
DB2 Event Emitter

Monitor

Version 6.0.2

DB2 Event Emitter
Page �

1	 Introduction	 3

2 	 Design overview	 4
2.1 	 Event framework	 4
2.2 	 DB2 Event Emitter	 5

3 	 Configuring and deploying the Emitter 	
application	 7

3.1 	 Create an IBM Cloudscape™ database for the
Monitor Server Scheduler	 7

3.2 	 Create a data source for the Monitor Server
Scheduler	 8

3.3 	 Create a scheduler for the DB2 Emitter	
3.4 	 Open the DB2 Emitter enterprise application

using the Administrative Console	 8
3.5 	 Create an authentication alias for the DB2

database	 8
3.6 	 Create the DB2 database and the event and

log tables to be used for event management	 9
3.7 	 Create a data source for the DB2 database	 9
3.8 	 From a DB2 CLP, connect to the database

previously created in Step 3.6.1, using the
same credentials as Step 3.5	 10

3.9 	 Run each of the create***Table.ddl scripts
found in the “setup” directory to create the
sample application tables to be monitored	 10

3.10 	 Restart the Monitor Server	 10

4 	 Verifying the configuration and deployment 	
of the Emitter application	 11

5 	 Importing and working with the source 	
code projects	 12

5.1 	 Projects overview	 13

6 	 Design details—creating a new event 	
formatter to handle additional application 	
data types	 14

6.1 	 DB2EmitterFormatter.properties file	 15
6.2 	 EventFormatter implementation	 16
6.3 	 EventRetriever implementation	 16

7 	 Working with CBEs and CEI—key concepts	 17
7.1 	 Creating a new or obtaining an existing

EventFactory	 17
7.2 	 Creating the new CommonBaseEvent	 17
7.3 	 Setting mandatory fields	 17
7.4 	 Creating an ExtendedDataElement and

its children	 17
7.5 	 Obtaining the EmitterFactory	 17
7.6 	 Obtaining the Emitter from the EmitterFactory	 18
7.7 	 Sending an Event	 18

Contents

Figures

Figure 1 	 Event Emitter Framework	 4
Figure 2 	 File Emitter	 6
Figure 3 	 Events-table information source	 14

DB2 Event Emitter
Page �

1. Introduction

The Sample DB2 Event Emitter is a sample program written in Java™ that

demonstrates how an enterprise information system (EIS) resource (an IBM

DB2® database in this sample) storing data pertaining to the state of a business

can be instrumented to contribute to the overall monitoring of the activities

of a business.

The main goal of the Sample DB2 Event Emitter is to introduce the use of the

libraries and application programming interfaces (APIs) provided by the

Common Event Infrastructure (CEI) to generate and emit business events in

the form of Common Base Events (CBEs). Common Base Events are the data

packaging and format used by the IBM WebSphere® Business Monitor

(Monitor) Server to propagate business events.

The Sample DB2 Event Emitter is made available in two forms of packaging.

One is the binary archive, which contains the precompiled Java 2 Platform,

Enterprise Edition (J2EE) application, ready to be deployed to the Monitor

Server. It also includes the accompanying documentation and necessary scripts

for setup and configuration. The second is the source archive, which also

includes the documentation and the setup scripts and, additionally, contains

the source code projects that can be imported into the IBM WebSphere

Integration Developer (WID) integrated development environment (IDE) for

browsing through the source code and making custom changes to the emitter

and its configuration options.

The Sample DB2 Event Emitter was developed and tested using the following

environment:

•	 Microsoft® Windows® XP Professional SP2

•	 IBM DB2 Universal Database™ (UDB) Enterprise Server Edition v8.1.13.193

•	 WebSphere Business Monitor (Monitor) Server v6.0.2

•	 WebSphere Integration Developer (WID) v6.0.2

Note: The configuration and deployment information in this document

describes the Sample DB2 Event Emitter being deployed to the Monitor Server

itself (that is, to the same application server on which Monitor runs). The emit-

ter can also be deployed to a separate application server and configured to emit

its events to the Monitor Server’s CEI Server (see section 3, “Configuring and

deploying the Emitter application,” for more information on this).

DB2 Event Emitter
Page �

2. Design overview

2.1. Event framework

The Sample DB2 Event Emitter, along with the other sample event emitters

made available, is implemented around a common, simple emitter framework.

Figure 1 depicts a class diagram of this framework. When an event in the

enterprise back-end system is detected, the following flow is regulated by this

common framework:

1.	 Retrieve, from the EmitterFormatterFactory, an EventFormatter specific for 	

the type of data being processed.

2.	 Invoke the EventFormatter to convert the input data to a CBE object.

3.	 Retrieve an emitter from an EmitterFactory to be used to send the event 	

to the CEI Server.

4.	 Emit the CBE to the CEI Server.

Figure 1
Event Emitter Framework

DB2 Event Emitter
Page �

2.2. DB2 Event Emitter

The Sample DB2 Event Emitter is a J2EE enterprise application, which also

implements the WebSphere TaskHandler interface, allowing it to handle invo-

cations from a WebSphere Application Server Scheduler. The overall event

retrieval and event emission flow is explained below (see Figure 2 for a graph-

ical depiction of this flow):

1.	 A record is created, updated or deleted on an application table.

2.	 After the state of the record is changed on the application table, a trigger set to the

application table is invoked.

3.	 The trigger inserts a record with the primary key and additional information to the

Event table. The additional information includes the trigger type (Create, Update

or Delete), the application data type, and the creation timestamp.

4.	 The Scheduler service in the Monitor Server invokes the EmissionController at a

specified interval. The EmissionController calls EventTablePoller. If any records

have been inserted to the event table, EventTablePoller populates and returns a

collection of EventTableBean objects. If the collection of EventTableBean objects is

not empty, EmissionController invokes the handle() method of EventHandler for

each EventTableBean object to handle the emission steps.

5.	 EventHandler calls EventFormatterFactory which returns an EventFormatter

object according to the application data type specified by the user. The

EventFormatter object transforms the EventTableBean object into a

CommonBaseEvent object. Finally, the CEIEmitter sends the CommonBaseEvent

object to the CEI Event Server.

The Sample DB2 Event Emitter is designed so that it can be extended to handle

processing of additional application data types. This is done by creating new

classes that implement the EventFormatter interface (in the EmitterFW

project), extending the AbstractEventRetriever abstract class (in the

DBEmitterEJB project), and “registering” the application data type to event

formatter association by updating the DB2EventFormatter.properties (in the

DBEmitterImpl project). For more-extensive details on this see Section 6:

Design details—creating a new event formatter to handle additional

application data types.

DB2 Event Emitter
Page �

Figure 2
File Emitter

EventHandler

Log table

Event table

Trigger

When the application
table is modified a trigger

is issued and an event is
recorded in the event table.

Records are created,
updated, deleted

The Scheduler Service invokes the EmissionController at regular intervals

DB2EventFormatter.properties
CUSTOMER=com.ibm.wbimonitor.samples.db2emitter.formatter.CUSTOMERFormatterImpl
ORDER=com.ibm.wbimonitor.samples.db2emitter.formatter.ORDERFormatterImpl
CLAIM=com.ibm.wbimonitor.samples.db2emitter.formatter.CLAIMFormatterImpl

WebSphere Application Server

Scheduler Service

EmissionController

EventFormatterFactory

EventFormatter

EmitterFactory

Emitter

CEI

Retriever

EventTableBean

Application
table

EventTablePoller

DB2 Event Emitter
Page �

3. Configuring and deploying the Emitter application

This section describes how to configure the Monitor Server to host the Sample

DB2 Event Emitter application. The following section, “Importing and working

with the source code,” describes how to import the source code into the WID

IDE and introduce modifications, if needed.

The following default values are specified in the DB2 Emitter’s Enterprise

JavaBeans (EJB) deployment descriptor. These can be customized by editing

the source projects in WID and exporting a new enterprise archive (EAR) file.

<env-entry-name>dataSourceJNDI</env-entry-name>
<env-entry-value>jdbc/db2emitter</env-entry-value>

<env-entry-name>emitterFactoryJNDI</env-entry-name>
<env-entry-value>iiop://localhost:2809/com/ibm/events/configuration/
emitter/Default</env-entry-value>

<env-entry-name>schedulerJNDI</env-entry-name>
<env-entry-value>sched/DB2Poller</env-entry-value>

Notes:

•	 The default emitter factory specified in the “emitterFactoryJNDI” environment entry refers
to “localhost” because the emitter is being deployed to the same application server as
the Monitor Server. If the emitter is deployed to its own application server, ensure that the
hostname is that of the Monitor Server (where the CEI Server resides and to where the
events will be emitted).

•	 The default emitter factory specified in the “emitterFactoryJNDI” environment entry uses
port 2809. Check the Monitor Server’s BOOTSTRAP_ADDRESS setting to ensure that is
the correct port to use.

If any of these environment entries need to be modified, import the source

projects into WID and make the necessary modifications to the EJB deploy-

ment descriptor. (See Section 5: Importing and working with the source code

projects, for instructions on how to import the source projects.)

3.1. Create an IBM Cloudscape™ database for the Monitor Server Scheduler:

1.	 In the ${WBI_INSTALL_ROOT}/cloudscape/bin/embedded directory, open the

cview.bat file.

2.	 Select FileàNewàDatabase.

3.	 In the Name field, type ${WBI_INSTALL_ROOT}/cloudscape/databases/SKDLR .

4.	 Click OK to create the new database and then exit from the cview.bat file.

DB2 Event Emitter
Page �

3.2. Create a data source for the Monitor Server Scheduler:

1.	 Open the Administrative Console.

2.	 Open the Resources -> JDBC Providers page, and set the scope to Server.

3.	 By default, there should be a Java Database Connectivity (JDBC) provider named

Cloudscape JDBC Provider (XA). Click it then select Data sources under the

Additional Properties section.

4.	 Click New to create a new data source with the following properties:

Name: SKDLR Datasource
Java Naming and Directory Interface (JNDI) name: jdbc/skdlr
Disable “Use this Data Source in container managed persistence
(CMP)”
Description: JDBC Datasource for SKDLR Database
Database name: ${WBI _ INSTALL _ ROOT}/cloudscape/databases/SKDLR

5.	 Click OK and Save.

3.3. Create a scheduler for the DB2 Emitter:

1.	 Open the Administrative Console.

2.	 Go to ResourcesàSchedulers and set the scope to Server.

3.	 Click New to create a new scheduler with the following properties:

Name: DB2Poller
JNDI name: sched/DB2Poller (This is the default name specified as
an environment entry in the EJB deployment descriptor.)
Description: Scheduler for DB2 Sample Emitter’s Event Table Poller
Data source JNDI name: jdbc/skdlr
Table prefix: DB2EMTR _
Poll interval: 30
Work managers: DefaultWorkManager

4.	 Click OK and Save.

5.	 On the Schedulers page, select the newly created DB2Poller scheduler and click

Create tables.

3.4. Open the DB2 Emitter enterprise application using the Administrative Console:

Accept all default values and save the configuration when deployment

is completed.

3.5. Create an authentication alias for the DB2 database:

1.	 Open the Administrative Console.

2.	 Select SecurityàGlobal securityàJAAS ConfigurationàJ2C

Authentication data.

DB2 Event Emitter
Page �

3.	 Click New to create a new authentication alias with the following properties:

Alias: DB2EmitterAlias
User ID: (User ID to connect to the database; for example,
db2admin)
Password: (Password to connect to the database)
Description: Authentication Alias for Connecting to DB2 Sample
Emitter’s Database

3.6. Create the DB2 database and the event and log tables to be used for

event management:

1.	 Issue the DB2 command create database <DATABASE _ NAME> from a DB2

command-line processor (CLP).	

In the DB2 CLP, connect to the newly created database using the same credentials

used in the previous step to create the authentication alias.

2.	 Invoke the createEventAndLogTable.ddl script located under the “setup” directory.	

This creates the event table, log table, and necessary procedures used for 	

event management.

3.7. Create a data source for the DB2 database:

1.	 On the ResourcesàJDBC Providers page, set the scope to Server.

2.	 Click New to create a new JDBC provider with the following properties:

Database type: DB2
Provider type: “DB2 Universal JDBC Driver Provider”
Implementation type: “XA data source”

3.	 Click Next and then OK .

4.	 On the JDBC providers page, click the newly created DB2 Universal JDBC Driver

Provider (XA), then click Data sources under the “Additional Properties” section.

5.	 Click New to create a new data source with the following properties:

Name: DB2 Emitter Datasource
JNDI name: jdbc/db2emitter (This is the default name specified as
an environment entry in the EJB deployment descriptor.)
Disable “Use this Data Source in container managed persistence
(CMP)”
Description: JDBC Datasource for Sample DB2 Event Emitter
Component-managed authentication alias: {NodeName}/
DB2EmitterAlias (the name of the authentication alias previously
created in Step 3.5)
Database name: <DATABASE _ NAME> (the name of the database previ-
ously created in Step 3.6.1)

6.	 Click OK and Save.

7.	 On the JDBC providers page, select the newly created JDBC provider and click

Test connection. If the connection test fails, it is likely that the DB2UNIVERSAL_

JDBC_DRIVER_PATH environment variable needs to be set.	

To set it, go to EnvironmentàWebSphere Variables, click DB2UNIVERSAL_

JDBC_DRIVER_PATH and set its value to the location where the DB2 Java libraries

are located (for example, C:\Program Files\IBM\SQLLIB\java).

DB2 Event Emitter
Page 10

3.8. From a DB2 CLP, connect to the database previously created in Step 3.6.1,

using the same credentials as Step 3.5.

3.9. Run each of the create***Table.ddl scripts found in the “setup” directory to

create the sample application tables to be monitored.

Which application tables to create and experiment with is up to the user. Make

sure to also run, from a DB2 CLP, the associated create***Trigger.ddl script for

the tables that are created.

3.10. Restart the Monitor Server.

DB2 Event Emitter
Page 11

4. Verifying the configuration and deployment of the Emitter application:

1.	 Ensure that the Monitor Server is started.

2.	 Open a DB2 CLP and connect to the database created in Step 3.6.1, where the

sample application table or tables were created. (Be sure to use the same credentials

that were specified when creating the J2EE Connector architecture [J2C]

Authentication Alias in Step 3.5).

	 For example: db2 connect to <DATABASE _ NAME> user db2admin 	

using <DB _ PWD>.

3.	 Issue an insert statement on the application table (or tables) of interest to create a

new record in the table (or tables).

4.	 Open a command prompt and change the directory to <MONITOR _ PROFILE _

DIR>/bin (for example, C:\IBM\WebSphere\ProcServer\profiles\wbmonitor\bin).

5.	 Run the script eventquery.jacl.

	 For example, wsadmin -f ..\event\bin\eventquery.jacl -group “All events”	

All the CBEs categorized under that group are displayed. Among them should be

one or more representing the creation of a record in the application table (or tables).

6.	 Back in the DB2 CLP, connect to the database and issue a select query against the

LOGTABLE.

	 A record should have been recorded for each event detected in the 	

application tables.

	 An application table event that was successfully emitted as a CBE will have

RESULT=’S’.

	 An application table event that failed to be emitted as a CBE will have

RESULT=’F’.

DB2 Event Emitter
Page 12

5. Importing and working with the source code projects

The source code for the Sample DB2 Event Emitter is available in the source

archive package in the form of WID projects. The following projects need to be

imported into the workspace: EmitterFW, CEIEmitter, DBEmitter,

DBEmitterEJB, and DBEmitterImpl.

To import a project perform the following steps:

1.	 Open WebSphere Integration Developer.

2.	 From the menu bar, select Fileà Import.

3.	 In the Import dialog box, select Existing Project into Workspace… then click Next.

4.	 Select the project to be imported into the workspace then click Finish.

Perform these four steps for each of the five projects listed previously.

You can expect build errors to be raised until the classpath reference to the

events-client.jar library in the CEIEmitter project is corrected. The events-cli-

ent.jar library includes classes used for creating CBEs and emitting them.

Perform these additional steps:

5.	 Right-click the CEIEmitter project and select Properties.

6.	 Go to Java Build PathàLibraries.

7.	 Select the events-client.jar entry then click Edit…

8.	 Browse to the folder in your file system where the events-client.jar file is located 	

(for example, <WPS_INSTALL_DIR>/CEI/client).

DB2 Event Emitter
Page 13

5.1. Projects overview

The DB2 Sample Event Emitter source code is split out across five logical

projects as follows:

•	 EmitterFW

	 The common emitter framework that is used by all the sample event emitters 	

made available.

•	 CEIEmitter

	 The CEI emitter code. This is also common code share by all the sample 	

event emitters

•	 DBEmitter

	 The enterprise application package that is deployed to the server.

•	 DBEmitterEJB:	DB2 Emitter specific EJB code.

•	 DBEmitterImpl

	 DB2 Emitter specific code. This project contains implementation code for retrieving

records from the database and formatting events into CBEs. Additional formatters

can be implemented and added here to extend the number of application data types

that the emitter can process. (See the next section, “Design details — creating a new

event formatter to handle additional application data types,” for more information

on formatters.)

DB2 Event Emitter
Page 14

6. Design details—creating a new event formatter to handle additional

application data types

The DB2 Sample Event Emitter is designed so that it can be extended to handle

processing of additional application data types by: creating new classes that

implement the EventFormatter interface (in the EmitterFW project); extending

the AbstractEventRetriever abstract class (in the DBEmitterEJB project); and

“registering” the event formatter associated with an application data type by

updating the DB2EventFormatter.properties (in the DBEmitterImpl project).

Before describing the new classes that need to be created, it should be men-

tioned that the application table first needs to be configured with the

appropriate triggers that will create a record in the events table when an event

of interest has occurred in the application table (or tables).

The record in the events table will contain the summary information regarding

the event that occurred in the application table. It also stores the primary key to

the application table record, which can be used to retrieve the full information

on the event. Table 1 lists the schema for the event table used by this sample.

Figure 3 depicts the source of the information stored in the events table

records.

SID	 BIGINT	 The primary key

TYPE	 VARCHAR	 The application data type that occurred in
		 the application table

TRIGGER	 CHAR	 The kind of trigger (Create, Update or Delete)

KEYTYPE	 VARCHAR	 The type of key, which the EventFormatter knows

KEYVALUE	 VARCHAR	 The value of key, which the EventFormatter knows

CREATETIMESTAMP	 TIMESTAMP	 Time when an event posted

Customer table (application table)

ID	 Name	 Address	 Telephone	 Email

30	 XXXX-XX Shimotsursma Yamato-shi...	 046-XXX-XXXX	 xxxxx@us.ibm.com

Event table

5ID	 Type	 Trigger	 Status	 KeyType	 KeyValue	 CreateTimeStamp

246	 “CUST”	 “I”	 “_”	 “INT”	 “30”	 “2006-11-25-15-00-00”

Figure 3
Events-table information source

Table 1
Event table schema

DB2 Event Emitter
Page 15

Listing 1 shows the triggers created and used for the Customer data type.

CREATE TRIGGER CUSTOMERCREATE AFTER INSERT ON CUSTOMER REFERENCING
NEW AS NEWROW FOR EACH ROW MODE DB2SQL BEGIN ATOMIC INSERT INTO
EVENTTABLE(TYPE, TRIGGER, KEYTYPE, KEYVALUE, CREATETIMESTAMP)
VALUES(‘CUSTOMER’, ‘C’, ‘INT’, RTRIM(CHAR(NEWROW.ID)), CURRENT
TIMESTAMP); END;

CREATE TRIGGER CUSTOMERUPDATE AFTER UPDATE ON CUSTOMER REFERENCING
OLD AS OLDROW FOR EACH ROW MODE DB2SQL BEGIN ATOMIC INSERT INTO
EVENTTABLE(TYPE, TRIGGER, KEYTYPE, KEYVALUE, CREATETIMESTAMP)
VALUES(‘CUSTOMER’, ‘U’, ‘INT’, RTRIM(CHAR(OLDROW.ID)), CURRENT
TIMESTAMP); END;

CREATE TRIGGER CUSTOMERDELETE AFTER DELETE ON CUSTOMER REFERENCING
OLD AS OLDROW FOR EACH ROW MODE DB2SQL BEGIN ATOMIC INSERT INTO
EVENTTABLE(TYPE, TRIGGER, KEYTYPE, KEYVALUE, CREATETIMESTAMP)
VALUES(‘CUSTOMER’, ‘D’, ‘INT’, RTRIM(CHAR(OLDROW.ID)), CURRENT
TIMESTAMP); END;

The events table is periodically polled by the EmissionController, using the

EventTablePoller, for the presence of new event records. When new records are

present in the events table the DB2 emitter will obtain the appropriate format-

ter and retriever based on the data type recorded and based on the mapping

specified in the DB2EventFormatter.properties file.

6.1. DB2EmitterFormatter.properties file

The DB2EmitterFormatter.properties file is a typical properties resource file

containing entries in the form of “name equals value.” Listing 2 shows the one

used by this sample.

#
This properties file defines the formatter to use for a given data
type.
The accepted format is:
EventType=EventFormatter
Where the EventFormatter is provided as the fully qualified Java
class.
#
CUSTOMER=com.ibm.wbimonitor.samples.db2emitter.formatter.
CUSTOMERFormatterImpl
ORDER=com.ibm.wbimonitor.samples.db2emitter.formatter.
ORDERFormatterImpl
CLAIM=com.ibm.wbimonitor.samples.db2emitter.formatter.
CLAIMFormatterImpl

To introduce support for a new application data type, a new entry mapping

the event name to the fully qualified event formatter implementation class

needs to be added to this file.

Listing 1
Customer table triggers

Listing 2
DB2EventFormatter.properties mapping file

DB2 Event Emitter
Page 16

6.2. EventFormatter implementation

After an EventFormatter is obtained (based on the mapping in the

DB2EmitterFormatter.properties file), it will be invoked to handle the transfor-

mation of the event from its “native format” to the CBE format that is expected

by the Monitor Server.

A new EventFormatter will need to implement the EventFormatter interface

defined in the com.ibm.wbimonitor.samples.emitterframework package in the

EmitterFW project.

public CommonBaseEvent format(Object o) throws EventFormatFailed
Exception;

Inspect the EventFormatter classes implemented by this sample emitter for an

idea on how this format() interface can be implemented. They can be found in

the com.ibm.wbimonitor.samples.db2emitter.formatter package in the

DB2EmitterImpl project.

6.3. EventRetriever implementation

The EventFormatter uses an EventRetriever specific to the application data

type being handled to retrieve the full data record from the application table

(using the summarized information in the event table record). A new applica-

tion data type retriever should extend the AbstractEventRetriever class and

implement the retrieve() abstract method:

public abstract Object retrieve(Object o) throws EventRetrieveFa
iledException;

Inspect the EventRetriever classes implemented by this sample emitter for an

idea on how this retrieve() interface can be implemented. They can be found in

the com.ibm.wbimonitor.samples.db2emitter.retriever package in the

DB2EmitterImpl project.

DB2 Event Emitter
Page 17

7. Working with CBEs and CEI – key concepts

This section outlines the key concepts related to CEI and CBEs used in the

Sample File Event Emitter.

7.1 Creating a new or obtaining an existing EventFactory:

1.	 Creating a new one (with and without a ContentHandler):

EventFactory eventFactory =
(EventFactory) EventFactoryFactory.createEventFactory();

EventFactory eventFactory =
(EventFactory) EventFactoryFactory.createEventFactory
(ContentHandler);

2.	 Obtaining an existing one through JNDI (inherits ContentHandler, if one exists):

Context context = new InitialContext();
EventFactory eventFactory = (EventFactory) context.lookup(“com/ibm/
events/EventFactory”);

7.2 Creating the new CommonBaseEvent:
CommonBaseEvent event = eventFactory.createCommonBaseEvent(“Activi
tyEvent”);

7.3 Setting mandatory fields:
event.setVersion(“1.0.1”);
event.setCreationTimeAsLong(System.currentTimeMillis());
event.setGlobalInstanceId(eventFactory.createGlobalInstanceId());

ComponentIdentification componentId = eventFactory.createComponen-
tIdentification();
componentId.setApplication(“DB2”); // Additional setters available
event.setSourceComponentId(componentId);

Situation situation = eventFactory.createSituation();
situation.setStopSituation(“EXTERNAL”, “STOP _ COMPLETED”,
“SUCCESSFUL”);
event.setSituation(situation);

7.4 Creating an ExtendedDataElement and its children:
ExtendedDataElement activityEventData =
event.addExtendedDataElementWithNoValue(“ActivityEventData”);
activityEventData.addChild(“activityName”, activityName);
activityEventData.addChild(“eventType”, “completed”);
activityEventData.addChild(“activityDisplayState”, “Completed”);
activityEventData.addChildWithDateAsLongValue(“startTime”, efb.
getLastModifiedDate());
activityEventData.addChildWithDateAsLongValue(“endTime”, efb.get-
LastModifiedDate());

7.5 Obtaining the EmitterFactory:
import javax.naming.*
import com.ibm.events.*
Context context = new InitialContext();
EmitterFactory emitterFactory =
 (EmitterFactory) context.lookup(“com/ibm/events/configuration/
emitter/Default”);

DB2 Event Emitter
Page 18

7.6 Obtaining the Emitter from the EmitterFactory:
Emitter emitter = emitterFactory.getEmitter();

7.7 Sending an Event:
emitter.sendEvent((CommonsBaseEvent)event);

© Copyright IBM Corporation 2006

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
12-06
All Rights Reserved

Cloudscape, DB2, DB2 Universal Database, IBM, the
IBM logo and WebSphere are trademarks of International
Business Machines Corporation in the United States,
other countries or both.

Java and all Java-based trademarks are trademarks
of Sun Microsystems, Inc. in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Other company, product and service names may be
trademarks or service marks of others.

