
File Event Emitter

Monitor

Version 6.0.2

File Event Emitter
Page 2

Contents

1	 Introduction	 3

2			 Design	overview	 4
2.1 Event framework 4
2.2 File Event Emitter 5

3			 Configuring	and	deploying	the	Emitter		
application	 7

3.1 Create an IBM Cloudscape™ database for the
Monitor Server Scheduler 7

3.2 Create a data source for the File Emitter 8
3.3 Create a scheduler for the DB2 Emitter
3.4 Deploy the File Emitter enterprise application

using the Administrative Console 8
3.5 Create the inbound, fault and archive folders

to be used for event management 8
3.6. Restart the Monitor Server 8

4			 Verifying	the	configuration	and	deployment		
of	the	Emitter	application	 9

5			 Importing	and	working	with	the	source		
code	projects	 10

5.1 Projects overview 11

6			 Design	details—creating	a	new	event		
formatter	to	handle	additional	application		
data	types	 12

6.1 FileEmitterFormatter.properties file 12
6.2 EventFormatter implementation 12

7			 Working	with	CBEs	and	CEI—key	concepts	 14
7.1 Creating a new or obtaining an existing

EventFactory 14
7.2 Creating the new CommonBaseEvent 14
7.3 Setting mandatory fields 14
7.4 Creating an ExtendedDataElement and

its children 14
7.5 Obtaining the EmitterFactory 15
7.6 Obtaining the Emitter from the EmitterFactory 15
7.7 Sending an Event 15

Figures

Figure 1 Event Emitter Framework 4
Figure 2 File Emitter 6

File Event Emitter
Page �

1 Introduction

The Sample File Event Emitter is a sample program written in Java™ that

demonstrates how an enterprise information system (EIS) resource storing data

pertaining to the state of a business can be instrumented to contribute to the

overall monitoring of the activities of a business.

The main goal of the Sample File Event Emitter is to introduce the use of the

libraries and application programming interfaces (APIs) provided by the

Common Event Infrastructure (CEI) to generate and emit business events in

the form of Common Base Events (CBEs). Common Base Events are the data

packaging and format used by the IBM WebSphere® Business Monitor

(Monitor) Server to propagate business events.

The Sample File Event Emitter is made available in two forms of packaging.

One is the binary archive, which contains the precompiled Java 2 Platform,

Enterprise Edition (J2EE) enterprise application, ready to be deployed to the

Monitor Server. It also includes the accompanying documentation. The second

is the source archive, which also includes the documentation and,

additionally, contains the source code projects that can be imported into the

IBM WebSphere Integration Developer (WID) integrated development

environment (IDE) for browsing through the source code and making custom

changes to the emitter and its configuration options.

The Sample File Event Emitter was developed and tested using the

following environment:

•	 Microsoft®	Windows®	XP	Professional	SP2

•	 IBM	DB2®	Universal	Database™	(UDB)	Enterprise	Server	Edition	v8.1.13.193

•	 WebSphere	Business	Monitor	(Monitor)	Server	v6.0.2

•	 WebSphere	Integration	Developer	(WID)	v6.0.2	

Note:	The	configuration	and	deployment	information	in	this	document	
describes	the	Sample	File	Event	Emitter	being	deployed	to	the	Monitor	Server	
itself	(that	is,	to	the	same	application	server	on	which	Monitor	runs).	The	
emitter	can	also	be	deployed	to	a	separate	application	server	and	configured	to	
emit	its	events	to	the	Monitor	Server’s	CEI	Server	(see	section	3,	“Configuring	
and	deploying	the	Emitter	application”,	for	more	information	on	this).

File Event Emitter
Page �

2 Design Overview

2.1 Event framework

The Sample DB2 Event Emitter, along with the other sample event emitters

made available, is implemented around a common, simple emitter framework.

Figure 1 depicts a class diagram of this framework. When an event in the enter-

prise back-end system is detected, the following flow is regulated by this

common framework:

1.	 Retrieve,	from	the	EmitterFormatterFactory,	an	EventFormatter	specific	for		

the	type	of	data	being	processed.

2.	 Invoke	the	EventFormatter	to	convert	the	input	data	to	a	CBE	object.

3.	 Retrieve	an	emitter	from	an	EmitterFactory	to	be	used	to	send	the	event	to	the		

CEI	Server.

4.	 Emit	the	CBE	to	the	CEI	Server.

Figure 1
Event Emitter Framework

File Event Emitter
Page �

2.2 File Event Emitter

The Sample File Event Emitter is a J2EE enterprise application, which also

implements the WebSphere TaskHandler interface, allowing it to handle invo-

cations from a WebSphere Application Server Scheduler.The overall event

retrieval and event emission flow is explained below (see Figure 2 for a graph-

ical depiction of this flow):

1.	 A	file	encapsulating	information	about	a	create,	update,	or	delete	event	is	placed	

in	the	inbound	directory.	This	file	contains	information	about	what	data	type	the	

event	pertains	to,	the	actual	event	type	(that	is,	create,	delete,	or	update)	and	the	

attributes	and	their	associated	values.

2.	 The	Scheduler	service	in	the	Monitor	Server	invokes	the	EmissionController	at	

a	specified	interval.	The	EmissionController	calls	EventFolderPoller.	If	any	files	

are	found	in	the	inbound	directory,	EventFolderPoller	populates	and	returns	a	

collection	of	EventFileBean	objects.	If	the	collection	of	EventFileBean	objects	is	not	

empty,	EmissionController	invokes	the	handle()	method	of	EventHandler	for	each	

EventFileBean	object	to	handle	the	emission	steps.

3.	 EventHandler	calls	the	EventFormatterFactory,	which	returns	an	

EventFormatter	object	according	to	the	application	data	type	specified	in	the	

event	file.	The	EventFormatter	object	transforms	the	EventFileBean	object	into	a	

CommonBaseEvent	object.	Finally,	the	CEIEmitter	sends	the	CommonBaseEvent	

object	to	CEI	Event	Server.

The Sample File Event Emitter is designed so that it can be extended to handle

processing of additional application data types. This is done by creating new

classes that implement the EventFormatter interface (in the EmitterFW project)

and “registering” application data type to event formatter associations by

updating the FileEventFormatter.properties (in the FileEmitterImpl project).

For more-extensive details on this see Section 6: Design details—creating a

new event formatter to handle additional application data types.

File Event Emitter
Page 6

Figure 2
File Emitter

EventHandler

DB2EventFormatter.properties
CUSTOMER=com.ibm.wbimonitor.samples.db2emitter.formatter.CUSTOMERFormatterImpl
ORDER=com.ibm.wbimonitor.samples.db2emitter.formatter.ORDERFormatterImpl
CLAIM=com.ibm.wbimonitor.samples.db2emitter.formatter.CLAIMFormatterImpl

WebSphere Application Server

Scheduler Service

EmissionController

EventFormatterFactory

EventFormatter

EmitterFactory

Emitter

CEI

Retriever

EventTableBean

The Scheduler Service
invokes the EmissionController
at regular intervals

EventTablePoller

EVENTTYPE=CLAIM
EVENTACTION=UPDATE

ID=0123456789
NAME=JOHN DOE
AMOUNT=101.01
ZIPCODE=91919
STARTDATE=2001-07-04 12:08:56.000 EST

EVENTTYPE=CUSTOMER
EVENTACTION=UPDATE

ID=0123456789
NAME=JOHN DOE
ADDRESS=3039 CORNWALLIS ROAD
TEL=919-123-4567
EMAIL=JDOE@US.IBM.COM

EVENTTYPE=ORDER
EVENTACTION=CREATE

ORDERID=0123456789
CUSTOMERID=9876543210
STATUS=
CITY=RALEIGH
COUNTRY=USA
PRODUCTID=5432167890
QUANTITY=1000000
TOTALPRICE=5000000
AWR=TRUE
AIGS=TRUE
ACR=TRUE

Inbound

Archive Fault

File Event Emitter
Page �

3 Configuring and deploying the Emitter application

This section describes how to configure the Monitor Server to host the Sample

File Event Emitter application. The following section, “Importing and working

with the source code,” describes how to import the source code into the WID

IDE and introduce modifications, if needed.

The following default are values specified in the File Emitter’s EJB deployment

descriptor. These can be customized by editing the source projects in WID and

exporting a new enterprise archive (EAR) file.

<env-entry-name>inboundEventsDirectory</env-entry-name>
<env-entry-value>C:\FileEmitter\inbound</env-entry-value>

<env-entry-name>archivedEventsDirectory</env-entry-name>
<env-entry-value>C:\FileEmitter\archive</env-entry-value>

<env-entry-name>faultDirectory</env-entry-name>
<env-entry-value>C:\FileEmitter\fault</env-entry-value>

<env-entry-name>emitterFactoryJNDI</env-entry-name>
<env-entry-value>iiop://localhost:2809/com/ibm/events/configura-
tion/emitter/Default</env-entry-value>

<env-entry-name>schedulerJNDI</env-entry-name>
<env-entry-value>sched/FolderPoller</env-entry-value>

Notes:

• The default emitter factory specified in the “emitterFactoryJNDI” environment entry refers
to “localhost” because the emitter is being deployed to the same application server as
the Monitor Server. If the emitter is deployed to its own application server, ensure that the
hostname is that of the Monitor Server (where the CEI Server resides and to where the
events will be emitted).

• The default emitter factory specified in the “emitterFactoryJNDI” environment entry uses
port 2809. Check the Monitor Server’s BOOTSTRAP_ADDRESS setting to ensure that is
the correct port to use.

If any of these environment entries need to be modified, import the source

projects into WID and make the necessary modifications to the EJB deploy-

ment descriptor. (See Section 5: Importing and working with the source code

projects for instructions on how to import the source projects).

3.1 Create an IBM Cloudscape™ database for the Monitor Server Scheduler:

1.	 In	the	${WBI_INSTALL_ROOT}/cloudscape/bin/embedded	directory,	open	the	

cview.bat	file.

2.	 Select	FileàNew àDatabase.

3.	 In	the	Name	field,	type	${WBI _ INSTALL _ ROOT}/cloudscape/

databases/SKDLR.

4.	 Click	OK	to	create	the	new	database	and	then	exit	from	the	cview.bat	file.

File Event Emitter
Page �

3.2 Create a data source for the Monitor Server Scheduler:

1.	 Open	the	Administrative	Console.

2.	 Open	the	ResourcesàJDBC Providers	page,	and	set	the	scope	to	Server.

3.	 By	default,	there	should	be	a	Java	Database	Connectivity	(JDBC)	provider	named	

Cloudscape JDBC Provider (XA).	Click	it	then	select	Data sources under	the	

Additional	Properties	section.

4.	 Click	New	to	create	a	new	data	source	with	the	following	properties:

Name: SKDLR Datasource
Java Naming and Directory Interface (JNDI) name: jdbc/skdlr
Disable “Use this Data Source in container managed persistence
(CMP)”
Description: JDBC Datasource for SKDLR Database
Database name: ${WBI _ INSTALL _ ROOT}/cloudscape/databases/SKDLR

5.	 Click	OK	and	Save.

3.3. Create a scheduler for the File Emitter:

1.	 Open	the	Administrative	Console.

2.	 Go	to	ResourcesàSchedulers and	set	the	scope	to	Server.

3.	 Click	New	to	create	a	new	scheduler	with	the	following	properties:

Name: FolderPoller
JNDI name: sched/FolderPoller (This is the default name specified
as an environment entry in the EJB deployment descriptor.)
Description: Scheduler for File Sample Emitter’s Inbound Folder
Poller
Data source JNDI name: jdbc/skdlr
Table prefix: FILEEMTR _
Poll interval: 30
Work managers: DefaultWorkManager

4.	 Click	OK	and	Save.

5.	 On	the	Schedulers	page,	select	the	newly	created	FolderPoller	scheduler	and	click	

Create tables.

3.4 Deploy the File Emitter enterprise application using the

Administrative Console.

Accept all default values and save the configuration when deployment is

completed.

3.5 Create the inbound, fault and archive folders to be used for event management.

The default folder locations that are specified as environment entries in the

EJB deployment descriptor are: C:\FileEmitter\inbound, C:\FileEmitter\fault,

and C:\FileEmitter\archive.

3.6. Restart the Monitor Server.

File Event Emitter
Page �

4 Verifying the configuration and deployment of the Emitter application

1.	 Ensure	that	the	Monitor	Server	is	started.

2.	 Create	a	file	with	the	following	contents	(see	Listing	1)	and	save	it	into	the	inbound	

events	directory:

EVENTTYPE=CUSTOMER
EVENTACTION=CREATE

ID=0123456789
NAME=JOHN DOE
ADDRESS=3039 CORNWALLIS ROAD
TEL=919-123-4567
EMAIL=JDOE@US.IBM.COM

3.	 Open	a	command	prompt	and	change	the	directory	to	<MONITOR _ PROFILE _

DIR>/bin	(for	example,	C:\IBM\WebSphere\ProcServer\profiles\wbmonitor\bin).

4.	 Run	the	script	eventquery.jacl.

	 For	example:	wsadmin	-f	..\event\bin\eventquery.jacl	-group	“All	events”	

All	the	CBEs	categorized	under	that	group	are	displayed.		Among	them	should	be	

one	or	more	representing	the	file	containing	the	event	information	that	was	saved	in	

the	inbounds	event	folder.

File Event Emitter
Page 10

5 Importing and working with the source code projects

The source code for the Sample File Event Emitter is available in the source

archive package in the form of WID projects. The following projects need to be

imported into the workspace: EmitterFW, CEIEmitter, FileEmitterEAR,

FileEmitterEJB, and FileEmitterImpl.

To import a project perform the following steps:

1.	 Open	WebSphere Integration Developer.

2.	 From	the	menu	bar,	select	Fileà Import.

3.	 In	the	Import	dialog	box,	select	Existing Project into Workspace…	then	click	Next.

4.	 Select	the	project	to	be	imported	into	the	workspace	then	click	Finish.

Perform these four steps for each of the five projects listed previously.

You can expect build errors to be raised until the classpath reference to the

events-client.jar library in the CEIEmitter project is corrected. The events-cli-

ent.jar library includes classes used for creating CBEs and emitting them.

Perform these additional steps:

5.	 Right-click	the	CEIEmitter	project	and	select	Properties.

6.	 Go	to	Java Build PathàLibraries.

7.	 Select	the	events-client.jar	entry	then	click	Edit…

8.	 Browse	to	the	folder	in	your	file	system	where	the	events-client.jar	file	is	located	(for	

example,	<WPS_INSTALL_DIR>/CEI/client).

File Event Emitter
Page 11

5.1 Projects overview

The Sample File Event Emitter source code is split out across five logical proj-

ects as follows:

•	 EmitterFW:	The	common	emitter	framework	that	is	used	by	all	the	sample	event	

emitters	made	available.

•	 CEIEmitter:	The	CEI	emitter	code.		This	is	also	common	code	share	by	all	the	

sample	event	emitters

•	 FileEmitterEAR:	The	enterprise	application	package	that	is	deployed	to	the	server.

•	 FileEmitterEJB:	File	Emitter	specific	EJB	code.

•	 FileEmitterImpl:	File	Emitter	specific	code.		This	project	contains	implementation	

code	for	retrieving	records	from	the	database	and	formatting	events	into	CBEs.		

Additional	formatters	can	be	implemented	and	added	here	to	extend	the	number	of	

application	data	types	that	the	emitter	can	process.	(See	the	next	section,	“Design	

details—creating	a	new	event	formatter	to	handle	additional	application	data	

types”,	for	more	information	on	formatters.)

File Event Emitter
Page 12

6 Design details—creating a new event formatter to handle additional

application data types

The Sample File Event Emitter is designed so that it can be extended to handle

processing of additional application data types by creating new classes that

implement the EventFormatter interface (in the EmitterFW project), and by

“registering” the event formatter associated with an application data type by

updating the FileEventFormatter.properties (in the FileEmitterImpl project).

The inbound events folder is periodically polled by the EmissionController,

using the EventFolderPoller, for the presence of new event files. When new files

are present in the inbound events folder, the file emitter will obtain the appro-

priate formatter and retriever based on the data type recorded and based on the

mapping specified in the FileEventFormatter.properties file.

6.1 FileEmitterFormatter.properties file

The FileEmitterFormatter.properties file is a typical properties resource file

containing entries in the form of “name equals value”. Listing 2 shows the one

used by this sample.

#
This properties file defines the formatter to use for a given data
type.
The accepted format is:
EventType=EventFormatter
Where the EventFormatter is provided as the fully qualified Java
class.
#
CUSTOMER=com.ibm.wbimonitor.samples.fileemitter.formatter.
CUSTOMERFormatterImpl
ORDER=com.ibm.wbimonitor.samples.fileemitter.formatter.
ORDERFormatterImpl
CLAIM=com.ibm.wbimonitor.samples.fileemitter.formatter.
CLAIMFormatterImpl

To introduce support for a new application data type, a new entry mapping the

event name to the fully qualified event formatter implementation class needs to

be added to this file.

6.2 EventFormatter implementation

After an EventFormatter is obtained (based on the mapping in the

FileEmitterFormatter.properties file), it will be invoked to handle the transfor-

mation of the event from its “native format” to the CBE format that is expected

by the Monitor Server.

Listing 2
FileEventFormatter.properties mapping file

File Event Emitter
Page 1�

A new EventFormatter will need to implement the EventFormatter interface

defined in the com.ibm.wbimonitor.samples.emitterframework package in the

EmitterFW project.

public CommonBaseEvent format(Object o) throws EventFormatFailed

Exception;

Inspect the EventFormatter classes implemented by this sample emitter for an

idea on how this format() interface can be implemented. They can be found in

the com.ibm.wbimonitor.samples.db2emitter.formatter package in the

FileEmitterImpl project.

File Event Emitter
Page 1�

7 Working with CBEs and CEI–key concepts

This section outlines the key concepts related to CEI and CBEs used in the

Sample File Event Emitter.

7.1. Creating a new or obtaining an existing EventFactory

1.	 Creating	a	new	one	from	scratch	(with	and	without	a	ContentHandler):

EventFactory eventFactory =
 (EventFactory) EventFactoryFactory.createEventFactory();
EventFactory eventFactory =
 (EventFactory) EventFactoryFactory.createEventFactory
 (ContentHandler);

2.	 Obtaining	an	existing	one	through	JNDI	(inherits	ContentHandler,	if	one	exists):
Context context = new InitialContext();
EventFactory eventFactory = (EventFactory) context.lookup(“com/
ibm/events/EventFactory”);

7.2 Creating the new CommonBaseEvent:
CommonBaseEvent event = eventFactory.createCommonBaseEvent
(“ActivityEvent”);

7.3 Setting mandatory fields:
event.setVersion(“1.0.1”);
event.setCreationTimeAsLong(System.currentTimeMillis());
event.setGlobalInstanceId(eventFactory.createGlobalInstanceId()
);

ComponentIdentification componentId = eventFactory.createCompo-
nentIdentification();
componentId.setApplication(“DB2”); // Additional setters avail-
able
event.setSourceComponentId(componentId);

Situation situation = eventFactory.createSituation();
situation.setStopSituation(“EXTERNAL”, “STOP _ COMPLETED”,
“SUCCESSFUL”); event.setSituation(situation);

7.4 Creating an ExtendedDataElement and its children:
ExtendedDataElement activityEventData =
 event.addExtendedDataElementWithNoValue
 (“ActivityEventData”);
activityEventData.addChild(“activityName”, activityName);
activityEventData.addChild(“eventType”, “completed”);
activityEventData.addChild(“activityDisplayState”, “Completed”);
activityEventData.addChildWithDateAsLongValue(“startTime”, efb.
getLastModifiedDate());

activityEventData.addChildWithDateAsLongValue(“endTime”, efb.

getLastModifiedDate());

File Event Emitter
Page 1�

7.5 Obtaining the EmitterFactory:
import javax.naming.*
import com.ibm.events.*
Context context = new InitialContext();
EmitterFactory emitterFactory =

 (EmitterFactory) context.lookup(“com/ibm/events/configuration/

 emitter/Default”);

7.6 Obtaining the Emitter from the EmitterFactory:
Emitter emitter = emitterFactory.getEmitter();

7.7 Sending an Event:
emitter.sendEvent((CommonsBaseEvent)event);

© Copyright IBM Corporation 2006

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
12-06
All Rights Reserved

Cloudscape, DB2, DB2 Universal Database, IBM, the
IBM logo and WebSphere are trademarks of International
Business Machines Corporation in the United States,
other countries or both.

Java and all Java-based trademarks are trademarks of
Sun Microsystems, Inc. in the United States, other coun-
tries, or both.

Microsoft and Windows are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Other company, product and service names may be
trademarks or service marks of others.

