
Extending the WebSphere Business
Monitor Dashboard

Monitor

Version 6.0.2

Extending the WebSphere Business Monitor Dashboard
Page 2

1	 Introduction	 3
1.1	 The	goal	of	this	article	 3
1.2	 The	audience	of	the	article	 3
1.3	 Disclaimers	 3

2	 Sample	scenario	 4
2.1	 Sample	scenario	–	ClipsAndTacks	 4
2.2	 Monitoring	Model	 5
2.3	 Test	Environment	Assumptions	 5
2.4	 Sample	portlet	functionality	introduction	 5
2.4.1	 Portlet	View	mode	 6
2.4.2	 Portlet	configuration	mode	 7

3	 Background	knowledge	 8
3.1	 DB2	Alphablox	Introduction	 8
3.1.1	 Overview	 8
3.1.2	 DB2	Alphablox	Components	 8
3.1.3	 DB2	Alphablox	programming	model	 11
3.2	 JSR168	Overview	 12
3.2.1	 JSR	168	portlet	modes	 12
3.2.2	 Core	JSR	168	object	 13
3.2.3	 Deployment	descriptors	 16
3.3	 DB2	CubeView	&	MDX	query	 17

4	 Architecture	&	Design	 19
4.1	 Architecture	 19
4.2	 Design	 19

5	 Development	Steps	 21
5.1	 Prepare	the	development	environment	 21
5.1.1	 Installation	of	Rational	Application		

Developer	V6.0	 21
5.1.2	 Installation	of	IBM	Alphablox	tag	library	plugin	 23
5.2	 Implement	the	sample	portlet	in	Rational		

Application	Developer	V6.0	 24
5.2.1	 Create	a	JSR168	portlet	project	in	Rational		

Application	Developer.	 24
5.2.2	 Review	the	new	created	portlet	 27
5.2.3	 Introduce	the	DatamartUtility	 28
5.2.4	 Introduce	the	data	bean	 29
5.2.5	 Introduce	the	portlet	manager	 29
5.2.6	 Interaction	1:	Initialize	Portlet	View	Mode	 32
5.2.7	 Interaction	2:	Load	Config	Mode	 32
5.2.8	 Interaction	3:	UI	Construction	in	Config	Mode	 34
5.2.9	 Interaction	4:	Event	handling	when	user		

selecting	cube/dimension	 35
5.2.10	 Interaction	5:	User	clicks	Save	or	Cancel	button	 37
5.2.11	 Interaction	6:	Display	the	user-select	values		

in	View	Mode	 39
5.3	 Deploy	the	sample	portlet	 41
5.3.1	 Export	the	war	file	 41
5.3.2	 Deploy	the	war	file	on	portal	server	 42

6	 References	 43

7	 Appendix:	Attached	source	code	 44

8	 Notices	 45

Contents

Figures
Figure	2-1	 ClipsAndTacks	scenario	 4
Figure	2-2		 Portlet	view	mode	 6
Figure	2-3		 Portlet	config	mode	 7
Figure	3-1	 Example	of	the	PresentBlox	 10
Figure	3-2	 Example	of	the	Form	Blox	 11
Figure	3-3	 Cube	model	of	ClipsAndTacks	process	 18
Figure	4-1	 Architecture	of	sample	portlet	 19
Figure	4-2		 Design	diagram	of	sample	portlet	 20
Figure	5-1		 Launchpad	of	Rational	Application		

Developer	 21
Figure	5-2		 Launchpad	option:	Portal	Tools	 22
Figure	5-3		 Launchpad:	Finish	 22
Figure	5-4		 Installation	of	Alphablox	tag	library	 23
Figure	5-5		 Location	of	Alphablox	tag	library	 24
Figure	5-6		 New	portlet	project:	Step	1	 25
Figure	5-7		 New	portlet	project:	Step	2	 25
Figure	5-8		 New	portlet	project:	Step	3	 26
Figure	5-9		 New	portlet	project:	Step	4	 26
Figure	5-10		Project	explorer	 27
Figure	5-11		Config	icon	 32
Figure	5-12			 35
Figure	5-13		Export	War	file:	Step	1	 41
Figure	5-14		Export	War	file:	Step	2	 41

Extending the WebSphere Business Monitor Dashboard
Page �

1 Introduction

1.1 The goal of this article

The goal of this article is to provide a best-practices design for a Java™

Specification Request (JSR) 168 portlet using Alphablox to extend the IBM

WebSphere® Business Monitor v6.0.2 Dashboard. The article will provide a

working portlet example, that a developer can use as a design pattern for

developing a customized WebSphere Business Monitor Dashboard portlet.

1.2 The audience of the article

The audience for this article is any portlet developer wanting to extend the

functionality of the WebSphere Business Monitor Dashboard by implementing

his own portlet that uses data collected by Monitor and stored in its Datamart.

It is assumed that the reader is familiar with Portal and Alphablox components

and administration, as well as the JSR 168 application programming interface

(API). However, a brief introduction to the portlet JSR 168 API, AlphaBlox and

IBM CubeViews™ is provided.

This article also requires the reader to have basic knowledge of WebSphere

Portal Server and Monitor usage.

1.3 Disclaimers

•	 The	sample	portlet	can	only	access	the	Datamart	database	using	Alphablox	APIs	

to	retrieve	cube	metadata.	Neither	access	to	the	content	stored	in	the	other	Monitor	

database	nor	direct	database	access	to	the	Datamart	through	raw	SQL	statement		

is	supported.

•	 The	sample	portlet	does	not	go	into	detail	about	error	handling	and	user-	

preference	validation.	

Extending the WebSphere Business Monitor Dashboard
Page �

2 Sample scenario

2.1 Sample scenario—ClipsAndTacks

This document chooses the ClipsAndTacks scenario as the process scenario

which will be monitored by Monitor and its instance data will be accessed by

the sample portlet that is described in later chapters. Below diagram is the

process diagram of the ClipsAndTacks scenario.

Figure 2-1
ClipsAndTacks	order	handling	process

Flows	of	the	ClipsAndTacks	scenario	process:

IV.	 Or	if	the	order	is	not	approved:
	 Review	the	order	manually.
	 Determine	if	the	order	is	an	acceptable	credit	risk.

	 If	the	order	is	an	acceptable	credit	risk:
	 Send	the	order	to	the	warehouse.
	 Issue	a	packing	slip.
	 Record	the	order	in	the	order	records	database.
	 Ship	the	product.

	 If	the	order	is	not	an	acceptable	credit	risk:
	 Cancel	the	order.
	 Send	an	e-mail	notification	to	the	customer.
	

I.	 The	customer	visits	the	ClipsAndTacks	Web	site:
	 Enter	the	account	number	or	create	an	account.
	 Enter	the	order	information.
	 Submit	the	order.

II.	 Approve	order	or	send	for	review,	based	on	the	following		
business	rules:

	 If	order	is	less	than	or	equal	to	US$750,	approve	automatically
	 If	order	is	over	US$750,	send	for	review

III.	 If	the	order	is	approved:
	 Check	the	customer’s	account	status.

	 If	the	account	is	in	good	standing:
	 Send	the	order	to	the	warehouse.
	 Issue	a	packing	slip.
	 Record	the	order	in	the	order	records	database.
	 Ship	the	product.

	 If	the	account	is	not	in	good	standing:

This diagram shows the
future 1 ClipsAndTacks
order handling process.

Order Management
system

Order Approve
without
review?

Check order
handling
policy for
automatic
approval

Order

>
>

>

>

>

> >

>

>

>

Order
> >

Order

Order
> >

Order
> >

Order
> >

>

Order

>

>

>

>

>

>

Notification

Order

Order Management
System, Customer
Records System

Order

65.0% Yes

35.0 % No
Order

Check
customer
account
status

>

Customer records
system

Approve
without
review?

85.0% Yes

15.0 % No

Review
order

Order Manager

Approve
without
review?

70.0% Yes

30.0 % No

Order Management
System

Ship order
to customer

Shipper

Order Management

Cancel
order
and send
notification

Order Manager

Product
shipment

Order handling policy
Default: Orders are reviewed by the
system for automatic approval.
If the total price of an order is less
than US$750, then the order can be
automatically approved without review.

Update order in Order
Database to DECLINE.

Update order in Order
Database to SHIPPED.

Extending the WebSphere Business Monitor Dashboard
Page �

A full explanation of the ClipsAndTacks scenario can be found in “Chapter 3.

Case Study: ClipsAndTacks” in the Redbook, Business	Process	Management:	
Modeling	through	Monitoring	Using	WebSphere	V6	Products	(w3.itso.ibm.com/

abstracts/sg247148.html?Open). This Redbook also describe the steps to

install this process on a WebSphere Process Server runtime server.

2.2 Monitoring model

A monitoring model named OrderHandlingFuture1.mm is provided in the

source code .zip file that accompanies this document.attached, It is built by the

Monitoring Model Editor that is a plug-in to WebSphere Integration Developer.

Please refer to the WebSphere Business Monitor product documentation

(www-306.ibm.com/software/integration/wbimonitor/library/documentation.

html) for how to build and deploy a monitoring model.

2.3 Test environment assumptions

This document assumes the following environments are prepared for testing

the sample portlet:

1.	 ClipsAndTacks	process	has	been	deployed	on	the	WebSphere	Process	Server		

runtime	server.

2.	 The	monitoring	model	for	the	ClipsAndTacks	process	has	been	deployed	on	the	

Monitor	server.

3.	 The	Common	Event	Infrastructure	(CEI)	between	the	WebSphere	Process	Server	

runtime	and	the	Monitor	server	has	been	configured	successfully.

4.	 Some	process	instances	have	been	completed	and	the	instance	data	has	been	

replicated	to	the	Datamart	database.

2.4 Sample portlet functionality introduction

There are two reasons that users might want to write a custom portlet instead of

just using the Monitor dashboard portlets:

•	 They	might	want	to	implement	a	custom	view	to	display	and	analyze	data.		

•	 They	might	want	to	access	the	Monitor	database	from	their	own	application.

The sample portlet described in this document is not going to extend a specific

functionality that the production portlets do not include. Instead, the sample

portlets will display the following benefits to any user who wants to write a

custom portlet:

•	 How	to	implement	a	portlet	application	with	JSR	168	API.

•	 How	to	integrate	and	benefit	from	the	Alphablox	components	in	the		

portlet	application.	

•	 How	to	access	and	manipulate	the	history	data	that	is	collected	by	Monitor.		

Extending the WebSphere Business Monitor Dashboard
Page 6

The sample portlet will use an Alphablox PresentBlox to perform the dynamic

analysis on the history data of the Clips and Tacks process. This history data is

organized as 3-types of forms: cube, measure and dimension. These cube,

measure and dimension forms are defined in the monitoring model for the

Clips and Tacks process. With the Alphablox API, the cube, measure and

dimension data can be retrieved and presented in the PresentBlox component.

Further analysis functionalities are then provided by the PresentBlox.

The sample portlet implements two portlet modes: the view mode and the con-

figuration mode. The configuration mode shows all available cubes, measures

and dimensions in the database. Users can select specific cubes, measures and

dimensions that will be displayed and manipulated in the view mode. The

view mode is responsible for showing the user selected data in a PresentBlox.

Additional analysis functionalities are provided by the PresentBlox itself.

2.4.1 Portlet view mode

The following screen capture shows the view page of the sample portlet.

Figure 2-2
Portlet	view	mode

Notes:

• The	portlet	consists	of	an	Alphablox	component	called	PresentBlox.

• User-selected	cubes,	dimensions	and	measures	display	in	the	PresentBlox.

• Additional	analysis	functionality	can	be	retrieved	by	right-clicking	on	any	data	item.

• A	menu	bar	and	toolbar	will	appear	when	the	portlet	is	maximized,	and	disappear	if		
the	portlet	is	at	normal	size.

Extending the WebSphere Business Monitor Dashboard
Page �

2.4.2 Portlet configuration mode

The following screen capture shows the configuration page of the

sample portlet.

Figure 2-3
Portlet	configuration	mode

Notes:

• There	are	two	drop-down	lists.	One	is	populated	with	all	cubes	in	the	database.	Another	
one	shows	all	the	dimensions	in	a	specified	cube.	The	dimension	list	is		
determined	by	the	selection	of	a	cube.

• There	is	a	list	of	check	boxes	showing	all	available	measures,	which	are	also		
determined	by	the	selection	of	a	cube.

• Changes	on	the	cube	list	results	in	the	dimensions	and	measures	being	displayed	in	this	
cube.

• After	a	user	selects	the	preferred	cube,	dimension	and	measures,	clicking	Save	will	
bring	the	portlet	back	to	the	view	mode.	And	the	PresentBlox	in	view	mode	is	updated	to	
reflect	the	new	selections.

• Clicking	Cancel	just	brings	the	portlet	back	to	the	view	mode;	no	changes	are	updated	
in	the	PresentBlox.

Extending the WebSphere Business Monitor Dashboard
Page �

3 Background knowledge

3.1 DB2 Alphablox introduction

3.1.1 Overview

IBM DB2® Alphablox provides the ability to rapidly create custom, Web-based

applications that fit into the corporate infrastructure. Applications built with

the DB2 Alphablox platform run in standard Web browsers, allowing real-time,

highly customizable multidimensional analysis in a Web browser.

With the DB2 Alphablox platform you can:

•	 Access	and	interact	with	data	in	multidimensional	and	relational	databases

•	 Choose	from	a	wide	variety	of	charts	to	display	data

•	 Interact	with	multidimensional	data	sources	on	different	levels	(for	example,	filter,	

drill	down,	and	so	on)	to	interactively	display	the	exact	view	of	the	data	preferred	

•	 Access	an	intuitive	user	interface	that	helps	make	analysis	of	the	data	easy		

and	powerful	

•	 Access	multiple	data	sources	with	a	single	application	

DB2 Alphablox provides a wide variety of APIs so developers can create custom

applications. The DB2 Alphablox APIs are written in the Java™ programming

language, and application developers can access them using Java that is issued

on the server or through JavaScript that is interpreted in the browser.

The remainder of this chapter describes how DB2 Alphablox fits into a Java 2

Platform, Enterprise Edition (J2EE) environment, explains the components of

DB2 Alphablox, and describes the architecture of DB2 Alphablox. For more

information, refer to the DB2 Alphablox Information Center (publib.boulder.

ibm.com/infocenter/ablxhelp/v8r4m0/index.jsp).

3.1.2 DB2 Alphablox components

The DB2 Alphablox provides an extensive library of modular, reusable

components called Blox to help meet all analytic application design require-

ments for maximum usability. These components include the data access Blox,

user interface Blox, form elements Blox, business logic Blox and analytic

infrastructure Blox.

3.1.2.1 Data access Blox

Data access is managed through the Data Blox, the Stored Procedures Blox and

the MDB Query Blox.

The Data Blox manages the connection between the user interface Blox and the

appropriate data source. It also is responsible for submitting queries and

retrieving result sets from a database. The syntax used for queries will vary

Extending the WebSphere Business Monitor Dashboard
Page �

depending on the data source that is being accessed. DB2 Alphablox supports

the following types of query strings:

•	 Essbase	report	scripts	for	DB2	online	analytical	processing	(OLAP)	and	Hyperion	

Essbase	data	sources

•	 Multidimensional	Expressions	(MDX)	for	Microsoft®	SQL	Server	analysis	services	

and	DB2	Alphablox	cubes	(a	multidimensional	representation	of	relational	data	

created	with	the	DB2	Alphablox	cube	server)		

Note: This	type	of	query	is	the	only	one	supported	for	WebSphere	Business	Monitor	

Dashboard	extension.

•	 SQL	statements	for	relational	data	source

The MDB Query Blox is useful for specifying data queries based on axes,

dimensions and members without having to use data-specific query language.

This Blox also makes it easy to replace query fragments using the program.

The data Blox and the MDB Query Blox are not used in this sample. For more

information on Data access Blox, refer to the DB2 Alphablox Information

Center (publib.boulder.ibm.com/infocenter/ablxhelp/v8r4m0/index.jsp).

3.1.2.2 User interface Blox

The user interface (UI) is a crucial factor in application usability. The user

interface Blox provided by DB2 Alphablox is highly functional, interactive, and

completely customizable. The user interface Blox in a DB2 Alphablox-enabled

application includes several components:

•	 Grid Blox	provides	a	table	of	data	and	all	the	UI	functions	to	manipulate	the	data	

in	a	multidimensional	way.	Users	can	drill	up,	drill	down,	sort,	pivot,	swap	axes		

or	choose	to	view	the	top	n	or	bottom	n	members	based	on	the	values	of	a	given		

data	column.

•	 Chart Blox,	which	is	used	for	advanced	visualization	of	data,	supports	a	large	

number	of	chart	types	including	bar,	line,	pie,	scatter	and	bubble	charts,	as	well	as	

bipolar	and	dual-axis	charts.

•	 Data Layout Blox	makes	it	easy	for	you	to	move	and	reorder	dimensions	across	axes.	

•	 Page Blox	provides	drop-down	lists	to	manage	the	setting	of	slice	dimensions	

•	 Toolbar Blox	offers	easy	access	to	common	data-analysis	functionality	through	the	

click	of	a	button.

•	 PresentBlox	combines	the	Grid	Blox,	the	Chart	Blox,	the	Data	Layout	Blox,	the	

Toolbar	Blox	and	the	Page	Blox	into	a	single,	well-orchestrated,	interconnected	

user	interface	along	with	user	toolbars	and	menus	(see	Figure	3-1).	The	PresentBlox	

also	implements	additional	logic	to	interconnect	the	various	underlying	Blox.	For	

example,	in	a	PresentBlox,	drilling	down	in	the	grid	automatically	updates	both	the	

grid	and	chart	with	the	new	data.	These	UI	elements	employ	cutting-edge	Dynamic	

HTML	(DHTML)	technology	to	provide	a	rich	user	experience	including	menu	bars,	

right-click	menus	and	custom	layouts	in	a	thin	client	(no	need	for	Java,	Microsoft	

ActiveX	(or	other	browser	plug-ins).	

Extending the WebSphere Business Monitor Dashboard
Page 10

Figure 3-1
Example	of	the	PresentBlox

3.1.2.3 Form Blox

DB2 Alphablox provides several form Blox that can be very useful in develop-

ing custom analytic applications. Developers who are familiar with using native

HTML form elements know that when the HTML page is refreshed, the user’s

current form element selections get reset unless they write additional code to

maintain the same state across page refreshes.

All the Form Blox not only maintain the form elements’ current state, freeing

the developer from writing the extra code, but they also hook up with other

components, such as JavaBeans, including the data access Blox and user inter-

face Blox to provide the most commonly required functionality with minimal

coding. For example, it is easy to link a Check box Form Blox to enable or disa-

ble the alternate row banding property in the Grid Blox and to create a Select

Form Blox that controls the chart-type property in the Chart Blox.

Extending the WebSphere Business Monitor Dashboard
Page 11

The	various	form	Blox	provided	by	DB2	Alphablox	include:

•	 Tree	navigation	element	

	 –	 	Tree	Form	Blox

•	 For	Basic	HTML	form	elements

	 –	 	Checkbox	Form	Blox	
	 –	 	Edit	Form	Blox	
	 –	 	Radio	Button	Form	Blox	
	 –	 	Select	Form	Blox

Figure 3-2
Example	of	the	Form	Blox

3.1.3 DB2 Alphablox programming model

With the DB2 Alphablox tag libraries, the JavaServer Pages (JSP) author does

not have to know the low-level technical details behind the Blox components,

but simply needs to know the syntax and functionality for each Blox. This pro-

cess enables page authors with no Java experience to incorporate analytics

seamlessly on an intranet or extranet using best-of-breed authoring tools.

Each Blox has a comprehensive set of properties that by using the tags could be

set easily to custom values in the JSP pages. For example, setting the width

property in the <blox:present> tag to 50 percent will make this

PresentBlox occupy only half of the available horizontal space in the browser.

DB2 Alphablox also provides application developers with flexibility in custom-

izing the user interface and adding their own business or application logic by

exposing every Blox as a JavaBean and allowing programmatic access to those

beans through a rich set of Java APIs. Moreover, DB2 Alphablox provides the

Blox UI model—where application developers can register server-side handlers

to handle user interaction events in the browser, such as mouse clicks and

right-click actions. This Blox UI model offers developers the ability to custom-

ize the user interface behavior. For example, application developers can

provide a different right-click menu depending on whether the user clicks on

the row header, on the column header or on a data cell, and then apply any

additional logic based on the current user’s role, time of day or session state.

•	 For	MDB-specific	HTML	form	elements

	 –	 	Data	Source	Select	Form	Blox	
	 –	 	Cube	Select	Form	Blox	
	 –	 	Dimension	Select	Form	Blox	
	 –	 	Member	Select	Form	Blox	
	 –	 	Time	Period	Select	Form	Blox	
	 –	 	Time	Unit	Select	Form	Blox

Extending the WebSphere Business Monitor Dashboard
Page 12

Application developers also can add their own HTML, CSS and JavaScript to

the JSP pages to achieve the exact look and feel that they want. DB2 Alphablox

also provides developers a unique and powerful ability to remotely invoke

server-side Java APIs through JavaScript.

3.2 JSR168 Overview

JSR 168 is a specification from the Java Community Process for the standard-

ization of portlets. The specification was developed to provide interoperability

for running portlets on any vendor’s implementation of the JSR 168 portlet

container. For more information about the Java Portlet Specification, see the

JSR 168 specification (developers.sun.com/prodtech/portalserver/reference/

techart/jsr168/).

WebSphere Portal, starting with version 5.0.2.1, provides a runtime environ-

ment for both the IBM Portlet API, which is based on org.apache.jetspeed.

portlet interfaces and JSR 168 compliant portlets.

3.2.1 JSR 168 portlet modes

Portlets will perform different tasks and create different output depending on

the function they are currently performing. Modes enable the portlets to pro-

vide different function for the task that is required. JSR 168 supports three

modes: view, edit, and help. JSR 168 also supports custom modes. At the time of

this writing, IBM WebSphere Portal only supports the custom mode configura-

tion. A portlet can change the mode programmatically in the processAction

method. You can also specify the mode when creating an action or render link.

View

The view mode is used for displaying content reflecting the current state of the

portlet. The view mode can include multiple screens that you can navigate. The

doView() method of the GenericPortlet class is invoked for this mode. All port-

lets are required to support the view mode.

Edit

The edit mode is used for customizing the behavior of the portlet by modifying

the PortletPreferences object. As with the view mode, the edit mode can contain

multiple screens for navigation. The doEdit() method of the GenericPortlet

class is invoked for this mode. Portlets are not required to support the edit mode.

Help

Help should be used to provide the user with information about the portlet.

This could be generic or it could provide context-sensitive help. The doHelp()

method of the GenericPortlet class is invoked for this mode. Portlets are not

required to support the help mode.

Extending the WebSphere Business Monitor Dashboard
Page 1�

Custom-portlet-mode

The configuration mode is used to globally update a portlet configuration. In

configuration mode, an administrator can update the read-only

PortletPreferences. Changes are reflected in all occurrences of the portlet on

all pages. The doDispatch() method of the GenericPortlet class needs to be

overridden to handle this custom mode.

Note:	WebSphere	Portal	only	supports	the	custom-portlet	mode	configuration.

3.2.2 Core JSR 168 object

This section describes the core object used when developing a JSR 168 portlet.

Some important methods of each object are also discussed.

3.2.2.1 Interface javax.portlet.Portlet

All portlets must implement the javax.portlet.Portlet interface directly or by

extending a class that implements this interface. A main method that is defined

in this interface is the processAction method.

The void processAction(ActionRequest request, ActionResponse response) method

The processAction method is called in response to an action request. URLs

generated by the portlet using RenderResponse.createActionURL() or the

<ActionURL JSP> tag generate an action URL causing this method to be

invoked. This method should be used to update the portlet’s state based on the

action-request parameters. Two objects are passed in: an ActionRequest and

an ActionResponse.

The ActionRequest provides access to the parameters, window state, portlet

mode, portlet context, portlet session and the PortletPreferences object. During

the action request, the portlet can issue a redirect to a different URL.

While processing an action request, the portlet window state and the portlet

mode can be changed. This change would be reflected in the next render phase.

It should not be assumed that the portlet will change mode or window state

because WebSphere Portal server can override the change. Changes to the win-

dow state and mode are made through the ActionResponse object.

3.2.2.2 Class javax.portlet.GenericPortlet

The GenericPortlet class implements the Portlet interface and does provide

default implementations of the methods. All portlets should extend the

GenericPortlet class rather that implementing the Portlet interface directly.

The GenericPortlet implements many of the methods and reduces the

workload when developing the portlet.

Extending the WebSphere Business Monitor Dashboard
Page 1�

The void doDispatch(RenderRequest request, RenderResponse response) method

The doDispatch method is called from the render method. The doDispatch
method determines the portlet mode and invokes the correct method. If using
a custom mode, you should override the doDispatch method to test for your
custom mode. If the request is not for your custom mode, then invoke the super.
doDispatch method to allow the GenericPortlet do dispatch the correct method.

The void doEdit(RenderRequest request, RenderResponse response) method

When the portlet mode is edit, the doEdit method is invoked by the
doDispatch method.

The void doHelp(RenderRequest request, RenderResponse response) method

When the portlet mode is help, the doHelp method is invoked by the
doDispatch method.

The void doView(RenderRequest request, RenderResponse response) method

The doview method is invoked by the doDispatch method when the portlet
mode is view.

The void processAction(ActionRequest request, ActionResponse response) method

The processAction method is invoked for all action requests for the portlet.

3.2.2.3 Interface javax.portlet.PortletURL

The PortletURL interface is used to create URLs that reference the portlet.
There are two types of PortletURLs: ActionURL and RenderURL. By using the
RenderResponse.createActionURL, RenderResponse.createRenderURL or the
JSP tags, the portlet developer can create the different types of URLs. When a
render URL is encountered, the render method is invoked and it in turn invokes
the appropriate doXXX method. When an action URL is encountered, the
processAction method is invoked. Only action URLs should be used for forms.
The ActionURL is also used in the dashboard software development kit (SDK).

The void setParameter(java.lang.String name, java.lang.Stringvalue) method

This method is used to add parameters. Parameters added for a render URL are
only available during the render request. Parameters added for an action URL
are only available for the action request unless they are specifically added using
the ActionResponse.setRenderParameter method.

Extending the WebSphere Business Monitor Dashboard
Page 1�

The java.lang.String toString() method

This method returns a URL in the correct form for the portal server. Here is a
code sample that illustrates how to use an action URL in a link:

PortletURL saveURL= renderResponse.createActionURL();
saveURL.setParameter(“ACTION _ NAME”,”SAVE _ ACTION”);
<a href=”<%= saveURL.toString() %>”>saveURL

3.2.2.4 Interface javax.portlet.PortletRequest

The portlet request object contains information about the client request. The
request also includes parameters, the portlet mode, the window state, session,
and access to the portlet context. The PortletRequest interface defines com-
monly used functionality for the ActionRequest and RenderRequest methods.

Parameters that are received during an action request are not sent to the render
request unless they are explicitly added using the setRenderParameters or
setRenderParameters of the ActionResponse class. This can only be done in the
processAction method.

If the render request follows an action request as part of the same request, the
parameters sent in the render request will be the render parameters set during
the action request.

A portlet can only see parameters in its own request. Parameters set for other
portlets are not visible.

Request properties are used for portal-specific properties. These properties can
include http headers.

3.2.2.5 Interface javax.portlet.ActionRequest

The ActionRequest interface extends the PortletRequest interface and is used

during an action request. The ActionRequest object is passed into the process-

Action method. The ActionRequest object is in scope only during execution of

the processAction method.

3.2.2.6 Interface javax.portlet.RenderRequest

The RenderRequest interface extends the PortletRequest. The RenderRequest

interfacedoes not define any additional functionality. The RenderRequest

object is scoped to the render method.

Extending the WebSphere Business Monitor Dashboard
Page 16

3.2.2.7 Interface javax.portlet.PortletResponse

The portlet response object contains information to be returned to the portlet

during a request. Examples of this include redirection, portlet mode change,

title, content, and so on. The portlet response object is passed into the render

and the processAction methods. The portlet response object provides a way to

add or update the response properties.

3.2.2.8 Interface javax.portlet.ActionResponse

The ActionResponse interface extends the PortletResponse interface. The

ActionResponse is used during an action request and is passed into the proces-

sAction method. ActionResponse includes added functionality for changing

the portlet mode, changing the portlet window, setting render parameters, and

redirecting to another URL. The ActionResponse object is only in scope during

the processAction method.

3.2.2.9 Interface javax.portlet.RenderResponse

The RenderResponse interface extends the PortletResponse interface. This

object is passed to the render method. This object is used to set the title of the

portlet and generate content by either obtaining a writer or delegating to a

JSP or servlet. The scope of this object is only for the render method.

3.2.2.10 Interface javax.portlet.PortletPreferences

The PortletPreferences object is used to provide a customized view of the port-

let to the user. Preferences are stored as name-value pairs. They can be either

defined in the portlet deployment descriptor or programmatically. If the

parameters are defined in the deployment descriptor, they have the option of

being read-only. Read-only parameters can only be updated by the administra-

tor while in configuration mode. The administrator can also modify the

parameters using the administration portlets. If the parameters are added pro-

grammatically, they are not considered to be read-only. Users can modify

parameters only while in the edit mode and only parameters that are not read-

only. Changes made in configuration mode by the administrator affect all

instances of the portlet on all pages.

3.2.3 Deployment descriptors

Deployment descriptors provide information to the server about the applica-

tion. Two deployment descriptors are required for portlets: web.xml and portlet.

xml. The web.xml (Web-deployment) descriptor is used to define all non-port-

let resources. Compared to the IBM portlet API, JSR 168 does not define a

servlet, so you do not have to define a servlet in the web.xml deployment

descriptor. Remember that in JSR 168, portlets do not extend the HttpServlet

interface like they do in the IBM API. Therefore, portlets are not servlets and

are not required to go into the web.xml deployment descriptor.

Extending the WebSphere Business Monitor Dashboard
Page 1�

The portlet.xml deployment descriptor is used to define all portlet-related

resources. You should use IBM Rational® Application Developer to create and

modify your portlet.xml deployment descriptor. Rational Application

Developer contains tools for inserting and removing elements and also for

verifying that the portlet.xml deployment descriptor is valid.

3.3 DB2 CubeView and MDX query

DB2 Cube Views is used to create a multidimensional cube model on top of a

relational DB2 database. Each cube model has its own dimension names and

measure names. The cube model can then be used by DB2 Alphablox for fur-

ther data analysis and reporting. In WebSphere Business Monitor, the contents

in the Datamart database are exposed to portlet application through the Cube

Views and Alphablox interface.

The file Model_cv.xml exported from the Monitor schemagen is used to tell

DB2 Cube Views what dimensions and measures are to be exposed in the cube

of a monitoring model. This file can be imported into the DB2 Cube Views by

the DB2 OLAP GUI. After the import, you can also check what dimensions and

measures are defined in a cube model from the DB2 OLAP GUI. The following

screen capture displays the measures and dimensions for cube mode—

“OrderHandlingFuture1 Cube 2006_10_31T12_00_00”— in the DB2

OLAP GUI.

Extending the WebSphere Business Monitor Dashboard
Page 1�

Notes:

• There	are	seven	cube	models	that	are	exposed	for	this	process	model.

• The	cube	model	named	“OrderHandlingFuture1	Cube	2006_10_31T12_00_00”	is	
expanded	in	the	DB2	OLAP	GUI.	You	can	see	the	measures	and	dimensions	that	are	
defined	in	it.

• There	are	four	user-defined	measures	in	this	process	model:	“Average	Order	Duration,”	
“Average	Order	Sales	Amount,”	“Number	of	Sales,”	“Total	Sales	Amount.”	The	other	mea-
sure	named	“InstanceCount”	is	the	predefined	measurefor	all	process	models	by	Monitor	
schemagen.

• Only	the	“Current	Status”	is	the	user-defined	dimension	in	this	process	model.	The	other	
two	dimensions:	“CreationTime”	and	“TerminationTime”	are	the	predefined	dimensions	
for	all	process	models	by	Monitor	schemagen.

The sample portlet needs to retrieve the value of the measures from a selected

cube model and perform the data analysis based on the user-selected dimen-

sions. The language used for querying the multidimensional data source is

MDX query language. For example, if you want to retrieve the value of the mea-

sures “InstancesCount” and “Total Sales Amount” from

“OrderHandlingFuture1 Cube 2006_10_31T12_00_00” cube, and want to

perform the data analysis based on the dimensions “Creation Time,” the MDX

query statement for this purpose is:

select {[Measures].[InstancesCount], [Measures].[Total Sales
Amount]} on columns ,
[Location] on rows
from [OrderHandlingFuture1 Cube 2006 _ 10 _ 31T12 _ 00 _ 00]

For a comprehensive explanation of the MDX language, see msdn2.microsoft.

com/en-us/library/ms145506.aspx.

Figure 3-3
Cube	model	of	ClipsAndTacks	process

Extending the WebSphere Business Monitor Dashboard
Page 1�

4 Architecture & Design

4.1 Architecture

The following diagram shows the architecture of the sample portlet.

Figure 4-1
Architecture	of	sample	portlet

Notes:

• User’s	request	(render	or	action)	is	accepted	by	IBM	Websphare	Portal	Server	and	is	
forwarded	to	the	portlet.

• The	Java	bean	is	responsible	for	storing	user	selection	information	in	the		
configuration	mode.

• The	dbUtil(what	is	this?)	is	responsible	for	accessing	database	through	DB2	Cube	Views	
and	DB2	Alphablox.

• The	manager	object	bridges	the	gap	between	the	portlet/JSP	and	bean/dbUtil.	

• The	portlet	object	invokes	the	JSP	file	to	display	the	information	it	gets	from	the	bean	
and	dbUtil.

• JSP	is	responsible	for	the	page	rendering	and	response	to	the	user	through	Websphere	
Portal	Server.

4.2 Design

WebSphere Business Monitor Dashboard portlet makes rich use of the

Alphablox component for database access, UI construction and data analysis.

Retrieving user-entered values in an Alphablox UI component from the config-

uration mode and passing them to a blox in view mode can be a challenge. The

Alphablox server-side event handlers do not have access to the standard port-

let-programming model. This means that when you perform an action on an

Alphablox UI component, the portlet request and response, on which much of

the portlet functionality is dependent, are not available.

DB2 Cube View

DB2 Alphablox

Datamart DB

WebSphere
Portal Server

Client

Manager

Portlet Bean

DB UtilitiesJSP

Request

Response

Extending the WebSphere Business Monitor Dashboard
Page 20

Manager

datamartUtility
dataBean

DataBean

selectCube
selectedDimension

Controller

Manager
UI display logic

DatamartUtility

dataSource
Cubes

Because of this challenge, a way is needed to bridge both the Alphablox and

portlet-programming models. The introduction of the portlet manager class

serves this purpose. The portlet manager can be reused between the view mode

and the configuration mode. Its job is to shuttle information between the port-

let and the Alphablox UI Controller.

The following diagram shows the class diagram of the sample portlet with the

manager to bridge between Alphablox component and the portlet mechanism.

Figure 4-2
Design	diagram	of	sample	portlet

Notes:

• The	portlet	class	holds	a	reference	to	the	Manager.	The	manager	has	references	to	the	
Datamart	utility,	which	is	responsible	for	all	database	accesses,	and	to	DataBean,	which	
is	used	for	storing	the	user-selection	information.

• In	the	portlet-programming	model,	the	manager	object	can	be	accessed	in	the	JSP	files.

• JSP	includes	Alphablox	blox	components	for	data	rendering	and	collecting	user	selec-
tions.	All	the	Alphablox	components	in	both	portlet	modes	can	access	the	manager	in	
the	JSP,	and	then	they	get	the	access	to	the	Datamart	utility	and	DataBean	accordingly.

• The	controller	class	is	responsible	for	constructing	the	UI	with	Alphablox	components	
in	configuration	mode	and	handling	the	user-selection	event	triggered	on	the	Alphablox	
components.	It	can	also	retrieve	the	manager	reference	from	the	JSP,	so	that	it	can	store	
the	user-selection	information	into	the	DataBean	through	the	manager	reference.

• The	controller	class	could	issue	a	portlet	request	by	dispatching	the	ClientLink	object,	
which	is	used	to	store	a	URL	to	the	portlet	itself.	After	dispatching	the	ClientLink	object,	
the	control	goes	back	to	the	portlet	request/response	model	and	the	processAction	
method	()	is	invoked	to	process	the	request	from	the	controller.	

• The	PortletPreference	is	a	place	to	persist	the	portlet	data	(user	selection)	even	after	a	
portlet	session	is	closed.

Client page-view mode

PresentBlox - Client peer

Client page-config mode

Select box - Client peer
Check box - Client peer

PortletPreference

Portlet

doView()
doConfig()
processAction()

View.jsp

PresentBlox

Config.jsp

Server-side object:
Select box
Check box

Client side Server side

DB Datamart
Cube

ClientLink

Manager

Manager

UserInput

Extending the WebSphere Business Monitor Dashboard
Page 21

5 Development Steps

5.1 Prepare the development environment

The following tools are used for the sample portlet development:

•	 Rational	Application	Developer	V6.0	with	Portal	Tools

•	 IBM	Alphablox	tag	library	plug-in

Notes:	The	standalone	Portal	tools	plug-in	is	not	available	for	WID	or	Eclipse.	
Without	this	plug-in,	developer	will	have	to	create	a	portlet	project	from	the	
scratch.	Therefore,	we	highly	recommend	using	Rational	Application	
Developer	as	the	portlet	development	tool.

5.1.1 Installation of Rational Application Developer V6.0

Prerequisite: Rational Application Developer installation CD image

is prepared.

Follow these steps to install Rational Application Developer V6.0:

1.	 Run	the	launchpad.exe	file	from	the	CD	image	to	display	the	Rational	Software	

Development	Platform	Launchpad.

Figure 5-1
Launchpad	for	Rational	Application	Developer

2.	 Select	Install IBM Rational Application Developer v6.0	(see	Figure	5-1).

3.	 Click	Next	to	continue	after	the	installation	program	opens.

4.	 Accept	the	license	agreement,	and	click	Next	to	continue.

5.	 Accept	the	default	installation	path:	C:\Program Files\IBM\Rational\SDP\6.0\ .

Extending the WebSphere Business Monitor Dashboard
Page 22

Figure 5-2
Launchpad	option:	Portal	Tools

6.	 In	the	features	window,	you	can	clear	the	IBM	WebSphere	Application	Server	V6.0	

Integrated	Test	Environment	check	box.	It	is	not	required	for	portlet	application	

development.	

7.	 (Important)	Select	Portal Tools	under	the	Additional	Features	heading.	This	option	

is	required	for	portlet	development	(see	Figure	5-2).

8.	 Click	Next	to	continue.

Figure 5-3
Launchpad:	Finish

9.	 In	the	summary	information	window,	click	Next	to	continue	with	the	installation.

10.	Click	Next	to	continue	after	this	installation	is	complete.

11.	Clear	the	Launch	Agent	Controller	install	check-box	option.	Click	Finish	to	

complete	this	installation	(see	Figure	5-3).

Extending the WebSphere Business Monitor Dashboard
Page 2�

5.1.2 Installation of IBM Alphablox tag library plug-in

Because the sample portlet will make use of IBM Alphablox components, the

IBM Alphablox tag library plug-in is required to be installed in Rational

Application Developer V6.0.

1.	 Run	Rational	Application	Developer	V6.0	from	Windows	StartàAll

Programsà IBM Rationalà IBM Rational Application Developer V6.0àRational

Application Developer.

2.	 Open	the	Feature	Updates	dialog	from	menu	HelpàSoftware UpdatesàFind

and Install(see	Figure	5-4).

Figure 5-4
Installation	of	Alphablox	tag	library

3.	 In	the	Features	Updates	dialog,	select	Search for new features to install.	

4.	 Click	Next	to	continue.

5.	 In	the	Update	sites	dialog,	click	New Local Site…,	then	browse	to	the	Alphablox	

plug-in	directory.	The	Alphablox	plug-in	directory	is	located	on	the	Alphablox	

installation	CD	image.	The	full	path	might	be	different	on	your	machine,	but	be	sure	

to	select	the	UpdateSite	directory	(see	Figure	5-5).

Extending the WebSphere Business Monitor Dashboard
Page 2�

6.	 Click	OK ,	and	then	select	the	site	you	just	added.	

7.	 Click	Next	to	continue.

8.	 Select	Install all the features in this site.	

9.	 Click	Finish	to	complete	the	plug-in	installation.

Result: Now the development environment for portlet development is set up.

5.2 Implement the sample portlet in Rational Application Developer V6.0

5.2.1 Create a JSR-168 portlet project in Rational Application Developer

1.	 Start	Rational	Application	Developer	on	workspace	C:\RadWs.	Close	the		

welcome	page.	

2.	 Click	FileàNewàProject in	the	new	project	dialog,	select	a	wizard	for	Portlet

Project (JSR 168)	(see	Figure	5-6).	

	 Note:	This	wizard	results	from	selecting	the	Portal	Tools	option	during	the	Rational	

Application	Developer	V6.0	installation.	

Figure 5-5
Location	of	Alphablox	tag	library

Extending the WebSphere Business Monitor Dashboard
Page 2�

3.	 Click	Next	to	continue.	The	Confirm	Enablement	dialog	opens.	

4.	 Click	OK		to	enable	the	portal	development	capability.

5.	 In	the	New	Portlet	Project	(JSR168)	wizard,	name	the	new	project	MyReport.	

Click	Show Advanced.	Clear	the	check-box	option	Add module to an EAR project

(see	Figure	5-7).	

6.	 Click	Next to	continue.

Figure 5-6
New	portlet	project:	Step	1

Figure 5-7
New	portlet	project:	Step	2

Extending the WebSphere Business Monitor Dashboard
Page 26

7.	 In	the	Portlet	Type	dialog,	select	the	type	of	new	portlet	as	Basic portlet (JSR168).	

8.	 Click	Next	to	continue.

9.	 In	the	Features	dialog,	clear	the	Web Diagram	option	check	box	and	select	the	DB2

Alphablox Content	option	(see	Figure	5-8).	This	option	is	required	because	our	

sample	portlet	uses	the	Alphablox	component.	It	comes	from	the	Alphablox	tag	

library	plug-in	that	is	installed	in	Rational	Application	Developer	V6.0.	

10.	Click	Next		to	continue.

Figure 5-8
New	portlet	project:	Step	3

11.	In	the	DB2	Alphablox	EAR	File	Locations	dialog,	leave	the	text	field	blank	and	

click	Next	.

12.	In	the	Portlet	Settings	dialog,	click	Next		to	continue.

13.	In	the	Action	and	Preferences	dialog,	clear	the	Add form	sample	check	box	(see	

Figure	5-9).

14.	Click	Next	to	continue.

Figure 5-9
New	portlet	project:	Step	4

Extending the WebSphere Business Monitor Dashboard
Page 2�

15.	In	the	Miscellaneous	dialog,	select	Add configuration mode.	

16.	Click	Finish	to	complete	the	new	portlet	project	(JSR168)	wizard.

17.	When	the	Confirm	Perspective	Switch	dialog	opens,	click	Yes	to	confirm.

Result:	Now	the	wizard	will	create	a	basic	JSR-168	portlet.	You	can	add	your	
code	into	it	to	implement	your	required	functionality.

5.2.2 Review the newly created portlet

Before adding your own code into the newly created portlet, review the codes

that wizard has created for you first. Expand the MyReport	project in the

Rational Application Developer Project Explorer as shown in Figure 5-10.

Figure 5-10
Project	explorer

The key files to view are the portlet java file—MyReportPortlet.java and the two

JSP files. The MyReportPortlet.java is the main Java class that handles the render

and action request and response of the portlet. The two JSP files are responsi-

ble for presenting the portlet UI in configuration mode and view mode. Later

you will add your own logic in these files to extend the portlet functionality.

Also, see the files portlet.xml and web.xml. They are the deployment-

descriptor files of the portlet. To understand the content in these two files, refer

to the JSR-168 portlet specification referenced at the end of this document.

Extending the WebSphere Business Monitor Dashboard
Page 2�

5.2.3 The DatamartUtility class

You need to have a place to hold the database-access logic. For this purpose,

there is a Java class named DatamartUtility.java. The complete source code of

this class can be found in the attached source-code package. Here is a sample of

the DatamartUtility.java class source code (also see Figure 5-XX shows).

public class DatamartUtility {

 private boolean isInitialized = false; // Flag of initialization
 private String dataSource; // Alphablox data source name
 private Cube[] cubes; // Cubes got from the data
 source

 /**
 * The constructor of datamart utility class.
 * In a normal Monitor installation, the Alphablox data source name
 * should be DATAMART _ Cube. We keep this name as a constant to
 * reduce hard code.
 */
 public DatamartUtility() {
 setDataSource(MyReportPortletConstants.DATA _ SOURCE);
 }

 /**
 * Load the metadata from the datablox, then get the cubes from the
 * metadata and keep a reference in this utility class.
 * @param dataBlox
 * @throws DataBloxCannotConnectException
 * @throws ServerBloxException
 */
 public void init(DataBlox dataBlox)
 throws DataBloxCannotConnectException, ServerBloxException {

 MDBMetaData mdbMetaData = (MDBMetaData) dataBlox.getMetaData();
 this.cubes = mdbMetaData.getCubes();
 setInitialized(true);
 }
}

Notes:

• The	DatamartUtility	class	has	a	variable	to	hold	the	name	of	the	Alphablox	data	source	
from	which	this	portlet	retrieves	data.	The	data	source	is	named	DATAMART_Cube	by	
default.

• The	DatamartUtility	class	has	a	variable	to	hold	the	reference	to	cubes	that	are	obtained	
through	a	datablox(.	The	cube	object	provides	methods	to	access	the	dimensions	and	
measures	it	contains.

• The	init()	method	is	called	at	the	first	portlet	configuration-mode	request.	It	retrieves	the	
cubes	from	the	database	through	a	datablox	component.	

• The	DatamartUtility	class	also	provides	methods	for	retrieving	dimensions	and	measures	
from	cubes.

Extending the WebSphere Business Monitor Dashboard
Page 2�

5.2.4 The data bean class

The data bean class holds the user-selection information.

public class MyReportDataBean {

 // Saved user selection in the config mode
 private String selectedCube;
 private String selectedDimension;
 private HashSet selectedMeasures;

 // Unsaved user selection in the config mode
 private String selectedCubeTmp;
 private String selectedDimensionTmp;

 /**
 * The constructor of data bean class.
 */
 MyReportDataBean() {
 this.selectedMeasures = new HashSet();
 }

 /**
 * Check if this data bean has been configured.
 * @return boolean
 */
 public boolean isConfigured() {
 return ((selectedCube != null) && (selectedDimension != null)
&& (!selectedMeasures
 .isEmpty()));
 }
}

Notes:

• There	are	variables	to	hold	the	user	selection	in	the	configuration	mode	of	the	portlet.	
These	variables	are	divided	to	two	groups.	One	group	is	for	holding	the	temporary	selec-
tion	before	a	user	clicks	Save.	The	other	group	is	for	holding	the	final	selection	after	a	
user	clicks	Save.

• The	data	bean	class	provides	a	public	method	named	isConfigured()	to	check	if	it	is	
configured	properly	in	the	configuration	mode.		

• Another	important	item	not	shown	in	this	code	is	the	Getter	and	Setter	methods	for	all	
class-member	variables,	which	are	required	for	this	class.	These	methods	can	be	gener-
ated	by	the	utility	in	Rational	Application	Developer.

5.2.5 The portlet manager class

This section explains how the manager class bridges the gap between the

portlet and the Alphablox UI component.

1.	 Declare	the	manager	class.

	 To	pass	information	from	the	configuration	mode	to	the	view	mode,	the	manager	

class	should	be	able	to	be	accessed	in	both	modes.	This	object	is	achieved	by	

persisting	the	manager	class	in	the	portlet	session.	Each	time	the	view	mode	

or	configuration	mode	of	the	portlet	is	requested,	the	manager	is	copied	from	

the	portlet	session	to	the	attribute	of	the	request.	The	following	code	shows	the	

declaration	of	the	manager	class.	

Extending the WebSphere Business Monitor Dashboard
Page �0

public class MyReportPortletManager implements Serializable {

 // Reference to the data bean.
 private transient MyReportDataBean dataBean;
 // Reference to the Datamart utility class.
 private transient DatamartUtility datamartUtility;
 // Flag to indicate if this manager requires initialization.
 private transient boolean isInitialized = false;

Notes:

• The	manager	class	should	implement	the	java.io.Serializable	interface	to	support	the	
persistence.

• sThe	manager	class	holds	references	to	the	Datamart	utility	and	DataBean.	Through	
the	manager	class	and	these	references,	both	the	configuration	and	view	modes	of	
the	portlet	and	the	Alphablox	UI	component	can	access	the	Datamart	utility	and	data	
bean	conveniently.

•	 There	is	a	special	design	concern	for	the	cluster	environment	here.	In	a	cluster	
environment,	the	manager	object	might	be	serialized	and	re-created	in	the	session	
of	another	machine	during	the	failover	process.	The	reference	to	the	DataBean	will	
become	invalid	in	the	new	Java	virtual	machine	(JVM)	because	the	DataBean	object	
itself	will	be	re-created	also.	The	key	word	“transient”	tells	Java	not	to	save	the	value	
of	the	data	bean	reference	during	the	persist	process.	However,	its	value	should	be	
recalculated	in	the	new	JVM.	A	flag	(isInitialized)	is	used	to	indicate	if	the	manager	is	
required	to	re-create	the	data	bean	object.	A	later	section	examines	the	initialization	
process	of	the	manager	object.

2.	 Save	the	manager	object	and	place	it	in	a	portlet	session.

	 The	following	code	shows	the	logic	in	the	getPortletManager	()	method	of	the	

MyReportPortlet	class,	which	is	how	the	manager	class	is	stored	and	pulled	from	the	

portlet	session.	Also,	a	new	manager	object	is	created	if	there	is	not	one	in	the	portlet	

session	already.	When	the	manager	is	not	initialized,	it	is	to	maintain	the	session	

persistence	in	a	cluster	environment.

private MyReportPortletManager getPortletManager(PortletRequest
request,
 PortletResponse response) {
 // Pull the manager from the session
 MyReportPortletManager manager = (MyReportPortletManager)
 request
 .getPortletSession().getAttribute(
 MyReportPortletConstants.MANAGER);

 // If no manager exists, create one and add it to the session
 if (manager == null) {
 manager = new MyReportPortletManager();
 manager.init(request, response);
 request.getPortletSession().setAttribute(
 MyReportPortletConstants.MANAGER, manager);
 } else if (!manager.isInitialized()) {
 // If the manager is failover from a cluster environment,
 // it might not be initialized yet, call the init()
 method now.
 manager.init(request, response);
 }
 return manager;
}

Extending the WebSphere Business Monitor Dashboard
Page �1

3)	 Initialize	the	manager	class.

	 The	following	code	shows	how	the	manager	is	initialized.	The	major	job	of	the	initial	

process	is	to	create	the	Datamart	utility	object	and	the	data	bean	object,	and	then	

load	the	preconfigured	information	from	the	portlet	preference.

public void init(PortletRequest request, PortletResponse response) {

 this.dataBean = new MyReportDataBean();
 this.datamartUtility = new DatamartUtility ();

 // Load the pre-configured information from the portlet
 preference
 // if exist.
 try {

 loadPreference(request);

 setInitialized(true);

 } catch (Exception e) {
 e.printStackTrace(System.out);
 }
}

4)	 Retrieve	the	manager	reference	in	the	doView	()	and	doCustomConfigure	()	

methods.

	 The	following	code	describes	how	the	manager	class	is	accessed	in	the	portlet’s	

doView	()	method.	The	manager	reference	is	pulled	out	from	the	portet’s	session	

by	the	getPortletManager	()	method	and	then	the	reference	is	stored	in	the	portlet	

request’s	attribute.	The	doView	()	method	finally	invokes	the	JSP	file	to	construct	

the	page	for	the	UI	in	view	mode.	With	the	manager’s	reference	stored	in	the	portlet	

request’s	attribute,	the	JSP	code	for	the	view	mode	can	access	the	manager	easily.	

The	doCustomConfigure	()	method	uses	the	same	logic	to	access	the	manager	class.

public void doView(RenderRequest request, RenderResponse response)
 throws PortletException, IOException {
 // Set the MIME type for the render response
 response.setContentType(request.getResponseContentType());

 // Get the portlet manager
 MyReportPortletManager manager = getPortletManager(request,
 response);

 // Put the portlet manager in the request
 request.setAttribute(MyReportPortletConstants.MANAGER,
 manager);

 // Invoke the JSP to render
 PortletRequestDispatcher rd = getPortletContext().get
 RequestDispatcher(
 getJspFilePath(request, VIEW _ JSP));
 rd.include(request, response);
}

Extending the WebSphere Business Monitor Dashboard
Page �2

5.2.6 Interaction 1: Initialize portlet view mode

In this section(these are not really chapters, but sections of chapters),

you will initialize the portlet’s view mode. The following code comes from

MyReportPortletView.jsp file. This JSP file is invoked in the portlet’s

doView () method when a render request of view mode is issued.

<%@ page session=”false” contentType=”text/html” %>
<%@ page import=”java.util.*,javax.portlet.*,myreport.*” %>
<%@taglib uri=”http://java.sun.com/portlet” prefix=”portlet” %>
<%@taglib uri=”bloxtld” prefix=”blox” %>
<%@taglib uri=”bloxuitld” prefix=”bloxui” %>
<%@taglib uri=”bloxportlettld” prefix=”bloxportlet” %>

<portlet:defineObjects/>
<blox:header/>

<%
 // Retrieve the manager from request and then get the data bean
 from the manager
 MyReportPortletManager manager = (MyReportPortletManager)request
 .getAttribute(MyReportPortletConstants.MANAGER);

 MyReportDataBean dataBean = manager.getDataBean();
 if (!dataBean.isConfigured()) { %>
 This view has not been configured. Click the Configure icon on
the portlet toolbar to start the configuration. <%
 return;
}
%>

Notes:

• The	first	three	lines	of	this	JSP	file	are	already	created	by	the	Rational	Application	Devel-
oper	portlet	wizard.	They	provide	support	for	accessing	the	portlet’s	Java	code	and	the	
portlet’s	predefined	object.	

• The	three	taglib	directives	instruct	the	JSP	compiler	to	support	the	Alphablox-related	tags.

• The	<blox:header/>	tag	manages	rendering	of	Alphablox	blox	on	the	pages.	

• The	<portlet:defineobjects/>	tag	manages	the	render	request	and	render	response	
of	the	portlet.

• The	Java	code	part	of	this	JSP	file	does	the	following	things:	Retrieves	the	reference	of	
portlet	manager	from	the	render	request’s	attribute;	retrieves	the	reference	of	data	bean	
from	the	manager;	and	checks	if	the	data	bean	is	configured	properly	and	displays	infor-
mation	text	if	it	is	not.	

5.2.7 Interaction 2: Load configuration mode

As a standard way of using a portlet, clicking the “wrench” icon on the top-right

side of the portlet window will put the portlet in Configuration mode.

Figure 5-11
Config	icon

Extending the WebSphere Business Monitor Dashboard
Page ��

The request will be handled by the doCustomConfigure() method in the portlet

class MyReportPortlet.java and it will invoke the MyReportPortletConfig.jsp to

render the configuration mode page. The following snippet

MyReportPortletConfig.jsp.

<%@ page session=”false” contentType=”text/html” %>
<%@ page import=”java.util.*,javax.portlet.*,myreport.*”%>
<%@ page import=”com.alphablox.blox.DataBlox” %>
<%@taglib uri=”http://java.sun.com/portlet” prefix=”portlet” %>
<%@taglib uri=”bloxtld” prefix=”blox”%>
<%@taglib uri=”bloxuitld” prefix=”bloxui”%>
<%@taglib uri=”bloxportlettld” prefix=”bloxPortlet”%>

<portlet:defineObjects/>
<blox:header />

<%
 // Retrieve the manager from request
 MyReportPortletManager manager = (MyReportPortletManager)
 request
 .getAttribute(MyReportPortletConstants.MANAGER);

 DatamartUtility datamartUtility = manager.getDatamart
 Utility();
 String dataSource = datamartUtility.getDataSource();

 // Encode the blox name
 String dataBloxName = renderResponse.getNamespace()
 + MyReportPortletConstants.CONFIG _ DATA _ BLOX;
 String containerBloxName = renderResponse.getNamespace()
 + MyReportPortletConstants.CONFIG _ CONTAINER _ BLOX;
%>

<blox:data id=”configDataBlox” bloxName=”<%=dataBloxName%>”
 dataSourceName=”<%=dataSource%>” >
 <%
 // Load the cube meta info into the data bean through
 data blox.
 if (!datamartUtility.isInitialized()) {
 datamartUtility.init(configDataBlox);
 }
 %>
</blox:data>

<blox:container id=”configContainerBlox” bloxName=”<%=containerBlox
Name%>”width=”100%” >
 <%
 // Construct and display the config layout in this container
 blox.
 MyReportPortletConfigUI configUI = new MyReportPortlet
 ConfigUI(manager);
 configUI.display(configContainerBlox, (RenderRequest)
 renderRequest,
 (RenderResponse)renderResponse);
 %>
</blox:container>

Notes:

• The	taglib	directives	are	imported	in	a	similar	way	to	the	JSP	file	for	view	mode.

• A	reference	to	the	portlet	manager	is	extracted	from	the	request’s	attribute.

• A	DataBlox	is	created	for	initializing	the	Datamart	utility.	

Extending the WebSphere Business Monitor Dashboard
Page ��

• The	blox	name	should	be	prefixed	with	the	portlet’s	namespace	to	make	it	unique.	This	
is	required	because	more	than	one	instance	of	a	portlet	can	exist	on	a	page.	If	the	blox	
names	are	not	unique,	the	portlets	have	difficulty	processing	the	duplicate	names	and	
errors	occur.

• The	MyReportPortletConfigUI	class	is	introduced	here.	It	is	responsible	for	constructing	
the	UI	of	the	configuration	mode	page	and	handling	the	user-selection	event	in	the	page.

• This	sample	has	the	requirement	that	the	UI	components	survive	a	refresh.	This	is	espe-
cially	important	in	the	portal	world	because	a	user	could	choose	to	change	the	portlet	
window	size,	which	refreshes	the	page	and	calls	this	JSP	file	again.	The	Java	code	that	
displays	the	configuration	page	is	embedded	in	a	container	blox	(inside	of	two	blox	tags).	
A	characteristic	of	Alphablox	blox	tags	is	that	the	area	within	a	blox	tag	is	not	refreshed	
when	the	JSP	page	is	refreshed.	This	characteristic	helps	to	retain	the	temporary	selection	
values	on	the	configuration	page	when	a	page	refresh	occurs.	

The following code shows the declaration of the MyReportPortletConfigUI

portlet class.

public class MyReportPortletConfigUI extends Controller {

 private MyReportPortletManager manager; // Reference to
 portlet manager
 private ComponentContainer uiContainer; // Container to hold
 UI components

 public MyReportPortletConfigUI(MyReportPortletManager manager) {
 this.manager = manager;
 }
}

Notes:

• Because	you	also	want	the	MyReportPortletConfigUI	class	to	handle	the	events	coming	
from	the	Alphablox	UI	component,	it	is	extended	from	the	com.alpphablox.blox.uimodel.
core	controller	class.

• The	MyReportPortletConfigUI	class	includes	a	reference	to	the	portlet	manager.	The	port-
let	manager	bridges	the	event	handler	in	this	class	and	the	data	bean.	Through	this	refer-
ence,	the	event	handler	can	store	the	user-selection	information	it	gets	from	the	Alphablox	
UI	component,	into	the	data	bean.

5.2.8 Interaction 3: Construct the UI in configuration mode

The display () method of the MyReportPortletConfigUI class is constructs the

UI in the configuration mode. Though you can construct the UI in the JSP file

by using the JSP tags for the Alphablox UI component, it is best to construct the

UI with server-side Alphablox Java objectsto keep the JSP clean and simple.

Through this method, you can also consolidate the UI components and associ-

ated event controllers in one class to keep the logic more straightforward.

The following diagram shows the logical layout of the configuration mode UI.

All the UI components and component containers are made with server-side

Alphablox Java objects.

Extending the WebSphere Business Monitor Dashboard
Page ��

The following code shows the source for the display () method.
public void display(ContainerBlox containerBlox, RenderRequest
request,
 RenderResponse response) throws Exception {

 // Get the data Bean from portlet manager
 MyReportDataBean dataBean = manager.getDataBean();

 BloxModel bloxModel = containerBlox.getBloxModel();
 bloxModel.clear();

 // Prepare the component container and put it on container blox
 uiContainer = new ComponentContainer();
 uiContainer.setLayout(new VerticalLayout());
 uiContainer.setController(this);
 bloxModel.add(uiContainer);

 // Add the selection container and build the components on it.
 addSelectionContainer(dataBean);

 // Add the button container and build the buttons on it.
 addButtonContainer(dataBean, response);

}

Notes:

• The	display()	method	constructs	the	UI	on	the	container	blox	that	is	already	created		
in	the	JSP.

• When	constructing	the	UI,	you	need	to	fill	the	UI	components	with	data	obtained		
from	the	data	bean.	Therefore,	a	reference	to	the	data	bean	is	retrieved	from	the		
portlet	manager.	

• You	can	find	much	more-detailed	steps	to	construct	the	UI	in	the	addSelection	
Container()	and	addButtonContainer()	methods.	The	logic	for	these	two	methods	is		
straightforward.	See	the	source	code	in	the	.zip	of	sample	code	that	accompanies		
this	document	for	reference.

Cancel

uiContaine

selectionContainer

buttonContainer

Cube selection

Measures selection

cubeDimContainer measuresContai

Dimension selection

Figure 5-12
XXXX

Save

Extending the WebSphere Business Monitor Dashboard
Page �6

5.2.9 Interaction 4: Handling events for cube or dimension user-selections

This section looks at how to handle the event when a user selects cubes or

dimensions. The base class of the MyReportPortletConfigUI class is the

Alphablox Controller class, which has provided many handler interfaces for

different events. Among these interfaces, handleSelectionChangedEvent () is

for handling the event when a selection has been changed in a drop-down list

or a list blox. This method is the exact one that you need to implement. The

following code shows the handleSelectionChangedEvent() method in the

MyReportPortletConfigUI class.

public boolean handleSelectionChangedEvent(SelectionChangedEvent
event)
 throws Exception {

 // This method handle the selection change event on the
 DropDownList
 try {
 MyReportDataBean dataBean = manager.getDataBean();
 Component selectedComponent = event.getComponent();
 if (selectedComponent.getName().equals(
 MyReportPortletConstants.DROPDOWNLIST _ CUBE _ SELECT))
 // Selection is changed on cube select dropdownlist.

 DropDownList cubeList = (DropDownList) selectedComponent;
 DropDownList dimensionList = uiContainer
 .getDropDownList(MyReportPortletConstants.DROPDOWNLIST _
 DIMENSION _ SELECT);
 ComponentContainer measuresContainer = uiContainer
.getComponentContainer(MyReportPortletConstants.
 MEASURES _ CONTAINER);

 // Get the selected cube from the dropdownlist
 int selected = cubeList.getSelected();
 if (selected >= 0) {
 dataBean.setSelectedDimensionTmp(null);

 Cube selectedCube = (Cube) cubeList.
 getUserObject(selected);
 dataBean.setSelectedCubeTmp(selectedCube.getName());
 }
 populateDimensions(dimensionList);
 populateMeasures(measuresContainer);
 } else if (selectedComponent.getName().equals(
 MyReportPortletConstants.DROPDOWNLIST _ DIMENSION _
 SELECT)) {
 // Selection is changed on dimension select dropdownlist.

 DropDownList dimensionList = (DropDownList)
 selectedComponent;
 int selected = dimensionList.getSelected();

 // Get the selected dimension from the dropdownlist
 if (selected >= 0) {
 String selectedDimension = dimensionList.
 getLabel(selected);
 dataBean.setSelectedDimensionTmp(selectedDimension);
 }
 }

Extending the WebSphere Business Monitor Dashboard
Page ��

 } catch (Exception ex) {
 //TODO:
 ex.printStackTrace(System.out);
 }
 return false;
}

Notes:

• Selections	made	before	clicking	the	Save	button	are	treated	as	temporary,	because	the	
user	might	cancel	it.	So	the	values	obtained	from	the	drop-down	list	are	saved	only	in	the	
xxxTmp	variables	in	the	DataBean.

5.2.10 Interaction 5: Handling events for Save or Cancel user-selections

This section explains how to handle the event of a user clicking the Save or

Cancel button. A click event is triggered when the user clicks the button. The

handleClickEvent() method of the Controller class is implemented in the

MyReportPortletConfigUI class to handle this event. The following code shows

the handleClickEvent () method.

public boolean handleClickEvent(ClickEvent event) throws
ModelException {
 // This method handle the click even on the save/cancel button

 MyReportDataBean dataBean = manager.getDataBean();
 Component selectedComponent = event.getComponent();
 if (selectedComponent.getName().equals(
 MyReportPortletConstants.SAVE _ BUTTON)) {
 // Save button is clicked

 // Save the temporary user selection on cube and dimension
 dataBean.setSelectedCube(dataBean.getSelectedCubeTmp());
 dataBean.setSelectedDimension(dataBean.getSelected
 DimensionTmp());

 // Save the user selection on measures.
 checkSelectedMeasures(dataBean);

 // Dispatch the URL
 ClientLink saveURL = (ClientLink) selectedComponent.get
 UserObject();
 uiContainer.getDispatcher().showBrowserWindow(saveURL);
 } else if (selectedComponent.getName().equals(
 MyReportPortletConstants.CANCEL _ BUTTON)) {
 // Cancel button is clicked

 // Restore the values of the temporary selection
 dataBean.setSelectedCubeTmp(dataBean.getSelectedCube());
 dataBean.setSelectedDimensionTmp(dataBean.getSelected
 Dimension());

 // Refresh the config page
 refreshConfig();

 // Dispatch the URL
 ClientLink cancelURL = (ClientLink) selectedComponent
 .getUserObject();
 uiContainer.getDispatcher().showBrowserWindow(cancelURL);
 }
 return false;
}

Extending the WebSphere Business Monitor Dashboard
Page ��

Notes:

• If	a	user	clicks	the	Save	button,	the	value	saved	in	the	data	bean’s	xxxTmp	variable	
should	be	copied	to	its	corresponding	xxx	variable.	On	the	other	hand,	if	user	clicks	
Cancel,	you	should	restore	the	xxxTmp	variables	to	their	original	values,	and	restore	the	
configuration	page	according	to	the	original	selection	values.

• The	selection	of	measures	is	checked	in	this	method	(by	calling	the	checkSeletedMea-
sures	()	method)	instead	of	in	the	handleSelectionChangedEvent	()	method	because	you	
are	only	interested	in	the	user’s	final,	selected	measure	list	when	Save	is	clicked.

• Both	the	Save	and	Cancel	buttons	are	attached	to	a	user	object,	which	is	a	ClientLink	
object,	and	is	used	to	carry	a	URL	that	will	be	dispatched	to	the	client.	

• After	dispatching	the	instruction	to	get	the	URL	from	the	button’s	user	object,	control	
goes	back	to	the	portlet	from	the	Alphablox	event	handler.	This	gives	you	a	way	to	return	
to	the	portlet	programming	model	from	the	Alphablox	programming	model.	

To further understand the use of the ClientLink object, here is more detail into

how the Save button and Cancel buttons are built. The populateButtons()

method in the MyReportPortletConfigUI class is responsible for building these

two buttons. It is called when a display () method is called.

private void populateButtons(ComponentContainer buttonContainer,
 RenderResponse response) throws ModelException {
 Button saveButton = new Button(MyReportPortletConstants.SAVE _
 BUTTON,
 MyReportPortletConstants.SAVE _ BUTTON _ TITLE);
 Button cancelButton = new Button(
 MyReportPortletConstants.CANCEL _ BUTTON,
 MyReportPortletConstants.CANCEL _ BUTTON _ TITLE);

 // Create an action URL from the portlet response, when a action
 URL is
 // opened, the portlet’s processAction() is called.
 // The parameter set in the URL tells the processAction() it is a
 // Save action or a Cancel action.
 PortletURL saveURL = response.createActionURL();
 saveURL.setParameter(MyReportPortletConstants.ACTION _ NAME,
 MyReportPortletConstants.SAVE _ ACTION);

 PortletURL cancelURL = response.createActionURL();
 cancelURL.setParameter(MyReportPortletConstants.ACTION _ NAME,
 MyReportPortletConstants.CANCEL _ ACTION);

 // Store the action URL as ClientLink in the button’s user object.
 // “ _ self” instruct the browser open this URL in the current
 window.
 saveButton.setUserObject(new ClientLink(saveURL.toString(),
 “ _ self”));
 cancelButton.setUserObject(new ClientLink(cancelURL.toString(),
 “ _ self”));

 buttonContainer.add(saveButton);
 buttonContainer.add(new Spacer(0, 30));
 buttonContainer.add(cancelButton);

}

Notes:

• Each	button	is	attached	with	a	user	object—the	ClientLink—in	which	a	URL	is	carried.

• The	URL	is	an	action-URL	target	to	the	portlet	itself.	When	this	action	URL	is	opened,	the	
portlet’s	processAction	()	method	is	called.	

• The	parameter	set	in	the	URL	tells	processAction	()	method	if	it	is	a	“Save”	action	or	a	
“Cancel”	action.

Extending the WebSphere Business Monitor Dashboard
Page ��

Here is a look at how the portlet handles the action request. The following

snippet shows the source code of the processAction () method of the

MyReportPortlet.java class.

public void processAction(ActionRequest request, ActionResponse
response)
 throws PortletException, java.io.IOException {
 String actionName = request
 .getParameter(MyReportPortletConstants.ACTION _ NAME);

 // Get the portlet manager
 MyReportPortletManager manager = getPortletManager(request,
 response);

 // Go back to view mode.
 if (MyReportPortletConstants.SAVE _ ACTION.equals(actionName)) {

 // Save the data bean content into portlet preference
 manager.savePreference(request);

 response.setPortletMode(PortletMode.VIEW);
 response.setWindowState(WindowState.NORMAL);
 } else if (MyReportPortletConstants.CANCEL _ ACTION.
 equals(actionName)) {

 response.setPortletMode(PortletMode.VIEW);
 response.setWindowState(WindowState.NORMAL);
 }
}

Notes:

• If	user	clicked	on	the	save	button,	the	processAction	()	get	a	“Save”	action.	We	tell	man-
ager	save	the	selection	values	in	data	bean	into	the	portlet’s	preference.	The	value	stored	
in	portlet’s	preference	can	be	kept	even	the	portlet	session	is	closed.	This	is	exactly	what	
the	configuration	mode	expects.	If	the	action	is	a	“Cancel”	action,	then	the	portlet	just	
renders	the	view	mode	and	does	nothing	else.

• The	Response.setPortletMode	(PortletMode.VIEW)	method	brings	the	portlet	back	to	the	
view	mode	and	a	doView	()	method	is	called.	

5.2.11 Interaction 6: Display the user-select values in view mode

The view mode is rendered with the user-selection values saved in the data

bean. The doView () method calls MyReportPortletView.jsp to finish its render-

ing task. The following snippet shows the source code for displaying the

PresentBlox component.

<%
 // Get data source and MDX query statement from data bean.
 String dataSource = manager.getDatamartUtility().get
 DataSource();
 String query = dataBean.generateMDXQuery();

 // Encode the blox name.
 String myPresentBloxName = renderResponse.getNamespace()
 + MyReportPortletConstants.VIEW _ PRESENT _ BLOX;

 // Default blox height
 String bloxHeight = “400”;
%>

Extending the WebSphere Business Monitor Dashboard
Page �0

<blox:present id=”myPresentBlox” bloxName=”<%=myPresentBloxName%>”
 width=”100%” height=”<%=bloxHeight%>” visible=”false”
 dataLayoutAvailable=”true” menubarVisible=”false”
 toolbarVisible=”false” chartFirst=”true” >

 <blox:data dataSourceName=”<%=dataSource%>”
query=”<%=query%>”
 connectOnStartup=”false” />

 <blox:chart dataTextDisplay=”true” />

</blox:present>

<%
 // Update the query statement and result set to response the
 config changes.
 myPresentBlox.getDataBlox().setQuery(query);
 myPresentBlox.getDataBlox().updateResultSet();

 // The menubar and toolbar of the PresentBlox will be showed if
 the portlet
 // is maximized, otherwise they will be hidden.
 if (WindowState.MAXIMIZED.equals(renderRequest.get
 WindowState())) {
 myPresentBlox.setMenubarVisible(true);
 myPresentBlox.getToolbarBlox().setVisible(true);
 myPresentBlox.setHeight(“100%”);

 } else {
 myPresentBlox.setMenubarVisible(false);
 myPresentBlox.getToolbarBlox().setVisible(false);
 myPresentBlox.setHeight(bloxHeight);
 }

 // Display the PresentBlox.
 myPresentBlox.display(bloxRequest, bloxResponse, out);
%>

Notes:

• First	the	data	source	name	and	the	MDX	query	are	obtained	from	the	data	bean.	The	
MDX	query	is	generated	according	to	the	user-selection	values	in	the	data	bean.

• A	PresentBlox	is	added	in	the	page	by	using	the	<blox:present>	tag.	The	Present-
Blox	is	a	convenient	way	to	perform	the	report	and	analysis	tasks	on	multidimensional	
data	sources	by	using	a	grid,	chart	and	data-layout	panel.	The	data	source	name	and	
the	query	statement	get	from	the	data	bean	is	passed	to	its	nested	data	blox,	which	is	
responsible	for	the	database	access.

• The	PresentBlox	has	a	lot	of	options	to	control	its	layout.	The	data	layout	panel	is	
opened,	the	menu	bar	and	toolbar	are	disabled,	and	the	chart	panel	is	placed	before	
the	grid	panel.	Also	the	data	values	above	each	bar	in	the	chart	are	displayed.	For	a	full	
explanation	of	the	PresentBlox	options,see	the	Alphablox	information	center	at	publib.
boulder.ibm.com/infocenter/ablxhelp/v8r4m0/index.jsp.

• The	last	part	of	the	Java	code	outside	of	the	blox	tags	is	very	important.	A	characteristic	
of	the	Alphablox	blox	tags	is	that	the	area	within	a	blox	tag	will	not	be	refreshed	when	
the	JSP	page	is	refreshed.	So	if	user	makes	changes	in	the	configuration	mode	and	
returns	to	the	view	mode,	though	the	data	bean’s	query	statement	has	been	updated,	the	
query	statement	of	the	PresentBlox	is	not	updated	unless	you	specify	it	again.	Therefore,	
use	the	Java	code	outside	of	the	blox	tags	to	specify	the	query	statement	dynamically	
and	an	updateResultSet	()	tells	the	PresentBlox	that	the	query	result	has	been	changed	
and	the	PresentBlox	will	update	accordingly.

• The	Java	code	also	indicates	that	the	menu	bar	and	toolbar	of	the	PresentBlox	will	
appear	if	the	portlet	is	maximized,	but	disappear	if	the	portlet	is	at	normal	size.	And	the	
PresentBlox	will	make	use	of	100	percent	of	the	window	size	if	the	portlet	is	maximized,	
but	go	back	to	a	default	height	if	the	portlet	is	at	normal	size.

Extending the WebSphere Business Monitor Dashboard
Page �1

All the key concepts of the implementation of the sample portlet have now been

explained. For the complete source code of the sample portlet, see the accom-

panying source code .zip file.

5.3 Deploy the sample portlet

This section describes the steps required to build the portlet Web archive

(WAR) file and deploy it on the IBM Portal server.

5.3.1 Export the WAR file

Rational Application Developer 6.0 has provided a convenient tool to build the

WAR file for the portlet project. In the Project Explorer, right-click the portlet

project name, and select Export…àWAR	file, as shown in Figure 5-12.

Figure 5-13
Export	WAR	file:	Step	1

A dialog for the export option displays (see Figure 5-13).

Figure 5-14
Export	WAR	file:	Step	2

Extending the WebSphere Business Monitor Dashboard
Page �2

After specifying the project to be exported and the destination path, click

Finish. The WAR file, MyReport.war is then created on the destination path.

5.3.2 Deploy the WAR file on portal server

Deploying the WAR file on the Portal server can be done by performing the fol-

lowing steps:

1.	 Make	sure	that	the	Portal	server	is	started.	Open	the	Portal	GUI	in	an	Internet	

Explorer	browser	at	localhost:9081/wps/portal.

2.	 Log	in	to	the	Portal	GUI	with	the	ID/password	combination:	wpsadmin/wpsadmin.

3.	 Click	Administration	at	the	top	of	the	page,	and	then	click	Portlet Management ->

Web Modules.	

4.	 Click	Install,	and	browse	to	the	WAR	file.	

5.	 Click	Next.

6.	 Click	Finish.	

Result:	The	portlet	is	deployed	on	the	Portal	server.

Extending the WebSphere Business Monitor Dashboard
Page ��

6 References

•	 JSR	168	portlet	specification		

(www.jcp.org/aboutJava/communityprocess/final/jsr168/)

•	 Best	Practices:	Developing	portlets	using	JSR168	and	WebSphere	Portal	v5.02	

(www-128.ibm.com/developerworks/websphere/library/techarticles/0403_

hepper/0403_hepper.html)

•	 Developing	JSR168	Compliant	Cooperative	Portlets		

(www-128.ibm.com/developerworks/websphere/library/techarticles/0412_

roy/0412_roy.html)

•	 IBM	Rational	Application	Developer	V6	Portlet	Application	Development	and	

Portal	Tools		

(www.redbooks.ibm.com/abstracts/sg246681.html?Open)

•	 IBM	Alphablox	infocenter		

(publib.boulder.ibm.com/infocenter/ablxhelp/v8r4m0/index.jsp)

•	 Multidimensional	Expressions	(MDX)	Reference		

(msdn2.microsoft.com/en-us/library/ms145506.aspx)

Extending the WebSphere Business Monitor Dashboard
Page ��

7 Appendix: Accompanying source code

A Rational Application Developer interchange compressed file, MyReport-

interchange.zip, includes the source code for the MyReport portlet sample.

Note:	Please	import	this	interchange	file	with	Rational	Application		
Developer	only.	

Extending the WebSphere Business Monitor Dashboard
Page ��

8 Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this docu-

ment in other countries. Consult your local IBM representative for information

on the products and services currently available in your area. Any reference to

an IBM product, program, or service is not intended to state or imply that only

that IBM product, program, or service may be used. Any functionally equiva-

lent product, program, or service that does not infringe any IBM intellectual

property right may be used instead. However, it is the user’s responsibility to

evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant

you any license to these patents. You can send license inquiries, in writing, to:

IBM	Director	of	Licensing
IBM	Corporation
North	Castle	Drive
Armonk,	NY	10504-1785
U.S.A.	

For license inquiries regarding double-byte (DBCS) information, contact the

IBM Intellectual Property Department in your country or send inquiries, in

writing, to:

IBM	World	Trade	Asia	Corporation
Licensing
2-31	Roppongi	3-chome,	Minato-ku
Tokyo	106-0032,	Japan	

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES

THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,

EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain trans-

actions, therefore, this statement may not apply to you.

Extending the WebSphere Business Monitor Dashboard
Page �6

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will

be incorporated in new editions of the publication. IBM may make improve-

ments and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for con-

venience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it be-

lieves appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the pur-

pose of enabling: (i) the exchange of information between independently

created programs and other programs (including this one) and (ii) the mutual

use of the information which has been exchanged, should contact:

IBM	Corporation
Department	EZRA/	Building	502
4205	S	MIAMI	BLVD
Durham,	NC	27703-9141
_U.S.A.

Such information may be available, subject to appropriate terms and condi-

tions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer

Agreement, IBM International Program License Agreement or any equivalent

agreement between us.

Any performance data contained herein was determined in a controlled envi-

ronment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-

level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may

have been estimated through extrapolation. Actual results may vary. Users of

this document should verify the applicable data for their specific environment.

Extending the WebSphere Business Monitor Dashboard
Page ��

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available

sources. IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change

or withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include

the names of individuals, companies, brands, and products. All of these names

are fictitious and any similarity to the names and addresses used by an actual

business enterprise is entirely coincidental.

Copyright license:

This information contains sample application programs in source language,

which illustrate programming techniques on various operating platforms. You

may copy, modify, and distribute these sample programs in any form without

payment to IBM, for the purposes of developing, using, marketing or distribut-

ing application programs conforming to the application programming

interface for the operating platform for which the sample programs are written.

These examples have not been thoroughly tested under all conditions. IBM,

therefore, cannot guarantee or imply reliability, serviceability, or function of

these programs.

©	Copyright	IBM	Corporation	2006

IBM	Corporation		
Software	Group	
Route	100	
Somers,	NY	10589	
U.S.A.	

Produced	in	the	United	States	of	America	
12-06	
All	Rights	Reserved

IBM,	the	IBM	logo,	Cube	Views,	DB2,	Rational	and	
WebSphere	are	trademarks	of	International	Business	
Machines	Corporation	in	the	United	States,	other	coun-
tries	or	both.

Java	and	all	Java-based	trademarks	are	trademarks	of	
Sun	Microsystems,	Inc.	in	the	United	States,	other	coun-
tries,	or	both.	

Microsoft	and	Windows	are	trademarks	of	Microsoft	
Corporation	in	the	United	States,	other	countries,	or	both.

Other	company,	product	and	service	names	may	be	
trademarks	or	service	marks	of	others.

