. The maximum number of digits that is permitted becomes
the upper bound for a particular symbol. For example, day in month
has an upper bound of 31; therefore, a format string of 'd" allows the
values 2 and 21 to be parsed, but does not allow the values 32 and
210. On output, numbers are padded with zeros to the specified
length. A year is a special case; see the message set property Start of
century for 2 digit years. For fractional seconds, the length must
implicitly match the number of format symbols on input. The output
is rounded to the specified length.

* White space is not skipped over. The white space in the input string
must correspond with the same number and position of white space
in the formatting string.

* If data remains that is not parsed in the input string after all the
symbols in the formatting string have been matched, an error occurs.

Lenient dateTime checking
Examples of lenient dateTime checking are:

* The parser converts out-of-band dateTime values to the appropriate
in-band value. For example, a date of 2005-05-32 is converted to
2005-06-01.

* Output of dateTimes always adheres to the symbol count. For
example, a formatting string of yyyy-MM-dd (where '-' is the field
separator) allows one or more characters to be parsed against MM
and dd. Therefore, dates that are not valid - for example, 2005-1-123
and 2005-011-12 - can be entered. The first value of 2005-1-123 is
output as the date 2005-05-03, and the second value of 2005-011-12 is
output as the date 2005-11-12.

¢ The number of the timezone formatting symbol Z is applicable only
to the output dateTime format.

¢ White space is skipped over.

Time Zone

Enumerated

The value that you set for this property is used if the value that you specified
for the Default DateTime Format property does not include Time Zone
information.

The initial value is Use Broker Locale, which causes the broker to get the
information from the underlying platform.

You can change this property by selecting from the list of values.

Daylight Saving
Time

Check box

Select this option if the area in the Time Zone property observes daylight saving
time. If it does not observe daylight saving time, do not select this option.

For example, if an area is selected in Time Zone and this option is not selected,
the value passed represents the time zone without the daylight saving time.

Message model reference information 167

Property Type Meaning
Use input UTC | Check box This property applies to elements and attributes of logical type xsd:dateTime or
format on xsd:time that have a dateTime format of I, IU, T, or TU, or that include ZZZ or
output Z77U.
Such elements and attributes can specify Coordinated Universal Time (UTC) by
using either the Z character or timezone +00:00 in the value. On input, the MRM
parser remembers the way that UTC was specified.
If this property is selected, and the element or attribute is copied to an output
message, the UTC format is preserved into the output message and overrides the
format that is implied by the dateTime format property.
If this property is cleared, or the element or attribute was not copied from an
input message, the UTC format in the output message is controlled solely by the
dateTime format property.
General settings
Property Type Meaning
Output policy | Enumerated Controls whether the default value or null value is used on output for missing
for missing elements.
elements
Valid values are UseDefaultValue or UseNullValue.
Derive default |Check box If this property is selected, an unset TDS Length property attempts to derive its
length from default value from the simple type of the element (string, binary, integer, and
logical type decimal simple logical types only). For these logical types, it applies only to the
Binary, Text, Integer, External Decimal, and Packed Decimal physical types.

TDS Mnemonics

The Tagged/Delimited String Format (TDS) uses mnemonics for a number of
properties for a message set, complex type, or both. These TDS mnemonics and
their associated properties are listed in the following table.

Mnemonic string

Meaning Default value | Associated property

<EDIFACT_CS>

Component separator in Message set and complex type

EDIFACT or group, Delimiter
<EDIFACT_DS> Data element separator in + Message set and complex type
EDIFACT or group, Delimiter

<EDIFACT_TAGDATA_SEP>

Tag data separator in EDIFACT |+ Message set and complex type

or group, Tug Data Separator
This is overridden with the

same value as that which
overrides <EDIFACT_DS>

<EDIFACT_DEC_NOTATION>

Decimal notation in EDIFACT Message set, Decimal Point

<EDIFACT_ESC_CHAR>

Escape character in EDIFACT |? Message set, Escape Character

<EDIFACT_GROUP_TERM>

Tag terminator in EDIFACT Message set, Group Terminator

<X12_GROUP_TERM>

Tag terminator in X12 ! Message set level, Group

Terminator

<X12_DS> Data element separator for X12 |* Message set and complex type
or group, Delimiter

<X12_CS> Component separator for X12 Message set and complex type

or group, Delimiter

168 Message Models

Mnemonic string

Meaning

Default value

Associated property

<HL7_CS> Component separator in HL7 |~ Message set and complex type
or group, Delimiter

<HL7_FS> Data element separator in HL7 | | Message set and complex type
or group, Delimiter

<HL7_RS> Repeating element delimiter in Local element and element

HL7 reference, Repeating Element

Delimiter

<HL7_SCS> Sub-component separator in Message set and complex type

HL7 or group, Delimiter
Mnemonics for control characters are shown in the following table.
Mnemonic Hex Unicode Description
value

<ACK> X'06' <U+0006> Acknowledge

<BEL> X'07' <U+0007> Bell

<BS> X'08' <U+0008> Backspace

<CAN> X'18' <U+0018> Cancel

<CR> X'0D' <U+000D> Carriage Return

<DC1> X171 <U+0011> Device Control One

<DC2> X'12' <U+0012> Device Control Two

<DC3> X'13' <U+0013> Device Control Three

<DC4> X'14' <U+0014> Device Control Four

<DLE> X'10' <U+0010> Data Link Escape

 X'19' <U+0019> End of Medium

<ENQ> X'05' <U+0005> Inquiry

<EOT> X'04' <U+0004> End of Transmission

<ESC> X'1B' <U+001B> Escape

<ETB> X'17' <U+0017> End of Transmission Block

<ETX> X'03' <U+0003> End of Text

<FF> X'ocC' <U+000C> Form Feed

<FS> X'1C <U+001C> File Separator

<GS> X'1D' <U+001D> Group Separator

<GT> X'3E' <U+003E> Greater Than

<HT> X'09' <U+0009> Horizontal Tabulation

<LF> X'0A <U+000A> Line Feed

<LT> X'3C' <U+003C> Less Than

<NAK> X'15' <U+0015> Negative Acknowledge

<NUL> X'00' <U+0000> Null-

<RS> X'1E' <U+001E> Record Separator

<SI> X'0F' <U+000F> Locking Shift Zero (Shift In)

<SO> X'0E' <U+000E> Locking Shift One (Shift Out)

<SOH> X'or <U+0001> Start of Heading

Message model reference information

169

Mnemonic Hex Unicode Description
value

<SP> X'20' <U+0020> Space

<STX> X'02' <U+0002> Start of Text

<SUB> X'1A' <U+001A> Substitute

<SYN> X'16' <U+0016> Synchronous Idle

<US> X'1F <U+001F> Unit Separator

<VT> X'0B' <U+000B> Vertical Tabulation
These mnemonics were created for characters that cannot be entered into the
message editor.
You can enter a mnemonic in the form <U+NNNN>, where NNNN are hexadecimal
digits. None of the characters in this structure are case-sensitive. Do not enclose
spaces inside the angle brackets. These numbers represent a Unicode character, not
a character in the code page of the input message.
You can enter a mnemonic in the form <0xNN>, where NN are hexadecimal digits.
None of the characters in this structure are case-sensitive. Do not enclose spaces
inside the angle brackets. These numbers represent a raw hexadecimal byte value,
not a character in the code page of the input message.
If a mnemonic is of the form <OxNN>, it is applied directly to the input data, and no
code page conversion takes place. Otherwise, a mnemonic is applied to the data
after the data has been converted into Unicode from the code page of the input
data.
Default TDS message set properties
The following tables define the defaults for the message set properties for the TDS
Format for each of the industry standard messages that you can define.
For more information about the TDS Format, see [“TDS Format message set|
[properties” on page 160|and [“TDS Mnemonics” on page 168
Default message set property values for TDS (part 1 of 3)

Property Messaging standard = User | Messaging Standard = Messaging standard =

Defined Text SWIFT ACORD AL3

Group Indicator Empty <CR><LF>: Empty

Group Terminator | Empty <CR><LF>- Empty

Delimiter Empty <CR><LF>: Empty

Suppress Absent End of Type End of Type End of Type

Element Delimiters

Tag Data Separator |Empty Empty

Length of Tag Empty Empty Empty

Default CCSID 367 37 367

Trim on input No Trim Trim Both No Trim

Truncate on output |Cleared Cleared Cleared

Escape Character Chosen - empty Chosen - empty Chosen - empty

170 Message Models

Property

Messaging standard = User
Defined Text

Messaging Standard =
SWIFT

Messaging standard =
ACORD AL3

Quote character Not chosen Not chosen Not chosen
Reserved Characters | Empty Empty Empty
Decimal Point ,

Packed decimal C Not applicable Not applicable
positive code

Strict Numeric Cleared Selected Selected
Checking

Derive sign from Selected Not applicable Not applicable
logical type

Default byte order |Big Endian Not applicable Not applicable
Default packed Big Endian Not applicable Not applicable
decimal byte order

Default float format |S390 Not applicable Not applicable
Text boolean true 1 1 Y

value

Text boolean false |0 0 N

value

Text boolean null 0 0 N

value

Binary boolean true | 00000001 Not applicable Not applicable
value

Binary boolean false | 00000000 Not applicable Not applicable
value

Binary boolean null | 00000000 Not applicable Not applicable
value

Derive default Chosen Chosen Chosen

dateTime format
from logical type

Use default
DateTime Format'

Not chosen, but

yyyy-MM-dd' T'HH:mm:ssZZZ

if chosen

Not chosen, but
yyyy-MM-dd' T'HH:mm:ssZZZ
if chosen

Not chosen, but
yyyy-MM-dd' T'"HH:mm:ssZZZ
if chosen

Start of century for
2 digit years

53

80

53

Days in First Week
of Year

Use Broker Locale

Use Broker Locale

Use Broker Locale

First Day of Week

Use Broker Locale

Use Broker Locale

Use Broker Locale

Strict Datetime Selected Selected Selected
Checking

Time Zone Use Broker Locale Use Broker Locale Use Broker Locale
Daylight Saving Cleared Cleared Cleared

Time

Use input UTC Cleared Cleared Cleared

format on output

Output policy for | UseDefaultValue UseDefaultValue UseDefaultValue

missing elements

Message model reference information

171

Property Messaging standard = User | Messaging Standard = Messaging standard =
Defined Text SWIFT ACORD AL3
Derive default Selected Selected Selected

length from logical

type

Default message set property values for TDS (part 2 of 3)

<EDIFACT_ESC_CHAR>

Property Messaging standard = Messaging Standard = X12 Messaging standard = TLOG
EDIFACT

Group Indicator Empty Empty Empty

Group Terminator | <EDIFACT_GROUP_TERM> | <X12_GROUP_TERM> Empty

Delimiter <EDIFACT_CS> <X12_CS>

Suppress Absent End of Type End of Type End of Type

Element Delimiters

Tag Data Separator | <EDIFACT_TAGDATA_SEP> |Empty Empty

Length of Tag Empty Empty Empty

Default CCSID 367 367 367

Trim on input Trim Both Trim Both No Trim

Truncate on output |Cleared Cleared Cleared

Escape Character Chosen - Chosen - empty Chosen - empty

Quote character

Not chosen

Not chosen

Not chosen

Reserved Characters

<EDIFACT_ESC_CHAR>
<EDIFACT_TAGDATA_SEP>
<EDIFACT_GROUP_TERM>
<EDIFACT_CS>

Empty

Empty

Decimal Point

<EDIFACT_DEC_NOTATION>| .

Packed decimal
positive code

Not applicable

Not applicable

Not applicable

Strict Numeric
Checking

Selected

Selected

Cleared

Derive sign from
logical type

Not applicable

Not applicable

Not applicable

Default byte order

Not applicable

Not applicable

Not applicable

Default packed
decimal byte order

Not applicable

Not applicable

Not applicable

Default float format

Not applicable

Not applicable

Not applicable

value

Text boolean true 1 1 1
value
Text boolean false 0 0 0
value
Text boolean null 0 0 0

Binary boolean true
value

Not applicable

Not applicable

Not applicable

Binary boolean false

value

Not applicable

Not applicable

Not applicable

172 Message Models

Property Messaging standard = Messaging Standard = X12 Messaging standard = TLOG
EDIFACT

Binary boolean null |Not applicable Not applicable Not applicable

value

Derive default Chosen Chosen Chosen

dateTime format
from logical type

Use default
DateTime Format'

Not chosen, but
yyyy-MM-dd T'HH:mm:ssZZZ
if chosen

Not chosen, but
yyyy-MM-dd THH:mm:ssZZZ
if chosen

Not chosen, but
yyyy-MM-dd THH:mm:ssZZZ
if chosen

Start of century for
2 digit years

53

53

53

Days in First Week
of Year

Use Broker Locale

Use Broker Locale

Use Broker Locale

First Day of Week

Use Broker Locale

Use Broker Locale

Use Broker Locale

Strict Datetime Selected Selected Selected
Checking

Time Zone Use Broker Locale Use Broker Locale Use Broker Locale
Daylight Saving Cleared Cleared Cleared

Time

Use input UTC Cleared Cleared Cleared

format on output

Output policy for | UseDefaultValue UseDefaultValue UseDefaultValue
missing elements

Derive default Selected Selected Selected

length from logical
type

Default message set property values for TDS (part 3 of 3)

Property Messaging standard = HL7 Messaging Standard = CSV | Messaging standard = User
Defined Mixed

Group Indicator Empty Empty Empty

Group Terminator | <CR> Empty Empty

Delimiter <HL7_FS> , Empty

Suppress Absent End of Type Never End of Type

Element Delimiters

Tag Data Separator |<HL7_FS> Empty Empty

Length of Tag Empty Empty Empty

Default CCSID 367 367 850

Trim on input No Trim No Trim Trim Padding Chars

Truncate on output |Cleared Cleared Cleared

Escape Character

Chosen - empty

Not chosen

Chosen - empty

Quote character Not chosen Chosen - " Not chosen
Reserved Empty , Empty
Characters <CR>

<LF>

"

Message model reference information

173

Property

Messaging standard = HL7

Messaging Standard = CSV

Messaging standard = User
Defined Mixed

Decimal Point

dateTime format
from logical type

Packed decimal Not applicable C C
positive code

Strict Numeric Cleared Cleared Cleared
Checking

Derive sign from Not applicable Selected Selected
logical type

Default byte order |Not applicable Big Endian Big Endian
Default packed Not applicable Big Endian Big Endian
decimal byte order

Default float format | Not applicable 5390 5390
Text boolean true 1 1 1

value

Text boolean false |0 0 0

value

Text boolean null 0 0 0

value

Binary boolean true |Not applicable 00000001 00000001
value

Binary boolean Not applicable 00000000 00000000
false value

Binary boolean null | Not applicable 00000000 00000000
value

Derive default Not chosen Chosen Chosen

Use default

Chosen - yyyy-MM-

Not chosen - but

Not chosen - but

2 digit years

DateTime Format' |dd T'HH:mm:ssZZZ yyyy-MM-dd THH:mm:ssZZZ | yyyy-MM-dd T'HH:mm:ssZZZ
if chosen if chosen
Start of century for |53 53 53

Days in First Week
of Year

Use Broker Locale

Use Broker Locale

Use Broker Locale

First Day of Week

Use Broker Locale

Use Broker Locale

Use Broker Locale

length from logical
type

Strict Datetime Selected Selected Selected

Checking

Time Zone Use Broker Locale Use Broker Locale Use Broker Locale
Daylight Saving Cleared Cleared Cleared

Time

Use input UTC Cleared Cleared Cleared

format on output

Output policy for | UseDefaultValue UseDefaultValue UseDefaultValue
missing elements

Derive default Selected Selected Selected

174 Message Models

Default complex type/group property values for TDS (part 1 of 3)

Property

Messaging standard = User
Defined Text

Messaging standard = SWIFT

Messaging standard =
ACORD AL3

Data Element

Fixed Length

Tagged Delimited

Fixed Length AL3

Separation

Group Indicator Empty <CR><LF>: Empty

Group Terminator | Empty <CR><LF>- Empty
Delimiter Empty <CR><LF>: not applicable
Suppress Absent End of Type End of Type End of Type
Element Delimiters

Observe Element Selected Cleared Selected
Length

Tag Data Separator |Empty Empty
Length of Tag Empty Empty Empty

Length of Encoded
Length

not applicable

not applicable

not applicable

Extra Chars in
Encoded Length

not applicable

not applicable

not applicable

Default complex type/group property values for TDS (part 2 of 3)

Property

Messaging standard =
EDIFACT

Messaging standard = X12

Messaging standard = TLOG

Data Element

All Elements Delimited

All Elements Delimited

Fixed length

Separation

Group Indicator Empty Empty Empty
Group Terminator | <EDIFACT_GROUP_TERM> | <X12_GROUP_TERM> Empty
Delimiter <EDIFACT_CS> <X12_CS>

Suppress Absent End of Type End of Type End of Type
Element Delimiters

Observe Element Cleared Cleared Cleared
Length

Tag Data Separator | <EDIFACT_TAGDATA_SEP> |Empty Empty
Length of Tag Empty Empty Empty

Length of Encoded
Length

not applicable

not applicable

not applicable

Extra Chars in
Encoded Length

not applicable

not applicable

not applicable

Default complex type/group property values for TDS (part 3 of 3)

Property

Messaging standard = HL7

Messaging standard = CSV

Messaging standard = User
Defined Mixed

Data Element

All Elements Delimited

All Elements Delimited

Fixed Length

Separation
Group Indicator Empty Empty Empty
Group Terminator | <CR> Empty Empty

Message model reference information

175

Property Messaging standard = HL7 Messaging standard = CSV | Messaging standard = User
Defined Mixed

Delimiter <HL7_FS> p Empty

Suppress Absent End of Type Never End of Type

Element Delimiters

Observe Element Cleared Cleared Selected

Length

Tag Data Separator |<HL7_FS> not applicable Empty

Length of Tag Empty not applicable Empty

Length of Encoded
Length

not applicable

not applicable

not applicable

Extra Chars in
Encoded Length

not applicable

not applicable

not applicable

XML Wire Format message set properties
The following tables define the properties for the XML Wire Format for the

message set.

Namespace settings

Property

Type

Meaning

Namespace URI | String

Enter the name of the namespace that you are using for the associated prefix.

Prefix String Enter the prefix to associate the element and attribute names that you use it with
to the namespace name.
Namespace schema locations
Property Type Meaning

Namespace URI | String

Enter the namespace name that identifies which namespace you are using.

Schema location | String

Enter the location of the schema for the associated namespace name that is used
to validate objects within the namespace.

XML declaration

Property Type Meaning
Suppress XML | Check box Select the check box to suppress the XML declaration. If selected, the declaration
Declaration (for example, <?xm1 version='1.0"'>) is suppressed.

By default, the check box is cleared.
XML Version Enumerated This controls the value of the version in the generated XML declaration.

type .
The default is 1.0.
If you set Suppress XML Declaration to Yes, this property is ignored.

176 Message Models

Property

Type

Meaning

XML Encoding

Enumerated

type

This controls whether an encoding attribute is written in the generated XML
declaration.

If Null is selected, no encoding attribute is written in the XML declaration of the
output XML document.

If As document text is selected, an encoding attribute is generated that is
consistent with the text in the XML document.

The default is Null.

If the Suppress XML Declaration check box is selected, this property is ignored.

Standalone
Document

Enumerated

type

Select Yes, No, or Null from the list of values. If you select Nul1, no standalone
declaration is present in the XML declaration. If you select Yes or No, the
declaration standalone = "yes" or standalone = "no" is added to the XML
declaration when the output message is written. The default value is Nul1.

The setting of this property does not determine whether an external DTD subset
is loaded; external DTD subsets are never loaded in this release.

If the Suppress XML Declaration check box is selected, this property is ignored.

Output
Namespace
Declaration

Enumerated

type

The Output Namespace Declaration property controls where the namespace
declarations are placed in the output XML document. Select from:

e At start of document. Declarations for all of the entries in the Namespace
schema locations table above are output as attributes of the message in the
output XML document. The disadvantage of this option is that, in some cases,
unnecessary declarations might be output.

* As required. Declarations are output only when required by an element or
attribute that is in that namespace. The disadvantage of this option is that the
same namespace declaration might need to be output more than once in the
output XML document.

The default option is At start of document.

This property is active only if namespaces are enabled for this message set.

XML document type settings

Property

Type

Meaning

Suppress
DOCTYPE

Check box

If you select the check box, the DOCTYPE (DTD) declaration is suppressed.

By default, the check box is selected.

DOCTYPE
System 1D

String

Specify the System ID for DOCTYPE external DTD subset (if DOCTYPE is
present). This is typically set to the name of the generated (or imported) DTD
for a message set.

If Suppress DOCTYPE is set, this property is ignored and cannot be changed (the
field is disabled). The default value is www.mrmnames.net/, followed by the
message set identifier.

DOCTYPE
Public ID

String

Specify the Public ID for DOCTYPE external DTD subset (if DOCTYPE is
present, and System ID is specified).

If Suppress DOCTYPE is set, this property is ignored and cannot be changed (the
field is disabled). The default value is the message set identifier.

Message model reference information 177

Property Type Meaning
DOCTYPE Text |String Use this property to add additional DTD declarations. It is not parsed by the
XML parser and, therefore, it might not be valid XML. You can include ENTITY
definitions or internal DTD declarations. It is a string (up to 32 KB) in which
new line and tab characters are replaced by \n and \t respectively.
The content is not parsed, and appears in the output message. If there is an
in-line DTD, the content of this property takes precedence.
If you have set Suppress DOCTYPE, this property is ignored and cannot be
changed (the field is disabled).
For more information, see [“MRM XML: In-line DTDs and the DOCTYPE text]
[property” on page 182
The default value is empty (not set).
XML representation of Boolean values
Property Type Meaning
Boolean True String Specify the string that is used to encode and recognize BOOLEAN true values.
Value When an XML document is parsed, the string 1 is always accepted as true for a
BOOLEAN element. Enter a string of up to 254 characters.
The default is true. 1 is also valid.
Boolean False |String Specify the string that is used to encode and recognize BOOLEAN false values.
Value When an XML document is parsed, the string 0 is always accepted as false for a
BOOLEAN element. Enter a string of up to 254 characters.
The default is false. 0 is also valid.
XML representation of null values
Property Type Meaning
Encoding Enumerated Specify the null encoding for numeric XML elements. This provides a method of
Numeric Null | type assigning a logical null meaning to such elements. You must select one of the

following values from the list shown:

* NULLEmpty. If the element value is the empty string, the element is null. This is
the default value.

* NULLValue. If the element value matches that provided by associated property
Encoding Numeric Null Value, the element is null.

* NULLXMLSchema. If the element contains an xsi:nil attribute that evaluates to
true, the element is null.

* NULLValueAttribute. This option is valid only for elements that have XML
Wire Format property Render set to either XMLElementAttrVal or
XMLETementAttrIDVal. See["XML Null handling options” on page 748| for
details.

* NULLAttribute (deprecated). If the element contains an attribute with a name
that matches that provided by associated property Encoding Numeric Null
Value, and the attribute evaluates to true, the element is null.

* NULLETement (deprecated). If the element contains a child element with a name
that matches that provided by associated property Encoding Numeric Null
Value, the element is null.

See ["XML Null handling options” on page 748| for full details.

178 Message Models

Property Type Meaning
Encoding String Specify the value to qualify the Encoding Numeric Null property, if you have set
Numeric Null that to NULLValue, NULLAttribute, or NULLE]ement. Refer to|“XML Null handling|
Value [options” on page 748| for further information.
Encoding Enumerated Specify the null encoding for non-numeric XML elements. This provides a
Non-Numeric type method of assigning a logical null meaning to such elements. The options are
Null identical to those available for property Encoding Numeric Null.
Encoding String Specify the value to qualify the Encoding Non-Numeric Null property. Refer to
Non-Numeric [“XML Null handling options” on page 748| for further information.
Null Value
DateTime settings
Property Type Meaning
Derive default |Button Select this option if you want the default dateTime format to be determined by
dateTime the logical type of the element or attribute.
format from
logical type You can override this property for an element or attribute within a complex
type.
Use default Button and Select this option if you want to specify a default dateTime format that is fixed
dateTime String for all elements or attributes of logical type dateTime, date, time, gYear,
format gYearMonth, gMonth, gMonthDay, and gDay.
You can override this property for an element or attribute within a complex
type.
For more information, see [“DateTime formats” on page 780
Start of century |Integer This property determines how 2-digit years are interpreted. Specify the two
for 2-digit years digits that start a 100-year window that contains the current year. For example, if
you specify 89, and the current year is 2002, all 2-digit dates are interpreted as
being in the range 1989 - 2088.
Days in First Enumerated Specify the number of days of the new year that must fall within the first week.
Week of Year
The start of a year typically falls in the middle of a week. If the number of days
in that week is less than the value specified here, the week is considered to be
the last week of the previous year; therefore, week 1 starts some days into the
new year. Otherwise, it is considered to be the first week of the new year; in this
case, week 1 starts some days before the new year.
Select Use Broker Locale, which causes the broker to get the information from
the underlying platform, or select a number from the list that is displayed.
First Day Of Enumerated Specify the day on which each new week starts.

Week

Select Use Broker Locale, which causes the broker to get the information from
the underlying platform, or select a value from the list that is displayed.

179

Message model reference information

Property

Type

Meaning

Strict DateTime
Checking

Check box

Select this option if you want to restrict dateTimes to a valid dateTime format. If
Strict DateTime Checking is selected, receiving an incorrect dateTime causes an
error.

Strict dateTime checking
Examples of strict dateTime checking are:

* DateTimes are restricted to valid dateTimes only. When you use this
option, a date such as the 35th March is not processed as 4th April,
and 10:79 is not processed as 11:19. Receiving an out-of-band
dateTime, such as these examples, causes an error to occur.

e The number of characters for a numeric dateTime component must
be within the bounds of the corresponding formatting symbols.
Repeat the symbol to specify the minimum number of digits that you
require. The maximum number of digits that is permitted becomes
the upper bound for a particular symbol. For example, day in month
has an upper bound of 31; therefore, a format string of 'd" allows the
values 2 and 21 to be parsed, but does not allow the values 32 and
210. On output, numbers are padded with zeros to the specified
length. A year is a special case; see the message set property Start of
century for 2 digit years. For fractional seconds, the length must
implicitly match the number of format symbols on input. The output
is rounded to the specified length.

* White space is not skipped over. The white space in the input string
must correspond with the same number and position of white space
in the formatting string.

* If data remains that is not parsed in the input string after all the
symbols in the formatting string have been matched, an error occurs.

Lenient dateTime checking
Examples of lenient dateTime checking are:

* The parser converts out-of-band dateTime values to the appropriate
in-band value. For example, a date of 2005-05-32 is converted to
2005-06-01.

* Output of dateTimes always adheres to the symbol count. For
example, a formatting string of yyyy-MM-dd (where '-' is the field
separator) allows one or more characters to be parsed against MM
and dd. Therefore, dates that are not valid - for example, 2005-1-123
and 2005-011-12 - can be entered. The first value of 2005-1-123 is
output as the date 2005-05-03, and the second value of 2005-011-12 is
output as the date 2005-11-12.

¢ The number of the timezone formatting symbol Z is applicable only
to the output dateTime format.

¢ White space is skipped over.

Time Zone

Enumerated

The value that you set for this property is used if the value that you specified
for the Default DateTime Format property does not include Time Zone
information.

The initial value is Use Broker Locale, which causes the broker to get the
information from the underlying platform.

You can change this property by selecting from the list of values.

Daylight Saving
Time

Check box

Select this option if the area in the Time Zone property observes daylight saving
time. If it does not observe daylight saving time, do not select this option.

For example, if an area is selected in Time Zone and this option is not selected,
the value passed represents the time zone without the daylight saving time.

180 Message Models

Property Type Meaning
Use input UTC | Check box This property applies to elements and attributes of logical type xsd:dateTime or
format on xsd:time that have a dateTime format of I, IU, T, or TU, or that include ZZZ or
output Z77U.
Such elements and attributes can specify Coordinated Universal Time (UTC) by
using either the Z character or timezone +00:00 in the value. On input, the MRM
parser remembers the way that UTC was specified.
If this property is selected, and the element or attribute is copied to an output
message, the UTC format is preserved into the output message and overrides the
format that is implied by the dateTime format property.
If this property is cleared, or the element or attribute was not copied from an
input message, the UTC format in the output message is controlled solely by the
dateTime format property.
xsi:type settings
Property Type Meaning
Output policy | Enumerated When writing XML documents, use this property to specify the circumstances
for xsi:type type under which the xsi:type attribute of elements is produced as output.
attributes

Never Do not produce xsi:type attributes for elements, even if xsi:type

attributes appear in the message tree.

When present
Produce xsi:type attributes for elements only when xsi:type attributes
appear in the message tree. This value is the default value.

Always (Simple elements only)
Ensure that all simple elements are produced with an xsi:type attribute.
If a simple element already has an xsi:type attribute in the message tree,
it is used; otherwise, an xsi:type attribute is generated by using the
rules in the following table.

Always (All elements)
Ensure that all elements are produced with an xsi:type attribute if
possible to do so. If an element already has an xsi:type attribute in the
message tree, it is used; otherwise, an xsi:type attribute is generated by
using the rules in the following table.

Follow SOAP Encoding rules
Follow the same behavior as for Always (Simple elements only).
Additionally, produce a SOAP encoding-style attribute in the root tag of
all messages.

If an xsi:type attribute needs to be produced as output, but does not appear in the
message tree, the value is generated as described in the following table.

Element type

Value generated when element is
defined in model

Value generated when element is
self-defining

Simple type

Use the built-in type which best
matches the data type of the element
in the message tree.

If the type is global or is a built-in
type, use it.

If the type is local, use the global or
built-in type from which it is derived.

Message model reference information 181

Element type

Value generated when element is
defined in model

Value generated when element is
self-defining

Complex type with simple content

If the type is global use it.

If the type is local, use the global or
built-in type from which it is derived.

Use the built-in type which best
matches the data type of the element
in the message tree.

Complex type with complex content

If the type is global use it.

If the type is local, no xsi:type
attribute is produced.

No xsi:type attribute is produced.

Deprecated

Note: The following properties are used to control behavior of the MRM parser;
they should not be changed from their default settings. These properties will
be withdrawn in a future release.

Property Type

Meaning

Root Tag Name

String

Specify the name of the message set root tag. You can leave this property blank,
in which case no wrapper tags are used for messages (that is, the message tag is
the root of the document). The name can be followed by a space and additional
text for attribute/value pairs to appear with the root tag.

The default value is blank.

Suppress
Timestamp
Comment

Check box

If selected, the timestamp comment string in the XML output is suppressed.

If not selected, the comment is not suppressed, and a comment of the form
<!--MRM Generated XML Output on: Tue Apr 23 09:34:42 2002--> is included in
the output message.

The default is for the check box to be selected.

Enable
Versioning
Support

Check box

If this is selected, versioning support is enabled. This property specifies whether
XML namespace definitions are coded for the root tag in the message, together
with namespace qualifiers for any elements that do not belong to the default
namespace. These namespace definitions are used to represent the message set
dependency information, which is used to support the exchange of messages
between applications that are based on different customizations of the same
message set.

The default is for the check box to be selected, for compatibility with MRM XML
messages in earlier releases. If you did not use MRM XML messages in earlier
releases, you should ensure that this check box is not selected.

MRM XML: In-line DTDs and the DOCTYPE text property

You can include in-line DTDs in your messages, and you can specify additional
information by setting the property DOCTYPE Text. The parser takes certain
actions when constructing an output message.

1. If the output message has to be regenerated, for example if you configure a
Compute node to create an output message by coding ESQL statements like SET
QutputRoot.MRM.Fieldl = xxx:

* If you have set the property Suppress DOCTYPE for the message set in which
you have defined this message to Yes, both DOCTYPE information (specified
in the DOCTYPE Text property for the message set or message) and in-line
DTD are excluded from the output message.

182 Message Models

 If you have set the property Suppress DOCTYPE for the message set in which
you have defined this message to No.

— The in-line DTD is preserved if possible.

— Otherwise, if the message is self-defining, the message set DOCTYPE Text
property information is included in the output message.

— Otherwise (the message is not self-defining), the message level DOCTYPE
Text property information is included in the output message.

2. If the output message does not have to be regenerated, the parser generates an
output message that is a direct copy of the input message. This occurs if you
have configured a Compute node in the message flow to copy the message
using SET OutputRoot = InputRoot (explicitly, or by checking the Copy entire
message check box), and you do not modify the message in any way in this or
any other node. In this case the in-line DTD is retained in the output message
but any information that you specify in the DOCTYPE Text property for the
message set or message is not included.

Documentation properties for a message set

Use the documentation property of a message set to add information that enhances
the understanding of the function of the message set.

Property Type Meaning

Version String Use this field to enter a version for the message set. The version of the message set is
then displayed in the Eclipse properties view.
You can set a default value for this field in the message set preferences.

Documentation| String You use the documentation property of a message set to add information that enhances

the understanding of the function of the message set.
This field requires a string value ; you can use any standard alphanumeric characters.

You can also use this field to define a keyword and its value that is displayed for the
deployed message set in the properties view of Eclipse. An example is:

$MQSI Author=Fred MQSI$

When the properties of the deployed message set are displayed, a row is added to the
display showing "Author" as the property name and "Fred" as its value.

Message definition file properties

The properties of a message definition file.

Namespace
Property Type Meaning
Prefix String The namespace prefix for the target namespace of this file. This field cannot be
changed after the message definition file has been created.
Target String The target namespace for the message definition file. All global objects created
Namespace within the file will have this namespace by default. This field cannot be changed

after the message definition file has been created.

Message model reference information 183

Default namespaces for local objects

Property Type Meaning
Elements String The default namespace for all local elements within this message definition file.
Attributes String The default namespace for all local attributes within this message definition file.
Property Type Meaning
Default block String and The default value for the block attribute for all complex types and elements
Enumerated within this message definition file.
type
Default final String and The default value for the final attribute for all complex types and elements
Enumerated within this message definition file.
type
Property Type Meaning
Use xml.xsd Check box Select this check box if you need to use the xml.xsd schema. When you select
schema this check box, the http:/ /www.w3.0rg/2001/xml.xsd schema is imported and
you can use any of the constructs in that schema.
Note: The full text that describes this check box is Use http://www.w3.0rg/2001/
xml.xsd schema.
Message definition file includes properties
The location of each message definition file that has been included in this message
definition file is displayed.
Property Type Meaning
Schema String For each message definition file that has been included in this message
Location definition file, this field displays its location. The location is displayed as a
relative path from the message definition file to the included file.
Message definition file imports properties
The file imports properties of a message definition.
Property Type Meaning
Schema String For each message definition file that has been imported into this message
Location definition file, this field displays its location. The location is displayed as a
relative path from the message definition file to the imported file.
Prefix String Displays the namespace prefix for each imported message definition file.
Namespace String Displays the namespace URI for each imported message definition file.
Message definition file redefines properties
This provides details of the properties associated with message definition redefines.
Property Type Meaning
Schema String For each message definition file that has been redefined in this message
Location definition file, this field displays its location. The location is displayed as a

relative path from the message definition file to the included file.

184 Message Models

Redefines are not supported, and result in a validation error. If you right-click the
error message and select Quick Fix, you can convert the redefines construct into an
include construct, which also removes the error message.

Documentation properties for all message set objects

Use the documentation property of an object to add information that describes the
function of the object.

The documentation property is available on all objects except Key, Keyref, and
Unique objects.

The property is a string field, and you can use any standard alphanumeric
characters.

Message category properties

A message category provides a way of grouping your messages.

The following table describes the properties that are associated with a message

category:
Property Type Meaning
Category Kind | Enumerated This property describes the purpose of the message category.
type

Choose from the following values:

* wsdl. This value is the default. Choose this value if the message category is to
participate in the generation of WSDL documents. When the WSDL document
is generated, the name of the message category provides the name for the
<wsdl:operation> element that is generated for eligible messages in the
message category.

Note: Message categories are no longer necessary for the generation of WSDL
documents; they were necessary in Version 6.0.

e other. This value ndicates that the category represents a generic grouping of
messages as an aid to organizing them in your workspace.

Category Usage

Enumerated

type

Use this property to describe the operation type for a WSDL operation.

Choose from the following values:

* wsdlirequest-response. This is the default if Category Kind is wsdl
* wsdl:solicit-response.

* wsdl:one-way.

* wsdl:notification.

* empty string. This is the default if Category Kind is other.

Documentation

String

Use this property to add information to enhance the understanding of an object's
function.

This property is a string field; any standard alphanumeric characters can be
used.

If Category Kind is wsdl, the value of the field is included in any generated
WSDL as the wsdl:documentation child of the operation element in the WSDL
portType.

If Category Kind is other, the value of the field merely documents the Message
Category within your workspace.

Message model reference information 185

Message category member properties

This describes the properties that are associated with a message category member.

Property Type Meaning

Role Name String If Category Kind is wsdl, the value of the property becomes the WSDL message
part name and must be unique within the category. It always defaults to the
message name.
If Category Kind is other, the value of the property has no particular
significance.

Role Type Enumerated This property determines the role that the message plays in the message

type category.

Select from:
e wsdl:input
* wsdl:output
e wsdl:return
* wsdl:fault
* empty string
If Category Kind is wsdl, the default value is wsdl:input. This property dictates
the role within a WSDL operation. The value wsdl:return implies wsdl:output,
but for rpc-style WSDL generation it also identifies the message part that is used
as the return value and in this instance can be omitted from the parameterOrder
attribute. No more than one message can have Role Type of wsdl:return.
If Category Kind is other, the value defaults to an empty string and this
property has no role in the message category.

Role Usage Enumerated This property determines the role that the message plays in the SOAP binding.

type

Select from:
e soap:body
* soap:header
e soap:fault
e soap:headerfault
e empty string
If Category Kind is wsdl, this property defaults to soap:body and dictates the
SOAP-binding child of the WSDL input, output, or fault element.
If Category Kind is other, this property is deactivated.

Documentation |String This is a string property; any standard alphanumeric characters can be used.

If Category Kind is wsdl, the value of the property is included in any generated
WSDL as the wsdl:documentation child of the WSDL input, output, or fault
element under the WSDL portType.

If Category Kind is other, the value merely documents the Message Category
within your workspace.

Message model object properties

Access property information by property kind, or by object.

186 Message Models

There are two ways of accessing the reference information for the properties of
message model objects. The following topics allow you to access the property
information by property kind:

* [“Logical properties for message model objects”]

+ [“Physical properties for message model objects” on page 216|

+ [“Documentation properties for all message set objects” on page 185|

Alternatively, you can access the property information by object, starting from:

+ [“Message model object properties by object” on page 250|

Deprecated objects are dealt with separately. For further information, see
[‘Deprecated message model object properties” on page 613|

Logical properties for message model objects

Logical property information is available for certain objects.

+ [“Attribute group reference logical properties”|

[“Attribute reference logical properties”]

[‘Complex type logical properties” on page 188|

[“Element reference logical properties” on page 193

[‘Global attribute logical properties” on page 194]

[‘Global attribute group logical properties” on page 197

[‘Global element logical properties” on page 198

[“Global group logical properties” on page 201

[‘Group reference logical properties” on page 203

+ [“Key logical properties” on page 203|

[‘Keyref logical properties” on page 203

[“Local element logical properties” on page 207

[“Local group logical properties” on page 211

* ["“Message logical properties” on page 213|

+ [“Simple type logical properties” on page 213

* [“Unique logical properties” on page 214

[“Wildcard attribute logical properties” on page 215|

+ “Wildcard element logical properties” on page 215|

Attribute group reference logical properties
The logical properties of an attribute group reference.

Property

Type

Meaning

Reference Name

Enumerated

The Reference Name is the name of the object that this object is referring to. The

type objects available to reference can be selected from the list.
Attribute reference logical properties
The logical properties of an attribute reference.
Property Type Meaning

Reference Name

Enumerated

type

objects available to reference can be selected from the list.

The Reference Name is the name of the object that this object is referring to. The

Message model reference information

187

Property

Type

Meaning

Usage

Enumerated

type

Use this property with the Value property found in an attribute object. The
default value for the Usage property is optional.

Select from the following options:
* optional.

— If the Value property is set to default, and no data has been entered in the
Value property, the attribute can appear once and can have any value.

— If the Value property is set to default, the attribute can appear once. If it
does not appear, its value is the data that has been entered in the Value
property. If it does appear, it is the value given.

— Where the Value property is set to fixed, the attribute can appear once. If it
does appear, its value must match the data that has been entered in the
Value property. If it does not appear, its value is the data that has been
entered in the Value property.

* prohibited. The attribute must not appear.
* required.

— If the Value property is set to default, and no data has been entered in the

Value property, the attribute must appear once and can have any value.

— If the Value property is set to fixed, the attribute must appear once, and it
must match the data that has been entered in the Value property.

Complex type logical properties
The logical properties of a complex type include properties that describe content
and substitution settings.

Property

Type

Meaning

Name

String

Specify a name for the object when you create it.

Names can consist of alphanumeric characters, including the letters A through Z,
a through z, and the digits 0 through 9.

They might also include the following punctuation characters;
* - the hyphen
* _ the underscore

* . the period

Names can start only with a letter or the underscore character, and not with a
number, hyphen, or period.

Names that begin with xml, or any variant of these characters (for example XmL),
are reserved by the XML standards specification.

Further details of naming conventions and allowable characters can be found in
the [Extensible Markup Language (XML)| specification that can be found on the
[World Wide Web Consortium (W3C)| Web site.

Base Type

Enumerated

type

You can use this property to select a type (simple or complex) that is used as the
starting point to define a new complex type that is derived by restriction or
extension.

188 Message Models

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Property

Type

Meaning

Derived By

Enumerated If this property is active, select one of the following options:

type

* restriction. If a complex type is derived by restriction, the content model of
the complex type is a subset of the base type.

* extension. If the complex type is derived by extension, the content model of
the complex type is the content model of the base type plus the content model
specified in the type derivation.

Derivation by list or union is not supported.

Content

The following table shows the valid settings for Composition and Content
Validation. These properties are actually located on the group which defines the
content of this type. They can be edited only if the Local group button is selected.
If the Global group button is selected, these properties are taken from the global
group identified by the Group name field.

Valid children in a complex type that depend on both Composition and Content
Validation are shown in [“MRM content validation” on page 192.|

Property

Type

Meaning

Local Group

Button

Select this property if the content of your complex type is a local group.

Message model reference information 189

Property Type Meaning
Composition Enumerated Define the order, and the number of occurrences, of the elements and groups in
type your messages. Composition does not affect the attributes in a complex type.

Select one of the following options:

Empty

sequence. If you select this option, you can define members that are elements
or groups. These members, if present, must appear in the specified order in
the message. They can repeat, and the same element or group can appear
more than once.

choice. If you select this option, you can define members that are elements or
groups. Exactly one of the defined members must be present in the message,
and can repeat.

Use this option if you want to model C unions and COBOL REDEFINES in a
Custom Wire Format, or an XML DTD element that uses choice in an XML
Wire Format, or a SWIFT field that has more than one option.

all. If you select this option, you can define members that are elements;
groups are not allowed. The elements in an all group can appear in any order.
Each element can appear once, or not at all. An all group can be used only at
the top level of a complex type; it cannot be a member of another group
within a type.

unorderedSet.

This option is supported only by the MRM domain.If you select this option,
you can define members that are elements. The elements can repeat, but the
same element cannot appear twice in the list of members. The elements can
appear in any order in the message.

orderedSet.

This option is supported only by the MRM domain.If you select this option,
you can define members that are elements. The elements can repeat, but the
same element cannot appear twice in the list of members. The elements must
appear in the specified order in the message.

message.

This option is supported only by the MRM domain.If you select this option,
you can define only messages as members. Each member can repeat, but the
same message cannot appear twice in the list of members. Like choice, only

one of the defined members can be present in a message.

Unlike choice, when writing a message, if the complex type or group has
more than one member, the bit stream is not padded to the length of the
longest member.

Use this option to model multipart messages, which are used in some
industry standards; for example, SWIFT. For more information, see the section
on multipart messages in [“Multipart messages” on page 26

190 Message Models

Property Type Meaning
Content Enumerated Content Validation is used only by the MRM domain. If validation is enabled in
Validation type your message flow, Content Validation specifies the strictness of the MRM
validation for members of a complex type or group. See
[validation” on page 192| for further details.
Select from the following options:
* Closed. The complex type can only contain the child elements that you have
added to it.
* Open Defined. The complex type can contain any valid element defined
within the message set.
* Open. The complex type can contain any valid element, not just those that
you have added to this complex type.
See [“Combinations of Composition and Content Validation” on page 298| for
further details of these options.
Group Button Select this option if the content of your complex type is a reference to a group
Reference object
Group Name Enumerated The Group Name is the name of the group that this complex type refers to. The
type groups available to be referenced can be selected from the drop down list.
Min Occurs Integer Specify the minimum number of times that the object can repeat. The default
value is 1.
If the value is set to 0, the object is optional.
With the exception of Max Occurs being set to -1, if a value is set for Min
Occurs, it must be less than or equal to the value in Max Occurs.
Max Occurs Integer Specify the maximum number of times that the object can repeat. The default
value is 1.
If this property is not set, the object cannot occur more than once.
If this property is set to 0, it is interpreted as if the object does not exist in the
message.
It can also be set to -1, to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.
Mixed Check box Select this option when the complex type has mixed content, and contains
character data and sub-elements.
Substitution settings
Property Type Meaning
Final Multiple The final attribute on a complex type controls whether other types can be
selection derived from it. Valid values are extension/restriction/all. You can select from
enumerated one or more of the following;:
type « Empty

* restriction. Prohibit type substitution by elements whose types are
restrictions of the head element's type.

» extension. Prohibit type substitution by elements whose types are extensions
of the head element's type.

+ #all. Prohibit substitution by any method.

To select more than one, you must type the selection into the property field.

Message model reference information 191

Property Type Meaning
Block Multiple The block attribute on a complex type restricts the types of substitutions which
selection are allowed for elements based on that type. In the WebSphere Message Broker
enumerated its effect is the same as if the block attribute were copied from the complex type
type onto every element based on the complex type. You can select from one or more
of the following;:
* Empty
* restriction. Prohibit type substitution by elements whose types are
restrictions of the head element's type.
» extension. Prohibit type substitution by elements whose types are extensions
of the head element's type.
+ #all. Prohibit substitution by any method.
To select more than one, you must type the selection into the property field.
Abstract Check box If selected, no elements based on this type can appear in the message.
MRM content validation:
Content Validation is applied when the domain is MRM and validation is enabled.
The Content Validation property specifies how strictly the MRM parser validates
the members of a complex type or group.
The first of the following two tables shows the valid settings for Content
Validation if Composition is set to Message. The second table shows the valid
settings for Content Validation if Composition is not set to Message.
Content Validation options if Composition is set to Message
Option Meaning
Open When a message is parsed, this complex type or group can contain any message, not just those
that you have defined in this message set. You can use this option for sparse messages (see
[‘Predefined and self-defining elements and messages” on page 30| for a definition of sparse
messages).
Closed When a message is parsed, this complex type or group can only contain the messages that are

members of this complex type or group. This is always the case for messages represented in
CWEF format.

Open Defined

When a message is parsed, this complex type or group can contain any message defined within
the message set.

Content Validation options if Composition is not set to Message

Option Meaning

Open When a message is parsed, this complex type or group can contain any elements and not just
those that you have defined in this message set (see [“Predefined and self-defining elements and|
[messages” on page 30| for a definition of sparse messages).

Closed When a message is parsed, this complex type or group can only contain the elements that are

members of this complex type or group.

Open Defined

When a message is parsed, this complex type or group can contain any element that you have
defined within the message set.

When you are using Content Validation set to open or open defined, you cannot
specify the precise position where the content that is not modeled is permitted to

192 Message Models

occur. If you wish to do this, you should consider using a wildcard element as an
alternative. Wildcard elements can appear only within a complex type or group
with Composition of sequence and Content Validation of closed.

Element reference logical properties
The logical properties of an element reference include properties that specify the
number of occurrences of the element reference.

Property Type Meaning
Reference Name | Enumerated The Reference Name is the name of the object that this object is referring to. The
type objects available to reference can be selected from the list.
Occurrences
Property Type Meaning
Min Occurs Integer Specify the minimum number of times that the object can repeat. The default
value is 1.
If the value is set to 0, the object is optional.
With the exception of Max Occurs being set to -1, if a value is set for Min
Occurs, it must be less than or equal to the value in Max Occurs.
Max Occurs Integer Specify the maximum number of times that the object can repeat. The default

value is 1.
If this property is not set, the object cannot occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1, to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

The Min Occurs and Max Occurs properties are used in conjunction with an
element's Value properties. The following table summarizes how an element
reference can be constrained.

Min Occurs

Max Occurs

Fixed Default Notes

1

1

The element must appear once, and can have
any value.

Delta The element must appear once, and it must
match the data that has been entered in the
Value property. In this example, the element

must contain the text Delta.

Delta The element must appear twice or more, and it
must match the data that has been entered in
the Value property. In this example, at least

two elements must contain the text Delta.

The element is optional, can appear once, and
can have any value.

Delta The element is optional, and can appear once.
If it does appear, its value must match the data
that has been entered in the Value property. If
it does not appear, its value is the data that has

been entered in the Value property.

193

Message model reference information

Min Occurs

Max Occurs

Fixed

Default

Notes

0

1

Delta

The element is optional, and can appear once.
If it does not appear, its value is the data that
has been entered in the Value property. If it
does appear, it must be the value given in the
element.

Delta

The element is optional and can appear once,
twice, or not at all. If the element does not
appear, it is not provided. If the element
appears and it is empty, it set to the data held
in the Value property, else it is the value given
in the element.

The element is prohibited, and must not
appear.

Global attribute logical properties
The logical properties of a global attribute.

Property

Type

Meaning

Name

String

* - the hyphen

* . the period

* _ the underscore

Specify a name for the object when you create it.

Names can consist of alphanumeric characters, including the letters A through Z,
a through z, and the digits 0 through 9.

They might also include the following punctuation characters;

Names can start only with a letter or the underscore character, and not with a
number, hyphen, or period.

Names that begin with xml, or any variant of these characters (for example XmL),
are reserved by the XML standards specification.

Further details of naming conventions and allowable characters can be found in

the [Extensible Markup Language (XML)| specification that can be found on the

[World Wide Web Consortium (W3C)| Web site.

194 Message Models

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Property

Type

Meaning

Type

Enumerated

type

The Type property constrains the type of data that can be present in the object.

Select from the following options:
* int

* string

* Boolean

* hexBinary

* dateTime

* date

* time

* decimal

» float

e (More...)

e (New Simple Type)
* (New Complex Type)

If you select (More...), the Type Selection wizard starts. In this wizard, you can
select any of the available types.

If you select (New Simple Type), the New Simple Type wizard starts. In this
wizard, you can create an Anonymous simple type that is based on an existing
type. This type can be created locally or globally.

If you select (New Complex Type), the New Complex Type wizard starts. In this
wizard, you can create an Anonymous complex type, which can be derived from
an existing base type. This type can be created locally or globally.

For further information about these types, and examples of their use, see the

XML Schema Part 0: Primer| This document is available on the [World Wide Web

Consortium (W3C)| Web site.

Namespace

Enumerated

type

Namespaces are a simple method for qualifying element and attribute names by
associating them with namespaces identified by URI references.

If <no target namespace> is displayed, a namespace has not been set for this
object.

If the property is inactive, the message set has not been configured to support
namespaces.

Where the property is active, namespaces that are available for selection are
displayed in the drop-down list.

Value

The Value properties are used with the Usage property in an Attribute Reference or
a Local Attribute.

Message model reference information 195

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/

Property

Type

Meaning

Default

Button and
String

This property provides the default value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, default values are applied to
missing attributes and empty elements as required by the XML Schema
1.0 specification. When writing, elements or attributes that are missing
from the message tree are not automatically added to the output XML
bit stream, even if they have default values. If missing elements or
attributes are required, the message tree can be serialized and then
re-parsed with validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
default value is inserted into the bit stream so that the message
structure is preserved.

MRM (XML physical format)
No support for default values

Other domains
No support for default values.

Fixed

Button and
String

This property provides the fixed value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, if an attribute or element is
present, the value is validated against the fixed value. If the values are
not equal, a validation error is signalled. Also, when parsing with
validation enabled, fixed values are applied to missing attributes and
empty elements as required by the XML Schema 1.0 specification. When
writing, elements or attributes that are missing from the message tree
are not automatically added to the output XML bit stream, even if a
fixed value has been specified. If missing elements or attributes are
required, the message tree can be serialized and then re-parsed with
validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
fixed value is inserted into the bit stream so that the message structure
is preserved.

MRM (XML physical format)
No support for fixed values

Other domains
No support for fixed values.

196 Message Models

Property

Type

Meaning

Interpret Value
As

Enumerated

type

Specify if values stored within this object must be interpreted as having
significance for the parser and, if so, the type of interpretation that must occur.

Select one of the following options:

¢ None This value is the default value, and indicates that the element or
attribute does not have a key value associated with it.

* MessageSetldentity. Specifies that the value of the element or attribute
corresponds to the identifier, name, or alias (in that priority order) that is
associated with the message set where all subsequent embedded messages
that are descendents of the enclosing message are defined. This value remains
in force unless a new element or attribute MessageSetldentity field is
encountered which resets the MessageSetldentity value.

* Messageldentity. Specifies that the value of the element or attribute
corresponds to the name or alias (in that priority order) that is associated with
a message, and acts as an identifier for subsequent embedded messages which
are the immediate children of the enclosing message. This identity applies
until a new element or attribute Messageldentity field is encountered at the
same level in the tree. The embedded message can be defined in either the
current message set, or in a message set identified by using a
MessageSetIdentity.

Note: This property is applicable only when the type of the object is derived
from xsd:string.

Global attribute group logical properties
The logical properties of an attribute group.

Property

Type

Meaning

Name

String

Specify a name for the object when you create it.

Names can consist of alphanumeric characters, including the letters A through Z,
a through z, and the digits 0 through 9.

They might also include the following punctuation characters;
* - the hyphen
* _ the underscore

* . the period

Names can start only with a letter or the underscore character, and not with a
number, hyphen, or period.

Names that begin with xml, or any variant of these characters (for example XmL),
are reserved by the XML standards specification.

Further details of naming conventions and allowable characters can be found in
the [Extensible Markup Language (XML)| specification that can be found on the
[World Wide Web Consortium (W3C)| Web site.

Message model reference information 197

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Global element logical properties
The logical properties of a global element.

Property Type

Meaning

Name String

Specify a name for the object when you create it.

Names can consist of alphanumeric characters, including the letters A through Z,
a through z, and the digits 0 through 9.

They might also include the following punctuation characters;
* - the hyphen
* _ the underscore

* . the period

Names can start only with a letter or the underscore character, and not with a
number, hyphen, or period.

Names that begin with xml, or any variant of these characters (for example XmL),
are reserved by the XML standards specification.

Further details of naming conventions and allowable characters can be found in
the [Extensible Markup Language (XML)| specification that can be found on the
[World Wide Web Consortium (W3C)| Web site.

Type Enumerated
type

The Type property constrains the type of data that can be present in the object.

Select from the following options:
* int

* string

* Boolean

* hexBinary

» dateTime

» date

* time

* decimal

* float

e (More...)

e (New Simple Type)
* (New Complex Type)

If you select (More...), the Type Selection wizard starts. In this wizard, you can
select any of the available types.

If you select (New Simple Type), the New Simple Type wizard starts. In this
wizard, you can create an Anonymous simple type that is based on an existing
type. This type can be created locally or globally.

If you select (New Complex Type), the New Complex Type wizard starts. In this
wizard, you can create an Anonymous complex type, which can be derived from
an existing base type. This type can be created locally or globally.

For further information about these types, and examples of their use, see the
XML Schema Part 0: Primer| This document is available on the [World Wide Web
Consortium (W3C)[Web site.

198 Message Models

http://www.w3.org/TR/REC-xml
http://www.w3.org/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/

Property Type Meaning
Namespace Enumerated Namespaces are a simple method for qualifying element and attribute names by
type associating them with namespaces identified by URI references.
If <no target namespace> is displayed, a namespace has not been set for this
object.
If the property is inactive, the message set has not been configured to support
namespaces.
Where the property is active, namespaces that are available for selection are
displayed in the drop-down list.
Value
Property Type Meaning
Default Button and This property provides the default value for an element or attribute.
String

XMLNSC domain
When parsing with validation enabled, default values are applied to
missing attributes and empty elements as required by the XML Schema
1.0 specification. When writing, elements or attributes that are missing
from the message tree are not automatically added to the output XML
bit stream, even if they have default values. If missing elements or
attributes are required, the message tree can be serialized and then
re-parsed with validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
default value is inserted into the bit stream so that the message
structure is preserved.

MRM (XML physical format)
No support for default values

Other domains
No support for default values.

Message model reference information 199

Property

Type

Meaning

Fixed

Button and
String

This property provides the fixed value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, if an attribute or element is
present, the value is validated against the fixed value. If the values are
not equal, a validation error is signalled. Also, when parsing with
validation enabled, fixed values are applied to missing attributes and
empty elements as required by the XML Schema 1.0 specification. When
writing, elements or attributes that are missing from the message tree
are not automatically added to the output XML bit stream, even if a
fixed value has been specified. If missing elements or attributes are
required, the message tree can be serialized and then re-parsed with
validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
fixed value is inserted into the bit stream so that the message structure
is preserved.

MRM (XML physical format)
No support for fixed values

Other domains
No support for fixed values.

Nillable

Check box

Select this option if you want the element to be able to be defined as null. A null
value is distinct from being empty, when the element contains no data.

Interpret Value
As

Enumerated

type

Specify if values stored within this object must be interpreted as having
significance for the parser and, if so, the type of interpretation that must occur.

Select one of the following options:

¢ None This value is the default value, and indicates that the element or
attribute does not have a key value associated with it.

* MessageSetldentity. Specifies that the value of the element or attribute
corresponds to the identifier, name, or alias (in that priority order) that is
associated with the message set where all subsequent embedded messages
that are descendents of the enclosing message are defined. This value remains
in force unless a new element or attribute MessageSetldentity field is
encountered which resets the MessageSetldentity value.

* Messageldentity. Specifies that the value of the element or attribute
corresponds to the name or alias (in that priority order) that is associated with
a message, and acts as an identifier for subsequent embedded messages which
are the immediate children of the enclosing message. This identity applies
until a new element or attribute Messageldentity field is encountered at the
same level in the tree. The embedded message can be defined in either the
current message set, or in a message set identified by using a
MessageSetldentity.

Note: This property is applicable only when the type of the object is derived
from xsd:string.

Substitution settings

Substitution Groups provide a means by which one element may be substituted for
another in a message. The element which can be substituted is called the 'head'
element, and the substitution group is the list of elements that may be used in its
place. An element can be in at most one substitution group.

200 Message Models

Property Type Meaning
Final Enumerated Limit the set of elements that can belong to its substitution group.
type * Empty
* restriction. Prohibit element substitution by elements whose types are
restrictions of the type of the head element.
* extension. Prohibit element substitution by elements whose types are
extensions of the type of the head element.
* #all. Prohibit substitution by all methods.
Block Enumerated Limit the set of elements that can be substituted for this element in a message.
type « Empty
* restriction. Prohibit element substitution by elements whose types are
restrictions of the type of the head element
* extension. Prohibit element substitution by elements whose types are
extensions of the type of the head element
* substitution. Prohibit element substitution by members of the element's
substitution group.
* #all. Prohibit substitution by all methods.
Substitution Enumerated Specify the name of a head' element. Setting this property indicates that this
Group type element is a member of the substitution group for the head element.
Abstract Check box Select this option if you do not want the element to appear in the message, but
require one of the members of its substitution group to appear in its place.
Global group logical properties
The logical properties of a global group.
Valid children in a global group that depend on both Composition and Content
Validation are shown in ['MRM content validation” on page 192
Property Type Meaning
Name String Specify a name for the object when you create it.

Names can consist of alphanumeric characters, including the letters A through Z,
a through z, and the digits 0 through 9.

They might also include the following punctuation characters;
* - the hyphen

* _ the underscore

* . the period

Names can start only with a letter or the underscore character, and not with a
number, hyphen, or period.

Names that begin with xml, or any variant of these characters (for example XmL),
are reserved by the XML standards specification.

Further details of naming conventions and allowable characters can be found in
the [Extensible Markup Language (XML)| specification that can be found on the
[World Wide Web Consortium (W3C)| Web site.

Message model reference information 201

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Property Type Meaning
Composition Enumerated Define the order, and the number of occurrences, of the elements and groups in
type your messages. Composition does not affect the attributes in a complex type.

Select from the following options:

Empty

sequence. If you select this option, you can define members that are elements
or groups. These members, if present, must appear in the specified order in
the message. They can repeat, and the same element or group can appear
more than once.

choice. If you select this option, you can define members that are elements or
groups. Exactly one of the defined members must be present in the message,
and can repeat.

Use this option if you want to model C unions and COBOL REDEFINES in a
Custom Wire Format, or an XML DTD element that uses choice in an XML
Wire Format, or a SWIFT field that has more than one option.

all. If you select this option, you can define members that are elements;
groups are not allowed. The elements in an all group can appear in any order.
Each element can appear once, or not at all. An all group can be used only at
the top level of a complex type; it cannot be a member of another group
within a type.

unorderedSet.

This option is supported only by the MRM domain.If you select this option,
you can define members that are elements. The elements can repeat, but the
same element cannot appear twice in the list of members. The elements can
appear in any order in the message.

orderedSet.

This option is supported only by the MRM domain.If you select this option,
you can define members that are elements. The elements can repeat, but the
same element cannot appear twice in the list of members. The elements must
appear in the specified order in the message.

message.
This option is supported only by the MRM domain.

If you select this option, you can define only messages as members. Each
member can repeat, but the same message cannot appear twice in the list of
members. Like choice, only one of the defined members can be present in a
message.

Unlike choice, when writing a message, if the complex type or group has
more than one member, the bit stream is not padded to the length of the
longest member.

Use this option to model multipart messages, which are used in some
industry standards; for example, SWIFT. For more information, see the section
on multipart messages in [“Multipart messages” on page 26

202 Message Models

Property Type Meaning
Content Enumerated Content Validation is used only by the MRM domain. If validation is enabled in
Validation type your message flow, Content Validation specifies the strictness of the MRM
validation for members of a complex type or group. See
[validation” on page 192| for further details.
Select from the following options:
* Closed. The complex type can only contain the child elements that you have
added to it.
* Open Defined. The complex type can contain any valid element defined
within the message set.
* Open. The complex type can contain any valid element, not just those that
you have added to this complex type.
See [“Combinations of Composition and Content Validation” on page 298| for
further details of these options.
Group reference logical properties
The logical properties of a group reference include properties that specify the
number of occurrences of the group reference.
Property Type Meaning
Reference Name | Enumerated The Reference Name is the name of the object that this object is referring to. The
type objects available to reference can be selected from the list.
Occurrence properties
Property Type Meaning
Min Occurs Integer Specify the minimum number of times that the object can repeat. The default
value is 1.
If the value is set to 0, the object is optional.
With the exception of Max Occurs being set to -1, if a value is set for Min
Occurs, it must be less than or equal to the value in Max Occurs.
Max Occurs Integer Specify the maximum number of times that the object can repeat. The default

value is 1.
If this property is not set, the object cannot occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1, to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

Key logical properties
There are no properties to show.

Keyref logical properties
This describes the logical properties of a keyref.

There are no properties to show.

203

Message model reference information

Local attribute logical properties
The logical properties of a local attribute.

Property Type

Meaning

Name String

Specify a name for the object when you create it.

Names can consist of alphanumeric characters, including the letters A through Z,
a through z, and the digits 0 through 9.

They might also include the following punctuation characters;
* - the hyphen
* _ the underscore

* . the period

Names can start only with a letter or the underscore character, and not with a
number, hyphen, or period.

Names that begin with xml, or any variant of these characters (for example XmL),
are reserved by the XML standards specification.

Further details of naming conventions and allowable characters can be found in
the [Extensible Markup Language (XML)| specification that can be found on the
[World Wide Web Consortium (W3C)| Web site.

Type Enumerated
type

The Type property constrains the type of data that can be present in the object.

Select from the following options:
* int

* string

* Boolean

* hexBinary

» dateTime

» date

* time

* decimal

* float

e (More...)

e (New Simple Type)
* (New Complex Type)

If you select (More...), the Type Selection wizard starts. In this wizard, you can
select any of the available types.

If you select (New Simple Type), the New Simple Type wizard starts. In this
wizard, you can create an Anonymous simple type that is based on an existing
type. This type can be created locally or globally.

If you select (New Complex Type), the New Complex Type wizard starts. In this
wizard, you can create an Anonymous complex type, which can be derived from
an existing base type. This type can be created locally or globally.

For further information about these types, and examples of their use, see the
XML Schema Part 0: Primer| This document is available on the [World Wide Web
Consortium (W3C)[Web site.

204 Message Models

http://www.w3.org/TR/REC-xml
http://www.w3.org/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/

Property Type Meaning
Namespace Enumerated Namespaces are a simple method for qualifying element and attribute names by
type associating them with namespaces identified by URI references.
If <no target namespace> is displayed, a namespace has not been set for this
object.
If the property is inactive, the message set has not been configured to support
namespaces.
Where the property is active, namespaces that are available for selection are
displayed in the drop-down list.
Value
The Value properties are used in conjunction with the Usage property in an
Attribute Reference or a Local Attribute.
Property Type Meaning
Default Button and This property provides the default value for an element or attribute.
String

XMLNSC domain
When parsing with validation enabled, default values are applied to
missing attributes and empty elements as required by the XML Schema
1.0 specification. When writing, elements or attributes that are missing
from the message tree are not automatically added to the output XML
bit stream, even if they have default values. If missing elements or
attributes are required, the message tree can be serialized and then
re-parsed with validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
default value is inserted into the bit stream so that the message
structure is preserved.

MRM (XML physical format)
No support for default values

Other domains
No support for default values.

Message model reference information 205

Property

Type

Meaning

Fixed

Button and
String

This property provides the fixed value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, if an attribute or element is
present, the value is validated against the fixed value. If the values are
not equal, a validation error is signalled. Also, when parsing with
validation enabled, fixed values are applied to missing attributes and
empty elements as required by the XML Schema 1.0 specification. When
writing, elements or attributes that are missing from the message tree
are not automatically added to the output XML bit stream, even if a
fixed value has been specified. If missing elements or attributes are
required, the message tree can be serialized and then re-parsed with
validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
fixed value is inserted into the bit stream so that the message structure
is preserved.

MRM (XML physical format)
No support for fixed values

Other domains
No support for fixed values.

Interpret Value
As

Enumerated

type

Specify if values stored within this object must be interpreted as having
significance for the parser and, if so, the type of interpretation that must occur.

Select one of the following options:

¢ None This value is the default value, and indicates that the element or
attribute does not have a key value associated with it.

* MessageSetldentity. Specifies that the value of the element or attribute
corresponds to the identifier, name, or alias (in that priority order) that is
associated with the message set where all subsequent embedded messages
that are descendents of the enclosing message are defined. This value remains
in force unless a new element or attribute MessageSetIdentity field is
encountered which resets the MessageSetldentity value.

* Messageldentity. Specifies that the value of the element or attribute
corresponds to the name or alias (in that priority order) that is associated with
a message, and acts as an identifier for subsequent embedded messages which
are the immediate children of the enclosing message. This identity applies
until a new element or attribute Messageldentity field is encountered at the
same level in the tree. The embedded message can be defined in either the
current message set, or in a message set identified by using a
MessageSetIdentity.

Note: This property is applicable only when the type of the object is derived
from xsd:string.

206 Message Models

Usage properties

Property

Type

Meaning

Usage

Enumerated

type

Use this property with the Value property found in an attribute object. The
default value for the Usage property is optional.

Select from the following options:
* optional.

— If the Value property is set to default, and no data has been entered in the
Value property, the attribute can appear once and can have any value.

— If the Value property is set to default, the attribute can appear once. If it
does not appear, its value is the data that has been entered in the Value
property. If it does appear, it is the value given.

— Where the Value property is set to fixed, the attribute can appear once. If it
does appear, its value must match the data that has been entered in the
Value property. If it does not appear, its value is the data that has been
entered in the Value property.

* prohibited. The attribute must not appear.
* required.

— If the Value property is set to default, and no data has been entered in the
Value property, the attribute must appear once and can have any value.

— If the Value property is set to fixed, the attribute must appear once, and it
must match the data that has been entered in the Value property.

Local element logical properties
The logical properties of a local element include properties that specify the number
of occurrences and value of the local element.

Property

Type

Meaning

Name

String

Specify a name for the object when you create it.

Names can consist of alphanumeric characters, including the letters A through Z,
a through z, and the digits 0 through 9.

They might also include the following punctuation characters;
* - the hyphen

* _ the underscore

* . the period

Names can start only with a letter or the underscore character, and not with a
number, hyphen, or period.

Names that begin with xml, or any variant of these characters (for example XmL),
are reserved by the XML standards specification.

Further details of naming conventions and allowable characters can be found in
the [Extensible Markup Language (XML)| specification that can be found on the
[World Wide Web Consortium (W3C)| Web site.

Message model reference information 207

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Property

Type

Meaning

Type

Enumerated

type

The Type property constrains the type of data that can be present in the object.

Select from the following options:
* int

* string

* Boolean

* hexBinary

» dateTime

* date

° time

* decimal

* float

e (More...)

* (New Simple Type)
* (New Complex Type)

If you select (More...), the Type Selection wizard starts. In this wizard, you can
select any of the available types.

If you select (New Simple Type), the New Simple Type wizard starts. In this
wizard, you can create an Anonymous simple type that is based on an existing
type. This type can be created locally or globally.

If you select (New Complex Type), the New Complex Type wizard starts. In this
wizard, you can create an Anonymous complex type, which can be derived from
an existing base type. This type can be created locally or globally.

For further information about these types, and examples of their use, see the

XML Schema Part 0: Primer| This document is available on the [World Wide Web

Consortium (W3C)| Web site.

Namespace

Enumerated

type

Namespaces are a simple method for qualifying element and attribute names by
associating them with namespaces identified by URI references.

If <no target namespace> is displayed, a namespace has not been set for this
object.

If the property is inactive, the message set has not been configured to support
namespaces.

Where the property is active, namespaces that are available for selection are
displayed in the drop-down list.

Occurrences

Property

Type

Meaning

Min Occurs

Integer

Specify the minimum number of times that the object can repeat. The default
value is 1.

If the value is set to 0, the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min
Occurs, it must be less than or equal to the value in Max Occurs.

208 Message Models

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/

Property Type Meaning
Max Occurs Integer Specify the maximum number of times that the object can repeat. The default
value is 1.
If this property is not set, the object cannot occur more than once.
If this property is set to 0, it is interpreted as if the object does not exist in the
message.
It can also be set to -1, to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.
Value
Property Type Meaning
Default Button and This property provides the default value for an element or attribute.
String XMLNSC domain
When parsing with validation enabled, default values are applied to
missing attributes and empty elements as required by the XML Schema
1.0 specification. When writing, elements or attributes that are missing
from the message tree are not automatically added to the output XML
bit stream, even if they have default values. If missing elements or
attributes are required, the message tree can be serialized and then
re-parsed with validation enabled.
MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
default value is inserted into the bit stream so that the message
structure is preserved.
MRM (XML physical format)
No support for default values
Other domains
No support for default values.
Fixed Button and This property provides the fixed value for an element or attribute.
String

XMLNSC domain
When parsing with validation enabled, if an attribute or element is
present, the value is validated against the fixed value. If the values are
not equal, a validation error is signalled. Also, when parsing with
validation enabled, fixed values are applied to missing attributes and
empty elements as required by the XML Schema 1.0 specification. When
writing, elements or attributes that are missing from the message tree
are not automatically added to the output XML bit stream, even if a
fixed value has been specified. If missing elements or attributes are
required, the message tree can be serialized and then re-parsed with
validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
fixed value is inserted into the bit stream so that the message structure
is preserved.

MRM (XML physical format)
No support for fixed values

Other domains
No support for fixed values.

Message model reference information 209

Property

Type

Meaning

Nillable

Check box

Select this option if you want the element to be able to be defined as null. A null
value is distinct from being empty, when the element contains no data.

Interpret Value
As

Enumerated

type

Specify if values stored within this object must be interpreted as having
significance for the parser and, if so, the type of interpretation that must occur.

Select one of the following options:

* None This value is the default value, and indicates that the element or
attribute does not have a key value associated with it.

* MessageSetldentity. Specifies that the value of the element or attribute
corresponds to the identifier, name, or alias (in that priority order) that is
associated with the message set where all subsequent embedded messages
that are descendents of the enclosing message are defined. This value remains
in force unless a new element or attribute MessageSetldentity field is
encountered which resets the MessageSetldentity value.

* Messageldentity. Specifies that the value of the element or attribute
corresponds to the name or alias (in that priority order) that is associated with
a message, and acts as an identifier for subsequent embedded messages which
are the immediate children of the enclosing message. This identity applies
until a new element or attribute Messageldentity field is encountered at the
same level in the tree. The embedded message can be defined in either the
current message set, or in a message set identified by using a
MessageSetldentity.

Note: This property is applicable only when the type of the object is derived
from xsd:string.

Substitution settings

Substitution Groups provide a means by which one element may be substituted for
another in a message. The element which can be substituted is called the 'head'
element, and the substitution group is the list of elements that may be used in its
place. An element can be in at most one substitution group.

Property

Type

Meaning

Final

Enumerated
type

Limit the set of elements that can belong to its substitution group.

* Empty

* restriction. Prohibit element substitution by elements whose types are
restrictions of the type of the head element.

* extension. Prohibit element substitution by elements whose types are
extensions of the type of the head element.

* #all. Prohibit substitution by all methods.

Block

Enumerated

type

Limit the set of elements that can be substituted for this element in a message.

* Empty

* restriction. Prohibit element substitution by elements whose types are
restrictions of the type of the head element

* extension. Prohibit element substitution by elements whose types are
extensions of the type of the head element

* substitution. Prohibit element substitution by members of the element's
substitution group.

* #all. Prohibit substitution by all methods.

Substitution
Group

Enumerated

type

Specify the name of a 'head' element. Setting this property indicates that this
element is a member of the substitution group for the head element.

210 Message Models

Property Type Meaning
Abstract Check box Select this option if you do not want the element to appear in the message, but
require one of the members of its substitution group to appear in its place.

Local group logical properties
The logical properties of a local group include properties that specify the number
of occurrences of the local group.
Valid children in a local group that depend on both Composition and Content
Validation are shown in [“MRM content validation” on page 192

Property Type Meaning

Composition Enumerated Define the order, and the number of occurrences, of the elements and groups in

type your messages. Composition does not affect the attributes in a complex type.

Select from the following options:

* Empty

* sequence. If you select this option, you can define members that are elements
or groups. These members, if present, must appear in the specified order in

the message. They can repeat, and the same element or group can appear
more than once.

* choice. If you select this option, you can define members that are elements or
groups. Exactly one of the defined members must be present in the message,
and can repeat.

Use this option if you want to model C unions and COBOL REDEFINES in a
Custom Wire Format, or an XML DTD element that uses choice in an XML
Wire Format, or a SWIFT field that has more than one option.

* all. If you select this option, you can define members that are elements;
groups are not allowed. The elements in an all group can appear in any order.
Each element can appear once, or not at all. An all group can be used only at
the top level of a complex type; it cannot be a member of another group
within a type.

* unorderedSet.

This option is supported only by the MRM domain.If you select this option,
you can define members that are elements. The elements can repeat, but the
same element cannot appear twice in the list of members. The elements can
appear in any order in the message.

e orderedSet.

This option is supported only by the MRM domain.If you select this option,
you can define members that are elements. The elements can repeat, but the
same element cannot appear twice in the list of members. The elements must
appear in the specified order in the message.

* message.
This option is supported only by the MRM domain.

If you select this option, you can define only messages as members. Each
member can repeat, but the same message cannot appear twice in the list of
members. Like choice, only one of the defined members can be present in a
message.

Unlike choice, when writing a message, if the complex type or group has
more than one member, the bit stream is not padded to the length of the
longest member.

Use this option to model multipart messages, which are used in some
industry standards; for example, SWIFT. For more information, see the section
on multipart messages in ["Multipart messages” on page 26|

Message model reference information 211

Property Type Meaning
Content Enumerated Content Validation is used only by the MRM domain. If validation is enabled in
Validation type your message flow, Content Validation specifies the strictness of the MRM
validation for members of a complex type or group. See
[validation” on page 192| for further details.
Select from the following options:
* Closed. The complex type can only contain the child elements that you have
added to it.
* Open Defined. The complex type can contain any valid element defined
within the message set.
* Open. The complex type can contain any valid element, not just those that
you have added to this complex type.
See [“Combinations of Composition and Content Validation” on page 298| for
further details of these options.
Occurrences
Property Type Meaning
Min Occurs Integer Specify the minimum number of times that the object can repeat. The default
value is 1.

If the value is set to 0, the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min
Occurs, it must be less than or equal to the value in Max Occurs.

Max Occurs

Integer Specify the maximum number of times that the object can repeat. The default
value is 1.

If this property is not set, the object cannot occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1, to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

212 Message Models

Message logical properties
This section describes the logical properties of a message.

Property

Type

Meaning

Name

String

Specify a name for the object when you create it.

Names can consist of alphanumeric characters, including the letters A through Z,
a through z, and the digits 0 through 9.

They might also include the following punctuation characters;
- the hyphen
* _ the underscore

* . the period

Names can start only with a letter or the underscore character, and not with a
number, hyphen, or period.

Names that begin with xml, or any variant of these characters (for example XmL),
are reserved by the XML standards specification.

Further details of naming conventions and allowable characters can be found in
the [Extensible Markup Language (XML)| specification that can be found on the
[World Wide Web Consortium (W3C)| Web site.

Message Alias

String

Specify an alternative unique value that identifies the message. This property is
only required if you are using the MRM domain and the Message Identity
technique to identify embedded messages, and the bit stream does not contain
the actual message name.

Simple type logical properties
The logical properties of a simple type.

Property

Type

Meaning

Name

String

Specify a name for the object when you create it.

Names can consist of alphanumeric characters, including the letters A through Z,
a through z, and the digits 0 through 9.

They might also include the following punctuation characters;
* - the hyphen
* _ the underscore

* . the period

Names can start only with a letter or the underscore character, and not with a
number, hyphen, or period.

Names that begin with xml, or any variant of these characters (for example XmL),
are reserved by the XML standards specification.

Further details of naming conventions and allowable characters can be found in
the [Extensible Markup Language (XML)| specification that can be found on the
[World Wide Web Consortium (W3C)| Web site.

Base Type

Enumerated

type

This property only applies to a simple type restriction.

You can use this property to select a base type that is used as the starting point
to define a new simple type that is derived by setting additional value
constraints.

Message model reference information 213

http://www.w3.org/TR/REC-xml
http://www.w3.org/
http://www.w3.org/TR/REC-xml
http://www.w3.org/

Property Type Meaning

Item Type Enumerated This property only applies to a simple type list.
type
You can use this property to select the type that is used as the item type of the
list.
Variety Enumerated This property displays the variety of the simple type you have selected, either
type atomic, list, or union.

A simple type can also have [“Simple type logical value constraints.”|

Simple type logical value constraints:
The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

[Binary types| [Boolean types| [DateTime types| [Decimal types|
- base64Binary - Boolean - date - decimal
- hexBinary - dateTime - integer
- gDay - negativelnteger
- gMonth - nonNegativelnteger
- gMonthDay - nonPositivelnteger
- gYear - positivelnteger
- gYearMonth - unsignedLong
- time
- double - byte - duration - anyURI
- float - int - ENTITIES
- long - ENTITY
- short - ID
- unsignedByte - IDREF
- unsignedInt - IDREFS
- unsignedShort - language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Unique logical properties
There are no properties to show.

214 Message Models

Wildcard attribute logical properties
The logical properties of a wildcard attribute.

Property Type Meaning

Namespace String Namespaces are a simple method for qualifying element and attribute names by
associating them with namespaces identified by URI references.

This field is initially blank.

Property Type Meaning
Process Content | Enumerated If a message contains an attribute that corresponds to a wildcard in the message
type model, Process Content defines how the attribute is validated.

Select one of the following options:
* strict. The parser can match only against attributes declared in the specified
namespace.

* lax. The parser attempts to match against attributes declared in all accessible
namespaces. If the specified namespace cannot be found, an error is not
generated.

* skip. If you select skip, the parser does not perform validation on the
attribute.

Wildcard element logical properties
The logical properties of a wildcard element include properties that specify the
number of occurrences of the wildcard element.

Property Type Meaning

Namespace String Namespaces are a simple method for qualifying element and attribute names by
associating them with namespaces identified by URI references.

This field is initially blank.

Property Type Meaning
Process Content | Enumerated If a message contains an element that corresponds to a wildcard in the message
type model, Process Content defines how the element is validated.

Select one of the following options:

* strict. The parser can match only against elements declared in the specified
namespace.

* lax. The parser attempts to match against elements declared in any accessible
namespace. If the specified namespace cannot be found, an error is not
generated.

* skip. If you select skip the parser does not perform validation on the element.

Message model reference information 215

Occurrences

Property

Type

Meaning

Min Occurs

Integer

Specify the minimum number of times that the object can repeat. The default
value is 1.

If the value is set to 0, the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min
Occurs, it must be less than or equal to the value in Max Occurs.

This property is ignored by brokers that are earlier than WebSphere Message
Broker Version 6.0.

Max Occurs

Integer

Specify the maximum number of times that the object can repeat. The default
value is 1.

If this property is not set, the object cannot occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1, to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

This property is ignored by brokers that are earlier than WebSphere Message
Broker Version 6.0.

Physical properties for message model objects
CWEF, XML, and TDS format physical properties for message model objects.

Property information is available for objects within:

+ [“Custom Wire Format physical properties for message model objects’]

* XML wire format physical properties for message model objects” on page 222

+ [“TDS format physical properties for message model objects” on page 231

Custom Wire Format physical properties for message model

objects

Custom wire format physical property information is available for some objects.

+ [“Attribute group reference CWF properties” on page 217

216 Message Models

[“Attribute reference CWF properties” on page 217

[‘Complex type CWF properties” on page 217|

[“Element reference CWF properties” on page 217

[Global attribute CWF properties” on page 218|

[‘Global attribute group CWF properties” on page 218§|

[‘Global element CWF properties” on page 218|

[“Global group CWF properties” on page 218|

[‘Group reference CWF properties” on page 218|

[“Key CWF properties” on page 219|

[“Keyref CWF properties” on page 219|

[‘Local element CWF properties” on page 220

[“Local group CWF properties” on page 221|

[“Message CWEF properties” on page 222|

[Simple type CWEF properties” on page 222

* [“Unique CWF properties” on page 222|

[“Wildcard attribute CWF properties” on page 222

[“Wildcard element CWF properties” on page 222|

Attribute group reference CWF properties:

There are no properties to show.

Attribute reference CWF properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

[Binary types|

|Boolean tzges|

|QateTirne tzp_egl

|Qecimal tzges|

- base64Binary - Boolean - date - decimal
- hexBinary - dateTime - integer
- gDay - negativelnteger
- gMonth - nonNegativelnteger
- gMonthDay - nonPositivelnteger
- gYear - positivelnteger
- gYearMonth - unsignedLong
- time
[Float types| g typ
- double - byte - duration - anyURI
- float - int - ENTITIES
- long - ENTITY
- short - 1D
- unsignedByte - IDREF
- unsignedInt - IDREFS
- unsignedShort - language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Note: The physical format properties for simple type duration are the same as the

physical properties of the string logical types.

Complex type CWF properties:

There are no properties to show.

Element reference CWF properties:

The properties, and permissible values, vary according to the type of object.

Message model reference information

217

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for

the object type from the following table.

|Binarz tzEes| |Boolean tzEes| |DateTime t_’zgegl |Decima1 tzEes|
- base64Binary - Boolean - date - decimal
- hexBinary - dateTime - integer
- gDay - negativelnteger
- gMonth - nonNegativelnteger
- gMonthDay - nonPositivelnteger
- gYear - positivelnteger
- gYearMonth - unsignedLong
- time
- double - byte - duration - anyURI
- float - int - ENTITIES
- long - ENTITY
- short - 1D
- unsignedByte - IDREF
- unsignedInt - IDREFS
- unsignedShort - language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

218 Message Models

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.

Global attribute CWF properties:

There are no properties to show.

Global attribute group CWF properties:

There are no properties to show.

Global element CWF properties:

There are no CWF properties to show for a global element.

Global group CWF properties:

There are no properties to show.

Group reference CWF properties:

The CWF properties of a group reference.

Byte alignment

Property

Type

Meaning

Byte Alignment

Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:
* 1 Bytes. The default value.

* 2 Bytes

* 4 Bytes

* 8 Bytes

* 16 Bytes

Leading Skip
Count

Integer

Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer

Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property

Type

Meaning

Repeat
Reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Key CWF properties:

There are no properties to show.

Keyref CWF properties:

This describes the CWF properties of a keyref.

There are no properties to show.

Local attribute CWF properties:

The properties, and their permissible values, vary according to the object type.

219

Message model reference information

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

|Binarz tzBes|

- base64Binary
- hexBinary

|Boolean tzEes|

- Boolean

|DateTime t_’zgegl

- date

- dateTime

- gDay

- gMonth

- gMonthDay
- gYear

- gYearMonth
- time

|Decima1 tzEes|

- decimal

- integer

- negativelnteger

- nonNegativelnteger
- nonPositivelnteger
- positivelnteger

- unsignedLong

Float types

- double
- float

- byte

- int

- long

- short

- unsignedByte
- unsignedInt

- unsignedShort

- duration

- anyURI

- ENTITIES

- ENTITY

- 1D

- IDREF

- IDREFS

- language

- Name

- NCName

- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName

- string

- token

Note: The physical format properties for simple type duration are the same as the

physical properties of the string logical types.

Local element CWF properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

|Binarz tz]ges|

- base64Binary
- hexBinary

|Boolean tzEes|

- Boolean

|! DateTime tz}gegl

- date
dateTime

- gDay
gMonth
gMonthDay
- gYear

- gYearMonth
- time

|! Decimal tz]ges|

- decimal

- integer

- negativelnteger

- nonNegativelnteger
- nonPositivelnteger
- positivelnteger

- unsignedLong

220 Message Models

[Float types| |!r_1teger tﬂzes| |[nterval tzges| Etring tﬂzes|
- double - byte - duration - anyURI
- float - int - ENTITIES
- long - ENTITY
short - 1D
unsignedByte - IDREF
unsignedInt - IDREFS
unsignedShort - language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token
Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.
Local group CWF properties:
The CWF properties of a local group are described in the following tables.
Byte alignment
Property Type Meaning
Byte Alignment | Enumerated Specify how the object is aligned from the start of the message. Select one of:
type * 1 Bytes. The default value.
. 2 Bytes
* 4 Bytes
* 8 Bytes
* 16 Bytes
Leading Skip Integer Specify the number of bytes to skip before reading or writing this object. The
Count default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.
For repeating objects, this property is applied to the first instance only.
Trailing Skip Integer Specify the number of bytes to skip after reading or writing this object. The
Count default is 0, the minimum value is 0, and the maximum value is 999999. You can

use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

221

Message model reference information

Occurrences

Property Type Meaning
Repeat Enumerated Use this property if the object occurs multiple times, and the number of
Reference type occurrences is given dynamically by a field earlier in the message. Select an

integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

222 Message Models

Message CWF properties:

There are no properties to show.
Simple type CWF properties:
There are no properties to show.
Unique CWF properties:

There are no properties to show.
Wildcard attribute CWF properties:
There are no properties to show.
Wildcard element CWF properties:

There are no properties to show.

XML wire format physical properties for message model objects
XML wire format physical property information is available for some objects.

+ [“Attribute group reference XML properties” on page 223|

+ |“Attribute reference XML properties” on page 223

+ [“Complex type XML properties” on page 223|

* [“Element reference XML properties” on page 223
+ [“Global attribute XML properties” on page 224|
* |“Global attribute group XML properties” on page 225|

* [“Global element XML properties” on page 225

+ [“Global group XML properties” on page 226|

* |“Group reference XML properties” on page 226|

+ "Key XML properties” on page 226|

* [“Keyref XML properties” on page 226|

* [“Local attribute XML properties” on page 226|

+ [“Local element XML properties” on page 227

* |“Local group XML properties” on page 228|

* ["Message XML properties” on page 228|

* [“Simple type XML properties” on page 231

* [“Unique XML properties” on page 231
* |“Wildcard attribute XML properties” on page 231
* “Wildcard element XML properties” on page 231

Attribute group reference XML properties:

The XML properties of an attribute group reference.

There are no properties to show.

Attribute reference XML properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

[Binary types| [Boolean types| [DateTime types| [Decimal types|
- base64Binary - Boolean - date - decimal
- hexBinary - dateTime - integer
- gDay - negativelnteger
- gMonth - nonNegativelnteger
- gMonthDay - nonPositivelnteger
- gYear - positivelnteger
- gYearMonth - unsignedLong
- time
[Float types|
- double - byte - duration - anyURI
- float - int - ENTITIES
- long - ENTITY
- short - 1D
- unsignedByte - IDREF
- unsignedInt - IDREFS
- unsignedShort - language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Note: The physical format properties for simple type duration are the same as the

physical properties of the string logical types.

Complex type XML properties:

There are no properties to show.

Element reference XML properties:

Message model reference information

223

The properties, and their permissible values, vary according to the type of object.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

[Binary types| [Boolean types| [DateTime types| [Decimal types|
- base64Binary - Boolean - date - decimal
- hexBinary - dateTime - integer
- gDay - negativelnteger
- gMonth - nonNegativelnteger
- gMonthDay - nonPositivelnteger
- gYear - positivelnteger
- gYearMonth - unsignedLong
- time
- double - byte - duration - anyURI
- float - int - ENTITIES
- long - ENTITY
- short - ID
- unsignedByte - IDREF
- unsignedInt - IDREFS
- unsignedShort - language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.

Global attribute XML properties:
The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

|Binarz tXEes| |Boolean ty}zes| |DateTime tzp_egl |l 2ecima1 tXEes|

- base64Binary - Boolean - date - decimal

- hexBinary - dateTime - integer
- gDay - negativelnteger
- gMonth - nonNegativelnteger
- gMonthDay - nonPositivelnteger
- gYear - positivelnteger
- gYearMonth - unsignedLong
- time

224 Message Models

[Float types|

- double
- float

|!gteger tﬂges|

- byte

- int

- long

- short

- unsignedByte
- unsignedInt

- unsignedShort

|!nterval tzges|

- duration

|§tring tzges|

- anyURI

- ENTITIES

- ENTITY

- ID

- IDREF

- IDREFS

- language

- Name

- NCName

- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName

- string

- token

Note: The physical format properties for simple type duration are the same as the

physical properties of the string logical types.

Global attribute group XML properties:

There are no properties to show.

Global element XML properties:

The properties, and their permissible values, vary according to the type of object.

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

[Binary types|

- base64Binary
- hexBinary

|Boolean tzEes|

- Boolean

|DateTime tz}zegl

- date

- dateTime

- ghay

- gMonth

- gMonthDay
- gYear

- gYearMonth
- time

|l Decimal tzEes|

decimal

- integer

- negativelnteger

- nonNegativelnteger
- nonPositivelnteger
- positivelnteger

- unsignedLong

Message model reference information

225

|Float tz}_)es| |Integer tz}_)es| |!r_1terval tz}_)es| |String tz}_)es|
- double - byte - duration - anyURI
- float - int - ENTITIES
- long - ENTITY
- short - 1D
- unsignedByte - IDREF
- unsignedInt - IDREFS
- unsignedShort - language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.

Global group XML properties:

There are no properties to show.

There are no properties to show.

Group reference XML properties:

The XML properties of a group reference.

There are no properties to show.

Key XML properties:

There are no properties to show.

Keyref XML properties:

There are no properties to show.

Local attribute XML properties:

The properties, and their permissible values, vary according to the object type.
The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

226 Message Models

[Binary types|

|Boolean tﬂges|

| DateTime tz}_)egl

| Decimal tmes|

- base64Binary - Boolean - date - decimal
- hexBinary - dateTime - integer
- gDay - negativelnteger
- gMonth - nonNegativelnteger
- gMonthDay - nonPositivelnteger
- gYear - positivelnteger
- gYearMonth - unsignedLong
- time
[Float types| g typ
- double - byte - duration - anyURI
- float - int - ENTITIES
- long - ENTITY
- short - ID
- unsignedByte - IDREF
- unsignedInt - IDREFS
- unsignedShort - language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Note: The physical format properties for simple type duration are the same as the

physical properties of the string logical types.

Local element XML properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

[Binary types|

- base64Binary
- hexBinary

|Boolean tz}zes|

- Boolean

|DateTime gp_egl

- date

- dateTime

- gDay

- gMonth

- gMonthDay
- gYear

- gYearMonth
- time

|Decimal tmes|

- decimal

- integer

- negativelnteger

- nonNegativelnteger
- nonPositivelnteger
- positivelnteger

- unsignedLong

Message model reference information

227

[Float types| [Integer types| [Interval types| [String types|
- double - byte - duration - anyURI
- float - int - ENTITIES
- long - ENTITY
- short - ID
- unsignedByte - IDREF
- unsignedInt - IDREFS
- unsignedShort - language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token
Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.
Local group XML properties:
There are no properties to show.
Message XML properties:
The following tables describe the XML properties of a message.
Namespace schema locations
This property is only active if namespaces have been enabled.
Property Type Meaning
Namespace URI | String A unique string, usually in the form of a URL that identifies the schema.
If namespaces have not been enabled, this property displays <no target
namespace>.
This property overrides the same property at the message set level.
Schema location | String Enter the location of the schema for the associated namespace name to be used

to validate objects in the namespace.

228 Message Models

XML declarations

Property Type Meaning

Output Enumerated The Output Namespace Declaration property controls where the namespace
Namespace type declarations are placed in the output XML document.

Declaration

Select from:

* At start of document. Declarations for all of the entries in the Namespace
schema locations table above are produced as attributes of the message in the
output XML document. The disadvantage of this option is that in some cases
unnecessary declarations might be produced.

* As required. Declarations are produced only when required by an element or
attribute that is in that namespace. The disadvantage of this option is that the
same namespace declaration might need to be produced more than once in
the output XML document.

The default option is At start of document.

This property is active only if namespaces are enabled for this message set.

XML document type settings

Property Type Meaning
DOCTYPE String Specify the System ID for DOCTYPE external DTD subset. It overrides the
System ID equivalent message set property setting for this particular message.

If the message set property Suppress DOCTYPE is set to Yes, this parameter is
ignored and cannot be changed (the field is disabled).

The default value is the value that you specified for the DOCTYPE System ID
property for the message set.

DOCTYPE String Specify the Public ID for DOCTYPE external DTD subset. It overrides the
Public ID equivalent message set property setting for this particular message.

If the message set property Suppress DOCTYPE is set to Yes, this parameter is
ignored and cannot be changed (the field is disabled) .

The default value is the value that you specified for the DOCTYPE Public ID
property for the message set.

DOCTYPE Text |String Enter optional additional text to include within the DOCTYPE. It overrides the
message set property for this particular message.

If the message set property Suppress DOCTYPE is set to Yes, this parameter is
ignored and cannot be changed (the field is disabled).

For more information, see ["MRM XML: In-line DTDs and the DOCTYPE text]
[property” on page 182)

The default value is the value that you specified for the DOCTYPE Text property
for the message set.

Message model reference information 229

Property

Type

Meaning

Root Tag Name

String

Specify the name of the root tag for a message bit stream XML document. It
overrides the message set property set for this message.

The default value is the value that you specified for the Root Tag Name property
for the message set.

Note: This property is deprecated. Do not change its value from its default
setting.

Field identification

A number of the following properties will only become active depending on the
value that Render property is set to.

Property

Type

Meaning

Render

Enumerated

type

Specify how the instantiated object or type is rendered (for output) in the
resulting XML document. Select one of the following values from the drop-down
list:

* XMLElement. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML Name
property to the same value, both objects must refer to the same element.

This is the default value for element objects.

* XMLElementAttrID. If you select this value, the object (or type) is rendered as
a child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

— You must also set Value Attribute Name to the same value for the two
objects.

— Both objects must refer to the same element.

["XML rendering options” on page 750| shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

XML Name

String

Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character () replaced by an underscore (_).

230 Message Models

Property Type Meaning

ID Attribute String Specify the name of the attribute used to identify the child. This must be a valid

Name XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLETementAttrVal.
The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute String Specify the value of the attribute used to identify the child. This property is

Value

ignored and cannot be changed (the field is disabled) if Render is set to
XMLETlement, XMLAttribute, or XMLETementAttrVal.

The default value is the identifier of the child.

Simple type XML properties:

There are no properties to show.

Unique XML properties:

There are no properties to show.

Wildcard attribute XML properties:

There are no properties to show.

Wildcard element XML properties:

There are no properties to show.

TDS format physical properties for message model objects
Some objects have TDS wire format properties.

TDS format physical property information is available for the following objects:

[“Attribute group reference TDS properties” on page 232|

[“Attribute reference TDS properties” on page 232

[“Complex type TDS properties” on page 232|

[“Element reference TDS properties” on page 236|
[‘Global attribute TDS properties” on page 237
[Global attribute group TDS properties” on page 238|

[‘Global element TDS properties” on page 238

[“Global group TDS properties” on page 239

[‘Group reference TDS properties” on page 242

[‘Key TDS properties” on page 243|

[“Keyref TDS properties” on page 243

[‘Local attribute TDS properties” on page 243

[‘Local element TDS properties” on page 244

[“Local group TDS properties” on page 245|

[“Message TDS properties” on page 249

[‘Simple type TDS properties” on page 249|

[“Unique TDS properties” on page 249|

[“White space characters in TDS” on page 249|

Message model reference information 231

+ [“Wildcard attribute TDS properties” on page 250|
* |“Wildcard element TDS properties” on page 250)

Attribute group reference TDS properties:

There are no properties to show.

Attribute reference TDS properties:

The properties, and their permissible values, vary according to the object type.
The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for

the object type from the following table.

[Binary types|

|Boolean tzEes|

|DateTime t_’zgegl

|Decima1 tz}zes|

- base64Binary - Boolean - date - decimal

- hexBinary - dateTime - integer
- gDay - negativelnteger
- gMonth - nonNegativelnteger
- gMonthDay - nonPositivelnteger
- gYear - positivelnteger
- gYearMonth - unsignedLong
- time

- double
- float

- byte
- int

Interval types

- duration

- anyURI
- ENTITIES

- long - ENTITY

- short - ID

- unsignedByte - IDREF

- unsignedInt - IDREFS

- unsignedShort - language

- Name

- NCName

- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName

- string

- token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.

Complex type TDS properties:

The TDS properties of a complex type.

232 Message Models

Field Identification

If the complex type is based on a global group, the TDS properties listed are
located in the global group. If so, any changes to these properties are applied to
the global group, and affect all references to the group (including any other
complex types which are based on it).

Message model reference information 233

Property Type Meaning
Data Element | Enumerated Select one of the following values to specify the method that is used to separate
Separation type the data elements within the type.

* Tagged Delimited. This value indicates that all elements within the complex
type are identified by a tag, and, if a value is specified in the optional
Delimiter property, are separated by that value. You must set the Tag property
for all child elements of simple type, and you can set the Delimiter property
to a non-empty value. See [“Global element TDS properties” on page 238] You
must also set the Tag Data Separator or the Length of Tag property.

* Tagged Fixed Length. This value indicates that each element is identified by a
tag, and the data has a fixed length. There are no delimiters. You must set the
Tag property for each of the child elements of this complex type, and each
child element must have a Length or Length Reference property assigned to it.
You must also set the Tag Data Separator or the Length of Tag property.

* Tagged Encoded Length. This value indicates that all elements within the
complex type are separated by a tag, and a length field follows each tag.
There are no delimiters. The tag can be fixed length, as set by the Length of
Tag property, or variable length delimited by the Tag Data Separator property.
You must also set the Length Of Encoded Length property so that the parser
knows the size of the length field, and set the Extra Chars in Encoded Length
property. This property tells the parser what to subtract from the value in the
Length Of Encoded Length property to get the actual length of the data that
follows the length field.

This method provides a more flexible way of handling ACORD AL3 standard
messages than using the Fixed Length AL3 value, by allowing different parts
of the messages to be at different versions of the ACORD AL3 standard.

 All Elements Delimited. This value indicates that all elements within the
complex type are separated by a delimiter. You must set a value in the
Delimiter property.

* Variable Length Elements Delimited. This value indicates that some of the
elements within the complex type might be of variable length. Variable length
elements must be delimited by the value specified in the Delimiter property.

* Use Data Pattern. This value indicates that the parser determines the elements
by matching the data with the regular expression that is set in the Data
Pattern property of the element or type member. See ["Message definition file]
[properties” on page 183

* Fixed Length. This value indicates that all elements within the complex type
are fixed length. The next data element is accessed by adding the value of the
Length property to the offset. See [“Global element TDS properties” on page|
If you set the Data Element Separation property of a complex type to
Fixed Length, you must also set the Data Element Separation property of all
complex children of this type to Fixed Length. Each child element must have a
Length or Length Reference property assigned to it.

* Fixed Length AL3. This value has a similar meaning to the separation type
Fixed Length, but also indicates to the parser that a number of predefined
rules regarding missing optional elements, encoded lengths, and versioning,
must be applied. If you set the Data Element Separation property of a
complex type to Fixed Length AL3, you must also set the Data Element
Separation property of all complex children of this type to Fixed Length AL3.

* Undefined. This value is set automatically if you set the Type Composition
property of a complex type to Message, and you cannot change it to any other
value.

Do not set the Type Composition property to Empty, Choice, Unordered Set,

Ordered Set, Sequence, or Simple Unordered Set. If you do, you cannot check
in the type.

234 Message Models

Property

Type

Meaning

Group Indicator

String

Specify the value of a special character, or string, that precedes the data that
belongs to a group, or a complex type, within the bit stream.

Group
Terminator

String

Specify the value of a special character, or string, that terminates the data that
belongs to a group, or a complex type, within the bit stream.

Delimiter

String

Specify the value of a special character, or string, that specifies the delimiter that
is used between data elements.

This property applies only to the delimited Data Element Separation methods
(Tagged Delimited, All Elements Delimited, and Variable Length Elements
Delimited).

Suppress
Absent Element
Delimiters

Enumerated

type

Use this property to select whether you want delimiters to be suppressed for
elements that are missing within a message.

Select from:

* End Of Type. Use this option to suppress the delimiter when an element is
missing. For example, if the model has been defined to have up to three
elements and only two are present, the last delimiter can be omitted from the
message.

* Never. Use this option to ensure that even if optional elements are not
present, all delimiters are written out. Use this option when the same
delimiter is used to delimit parent and child objects. For example, if an
optional child element is missing, message processing applications cannot tell
where the child elements in a message end and the next parent element starts,
if the delimiters are all the same.

Observe
Element Length

Check box

This property is applicable when Data Element Separation is All Elements
Delimited or Tagged Delimited. Select this check box if the Length property of
child simple elements is significant when parsing and writing.

* During parsing, an exception is thrown if the length of the extracted data
exceeds the specified length. Otherwise, the data is trimmed according to the
Justification and Padding Character properties of the child element.

* During writing, an exception is thrown if the data to write exceeds the
specified length. Otherwise, the data is padded according to the Justification
and Padding Character properties of the child element.

Clear this check box to ignore the Length property when parsing and writing.

The default value depends on the setting of the Messaging Standard property (at
the message set level) and the Data Element Separation property.

 If Data Element Separation is All Elements Delimited and the Messaging
Standard is TLOG, the check box is selected.

 If Data Element Separation is All Elements Delimited and the Messaging
Standard is other than TLOG, the check box is cleared.

 If Data Element Separation is Tagged Delimited, the check box is cleared.

For all other data element separation methods, the check box is disabled and
does not influence the behavior of the TDS parser.

Tag Data
Separator

Button and
String

Specify the value of a special character or string that separates the Tag from the
data. The Tag Data Separator and Length of Tag properties are mutually
exclusive.

If you set the property Tag Data Separator, it overrides Length of Tag.

This property applies only to the tagged Data Element Separation methods
(Tagged Delimited, Tagged Fixed Length, and Tagged Encoded Length).

235

Message model reference information

Property Type Meaning

Length of Tag | Button and Specify the length of a tag value. When the message is parsed, this property
Integer allows tags to be extracted from the bit stream if the Tag Data Separator
property is not set.

The Tag Data Separator and Length of Tag properties are mutually exclusive. If
you set the property Tag Data Separator, it overrides this value.

This property applies only to the tagged Data Element Separation methods
(Tagged Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Length of Integer Specifies the number of characters (not bytes) after a tag that are used for the
Encoded length field. Enter a value from 0 to 2147483647.
Length

You must set this property if you have set the Data Element Separation property
to Tagged Encoded Length; it is not valid otherwise.

The actual number of data characters that are parsed depends on the value of
the Extra Chars in Encoded Length property.

Extra Chars in | Integer (Only valid if the Data Element Separation method is set to Tagged Encoded
Encoded Length.) Specifies the number of extra characters included in the value found in
Length the length field. (For example, the value in the length might include the size of

the length field itself as well as the size of the data field, or it might be the total
size of the tag, length, and data fields.)

Enter a value from 0 to 2147483647. The parser subtracts this number from the
number found in the length field to get the number of data characters that
follow the length field.

You must set this property if you have set the Data Element Separation property
to Tagged Encoded Length, and the actual number of data characters is less than
the value found in the length field.

Element reference TDS properties:
The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

[Binary types| [Boolean types| [Complex types|
- base64Binary - Boolean
- hexBinary
- date - decimal - double
- dateTime - integer - float
- gDay - negativelnteger
- gMonth - nonNegativelnteger
- gMonthDay - nonPositivelnteger
- gYear - positivelnteger
- gYearMonth - unsignedLong
- time

236 Message Models

[Integer types|

- byte

- int

- long

- short

- unsignedByte
- unsignedInt

- unsignedShort

|[nterval Ez}zes|

- duration

|String tXEe§|

- anyURI

- ENTITIES

- ENTITY

- 1ID

- IDREF

- IDREFS

- language

- Name

- NCName

- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName

- string

- token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.

Global attribute TDS properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

[Binary types|

- base64Binary
- hexBinary

|Boolean tﬂges|

- Boolean -

|QateTime tXEe§|

date
dateTime
gDay
gMonth
gMonthDay
gYear
gYearMonth
time

|Qecimal tzges|

- decimal

- integer

- negativelnteger

- nonNegativelnteger
- nonPositivelnteger
- positivelnteger

- unsignedLong

Message model reference information

237

|Float tXEes| |Integer tz}_)es| |!r_1terval tz}_)es| |String tz}_)es|
- double - byte - duration - anyURI
- float - int - ENTITIES
- long - ENTITY
- short - 1D
- unsignedByte - IDREF
- unsignedInt - IDREFS
- unsignedShort - language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.

Global attribute group TDS properties:

The TDS properties of a global attribute group.

There are no properties to show.

Global element TDS properties:

The properties, and their permissible values, vary according to the object type.
The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

[Binary types| [Boolean types| [Complex types|
- base64Binary - Boolean
- hexBinary
Decimal typ
- date - decimal - double
- dateTime - integer - float
- gDay - negativelnteger
- gMonth - nonNegativelnteger
- gMonthDay - nonPositivelnteger
- gYear - positivelnteger
- gYearMonth - unsignedLong
- time

238 Message Models

[Integer types|

- byte

- int

- long

- short

- unsignedByte
- unsignedInt

- unsignedShort

|[nterval Ez}zes|

- duration

|String tXEe§|

- anyURI

- ENTITIES

- ENTITY

- ID

- IDREF

- IDREFS

- language

- Name

- NCName

- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName

- string

- token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.

Global group TDS properties:

The TDS properties of a global group.

Message model reference information

239

Field Identification

Property Type Meaning
Data Element | Enumerated Select one of the following values to specify the method that is used to separate
Separation type the data elements within the type.

* Tagged Delimited. This value indicates that all elements within the complex
type are identified by a tag, and, if a value is specified in the optional
Delimiter property, are separated by that value. You must set the Tag property
for all child elements of simple type, and you can set the Delimiter property
to a non-empty value. See [“Global element TDS properties” on page 238] You
must also set the Tag Data Separator or the Length of Tag property.

* Tagged Fixed Length. This value indicates that each element is identified by a
tag, and the data has a fixed length. There are no delimiters. You must set the
Tag property for each of the child elements of this complex type, and each
child element must have a Length or Length Reference property assigned to it.
You must also set the Tag Data Separator or the Length of Tag property.

* Tagged Encoded Length. This value indicates that all elements within the
complex type are separated by a tag, and a length field follows each tag.
There are no delimiters. The tag can be fixed length, as set by the Length of
Tag property, or variable length delimited by the Tag Data Separator property.
You must also set the Length Of Encoded Length property so that the parser
knows the size of the length field, and set the Extra Chars in Encoded Length
property. This property tells the parser what to subtract from the value in the
Length Of Encoded Length property to get the actual length of the data that
follows the length field.

This method provides a more flexible way of handling ACORD AL3 standard
messages than using the Fixed Length AL3 value, by allowing different parts
of the messages to be at different versions of the ACORD AL3 standard.

 All Elements Delimited. This value indicates that all elements within the
complex type are separated by a delimiter. You must set a value in the
Delimiter property.

* Variable Length Elements Delimited. This value indicates that some of the
elements within the complex type might be of variable length. Variable length
elements must be delimited by the value specified in the Delimiter property.

* Use Data Pattern. This value indicates that the parser determines the elements
by matching the data with the regular expression that is set in the Data
Pattern property of the element or type member. See [“Message definition file|
[properties” on page 183

* Fixed Length. This value indicates that all elements within the complex type
are fixed length. The next data element is accessed by adding the value of the
Length property to the offset. See [“Global element TDS properties” on page|
If you set the Data Element Separation property of a complex type to
Fixed Length, you must also set the Data Element Separation property of all
complex children of this type to Fixed Length. Each child element must have a
Length or Length Reference property assigned to it.

* Fixed Length AL3. This value has a similar meaning to the separation type
Fixed Length, but also indicates to the parser that a number of predefined
rules regarding missing optional elements, encoded lengths, and versioning,
must be applied. If you set the Data Element Separation property of a
complex type to Fixed Length AL3, you must also set the Data Element
Separation property of all complex children of this type to Fixed Length AL3.

* Undefined. This value is set automatically if you set the Type Composition
property of a complex type to Message, and you cannot change it to any other
value.

Do not set the Type Composition property to Empty, Choice, Unordered Set,

Ordered Set, Sequence, or Simple Unordered Set. If you do, you cannot check
in the type.

240 Message Models

Property

Type

Meaning

Group Indicator

String

Specify the value of a special character, or string, that precedes the data that
belongs to a group, or a complex type, within the bit stream.

Group
Terminator

String

Specify the value of a special character, or string, that terminates the data that
belongs to a group, or a complex type, within the bit stream.

Delimiter

String

Specify the value of a special character, or string, that specifies the delimiter that
is used between data elements.

This property applies only to the delimited Data Element Separation methods
(Tagged Delimited, All Elements Delimited, and Variable Length Elements
Delimited).

Suppress
Absent Element
Delimiters

Enumerated

type

Use this property to select whether you want delimiters to be suppressed for
elements that are missing within a message.

Select from:

* End Of Type. Use this option to suppress the delimiter when an element is
missing. For example, if the model has been defined to have up to three
elements and only two are present, the last delimiter can be omitted from the
message.

* Never. Use this option to ensure that even if optional elements are not
present, all delimiters are written out. Use this option when the same
delimiter is used to delimit parent and child objects. For example, if an
optional child element is missing, message processing applications cannot tell
where the child elements in a message end and the next parent element starts,
if the delimiters are all the same.

Observe
Element Length

Check box

This property is applicable when Data Element Separation is All Elements
Delimited or Tagged Delimited. Select this check box if the Length property of
child simple elements is significant when parsing and writing.

* During parsing, an exception is thrown if the length of the extracted data
exceeds the specified length. Otherwise, the data is trimmed according to the
Justification and Padding Character properties of the child element.

* During writing, an exception is thrown if the data to write exceeds the
specified length. Otherwise, the data is padded according to the Justification
and Padding Character properties of the child element.

Clear this check box to ignore the Length property when parsing and writing.

The default value depends on the setting of the Messaging Standard property (at
the message set level) and the Data Element Separation property.

 If Data Element Separation is All Elements Delimited and the Messaging
Standard is TLOG, the check box is selected.

 If Data Element Separation is All Elements Delimited and the Messaging
Standard is other than TLOG, the check box is cleared.

 If Data Element Separation is Tagged Delimited, the check box is cleared.

For all other data element separation methods, the check box is disabled and
does not influence the behavior of the TDS parser.

Tag Data
Separator

Button and
String

Specify the value of a special character or string that separates the Tag from the
data. The Tag Data Separator and Length of Tag properties are mutually
exclusive.

If you set the property Tag Data Separator, it overrides Length of Tag.

This property applies only to the tagged Data Element Separation methods
(Tagged Delimited, Tagged Fixed Length, and Tagged Encoded Length).

241

Message model reference information

Property

Type

Meaning

Length of Tag

Button and
Integer

Specify the length of a tag value. When the message is parsed, this property
allows tags to be extracted from the bit stream if the Tag Data Separator
property is not set.

The Tag Data Separator and Length of Tag properties are mutually exclusive. If
you set the property Tag Data Separator, it overrides this value.

This property applies only to the tagged Data Element Separation methods
(Tagged Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Length of
Encoded
Length

Integer

Specifies the number of characters (not bytes) after a tag that are used for the
length field. Enter a value from 0 to 2147483647.

You must set this property if you have set the Data Element Separation property
to Tagged Encoded Length; it is not valid otherwise.

The actual number of data characters that are parsed depends on the value of
the Extra Chars in Encoded Length property.

Extra Chars in
Encoded
Length

Integer

(Only valid if the Data Element Separation method is set to Tagged Encoded
Length.) Specifies the number of extra characters included in the value found in
the length field. (For example, the value in the length might include the size of
the length field itself as well as the size of the data field, or it might be the total
size of the tag, length, and data fields.)

Enter a value from 0 to 2147483647. The parser subtracts this number from the
number found in the length field to get the number of data characters that
follow the length field.

You must set this property if you have set the Data Element Separation property
to Tagged Encoded Length, and the actual number of data characters is less than
the value found in the length field.

Group reference TDS properties:

The following tables describe the TDS properties of a group reference.

Field identification

Property

Type

Meaning

Data Pattern

String

Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see |“Regular expression syntax” on page 776.

242 Message Models

Occurrences

Property Type Meaning

Repeating String Specify the delimiter to use between repeating elements.

Element

Delimiter This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.
A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.
If none of the previous conditions are true, a default is not applied.

Repeat Enumerated Use this property if the object occurs multiple times, and the number of

reference type occurrences is given dynamically by a field earlier in the message. Select an

integer object from the list of integer objects that occur before this object in the
structure of the message. The value of the selected integer specifies the number
of occurrences of this object. If no objects are listed, no integer objects exist
before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validating
the message.

Key TDS properties:

There are no properties to show.

Keyref TDS properties:

There are no properties to show.

Local attribute TDS properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

[Binary types|

- base64Binary
- hexBinary

[Boolean types| [DateTime types| [Decimal types|

- Boolean - date - decimal
- dateTime - integer
- gDay - negativelnteger
- gMonth - nonNegativelnteger
- gMonthDay - nonPositivelnteger
- gYear - positivelnteger
- gYearMonth - unsignedLong
- time

Message model reference information 243

|Float tXEes| |Integer tz}_)es| |!r_1terval tz}_)es| |String tz}_)es|
- double - byte - duration - anyURI
- float - int - ENTITIES
- long - ENTITY
- short - 1D
- unsignedByte - IDREF
- unsignedInt - IDREFS
- unsignedShort - language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.

Local element TDS properties:

The properties, and their permissible values, vary according to the object type.
The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the

properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

|Binarz tﬂges|

- base64Binary
- hexBinary

oolean es

- Boolean

|Comglex tXEes|

DateTime types|

Decimal types

- date - decimal - double
- dateTime - integer - float

- gDay - negativelnteger

- gMonth - nonNegativelnteger

- gMonthDay - nonPositivelnteger

- gYear - positivelnteger

- gYearMonth - unsignedLong

- time

244 Message Models

[Integer types|

- byte

- int

- long

- short

- unsignedByte
- unsignedInt

- unsignedShort

|[nterval Ez}zes|

- duration

|String tXEe§|

- anyURI

- ENTITIES

- ENTITY

- ID

- IDREF

- IDREFS

- language

- Name

- NCName

- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName

- string

- token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.

Local group TDS properties:

TDS properties of a local group.

Message model reference information

245

Field Identification

Property Type Meaning
Data Element | Enumerated Select one of the following values to specify the method that is used to separate
Separation type the data elements within the type.

* Tagged Delimited. This value indicates that all elements within the complex
type are identified by a tag, and, if a value is specified in the optional
Delimiter property, are separated by that value. You must set the Tag property
for all child elements of simple type, and you can set the Delimiter property
to a non-empty value. See [“Global element TDS properties” on page 238] You
must also set the Tag Data Separator or the Length of Tag property.

* Tagged Fixed Length. This value indicates that each element is identified by a
tag, and the data has a fixed length. There are no delimiters. You must set the
Tag property for each of the child elements of this complex type, and each
child element must have a Length or Length Reference property assigned to it.
You must also set the Tag Data Separator or the Length of Tag property.

* Tagged Encoded Length. This value indicates that all elements within the
complex type are separated by a tag, and a length field follows each tag.
There are no delimiters. The tag can be fixed length, as set by the Length of
Tag property, or variable length delimited by the Tag Data Separator property.
You must also set the Length Of Encoded Length property so that the parser
knows the size of the length field, and set the Extra Chars in Encoded Length
property. This property tells the parser what to subtract from the value in the
Length Of Encoded Length property to get the actual length of the data that
follows the length field.

This method provides a more flexible way of handling ACORD AL3 standard
messages than using the Fixed Length AL3 value, by allowing different parts
of the messages to be at different versions of the ACORD AL3 standard.

 All Elements Delimited. This value indicates that all elements within the
complex type are separated by a delimiter. You must set a value in the
Delimiter property.

* Variable Length Elements Delimited. This value indicates that some of the
elements within the complex type might be of variable length. Variable length
elements must be delimited by the value specified in the Delimiter property.

* Use Data Pattern. This value indicates that the parser determines the elements
by matching the data with the regular expression that is set in the Data
Pattern property of the element or type member. See [“Message definition file|
[properties” on page 183

* Fixed Length. This value indicates that all elements within the complex type
are fixed length. The next data element is accessed by adding the value of the
Length property to the offset. See [“Global element TDS properties” on page|
If you set the Data Element Separation property of a complex type to
Fixed Length, you must also set the Data Element Separation property of all
complex children of this type to Fixed Length. Each child element must have a
Length or Length Reference property assigned to it.

* Fixed Length AL3. This value has a similar meaning to the separation type
Fixed Length, but also indicates to the parser that a number of predefined
rules regarding missing optional elements, encoded lengths, and versioning,
must be applied. If you set the Data Element Separation property of a
complex type to Fixed Length AL3, you must also set the Data Element
Separation property of all complex children of this type to Fixed Length AL3.

* Undefined. This value is set automatically if you set the Type Composition
property of a complex type to Message, and you cannot change it to any other
value.

Do not set the Type Composition property to Empty, Choice, Unordered Set,

Ordered Set, Sequence, or Simple Unordered Set. If you do, you cannot check
in the type.

246 Message Models

Property

Type

Meaning

Group Indicator

String

Specify the value of a special character, or string, that precedes the data that
belongs to a group, or a complex type, within the bit stream.

Group
Terminator

String

Specify the value of a special character, or string, that terminates the data that
belongs to a group, or a complex type, within the bit stream.

Delimiter

String

Specify the value of a special character, or string, that specifies the delimiter that
is used between data elements.

This property applies only to the delimited Data Element Separation methods
(Tagged Delimited, All Elements Delimited, and Variable Length Elements
Delimited).

Suppress
Absent Element
Delimiters

Enumerated

type

Use this property to select whether you want delimiters to be suppressed for
elements that are missing within a message.

Select from:

* End Of Type. Use this option to suppress the delimiter when an element is
missing. For example, if the model has been defined to have up to three
elements and only two are present, the last delimiter can be omitted from the
message.

* Never. Use this option to ensure that even if optional elements are not
present, all delimiters are written out. Use this option when the same
delimiter is used to delimit parent and child objects. For example, if an
optional child element is missing, message processing applications cannot tell
where the child elements in a message end and the next parent element starts,
if the delimiters are all the same.

Observe
Element Length

Check box

This property is applicable when Data Element Separation is All Elements
Delimited or Tagged Delimited. Select this check box if the Length property of
child simple elements is significant when parsing and writing.

* During parsing, an exception is thrown if the length of the extracted data
exceeds the specified length. Otherwise, the data is trimmed according to the
Justification and Padding Character properties of the child element.

* During writing, an exception is thrown if the data to write exceeds the
specified length. Otherwise, the data is padded according to the Justification
and Padding Character properties of the child element.

Clear this check box to ignore the Length property when parsing and writing.

The default value depends on the setting of the Messaging Standard property (at
the message set level) and the Data Element Separation property.

 If Data Element Separation is All Elements Delimited and the Messaging
Standard is TLOG, the check box is selected.

 If Data Element Separation is All Elements Delimited and the Messaging
Standard is other than TLOG, the check box is cleared.

 If Data Element Separation is Tagged Delimited, the check box is cleared.

For all other data element separation methods, the check box is disabled and
does not influence the behavior of the TDS parser.

Tag Data
Separator

Button and
String

Specify the value of a special character or string that separates the Tag from the
data. The Tag Data Separator and Length of Tag properties are mutually
exclusive.

If you set the property Tag Data Separator, it overrides Length of Tag.

This property applies only to the tagged Data Element Separation methods
(Tagged Delimited, Tagged Fixed Length, and Tagged Encoded Length).

247

Message model reference information

Property

Type

Meaning

Length of Tag

Button and
Integer

Specify the length of a tag value. When the message is parsed, this property
allows tags to be extracted from the bit stream if the Tag Data Separator
property is not set.

The Tag Data Separator and Length of Tag properties are mutually exclusive. If
you set the property Tag Data Separator, it overrides this value.

This property applies only to the tagged Data Element Separation methods
(Tagged Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Length of
Encoded
Length

Integer

Specifies the number of characters (not bytes) after a tag that are used for the
length field. Enter a value from 0 to 2147483647.

You must set this property if you have set the Data Element Separation property
to Tagged Encoded Length; it is not valid otherwise.

The actual number of data characters that are parsed depends on the value of
the Extra Chars in Encoded Length property.

Extra Chars in
Encoded
Length

Integer

(Only valid if the Data Element Separation method is set to Tagged Encoded
Length.) Specifies the number of extra characters included in the value found in
the length field. (For example, the value in the length might include the size of
the length field itself as well as the size of the data field, or it might be the total
size of the tag, length, and data fields.)

Enter a value from 0 to 2147483647. The parser subtracts this number from the
number found in the length field to get the number of data characters that
follow the length field.

You must set this property if you have set the Data Element Separation property
to Tagged Encoded Length, and the actual number of data characters is less than
the value found in the length field.

Field Identification

Property

Type

Meaning

Data Pattern

String

Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see ["Regular expression syntax” on page 776,

Occurrences

Property

Type

Meaning

Repeating
Element
Delimiter

String

Specify the delimiter to use between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the previous conditions are true, a default is not applied.

248 Message Models

Property

Type

Meaning

Repeat
reference

Enumerated Use this property if the object occurs multiple times, and the number of

type

occurrences is given dynamically by a field earlier in the message. Select an
integer object from the list of integer objects that occur before this object in the
structure of the message. The value of the selected integer specifies the number
of occurrences of this object. If no objects are listed, no integer objects exist
before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validating
the message.

Message TDS properties:

Message TDS properties.

Property

Type

Meaning

Message Key

String

Specify an alternative unique value that identifies the message in the bit stream.
This property is required if the message is embedded within another message.
Note: From Version 6.0 onwards, the use of Message Key has been deprecated
for identifying an embedded message. You now have the option of identifying
an embedded message by Message Identity, using the Message Alias logical

property.

Simple type TDS properties:
There are no properties to show.
Unique TDS properties:

There are no properties to show.
White space characters in TDS:

White space characters are defined as ASCII characters (hexadecimal) 'X'09 to 'X'0D
and EBCDIC characters 'X'05, 'X'0B, 'X'0C, 'X'0D, 'X'25, and 'X'40.

You can specify these characters in your message model using TDS mnemonics if
they are important to your processing, for example, to use as group terminators or
delimiting characters. See ["TDS Mnemonics” on page 16§| for further information.

If both the following conditions are met, white space after the end of a group and
preceding the tag of the next element is ignored:

* TDS messaging standard property is "X12" or "EDIFACT"
» TDS data element separation in force for the structure is one of the following

types:
— Tagged delimiter

— Tagged fixed length
- Tagged encoded length

The following bit stream is accepted:
Tag<data>!<Any white space character>Tag

where:

Message model reference information 249

* ! is the group terminator

* <Any white space character> is one of the ASCII or EBCDIC characters listed
previously

The following X12 ASCII message successfully parses:
ST*856%777777%<SPC><SPC><SPC><HEX 09>BSN*00%7654321%940920+10000%

The sequence
<SPC><SPC><SPC><HEX 09>

is ignored by the parser.

Wildcard attribute TDS properties:
There are no properties to show.
Wildcard element TDS properties:

There are no properties to show.

Documentation properties for all message set objects

Use the documentation property of an object to add information that describes the
function of the object.

The documentation property is available on all objects except Key, Keyref, and
Unique objects.

The property is a string field, and you can use any standard alphanumeric
characters.

Message model object properties by object

250 Message Models

The following objects have properties that can be viewed or set.

+ [“Attribute group reference properties” on page 251

+ |“Attribute reference properties” on page 251|

+ [“Complex type properties” on page 294|

* [“Element reference properties” on page 302

* |“Global attribute properties” on page 356|

* |“Global attribute group properties” on page 387

. obal element properties”™ on page
“Global el properties” on page 388

+ [“Global group properties” on page 427

* [“Group reference properties” on page 433|

+ |“Key properties” on page 436|

* [“Keyref properties” on page 437

» [“Local attribute properties” on page 438|

* [“Local element properties” on page 502

* [“Local group properties” on page 584|

* ["Message properties” on page 591

* [“Simple type properties” on page 595

* |“Unique properties” on page 610|

+ [“Wildcard attribute properties” on page 610

+ “Wildcard element properties” on page 612|

Attribute group reference properties
Different types of properties are available for an attribute group reference.

An attribute group reference can have the following properties;

+ [“Attribute group reference logical properties” on page 187

" Attribute group reference CWF properties” on page 21
g

[“Attribute group reference XML properties” on page 223

[“Attribute group reference TDS properties” on page 232|

* [“Documentation properties for all message set objects” on page 185|

Attribute group reference logical properties:

The logical properties of an attribute group reference.

Property Type Meaning
Reference Name | Enumerated The Reference Name is the name of the object that this object is referring to. The
type objects available to reference can be selected from the list.

Attribute group reference CWF properties:

There are no properties to show.

Attribute group reference XML properties:

The XML properties of an attribute group reference.

There are no properties to show.

Attribute group reference TDS properties:

There are no properties to show.

Documentation properties for all message set objects:

Use the documentation property of an object to add information that describes the
function of the object.

The documentation property is available on all objects except Key, Keyref, and
Unique objects.

The property is a string field, and you can use any standard alphanumeric
characters.

Attribute reference properties
Different types of properties are available for an attribute reference.

An attribute reference can have the following properties;

* [“Attribute reference logical properties” on page 187

+ [“Attribute reference CWF properties” on page 217

+ [“Attribute reference XML properties” on page 223

+ |“Attribute reference TDS properties” on page 232|

Message model reference information 251

+ [“Documentation properties for all message set objects” on page 185|

Attribute reference logical properties:

The logical properties of an attribute reference.

Property Type Meaning

Reference Name | Enumerated The Reference Name is the name of the object that this object is referring to. The
type objects available to reference can be selected from the list.

Property Type Meaning

Usage Enumerated Use this property with the Value property found in an attribute object. The
type default value for the Usage property is optional.

Select from the following options:
* optional.

— If the Value property is set to default, and no data has been entered in the
Value property, the attribute can appear once and can have any value.

— If the Value property is set to default, the attribute can appear once. If it
does not appear, its value is the data that has been entered in the Value
property. If it does appear, it is the value given.

— Where the Value property is set to fixed, the attribute can appear once. If it
does appear, its value must match the data that has been entered in the
Value property. If it does not appear, its value is the data that has been
entered in the Value property.

* prohibited. The attribute must not appear.
* required.

— If the Value property is set to default, and no data has been entered in the
Value property, the attribute must appear once and can have any value.

— If the Value property is set to fixed, the attribute must appear once, and it
must match the data that has been entered in the Value property.

Attribute reference CWF properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

|Binarz tXEes|

- base64Binary
- hexBinary

|Boolean tzEes| |DateTime Q}zegl |Decima1 tXEeS|

- Boolean - date - decimal
- dateTime - integer
- gDay - negativelnteger
- gMonth - nonNegativelnteger
- gMonthDay - nonPositivelnteger
- gYear - positivelnteger
- gYearMonth - unsignedLong
- time

252 Message Models

[Float types| |!r_1teger tﬂzes| |[nterval tzges| Etring tﬂzes|
- double - byte - duration - anyURI
- float - int - ENTITIES
- long - ENTITY
- short - ID
- unsignedByte - IDREF
- unsignedInt - IDREFS
- unsignedShort - language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token
Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.
CWEF properties for attribute reference and local attribute binary types:
The Custom Wire Format properties described here apply to:
* Objects: Attribute Reference, Local Attribute
* Binary schema types: base64Binary, hexBinary
Physical representation
Property Type Meaning
Length Button and If you have selected the length to be defined by Length, enter the number of
Integer length units for the element.
The minimum value that you can specify is 1.
The maximum value that you can specify is 2147483647.
The default value is empty (not set).
Length Button and If you have selected the length to be defined by Length Reference, select the name
Reference Enumerated of the integer object that specifies the length of this object. Make your selection
type from the displayed list of integer objects that are defined as siblings of the
current object, and occur before it in the structure of the message.
For information about reordering elements, see [‘Reordering objects” on page|
109.
Inclusive Check box This property is applicable only if Length Reference is set.
Length
Reference If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

Message model reference information 253

Property

Type

Meaning

Length Units

Enumerated

type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):

* Bytes. The length is given in bytes.

* Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

- For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

— For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

— For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

* Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.

— For single-byte and double-byte code pages, this option is identical to
Characters.

— For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTE-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

* End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Byte alignment

Property

Type

Meaning

Byte Alignment

Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:
* 1 Bytes. The default value.

* 2 Bytes

* 4 Bytes

* 8 Bytes

* 16 Bytes

Leading Skip
Count

Integer

Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

254 Message Models

Property

Type

Meaning

Trailing Skip
Count

Integer

Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

CWE properties for attribute reference and local attribute Boolean types:

CWEF properties for attribute reference and local attribute Boolean types.

The Custom Wire Format properties described here apply to:
* Objects: Attribute Reference, Local Attribute
* Boolean schema types: Boolean

Byte alignment

Property Type Meaning
Byte Alignment | Enumerated Specify how the object is aligned from the start of the message. Select one of:
type * 1 Bytes. The default value.
* 2 Bytes
* 4 Bytes
* 8 Bytes
* 16 Bytes
Leading Skip Integer Specify the number of bytes to skip before reading or writing this object. The
Count default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.
For repeating objects, this property is applied to the first instance only.
Trailing Skip Integer Specify the number of bytes to skip after reading or writing this object. The

Count

default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

CWEF properties for attribute reference and local attribute dateTime types:

CWEF properties for attribute reference and local attribute dateTime types.

The Custom Wire Format properties described here apply to:
* Objects: Attribute Reference, Local Attribute

 DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,
gYearMonth, time

255

Message model reference information

Physical representation

Property

Type

Meaning

Physical Type

Enumerated

type

Select one from the displayed list:

* Fixed Length String. The element's length is determined by other length
properties as follows.

* Length Encoded String 1. The first byte of the element contains the length of
the string following the length byte in length units. The maximum length of a
Length Encoded String 1 element is 255 length units.

* Length Encoded String 2. The element's first 2 bytes contain the length of the
string following the two length bytes in length units. The maximum length of
a Length Encoded String 2 element is 65535 length units. The two length
bytes are in the format of the WebSphere MQ queue manager Encoding.

* Null Terminated String. The string ends with the hexadecimal NULL
character, X'00".

* Packed Decimal. The dateTime is coded as a Packed Decimal number. It is
valid only if the DateTime Format property represents numeric-only data.

* Binary. The dateTime is encoded as a binary sequence of bytes. If you select
this option, the range of symbols that you can specify for the Format String
property is less than the range of symbols you can specify if you select a
string option (see [‘DateTime formats” on page 780| for details).

* Time Seconds. This value supports C time_t and Java Date and Time objects. It
is valid only if the DateTime Format property represents numeric-only data.

* Time Milliseconds. This value supports C time_t and Java Date and Time
objects. It is valid only if the DateTime Format property represents
numeric-only data.

The default value is fixed length string.

DateTime
Format

String

Specify a template for date and time.

The default dateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type, see [“DateTime defaults by logical type” on page 788

See[“DateTime formats” on page 780| for details of date and time formats.

Length

Button and
Integer

If you have selected a Physical Type of Fixed Length String, Packed Decimal, or
Binary, and have selected the length to be defined by Length, enter the number
of length units for the element.

The minimum value that you can specify is 1 for all three physical types.

The maximum value that you can specify is 256 for Fixed Length String, 10 for
Packed Decimal, and 2147483647 for Binary.

The default value is 0 (zero).

Length
Reference

Button and
Enumerated

type

[109]

If you have selected the length to be defined by Length Reference, select the name
of the integer object that specifies the length of this object. Make your selection
from the displayed list of integer objects that are defined as siblings of the
current object, and occur before it in the structure of the message.

For information about reordering elements, see|“Reordering objects” on page]

256 Message Models

Property

Type

Meaning

Inclusive
Length
Reference

Check box

This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

Length Units

Enumerated

type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):

* Bytes. The length is given in bytes.

 Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

— For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

— For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

— For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

 Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.

— For single-byte and double-byte code pages, this option is identical to
Characters.

— For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

e End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Justification

Enumerated

type

If you have set the Physical Type property to Fixed Length String, select Left
Justify (the default value) or Right Justify from the list. If you have selected
another value for Physical Type, this property is inactive.

Message model reference information 257

Property Type Meaning
Padding String If you have set the Physical Type property to Fixed Length String, and the
Character Justification property is either Left Justify or Right Justify, this property is

applicable.

When writing an output message, use the padding character to fill out the
remaining character positions when the string length is less than the length
implied by the Length or Length Reference property. Whether the string is padded
from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end
of the string. Whether the string is trimmed from the left or the right is
governed by the Justification property.

Specify this character in one of the following ways:
* Select NUL, '0', or SPACE from the displayed list.

* Enter a character between quotation marks; for example, "c" or 'c’, where c is
any alphanumeric character.

* Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

* Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

* Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, it is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

258 Message Models

Numeric representation
Property Type Meaning
Signed Check box Specify whether the value is signed.
This property is applicable only if the Physical type property is Packed Decimal.
By default, this check box is cleared, which indicates that the value is not signed.
Byte alignment
Property Type Meaning
Byte Alignment | Enumerated Specify how the object is aligned from the start of the message. Select one of:
type e 1 Bytes. The default value.
* 2 Bytes
* 4 Bytes
* 8 Bytes
* 16 Bytes
Leading Skip Integer Specify the number of bytes to skip before reading or writing this object. The
Count default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.
For repeating objects, this property is applied to the first instance only.
Trailing Skip Integer Specify the number of bytes to skip after reading or writing this object. The

Count

default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

CWEF properties for attribute reference and local attribute decimal types:

CWEF properties for attribute reference and local attribute decimal types.

The Custom Wire Format properties described here apply to:
* Objects: Attribute Reference, Local Attribute

* Decimal schema types: decimal, integer, negativelnteger, nonNegativelnteger,
nonPositivelnteger, positivelnteger, unsignedLong

259

Message model reference information

Physical representation

Property

Type

Meaning

Physical Type

Enumerated

type

Select one from the displayed list:

* Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

* Packed Decimal. Equates to the COMP-3 data type in COBOL.

» External Decimal. Equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetld attributes that are set for the WebSphere MQ queue manager:

* Elements that have Physical Type set to Integer and Packed Decimal are
represented in the appropriate WebSphere MQ Encoding value.

* Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetld value.

Length

Integer

Enter the number of bytes to specify the element length:

* If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

* If you set the Physical Type to Packed Decimal, enter a value between 1 and 10.

* If you set the Physical Type to Extended Decimal, enter a value between 1 and
256. (Numbers greater than the maximum COBOL PICTURE clause of 18 are
assumed to be 18.)

Length Units

Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):

* Bytes.

* Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

— For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

— For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

— For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

* Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.

— For single-byte and double-byte code pages, this option is identical to
Characters.

— For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

* End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

260 Message Models

Property

Type

Meaning

Justification

Enumerated

type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this property is inactive.

Padding
Character

String

The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the Physical
Type property to Extended Decimal, and the Justification property is either Left
Justify or Right Justify, specify this character in one of the following ways:

* Select NUL, '0', or SPACE from the displayed list.

* Enter a character between quotation marks; for example, "c" or 'c', where c is
any alphanumeric character.

* Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

¢ Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

* Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

Numeric

representation

Property

Type

Meaning

Signed

Check box

Select (the default) or clear this property. This property is used with Sign
Orientation.

261

Message model reference information

Property

Type

Meaning

Sign EBCDIC
Custom
Overpunched

Check box

If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating that
the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

Sign
Orientation

Enumerated

type

If you have set Physical Type to External Decimal and you have selected Signed,
choose from the following options that represent the COBOL options for
displaying numeric data:

* Leading Overpunched. This option sets a bit in the first byte if the number is
negative. No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x'3232'. Using this option, the
number +22 would be x'3232' and the number -22 would be x'7232"'. The
default value.

* Leading Separate. This option sets the first byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

* Trailing Overpunched. This option sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x'3232' and the number -22 would be x'3272'.

* Trailing Separate. This option sets the last byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set
for you.

Virtual Decimal
Point

Integer

Specify the number of places to the left (for a positive value) or right (for a
negative value) that a decimal point is to be moved from its assumed position.
For example, a decimal element containing 1234 with a Virtual Decimal value of
3 is 1.234, equivalent to 'V' or P' in a COBOL picture clause. There is no C
equivalent

Byte alignment

Count

Property Type Meaning
Byte Alignment | Enumerated Specify how the object is aligned from the start of the message. Select one of:
type * 1 Bytes. The default value.
* 2 Bytes
* 4 Bytes
* 8 Bytes
* 16 Bytes
Leading Skip Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

262 Message Models

Property

Type

Meaning

Trailing Skip
Count

Integer

Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

CWEF properties for attribute reference and local attribute float types:

CWEF properties for attribute reference and local attribute float types.

The Custom Wire Format properties described here apply to:
* Objects: Attribute Reference, Local Attribute
* Float schema types: double, float

Physical representation

Property

Type

Meaning

Physical Type

Enumerated

type

Select one from the displayed list:

* Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

* Float. This equates to the data type FLOAT or DOUBLE in C or the COMP-1
or COMP-2 data type in COBOL and is the default value.

* Packed Decimal. Equates to the COMP-3 data type in COBOL.

* External Decimal. Equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetld attributes that are set for the WebSphere MQ queue manager:

* Elements that have Physical Type set to Integer, Packed Decimal, and Float are
represented in the appropriate WebSphere MQ Encoding value.

* Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetld value.

Length

Integer

Enter the number of bytes to specify the element length:

* If you set the Physical Type to Float, select a value from the displayed list. The
default value is 8.

* If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.
* If you set the Physical Type to Packed Decimal, enter a value between 1 and 10.

* If you set the Physical Type to Extended Decimal, enter a value between 1 and
256. (Numbers greater than the maximum COBOL PICTURE clause of 18 are
assumed to be 18.)

Message model reference information 263

Property

Type

Meaning

Length Units

Enumerated

type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):

Bytes.

Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

For a multibyte code page (MBCS CCSID) such as "UTE-8" (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.

For single-byte and double-byte code pages, this option is identical to
Characters.

For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Justification

Enumerated

type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this property is inactive.

264 Message Models

Property

Type

Meaning

Padding
Character

String

The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the Physical
Type property to Extended Decimal, and the Justification property is either Left
Justify or Right Justify, specify this character in one of the following ways:

* Select NUL, '0', or SPACE from the displayed list.

* Enter a character between quotation marks; for example, "c" or 'c’, where c is
any alphanumeric character.

* Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

¢ Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

* Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

Numeric

representation

Property

Type

Meaning

Signed

Check box

Select or clear (unsigned, the default) this property. If you have set Physical Type
to Float, this is selected. This property is used with Sign Orientation.

Message model reference information 265

Property

Type

Meaning

Sign EBCDIC
Custom
Overpunched

Check box

If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating that
the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

Sign
Orientation

Enumerated

type

If you have set Physical Type to External Decimal and you have selected Signed,
choose from the following options that represent the COBOL options for
displaying numeric data:

* Leading Overpunched. This option sets a bit in the first byte if the number is
negative. No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x'3232'. Using this option, the
number +22 would be x'3232' and the number -22 would be x'7232"'. The
default value.

* Leading Separate. This option sets the first byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

* Trailing Overpunched. This option sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x'3232' and the number -22 would be x'3272'.

* Trailing Separate. This option sets the last byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set
for you.

Virtual Decimal
Point

Integer

Specify the number of places to the left (for a positive value) or right (for a
negative value) that a decimal point is to be moved from its assumed position.
For example, a float element containing 1234 with a Virtual Decimal value of 3 is
1.234.

This property is not applicable if you have set Physical Type to Float.

Byte alignment

Count

Property Type Meaning
Byte Alignment | Enumerated Specify how the object is aligned from the start of the message. Select one of:
type * 1 Bytes. The default value.
* 2 Bytes
* 4 Bytes
* 8 Bytes
* 16 Bytes
Leading Skip Integer Specify the number of bytes to skip before reading or writing this object. The

default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

266 Message Models

Property Type Meaning
Trailing Skip Integer Specify the number of bytes to skip after reading or writing this object. The
Count default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.
For repeating objects, this property is applied to all instances.
CWEF properties for attribute reference and local attribute integer types:
CWEF properties for attribute reference and local attribute integer types.
The Custom Wire Format properties described here apply to:
* Objects: Attribute Reference, Local Attribute
* Integer schema types: byte, int, long, short, unsignedByte, unsignedint,
unsignedShort
Physical representation
Property Type Meaning
Physical Type |Enumerated Select one from the displayed list:
type + Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.
* Packed Decimal. Equates to the COMP-3 data type in COBOL.
* External Decimal. Equates to the data type PIC 9 USAGE DISPLAY in
COBOL.
The representation of numeric elements can be affected by the Encoding and
CodedCharSetld attributes that are set for the WebSphere MQ queue manager:
* Elements that have Physical Type set to Integer and Packed Decimal are
represented in the appropriate WebSphere MQ Encoding value.
* Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetld value.
Length Integer Enter the number of bytes to specify the element length:

» If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

* If you have set Physical Type to Packed Decimal, enter a value between 1 and
6.

 If you have set Physical Type to Extended Decimal, enter a value between 1 and
11.

Message model reference information 267

Property

Type

Meaning

Length Units

Enumerated

type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):

Bytes.

Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

For a multibyte code page (MBCS CCSID) such as "UTE-8" (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.

For single-byte and double-byte code pages, this option is identical to
Characters.

For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Justification

Enumerated

type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this property is inactive.

268 Message Models

Property

Type

Meaning

Padding
Character

String

The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the Physical
Type property to Extended Decimal, and the Justification property is either Left
Justify or Right Justify, specify this character in one of the following ways:

* Select NUL, '0', or SPACE from the displayed list.

* Enter a character between quotation marks; for example, "c" or 'c’, where c is
any alphanumeric character.

* Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

¢ Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

* Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

Numeric

representation

Property

Type

Meaning

Signed

Check box

Select (the default) or clear this property. This property is used with Sign
Orientation.

Message model reference information 269

Property

Type

Meaning

Sign EBCDIC
Custom
Overpunched

Check box

If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating that
the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

Sign
Orientation

Enumerated

type

If you have set Physical Type to External Decimal and you have selected Signed,
choose from the following options that represent the COBOL options for
displaying numeric data:

* Leading Overpunched. This option sets a bit in the first byte if the number is
negative. No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x'3232'. Using this option, the
number +22 would be x'3232' and the number -22 would be x'7232"'. The
default value.

* Leading Separate. This option sets the first byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

* Trailing Overpunched. This option sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x'3232' and the number -22 would be x'3272'.

* Trailing Separate. This option sets the last byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set
for you.

Byte alignment

Property

Type

Meaning

Byte Alignment

Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
e 1 Bytes. The default value.

e 2 Bytes

* 4 Bytes

* 8 Bytes

* 16 Bytes

Leading Skip
Count

Integer

Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

270 Message Models

Property

Type

Meaning

Trailing Skip
Count

Integer

Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

CWE properties for attribute reference and local attribute string types:

CWEF properties for attribute reference and local attribute string types.

The Custom Wire Format properties described here apply to:
* Objects: Attribute Reference, Local Attribute

* String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,
Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token

Physical representation

Property

Type

Meaning

Physical Type

Enumerated

type

Select one from the displayed list:

e Fixed Length String. The element's length is determined by other length
properties as follows.

* Length Encoded String 1. The first byte of the element contains the length of
the string following the length byte in length units. The maximum length of a
Length Encoded String 1 element is 255 length units.

* Length Encoded String 2. The element's first 2 bytes contain the length of the
string following the two length bytes in length units. The maximum length of
a Length Encoded String 2 element is 65535 length units. The two length
bytes are in the format of the WebSphere MQ queue manager Encoding.

* Null Terminated String. The string ends with the hexadecimal NULL
character, X'00'.

The default is Fixed Length String.

Length

Button and
Integer

If you have selected a Physical Type of Fixed Length String or Binary, and have
selected the length to be defined by Length, enter the number of length units for
the element.

The minimum value that you can specify is 0 (zero), the maximum value that
you can specify is 2147483647

The default value is 0 (zero).

Length
Reference

Button and
Enumerated

type

If you have selected the length to be defined by Length Reference, select the name
of the integer object that specifies the length of this object. Make your selection
from the displayed list of integer objects that are defined as siblings of the
current object, and occur before it in the structure of the message.

For information about reordering elements, see [“Reordering objects” on page|

Message model reference information 271

Property

Type

Meaning

Inclusive
Length
Reference

Check box

This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

Length Units

Enumerated

type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):

* Bytes. The length is given in bytes.

* Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

— For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

— For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

— For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

* Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.

— For single-byte and double-byte code pages, this option is identical to
Characters.

— For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

* End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Justification

Enumerated

type

If you have set the Physical Type property to Fixed Length String, select Left
Justify (the default value) or Right Justify from the list. If you have selected
another value for Physical Type, this property is inactive.

272 Message Models

Property Type Meaning
Padding String If you have set the Physical Type property to Fixed Length String, and the
Character Justification property is either Left Justify or Right Justify, this property is

applicable.

When writing an output message, use the padding character to fill out the
remaining character positions when the string length is less than the length
implied by the Length or Length Reference property. Whether the string is padded
from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end
of the string. Whether the string is trimmed from the left or the right is
governed by the Justification property.

Specify this character in one of the following ways:
* Select NUL, '0', or SPACE from the displayed list.

* Enter a character between quotation marks; for example, "c" or 'c', where c is
any alphanumeric character.

* Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

* Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

* Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, it is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

Message model reference information 273

Byte alignment

Property

Type

Meaning

Byte Alignment

Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:
e 1 Bytes. The default value.

* 2 Bytes

* 4 Bytes

* 8 Bytes

* 16 Bytes

Leading Skip
Count

Integer

Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer

Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Attribute reference XML properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

|Binarz tﬂges|

- base64Binary
- hexBinary

|Boolean tz}ges|

- Boolean - date - decimal

|DateTime HEEEI |Qecimal tﬂzes|

dateTime - integer

- gDay - negativelnteger
gMonth - nonNegativelnteger
gMonthDay - nonPositivelnteger
- gYear - positivelnteger

- gYearMonth - unsignedLong

- time

274 Message Models

[Float types|

- double
- float

|!r_1teger tzges| |[nterval tzges| Etring tﬂzes|

- byte - duration - anyURI

- int - ENTITIES

- long - ENTITY

- short - ID

- unsignedByte - IDREF

- unsignedInt - IDREFS

- unsignedShort - language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.

XML properties for attribute reference, element reference, local attribute, local element
binary types:

XML wire format properties for attribute reference, element reference, local
attribute, and local element binary types.

The XML Wire Format properties described here apply to:
* Objects: Attribute Reference, Element Reference, Local Attribute, Local Element

* Binary schema types: base64Binary, hexBinary
Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Message model reference information 275

Property Type Meaning
Render Enumerated Specify how the instantiated object or type is rendered (output) in the resulting
type XML document. Select one of the following values from the drop-down list:

* XMLETement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

* XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

* XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLETementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

— You must also set Value Attribute Name to the same value for the two
objects.

— Both objects must refer to the same element.

* XMLETementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

* XMLETementAttrIDVal. This option combines the two options,
XMLETementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLETementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

— You must also set Value Attribute Name to the same value for the two
objects.

— Both objects must refer to the same element.

["XML rendering options” on page 750| shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

276 Message Models

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).
This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.
You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.
If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (") replaced by an underscore (_).

ID Attribute String Specify the name of the attribute used to identify the child. This must be a valid

Name XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLE1ement, XMLAttribute, or XMLETementAttrval.
The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute String Specify the value of the attribute used to identify the child. This property is

Value ignored and cannot be changed (the field is disabled) if Render is set to
XMLETement, XMLAttribute, or XMLETementAttrVal.
The default value is the identifier of the child.

Value Attribute |String

Name Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.
The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Physical representation
Property Type Meaning
Encoding String Select one of the following values from the drop-down list: :

+ CDatahex (the default). Hexadecimal values in this field are specified with the
CDATA qualifier, for example <el><![CDATA[62]]></el>

* hex. Hexadecimal values in this field are specified as digits only, for example
<el>62</el>.

* base64. Values in this field are specified as digits only, coded in base 64.

XML properties for attribute reference, element reference, local attribute, local element
Boolean types:

XML wire format properties for attribute reference, element reference, local
attribute and local element Boolean types.

The XML Wire Format properties described here apply to:
* Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
* Boolean schema types: Boolean

Message model reference information 277

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Property Type Meaning
Render Enumerated Specify how the instantiated object or type is rendered (output) in the resulting
type XML document. Select one of the following values from the drop-down list:

* XMLETement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

* XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

* XMLETementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLETementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

— You must also set Value Attribute Name to the same value for the two
objects.

— Both objects must refer to the same element.

* XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

* XMLETementAttrIDVal. This option combines the two options,
XMLETementAttrID and XMLETementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLETementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

— You must also set Value Attribute Name to the same value for the two
objects.

— Both objects must refer to the same element.

[“XML rendering options” on page 750| shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

278 Message Models

Property

Type

Meaning

XML Name

String

Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (") replaced by an underscore (_).

ID Attribute
Name

String

Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLE1ement, XMLAttribute, or XMLETementAttrval.

The default value is id.

Namespace

String

Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String

Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLETement, XMLAttribute, or XMLETementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String

Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace

String

Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element

dateTime types:

XML wire format properties for attribute reference, element reference, local
attribute, and local element dateTime types.

The XML Wire Format properties described here apply to:

* Objects: Attribute Reference, Element Reference, Local Attribute, Local Element

e DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

Message model reference information

279

Property Type Meaning
Render Enumerated Specify how the instantiated object or type is rendered (output) in the resulting
type XML document. Select one of the following values from the drop-down list:

* XMLETement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

* XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

* XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLETementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

— You must also set Value Attribute Name to the same value for the two
objects.

— Both objects must refer to the same element.

* XMLETementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

* XMLETementAttrIDVal. This option combines the two options,
XMLETementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLETementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

— You must also set Value Attribute Name to the same value for the two
objects.

— Both objects must refer to the same element.

["XML rendering options” on page 750| shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

280 Message Models

Property

Type

Meaning

XML Name

String

Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (") replaced by an underscore (_).

ID Attribute
Name

String

Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLE1ement, XMLAttribute, or XMLETementAttrval.

The default value is id.

Namespace

String

Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String

Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLETement, XMLAttribute, or XMLETementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String

Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace

String

Enter the namespace associated with the Value Attribute.

Physical representation

Property

Type

Meaning

DateTime
Format

String

Specify a format string that specifies the rendering of the value for dateTime
elements.

The default dateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type see|“DateTime defaults by logical type” on page 788

See [“DateTime formats” on page 780| for details of dateTime formats.

XML properties for attribute reference, element reference, local attribute, local element
decimal types:

XML wire format properties for attribute reference, element reference, local
attribute, and local element decimal types.

The XML Wire Format properties described here apply to:
* Objects: Attribute Reference, Element Reference, Local Attribute, Local Element

* Decimal schema types: decimal, integer, negativelnteger, nonNegativelnteger,
nonPositivelnteger, positivelnteger, unsignedLong

Message model reference information 281

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Property Type Meaning
Render Enumerated Specify how the instantiated object or type is rendered (output) in the resulting
type XML document. Select one of the following values from the drop-down list:

* XMLETement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

* XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

* XMLETementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLETementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

— You must also set Value Attribute Name to the same value for the two
objects.

— Both objects must refer to the same element.

* XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

* XMLETementAttrIDVal. This option combines the two options,
XMLETementAttrID and XMLETementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLETementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

— You must also set Value Attribute Name to the same value for the two
objects.

— Both objects must refer to the same element.

[“XML rendering options” on page 750| shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

282 Message Models

Property

Type

Meaning

XML Name

String

Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (") replaced by an underscore (_).

ID Attribute
Name

String

Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLE1ement, XMLAttribute, or XMLETementAttrval.

The default value is id.

Namespace

String

Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String

Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLETement, XMLAttribute, or XMLETementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String

Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace

String

Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element float
types:

XML wire format properties for attribute reference, element reference, local
attribute, and local element float types.

The XML Wire Format properties described here apply to:
* Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
* Float schema types: double, float

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Message model reference information 283

Property Type Meaning
Render Enumerated Specify how the instantiated object or type is rendered (output) in the resulting
type XML document. Select one of the following values from the drop-down list:

* XMLETement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

* XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

* XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLETementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

— You must also set Value Attribute Name to the same value for the two
objects.

— Both objects must refer to the same element.

* XMLETementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

* XMLETementAttrIDVal. This option combines the two options,
XMLETementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLETementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

— You must also set Value Attribute Name to the same value for the two
objects.

— Both objects must refer to the same element.

["XML rendering options” on page 750| shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

284 Message Models

Property

Type

Meaning

XML Name

String

Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (") replaced by an underscore (_).

ID Attribute
Name

String

Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLE1ement, XMLAttribute, or XMLETementAttrval.

The default value is id.

Namespace

String

Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String

Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLETement, XMLAttribute, or XMLETementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String

Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace

String

Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element
integer types:

XML wire format properties for attribute reference, element reference, local
attribute, and local element integer types.

The XML Wire Format properties described here apply to:
* Objects: Attribute Reference, Element Reference, Local Attribute, Local Element

* Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,
unsignedShort

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Message model reference information 285

Property Type Meaning
Render Enumerated Specify how the instantiated object or type is rendered (output) in the resulting
type XML document. Select one of the following values from the drop-down list:

* XMLETement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

* XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

* XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLETementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

— You must also set Value Attribute Name to the same value for the two
objects.

— Both objects must refer to the same element.

* XMLETementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

* XMLETementAttrIDVal. This option combines the two options,
XMLETementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLETementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

— You must also set Value Attribute Name to the same value for the two
objects.

— Both objects must refer to the same element.

["XML rendering options” on page 750| shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

286 Message Models

Property

Type

Meaning

XML Name

String

(message).

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or

the same XML name.

caret character (") replaced by an underscore (_).

Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace

attribute), or for a message. No two elements (or attribute) or messages can have

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the

ID Attribute
Name

String

The default value is id.

Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLE1ement, XMLAttribute, or XMLETementAttrval.

Namespace

String

Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String

ignored and cannot be changed (the field is disabled) if Render is set to
XMLETement, XMLAttribute, or XMLETementAttrVal.

The default value is the identifier of the child.

Specify the value of the attribute used to identify the child. This property is

Value Attribute
Name

String

The default value is val.

Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

Namespace

String

Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element

string types:

XML wire format properties for attribute reference, element reference, local
attribute, and local element string types.

The XML Wire Format properties described here apply to:

* Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
* String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,

QName, string, token

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

Message model reference information

287

Property Type Meaning
Render Enumerated Specify how the instantiated object or type is rendered (output) in the resulting
type XML document. Select one of the following values from the drop-down list:

* XMLETement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

* XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

* XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLETementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

— You must also set Value Attribute Name to the same value for the two
objects.

— Both objects must refer to the same element.

* XMLETementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

* XMLETementAttrIDVal. This option combines the two options,
XMLETementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLETementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

— You must also set Value Attribute Name to the same value for the two
objects.

— Both objects must refer to the same element.

["XML rendering options” on page 750| shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

288 Message Models

Property

Type

Meaning

XML Name

String

Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (") replaced by an underscore (_).

ID Attribute
Name

String

Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLE1ement, XMLAttribute, or XMLETementAttrval.

The default value is id.

Namespace

String

Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String

Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLETement, XMLAttribute, or XMLETementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String

Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace

String

Enter the namespace associated with the Value Attribute.

Attribute reference TDS properties:
The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

[Binary types|

- base64Binary
- hexBinary

[Boolean types| [DateTime types| [Decimal types|

- Boolean - date - decimal
- dateTime - integer
- gDay - negativelnteger
- gMonth - nonNegativelnteger
- gMonthDay - nonPositivelnteger
- gYear - positivelnteger
- gYearMonth - unsignedLong
- time

Message model reference information 289

|Float tXEes| |Integer tz}_)es| |!r_1terval tz}_)es| |String tz}_)es|
- double - byte - duration - anyURI
- float - int - ENTITIES
- long - ENTITY
- short - 1D
- unsignedByte - IDREF
- unsignedInt - IDREFS
- unsignedShort - language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.

TDS properties for attribute reference binary types:
The TDS wire format properties for attribute reference binary types.

The TDS Format properties described here apply to:
* Objects: Attribute Reference
* Binary schema types: base64Binary, hexBinary

Property Type Meaning

Length Enumerated This property is applicable only if Physical Type is Text, Binary, or TLOG

Reference type Specific. If set, this property takes precedence over any value in the Length Units
property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see ["Reordering objects” on page|

Inclusive Check box This property is applicable only if Length Reference is set.
Length
Reference If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

TDS properties for attribute reference Boolean types:

There are no properties to show.

290 Message Models

TDS properties for attribute reference dateTime types:

The TDS Format properties described here apply to:
* Objects: Attribute Reference

* DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,
gYearMonth, time

Property Type Meaning
Length Enumerated This property is applicable only if Physical Type is Text, Binary, or TLOG
Reference type Specific. If set, this property takes precedence over any value in the Length Units
property.
Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.
For information about reordering elements, see [‘Reordering objects” on page|
Inclusive Check box This property is applicable only if Length Reference is set.
Length
Reference If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.
If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.
If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.
TDS properties for attribute reference decimal types:
The TDS wire format properties for attribute reference reference decimal types.
The TDS Format properties described here apply to:
* Objects: Attribute Reference
* Decimal schema types: decimal, integer, negativelnteger, nonNegativelnteger,
nonPositivelnteger, positivelnteger, unsignedLong
Property Type Meaning
Length Enumerated This property is applicable only if Physical Type is Text, Binary, or TLOG
Reference type Specific. If set, this property takes precedence over any value in the Length Units

property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see [‘Reordering objects” on page|

Message model reference information 291

Property

Type

Meaning

Inclusive
Length
Reference

Check box

This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

TDS properties for attribute reference float types:

The TDS wire format properties for attribute reference float types.

The TDS Format properties described here apply to:
* Objects: Attribute Reference
* Float schema types: double, float

Property

Type

Meaning

Length
Reference

Enumerated

type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length Units

property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see [“Reordering objects” on page]
109.

Inclusive
Length
Reference

Check box

This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

TDS properties for attribute reference integer types:

The TDS wire format properties for attribute reference integer types.

The TDS Format properties described here apply to:
* Objects: Attribute Reference

* Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,
unsignedShort

292 Message Models

Property Type Meaning
Length Enumerated This property is applicable only if Physical Type is Text, Binary, or TLOG
Reference type Specific. If set, this property takes precedence over any value in the Length Units
property.
Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.
For information about reordering elements, see [‘Reordering objects” on page|
109.
Inclusive Check box This property is applicable only if Length Reference is set.
Length
Reference If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.
If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.
If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.
TDS properties for attribute reference string types:
The TDS wire format properties for attribute reference string types.
The TDS Format properties described here apply to:
* Objects: Attribute Reference
* String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,
Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token
Property Type Meaning
Length Enumerated This property is applicable only if Physical Type is Text, Binary, or TLOG
Reference type Specific. If set, this property takes precedence over any value in the Length Units
property.
Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.
For information about reordering elements, see ['Reordering objects” on page|
-109.
Inclusive Check box This property is applicable only if Length Reference is set.
Length
Reference If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

Documentation properties for all message set objects:

Message model reference information 293

Use the documentation property of an object to add information that describes the
function of the object.

The documentation property is available on all objects except Key, Keyref, and
Unique objects.

The property is a string field, and you can use any standard alphanumeric
characters.

Complex type properties
Different types of properties are available for a complex type.

A complex type can have the following properties;

+ [“Complex type logical properties” on page 18§|

+ [“Complex type CWF properties” on page 217|

+ [“Complex type XML properties” on page 223|

+ [“Complex type TDS properties” on page 232

* ["Documentation properties for all message set objects” on page 185|

Complex type logical properties:

The logical properties of a complex type include properties that describe content
and substitution settings.

Property Type Meaning
Name String Specify a name for the object when you create it.

Names can consist of alphanumeric characters, including the letters A through Z,

a through z, and the digits 0 through 9.

They might also include the following punctuation characters;

* - the hyphen

* _ the underscore

* . the period

Names can start only with a letter or the underscore character, and not with a

number, hyphen, or period.

Names that begin with xml, or any variant of these characters (for example XmL),

are reserved by the XML standards specification.

Further details of naming conventions and allowable characters can be found in

the [Extensible Markup Language (XML)| specification that can be found on the

[World Wide Web Consortium (W3C)| Web site.

Base Type Enumerated You can use this property to select a type (simple or complex) that is used as the
type starting point to define a new complex type that is derived by restriction or
extension.
Derived By Enumerated If this property is active, select one of the following options:
¢ restriction. If a complex type is derive restriction, the content model o
type iction. If plex type is derived by icti h del of
the complex type is a subset of the base type.

* extension. If the complex type is derived by extension, the content model of
the complex type is the content model of the base type plus the content model
specified in the type derivation.

Derivation by list or union is not supported.

294 Message Models

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Content

The following table shows the valid settings for Composition and Content
Validation. These properties are actually located on the group which defines the
content of this type. They can be edited only if the Local group button is selected.
If the Global group button is selected, these properties are taken from the global
group identified by the Group name field.

Valid children in a complex type that depend on both Composition and Content
Validation are shown in [“MRM content validation” on page 192

Property Type Meaning

Local Group Button Select this property if the content of your complex type is a local group.

Composition Enumerated Define the order, and the number of occurrences, of the elements and groups in
type your messages. Composition does not affect the attributes in a complex type.

Select one of the following options:

* Empty

* sequence. If you select this option, you can define members that are elements
or groups. These members, if present, must appear in the specified order in

the message. They can repeat, and the same element or group can appear
more than once.

* choice. If you select this option, you can define members that are elements or
groups. Exactly one of the defined members must be present in the message,
and can repeat.

Use this option if you want to model C unions and COBOL REDEFINES in a
Custom Wire Format, or an XML DTD element that uses choice in an XML
Wire Format, or a SWIFT field that has more than one option.

* all. If you select this option, you can define members that are elements;
groups are not allowed. The elements in an all group can appear in any order.
Each element can appear once, or not at all. An all group can be used only at
the top level of a complex type; it cannot be a member of another group
within a type.

e unorderedSet.

This option is supported only by the MRM domain.If you select this option,
you can define members that are elements. The elements can repeat, but the
same element cannot appear twice in the list of members. The elements can
appear in any order in the message.

* orderedSet.

This option is supported only by the MRM domain.If you select this option,
you can define members that are elements. The elements can repeat, but the
same element cannot appear twice in the list of members. The elements must
appear in the specified order in the message.

° message.

This option is supported only by the MRM domain.If you select this option,
you can define only messages as members. Each member can repeat, but the
same message cannot appear twice in the list of members. Like choice, only

one of the defined members can be present in a message.

Unlike choice, when writing a message, if the complex type or group has
more than one member, the bit stream is not padded to the length of the
longest member.

Use this option to model multipart messages, which are used in some
industry standards; for example, SWIFT. For more information, see the section
on multipart messages in [“Multipart messages” on page 26

Message model reference information 295

Property Type Meaning
Content Enumerated Content Validation is used only by the MRM domain. If validation is enabled in
Validation type your message flow, Content Validation specifies the strictness of the MRM
validation for members of a complex type or group. See
[validation” on page 192| for further details.
Select from the following options:
* Closed. The complex type can only contain the child elements that you have
added to it.
* Open Defined. The complex type can contain any valid element defined
within the message set.
* Open. The complex type can contain any valid element, not just those that
you have added to this complex type.
See [“Combinations of Composition and Content Validation” on page 298| for
further details of these options.
Group Button Select this option if the content of your complex type is a reference to a group
Reference object
Group Name Enumerated The Group Name is the name of the group that this complex type refers to. The
type groups available to be referenced can be selected from the drop down list.
Min Occurs Integer Specify the minimum number of times that the object can repeat. The default
value is 1.
If the value is set to 0, the object is optional.
With the exception of Max Occurs being set to -1, if a value is set for Min
Occurs, it must be less than or equal to the value in Max Occurs.
Max Occurs Integer Specify the maximum number of times that the object can repeat. The default
value is 1.
If this property is not set, the object cannot occur more than once.
If this property is set to 0, it is interpreted as if the object does not exist in the
message.
It can also be set to -1, to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.
Mixed Check box Select this option when the complex type has mixed content, and contains
character data and sub-elements.
Substitution settings
Property Type Meaning
Final Multiple The final attribute on a complex type controls whether other types can be
selection derived from it. Valid values are extension/restriction/all. You can select from
enumerated one or more of the following;:
type * Empty

* restriction. Prohibit type substitution by elements whose types are
restrictions of the head element's type.

» extension. Prohibit type substitution by elements whose types are extensions
of the head element's type.

* #all. Prohibit substitution by any method.

To select more than one, you must type the selection into the property field.

296 Message Models

Property Type Meaning
Block Multiple The block attribute on a complex type restricts the types of substitutions which
selection are allowed for elements based on that type. In the WebSphere Message Broker
enumerated its effect is the same as if the block attribute were copied from the complex type
type onto every element based on the complex type. You can select from one or more
of the following;:
* Empty
* restriction. Prohibit type substitution by elements whose types are
restrictions of the head element's type.
+ extension. Prohibit type substitution by elements whose types are extensions
of the head element's type.
+ #all. Prohibit substitution by any method.
To select more than one, you must type the selection into the property field.
Abstract Check box If selected, no elements based on this type can appear in the message.
MRM content validation:
Content Validation is applied when the domain is MRM and validation is enabled.
The Content Validation property specifies how strictly the MRM parser validates
the members of a complex type or group.
The first of the following two tables shows the valid settings for Content
Validation if Composition is set to Message. The second table shows the valid
settings for Content Validation if Composition is not set to Message.
Content Validation options if Composition is set to Message
Option Meaning
Open When a message is parsed, this complex type or group can contain any message, not just those
that you have defined in this message set. You can use this option for sparse messages (see
[‘Predefined and self-defining elements and messages” on page 30| for a definition of sparse
messages).
Closed When a message is parsed, this complex type or group can only contain the messages that are

members of this complex type or group. This is always the case for messages represented in
CWF format.

Open Defined

When a message is parsed, this complex type or group can contain any message defined within
the message set.

Content Validation options if Composition is not set to Message

Option Meaning

Open When a message is parsed, this complex type or group can contain any elements and not just
those that you have defined in this message set (see [“Predefined and self-defining elements and|
[messages” on page 30| for a definition of sparse messages).

Closed When a message is parsed, this complex type or group can only contain the elements that are

members of this complex type or group.

Open Defined

When a message is parsed, this complex type or group can contain any element that you have
defined within the message set.

When you are using Content Validation set to open or open defined, you cannot
specify the precise position where the content that is not modeled is permitted to

Message model reference information 297

occur. If you wish to do this, you should consider using a wildcard element as an
alternative. Wildcard elements can appear only within a complex type or group
with Composition of sequence and Content Validation of closed.

Combinations of Composition and Content Validation:

If your message is in the MRM domain, and validation is enabled, the members of
each complex type or group are validated. The MRM validation logic is controlled
by the Composition and Content Validation properties.

Content validation applies also to the IDOC domain because the IDoc parser uses
the MRM parser internally. Content Validation does not affect validation in the
XMLNSC domain.

Valid children in complex types dependent on Composition and Content
Validation

Composition Content Validation Valid children

Empty Closed None

Empty Open None

Empty Open Defined None

Sequence Open Elements, group references, embedded simple types
Sequence Closed Elements, group references, embedded simple types
Sequence Open Defined Elements, group references, embedded simple types
Choice Closed Elements, group references, embedded simple types
All Closed Elements

All Open Elements

All Open Defined Elements

Unordered Set Open Elements

Unordered Set Closed Elements

Unordered Set Open Defined Elements

Ordered Set Open Elements

Ordered Set Closed Elements

Ordered Set Open Defined Elements

Message Open Messages

Message Closed Messages

Message Open Defined Messages

298 Message Models

Valid combinations of repeat and duplicate elements in complex types:

Valid combinations of repeated and duplicate elements within a complex type
depend on the Composition property value.

* A repeated element is an element that is included once within the complex type,
and is defined with the property Min Occurs set to greater than 1. Repeated
elements are therefore always contiguous and are always specified in the form
Aln].

* A duplicate element is an element included more than once anywhere within the
complex type. Duplicate elements do not have to be contiguous.

Repeated and duplicate elements in a complex type

Elements in type Example Unordered Set Ordered Set Sequence
No repeats, no A, B, C Yes Yes Yes
duplicates

Repeated element Aln], B, C Yes Yes Yes
(contiguous)

Duplicate element A (A, A, B, C No No Yes
(contiguous)

Duplicate element A |A, B,C, A No No Yes
(non-contiguous)

Complex type CWF properties:

There are no properties to show.
Complex type XML properties:

There are no properties to show.
Complex type TDS properties:

The TDS properties of a complex type.

Field Identification

If the complex type is based on a global group, the TDS properties listed are
located in the global group. If so, any changes to these properties are applied to
the global group, and affect all references to the group (including any other

complex types which are based on it).

Message model reference information

299

Property Type Meaning
Data Element | Enumerated Select one of the following values to specify the method that is used to separate
Separation type the data elements within the type.

* Tagged Delimited. This value indicates that all elements within the complex
type are identified by a tag, and, if a value is specified in the optional
Delimiter property, are separated by that value. You must set the Tag property
for all child elements of simple type, and you can set the Delimiter property
to a non-empty value. See [“Global element TDS properties” on page 238] You
must also set the Tag Data Separator or the Length of Tag property.

* Tagged Fixed Length. This value indicates that each element is identified by a
tag, and the data has a fixed length. There are no delimiters. You must set the
Tag property for each of the child elements of this complex type, and each
child element must have a Length or Length Reference property assigned to it.
You must also set the Tag Data Separator or the Length of Tag property.

* Tagged Encoded Length. This value indicates that all elements within the
complex type are separated by a tag, and a length field follows each tag.
There are no delimiters. The tag can be fixed length, as set by the Length of
Tag property, or variable length delimited by the Tag Data Separator property.
You must also set the Length Of Encoded Length property so that the parser
knows the size of the length field, and set the Extra Chars in Encoded Length
property. This property tells the parser what to subtract from the value in the
Length Of Encoded Length property to get the actual length of the data that
follows the length field.

This method provides a more flexible way of handling ACORD AL3 standard
messages than using the Fixed Length AL3 value, by allowing different parts
of the messages to be at different versions of the ACORD AL3 standard.

 All Elements Delimited. This value indicates that all elements within the
complex type are separated by a delimiter. You must set a value in the
Delimiter property.

* Variable Length Elements Delimited. This value indicates that some of the
elements within the complex type might be of variable length. Variable length
elements must be delimited by the value specified in the Delimiter property.

* Use Data Pattern. This value indicates that the parser determines the elements
by matching the data with the regular expression that is set in the Data
Pattern property of the element or type member. See ["Message definition file]
[properties” on page 183

* Fixed Length. This value indicates that all elements within the complex type
are fixed length. The next data element is accessed by adding the value of the
Length property to the offset. See [“Global element TDS properties” on page|
If you set the Data Element Separation property of a complex type to
Fixed Length, you must also set the Data Element Separation property of all
complex children of this type to Fixed Length. Each child element must have a
Length or Length Reference property assigned to it.

* Fixed Length AL3. This value has a similar meaning to the separation type
Fixed Length, but also indicates to the parser that a number of predefined
rules regarding missing optional elements, encoded lengths, and versioning,
must be applied. If you set the Data Element Separation property of a
complex type to Fixed Length AL3, you must also set the Data Element
Separation property of all complex children of this type to Fixed Length AL3.

* Undefined. This value is set automatically if you set the Type Composition
property of a complex type to Message, and you cannot change it to any other
value.

Do not set the Type Composition property to Empty, Choice, Unordered Set,

Ordered Set, Sequence, or Simple Unordered Set. If you do, you cannot check
in the type.

300 Message Models

Property

Type

Meaning

Group Indicator

String

Specify the value of a special character, or string, that precedes the data that
belongs to a group, or a complex type, within the bit stream.

Group
Terminator

String

Specify the value of a special character, or string, that terminates the data that
belongs to a group, or a complex type, within the bit stream.

Delimiter

String

Specify the value of a special character, or string, that specifies the delimiter that
is used between data elements.

This property applies only to the delimited Data Element Separation methods
(Tagged Delimited, All Elements Delimited, and Variable Length Elements
Delimited).

Suppress
Absent Element
Delimiters

Enumerated

type

Use this property to select whether you want delimiters to be suppressed for
elements that are missing within a message.

Select from:

* End Of Type. Use this option to suppress the delimiter when an element is
missing. For example, if the model has been defined to have up to three
elements and only two are present, the last delimiter can be omitted from the
message.

* Never. Use this option to ensure that even if optional elements are not
present, all delimiters are written out. Use this option when the same
delimiter is used to delimit parent and child objects. For example, if an
optional child element is missing, message processing applications cannot tell
where the child elements in a message end and the next parent element starts,
if the delimiters are all the same.

Observe
Element Length

Check box

This property is applicable when Data Element Separation is All Elements
Delimited or Tagged Delimited. Select this check box if the Length property of
child simple elements is significant when parsing and writing.

* During parsing, an exception is thrown if the length of the extracted data
exceeds the specified length. Otherwise, the data is trimmed according to the
Justification and Padding Character properties of the child element.

* During writing, an exception is thrown if the data to write exceeds the
specified length. Otherwise, the data is padded according to the Justification
and Padding Character properties of the child element.

Clear this check box to ignore the Length property when parsing and writing.

The default value depends on the setting of the Messaging Standard property (at
the message set level) and the Data Element Separation property.

 If Data Element Separation is All Elements Delimited and the Messaging
Standard is TLOG, the check box is selected.

 If Data Element Separation is All Elements Delimited and the Messaging
Standard is other than TLOG, the check box is cleared.

 If Data Element Separation is Tagged Delimited, the check box is cleared.

For all other data element separation methods, the check box is disabled and
does not influence the behavior of the TDS parser.

Tag Data
Separator

Button and
String

Specify the value of a special character or string that separates the Tag from the
data. The Tag Data Separator and Length of Tag properties are mutually
exclusive.

If you set the property Tag Data Separator, it overrides Length of Tag.

This property applies only to the tagged Data Element Separation methods
(Tagged Delimited, Tagged Fixed Length, and Tagged Encoded Length).

301

Message model reference information

Property

Type

Meaning

Length of Tag

Button and
Integer

Specify the length of a tag value. When the message is parsed, this property
allows tags to be extracted from the bit stream if the Tag Data Separator
property is not set.

The Tag Data Separator and Length of Tag properties are mutually exclusive. If
you set the property Tag Data Separator, it overrides this value.

This property applies only to the tagged Data Element Separation methods
(Tagged Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Length of
Encoded
Length

Integer

Specifies the number of characters (not bytes) after a tag that are used for the
length field. Enter a value from 0 to 2147483647.

You must set this property if you have set the Data Element Separation property
to Tagged Encoded Length; it is not valid otherwise.

The actual number of data characters that are parsed depends on the value of
the Extra Chars in Encoded Length property.

Extra Chars in
Encoded
Length

Integer

(Only valid if the Data Element Separation method is set to Tagged Encoded
Length.) Specifies the number of extra characters included in the value found in
the length field. (For example, the value in the length might include the size of
the length field itself as well as the size of the data field, or it might be the total
size of the tag, length, and data fields.)

Enter a value from 0 to 2147483647. The parser subtracts this number from the
number found in the length field to get the number of data characters that
follow the length field.

You must set this property if you have set the Data Element Separation property
to Tagged Encoded Length, and the actual number of data characters is less than
the value found in the length field.

Documentation properties for all message set objects:

Use the documentation property of an object to add information that describes the
function of the object.

The documentation property is available on all objects except Key, Keyref, and
Unique objects.

The property is a string field, and you can use any standard alphanumeric
characters.

Element reference properties
Different types of properties are available for an element reference.

An element reference can have the following properties:

* [“Element reference logical properties” on page 193]

+ |“Element reference CWF properties” on page 217

* |“Element reference XML properties” on page 223

+ [“Element reference TDS properties” on page 236|

* [“Documentation properties for all message set objects” on page 185|

Element reference logical properties:

302 Message Models

The logical properties of an element reference include properties that specify the
number of occurrences of the element reference.

Property Type Meaning
Reference Name | Enumerated The Reference Name is the name of the object that this object is referring to. The
type objects available to reference can be selected from the list.
Occurrences
Property Type Meaning
Min Occurs Integer Specify the minimum number of times that the object can repeat. The default
value is 1.
If the value is set to 0, the object is optional.
With the exception of Max Occurs being set to -1, if a value is set for Min
Occurs, it must be less than or equal to the value in Max Occurs.
Max Occurs Integer Specify the maximum number of times that the object can repeat. The default

value is 1.
If this property is not set, the object cannot occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1, to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

The Min Occurs and Max Occurs properties are used in conjunction with an
element's Value properties. The following table summarizes how an element
reference can be constrained.

Min Occurs

Max Occurs

Fixed Default Notes

1

1

The element must appear once, and can have
any value.

Delta The element must appear once, and it must
match the data that has been entered in the
Value property. In this example, the element

must contain the text Delta.

-1

Delta The element must appear twice or more, and it
must match the data that has been entered in
the Value property. In this example, at least

two elements must contain the text Delta.

The element is optional, can appear once, and
can have any value.

Delta The element is optional, and can appear once.
If it does appear, its value must match the data
that has been entered in the Value property. If
it does not appear, its value is the data that has

been entered in the Value property.

Delta The element is optional, and can appear once.
If it does not appear, its value is the data that
has been entered in the Value property. If it

does appear, it must be the value given in the

element.

303

Message model reference information

Min Occurs

Max Occurs

Fixed

Default

Notes

0 2

Delta

The element is optional and can appear once,
twice, or not at all. If the element does not
appear, it is not provided. If the element
appears and it is empty, it set to the data held
in the Value property, else it is the value given
in the element.

The element is prohibited, and must not
appear.

Element reference CWF properties:

The properties, and permissible values, vary according to the type of object.

The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

|Binarz tXEeS|

- base64Binary
- hexBinary

|Boolean tz}zes|

- Boolean

- double
- float

- byte

- int

- long

- short

- unsignedByte
- unsignedInt

- unsignedShort

|DateTime g}gegl |Decima1 tmes|
- date - decimal
- dateTime - integer
- gDay - negativelnteger
- gMonth - nonNegativelnteger
- gMonthDay - nonPositivelnteger
- gYear - positivelnteger
- gYearMonth - unsignedLong
- time
- duration - anyURI
- ENTITIES
- ENTITY
- 1D
- IDREF
- IDREFS
- language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

304 Message Models

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.

CWEF properties for element reference and local element binary types:

CWEF wire format properties for element reference and local element binary types.

The Custom Wire Format properties described here apply to:

* Objects: Element Reference, Local Element

* Binary schema types: base64Binary, hexBinary

Physical representation

Property Type Meaning
Length Button and If you have selected the length to be defined by Length, enter the number of
Integer length units for the element.
The minimum value that you can specify is 1.
The maximum value that you can specify is 2147483647.
The default value is empty (not set).
Length Button and If you have selected the length to be defined by Length Reference, select the name
Reference Enumerated of the integer object that specifies the length of this object. Make your selection
type from the displayed list of integer objects that are defined as siblings of the
current object, and occur before it in the structure of the message.
For information about reordering elements, see|“Reordering objects” on page
109.
Inclusive Check box This property is applicable only if Length Reference is set.
Length
Reference If the check box is selected, the value of the sibling integer object that is

identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

Message model reference information 305

Property

Type

Meaning

Length Units

Enumerated

type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):

* Bytes. The length is given in bytes.

* Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

- For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

— For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

— For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

* Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.

— For single-byte and double-byte code pages, this option is identical to
Characters.

— For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTE-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

* End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Byte alignment

Property

Type

Meaning

Byte Alignment

Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:
* 1 Bytes. The default value.

* 2 Bytes

* 4 Bytes

* 8 Bytes

* 16 Bytes

Leading Skip
Count

Integer

Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

306 Message Models

Property Type Meaning
Trailing Skip Integer Specify the number of bytes to skip after reading or writing this object. The
Count default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.
For repeating objects, this property is applied to all instances.
Occurrences
Property Type Meaning
Repeat Enumerated Use this property if the object occurs multiple times, and the number of
Reference type occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.
If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.
CWE properties for element reference and local element Boolean types:
The CWF wire format properties for element reference and local element Boolean
types.
The Custom Wire Format properties described here apply to:
* Objects: Element Reference, Local Element
* Boolean schema types: Boolean
Byte alignment
Property Type Meaning
Byte Alignment | Enumerated Specify how the object is aligned from the start of the message. Select one of:
type * 1 Bytes. The default value.
* 2 Bytes
* 4 Bytes
* 8 Bytes
* 16 Bytes
Leading Skip Integer Specify the number of bytes to skip before reading or writing this object. The

Count

default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

307

Message model reference information

Property Type Meaning
Trailing Skip Integer Specify the number of bytes to skip after reading or writing this object. The
Count default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.
For repeating objects, this property is applied to all instances.
Occurrences
Property Type Meaning
Repeat Enumerated Use this property if the object occurs multiple times, and the number of
Reference type occurrences is given dynamically by a field earlier in the message. Select an

integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

CWEF properties for element reference and local element dateTime types:

The CWF wire format properties for element reference and local element dateTime

types.

The Custom Wire Format properties described here apply to:

* Objects: Element Reference, Local Element

¢ DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,
gYearMonth, time

308 Message Models

Physical representation

Property

Type

Meaning

Physical Type

Enumerated

type

Select one from the displayed list:

* Fixed Length String. The element's length is determined by other length
properties as follows.

* Length Encoded String 1. The first byte of the element contains the length of
the string following the length byte in length units. The maximum length of a
Length Encoded String 1 element is 255 length units.

* Length Encoded String 2. The element's first 2 bytes contain the length of the
string following the two length bytes in length units. The maximum length of
a Length Encoded String 2 element is 65535 length units. The two length
bytes are in the format of the WebSphere MQ queue manager Encoding.

* Null Terminated String. The string ends with the hexadecimal NULL
character, X'00".

* Packed Decimal. The dateTime is coded as a Packed Decimal number. It is
valid only if the DateTime Format property represents numeric-only data.

* Binary. The dateTime is encoded as a binary sequence of bytes. If you select
this option, the range of symbols that you can specify for the Format String
property is less than the range of symbols you can specify if you select a
string option (see [‘DateTime formats” on page 780| for details).

* Time Seconds. This value supports C time_t and Java Date and Time objects. It
is valid only if the DateTime Format property represents numeric-only data.

* Time Milliseconds. This value supports C time_t and Java Date and Time
objects. It is valid only if the DateTime Format property represents
numeric-only data.

The default value is fixed length string.

Length

Button and
Integer

If you have selected a Physical Type of Fixed Length String, Packed Decimal, or
Binary, and have selected the length to be defined by Length, enter the number
of length units for the element.

The minimum value that you can specify is 1 for all three physical types.

The maximum value that you can specify is 256 for Fixed Length String, 10 for
Packed Decimal, and 2147483647 for Binary.

The default value is 0 (zero).

Length
Reference

Button and
Enumerated

type

If you have selected the length to be defined by Length Reference, select the name
of the integer object that specifies the length of this object. Make your selection
from the displayed list of integer objects that are defined as siblings of the
current object, and occur before it in the structure of the message.

For information about reordering elements, see [“Reordering objects” on page|
109.

Inclusive
Length
Reference

Check box

This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

Message model reference information 309

Property

Type

Meaning

Length Units

Enumerated

type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):

Bytes. The length is given in bytes.

Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

For a multibyte code page (MBCS CCSID) such as "UTE-8" (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.

For single-byte and double-byte code pages, this option is identical to
Characters.

For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTE-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Justification

Enumerated

type

If you have set the Physical Type property to Fixed Length String, select Left
Justify (the default value) or Right Justify from the list. If you have selected
another value for Physical Type, this property is inactive.

310 Message Models

Property

Type

Meaning

Padding
Character

String

If you have set the Physical Type property to Fixed Length String, and the
Justification property is either Left Justify or Right Justify, this property is
applicable.

When writing an output message, use the padding character to fill out the
remaining character positions when the string length is less than the length
implied by the Length or Length Reference property. Whether the string is padded
from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end
of the string. Whether the string is trimmed from the left or the right is
governed by the Justification property.

Specify this character in one of the following ways:
* Select NUL, '0', or SPACE from the displayed list.

* Enter a character between quotation marks; for example, "c" or 'c', where c is
any alphanumeric character.

* Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

* Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

* Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, it is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

DateTime
Format

String

Specify a template for date and time.

The default dateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type, see [“DateTime defaults by logical type” on page 788

See [“DateTime formats” on page 780| for details of date and time formats.

Message model reference information 311

Value

Numeric representation
Property Type Meaning
Signed Check box Specify whether the value is signed.
This property is applicable only if the Physical type property is Packed Decimal.
By default, this check box is cleared, which indicates that the value is not signed.
Representation of null values
Property Type Meaning
Encoding Null |Enumerated Select one of the following options from the displayed list. The option that you
type select determines the value that you must set for the property Encoding Null

Value:

* NULLPadFi11. This option is valid only if Physical Type is Fixed Length String.
The field is filled with the value specified by the Padding Character. The
default value.

* NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

* NULLLiteralValue. This specifies that Encoding Null Value contains a value that
is directly substituted as if it is a string. Use this option when the value you
have set for Encoding Null Value to specify a null date is not a dateTime value,
or does not conform to the standard dateTime format yyyy-MM-dd
'T'HH:mm:ss.

* NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

Encoding Null |String If you set the Encoding Null property to NULLPadFi11, this property is disabled.

If you set the Encoding Null property to NULLLogicalValue, you must set this
property to an ISO8601 dateTime format. These formats are described in
[‘DateTime as string data” on page 781 For example, specify a value conforming
to yyyy-MM-dd'T'HH:mm:ss such as 1970-12-01.

If you set the Encoding Null property to NULLLiteralValue, you can enter any
value that is the same length as the field.

If you set the Encoding Null property to NULLLiteralFill, the value must resolve
to a single character. Set the character in one of the following ways:

* Select SPACE, NUL, 0x00 or OxFF from the displayed list

* Enter a character between quotation marks, for example 'c' or "c", where c is
any alphanumeric character.

e Enter a hexadecimal character code in the form 0xYY where YY is a
hexadecimal value.

¢ Enter a decimal character code in the form YY where YY is a decimal value.

e Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

312 Message Models

Byte alignment

Property

Type

Meaning

Byte Alignment

Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:
* 1 Bytes. The default value.

* 2 Bytes

* 4 Bytes

* 8 Bytes

* 16 Bytes

Leading Skip
Count

Integer

Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer

Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property

Type

Meaning

Repeat
Reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

CWE properties for element reference and local element decimal types:

The CWF wire format properties for element reference and local element decimal

types.

The Custom Wire Format properties described here apply to:

* Objects: Element Reference, Local Element

¢ Decimal schema types: decimal, integer, negativelnteger, nonNegativelnteger,
nonPositivelnteger, positivelnteger, unsignedLong

313

Message model reference information

Physical representation

Property

Type

Meaning

Physical Type

Enumerated

type

Select one from the displayed list:

* Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

* Packed Decimal. Equates to the COMP-3 data type in COBOL.

» External Decimal. Equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetld attributes that are set for the WebSphere MQ queue manager:

* Elements that have Physical Type set to Integer and Packed Decimal are
represented in the appropriate WebSphere MQ Encoding value.

* Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetld value.

Length

Integer

Enter the number of bytes to specify the element length:

* If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

* If you set the Physical Type to Packed Decimal, enter a value between 1 and 10.

* If you set the Physical Type to Extended Decimal, enter a value between 1 and
256. (Numbers greater than the maximum COBOL PICTURE clause of 18 are
assumed to be 18.)

Length Units

Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):

* Bytes.

* Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

— For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

— For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

— For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

* Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.

— For single-byte and double-byte code pages, this option is identical to
Characters.

— For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

* End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

314 Message Models

Property

Type

Meaning

Justification

Enumerated

type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this property is inactive.

Padding
Character

String

The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the Physical
Type property to Extended Decimal, and the Justification property is either Left
Justify or Right Justify, specify this character in one of the following ways:

* Select NUL, '0', or SPACE from the displayed list.

* Enter a character between quotation marks; for example, "c" or 'c', where c is
any alphanumeric character.

* Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

¢ Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

* Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

Numeric

representation

Property

Type

Meaning

Signed

Check box

Select (the default) or clear this property. This property is used with Sign
Orientation.

315

Message model reference information

Property

Type

Meaning

Sign EBCDIC
Custom
Overpunched

Check box

If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating that
the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

Sign
Orientation

Enumerated

type

If you have set Physical Type to External Decimal and you have selected Signed,
choose from the following options that represent the COBOL options for
displaying numeric data:

* Leading Overpunched. This option sets a bit in the first byte if the number is
negative. No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x'3232'. Using this option, the
number +22 would be x'3232' and the number -22 would be x'7232"'. The
default value.

* Leading Separate. This option sets the first byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

* Trailing Overpunched. This option sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x'3232' and the number -22 would be x'3272'.

* Trailing Separate. This option sets the last byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set
for you.

Virtual Decimal
Point

Integer

Specify the number of places to the left (for a positive value) or right (for a
negative value) that a decimal point is to be moved from its assumed position.
For example, a decimal element containing 1234 with a Virtual Decimal value of
3 is 1.234, equivalent to 'V' or P' in a COBOL picture clause. There is no C
equivalent

Representation of null values

Property Type Meaning
Encoding Null |Enumerated Select one of the following options from the displayed list:
type * NULLPadFi11. This option is valid only if Physical Type is External Decimal.

The field is filled with the value specified by the Padding Character. Encoding
Null Value must be set to an empty string.

* NULLLogicalValue. The Encoding Null Value is transformed to match the
required format for the field. The default value.

* NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a
string. You can specify a nonnumeric value for Encoding Null Value.

* NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

316 Message Models

Property

Type

Meaning

Encoding Null
Value

String

The use of this property depends on the Encoding Null property, except for
NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must resolve
to a single character. Set the character in one of the following ways:

* Select SPACE, NUL, 0x00 or OxFF from the displayed list

* Enter a character between quotation marks, for example 'c' or "c", where c is
any alphanumeric character.

¢ Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal
value.

¢ Enter a decimal character code in the form YY where YY is a decimal value.

e Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property

Type

Meaning

Byte Alignment

Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:
e 1 Bytes. The default value.

* 2 Bytes

* 4 Bytes

* 8 Bytes

* 16 Bytes

Leading Skip
Count

Integer

Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer

Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property

Type

Meaning

Repeat
Reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

317

Message model reference information

CWE properties for element reference and local element float types:

The CWF wire format properties for element reference and local element float
types.

The Custom Wire Format properties described here apply to:
* Objects: Element Reference, Local Element
* Float schema types: double, float

Physical representation

Property Type Meaning
Physical Type Enumerated Select one from the displayed list:
type Integer. This equates to the data type SHORT or LONG in C, or the COMP,

COMP-4, COMP-5, or BINARY numeric data type in COBOL.

* Float. This equates to the data type FLOAT or DOUBLE in C or the COMP-1
or COMP-2 data type in COBOL and is the default value.

* Packed Decimal. Equates to the COMP-3 data type in COBOL.

* External Decimal. Equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetld attributes that are set for the WebSphere MQ queue manager:

* Elements that have Physical Type set to Integer, Packed Decimal, and Float are
represented in the appropriate WebSphere MQ Encoding value.

* Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetld value.

Length

Integer Enter the number of bytes to specify the element length:

 If you set the Physical Type to Float, select a value from the displayed list. The
default value is 8.

 If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.
* If you set the Physical Type to Packed Decimal, enter a value between 1 and 10.

* If you set the Physical Type to Extended Decimal, enter a value between 1 and
256. (Numbers greater than the maximum COBOL PICTURE clause of 18 are
assumed to be 18.)

318 Message Models

Property

Type

Meaning

Length Units

Enumerated

type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):

Bytes.

Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the

characters that are being processed.

— For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

— For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

— For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

Character Units. This option specifies that the size of each character (in bytes)

is determined by the code page of the message.

— For single-byte and double-byte code pages, this option is identical to
Characters.

— For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTE-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

End of Bitstream. All data up to the end of the bitstream is processed. This

option is valid only if the element is the last in the message. If you select this

value, you do not need to enter a value for the Length Count.

The default is Bytes.

Justification

Enumerated

type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this property is inactive.

Message model reference information 319

Property

Type

Meaning

Padding
Character

String

The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the Physical
Type property to Extended Decimal, and the Justification property is either Left
Justify or Right Justify, specify this character in one of the following ways:

* Select NUL, '0', or SPACE from the displayed list.

* Enter a character between quotation marks; for example, "c" or 'c’, where c is
any alphanumeric character.

* Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

¢ Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

* Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

Numeric

representation

Property

Type

Meaning

Signed

Check box

Select or clear (unsigned, the default) this property. If you have set Physical Type
to Float, this is selected. This property is used with Sign Orientation.

320 Message Models

Property

Type

Meaning

Sign EBCDIC
Custom
Overpunched

Check box

If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating that
the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

Sign
Orientation

Enumerated

type

If you have set Physical Type to External Decimal and you have selected Signed,
choose from the following options that represent the COBOL options for
displaying numeric data:

Leading Overpunched. This option sets a bit in the first byte if the number is
negative. No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x'3232"'. Using this option, the
number +22 would be x'3232' and the number -22 would be x'7232". The
default value.

Leading Separate. This option sets the first byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

Trailing Overpunched. This option sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x'3232' and the number -22 would be x'3272".

Trailing Separate. This option sets the last byte of the element to '+' if the
number is positive and to -' if the number is negative. For this option, the
length must include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set
for you.

Virtual Decimal
Point

Integer

Specify the number of places to the left (for a positive value) or right (for a
negative value) that a decimal point is to be moved from its assumed position.
For example, a float element containing 1234 with a Virtual Decimal value of 3 is
1.234.

This property is not applicable if you have set Physical Type to Float.

Representation of null values

Property

Type

Meaning

Encoding Null

Enumerated

type

Select one of the following options from the displayed list:

NULLPadFi11. This option is valid only if Physical Type is External Decimal.
The field is filled with the value specified by the Padding Character. Encoding
Null Value must be set to an empty string.

NULLLogicalValue. The Encoding Null Value is transformed to match the
required format for the field. The default value.

NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a
string. You can specify a nonnumeric value for Encoding Null Value.

NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

321

Message model reference information

Property

Type

Meaning

Encoding Null
Value

String

The use of this property depends on the Encoding Null property, except for
NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must resolve
to a single character. Set the character in one of the following ways:

* Select SPACE, NUL, 0x00 or OxFF from the displayed list

* Enter a character between quotation marks, for example 'c' or "c", where c is
any alphanumeric character.

¢ Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal
value.

¢ Enter a decimal character code in the form YY where YY is a decimal value.

e Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property

Type

Meaning

Byte Alignment

Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:
e 1 Bytes. The default value.

* 2 Bytes

* 4 Bytes

* 8 Bytes

* 16 Bytes

Leading Skip
Count

Integer

Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer

Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property

Type

Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

322 Message Models

CWE properties for element reference and local element integer types:

The CWF wire format properties for element reference and local element integer

types.

The Custom Wire Format properties described here apply to:

¢ Objects: Element Reference, Local Element

¢ Integer schema types: byte, int, long, short, unsignedByte, unsignedint,
unsignedShort

Physical representation

Property

Type

Meaning

Physical Type

Enumerated

type

Select one from the displayed list:

The representation of numeric elements can be affected by the Encoding and
CodedCharSetld attributes that are set for the WebSphere MQ queue manager:

Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

Packed Decimal. Equates to the COMP-3 data type in COBOL.

External Decimal. Equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

Elements that have Physical Type set to Integer and Packed Decimal are
represented in the appropriate WebSphere MQ Encoding value.

Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetld value.

Length

Integer

Enter the number of bytes to specify the element length:

If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

If you have set Physical Type to Packed Decimal, enter a value between 1 and
6.

If you have set Physical Type to Extended Decimal, enter a value between 1 and
11.

Message model reference information 323

Property

Type

Meaning

Length Units

Enumerated

type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):

Bytes.

Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

For a multibyte code page (MBCS CCSID) such as "UTE-8" (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.

For single-byte and double-byte code pages, this option is identical to
Characters.

For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Justification

Enumerated

type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this property is inactive.

324 Message Models

Property

Type

Meaning

Padding
Character

String

The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the Physical
Type property to Extended Decimal, and the Justification property is either Left
Justify or Right Justify, specify this character in one of the following ways:

* Select NUL, '0', or SPACE from the displayed list.

* Enter a character between quotation marks; for example, "c" or 'c’, where c is
any alphanumeric character.

* Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

¢ Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

* Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

Numeric

representation

Property

Type

Meaning

Signed

Check box

Select (the default) or clear this property. This property is used with Sign
Orientation.

Message model reference information 325

Property

Type

Meaning

Sign EBCDIC
Custom
Overpunched

Check box

If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating that
the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

Sign
Orientation

Enumerated

type

If you have set Physical Type to External Decimal and you have selected Signed,
choose from the following options that represent the COBOL options for
displaying numeric data:

* Leading Overpunched. This option sets a bit in the first byte if the number is
negative. No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x'3232'. Using this option, the
number +22 would be x'3232' and the number -22 would be x'7232"'. The
default value.

* Leading Separate. This option sets the first byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

* Trailing Overpunched. This option sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x'3232' and the number -22 would be x'3272'.

* Trailing Separate. This option sets the last byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set
for you.

Representation of null values

Property

Type

Meaning

Encoding Null

Enumerated
type

Select one of the following options from the displayed list:

* NULLPadFill. This option is valid only if Physical Type is External Decimal.
The field is filled with the value specified by the Padding Character. Encoding
Null Value must be set to an empty string.

* NULLLogicalValue. The Encoding Null Value is transformed to match the
required format for the field. The default value.

* NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a
string. You can specify a nonnumeric value for Encoding Null Value.

* NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

326 Message Models

Property

Type

Meaning

Encoding Null
Value

String

The use of this property depends on the Encoding Null property, except for
NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must resolve
to a single character. Set the character in one of the following ways:

* Select SPACE, NUL, 0x00 or OxFF from the displayed list

* Enter a character between quotation marks, for example 'c' or "c", where c is
any alphanumeric character.

¢ Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal
value.

¢ Enter a decimal character code in the form YY where YY is a decimal value.

e Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property

Type

Meaning

Byte Alignment

Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:
e 1 Bytes. The default value.

* 2 Bytes

* 4 Bytes

* 8 Bytes

* 16 Bytes

Leading Skip
Count

Integer

Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer

Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property

Type

Meaning

Repeat
Reference

Enumerated

type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

327

Message model reference information

CWE properties for element reference and local element string types:

The CWF wire format properties for element reference and local element string
types.

The Custom Wire Format properties described here apply to:
* Objects: Attribute Reference, Local Attribute

 String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,
Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token

Physical representation

Property Type Meaning
Physical Type Enumerated Select one from the displayed list:
type * Fixed Length String. The element's length is determined by other length

properties as follows.
* Length Encoded String 1. The first byte of the element contains the length of

the string following the length byte in length units. The maximum length of a
Length Encoded String 1 element is 255 length units.

* Length Encoded String 2. The element's first 2 bytes contain the length of the
string following the two length bytes in length units. The maximum length of
a Length Encoded String 2 element is 65535 length units. The two length
bytes are in the format of the WebSphere MQ queue manager Encoding.

* Null Terminated String. The string ends with the hexadecimal NULL
character, X'00"'.

The default is Fixed Length String.

Length

Button and If you have selected a Physical Type of Fixed Length String or Binary, and have
Integer selected the length to be defined by Length, enter the number of length units for
the element.

The minimum value that you can specify is 0 (zero), the maximum value that
you can specify is 2147483647

The default value is 0 (zero).

Length
Reference

Button and If you have selected the length to be defined by Length Reference, select the name
Enumerated of the integer object that specifies the length of this object. Make your selection
type from the displayed list of integer objects that are defined as siblings of the
current object, and occur before it in the structure of the message.

For information about reordering elements, see ['Reordering objects” on page|

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

328 Message Models

Property

Type

Meaning

Length Units

Enumerated

type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):

The default is Bytes.

Bytes. The length is given in bytes.

Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.

End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

For a multibyte code page (MBCS CCSID) such as "UTE-8" (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

For single-byte and double-byte code pages, this option is identical to
Characters.

For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTE-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

Justification

Enumerated

type

If you have set the Physical Type property to Fixed Length String, select Left
Justify (the default value) or Right Justify from the list. If you have selected
another value for Physical Type, this property is inactive.

Message model reference information 329

Property Type Meaning
Padding String If you have set the Physical Type property to Fixed Length String, and the
Character Justification property is either Left Justify or Right Justify, this property is

applicable.

When writing an output message, use the padding character to fill out the
remaining character positions when the string length is less than the length
implied by the Length or Length Reference property. Whether the string is padded
from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end
of the string. Whether the string is trimmed from the left or the right is
governed by the Justification property.

Specify this character in one of the following ways:
* Select NUL, '0', or SPACE from the displayed list.

* Enter a character between quotation marks; for example, "c" or 'c’, where c is
any alphanumeric character.

* Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

* Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

* Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, it is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

330 Message Models

Representation of null values

Property

Type

Meaning

Encoding Null

Enumerated

type

Select one of the following options from the displayed list:

e NULLPadFi11. This is valid only if Physical Type is Fixed Length String. The
field is filled with the value specified by the Padding Character. Encoding Null
Value must be set to an empty string.

* NULLLogicalValue. The Encoding Null Value is transformed to match the
required format for the field. The default value.

* NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a
string.

* NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

Encoding Null
Value

STRING

The use of this property depends on the Encoding Null property. If specified, its
length must be equal to the length of the string element, except for
NULLLiteralFill.

The default value is empty (not set).

If you set the Encoding Null property to NULLLiteralFill, the value must resolve
to a single character. Set the character in one of the following ways:

* Select SPACE, NUL, 0x00 or OxFF from the displayed list

* Enter a character between quotation marks, for example 'c' or "c", where c is
any alphanumeric character.

* Enter a hexadecimal character code in the form 0xYY where YY is a
hexadecimal value.

* Enter a decimal character code in the form YY where YY is a decimal value.

e Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property

Type

Meaning

Byte Alignment

Enumerated

type

Specify how the object is aligned from the start of the message. Select one of:
* 1 Bytes. The default value.

* 2 Bytes

* 4 Bytes

* 8 Bytes

* 16 Bytes

Leading Skip
Count

Integer

Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer

Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Message model reference information 331

Occurrences

Property Type Meaning
Repeat Enumerated Use this property if the object occurs multiple times, and the number of
Reference type occurrences is given dynamically by a field earlier in the message. Select an

integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Element reference XML properties:
The properties, and their permissible values, vary according to the type of object.
The properties that are displayed on the object page, and the values that those

properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for

the object type from the following table.

[Binary types| [Boolean types| [DateTime types| [Decimal types|
- base64Binary - Boolean - date - decimal
- hexBinary - dateTime - integer
- gDay - negativelnteger
- gMonth - nonNegativelnteger
- gMonthDay - nonPositivelnteger
- gYear - positivelnteger
- gYearMonth - unsignedLong
- time
- double - byte - duration - anyURI
- float - int - ENTITIES
- long - ENTITY
- short - 1D
- unsignedByte - IDREF
- unsignedInt - IDREFS
- unsignedShort - language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

332 Message Models

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.

XML properties for attribute reference, element reference, local attribute, local element
binary types:

XML wire format properties for attribute reference, element reference, local
attribute, and local element binary types.

The XML Wire Format properties described here apply to:
* Objects: Attribute Reference, Element Reference, Local Attribute, Local Element

* Binary schema types: base64Binary, hexBinary
Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Message model reference information 333

Property Type Meaning
Render Enumerated Specify how the instantiated object or type is rendered (output) in the resulting
type XML document. Select one of the following values from the drop-down list:

* XMLETement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

* XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

* XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLETementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

— You must also set Value Attribute Name to the same value for the two
objects.

— Both objects must refer to the same element.

* XMLETementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

* XMLETementAttrIDVal. This option combines the two options,
XMLETementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLETementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

— You must also set Value Attribute Name to the same value for the two
objects.

— Both objects must refer to the same element.

["XML rendering options” on page 750| shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

334 Message Models

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).
This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.
You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.
If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (") replaced by an underscore (_).

ID Attribute String Specify the name of the attribute used to identify the child. This must be a valid

Name XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLE1ement, XMLAttribute, or XMLETementAttrval.
The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute String Specify the value of the attribute used to identify the child. This property is

Value ignored and cannot be changed (the field is disabled) if Render is set to
XMLETement, XMLAttribute, or XMLETementAttrVal.
The default value is the identifier of the child.

Value Attribute |String

Name Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.
The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Physical representation
Property Type Meaning
Encoding String Select one of the following values from the drop-down list: :

+ CDatahex (the default). Hexadecimal values in this field are specified with the
CDATA qualifier, for example <el><![CDATA[62]]></el>

* hex. Hexadecimal values in this field are specified as digits only, for example
<el>62</el>.

* base64. Values in this field are specified as digits only, coded in base 64.

XML properties for attribute reference, element reference, local attribute, local element
Boolean types:

XML wire format properties for attribute reference, element reference, local
attribute and local element Boolean types.

The XML Wire Format properties described here apply to:
* Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
* Boolean schema types: Boolean

Message model reference information 335

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Property Type Meaning
Render Enumerated Specify how the instantiated object or type is rendered (output) in the resulting
type XML document. Select one of the following values from the drop-down list:

* XMLETement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

* XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

* XMLETementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLETementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

— You must also set Value Attribute Name to the same value for the two
objects.

— Both objects must refer to the same element.

* XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

* XMLETementAttrIDVal. This option combines the two options,
XMLETementAttrID and XMLETementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLETementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

— You must also set Value Attribute Name to the same value for the two
objects.

— Both objects must refer to the same element.

[“XML rendering options” on page 750| shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

336 Message Models

Property

Type

Meaning

XML Name

String

Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (") replaced by an underscore (_).

ID Attribute
Name

String

Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLE1ement, XMLAttribute, or XMLETementAttrval.

The default value is id.

Namespace

String

Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String

Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLETement, XMLAttribute, or XMLETementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String

Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace

String

Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element

dateTime types:

XML wire format properties for attribute reference, element reference, local
attribute, and local element dateTime types.

The XML Wire Format properties described here apply to:

* Objects: Attribute Reference, Element Reference, Local Attribute, Local Element

e DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

Message model reference information

337

Property Type Meaning
Render Enumerated Specify how the instantiated object or type is rendered (output) in the resulting
type XML document. Select one of the following values from the drop-down list:

* XMLETement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

* XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

* XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLETementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

— You must also set Value Attribute Name to the same value for the two
objects.

— Both objects must refer to the same element.

* XMLETementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

* XMLETementAttrIDVal. This option combines the two options,
XMLETementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLETementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

— You must also set Value Attribute Name to the same value for the two
objects.

— Both objects must refer to the same element.

["XML rendering options” on page 750| shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

338 Message Models

Property

Type

Meaning

XML Name

String

Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (") replaced by an underscore (_).

ID Attribute
Name

String

Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLE1ement, XMLAttribute, or XMLETementAttrval.

The default value is id.

Namespace

String

Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String

Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLETement, XMLAttribute, or XMLETementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String

Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace

String

Enter the namespace associated with the Value Attribute.

Physical representation

Property

Type

Meaning

DateTime
Format

String

Specify a format string that specifies the rendering of the value for dateTime
elements.

The default dateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type see|“DateTime defaults by logical type” on page 788

See [“DateTime formats” on page 780| for details of dateTime formats.

XML properties for attribute reference, element reference, local attribute, local element
decimal types:

XML wire format properties for attribute reference, element reference, local
attribute, and local element decimal types.

The XML Wire Format properties described here apply to:
* Objects: Attribute Reference, Element Reference, Local Attribute, Local Element

* Decimal schema types: decimal, integer, negativelnteger, nonNegativelnteger,
nonPositivelnteger, positivelnteger, unsignedLong

Message model reference information 339

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Property Type Meaning
Render Enumerated Specify how the instantiated object or type is rendered (output) in the resulting
type XML document. Select one of the following values from the drop-down list:

* XMLETement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

* XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

* XMLETementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLETementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

— You must also set Value Attribute Name to the same value for the two
objects.

— Both objects must refer to the same element.

* XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

* XMLETementAttrIDVal. This option combines the two options,
XMLETementAttrID and XMLETementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLETementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

— You must also set Value Attribute Name to the same value for the two
objects.

— Both objects must refer to the same element.

[“XML rendering options” on page 750| shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

340 Message Models

Property

Type

Meaning

XML Name

String

Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (") replaced by an underscore (_).

ID Attribute
Name

String

Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLE1ement, XMLAttribute, or XMLETementAttrval.

The default value is id.

Namespace

String

Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String

Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLETement, XMLAttribute, or XMLETementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String

Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace

String

Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element float
types:

XML wire format properties for attribute reference, element reference, local
attribute, and local element float types.

The XML Wire Format properties described here apply to:
* Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
* Float schema types: double, float

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Message model reference information 341

Property Type Meaning
Render Enumerated Specify how the instantiated object or type is rendered (output) in the resulting
type XML document. Select one of the following values from the drop-down list:

* XMLETement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

* XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

* XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLETementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

— You must also set Value Attribute Name to the same value for the two
objects.

— Both objects must refer to the same element.

* XMLETementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

* XMLETementAttrIDVal. This option combines the two options,
XMLETementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLETementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

— You must also set Value Attribute Name to the same value for the two
objects.

— Both objects must refer to the same element.

["XML rendering options” on page 750| shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

342 Message Models

Property

Type

Meaning

XML Name

String

Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (") replaced by an underscore (_).

ID Attribute
Name

String

Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLE1ement, XMLAttribute, or XMLETementAttrval.

The default value is id.

Namespace

String

Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String

Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLETement, XMLAttribute, or XMLETementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String

Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace

String

Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element
integer types:

XML wire format properties for attribute reference, element reference, local
attribute, and local element integer types.

The XML Wire Format properties described here apply to:
* Objects: Attribute Reference, Element Reference, Local Attribute, Local Element

* Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,
unsignedShort

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Message model reference information 343

Property Type Meaning
Render Enumerated Specify how the instantiated object or type is rendered (output) in the resulting
type XML document. Select one of the following values from the drop-down list:

* XMLETement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

* XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

* XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLETementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

— You must also set Value Attribute Name to the same value for the two
objects.

— Both objects must refer to the same element.

* XMLETementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

* XMLETementAttrIDVal. This option combines the two options,
XMLETementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value

XMLETementAttrID for a second object, and set XML Name, ID Attribute Name,

ID Attribute Value to the same values:

— You must also set Value Attribute Name to the same value for the two
objects.

— Both objects must refer to the same element.

["XML rendering options” on page 750| shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

344 Message Models

Property

Type

Meaning

XML Name

String

(message).

rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or

the same XML name.

caret character (") replaced by an underscore (_).

Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace

attribute), or for a message. No two elements (or attribute) or messages can have

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the

ID Attribute
Name

String

The default value is id.

Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLE1ement, XMLAttribute, or XMLETementAttrval.

Namespace

String

Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String

ignored and cannot be changed (the field is disabled) if Render is set to
XMLETement, XMLAttribute, or XMLETementAttrVal.

The default value is the identifier of the child.

Specify the value of the attribute used to identify the child. This property is

Value Attribute
Name

String

The default value is val.

Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

Namespace

String

Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element

string types:

XML wire format properties for attribute reference, element reference, local
attribute, and local element string types.

The XML Wire Format properties described here apply to:

* Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
* String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,

QName, string, token

Field identification

A number of the following properties only become active depending on the value

that Render property is set to.

Message model reference information

345

Property Type Meaning
Render Enumerated Specify how the instantiated object or type is rendered (o