
Event ID: 369455
Mothercare Group PLC Takes Their ESB to the Next Level With IBM WebSphere

Message Broker version 8

[Karen Bannon]: Good morning, good afternoon, or good evening depending on where you are in
the world, and welcome to today's webcast, Mothercare Group PLC Takes Their ESB to the Next
Level With IBM WebSphere Message Broker version 8, brought to you by InformationWeek,
IBM, and broadcast by United Business Media LLC.

I'm Karen Bannon, today's moderator. We want to make sure this event is as interactive as
possible. So, I'd like to make just a few announcements before we begin. This webcast is
designed to be interactive between you and the presenters. You can participate in a Q&A session
at any time by asking questions during our presentation. Just type your question into the Q&A
widget to the left side of the slide area window and click the Submit button. You may adjust the
area of the widget such as the slide area by clicking on the lower right hand corner of the widget's
window and dragging the mouse. Slides will advance automatically throughout our event. If you
experience any problems with the program please refresh your browser or close your window to
re-launch the presentation. You can also visit our webcast Help Guide by clicking on the question
mark button on the docking bar on the bottom of the console window. And now, on to our
presentation, Mothercare Group PLC Takes Their ESB to the Next Level With IBM WebSphere
Message Broker V8.

We've got two knowledgeable speakers joining me for today's presentation, Ant Phillips and
James Blackburn. Ant Phillips is a development lead at IBM's WebSphere Message Broker
product development team. He is based at IBM Hursley in the UK and is responsible for a range
of technologies in Message Broker which are used to build reliable and scalable applications.
Anthony is also the Healthcare and Life Sciences Architect in Message Broker and leads the team
who deliver the healthcare connectivity pack.

James Blackburn is the Chief Architect at Mothercare Group PLC, a UK-based global company
synonymous with children and parenting through the Mothercare and Early Learning Center
brands. As IT senior manager, he is responsible for all enterprise applications in use within the
group and the leadership of architecture and software teams alongside the development of IT
application strategy.

And with that, I'd like to hand the presentation over to our speakers.

Anthony Phillips: Thank you, Karen. This is Anthony Phillips. As Karen said, I'm an architect in
the Message Broker development team in the UK. I'm going to spend about 15 minutes talking
through some of the highlights of Broker version 8, which is being released at the start of
December, in a few weeks' time.

15 minutes, of course, is nowhere near enough time to describe everything in this release. So, this
will be a very quick run through, but hopefully it will give you some of the headlines and some
areas of interest you might like to follow up on our web.

A very quick refresh on Message Broker. Message Broker is an integration engine. It connects
applications and devices together so that they can share data. Looking back some 10 years or

more to the start of Message Broker, our idea of a message was very limited. Essentially, taking
messages off of a queue, doing something to them, a transformation, and then, pushing them
back onto a queue.

Since then, of course, Message Broker has grown enormously in its capabilities so that it can deal
with much larger sets of transports and technologies, everything from databases, Web services,
queues, to packaged applications like SAP, Siebel, and PeopleSoft.

Of course, the message formats have expanded as well. Common formats like XML, CSB,
COBOL through to industry specific formats like HL7 in healthcare and SWIFT in financial
services. We focus very strongly on ease of use with our graphical data flows and also our patent-
based technology, which provides out of the box configurable solutions for common technical
problems. Also, the ability for anyone to create their own patterns using our pat-morphing
technology.

Last, but certainly not least, everything we do has two personas, how solutions are developed and
how they are administered. And as we walk through to the version 8 content, you'll see some
major enhancements in both those areas.

Contents at a glance -- well, I'm not going to stop on here for too long as we'll be talking about
most of this in the next few slides. It's there though if you want to get the slides after this call.

First big headline feature, Web administration of Message Broker. In Broker version 7, we
provide two main tools, our Eclipse-based toolkit, for developing applications and Message
Broker Explorer NBX to administer Broker.

In Broker version 8, we now have Web-based administration. You can perform all those common
tasks like deploying applications, starting and stopping flows, creating execution groups all
through a Web browser with a zero footprint.

We test against all the major browser manufacturers, Firefox, Chrome, and Internet Explorer, of
course. As you'd expect, access to the Web applications is security enabled both at the transport
level, through SSL, and also through application level security. Although the Web administration
is a feature of Broker version 8, it can also be used to administer version 7 Brokers.

Record and replay. The question to ask is what happens when something goes wrong in your
flows. Perhaps, for example, a transformation failed because a message contained some
unexpected data. Record and replay picks up from that point onwards. It allows an administrator
to capture that data and store it in a database. The data is captured using our existing event
monitoring and capture capabilities. And any of our supported databases can be used, such as
Oracle, SQL Server, and DB2 amongst others.

Through our Web application, an administrator can review the recorded event, edit the data, and
replay the messages back through Broker. And importantly, there's search and filtering in there as
well. As an administrator, I can find the messages that relate to a particular customer, an invoice,
or search on whatever business data is relevant to me.

DFDL, Data Format Description Language. How do I model my data? Well, in the XML world,
life is straightforward. Almost without exception, I use XML schemas. In the non-XML world,
it's a little more complicated. And really, just about every product, both inside and outside of
IBM has a different way of doing this.

For some years ago now, IBM helped to set up a new standard called DFDL, which provides a
consistent way to model non-XML data, which is a huge remix if you think of the vast range of
non-XML data out there. All the industry formats, the X12 standards, through to CSV data,
COBOL copybooks, and, of course, user defined formats.

As a developer, I can now create DFDL schemas, as they're called in Message Broker, and all our
nodes now support DFDL just like we support other domains like XML and data. We've built a
new DFDL editor where I can just design and test my DFDL models. And I reiterate that last
point, design and test. I can test my models within the editor without having to deploy them to
Broker. Very fast turnaround time for that edit and test cycle.

Graphical transformations. Another major headline release feature in version 8. An all new
graphical mapper. We've had a graphical mapper for many releases, of course, but there were
some aspects to it which we weren't completely happy with. For example, we believed
performance could be better. We also wanted to make it much simpler to use. Simplicity really
reflects the constituents of people who use the mapper.

The graphical mapper often appeals to people who are relatively new to Broker because it has a
low barrier to entry, with a very visual drag-and-drop metaphor. With the new mapper, we've
made huge steps forward both in performance and also usability. And not just that, but maps are
now stored in a standard file format called MSL, Mapping Script Language.

The MSL maps are simply deployed directly to the Broker runtime. You can also take those
MSLs and use them in other products. That will increase over time as the new common graphical
mapper is embedded in more and more products.

.NET. Perhaps more than any other feature in version 8, this has captured the imagination. The
ability to run code for .NET in Message Broker. Broker can load the Microsoft Common
Language Runtime, the CLR, and exit to .NET code just like it can load the JVM and run Java
code. And to be absolutely clear, this isn't because we love Java any less. Java is still very
important to us. It's just simply that our clients, our customers, also have investments in .NET
code and need to use that in connectivity solutions.

How do I build my .NET code for Broker? Just like I do today, Visual Studio. I still develop my
message codes in the Message Broker toolkit, but all .NET design, development, and debugging
is done in Visual Studio. And to this end, we provide a set of templates for Visual Studio to help
developers get started quickly. These templates support a variety of .NET languages including
Csharp and VB.NET. I'll also add that we've done a large amount of work around performance so
that .NET integrated into Message Broker is incredibly fast as we transition to and from the CLR.

We've covered a selection of the big hitters in version 8. Let's just spend a few minutes going
through another 10 or so of the headline features very quickly. First up, patterns. We introduced

patterns in Message Broker version 7, a different way to build applications. Parameter driven,
production ready solutions.

In version 7, we provided a range of built in patterns that solved common integration problems.
For example, putting a Web service front end on an in-queue application. And then, in version 7
6.1 and 6.2 through last year, we added the ability for anyone to create their own patterns, called
Pattern Authoring.

And now in version 8, we've added the third generation of this technology so that even richer
patterns can be created. We also support round-tripping so that your modifications to a pattern
are maintained even if you recreate the pattern instance project.

You'll see we also added a new built-in pattern for .NET. The pattern creates a Web service from
a class written in .NET. The pattern generates the message flows, the WSDL, the XML schemas,
and everything so that calls to the Web service are routed through to method calls on the
underlying .NET class.

We've added new file processing capabilities with Sterling Connect Direct nodes. Every release,
we move our ever popular file processing option forward. We've always been able, of course, to
process files on local or mounted file systems for a long time now. Also, connect FTP and SFTP
hosts, and more recently, we can send and receive files through FTE MQ file transfer edition.
That provides both guaranteed once and only once delivery of files.

With Sterling Connect Direct, we can process files directly on the Connect Direct network from
our business partners coming from business partners or other data sources. Also, for application
developers, we've opened up database support so that any UNIX ODBC driver can be plugged
into Message Broker. We do ask if you want to make use of this feature, do come and talk to us,
and we can provide you with good support.

Applications and libraries really improve the end-to-end experience in Broker solutions. They
allow me to design, deploy, and manage solutions as a whole unit. The runtime sees an
application as one atomic solution which can be started, stopped, deleted, and so on. Libraries
allow me to package content for re-use so that it can be easily shared between applications.

Last, but not least, rather like the file nodes, we also leave our Web services story boards in every
release. Our aim is always to make Broker the best platform for Web service solutions. In Broker
version 8, we're introducing WS-Reliable Messaging support. HTTP is by its very nature an
unreliable protocol. WS-RM has reliable message delivery, and I can configure a quality of
service through WS-RM. For example, AtLeastOnce, AtMostOnce, or ExactlyOnce message
delivery.

Let's change paths quickly to look at some of the Administration enhancements in Broker version
8. Platform support in 65-bit across the board for server platforms. We also support 32-bit
Windows and Linux, just because of their prevalence on developer machines. The MQ
prerequisite remains the same, 7.0.1. The upgrading is straightforward. We'll also support MQ
7.1 as a standard lifecycle enhancement, Java 6, and Microsoft .NET CLR version 4 developer
platforms. And probably know that Java 7 was released recently, but it didn't quite make it in
time for this release.

Like all Broker releases, we support N minus 2 migration, meaning I can migrate directly from
the two previous releases. And so, for version 8, that means version 6.1 and version 7. There's no
change to our strategy in this space. You can upgrade your Brokers in place using your MQSI
migrate components command or you can install version 8 side by side on the same machine, on
the same server with 6.1 and, or version 7. You can then incrementally move your applications
across to version 8, if and when the time suits you.

Management APIs. We have had for a long time a Java API for managing Broker called the CMP
API. In version 8, we've added a REST API for managing Broker. All the common applications
are available through a REST state. Deploying solutions, listing applications, starting and
stopping flows, and so on. The reason we've done this is to allow you to manage Broker from any
platform, whether that be a mobile application, or a mashup, or a situational application running
on a Web server.

Last slide covers some more administration enhancements. A new edition called Express Edition
brings a version of Broker to the small enterprise and departmental server world. It has a slightly
reduced set of capabilities, but importantly includes a .NET mode. And keep in mind as well it's
the same code running in Express Edition as runs some of the world's most demanding
applications in Advanced Edition. Those are applications running tens of thousands of
transactions per second sustained and which simply cannot fail. It's the same code in Express
Edition.

Workload Deployer, the next generation on from WebSphere Cloudburst enables easy
deployment for virtual images for cloud infrastructure, both on AIX and x/Linux. Most important
of all, the deployment image includes not only the operating system and the middleware in queue
in Broker, but also all your own application content. Furthermore, you can customize the
deployment process with your own configuration scripts.

Database administration. Those two enhancements that mean so much. Fast First Message
processing. The first message has no startup cost as the database connections are already
established. And immediate reconnect to the database in the event of a connection problem.

Last, but not least, Activity Trace. This is a new administration capability to understand what
Broker is doing. Most important of all, it provides messages with meaning for System
Administrator. For example, writing message to a queue, file ready for processing, updated
database failed. And as you'd expect, the Activity Trace messages also have context information
explaining more about the message. The queue name, the file that's ready for processing, and so
on. We've designed Activity Trace to be very light weight so it can be left permanently running.
If a problem does occur, then the information has already been captured, ready for diagnosis.

That's been a very fast run through of the headline features in Broker version 8. I'm going to hand
over to James now, who's the Enterprise Architect at Mothercare. He's going to explain a little bit
about his business and their experiences with Message Broker version 8.

James Blackburn: Thanks Ant. As already been discussed, my name's James Blackburn. I'm the
Chief Architect here at Mothercare PLC. I'm just going to walk through what we've done with
our ESB here and why we can take it to the next level with version 8.

For those of you who haven't been introduced to Mothercare before, we are a global supplier of
children's wear to not only our UK business, but also over 1,200 stores in over 55 countries. We
operate through three brands, Mothercare, Early Learning Center, and our social networking site
gurgle.com.

We have annual sales of GBP 1.2 billion and maybe 22% of our annual sales come from over the
Internet. In addition to all of our stores business, we've got offices worldwide, in the UK, India,
Hong Kong, and China. And we also have a global supply chain with distribution operations not
only in the UK, but also in China, and India.

Our mission is to be able to support the needs and aspirations of parents for their children
worldwide. In order to support that mission, our systems need to be stretched to do quite a
number of things. So, we need to support everything from our core merchandising systems,
which is dealing with price and product management. Channel Focused Systems from e-
commerce to stores. Sourcing systems; e0verything from factory right through to warehousing.
International and wholesale operations and our UK supply chain. All of those discrete systems
get plumbed together using our WebSphere Shared Messaging infrastructure underneath.

In order to support all of those systems, we centered our technology around three core strands.
The IBM I or AS/400, Microsoft SQL Server, and our IBM WebSphere technology.

So, why does Mothercare need an ESB? Some of our core system challenges meant that IT was
becoming a disabler to our business growth. Our core merchandise system has something in the
region of 10 million lines of code, which is pretty similar to an operating system. We have 100-
plus bespoke interfaces. Our business logic and enterprise transport is all combined. Adding a
single application therefore meant that we had multiple application impacts.

What that meant was that a number of our core systems were all therefore interrelated to each
other. As I said earlier on, if we change one of them, a number of other impacts were made.
Whereas what we wanted to get to was our future state integration solution where we could hang
all of our applications off our service bus. And therefore, if any one system needed to be
changed, its impact to all the other systems was minimized.

But this solution hasn't just happened overnight. This has taken a number of years to develop. We
started working with both IBM and Microsoft in 2006 when we did a proof of concept between
both Message Broker and BizTalk. In 2006, we chose the IBM WebSphere Message Broker
product to power our Enterprise Service Bus. We commissioned this in 2008 with a development
of a number of our core application services.

Our first application went live in Q1 2009. Since then, we've changed about -- 3 IT and business
change projects per year have been migrating into the service bus.

How we achieved that is through establishing a number of principles. We've connected a number
of applications, our core merchandising and merchandise planning system. Our finance system,
e-Commerce, and fulfillment.

And developing all of those, we've put together a set of principles, which means that we
transformed into an OAGIS or ARTS-based canonical data format. We build and install
applications based on adapters for specific integration. What that means is that we actually say
that an individual application has its own execution group and a set of flows associated with it.
This means that we can establish our core service providing generic transport and routing with
our business services providing any choreography.

By establishing each application in these individual execution groups, we can make sure that our
applications end up loosely coupled from each other. Our application configuration can therefore
be managed by the business unit rather than our core IT function. Which means we can get closer
to our goal of having one piece of business data input into one system but shared by many.

How do we achieve that logically? As I said, we use execution groups to separate off our
applications, so we developed ourselves a core merchandising system adapter, which uses MQ.
And then, we transform that into an economical data format. And then, we push that through to
an application adapter, which transforms again to the interface specification. Therefore, the vast
majority of data always gets transformed twice and all the local configurations looked up from an
audit and routing database.

In order to achieve this, what do we actually use? Our software is built on a number of
WebSphere technologies. So, we us MQ, as we've already described for our Enterprise level
transport. We use version 7.0.1. We use IBM WebSphere Message Broker to transform and do a
lot of our main core canonical data format mapping and our application adapters. We use version
6.1 for that. We also use the WebSphere Partner Gateway version 6.2 because it is required for
some of our business-to-business external comms. But we also use Tivoli for our system control
and monitoring. Our entire estate, for example, is -- over 43 queue managers and I have no
dedicated MQ administrative support. Everything is managed through our Tivoli infrastructure.

If we've got all this environment here and we're migrating 3 applications a year. We're doing this
dual mapping. We've got all the benefits that we can have automated routing and I've got Tivoli,
why do I need version 8? For starts, I'll obviously get the benefits realized under version 7. I
don't have to use DB2. I've got simpler installation. And quite importantly for us, I've got
patterns.

But really for me, version 7 was very, very difficult for me to parse in and push in to sell to the
business because a lot of these DB2 patterns is really benefits for IT. What version 8 allows me
to do is bring on some of those benefits from version 7 and bring those to business realized
benefits. We've got Microsoft environment support. We've got the Message Mapping user
interface. I've now got a standardized Integrated Development Environment with many of my
tooling now working in the standard Eclipse frameworks. And a number of administrative
enhancements.

What I'm going to do now is step through some of the benefits that version 8 is going to give us
and how we are currently implementing those.

Microsoft Integration. Database enhancements as Ant talked about, these should provide better
message flow support for SQL Server, the pre-emptive connection, connect, and reconnect. But

more importantly, what we're working with is the .NET support. That allows us to natively
integrate with the Microsoft Business Stack, most notably Microsoft Dynamics. And a .NET
node for integration with Visual Studio.

As I've already described, one of our key technologies that we use is Microsoft SQL Server in
.NET environment. So, we really need a seamless integration between our Message Broker and
our Microsoft environment.

What I'm going to do now is walk you through one of the use cases that we're currently working
on here that allows us to take some existing message flows and apply some .NET nodes to them.

So, I've got an existing message flow which takes master data from a Legacy AS400 application
into a finance application via Webservices. Interestingly, this is originally a Message Broker
version 6 product, but as I've said, this is now 6.1. So, we've got our Merchandise Management
Master System that's generating master data such as suppliers, customers, and products. And I
need to replicate this data into our finance system.

Following our standard principles, that's a two step process. So, I take an input message flow that
takes data from an MQ, that's common wire format for MQ, and generates an OAGIS message
format. A separate message flow then process OAGIS message format into a Webservice call
into our financial application.

But what I need it to do is I need to extend this flow to not only write into a external SQL
database, but also make some in-line calls to Microsoft Dynamics. So, I've developed some new
message flows to route to the database and .NET. Because we've approached this loosely coupled
methodology, we've been able to take our existing message flows, the output to the OAGIS
format, and the existing message flow carries on. It's none the wiser.

We then put extra entries on our routing database, which then duplicates the data automatically to
a number of other flows. So, these new message flows are being developed to route to SQL
database and into .NET.

If we have a look at the .NET flow in detail, what that allows me to do is take a standard MQ
input and then route that through to a ESQL compute node. And then, we pass it through a series
of .NET nodes so it allows us to log on to the application to manipulate the data into the .NET
application database. Then, we log off. Then, we process the message through to our audit.

This message flow uses not only ESQL and the .NET node to interact with the .NET application.
And again, this is completely independent of the previous message flows. Although, it's still
using the same message source.

This is what Ant was talking about earlier on when he mentioned that we really need to, as a
customer, we're working with a lot of our .NET applications. We really feel that version 8 allows
us now to move forward and seamlessly connect with a number of our .NET instances.

Other features in version 8 that we're using, that Ant has already mentioned, the Graphical
Mapper. Obviously, like many other customers, the original message map, although it was
cumbersome to use, did actually do the job that it needed to do. But our current design process

means that we tend to build message models and maps in a spreadsheet to pass to our offshore
teams to develop.

What this allows me to do now is our message mapping user interface should allow my architects
and designers to build a message map to directly pass offshore. This should lower the number of
mistakes and issues that could occur. And if there's any changes to be made, we don't need to
make the change on the spreadsheet, check it in, change the design. We can just change the
message map object. We can then check that in. And then, the flow should update.

It will allow us to have much more of a dynamic interaction with our offshore teams. And it will
also allow with a standard message format eventually, to exchange those message formats with
our partners.

In addition to .NET and the mapping user interface, we've actually got some changes to our IDE,
as I mentioned earlier on. Our aim here is to have a single IDE for a WebSphere developer that
will allow support of unit testing. But because it uses Eclipse version 3.6, this now works better
with a lot of our tooling. There's better integration with SubVersion. We've had challenges here
where under 6.1 of Broker, sometimes the Subclipse and SubVersion interfaces don't work quite
as we planned. But now, we have seamless integration with SubVersion. So, we can check in and
check out directly from our toolkit.

We've got integrated database connectivity. So, we don't need a separate application or other
JDBC plug-ins to the IDE. Also, important to us is we've also go integration to our tooling that
allows us to do tasking out to our offshore teams through the Jira product Atlassian provider
plug-in that works with 3.6 of the integrated IDE. And that means that individual developers can
be working on a single task and a single message flow, checked in, and with the database all in
one individual perspective on the screen without either having to switch perspective views or
even applications.

It's getting ourselves close to my aim of not being able to move around between different
applications and get to the point where a developer can work in a single application. Ant also
mentioned that there are a number of other things in version 8. Particularly, some around the
admin enhancements. And again, I've just picked out a couple of things that we've been working
with here on version 8 that gives us some of the benefits.

We can deploy flows into a stopped state. That means we can deploy solutions much earlier. And
a solution go-live is then just a simple case of starting up message flows as opposed to having to
do automated development and implementation between a number of other third-party teams.

In particular, we also have enhancements to the activity logging. So, this builds on what was
before in version 7. It allows for external views of the Broker events. So, we don't need to use
APIs or the configuration manager repository viewer to actually figure out exactly what our
Brokers are doing and who's deployed what, when, and where.

In terms of version 8, most people probably like me had a view that, okay, to be honest, version
8, yes, it's great. Gives me a whole load of new functions, but I'll wait until the first fix pack
comes out. Or I'll wait for somebody else to find some of the issues. But to be honest, we haven't

really found that with v8. We've been working on v8 with IBM since the alpha release, since Q1
2011.

We haven't really encountered any significant stability problems even with the alpha release. So
much so that one of our projects set for deployment later next year, we've actually already started
using version 8 in beta in one of our projects to start live coding of. We've been able to deploy
version 6.1 flows directly without modification and without even having to do an MQ upgrade.
So much so that we're confident that we can go straight into version 8 production migrations Q2
next year, without any significant overheads or changes to any of our solutions.

The primary reason why we selected Q2 as opposed to Q1 when the product is available at the
end of this year is I've got a number of other in-slide projects that migrate in Q1 that have already
been started coding before we even had the Alpha release of the product. So, we're going to
deploy those projects first into v6.1. And then, we'll do an upgrade before our next set of projects
are implemented.

I'm now going to hand you back to Karen. Thank you.

Karen Bannon: Great. Thanks so much, James. And now, before we begin today's Q&A, we'd
like to ask everyone to fill out the feedback form that's opening on their computer. To complete
the form please the Submit Answer button that's on the bottom of the page. Thanks so much in
advance for filling out our feedback form since participation in this survey allows us to better
serve you.

And with that, I think it's time for our Q&A. I did just want to call out that we are going to be
pushing out a couple of resource slides right here for you. These will give you a little bit more
information about today's presentation and the Message Broker v8 solution. So, it might be good
and handy to have during Q&A to look at while we're discussing the presentations.

And with that, let's get started with our Q&A. The Q&A is actually an excellent opportunity to
ask questions and start a dialogue with IBM about your own IT infrastructure or concerns you
might have. As a reminder, to participate in the Q& A, just type your question into the text box
located below the media player and then click the Submit Question button.

We have had some questions coming in. So, let's get started. Peter would like to know, “I've
heard several file types can be directly deployed to Message Broker in v8. Can you explain what
this means?” Ant, do you want to try that one?

Anthony Phillips: Yeah, sure. So, that's a good question. And this is a big change for Message
Broker. In previous versions of Broker, all file types had to be -- well, either imported or at least
processed by the toolkits before they were deployed. And in Message Broker version 8, I can
now take those source files and deploy them directly to the runtime. And there are lots of good
examples of this.

For example, WSDL, Web Service Descriptions, XML schemas. We can also source deploy
ESQL scripts or message flows themselves in the form of deployable subflows. So, this is all
about simplification, really making our deployment story much more simple and consistent. And
it's also about making Message Broker easier to administer.

Karen Bannon: We have a question here. This question is from Christopher. Christopher would
like to know, “Is the healthcare connectivity pack supported on Message Broker version 8?”

Anthony Phillips: Yes, absolutely. The background for this is a new product we released in May
this year called the Message Broker Healthcare Connectivity Pack. And the product brings
together technology we've had for many years in a healthcare product that sits on top of Message
Broker. The key point being that Message Broker is a general purpose integration engine which
gets applied to many different industries. Retail, transportation, financial services, and, of course,
healthcare.

And the Healthcare Pack brings all that together along with content, which addresses key
scenarios in the healthcare industry. For example, connecting clinical applications with HL7. So,
yes, the Healthcare Pack is absolutely supported on top of Message Broker version 8 right from
day one.

Karen Bannon: We have another question. This is about the new graphical mapper. This question
comes from John. He'd like to know, “Is the new graphical mapper faster than the previous
mapper?” And maybe you can tell us a little bit about what's changed.

Anthony Phillips: Yes, sure. And that's a very topical question. The short answer, yes, it is. It
really addresses one of the weaknesses that I was talking about earlier in the slides. This is a
weakness that we've seen in the previous versions of the graphical mapper.

The graphical mapper in version 7 and before really isn't as fast as we would've liked it to have
been. When we compare it with some of the fastest transformation technologies in the product,
such as ESQL and Java, and now, of course, .NET, the graphical mapper isn't quite the fastest
amongst those yet. But it's getting pretty close. This is in part because of our investments in the
underlying runtime technology. We've built a really efficient JIT compilation engine that
executes the maps. And we're pretty confident over time, the mapper will really push our
transformation technologies for that top spot.

Karen Bannon: We have another question about comparing Message Broker v7 and v8. This
question is actually from Ron. Ron would like to know, “How does performance of DFDL
compare with the MRM parser in Message Broker version 7 and before?”

Anthony Phillips: Yes, okay. So, let me think about it. So, broadly comparable, I think with some
gains in key performance areas. The background to this is that we've had a goal all the way
through that DFDL development in Message Broker to beat the MRM parser in pretty much
every benchmark we could think of.

The MRM parser in Message Broker is the parser that can parse tight delimited data, comma
separated text data, all those kind of non-XML formats. So, that's the kind of benchmark that we
stand up against. We're not quite there yet as far as beating it on every benchmark, but the
performance figures are really encouraging. Best of all, we have a clear road map that takes us
forward to two times, three times, and beyond the parser performance of the MRM parser in the
future.

I think for this first release of the DFDL parser, the figures are really encouraging. And looking
forward for the road map, much better as well. So, good story there I think for the product.

Karen Bannon: We have a question here I think that both James and Ant could handle, but maybe
we'll ask Ant to -- actually, we'll ask James to take this one first. We have a question here from
Bill. Bill would like to know, “We're looking for some middleware to take care of integration
between Lawson, which uses WebSphere and MS SQL and a number of vertical market products.
Would this be a practical solution to handle all the interface between various applications?”

I know, James, this is a little bit what -- like what you've done. Maybe you want to address this
first?

James Blackburn: Yeah, Bill. That's a great question because that's exactly some of the reasons
why we chose the Message Broker product over a number of other products. Because in
particular, we have quite a number of disparate applications over disparate different technology
stacks with a AS/400 legacy type applications, back end. Although, we don't use Lawson here,
it's a similar type of application when we move data off that on MQ, as I said earlier on. And a
variety of other Microsoft SQL and Oracle products. We chose Broker because particularly for
our performance and the ability of able to transform into different formats both in real-time and
batch.

Karen Bannon: Ant, do you want to expand on this as well?

Anthony Phillips: Well, I think James has captured it. So, yes, absolutely. I think that's a very
common use case for Message Broker is to help integrate the kind of Web presentation tier with
different back ends. So, if it's whatever kind of presentation tier that might be, whether it's a
WebSphere or whether it's another vendor's front end application, that's actually fine. And then,
Message Broker has excellent support for a very wide range of databases.

In fact, that's something with which we’ve expanded on in Message Broker version 8 by opening
up the ODBC driver manager so that any ODBC driver, within reason, can be plugged into
Message Broker. So, yes, I think that's absolutely in the sweet spot really of what Message
Broker does.

Karen Bannon: I just wanted to stop here for one second just to remind everyone that this
actually is a great time to ask questions that do relate specifically to your own infrastructure
questions and concerns. So, we can go very general about Message Broker itself or we can go a
little bit deeper about your own IT infrastructure situation.

Our next question -- we actually have a follow up from Bill. Bill would like to know, “What skill
set, training, or consulting services would we need to investigate to create an implementation?”
And I think probably both of our speakers would have something to say to this.

James Blackburn: James, here. Yes, I mean, we obviously have been on a Message Broker
journey for a few years now. And we had here some of the same nervousness when we first put it
in about we've got to move to a more real-time integrated way of delivering our data. Whereas
before, traditionally we're kind of mainframe batch overnight process based.

We did a bit of both really. We had the advantage that we're an AS/400 shop. So, that means that
we do a lot of work in the Eclipse framework anyway that comes shipped with the product. So,
transition to the Eclipse framework and the Eclipse way of working was quite easy for us.

But we did use a bit of consultancy from a number of our technology partners. More just to make
sure that we were on the right lines and my vision of where I want to go with the platform wasn't
too adrift of what other retailers are doing in our market sector. Just to make sure that we're not --
we implement something that's reusable, something that we can share, and something that I can
swap partners around if I need to.

So, yes, we did use a bit of consultancy from IBM and our other technology partners, but most of
it was our own making and our own design.

Karen Bannon: Ant, did you want to expand on that question as well? What -- ?

Anthony Phillips: I think from a product point of view, we go a long way. We really try very
hard to make sure that people's first touch with the product is absolutely as good as it can be. And
you see that from when -- the first points from which you launch the toolkit. You get a set of
quick starts and we have a really very extensive set of samples that you can use to learn about
how the product works. Those just import into the workspace and run straight away.

We also provide patterns, which is -- not only does patterns provide a very easy way to get
production-ready solutions, but it's also a fantastic way of learning about how the product works
and how to use it efficiently. That's one of the key aspects of the patterns that we provide in the
product is that they exemplify best practice so you can instantiate the pattern. And then, what you
get is a Message Broker project which implements a particular solution. And then, you can look
in that project and the code that's been generated. The message flows and the scripts, and really
understand how to use Broker efficiently for creating Web services, connecting applications
together, and so on, and so forth.

So, there's lots of touch points with Broker to understand how to use the product. And that's just
in the core product itself. And then, of course, that leads on to all the things that James was
talking about, which is the kind of broader community or broader ecosystem of all the kind of
consultants and training companies, which can obviously help you to build solutions as well.

Karen Bannon: We have a question here. I believe it's [Venigopal]. I apologize if I didn't get that
right. They said, “You mention that Web console's available in WMB 7. Could you give more
details? Is it a support pack or does it come with the fix pack?”

Anthony Phillips: Right. Yes, so, there is a -- there’s an existing fix -- support pack, I should say,
which is available that provides some of the capabilities around record and replay. And what
we've done in version 8 of Message Broker is to take that and build it into the core product. So,
it's now a part of the supported product offering. And that addresses -- the support pack had some
of the capabilities of the record and replay, but we've added quite a bit more to that.

The Web console that we're providing in version 8 has all of that record and replay, but it also
has general administration capabilities with Message Broker. The ability to deploy applications,

see what's deployed, start flows, stop flows, all those kind of really key capabilities. Then again,
that's all built into this Web console, Web application, call it what you will.

The way we deploy that is we have a Web server that's built into Message Broker. In fact, we've
had that for a very long time because that's some of the technology that we use for our HTTP and
SOAP nodes. They require a Web stack, if you like. And so, we've had that for a while. So, we're
simply repurposing that tool to obviously deliver Web content.

That's also sort of leads into another question which often comes up, which is can we also turn
this off? And the answer is yes. We do appreciate that not everyone wants to have Web-based
administration of their Message Brokers. So, for those people, we can also turn this capability off
if you want to.

Karen Bannon: Sounds like it's very flexible and it definitely seems like it takes a lot of the
complexity out of the equation. We have a question here now from Tom. Tom would like to
know, “Is this compatible with both SQL Server 2000, and SQL Server 2005, and SQL Server
2008? All 3?”

Anthony Phillips: What a good question. So, definitely SQL Server 2008. I believe 2005 as well.
Less sure about SQL Server 2000. I'll have to check the final support statement for what we're
supporting for 2000. So, certainly the first two. Not sure about SQL Server 2000.

Karen Bannon: Ant, if they had questions about compatibility, is there a good way to get in touch
with you or get in touch with someone at IBM that could help them out with these type of very
technical questions?

Anthony Phillips: Yes, lots of different ways. So, you can either -- if you have an IBM
representative that you talk to anyways, then, you can just ping them a question. If you want to
get to contact through the IBM website, you can do that. Equally, there's a service channel, which
is a channel we support not just for providing support around product defects, but that's an
important part of it. But also, for simply answering questions. If you have questions, you can
raise a service request and we'll answer that very quickly.

So, lots of different ways of getting into IBM. Whichever one suits you the best I think is the
answer.

Karen Bannon: We're actually coming up to the end of our event, but we do have time for maybe
2 more questions. I have a question here from Larry. He'd like to know, “Unfortunately, we're
running Message Broker 6.0. Is there any direct upgrade path from Message Broker 6.0 to
Message Broker 8?”

Anthony Phillips: Right. Okay, good question. The answer is there's no direct path. So, this is
something I mentioned earlier which is our strategy for Message Broker is and has been for a
long time, to support N minus 2 migration, meaning that you can go from the previous two
releases up to the current release.

Once we've released version 8, what you can migrate to version 8 is directly from version 7 or
version 6.1. So, for someone who's on version 6, which I believe is going out of service very

soon, if it hasn't already, then, the answer is to bring those -- bring your solutions into a 6.1 or a 7
workspace and rebuild them. And then, you've got something which you can take forward into
version 8 directly.

As always, with our migration, we support two ways of doing that. You can either -- once you've
got your solution in a 6.1 or a 7 format, then you can just deploy that directly to version 8. That's
completely supported. Or if you want to, you can bring that solution into version 8 and do the
migration to bring it up to version 8 compatibility if you like, and then, you can deploy that. So,
either directly from previous version or bring it into 8 and deploy from 8.

Karen Bannon: Our final question of the day, this is actually coming from Don. Don would like
to know, “Can I create message flows outside of the toolkit?”

Anthony Phillips: Yes, okay. There's another new feature in Broker version 8, which I didn't have
time to talk through. So, in Broker version 8, we rounded out the Message Broker Java API so
that it's a full API to develop message flows. Essentially, just about everything I can do in the
toolkit, Message Flow Editor, I can do in the Java API. And this lets me create standalone
applications and Web applications that construct message flows.

For example, perhaps I want to write a mashup, a situational application that takes some business
data and creates a Message Broker implementation flow. Well, that's all now possible using the
Message Broker API.

Karen Bannon: With that, I think we've come to the end of our presentation. I would like to just
ask both of our speakers if they had any final thoughts to leave our audience with. Maybe Ant?

Anthony Phillips: Well, I think the call to arms is to get hold of this as soon as you have some
spare time, perhaps over the Christmas, New Year vacations, and try it out. We're obviously very
keen for you to try it out and give us your feedback. It's something which the Broker team --
perhaps their biggest strength is we really do listen to what all of you need in a product.
Everything we do is driven by customer requirements. So, please, do give us your feedback.

Karen Bannon: Thanks. And James? Do you want to leave us with a final thought or two?

James Blackburn: Yes, I think it'd really echo what Ant is saying. In v8, particularly things like
the .NET integration, the consideration that's been to the Web consoles is, we've got a product
here that we're playing with, and using, and testing that is going to be able to allow us to deploy
solutions based on it. So, again, directly what Ant said. We've got something here that the IBM
labs have released that is customer-facing and -focused.

Karen Bannon: Well, thanks to both of our speakers and thanks to everyone out there for
attending our event. For more information about today's webcast, please visit the resource links
that opened before Q&A began. Within the next 24 hours, you'll receive a personalized follow up
email with details and a link to today's presentation on demand. Additionally, you can view
today's event on demand by visiting www.informationweek.com/events.

This webcast is copyright 2011 by United Business Media LLC. The presentation materials are
owned by or copyrighted, if that's the case, by InformationWeek and IBM, who are solely

responsible for their content and our individual speakers, who're solely responsible for their
content and their opinions.

On behalf of our guests, Ant Phillips and James Blackburn, I'm Karen Bannon. Thanks for your
time and have a great day.

