
DB2 Event Emitter

Monitor

Version 6.0.2

DB2 Event Emitter
Page 2

1	 Introduction	 3

2			 Design	overview	 4
2.1 Event framework 4
2.2 DB2 Event Emitter 5

3			 Configuring	and	deploying	the	Emitter		
application	 7

3.1 Create an IBM Cloudscape™ database for the
Monitor Server Scheduler 7

3.2 Create a data source for the Monitor Server
Scheduler 8

3.3 Create a scheduler for the DB2 Emitter
3.4 Open the DB2 Emitter enterprise application

using the Administrative Console 8
3.5 Create an authentication alias for the DB2

database 8
3.6 Create the DB2 database and the event and

log tables to be used for event management 9
3.7 Create a data source for the DB2 database 9
3.8 From a DB2 CLP, connect to the database

previously created in Step 3.6.1, using the
same credentials as Step 3.5 10

3.9 Run each of the create***Table.ddl scripts
found in the “setup” directory to create the
sample application tables to be monitored 10

3.10 Restart the Monitor Server 10

4			 Verifying	the	configuration	and	deployment		
of	the	Emitter	application	 11

5			 Importing	and	working	with	the	source		
code	projects	 12

5.1 Projects overview 13

6			 Design	details—creating	a	new	event		
formatter	to	handle	additional	application		
data	types	 14

6.1 DB2EmitterFormatter.properties file 15
6.2 EventFormatter implementation 16
6.3 EventRetriever implementation 16

7			 Working	with	CBEs	and	CEI—key	concepts	 17
7.1 Creating a new or obtaining an existing

EventFactory 17
7.2 Creating the new CommonBaseEvent 17
7.3 Setting mandatory fields 17
7.4 Creating an ExtendedDataElement and

its children 17
7.5 Obtaining the EmitterFactory 17
7.6 Obtaining the Emitter from the EmitterFactory 18
7.7 Sending an Event 18

Contents

Figures

Figure 1 Event Emitter Framework 4
Figure 2 File Emitter 6
Figure 3 Events-table information source 14

DB2 Event Emitter
Page �

1. Introduction

The Sample DB2 Event Emitter is a sample program written in Java™ that

demonstrates how an enterprise information system (EIS) resource (an IBM

DB2® database in this sample) storing data pertaining to the state of a business

can be instrumented to contribute to the overall monitoring of the activities

of a business.

The main goal of the Sample DB2 Event Emitter is to introduce the use of the

libraries and application programming interfaces (APIs) provided by the

Common Event Infrastructure (CEI) to generate and emit business events in

the form of Common Base Events (CBEs). Common Base Events are the data

packaging and format used by the IBM WebSphere® Business Monitor

(Monitor) Server to propagate business events.

The Sample DB2 Event Emitter is made available in two forms of packaging.

One is the binary archive, which contains the precompiled Java 2 Platform,

Enterprise Edition (J2EE) application, ready to be deployed to the Monitor

Server. It also includes the accompanying documentation and necessary scripts

for setup and configuration. The second is the source archive, which also

includes the documentation and the setup scripts and, additionally, contains

the source code projects that can be imported into the IBM WebSphere

Integration Developer (WID) integrated development environment (IDE) for

browsing through the source code and making custom changes to the emitter

and its configuration options.

The Sample DB2 Event Emitter was developed and tested using the following

environment:

•	 Microsoft®	Windows®	XP	Professional	SP2

•	 IBM	DB2	Universal	Database™	(UDB)	Enterprise	Server	Edition	v8.1.13.193

•	 WebSphere	Business	Monitor	(Monitor)	Server	v6.0.2

•	 WebSphere	Integration	Developer	(WID)	v6.0.2

Note: The configuration and deployment information in this document

describes the Sample DB2 Event Emitter being deployed to the Monitor Server

itself (that is, to the same application server on which Monitor runs). The emit-

ter can also be deployed to a separate application server and configured to emit

its events to the Monitor Server’s CEI Server (see section 3, “Configuring and

deploying the Emitter application,” for more information on this).

DB2 Event Emitter
Page �

2. Design overview

2.1. Event framework

The Sample DB2 Event Emitter, along with the other sample event emitters

made available, is implemented around a common, simple emitter framework.

Figure 1 depicts a class diagram of this framework. When an event in the

enterprise back-end system is detected, the following flow is regulated by this

common framework:

1.	 Retrieve,	from	the	EmitterFormatterFactory,	an	EventFormatter	specific	for		

the	type	of	data	being	processed.

2.	 Invoke	the	EventFormatter	to	convert	the	input	data	to	a	CBE	object.

3.	 Retrieve	an	emitter	from	an	EmitterFactory	to	be	used	to	send	the	event		

to	the	CEI	Server.

4.	 Emit	the	CBE	to	the	CEI	Server.

Figure 1
Event Emitter Framework

DB2 Event Emitter
Page �

2.2. DB2 Event Emitter

The Sample DB2 Event Emitter is a J2EE enterprise application, which also

implements the WebSphere TaskHandler interface, allowing it to handle invo-

cations from a WebSphere Application Server Scheduler. The overall event

retrieval and event emission flow is explained below (see Figure 2 for a graph-

ical depiction of this flow):

1.	 A	record	is	created,	updated	or	deleted	on	an	application	table.

2.	 After	the	state	of	the	record	is	changed	on	the	application	table,	a	trigger	set	to	the	

application	table	is	invoked.

3.	 The	trigger	inserts	a	record	with	the	primary	key	and	additional	information	to	the	

Event	table.	The	additional	information	includes	the	trigger	type	(Create,	Update	

or	Delete),	the	application	data	type,	and	the	creation	timestamp.

4.	 The	Scheduler	service	in	the	Monitor	Server	invokes	the	EmissionController	at	a	

specified	interval.	The	EmissionController	calls	EventTablePoller.	If	any	records	

have	been	inserted	to	the	event	table,	EventTablePoller	populates	and	returns	a	

collection	of	EventTableBean	objects.	If	the	collection	of	EventTableBean	objects	is	

not	empty,	EmissionController	invokes	the	handle()	method	of	EventHandler	for	

each	EventTableBean	object	to	handle	the	emission	steps.

5.	 EventHandler	calls	EventFormatterFactory	which	returns	an	EventFormatter	

object	according	to	the	application	data	type	specified	by	the	user.	The	

EventFormatter	object	transforms	the	EventTableBean	object	into	a	

CommonBaseEvent	object.	Finally,	the	CEIEmitter	sends	the	CommonBaseEvent	

object	to	the	CEI	Event	Server.

The Sample DB2 Event Emitter is designed so that it can be extended to handle

processing of additional application data types. This is done by creating new

classes that implement the EventFormatter interface (in the EmitterFW

project), extending the AbstractEventRetriever abstract class (in the

DBEmitterEJB project), and “registering” the application data type to event

formatter association by updating the DB2EventFormatter.properties (in the

DBEmitterImpl project). For more-extensive details on this see Section 6:

Design details—creating a new event formatter to handle additional

application data types.

DB2 Event Emitter
Page 6

Figure 2
File Emitter

EventHandler

Log table

Event table

Trigger

When the application
table is modified a trigger

is issued and an event is
recorded in the event table.

Records are created,
updated, deleted

The Scheduler Service invokes the EmissionController at regular intervals

DB2EventFormatter.properties
CUSTOMER=com.ibm.wbimonitor.samples.db2emitter.formatter.CUSTOMERFormatterImpl
ORDER=com.ibm.wbimonitor.samples.db2emitter.formatter.ORDERFormatterImpl
CLAIM=com.ibm.wbimonitor.samples.db2emitter.formatter.CLAIMFormatterImpl

WebSphere Application Server

Scheduler Service

EmissionController

EventFormatterFactory

EventFormatter

EmitterFactory

Emitter

CEI

Retriever

EventTableBean

Application
table

EventTablePoller

DB2 Event Emitter
Page �

3. Configuring and deploying the Emitter application

This section describes how to configure the Monitor Server to host the Sample

DB2 Event Emitter application. The following section, “Importing and working

with the source code,” describes how to import the source code into the WID

IDE and introduce modifications, if needed.

The following default values are specified in the DB2 Emitter’s Enterprise

JavaBeans (EJB) deployment descriptor. These can be customized by editing

the source projects in WID and exporting a new enterprise archive (EAR) file.

<env-entry-name>dataSourceJNDI</env-entry-name>
<env-entry-value>jdbc/db2emitter</env-entry-value>

<env-entry-name>emitterFactoryJNDI</env-entry-name>
<env-entry-value>iiop://localhost:2809/com/ibm/events/configuration/
emitter/Default</env-entry-value>

<env-entry-name>schedulerJNDI</env-entry-name>
<env-entry-value>sched/DB2Poller</env-entry-value>

Notes:

• The default emitter factory specified in the “emitterFactoryJNDI” environment entry refers
to “localhost” because the emitter is being deployed to the same application server as
the Monitor Server. If the emitter is deployed to its own application server, ensure that the
hostname is that of the Monitor Server (where the CEI Server resides and to where the
events will be emitted).

• The default emitter factory specified in the “emitterFactoryJNDI” environment entry uses
port 2809. Check the Monitor Server’s BOOTSTRAP_ADDRESS setting to ensure that is
the correct port to use.

If any of these environment entries need to be modified, import the source

projects into WID and make the necessary modifications to the EJB deploy-

ment descriptor. (See Section 5: Importing and working with the source code

projects, for instructions on how to import the source projects.)

3.1. Create an IBM Cloudscape™ database for the Monitor Server Scheduler:

1.	 In	the	${WBI_INSTALL_ROOT}/cloudscape/bin/embedded	directory,	open	the	

cview.bat	file.

2.	 Select	FileàNewàDatabase.

3.	 In	the	Name	field,	type	${WBI_INSTALL_ROOT}/cloudscape/databases/SKDLR .

4.	 Click	OK	to	create	the	new	database	and	then	exit	from	the	cview.bat	file.

DB2 Event Emitter
Page �

3.2. Create a data source for the Monitor Server Scheduler:

1.	 Open	the	Administrative	Console.

2.	 Open	the	Resources -> JDBC Providers	page,	and	set	the	scope	to	Server.

3.	 By	default,	there	should	be	a	Java	Database	Connectivity	(JDBC)	provider	named	

Cloudscape JDBC Provider (XA).	Click	it	then	select	Data sources	under	the	

Additional	Properties	section.

4.	 Click	New	to	create	a	new	data	source	with	the	following	properties:

Name: SKDLR Datasource
Java Naming and Directory Interface (JNDI) name: jdbc/skdlr
Disable “Use this Data Source in container managed persistence
(CMP)”
Description: JDBC Datasource for SKDLR Database
Database name: ${WBI _ INSTALL _ ROOT}/cloudscape/databases/SKDLR

5.	 Click	OK	and	Save.

3.3. Create a scheduler for the DB2 Emitter:

1.	 Open	the	Administrative	Console.

2.	 Go	to	ResourcesàSchedulers	and	set	the	scope	to	Server.

3.	 Click	New	to	create	a	new	scheduler	with	the	following	properties:

Name: DB2Poller
JNDI name: sched/DB2Poller (This is the default name specified as
an environment entry in the EJB deployment descriptor.)
Description: Scheduler for DB2 Sample Emitter’s Event Table Poller
Data source JNDI name: jdbc/skdlr
Table prefix: DB2EMTR _
Poll interval: 30
Work managers: DefaultWorkManager

4.	 Click	OK	and	Save.

5.	 On	the	Schedulers	page,	select	the	newly	created	DB2Poller scheduler	and	click	

Create tables.

3.4. Open the DB2 Emitter enterprise application using the Administrative Console:

Accept all default values and save the configuration when deployment

is completed.

3.5. Create an authentication alias for the DB2 database:

1.	 Open	the	Administrative	Console.

2.	 Select	SecurityàGlobal securityàJAAS ConfigurationàJ2C

Authentication data.

DB2 Event Emitter
Page �

3.	 Click	New	to	create	a	new	authentication	alias	with	the	following	properties:

Alias: DB2EmitterAlias
User ID: (User ID to connect to the database; for example,
db2admin)
Password: (Password to connect to the database)
Description: Authentication Alias for Connecting to DB2 Sample
Emitter’s Database

3.6. Create the DB2 database and the event and log tables to be used for

event management:

1.	 Issue	the	DB2	command	create	database	<DATABASE _ NAME>	from	a	DB2	

command-line	processor	(CLP).	

In	the	DB2	CLP,	connect	to	the	newly	created	database	using	the	same	credentials	

used	in	the	previous	step	to	create	the	authentication	alias.

2.	 Invoke	the	createEventAndLogTable.ddl	script	located	under	the	“setup”	directory.	

This	creates	the	event	table,	log	table,	and	necessary	procedures	used	for		

event	management.

3.7. Create a data source for the DB2 database:

1.	 On	the	ResourcesàJDBC	Providers	page,	set	the	scope	to	Server.

2.	 Click	New	to	create	a	new	JDBC	provider	with	the	following	properties:

Database type: DB2
Provider type: “DB2 Universal JDBC Driver Provider”
Implementation type: “XA data source”

3.	 Click	Next	and	then	OK .

4.	 On	the	JDBC	providers	page,	click	the	newly	created	DB2 Universal JDBC Driver

Provider (XA),	then	click	Data sources	under	the	“Additional	Properties”	section.

5.	 Click	New	to	create	a	new	data	source	with	the	following	properties:

Name: DB2 Emitter Datasource
JNDI name: jdbc/db2emitter (This is the default name specified as
an environment entry in the EJB deployment descriptor.)
Disable “Use this Data Source in container managed persistence
(CMP)”
Description: JDBC Datasource for Sample DB2 Event Emitter
Component-managed authentication alias: {NodeName}/
DB2EmitterAlias (the name of the authentication alias previously
created in Step 3.5)
Database name: <DATABASE _ NAME> (the name of the database previ-
ously created in Step 3.6.1)

6.	 Click	OK	and	Save.

7.	 On	the	JDBC	providers	page,	select	the	newly	created	JDBC provider	and	click	

Test connection.	If	the	connection	test	fails,	it	is	likely	that	the	DB2UNIVERSAL_

JDBC_DRIVER_PATH	environment	variable	needs	to	be	set.	

To	set	it,	go	to	EnvironmentàWebSphere Variables,	click	DB2UNIVERSAL_

JDBC_DRIVER_PATH	and	set	its	value	to	the	location	where	the	DB2	Java	libraries	

are	located	(for	example,	C:\Program	Files\IBM\SQLLIB\java).

DB2 Event Emitter
Page 10

3.8. From a DB2 CLP, connect to the database previously created in Step 3.6.1,

using the same credentials as Step 3.5.

3.9. Run each of the create***Table.ddl scripts found in the “setup” directory to

create the sample application tables to be monitored.

Which application tables to create and experiment with is up to the user. Make

sure to also run, from a DB2 CLP, the associated create***Trigger.ddl script for

the tables that are created.

3.10. Restart the Monitor Server.

DB2 Event Emitter
Page 11

4. Verifying the configuration and deployment of the Emitter application:

1.	 Ensure	that	the	Monitor	Server	is	started.

2.	 Open	a	DB2	CLP	and	connect	to	the	database	created	in	Step	3.6.1,	where	the	

sample	application	table	or	tables	were	created.	(Be	sure	to	use	the	same	credentials	

that	were	specified	when	creating	the	J2EE	Connector	architecture	[J2C]	

Authentication	Alias	in	Step	3.5).

	 For	example:	db2	connect	to	<DATABASE _ NAME>	user	db2admin		

using	<DB _ PWD>.

3.	 Issue	an	insert	statement	on	the	application	table	(or	tables)	of	interest	to	create	a	

new	record	in	the	table	(or	tables).

4.	 Open	a	command	prompt	and	change	the	directory	to	<MONITOR _ PROFILE _

DIR>/bin	(for	example,	C:\IBM\WebSphere\ProcServer\profiles\wbmonitor\bin).

5.	 Run	the	script	eventquery.jacl.

	 For	example,	wsadmin	-f	..\event\bin\eventquery.jacl	-group	“All	events”	

All	the	CBEs	categorized	under	that	group	are	displayed.	Among	them	should	be	

one	or	more	representing	the	creation	of	a	record	in	the	application	table	(or	tables).

6.	 Back	in	the	DB2	CLP,	connect	to	the	database	and	issue	a	select	query	against	the	

LOGTABLE.	

	 A	record	should	have	been	recorded	for	each	event	detected	in	the		

application	tables.

	 An	application	table	event	that	was	successfully	emitted	as	a	CBE	will	have	

RESULT=’S’.

	 An	application	table	event	that	failed	to	be	emitted	as	a	CBE	will	have	

RESULT=’F’.

DB2 Event Emitter
Page 12

5. Importing and working with the source code projects

The source code for the Sample DB2 Event Emitter is available in the source

archive package in the form of WID projects. The following projects need to be

imported into the workspace: EmitterFW, CEIEmitter, DBEmitter,

DBEmitterEJB, and DBEmitterImpl.

To import a project perform the following steps:

1.	 Open	WebSphere Integration Developer.

2.	 From	the	menu	bar,	select	Fileà Import.

3.	 In	the	Import	dialog	box,	select	Existing Project into Workspace…	then	click	Next.

4.	 Select	the	project	to	be	imported	into	the	workspace	then	click	Finish.

Perform these four steps for each of the five projects listed previously.

You can expect build errors to be raised until the classpath reference to the

events-client.jar library in the CEIEmitter project is corrected. The events-cli-

ent.jar library includes classes used for creating CBEs and emitting them.

Perform these additional steps:

5.	 Right-click	the	CEIEmitter	project	and	select	Properties.

6.	 Go	to	Java Build PathàLibraries.

7.	 Select	the	events-client.jar	entry	then	click	Edit…

8.	 Browse	to	the	folder	in	your	file	system	where	the	events-client.jar	file	is	located		

(for	example,	<WPS_INSTALL_DIR>/CEI/client).

DB2 Event Emitter
Page 1�

5.1. Projects overview

The DB2 Sample Event Emitter source code is split out across five logical

projects as follows:

•	 EmitterFW

	 The	common	emitter	framework	that	is	used	by	all	the	sample	event	emitters		

made	available.

•	 CEIEmitter

	 The	CEI	emitter	code.	This	is	also	common	code	share	by	all	the	sample		

event	emitters

•	 DBEmitter

	 The	enterprise	application	package	that	is	deployed	to	the	server.

•	 DBEmitterEJB:	DB2	Emitter	specific	EJB	code.

•	 DBEmitterImpl

	 DB2	Emitter	specific	code.	This	project	contains	implementation	code	for	retrieving	

records	from	the	database	and	formatting	events	into	CBEs.	Additional	formatters	

can	be	implemented	and	added	here	to	extend	the	number	of	application	data	types	

that	the	emitter	can	process.	(See	the	next	section,	“Design	details	—	creating	a	new	

event	formatter	to	handle	additional	application	data	types,”	for	more	information	

on	formatters.)

DB2 Event Emitter
Page 1�

6. Design details—creating a new event formatter to handle additional

application data types

The DB2 Sample Event Emitter is designed so that it can be extended to handle

processing of additional application data types by: creating new classes that

implement the EventFormatter interface (in the EmitterFW project); extending

the AbstractEventRetriever abstract class (in the DBEmitterEJB project); and

“registering” the event formatter associated with an application data type by

updating the DB2EventFormatter.properties (in the DBEmitterImpl project).

Before describing the new classes that need to be created, it should be men-

tioned that the application table first needs to be configured with the

appropriate triggers that will create a record in the events table when an event

of interest has occurred in the application table (or tables).

The record in the events table will contain the summary information regarding

the event that occurred in the application table. It also stores the primary key to

the application table record, which can be used to retrieve the full information

on the event. Table 1 lists the schema for the event table used by this sample.

Figure 3 depicts the source of the information stored in the events table

records.

SID BIGINT The primary key

TYPE VARCHAR The application data type that occurred in
 the application table

TRIGGER CHAR The kind of trigger (Create, Update or Delete)

KEYTYPE VARCHAR The type of key, which the EventFormatter knows

KEYVALUE VARCHAR The value of key, which the EventFormatter knows

CREATETIMESTAMP TIMESTAMP Time when an event posted

Customer table (application table)

ID Name Address Telephone Email

�0 XXXX-XX Shimotsursma Yamato-shi... 0�6-XXX-XXXX xxxxx@us.ibm.com

Event table

5ID Type Trigger Status KeyType KeyValue CreateTimeStamp

2�6 “CUST” “I” “_” “INT” “�0” “2006-11-2�-1�-00-00”

Figure 3
Events-table information source

Table 1
Event table schema

DB2 Event Emitter
Page 1�

Listing 1 shows the triggers created and used for the Customer data type.

CREATE TRIGGER CUSTOMERCREATE AFTER INSERT ON CUSTOMER REFERENCING
NEW AS NEWROW FOR EACH ROW MODE DB2SQL BEGIN ATOMIC INSERT INTO
EVENTTABLE(TYPE, TRIGGER, KEYTYPE, KEYVALUE, CREATETIMESTAMP)
VALUES(‘CUSTOMER’, ‘C’, ‘INT’, RTRIM(CHAR(NEWROW.ID)), CURRENT
TIMESTAMP); END;

CREATE TRIGGER CUSTOMERUPDATE AFTER UPDATE ON CUSTOMER REFERENCING
OLD AS OLDROW FOR EACH ROW MODE DB2SQL BEGIN ATOMIC INSERT INTO
EVENTTABLE(TYPE, TRIGGER, KEYTYPE, KEYVALUE, CREATETIMESTAMP)
VALUES(‘CUSTOMER’, ‘U’, ‘INT’, RTRIM(CHAR(OLDROW.ID)), CURRENT
TIMESTAMP); END;

CREATE TRIGGER CUSTOMERDELETE AFTER DELETE ON CUSTOMER REFERENCING
OLD AS OLDROW FOR EACH ROW MODE DB2SQL BEGIN ATOMIC INSERT INTO
EVENTTABLE(TYPE, TRIGGER, KEYTYPE, KEYVALUE, CREATETIMESTAMP)
VALUES(‘CUSTOMER’, ‘D’, ‘INT’, RTRIM(CHAR(OLDROW.ID)), CURRENT
TIMESTAMP); END;

The events table is periodically polled by the EmissionController, using the

EventTablePoller, for the presence of new event records. When new records are

present in the events table the DB2 emitter will obtain the appropriate format-

ter and retriever based on the data type recorded and based on the mapping

specified in the DB2EventFormatter.properties file.

6.1. DB2EmitterFormatter.properties file

The DB2EmitterFormatter.properties file is a typical properties resource file

containing entries in the form of “name equals value.” Listing 2 shows the one

used by this sample.

#
This properties file defines the formatter to use for a given data
type.
The accepted format is:
EventType=EventFormatter
Where the EventFormatter is provided as the fully qualified Java
class.
#
CUSTOMER=com.ibm.wbimonitor.samples.db2emitter.formatter.
CUSTOMERFormatterImpl
ORDER=com.ibm.wbimonitor.samples.db2emitter.formatter.
ORDERFormatterImpl
CLAIM=com.ibm.wbimonitor.samples.db2emitter.formatter.
CLAIMFormatterImpl

To introduce support for a new application data type, a new entry mapping

the event name to the fully qualified event formatter implementation class

needs to be added to this file.

Listing 1
Customer table triggers

Listing 2
DB2EventFormatter.properties mapping file

DB2 Event Emitter
Page 16

6.2. EventFormatter implementation

After an EventFormatter is obtained (based on the mapping in the

DB2EmitterFormatter.properties file), it will be invoked to handle the transfor-

mation of the event from its “native format” to the CBE format that is expected

by the Monitor Server.

A new EventFormatter will need to implement the EventFormatter interface

defined in the com.ibm.wbimonitor.samples.emitterframework package in the

EmitterFW project.

public CommonBaseEvent format(Object o) throws EventFormatFailed
Exception;

Inspect the EventFormatter classes implemented by this sample emitter for an

idea on how this format() interface can be implemented. They can be found in

the com.ibm.wbimonitor.samples.db2emitter.formatter package in the

DB2EmitterImpl project.

6.3. EventRetriever implementation

The EventFormatter uses an EventRetriever specific to the application data

type being handled to retrieve the full data record from the application table

(using the summarized information in the event table record). A new applica-

tion data type retriever should extend the AbstractEventRetriever class and

implement the retrieve() abstract method:

public abstract Object retrieve(Object o) throws EventRetrieveFa
iledException;

Inspect the EventRetriever classes implemented by this sample emitter for an

idea on how this retrieve() interface can be implemented. They can be found in

the com.ibm.wbimonitor.samples.db2emitter.retriever package in the

DB2EmitterImpl project.

DB2 Event Emitter
Page 1�

7. Working with CBEs and CEI – key concepts

This section outlines the key concepts related to CEI and CBEs used in the

Sample File Event Emitter.

7.1 Creating a new or obtaining an existing EventFactory:

1.	 Creating	a	new	one	(with	and	without	a	ContentHandler):

EventFactory eventFactory =
(EventFactory) EventFactoryFactory.createEventFactory();

EventFactory eventFactory =
(EventFactory) EventFactoryFactory.createEventFactory
(ContentHandler);

2.	 Obtaining	an	existing	one	through	JNDI	(inherits	ContentHandler,	if	one	exists):

Context context = new InitialContext();
EventFactory eventFactory = (EventFactory) context.lookup(“com/ibm/
events/EventFactory”);

7.2 Creating the new CommonBaseEvent:
CommonBaseEvent event = eventFactory.createCommonBaseEvent(“Activi
tyEvent”);

7.3 Setting mandatory fields:
event.setVersion(“1.0.1”);
event.setCreationTimeAsLong(System.currentTimeMillis());
event.setGlobalInstanceId(eventFactory.createGlobalInstanceId());

ComponentIdentification componentId = eventFactory.createComponen-
tIdentification();
componentId.setApplication(“DB2”); // Additional setters available
event.setSourceComponentId(componentId);

Situation situation = eventFactory.createSituation();
situation.setStopSituation(“EXTERNAL”, “STOP _ COMPLETED”,
“SUCCESSFUL”);
event.setSituation(situation);

7.4 Creating an ExtendedDataElement and its children:
ExtendedDataElement activityEventData =
event.addExtendedDataElementWithNoValue(“ActivityEventData”);
activityEventData.addChild(“activityName”, activityName);
activityEventData.addChild(“eventType”, “completed”);
activityEventData.addChild(“activityDisplayState”, “Completed”);
activityEventData.addChildWithDateAsLongValue(“startTime”, efb.
getLastModifiedDate());
activityEventData.addChildWithDateAsLongValue(“endTime”, efb.get-
LastModifiedDate());

7.5 Obtaining the EmitterFactory:
import javax.naming.*
import com.ibm.events.*
Context context = new InitialContext();
EmitterFactory emitterFactory =
 (EmitterFactory) context.lookup(“com/ibm/events/configuration/
emitter/Default”);

DB2 Event Emitter
Page 1�

7.6 Obtaining the Emitter from the EmitterFactory:
Emitter emitter = emitterFactory.getEmitter();

7.7 Sending an Event:
emitter.sendEvent((CommonsBaseEvent)event);

© Copyright IBM Corporation 2006

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
12-06
All Rights Reserved

Cloudscape, DB2, DB2 Universal Database, IBM, the
IBM logo and WebSphere are trademarks of International
Business Machines Corporation in the United States,
other countries or both.

Java and all Java-based trademarks are trademarks
of Sun Microsystems, Inc. in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Other company, product and service names may be
trademarks or service marks of others.

