
WebSphere® Business

Integration

Server

Foundation

for

z/OS

V5.1

Resources

SA22-7979-00

���

Note

Before

using

this

information,

be

sure

to

read

the

general

information

under

“Notices”

on

page

369.

Compilation

date:

May

21,

2004

©

Copyright

International

Business

Machines

Corporation

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

How

to

send

your

comments

.

.

.

.

. v

Chapter

1.

Welcome

to

Resources

.

.

. 1

Chapter

2.

Accessing

data

from

applications

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Resource

adapter

.

.

.

.

.

.

.

.

.

.

.

.

. 3

J2EE

Connector

Architecture

resource

adapters

.

. 4

WebSphere

relational

resource

adapter

settings

.

. 5

Data

access

portability

features

.

.

.

.

.

.

. 6

Connection

factory

.

.

.

.

.

.

.

.

.

.

.

. 9

CMP

Connection

Factories

collection

.

.

.

.

. 9

JDBC

providers

.

.

.

.

.

.

.

.

.

.

.

.

. 12

DB2

Universal

JDBC

Driver

Support

.

.

.

.

.

. 12

WebSphere

Application

Server

for

z/OS

DB2

JDBC

Providers

.

.

.

.

.

.

.

.

.

.

.

. 13

Provider

coexistence

considerations

.

.

.

.

. 17

Using

a

DB2

Universal

JDBC

Driver

Provider

with

WebSphere

Application

Server

for

z/OS

.

. 18

Data

sources

.

.

.

.

.

.

.

.

.

.

.

.

.

. 23

Data

access

beans

.

.

.

.

.

.

.

.

.

.

.

. 24

Connection

management

architecture

.

.

.

.

.

. 25

Connection

pooling

.

.

.

.

.

.

.

.

.

.

. 26

Connection

life

cycle

.

.

.

.

.

.

.

.

.

. 28

Unshareable

and

shareable

connections

.

.

.

. 32

Connection

handles

.

.

.

.

.

.

.

.

.

.

. 35

Connections

and

transactions

.

.

.

.

.

.

. 38

Developing

data

access

applications

.

.

.

.

.

. 39

Data

access

application

programming

interface

support

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 40

Container-managed

persistence

features

.

.

.

. 45

Looking

up

data

sources

with

resource

references

for

relational

access

.

.

.

.

.

.

.

.

.

.

. 48

Data

access

from

J2EE

Connector

Architecture

applications

.

.

.

.

.

.

.

.

.

.

.

.

. 56

Data

access

from

an

enterprise

entity

bean

.

.

. 61

Data

access

bean

types

.

.

.

.

.

.

.

.

. 61

Accessing

data

from

application

clients

.

.

.

. 64

Connection

thread

identity

.

.

.

.

.

.

.

. 65

Using

thread

identity

support

.

.

.

.

.

.

. 66

Exceptions

pertaining

to

data

access

.

.

.

.

. 68

Using

embedded

Structured

Query

Language

in

Java

(SQLJ)

support

.

.

.

.

.

.

.

.

.

. 104

Assembling

data

access

applications

.

.

.

.

.

. 104

Resource

adapter

archive

file

.

.

.

.

.

.

.

. 105

Assembling

resource

adapter

(connector)

modules

.

.

.

.

.

.

.

.

.

.

.

.

.

. 105

Deploying

data

access

applications

.

.

.

.

.

. 106

Installing

Java

2

Connector

resource

adapters

106

Ensuring

applications

obtain

valid

connections

110

Creating

and

configuring

a

JDBC

provider

and

data

source

.

.

.

.

.

.

.

.

.

.

.

.

. 112

Configuring

Java

2

Connector

connection

factories

in

the

administrative

console

.

.

.

. 153

Recreating

database

tables

from

the

exported

table

data

definition

language

.

.

.

.

.

.

. 165

Security

of

lookups

with

component

managed

authentication

.

.

.

.

.

.

.

.

.

.

.

. 166

Configuring

data

access

for

application

clients

166

Configuring

Cloudscape

Version

5.1

.

.

.

.

. 169

Vendor-specific

data

sources

minimum

required

settings

.

.

.

.

.

.

.

.

.

.

.

.

.

. 172

Connector

Modules

collection

.

.

.

.

.

.

. 190

Data

access

:

Resources

for

learning

.

.

.

.

.

. 191

Tuning

databases

.

.

.

.

.

.

.

.

.

.

.

. 192

Chapter

3.

Using

asynchronous

messaging

.

.

.

.

.

.

.

.

.

.

.

. 193

Asynchronous

messaging

with

WebSphere

-

an

overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 193

Styles

of

messaging

in

applications

.

.

.

.

. 194

WebSphere

Application

Server

cloning

and

WebSphere

MQ

clustering

.

.

.

.

.

.

.

. 195

Using

JMS

and

messaging

in

applications

.

.

.

. 197

WebSphere

MQ

and

IBM

WebSphere

Application

Server

.

.

.

.

.

.

.

.

.

. 198

An

overview

of

WebSphere

asynchronous

messaging

using

JMS

.

.

.

.

.

.

.

.

.

. 200

Administering

WebSphere

JMS

support

.

.

. 203

Using

WebSphere

MQ

functions

from

JMS

applications

.

.

.

.

.

.

.

.

.

.

.

.

. 303

Designing

an

enterprise

application

to

use

JMS

303

Developing

a

J2EE

application

to

use

JMS

.

.

. 307

Developing

a

JMS

client

.

.

.

.

.

.

.

.

. 310

Deploying

a

J2EE

application

to

use

JMS

.

.

. 314

Tuning

Java

messaging

service

.

.

.

.

.

. 314

Troubleshooting

WebSphere

Messaging

.

.

.

. 318

Messaging:

Resources

for

learning

.

.

.

.

. 322

Using

message-driven

beans

in

applications

.

.

. 323

Message-driven

beans

-

an

overview

.

.

.

. 324

Designing

an

enterprise

application

to

use

message-driven

beans

.

.

.

.

.

.

.

.

. 326

Developing

an

enterprise

application

to

use

message-driven

beans

.

.

.

.

.

.

.

.

. 328

Deploying

an

enterprise

application

to

use

message-driven

beans

.

.

.

.

.

.

.

.

. 329

Configuring

message

listener

resources

for

message-driven

beans

.

.

.

.

.

.

.

.

. 332

Important

files

for

message-driven

beans

and

extended

messaging

.

.

.

.

.

.

.

.

.

. 343

Troubleshooting

message-driven

beans

.

.

.

. 344

Message-driven

beans

samples

.

.

.

.

.

. 344

Chapter

4.

Using

mail

.

.

.

.

.

.

.

. 347

Configuring

mail

providers

and

sessions

.

.

.

. 348

Mail

provider

collection

.

.

.

.

.

.

.

.

. 349

Mail

provider

settings

.

.

.

.

.

.

.

.

. 350

Protocol

providers

collection

.

.

.

.

.

.

. 350

Protocol

providers

settings

.

.

.

.

.

.

.

. 350

©

Copyright

IBM

Corp.

2004

iii

Mail

session

collection

.

.

.

.

.

.

.

.

. 351

Mail

session

settings

.

.

.

.

.

.

.

.

.

. 351

JavaMail

API

.

.

.

.

.

.

.

.

.

.

.

.

. 353

Mail

providers

and

mail

sessions

.

.

.

.

.

.

. 353

Mail

migration

tip

.

.

.

.

.

.

.

.

.

.

.

. 354

JavaMail

security

permissions

best

practices

.

.

. 354

Mail:

Resources

for

learning

.

.

.

.

.

.

.

. 355

Chapter

5.

Using

URL

resources

within

an

application

.

.

.

.

.

.

.

. 357

URLs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 357

URL

provider

collection

.

.

.

.

.

.

.

.

.

. 358

Name

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 358

Description

.

.

.

.

.

.

.

.

.

.

.

.

. 358

URL

provider

settings

.

.

.

.

.

.

.

.

.

. 358

Name

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 358

Description

.

.

.

.

.

.

.

.

.

.

.

.

. 358

Classpath

.

.

.

.

.

.

.

.

.

.

.

.

.

. 358

Stream

Handler

Class

Name

.

.

.

.

.

.

. 358

Protocol

.

.

.

.

.

.

.

.

.

.

.

.

.

. 359

URL

configuration

collection

.

.

.

.

.

.

.

. 359

Name

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 359

JNDI

Name

.

.

.

.

.

.

.

.

.

.

.

.

. 359

Description

.

.

.

.

.

.

.

.

.

.

.

.

. 359

Category

.

.

.

.

.

.

.

.

.

.

.

.

.

. 359

URL

configuration

settings

.

.

.

.

.

.

.

.

. 359

Name

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 359

JNDI

Name

.

.

.

.

.

.

.

.

.

.

.

.

. 359

Description

.

.

.

.

.

.

.

.

.

.

.

.

. 359

Category

.

.

.

.

.

.

.

.

.

.

.

.

.

. 359

Spec

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 359

URLs:

Resources

for

learning

.

.

.

.

.

.

.

. 360

Chapter

6.

Resource

environment

entries

.

.

.

.

.

.

.

.

.

.

.

.

.

. 361

Resource

environment

providers

and

resource

environment

entries

.

.

.

.

.

.

.

.

.

.

. 361

Resource

Environment

Provider

collection

.

.

.

. 361

Name

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 361

Description

.

.

.

.

.

.

.

.

.

.

.

.

. 361

Resource

environment

provider

settings

.

.

. 361

New

Resource

Environment

Provider

.

.

.

. 362

Resource

Env

Entries

collection

.

.

.

.

.

.

. 363

Name

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 363

JNDI

Name

.

.

.

.

.

.

.

.

.

.

.

.

. 364

Description

.

.

.

.

.

.

.

.

.

.

.

.

. 364

Category

.

.

.

.

.

.

.

.

.

.

.

.

.

. 364

Resource

env

entry

settings

.

.

.

.

.

.

.

. 364

Referenceables

collection

.

.

.

.

.

.

.

.

. 366

Factory

Classname

.

.

.

.

.

.

.

.

.

. 366

Classname

.

.

.

.

.

.

.

.

.

.

.

.

. 366

Referenceables

settings

.

.

.

.

.

.

.

.

. 366

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

. 369

Trademarks

and

service

marks

.

.

.

. 371

iv

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

How

to

send

your

comments

Your

feedback

is

important

in

helping

to

provide

the

most

accurate

and

highest

quality

information.

v

To

send

comments

on

articles

in

the

WebSphere

Application

Server

Information

Center

1.

Display

the

article

in

your

Web

browser

and

scroll

to

the

end

of

the

article.

2.

Click

on

the

Feedback

link

at

the

bottom

of

the

article,

and

a

separate

window

containing

an

e-mail

form

appears.

3.

Fill

out

the

e-mail

form

as

instructed,

and

click

on

Submit

feedback

.
v

To

send

comments

on

PDF

books,

you

can

e-mail

your

comments

to:

wasdoc@us.ibm.com

or

fax

them

to

919-254-0206.

Be

sure

to

include

the

document

name

and

number,

the

WebSphere

Application

Server

version

you

are

using,

and,

if

applicable,

the

specific

page,

table,

or

figure

number

on

which

you

are

commenting.

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

2004

v

vi

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Chapter

1.

Welcome

to

Resources

The

product

supports

all

of

the

resources

defined

by

the

Java

2

Platform,

Enterprise

Edition

(J2EE).

Data

access

(JDBC

and

J2C)

The

J2EE

Connector

architecture

defines

a

standard

architecture

that

enables

the

integration

of

various

enterprise

information

systems

(EIS)

with

application

servers

and

enterprise

applications.

It

defines

a

standard

resource

adapter

used

by

a

Java

application

to

connect

to

an

EIS.

This

resource

adapter

can

plug

into

the

application

server

and,

through

the

Common

Client

Interface

(CCI),

provide

connectivity

between

the

EIS,

the

application

server,

and

the

enterprise

application.

Messaging

The

product

supports

asynchronous

messaging

as

a

method

of

communication

based

on

the

Java

Message

Service

(JMS)

programming

interface.

The

base

JMS

support

enables

IBM

WebSphere

Application

Server

applications

to

exchange

messages

asynchronously

with

other

JMS

clients

by

using

JMS

destinations

(queues

or

topics).

Mail

Using

JavaMail

API,

a

code

segment

can

be

embedded

in

any

Java

2

Enterprise

Edition

(J2EE)

application

component,

such

as

an

EJB

or

a

servlet,

allowing

the

application

to

send

a

message

and

save

a

copy

of

the

mail

to

the

Sent

folder.

URLs

Java

2

Platform,

Enterprise

Edition

(J2EE)

applications

can

use

URLs

as

resources

in

the

same

way

other

J2EE

resources,

such

as

JDBC

and

JavaMail,

are

used.

Resource

environment

entries

A

resource

environment

reference

maps

a

logical

name

used

by

the

client

application

to

the

physical

name

of

an

object.

©

Copyright

IBM

Corp.

2004

1

2

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Chapter

2.

Accessing

data

from

applications

Note:

WebSphere

Application

Server

does

not

support

JDBC

3.0.

Various

enterprise

information

systems

(EIS)

use

different

methods

for

storing

data.

These

backend

data

stores

might

be

relational

databases,

procedural

transaction

programs,

or

object-oriented

databases.

IBM

WebSphere

Application

Server

provides

several

options

for

accessing

an

information

system’s

backend

data

store:

v

Programming

directly

to

the

database

through

the

JDBC

2.0

Optional

Package

API.

v

Programming

to

the

procedural

backend

transaction

through

various

J2EE

Connector

Architecture

(JCA)

1.0

compliant

connectors.

v

Programming

in

the

bean-managed

persistence

(BMP)

bean

or

servlets

indirectly

accessing

the

backend

store

through

either

the

JDBC

API

or

JCA

compliant

connectors.

The

prerequisite

Web

site

details

which

databases

and

drivers

are

currently

supported.

v

Using

container-managed

persistence

(CMP)

beans.

v

Using

embedded

Structured

Query

Language

in

Java

(SQLJ)

support

with

applications

that

use

DB2

as

a

backend

database.

v

Using

the

IBM

data

access

beans,

which

also

use

the

JDBC

API,

but

give

you

additional

ability

to

manipulate

result

sets.
1.

Develop

data

access

applications

Develop

your

application

to

access

data

using

the

various

ways

available

through

the

WebSphere

Application

Server.

You

can

access

data

through

APIs,

container-managed

persistence

beans,

bean-managed

persistence

beans,

session

beans,

or

Web

components.

2.

Assemble

data

access

applications

using

the

Assembly

Toolkitor

Application

Assembly

Tool

(AAT).

Assemble

your

application

by

creating

and

mapping

resource

references.

3.

Deploy

data

access

applications

Ensure

that

the

appropriate

database

objects

are

available.

Create

or

configure

any

databases

or

tables

required,

set

necessary

configuration

parameters

to

handle

expected

load,

and

configure

any

necessary

JDBC

providers

and

data

source

objects

for

servlets,

enterprise

beans,

and

client

applications

to

use.

Resource

adapter

A

resource

adapter

is

a

system-level

software

driver

that

a

Java

application

uses

to

connect

to

an

enterprise

information

system

(EIS).

A

resource

adapter

plugs

into

an

application

server

and

provides

connectivity

between

the

EIS,

the

application

server,

and

the

enterprise

application.

An

application

server

vendor

extends

its

system

once

to

support

the

connector

architecture

and

is

then

assured

of

seamless

connectivity

to

multiple

EISs.

Likewise,

an

EIS

vendor

provides

one

standard

resource

adapter

with

the

capability

to

plug

into

any

application

server

that

supports

the

connector

architecture.

WebSphere

Application

Server

provides

the

relational

resource

adapter

(RRA)

implementation

in

this

release.

This

resource

adapter

provides

data

access

through

JDBC

calls

to

access

the

database

dynamically.

The

connection

management

is

©

Copyright

IBM

Corp.

2004

3

based

on

the

J2EE

Connector

Architecture

(JCA)

connection

management

architecture.

It

provides

connection

pooling,

local

transaction,

and

security

support.

Container-managed

persistence

(CMP)

beans

data

access

is

managed

by

the

WebSphere

Persistence

Manager

indirectly.

The

JCA

Specification

supports

Persistence

Manager

delegation

of

the

data

access

to

the

JCA

resource

adapter

without

knowing

the

specific

backend

store.

For

the

relational

database

access,

Persistence

Manager

utilizes

the

relational

resource

adapter

to

access

the

data

from

the

database.

You

can

find

the

supported

database

platforms

for

the

JDBC

API

at

the

WebSphere

Application

Server

prerequisite

Web

site.

J2EE

Connector

Architecture

resource

adapters

A

J2EE

Connector

Architecture

(JCA)

resource

adapter

is

any

resource

adapter

conforming

to

the

JCA

Specification.

The

product

supports

any

resource

adapter

that

implements

version

1.0

of

this

specification.

Although

not

part

of

WebSphere

Application

Server,

IBM

supplies

resource

adapters

for

enterprise

systems

such

as:

the

Customer

Information

Control

System

(CICS),

Host

On-Demand

(HOD),

Information

Management

System

(IMS),

Systems,

Applications,

and

Products

(SAP)

R/3,

and

Crossworlds,

as

separate

products.

The

general

approach

to

writing

an

application

that

uses

a

JCA

resource

adapter

is

to

develop

enterprise

bean

session

beans

or

services

with

tools

such

as

WebSphere

Studio

Application

Developer

Integration

Edition

(WSADIE)

or

VisualAge

for

Java

Enterprise

Access

Builder.

The

session

bean

uses

the

javax.resource.cci

interfaces

to

communicate

with

an

enterprise

information

system

through

the

resource

adapter.

Resource

Recovery

Services

(RRS)

WebSphere

Application

Server

for

z/OS

supports

resource

adapters

that

use

Resource

Recovery

Services

(RRS)to

support

global

transaction

processing.

RRS

is

an

z/OS

extension

to

the

JCA

resource

adapter

specifications.

WebSphere

Application

Server

for

z/OS

supports

the

J2EE

Connector

Architecture

(JCA)

1.0.,

and

because

of

this,

any

resource

adapter

that

is

designed

to

use

the

1.0

level

of

the

J2EE

Connector

Architecture

(JCA)

is

supported.

In

addition

to

the

3

types

of

transaction

support

defined

by

JCA,

WebSphere

Application

Server

for

z/OS

supports

a

fourth

type,

RRSTransactional

support,

which

is

a

z/OS

only

extension

to

the

architecture.

Resource

adapters

that

are

capable

of

using

RRS

and

that

properly

indicate

to

WAS

z/OS

they

are

RRSTransactional

will

be

supported

as

RRS

compliant

resource

adapters.

z/OS

resource

adapters

that

are

capable

of

using

RRS

are:

v

IMS

Connector

for

Java

v

CICS

CTG

ECI

J2EE

Connector

v

IMS

JDBC

Connector

v

DB2

for

z/OS

Local

JDBC

connector

when

used

as

aJDBC

Provider

under

the

WebSphere

Relational

Resource

Adapter

(RRA)

All

RRS

Compliant

resource

adapters

are

required

to

support

the

property

RRSTransactional

in

their

ManagedConnectionFactory

and

must

support

a

getter

method

for

the

property.

java.lang.Boolean.RRSTransactional=true;

java.lang.Boolean

getRRSTransactional(){

4

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

//

Determine

if

the

adapter

can

run

RRSTransactional

based

//

on

it’s

configuration,

and

set

the

RRSTransactional

property

//

appropriately

to

true

or

false.

return

RRSTransactional;

}

RRS

support

is

only

applicable

in

a

local

environment,

where

the

backend

must

reside

on

the

system.

CICS

and

IMS

resources

adapters

may

use

RRSTransactional

support

only

when

these

adapters

are

configured

to

use

local

interfaces

to

their

backend

resource

manager,

which

as

stated

above

must

reside

on

the

same

system

as

the

IBM

WebSphere

Application

Server

for

z/OS.

These

adapters

are

also

capable

of

being

configured

to

a

remote

instance

of

their

backend

resource

manager.

In

this

case,

the

adapters

will

respond

″false″

when

the

getRRSTransactional()

method

is

invoked

and

instead

of

running

as

RRSTransactional

will

use

whichever

one

of

the

three

types

of

J2EE

Transaction

support

they

have

chosen

to

support.

WebSphere

relational

resource

adapter

settings

Use

this

page

to

view

the

default

WebSphere

relational

resource

adapter

settings.

This

is

the

WebSphere-provided

relational

resource

adapter

for

handling

data

access

to

any

relational

data

base.

This

adapter

is

preinstalled

by

the

WebSphere

Application

Server.

Although

the

default

relational

resource

adapter

settings

are

viewable,

you

cannot

make

changes

to

them.

To

view

this

administrative

console

page,

click

Resources

>

Resource

Adapters

>

WebSphere

Relational

Resource

Adapter.

Scope

Specifies

the

level

to

which

this

resource

definition

is

visible

--

the

cell,

node,

or

server

level.

Resources

such

as

JDBC

Providers,

Namespace

bindings,

or

shared

libraries

can

be

defined

at

multiple

scopes,

with

resources

defined

at

more

specific

scopes

overriding

duplicates

which

are

defined

at

more

general

scopes.

Note

that

no

matter

what

the

scope

of

a

defined

resource,

the

resource’s

properties

only

apply

at

an

individual

server

level.

For

example,

if

you

define

the

scope

of

a

data

source

at

the

Cell

level,

all

users

in

that

Cell

can

look

up

and

use

that

data

source,

which

is

unique

within

that

Cell.

However,

resource

property

settings

are

local

to

each

server

in

the

Cell.

For

example,

if

you

define

max

connections

to

10,

then

each

server

in

that

Cell

can

have

10

connections.

Cell

The

most

general

scope.

Resources

defined

at

the

Cell

scope

are

visible

from

all

Nodes

and

servers,

unless

they

are

overridden.

To

view

resources

defined

in

the

cell

scope,

do

not

specify

a

server

or

a

node

name

in

the

scope

selection

form.

Node

The

default

scope

for

most

resource

types.

Resources

defined

at

the

Node

scope

override

any

duplicates

defined

at

the

Cell

scope

and

are

visible

to

all

servers

on

the

same

node,

unless

they

are

overridden

at

a

server

scope

on

that

node.

To

view

resources

defined

in

a

node

scope,

do

not

specify

a

server,

but

select

a

node

name

in

the

scope

selection

form.

Server

The

most

specific

scope

for

defining

resources.

Resources

defined

at

the

Server

scope

override

any

duplicate

resource

definitions

defined

at

the

Cell

scope

or

parent

Node

scope

and

are

visible

only

to

a

specific

server.

To

view

resources

defined

in

a

server

scope,

specify

a

server

name

as

well

as

a

node

name

in

the

scope

selection

form.

Chapter

2.

Accessing

data

from

applications

5

When

resources

are

created,

they

are

always

created

into

the

current

scope

selected

in

the

panel.

To

view

resources

in

other

scopes,

specify

a

different

node

or

server

in

the

scope

selection

form.

Data

type

String

Name

Specifies

the

name

of

the

resource

provider.

Data

type

String

Description

Specifies

a

description

of

the

relational

resource

adapter.

Data

type

String

Archive

path

Specifies

the

path

to

the

Resource

Adapter

Archive

(RAR)

file

containing

the

module

for

this

resource

adapter.

Data

type

String

Classpath

Specifies

a

list

of

paths

or

Java

Archive

(JAR)

file

names,

which

together

form

the

location

for

the

resource

provider

classes.

Data

type

String

Native

path

Specifies

a

list

of

paths

that

forms

the

location

for

the

resource

provider

native

libraries.

Data

type

String

Data

access

portability

features

The

WebSphere

Application

Server

relational

resource

adapter

(RRA)

provides

a

portability

feature

that

enables

applications

to

access

data

from

different

databases

without

changing

the

application.

In

addition,

WebSphere

Application

Server

enables

you

to

plug

in

a

data

source

that

is

not

supported

by

WebSphere

persistence.

However,

the

data

source

must

be

implemented

as

either

the

XADataSource

or

the

ConnectionPoolDataSource,

and

it

must

be

in

compliance

with

the

JDBC

2.x

specification.

You

can

achieve

application

portability

through

the

following:

DataStoreHelper

interface

With

this

interface,

each

data

store

platform

can

plug

in

its

own

private

data

store

specific

functions

that

the

relational

resource

adapter

run

time

uses.

WebSphere

Application

Server

provides

an

implementation

for

each

supported

JDBC

provider.

6

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

In

addition,

the

interface

also

provides

a

GenericDataStoreHelper

class

for

unsupported

data

sources

to

use.

You

can

subclass

the

GenericDataStoreHelper

or

other

WebSphere

provided

helpers

to

support

any

new

data

source.

For

more

information,

see

the

Javadoc

DataStoreHelper

in

the

Javadoc

index.

The

following

code

segment

shows

how

a

new

data

store

helper

is

created

to

add

two

new

error

mappings

for

an

unsupported

data

source.

public

class

NewDSHelper

extends

GenericDataStoreHelper

{

public

NewDSHelper()

{

super(null);

java.util.Hashtable

myErrorMap

=

null;

myErrorMap

=

new

java.util.Hashtable(2);

myErrorMap.put(new

Integer(-803),

myDuplicateKeyException.class);

myErrorMap.put(new

Integer(-1015),

myStaleConnectionException.class);

myErrorMap.put("S1000",

MyTableNotFoundException.class);

setUserDefinedMap(myErrorMap);

...

}

}

WSCallHelper

class

With

this

class,

applications

can

invoke

any

JDBC

object

proprietary

methods

that

are

not

defined

through

the

administrative

console

or

standard

APIs.

This

helper

also

enables

applications

to

invoke

many

non-JDBC

object

methods.

All

methods

are

static:

see

Javadoc

WSCallHelper

in

the

Javadoc

index.

The

following

code

segment

illustrates

using

this

helper

class

(with

a

DB2

data

source):

Connection

conn

=

ds.getConnection();

//

get

connection

attribute

String

connectionAttribute

=(String)

WSCallHelper.jdbcCall(DataSource.class,

ds,

"getConnectionAttribute",

null,

null);

//

setAutoClose

to

false

WSCallHelper.jdbcCall(java.sql.Connection.class,

conn,

"setAutoClose",

new

Object[]

{

new

Boolean(false)},

new

Class[]

{

boolean.class

});

//

get

data

store

helper

DataStoreHelper

dshelper

=

WSCallHelper.getDataStoreHelper(ds);

Example:

Developing

your

own

DataStoreHelper

class

The

DataStoreHelper

interface

supports

each

data

store

platform

plugging

in

its

own

private

data

store

specific

functions

that

are

used

by

the

Relational

Resource

Adapter

run

time.

package

com.ibm.websphere.examples.adapter;

import

java.sql.SQLException;

import

javax.resource.ResourceException;

import

com.ibm.websphere.appprofile.accessintent.AccessIntent;

import

com.ibm.websphere.ce.cm.*;

import

com.ibm.websphere.rsadapter.WSInteractionSpec;

/**

*

Example

DataStoreHelper

class,

demonstrating

how

to

create

a

user-defined

DataStoreHelper.

*

Implementation

for

each

method

is

provided

only

as

an

example.

More

detail

would

likely

be

*

required

for

any

custom

DataStoreHelper

created

for

use

by

a

real

application.

Chapter

2.

Accessing

data

from

applications

7

*/

public

class

ExampleDataStoreHelper

extends

com.ibm.websphere.rsadapter.GenericDataStoreHelper

{

static

final

long

serialVersionUID

=

8788931090149908285L;

public

ExampleDataStoreHelper(java.util.Properties

props)

{

super(props);

//

Update

the

DataStoreHelperMetaData

values

for

this

helper.

getMetaData().setGetTypeMapSupport(false);

//

Update

the

exception

mappings

for

this

helper.

java.util.Map

xMap

=

new

java.util.HashMap();

//

Add

an

Error

Code

mapping

to

StaleConnectionException.

xMap.put(new

Integer(2310),

StaleConnectionException.class);

//

Add

an

Error

Code

mapping

to

DuplicateKeyException.

xMap.put(new

Integer(1062),

DuplicateKeyException.class);

//

Add

a

SQL

State

mapping

to

the

user-defined

ColumnNotFoundException

xMap.put("S0022",

ColumnNotFoundException.class);

//

Undo

an

inherited

StaleConnection

SQL

State

mapping.

xMap.put("S1000",

Void.class);

setUserDefinedMap(xMap);

//

Note:

If

you

are

extending

a

helper

class,

it

is

//

normally

not

necessary

to

issue

’getMetaData().setHelperType(...)’

//

because

your

custom

helper

will

inherit

the

helper

type

from

its

//

parent

class.

However,

certain

applications

may

need

to

differentiate

//

between

a

custom

helper

and

an

existing

helper

of

the

same

type,

//

so

WebSpehere

has

provided

the

value

’DataStoreHelper.CUSTOM_HELPER’

//

for

this

purpose.

If

this

functionality

is

needed

by

your

application

//

insert

the

following

line

into

your

code:

//

getMetaData().setHelperType(DataStoreHelper.CUSTOM_HELPER);

}

public

void

doStatementCleanup(java.sql.PreparedStatement

stmt)

throws

SQLException

{

//

Clean

up

the

statement

so

it

may

be

cached

and

reused.

stmt.setCursorName("");

stmt.setEscapeProcessing(true);

stmt.setFetchDirection(java.sql.ResultSet.FETCH_FORWARD);

stmt.setMaxFieldSize(0);

stmt.setMaxRows(0);

stmt.setQueryTimeout(0);

}

public

int

getIsolationLevel(AccessIntent

intent)

throws

ResourceException

{

//

Determine

an

isolation

level

based

on

the

AccessIntent.

if

(intent

==

null)

return

java.sql.Connection.TRANSACTION_SERIALIZABLE;

return

intent.getConcurrencyControl()

==

AccessIntent.CONCURRENCY_CONTROL_OPTIMISTIC

?

java.sql.Connection.TRANSACTION_READ_COMMITTED

:

java.sql.Connection.TRANSACTION_REPEATABLE_READ;

}

public

int

getLockType(AccessIntent

intent)

{

if

(

intent.getConcurrencyControl()

==

AccessIntent.CONCURRENCY_CONTROL_PESSIMISTIC)

{

if

(

intent.getAccessType()

==

AccessIntent.ACCESS_TYPE_READ

)

{

8

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

return

WSInteractionSpec.LOCKTYPE_SELECT;

}

else

{

return

WSInteractionSpec.LOCKTYPE_SELECT_FOR_UPDATE;

}

}

return

WSInteractionSpec.LOCKTYPE_SELECT;

}

public

int

getResultSetConcurrency(AccessIntent

intent)

throws

ResourceException

{

//

Determine

a

ResultSet

concurrency

based

on

the

AccessIntent.

return

intent

==

null

||

intent.getAccessType()

==

AccessIntent.ACCESS_TYPE_READ

?

java.sql.ResultSet.CONCUR_READ_ONLY

:

java.sql.ResultSet.CONCUR_UPDATABLE;

}

public

int

getResultSetType(AccessIntent

intent)

throws

ResourceException

{

//

Determine

a

ResultSet

type

based

on

the

AccessIntent.

if

(intent

==

null)

return

java.sql.ResultSet.TYPE_SCROLL_INSENSITIVE;

return

intent.getCollectionAccess()

==

AccessIntent.COLLECTION_ACCESS_SERIAL

?

java.sql.ResultSet.TYPE_FORWARD_ONLY

:

java.sql.ResultSet.TYPE_SCROLL_SENSITIVE;

}

}

ColumnNotFoundException

package

com.ibm.websphere.examples.adapter;

import

java.sql.SQLException;

import

com.ibm.websphere.ce.cm.PortableSQLException;

/**

*

Example

PortableSQLException

subclass,

which

demonstrates

how

to

create

a

user-defined

*

exception

for

exception

mapping.

*/

public

class

ColumnNotFoundException

extends

PortableSQLException

{

public

ColumnNotFoundException(SQLException

sqlX)

{

super(sqlX);

}

}

Connection

factory

An

application

component

uses

a

connection

factory

to

access

a

connection

instance,

which

the

component

then

uses

to

connect

to

the

underlying

enterprise

information

system

(EIS).

Examples

of

connections

include

database

connections,

Java

Message

Service

connections,

and

SAP

R/3

connections.

CMP

Connection

Factories

collection

Use

this

page

to

view

existing

CMP

connection

factories

settings.

Chapter

2.

Accessing

data

from

applications

9

These

are

the

connection

factories

used

by

a

container-managed

persistence

(CMP)

bean

to

access

any

backend

data

store.

A

CMP

Connection

Factory

is

used

by

EJB

model

2.0

Entities

with

CMP

version

2.x.

Connection

factories

listed

on

this

page

are

created

automatically

under

the

WebSphere

Relational

Resource

Adapter

when

you

check

the

box

Use

this

DataSource

in

container

managed

persistence

(CMP)

in

the

General

Properties

area

on

the

Data

Source

page.

You

cannot

modify

or

delete

automatically

created

connection

factories.

To

view

this

administrative

console

page,

click

Resources

>Resource

Adapters

>WebSphere

Relational

Resource

Adapter

>

CMP

Connection

Factories.

Name

Specifies

a

list

of

the

display

names

for

the

resources.

Data

type

String

JNDI

Name

Specifies

the

JNDI

name

of

the

resource.

Data

type

String

Description

Specifies

a

description

for

the

resource.

Data

type

String

Category

Specifies

a

category

string

which

can

be

used

to

classify

or

group

the

resource.

Data

type

String

CMP

connection

factory

settings

Use

this

page

to

view

the

settings

of

a

connection

factory

that

is

used

by

a

CMP

bean

to

access

any

backend

data

store.

This

connection

factory

is

only

in

″read″

mode.

It

cannot

be

modified

or

deleted.

To

view

this

administrative

console

page,

click

Resources

>Resource

Adapters

>

WebSphere

Relational

Resource

Adapter>

CMP

Connection

Factories

>

connection_factory

Scope:

Specifies

the

level

to

which

this

resource

definition

is

visible

--

the

cell,

node,

or

server

level.

Resources

such

as

JDBC

Providers,

Namespace

bindings,

or

shared

libraries

can

be

defined

at

multiple

scopes,

with

resources

defined

at

more

specific

scopes

overriding

duplicates

which

are

defined

at

more

general

scopes.

Note

that

no

matter

what

the

scope

of

a

defined

resource,

the

resource’s

properties

only

apply

at

an

individual

server

level.

For

example,

if

you

define

the

scope

of

a

data

source

at

the

Cell

level,

all

users

in

that

Cell

can

look

up

and

use

that

data

source,

which

is

unique

within

that

Cell.

However,

resource

property

settings

are

10

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

local

to

each

server

in

the

Cell.

For

example,

if

you

define

max

connections

to

10,

then

each

server

in

that

Cell

can

have

10

connections.

Cell

The

most

general

scope.

Resources

defined

at

the

Cell

scope

are

visible

from

all

Nodes

and

servers,

unless

they

are

overridden.

To

view

resources

defined

in

the

cell

scope,

do

not

specify

a

server

or

a

node

name

in

the

scope

selection

form.

Node

The

default

scope

for

most

resource

types.

Resources

defined

at

the

Node

scope

override

any

duplicates

defined

at

the

Cell

scope

and

are

visible

to

all

servers

on

the

same

node,

unless

they

are

overridden

at

a

server

scope

on

that

node.

To

view

resources

defined

in

a

node

scope,

do

not

specify

a

server,

but

select

a

node

name

in

the

scope

selection

form.

Server

The

most

specific

scope

for

defining

resources.

Resources

defined

at

the

Server

scope

override

any

duplicate

resource

definitions

defined

at

the

Cell

scope

or

parent

Node

scope

and

are

visible

only

to

a

specific

server.

To

view

resources

defined

in

a

server

scope,

specify

a

server

name

as

well

as

a

node

name

in

the

scope

selection

form.

When

resources

are

created,

they

are

always

created

into

the

current

scope

selected

in

the

panel.

To

view

resources

in

other

scopes,

specify

a

different

node

or

server

in

the

scope

selection

form.

Data

type

String

Name:

Specifies

the

display

name

for

the

resource.

Data

type

String

JNDI

name:

Specifies

the

JNDI

name

of

the

resource.

Data

type

String

Description:

Specifies

a

description

for

the

resource.

Data

type

String

Category:

Specifies

a

category

string

which

can

be

used

to

classify

or

group

the

resource.

Data

type

String

Authentication

Preference:

Specifies

which

of

the

authentication

mechanisms

that

are

defined

for

the

corresponding

resource

adapter

applies

to

this

connection

factory.

Chapter

2.

Accessing

data

from

applications

11

For

example,

if

two

authentication

mechanism

entries

are

defined

for

a

resource

adapter

(KerbV5

and

Basic

Password),

this

specifies

one

of

those

two

types.

If

the

authentication

mechanism

preference

specified

is

not

an

authentication

mechanism

available

on

the

corresponding

resource

adapter,

it

is

ignored.

Data

type

String

Component-managed

authentication

alias:

References

authentication

data

for

component-managed

signon

to

the

resource.

Data

type

Drop-down

list

Container-managed

authentication

alias:

References

authentication

data

for

container-managed

signon

to

the

resource.

Data

type

Drop-down

list

JDBC

providers

Installed

applications

use

JDBC

providers

to

access

data

from

databases.

The

JDBC

provider

and

data

source

together

are

functionally

equivalent

to

the

J2EE

Connector

Architecture

(JCA)

Connection

Factory.

The

WebSphere

Application

Server

prerequisite

Web

site

has

a

current

list

of

supported

providers.

DB2

Universal

JDBC

Driver

Support

Support

for

DB2

Universal

JDBC

Driver

in

WebSphere

Application

Server

for

z/OS

release

v5.0

and

beyond.

WebSphere

Application

Server

for

z/OS

supports

the

DB2

Universal

JDBC

Driver.

The

capabilities

available

depend

on

the

DB2

Universal

JDBC

Driver

that

you

installed

as

follows:

v

The

z/OS

Application

Connectivity

to

DB2

for

z/OS

feature

that

provides

DB2

Universal

JDBC

Driver

Type

4

connectivity.

This

DB2

Universal

JDBC

Drive

can

be

invoked

only

as

a

type

4

driver

for

z/OS.

As

a

type

4

driver,

it

uses

a

communication

protocol

to

communicate

requests

from

a

z/OS

application

to

a

remote

DB2

database.

When

you

install

and

configure

this

driver

for

WebSphere

Application

Server

for

z/OS,

it

permits

your

applications

to

use

JDBC

or

Container

Managed

Persistence

(CMP)

support

to

access

backend

DB2

databases

(DB2

V7

and

up)

residing

on

z/OS

at

any

location.

All

global

transactions

are

handled

as

J2EE

XA

transactions.

v

The

DB2

Universal

JDBC

Driver

in

DB2

UDB

for

z/OS

Version

8.

This

driver

provides

both

Type

2

and

Type

4

support.

Type

4

driver

support

uses

a

communication

protocol

to

communicate

requests

from

a

z/OS

application

to

a

remote

DB2

database.

This

driver

supports

using

J2EE

XA

transaction

processing

to

process

global

transactions.

Type

2

driver

support

uses

local

API

protocol

to

communicate

requests

from

a

z/OS

application

to

a

target

DB2

running

on

the

same

z/OS

system

image

as

the

application.

When

the

Type

2

driver

is

used

under

z/OS,

the

driver

supports

12

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

the

use

of

z/OS

Resource

Recovery

Services

(RRS)

to

coordinate

global

transactions

across

multiple

resource

manages

using

2-phase

commit

processing.

When

you

install

and

configure

this

version

of

the

driver,

your

applications

can

use

JDBC

or

CMP

support

to

access

backend

DB2

databases

(DB2

V7

and

up).

These

databases

can

reside

on

the

same

z/OS

system

image,

or

on

a

different

z/OS

system

image.

depending

on

the

driver

type

used.

Type

2

driver

handles

all

global

transactions

as

RRS-coordinated

global

transactions.

v

The

DB2

Universal

JDBC

Driver

Provider

by

APAR

PQ80841

on

DB2

UDB

for

OS/390

and

z/OS

Version

7.

This

version

provides

both

driver

Type

2

and

driver

Type

4

support.

Type

4

driver

support

uses

a

communication

protocol

to

communicate

requests

from

a

z/OS

application

to

a

remote

DB2

database.

This

driver

supports

using

J2EE

XA

transaction

processing

to

process

global

transactions.

Type

2

driver

support

uses

local

API

protocol

to

communicate

requests

from

a

z/OS

application

to

a

target

DB2

running

on

the

same

z/OS

system

image

as

the

application.

When

the

Type

2

driver

is

used

under

z/OS,

the

driver

supports

the

use

of

z/OS

Resource

Recovery

Services

(RRS)

to

coordinate

global

transactions

across

multiple

resource

manages

using

2-phase

commit

processing.

When

you

install

and

configure

this

version

of

the

driver,

your

applications

can

use

JDBC

or

CMP

support

to

access

backend

DB2

databases

(DB2

V7

and

up).

These

databases

can

reside

on

the

same

z/OS

system

image,

or

on

a

different

z/OS

system

image,

depending

on

the

driver

type

used.

WebSphere

Application

Server

for

z/OS

DB2

JDBC

Providers

The

following

JDBC

provider

is

for

use

with

the

DB2

for

OS/390

and

z/OS

Legacy

JDBC

Driver:

v

DB2

for

zOS

Local

JDBC

Provider

(RRS)

Following

is

a

list

of

the

JDBC

providers

for

the

DB2

Universal

JDBC

driver.

v

DB2

Universal

JDBC

Driver

Provider

v

DB2

Universal

JDBC

Driver

Provider

(XA)

DB2

for

zOS

Local

JDBC

Provider

(RRS)

The

DB2

for

zOS

JDBC

Provider

(RRS)

is

for

use

with

the

DB2

for

390

and

z/OS

Legacy

JDBC

Driver.

It

can

be

used

only

with

WebSphere

Application

Server

for

z/OS.

This

provider

supports

the

creation

of

WebSphere

Application

Server

for

z/OS

v5.0

and

v4.0

datasources.

Also,

this

provider

uses

z/OS

Resource

Recovery

Services

(RRS)

to

coordinate

transactions

across

multiple

resource

managers

using

two-phase

commit

processing.

The

DB2

for

zOS

Local

JDBC

Provider

(RRS)

allows

applications

to

use

both

JDBC

and

Structured

Query

Language

in

Java

(SQLJ)

access

to

DB2

databases.

Use

of

SQLJ

with

Container

Managed

Persistence

(CMP)

is

not

supported

under

this

provider.

v

Provider

Requirements

The

configuration

information

is

provided

in

a

template

for

the

DB2

for

zOS

Local

JDBC

Driver

Provider

(RRS)

and

is

automatically

filled

in

when

you

select

this

provider.

The

requirements

for

the

DB2

for

zOS

Local

JDBC

Driver

Provider

(RRS)

are:

1.

The

following

DB2

for

z/OS

Legacy

JDBC

Driver

files

on

the

CLASSPATH:

${DB2390_JDBC_DRIVER_PATH}/classes/db2j2classes.zip

Chapter

2.

Accessing

data

from

applications

13

2.

The

following

LIBPATH,

which

is

the

fully-qualified

path

of

the

directory

that

contains

the

native

files

(.so

type

files)

required

by

the

DB2

for

OS/390

and

zOS

Legacy

JDBC

Driver:

${DB2390_JDBC_DRIVER_PATH}/lib

3.

The

following

DB2

datasource

implementation

class,

which

supports

the

use

of

RRS

running

under

WebSphere

Application

Server

for

z/OS

and

allows

WebSphere

Application

Server

for

z/OS

to

perform

connection

pooling:

com.ibm.db2.jcc.DB2ConnectionPoolDataSource

v

DataSource

Requirements

The

minimum

configuration

requirements

for

each

datasource

defined

by

this

provider

are:

1.

A

name

for

the

datasource

definition,

which

you

must

specify

when

you

configure

the

datasource.

2.

The

following

DataStoreHelper

class

that

is

associated

with

the

datasource.

com.ibm.websphere.rsadapter.DB2DataStoreHelper

3.

A

valid

authentication

alias.

Where

res-auth

CONTAINER

is

used,

it

is

permissible

to

not

specify

any

authentication

alias.

In

this

case,

the

user

identity

associated

with

a

connection

created

by

the

datasource

is

the

user

identity

associated

with

the

current

thread

at

the

time

a

request

for

a

connection

is

issued.

4.

The

following

basic

set

of

properties

(at

a

minimum):

databaseName

The

location

name

of

the

target

database,

used

when

establishing

connections

using

this

datasource.

DB2

Universal

JDBC

Driver

Provider

The

DB2

Universal

JDBC

Driver

Provider

is

a

non-XA

JDBC

provider

that

uses

the

DB2

Universal

JDBC

Driver

to

provide

access

to

DB2

databases.

The

Universal

JDBC

Driver

supports

Java

communication-based

connectivity

(driver

Type

4),

which

allows

distributed

access

to

DB2.

Additionally,

the

driver

supports

Java

Native

Interface

(JNI)

based

connectivity

(driver

Type

2),

which

allows

local

access

to

DB2.

Note:

Under

WebSphere

Application

Server

for

z/OS,

driver

Type

4

access

to

DB2

is

supported

only

for

connectivity

to

DB2

for

z/OS

(Version

7

and

up)

databases

on

the

z/OS

platform.

The

DB2

Universal

JDBC

Driver

Provider

allows

applications

to

use

both

JDBC

and

Structured

Query

Language

in

Java

(SQLJ)

access

to

DB2

databases.

To

use

this

provider,

you

must

have

the

DB2

Universal

JDBC

Driver

for

DB2

Version

7

or

DB2

Version

8

installed

and

configured

for

WebSphere

Application

Server

for

z/OS.

v

Provider

Requirements

The

configuration

information

is

provided

in

a

template

for

the

DB2

Universal

JDBC

Driver

Provider

and

is

automatically

filled

in

when

you

select

this

provider.

The

requirements

for

the

DB2

Universal

JDBC

Driver

Provider

are:

1.

The

following

DB2

Universal

JDBC

Driver

files

on

the

CLASSPATH:

14

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc.jar

${UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_License_cu.jar

${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_License_cisuz.jar

db2jcc.jar

This

is

the

DB2

Universal

JDBC

Driver

jar

file.

After

the

DB2

installation,

this

jar

file

is

located

in

DB2’s

install

directory.

The

fully-qualified

path

of

this

jar

must

be

specified

as

the

value

of

the

DB2UNIVERSAL_JDBC_DRIVER_PATH

environment

variable.

db2jcc_License_cu.jar

This

is

the

DB2

Universal

JDBC

driver

license

file

that

allows

access

to

DB2

Universal

databases

under

Cloudscape

and

workstations.

It

is

not

used

for

WebSphere

Application

Server

for

z/OS,

but

is

included

to

make

the

provider

definition

common

between

WebSphere

Application

Server

for

z/OS

and

WebSphere

Application

Server

Distributed.

db2jcc_License_cisuz.jar

This

is

the

DB2

Universal

JDBC

Driver

license

file

that

allows

access

to

DB2

Universal

databases

under

Cloudscape,

workstations,

and

z/OS.

After

you

install

DB2,

this

jar

file

appears

in

the

same

DB2

directory

as

db2jcc.jar.
v

The

following

LIBPATH,

which

is

the

fully-qualified

path

of

the

DB2

java

directory

that

contains

the

native

files

(.so

type

files)

needed

by

the

DB2

Universal

JDBC

Driver

in

WebSphere

Application

Server

for

z/OS.

${DB2UNIVERSAL_JDBC_DRIVER_NATIVEPATH}

v

The

following

DB2

datasource

implementation

class.

This

datasource

implementation

class

performs

only

one-phase

commit

processing,

except

where

driver

Type

2

is

specified

in

WebSphere

Application

Server

for

z/OS.

In

this

case,

RRS

coordinates

transaction

processing

and

two-phase

commit

processing

is

performed

for

global

transactions.

com.ibm.db2.jcc.DB2ConnectionPoolDataSource

v

DataSource

Requirements

The

minimum

configuration

requirements

for

each

datasource

defined

by

this

provider

are:

1.

A

name

for

the

datasource

definition.

2.

The

following

DataStoreHelper

class

that

is

associated

with

the

datasource.

com.ibm.websphere.rsadapter.DB2UniversalDataStoreHelper

3.

A

valid

authentication

alias

if

the

driverType

property

(see

properties

below)

is

set

to

4.

If

the

driverType

property

is

set

to

2,

a

component-managed

authentication

alias

must

be

specified

to

use

the

datasource

with

res-auth

APPLICATION.

In

the

case

where

driverType

2

is

specified

and

the

datasource

is

used

with

res-auth

CONTAINER,

you

can

specify

a

container-managed

authentication

alias;

however,

it

is

not

required.

If

you

do

not

specify

a

container-managed

alias,

the

user

identity

associated

with

a

connection

created

by

the

datasource

will

be

the

user

identity

associated

with

the

current

thread

at

the

time

the

connection

is

obtained.

4.

The

following

basic

set

of

properties

(at

a

minimum):

databaseName

The

location

name

of

the

target

database,

used

when

establishing

connections

using

this

datasource.

driverType

The

JDBC

connectivity

type

used

by

the

datasource.

There

are

two

permitted

values:

2

and

4.

If

you

want

to

use

Universal

JDBC

Type

2

driver,

set

this

value

to

2.

If

you

want

to

use

Universal

JDBC

Type

4

driver,

set

this

value

to

4.

ServerName

The

TCP/IP

address

or

host

name

for

the

Distributed

Relational

Chapter

2.

Accessing

data

from

applications

15

Database

Architecture

(DRDA)

server.

This

is

required

only

if

your

driverType

is

set

to

4.

This

property

is

not

required

for

a

driverType

of

2.

portNumber

The

TCP/IP

port

number

where

the

DRDA

server

resides.

Specify

a

value

only

if

your

driverType

is

set

to

4.

This

property

is

not

required

for

a

driverType

of

2.

DB2

Universal

JDBC

Driver

Provider

(XA)

This

provider

is

the

XA

DB2

Universal

JDBC

Driver

Provider

that

uses

the

DB2

Universal

JDBC

Driver

to

provide

access

to

DB2

databases.

The

Universal

JDBC

Driver

supports

Java

communication-based

connectivity

(driver

Type

4),

which

allows

distributed

access

to

DB2.

The

driver

also

supports

Java

Native

Interface

(JNI)

based

connectivity

(driver

Type

2),

which

allows

local

access

to

DB2;

however,

in

the

case

of

the

XA

support,

driver

Type

2

is

not

supported

by

the

DB2

Universal

JDBC

Driver

on

WebSphere

Application

Server

for

z/OS.

Driver

Type

2

should

not

be

used

when

defining

a

datasource

under

this

provider.

Note:

Under

WebSphere

Application

Server

for

z/OS,

driver

Type

4

access

to

DB2

is

supported

only

for

connectivity

to

DB2

for

z/OS

(Version

7

and

up)

on

the

z/OS

platform.

The

J2EE

XA

transaction

architecture

is

supported

by

the

universal

JDBC

driver

under

this

provider.

This

permits

the

coordination

of

global

transactions

across

multiple

resource

managers

using

two-phase

commit

processing.

The

driver

also

supports

one-phase

transaction

processing

under

this

provider.

The

DB2

Universal

JDBC

Driver

Provider

(XA)

allows

applications

to

use

both

JDBC

and

Structured

Query

Language

in

Java

(SQLJ)

access

to

DB2

databases.

SQLJ

use

with

CMP

is

also

supported.

This

provider

supports

only

the

creation

of

WebSphere

Application

Server

for

z/OS

v5.0

datasources.

The

creation

of

4.0

datasources

is

not

supported.

To

use

this

provider,

you

must

have

the

DB2

Universal

JDBC

Driver

for

DB2

Version

7

or

DB2

Version

8

installed

and

configured

for

WebSphere

Application

Server

for

z/OS,

or

you

must

have

the

z/OS

Application

Connectivity

to

DB2

for

z/OS

feature

installed

and

configured

for

WebSphere

Application

Server

for

z/OS.

v

Provider

Requirements

The

configuration

information

is

provided

in

a

template

for

the

DB2

Universal

JDBC

Driver

Provider

(XA)

and

is

automatically

filled

in

when

you

select

this

provider.

The

requirements

for

the

DB2

Universal

JDBC

Driver

Provider

(XA)

are:

1.

The

following

DB2

Universal

JDBC

Driver

files

on

the

CLASSPATH:

${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc.jar

${UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_License_cu.jar

${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_License_cisuz.jar

db2jcc.jar

This

is

the

DB2

Universal

JDBC

Driver

jar

file.

After

the

DB2

installation,

this

jar

file

is

located

in

DB2’s

install

directory.

The

fully-qualified

path

of

this

jar

must

be

specified

as

the

value

of

the

DB2UNIVERSAL_JDBC_DRIVER_PATH

environment

variable.

db2jcc_License_cu.jar

This

is

the

DB2

Universal

JDBC

driver

license

file

that

allows

access

to

DB2

Universal

databases

under

Cloudscape

and

16

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

workstations.

It

is

not

used

for

WebSphere

Application

Server

for

z/OS,

but

is

included

to

make

the

provider

definition

common

between

WebSphere

Application

Server

for

z/OS

and

WebSphere

Application

Server

Distributed.

db2jcc_License_cisuz.jar

This

is

the

DB2

Universal

JDBC

Driver

license

file

that

allows

access

to

DB2

Universal

databases

under

Cloudscape,

workstations,

and

z/OS.

After

you

install

DB2,

this

jar

file

appears

in

the

same

DB2

directory

as

db2jcc.jar.

2.

The

following

LIBPATH,

which

is

the

fully-qualified

path

of

the

DB2

java

directory

that

contains

the

native

files

(.so

type

files)

needed

by

the

DB2

Universal

JDBC

Driver

in

WebSphere

Application

Server

for

z/OS.

If

no

native

files

are

required,

set

the

DB2UNIVERSAL_JDBC_DRIVER_NATIVEPATH

to

null.

${DB2UNIVERSAL_JDBC_DRIVER_NATIVEPATH}

3.

The

following

DB2

datasource

implementation

class,

which

supports

J2EE

XA

transaction

processing.

com.ibm.db2.jcc.DB2XADataSource

v

DataSource

Requirements

The

minimum

configuration

requirements

for

each

datasource

defined

by

this

provider

are:

1.

A

name

for

the

datasource

definition.

2.

The

following

DataStoreHelper

class

that

is

associated

with

the

datasource.

com.ibm.websphere.rsadapter.DB2UniversalDataStoreHelper

3.

A

valid

authentication

alias.

4.

The

following

basic

set

of

properties

(at

a

minimum):

databaseName

The

location

name

of

the

target

database,

used

when

establishing

connections

using

this

datasource.

driverType

The

JDBC

connectivity

type

used

by

the

datasource.

For

WebSphere

Application

Server

for

z/OS,

use

only

driverType

4.

Use

of

driverType

2

is

not

supported.

ServerName

The

TCP/IP

address

or

host

name

for

the

Distributed

Relational

Database

Architecture

(DRDA)

server.

portNumber

The

TCP/IP

port

number

where

the

DRDA

server

resides.

For

more

information

on

DB2

for

z/OS,

visit

the

DB2

Web

site

at:

http://www.ibm.com/software/data/db2/.

Provider

coexistence

considerations

Following

are

provider

coexistence

possibilities.

DB2

Legacy

JDBC

Providers

and

DB2

Universal

JDBC

Driver

Providers

v

Under

WebSphere

Application

Server

for

z/OS,

JDBC

Provider

definitions

that

use

the

Legacy

DB2

for

OS/390

and

z/OS

JDBC

Driver

(db2j2classes.zip)

and

JDBC

Provider

definitions

that

use

the

new

DB2

Universal

JDBC

Driver

(db2jcc.jar)

must

be

carefully

configured

to

ensure

they

never

coexist

on

the

same

server.

This

is

because

some

of

the

same

class

names

are

used

in

both

drivers

and

these

duplicate

classes

are

functionally

different.

Adding

jar

files

for

Chapter

2.

Accessing

data

from

applications

17

http://www-3.ibm.com/software/data/db2/

the

two

types

of

drivers

to

the

same

CLASSPATH

causes

unpredictable

results,

since

incorrect

classes

will

be

used

for

the

provider

whose

CLASSPATH

definition

is

added

last.

v

Carefully

define

the

scope

in

which

the

two

different

types

of

driver

providers

are

used.

If

you

define

one

provider

type

under

one

scope

(cell,

node,

or

server),

and

the

other

provider

type

under

another

scope,

separation

is

not

ensured

if

the

two

scopes

include

the

same

server.

For

example,

if

you

define

a

DB2

for

zOS

Local

JDBC

Provider

(RRS)

at

a

node

level,

then

define

a

DB2

Universal

JDBC

Driver

Provider

at

a

server

level

where

the

server

is

in

the

same

node,

the

provider

definition

at

the

node

level

is

propagated

down

to

the

server

level.

As

a

result,

a

conflict

occurs

between

the

JDBC

drivers

used

by

the

two

providers.

To

help

you

understand

which

WebSphere

Application

Server

for

z/OS

providers

cannot

coexist

together,

the

providers

are

listed

below

under

the

DB2

JDBC

driver

that

it

uses:

1.

Providers

that

use

the

DB2

for

z/OS

Legacy

JDBC

Driver

–

DB2

for

zOS

Local

JDBC

Provider

(RRS)
2.

Providers

that

use

the

DB2

Universal

JDBC

Driver

–

DB2

Universal

JDBC

Driver

Provider

–

DB2

Universal

JDBC

Driver

Provider

(XA)

–

Cloudscape

Network

Server

Using

Universal

JDBC

Driver

Provider

DB2

Drivers

and

Cloudscape

v

The

Cloudscape

Network

Server

Using

Universal

JDBC

Driver

Provider

uses

an

embedded

copy

of

the

DB2

Universal

JDBC

Driver

that

is

shipped

with

Cloudscape.

This

provider

is

configured

to

automatically

use

the

new

level

of

the

DB2

Universal

JDBC

Driver

when

installing

the

DB2

Version

7,

Version

8,

or

standalone

Type

4

version

of

the

DB2

Universal

JDBC

Driver

on

the

system

where

WebSphere

Application

Server

for

z/OS

is

configured.

The

Cloudscape

Network

Server

Using

Universal

JDBC

Driver

Provider

can

coexist

on

the

same

server

as

the

DB2

for

Universal

JDBC

Driver

Providers

since

it

uses

the

same

DB2

JDBC

driver.

v

The

Cloudscape

Network

Server

Using

Universal

JDBC

Driver

Provider

cannot

coexist

in

the

same

server

as

the

DB2

for

zOS

Local

JDBC

Provider

(RRS),

because

the

Cloudscape

provider

uses

the

DB2

Universal

JDBC

Driver

and

the

DB2

for

zOS

Local

JDBC

Provider

(RRS)

uses

the

DB2

for

OS/390

and

z/OS

Legacy

JDBC

Driver.

These

drivers

conflict

with

one

another.

Using

a

DB2

Universal

JDBC

Driver

Provider

with

WebSphere

Application

Server

for

z/OS

Make

sure

that

DB2

Universal

JDBC

Driver

on

z/OS

and

all

the

files

required

by

WebSphere

Application

Server

for

z/OS

are

installed

and

available

in

an

HFS

directory

before

you

continue

with

this

configuration.

To

use

DB2

Universal

JDBC

Driver

with

WebSphere

Application

Server

for

z/OS,

one

of

the

following

versions

of

the

driver

must

be

installed:

v

The

DB2

Universal

JDBC

Driver

in

DB2

UDB

for

z/OS

Version

8.

This

version

supports

both

driver

Types

2

and

4.

v

The

DB2

Universal

JDBC

Driver

Provider

by

APAR

PQ80841

on

DB2

UDB

for

OS/390

and

z/OS

Version

7.

This

version

supports

both

driver

Types

2

and

4.

18

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

v

The

z/OS

Application

Connectivity

to

DB2

for

z/OS

feature

that

provides

DB2

Universal

JDBC

Driver

Type

4

connectivity.

This

version

supports

only

driver

Type

4

connectivity

to

DB2

databases.

If

this

driver

is

installed,

only

the

DB2

Universal

JDBC

Driver

Provider

(XA)

can

be

used

on

WebSphere

Application

Server

for

z/OS

to

access

remote

DB2

databases.

Refer

to

the

APARs

and

DB2

product

installation

information

for

details

regarding

the

installation

of

the

above

versions

of

the

DB2

Universal

JDBC

Driver.

To

use

a

DB2

Universal

JDBC

Driver

with

WebSphere

Application

Server

for

z/OS,

you

must:

v

Configure

the

DB2

Universal

JDBC

Driver.

v

Define

a

DB2

Universal

JDBC

Driver

Provider

for

WebSphere

Application

Server

for

z/OS.

v

Define

a

DB2

Universal

JDBC

Driver

Provider

DataSource.
1.

Configure

the

DB2

Universal

JDBC

Driver

for

WebSphere

Application

Server

for

z/OS

a.

Define

a

DB2

Universal

JDBC

Driver

Provider

Before

you

create

a

JDBC

provider

for

the

DB2

Universal

JDBC

Driver

for

z/OS,

WebSphere

Application

Server

for

z/OS

must

know

the

location

of

the

installed

DB2

Universal

JDBC

Driver

and

license

file,

and

the

location

of

any

native

files

that

might

be

required

by

the

DB2

Universal

JDBC

Driver.

To

do

this,

from

the

WebSphere

Application

Server

for

z/OS

Administrative

Console,

go

to

Environment

>

Manage

WebSphere

Variables,

and

update

the

values

of

the

following

environment

variables:

1)

DB2UNIVERSAL_JDBC_DRIVER_PATH

Specify

the

fully-qualified

path

of

the

directory

that

contains

the

DB2

Universal

JDBC

Driver.

This

must

be

the

directory

that

contains

the

db2jcc.jar

and

the

db2jcc_license_cisuz.jar.

Example:

If

the

fully-qualified

path

of

the

db2jcc.jar

is

/usr/lpp/db2810/jcc/classes/db2jcc.jar,

specify

/usr/lpp/db2810/jcc/classes

as

the

value

of

the

variable.

2)

DB2UNIVERSAL_JDBC_DRIVER_NATIVEPATH

Specify

the

fully-qualified

directory

path

of

the

directory

that

contains

the

DB2

Universal

JDBC

Driver

native

files,

if

necessary.

This

is

the

directory

that

contains

the

driver

files

that

have

a

.so

file

type.

If

the

driver

version

you

are

using

does

not

require

native

files,

leave

this

value

at

null.

Example:

If

the

fully-qualified

path

of

the

directory

containing

the

native

files

is

/usr/lpp/db2810/jcc/lib,

specify

/usr/lpp/db2810/jcc/lib

as

the

value

of

the

variable.
b.

Bind

the

required

DB2

packages

As

with

any

application

that

executes

SQL

statements

in

DB2

for

z/OS,

the

Universal

JDBC

driver

must

first

bind

with

DB2

the

packages

that

represent

the

SQL

statements

to

be

executed.

The

Universal

JDBC

Driver

does

not

use

the

same

packages

used

by

the

legacy

JDBC

driver,

and

uses

a

different

process

for

binding

its

packages.

The

specific

details

of

the

bind

utility

and

bind

process

are

described

by

the

README

provided

with

the

installed

DB2

Universal

JDBC

Driver.

Refer

to

this

README

for

details

on

how

to

setup

and

perform

the

required

binding.

Chapter

2.

Accessing

data

from

applications

19

Also

note

that

the

utility

requires

the

server

name

(or

IP

address),

the

port

number,

and

the

database

name

(the

database

location

on

z/OS)

for

the

target

DB2.

To

get

this

information,

issue

a

DB2

-DISPLAY

DDF

command

on

the

target

DB2

system.

This

displays

the

IPADDR

(IP

address),

the

SQL

DOMAIN

(server

name),

the

TCPPORT

number,

and

the

LOCATION

(database

name/location)

for

you

to

use

as

input

to

the

utility.

You

must

perform

the

bind

process

for

each

target

DB2

that

will

be

accessed

using

the

DB2

Universal

JDBC

Driver.

c.

Set

up

to

handle

in-doubt

transactions

You

must

perform

this

setup

once

for

each

target

DB2

for

z/OS

Version

7

location

that

is

accessed

using

the

DB2

Universal

JDBC

Driver

Type

4

XA

support.

Since

DB2

for

z/OS

Version

7

does

not

implement

J2EE

XA

support,

the

Type

4

driver

XA

processing

uses

DB2

V7

two-phase

commit

protocol

and

a

table

in

each

location

(database)

to

store

a

list

of

global

transactions

that

are

in

doubt

(finished

but

not

committed).

This

table

must

be

set

up

at

each

DB2

V7

location

that

is

accessed.

To

do

this,

use

the

In-Doubt

Utility,

which

is

included

as

part

of

the

installed

DB2

Universal

JDBC

Driver.

Use

this

utility

to

create

the

SYSIBM.INDOUBT

Table

that

stores

information

about

In-Doubt

Global

Transactions.

This

utility

also

binds

the

package

T4XAIndbtPkg,

which

contains

the

SQL

statements

to

insert

and

delete

from

the

SYSIBM.INDOUBT

Table.

The

T4XAIndbtPkg

package

is

written

with

SQLJ.

The

specific

details

of

the

In-Doubt

utility

are

described

by

the

README

that

is

provided

with

the

installed

DB2

Universal

JDBC

Driver.

Refer

to

this

README

for

details

on

how

to

setup

and

perform

the

execution

of

the

In-Doubt

utility.

This

installation

process

requires

that

the

target

DB2

subsystem

be

configured

with

DDF

enabled

for

incoming

TCP/IP

connections.

1)

To

enable

DDF

on

the

target

DB2,

issue

the

DB2

-START

DDF

command

on

that

system.

2)

This

utility

requires

the

server

name

(or

IP

address)

and

the

port

number

for

the

target

DB2

V7.

To

obtain

this

information,

issue

a

DB2

-DISPLAY

DDF

command

on

the

target

DB2

V7

system.

This

displays

the

IPADDR

(IP

address),

the

SQL

DOMAIN

(server

name),

and

the

TCPPORT

number

that

can

be

used

as

input

to

the

utility.

Note:

This

setup

is

not

a

requirement

for

DB2

FOR

z/OS

Version

8

servers

because

DB2

FOR

z/OS

Version

8

natively

supports

XA

commands

over

DRDA

and

manages

the

In-Doubt

Global

Transactions

internally.

d.

Define

a

db2.jcc.propertiesFile

A

db2.jcc.propertiesFile

for

use

by

DB2

Universal

JDBC

Driver

Type

2

processing

under

WebSphere

Application

Server

for

z/OS

can

be

created

and

specified

as

input

to

the

driver.

This

runtime

properties

file

is

for

use

in

specifying

various

runtime

options

that

the

DB2

Universal

JDBC

Driver

uses

for

Type

2

connectivity.

These

options

are

specified

as

properties

in

the

form

of

parameter=value.

Refer

to

the

README

file

packaged

with

the

installed

DB2

Universal

JDBC

Driver

for

a

detailed

description

of

each

of

the

properties.

This

file

is

not

required;

however,

if

it

is

not

provided,

universal

driver

default

processing

is

performed.

Of

specific

interest

is

the

db2.jcc.ssid

property.

This

property

specifies

the

DB2

subsystem

identifier

(not

location

name),

to

be

used

by

the

DB2

20

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Universal

JDBC

Driver

Type

2

processing

as

the

local

subsystem

name

to

which

it

should

connect.

If

this

property

is

not

provided,

the

driver

uses

the

subsystem

identifier

that

it

finds

in

the

DSNHDECP

load

module.

If

the

installation

wants

to

use

the

DSNHDECP

load

module

to

specify

the

subsystem

identifier,

this

load

module

must

be

included

in

a

steplib

dataset

in

the

servant

region

PROCs

associated

with

each

server

that

will

use

the

DB2

identified

by

the

subsystem

ID.

Refer

to

the

README

file

packaged

with

the

universal

driver

for

more

information

on

using

this

load

module.

If

that

DSNHDECP

load

module

does

not

accurately

reflect

the

desired

subsystem,

or

if

multiple

subsystems

might

be

using

a

generic

DSNHDECP,

the

db2.jcc.ssid

property

must

be

specified.

Although

the

db2.jcc.propertiesFile

is

not

required,

if

you

choose

to

define

the

file,

you

must

specify

the

fully

qualified-hfs-filename.

To

do

this,

specify

the

file

as

a

JVM

System

property

as

follows:

v

db2.jcc.propertiesFile

=

<fully-qualified-hfs-filename>

Because

the

driver-general

properties

are

typically

specific

to

a

driver

load

(for

example,

server)

versus

to

all

servers

using

the

JDBC

provider,

it

is

best

that

this

JVM

property

be

set

at

the

server

level.

To

define

the

db2.jcc.propertiesFile=

property

to

the

server

level

using

the

WebSphere

Application

Server

for

z/OS

Administrative

Console:

1)

Under

the

WebSphere

Application

Server

for

z/OS

Administrative

Console,

go

to

Servers

>

Application

Servers,

then

click

the

server

to

which

you

want

to

add

the

JVM

property.

2)

From

the

selected

server

page,

go

to

Process

Definition

>

Servant.

3)

On

the

Servant

page,

scroll

down

to

the

Additional

Properties

at

the

bottom

of

the

page,

then

click

Java

Virtual

Machine.

4)

On

the

Java

Virtual

Machine

page,

scroll

down

to

Additional

Properties

at

the

bottom

of

the

page,

then

click

Custom

Properties.

5)

On

the

Custom

Properties

page,

scroll

down

to

New

to

configure

a

new

JVM

property

for

the

selected

server.

The

name

of

the

property

is

db2.jcc.propertiesFile.

The

value

of

the

property

is

the

fully-qualified-hfs-filename

that

you

created

and

initialized

with

the

DB2

Universal

JDBC

Driver

properties.

These

are

the

properties

that

you

want

the

Type

2

driver

to

use

for

the

selected

server

6)

Click

OK.

7)

Click

Save

to

save

the

new

JVM

property.
2.

Define

the

DB2

Universal

JDBC

Driver

Provider.

After

the

DB2

Universal

JDBC

Driver

is

configured

for

WebSphere

Application

Server

for

z/OS,

configure

a

DB2

Universal

JDBC

Driver

Provider,

which

is

non-XA

and/or

a

DB2

Universal

JDBC

Driver

Provider

(XA),

which

supports

XA.

In

doing

so,

it

is

important

to

note

that

if

you

use

both

the

DB2

Legacy

JDBC

Driver

and

the

DB2

Universal

JDBC

Driver

under

WebSphere

Application

Server

for

z/OS,

you

must

ensure

that

DB2

JDBC

providers

associated

with

these

two

drivers

are

not

located

on

the

same

server.

(Refer

to

Provider

Coexistence

Considerations).

IBM

suggests

that

you

define

your

DB2

Universal

JDBC

Driver

providers

at

a

server

level

to

reduce

the

chance

of

conflict

with

the

DB2

for

zOS

Local

JDBC

Provider

(RRS)

that

uses

the

DB2

Legacy

JDBC

Driver.

Likewise,

any

DB2

for

z/OS

Local

JDBC

Provider

you

have

defined

must

be

defined

at

the

server

level

to

avoid

conflict.

To

define

a

DB2

Universal

JDBC

Provider:

Chapter

2.

Accessing

data

from

applications

21

a.

From

the

WebSphere

Application

Server

for

z/OS

Administrative

Console,

click

Resources

>

JDBC

Providers.

b.

On

the

JDBC

Provider

page,

set

the

JDBC

Provider

scope

to

the

server

upon

which

you

want

to

install

the

new

provider.

c.

Click

Apply.

d.

Click

New.

e.

In

the

list

of

JDBC

providers

that

displays,

choose

the

type

of

DB2

Universal

JDBC

Driver

Provider

as

follows:

v

DB2

Universal

JDBC

Driver

Provider

This

provider

supports

driver

Types

2

and

4.

It

does

not

support

J2EE

XA

transaction

processing.

In

the

case

of

driverType

2

processing,

RRS

is

used

to

coordinate

transaction

processing

and

manage

global

transaction

using

two-phase

commit.

In

the

case

of

driverType

4,

one-phase

commit

processing

is

used

to

manage

transactions.

Note:

Do

not

select

this

provider

if

your

installation

has

the

z/OS

Application

Connectivity

to

DB2

for

z/OS

feature

defined

to

WebSphere

Application

Server

for

z/OS.

This

feature

provides

only

universal

driver

type

4

XA

connectivity,

which

is

not

supported

by

the

non-XA

DB2

Universal

JDBC

Driver

Provider.

v

DB2

Universal

JDBC

Driver

Provider

(XA)

This

provider

supports

only

driverType

4.

It

uses

J2EE

XA

to

manage

global

transactions

across

multiple

resource

managers

and

to

perform

two-phase

commit

processing.
f.

A

configuration

view

of

the

selected

provider

displays,

showing

the

default

name

of

the

provider,

the

classpath,

the

native

library

path,

and

the

datasource

implementation

classname

used

by

the

provider.

With

the

exception

of

the

provider

name,

typically

none

of

the

information

changes.

If

you

choose,

you

can

type

your

name

for

the

provider

in

the

Name

field.

g.

When

the

Provider

definition

is

complete,

click

Apply.

h.

Finally,

click

Save

to

save

the

new

JDBC

provider.
3.

Defining

a

DB2

Universal

JDBC

Driver

Provider

datasource

To

specify

a

data

source

for

the

defined

DB2

Universal

JDBC

Driver

Provider:

a.

From

the

WebSphere

Application

Server

for

z/OS

Administrative

Console,

click

Resources

>

JDBC

Providers.

On

the

JDBC

Providers

page

that

displays,

select

the

DB2

Universal

JDBC

Driver

Provider

for

which

you

will

define

a

datasource.

b.

On

the

DB2

Universal

JDBC

Driver

Provider

page

that

displays,

in

the

Additional

Properties

section

at

the

bottom

of

the

page,

make

a

choice

as

follows:

v

Choose

DataSources

if

you

want

to

define

a

datasource

for

a

DB2

Universal

JDBC

Driver

Provider

(XA).

In

this

case,

DataSources

(Version

4)

is

not

supported.

v

Choose

DataSources

or

DataSources

(Version

4)

if

you

want

to

define

a

datasource

for

a

DB2

Universal

JDBC

Driver

Provider.

This

choice

depends

on

the

type

of

datasource

you

want

to

define.
c.

On

the

DataSources

page

that

displays,

click

New.

d.

On

the

New

page,

complete

the

following

fields

as

required

for

your

Datasource:

1)

Name

2)

JNDI

name

22

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

3)

Component-managed

Authentication

Alias

(optional)

4)

Container-managed

Authentication

Alias

(optional)

5)

Mapping-Configuration

alias

(optional)

6)

Indicate

if

you

want

this

DataSource

to

be

used

for

container

managed

persistence.

Note:

If

you

set

the

driverType

property

for

the

datasource

to

4,

an

appropriate

managed

Authentication

Alias

must

be

specified.

If

you

set

the

driverType

property

for

the

datasource

to

2

and

no

managed

Authentication

Alias

is

specified,

the

user

identity

currently

associated

with

the

thread

at

the

time

of

a

getConnection

request

is

used

as

the

identity

associated

with

the

connection.

e.

Click

Apply.

f.

A

page

with

the

name

of

the

specified

datasource

displays.

Under

Additional

Properties

at

the

bottom

of

this

page,

click

Custom

Properties.

g.

In

the

Custom

Properties

page,

specify

the

property

settings

you

desire.

At

a

minimum,

the

following

datasource

properties

must

be

specified.

databaseName

The

location

name

of

the

target

database

used

when

establishing

connections

with

this

datasource

driverType

The

JDBC

connectivity

type

used

by

the

datasource.

If

you

want

to

use

a

driverType

4,

set

the

value

to

4.

If

you

want

to

use

a

driverType

2

,

set

the

value

to

2.

If

the

datasource

is

for

the

DB2

Universal

JDBC

Driver

Provider

(XA),

specify

only

driverType

4.

Specification

of

driverType

2

in

the

case

of

the

DB2

Universal

JDBC

Driver

Provider

(XA)

is

not

supported.

ServerName

The

TCP/IP

address

or

host

name

for

the

Distributed

Relational

Database

Architecture

(DRDA)

server.

This

property

is

required

only

if

driverType

is

set

to

4.

This

property

is

not

used

if

driverType

is

set

to

2.

PortNumber

This

is

the

TCP/IP

port

number

where

the

DRDA

server

resides.

Provide

a

value

for

this

property

only

if

driverType

is

set

to

4.

This

property

is

not

used

if

driverType

is

set

to

2.
h.

After

you

finish

specifying

the

desired

properties,

click

Apply.

i.

Click

Save

to

save

the

new

datasource.

Data

sources

An

application

uses

a

data

source

to

access

the

data

from

the

database.

A

data

source

is

associated

with

a

JDBC

provider

that

supplies

the

specific

JDBC

driver

implementation

class.

The

data

source

represents

the

J2EE

Connector

Architecture

(JCA)

connection

factory

for

the

relational

resource

adapter.

You

can

create

multiple

data

sources

associated

with

the

same

JDBC

provider.

Each

JDBC

provider

supports

the

interfaces

defined

by

Sun

Microsystems

listed

below,

with

the

exception

of

the

DB2

for

z/OS

Local

JDBC

Provider

(RRS),

which

only

Chapter

2.

Accessing

data

from

applications

23

provides

support

for

the

ConnectionPoolDataSource

implementation.

These

interfaces

enable

the

application

to

run

in

a

single-phase

or

two-phase

transaction

protocol.

v

ConnectionPoolDataSource

-

a

data

source

that

supports

application

participation

in

all

transactions,

including

two-phase

commit

transactions.

When

this

kind

of

data

source

is

involved

in

a

global

transaction,

transaction

recovery

is

not

provided

by

the

transaction

manager.

The

application

is

responsible

for

providing

the

backup

recovery

process

if

multiple

resource

managers

are

involved.

v

XADataSource

-

a

data

source

that

supports

application

participation

in

a

single-phase

or

a

global

(two-phase)

transaction

environment.

When

this

data

source

is

involved

in

a

global

transaction,

the

transaction

manager

provides

transaction

recovery.

Previously,

the

function

of

data

access

was

provided

by

a

single

connection

manager

(CM)

architecture.

This

connection

manager

architecture

remains

available

to

support

J2EE

1.2

applications,

but

a

new

connection

manager

architecture

is

provided,

based

on

the

JCA

architecture

supporting

the

new

J2EE

1.3

application

style.

These

two

separate

CM

architectures

are

represented

by

two

types

of

data

sources.

To

choose

the

right

data

source,

administrators

must

understand

the

nature

of

their

applications,

EJB

modules,

and

enterprise

beans.

v

Data

source

(Version

4.0)

-

this

data

source

runs

under

the

CM

architecture.

Applications

using

this

data

source

behave

as

if

they

were

running

in

Version

4.0.

v

Data

source

-

this

data

source

uses

the

JCA

standard

architecture

to

provide

J2EE

1.3

support.

It

runs

under

the

JCA

connection

manager

and

the

relational

resource

adapter.

Applications

using

this

type

of

data

source

might

behave

differently

because

of

the

J2EE

1.3

architecture.

Choice

of

data

source

v

J2EE

1.2

application

-

all

enterprise

beans,

JDBC

applications,

or

Servlets

2.2

components

must

use

the

4.0

data

source.

v

J2EE

1.3

application

-

–

EJB

1.1

Module

-

all

EJB

1.x

beans

must

use

the

4.0

data

source.

–

EJB

2.0

Module

-

enterprise

beans

that

include

container-managed

persistence

(CMP)

Version

2.0

and

1.x

must

use

the

new

data

source.

–

JDBC

applications

and

Servlet

2.3

-

must

use

the

new

data

source.

Data

access

beans

Data

access

beans

provide

a

rich

set

of

features

and

function,

while

hiding

much

of

the

complexity

associated

with

accessing

relational

databases.

They

are

Java

classes

written

to

the

JavaBeans

Specification.

You

can

use

the

data

access

beans

in

JavaBeans-compliant

tools,

such

as

the

IBM

WebSphere

Studio

Application

Developer

(WSAD).

Because

the

data

access

beans

are

also

Java

classes,

you

can

use

them

like

ordinary

classes.

The

data

access

beans

(in

the

package

com.ibm.db)

offer

the

following

capabilities:

Feature

Details

24

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Caching

query

results

You

can

retrieve

SQL

query

results

all

at

once

and

place

them

in

a

cache.

Programs

using

the

result

set

can

move

forward

and

backward

through

the

cache

or

jump

directly

to

any

result

row

in

the

cache.

For

large

result

sets,

the

data

access

beans

provide

ways

to

retrieve

and

manage

packets,

subsets

of

the

complete

result

set.

Updating

through

result

cache

Programs

can

use

standard

Java

statements

(rather

than

SQL

statements)

to

change,

add,

or

delete

rows

in

the

result

cache.

You

can

propagate

changes

to

the

cache

in

the

underlying

relational

table.

Querying

parameter

support

The

base

SQL

query

is

defined

as

a

Java

String,

with

parameters

replacing

some

of

the

actual

values.

When

the

query

runs,

the

data

access

beans

provide

a

way

to

replace

the

parameters

with

values

made

available

at

run

time.

Default

mappings

for

common

data

types

are

provided,

but

you

can

specify

whatever

your

Java

program

and

database

require.

Supporting

metadata

A

StatementMetaData

object

contains

the

base

SQL

query.

Information

about

the

query

(metadata)

enables

the

object

to

pass

parameters

into

the

query

as

Java

data

types.

Metadata

in

the

object

maps

Java

data

types

to

SQL

data

types

(as

well

as

the

reverse).

When

the

query

runs,

the

Java-datatyped

parameters

are

automatically

converted

to

SQL

data

types

as

specified

in

the

metadata

mapping.

When

results

return,

the

metadata

object

automatically

converts

SQL

data

types

back

into

the

Java

data

types

specified

in

the

metadata

mapping.

Connection

management

architecture

Note:

WebSphere

Application

Server

does

not

support

JDBC

3.0.

The

connection

management

architecture

for

both

relational

and

procedural

access

to

enterprise

information

systems

(EIS)

is

based

on

the

J2EE

Connector

Architecture

(JCA)

specification.

The

Connection

Manager

(CM),

which

pools

and

manages

connections

within

an

application

server,

is

capable

of

managing

connections

obtained

through

both

resource

adapters

(RAs)

defined

by

the

JCA

specification,

and

DataSources

defined

by

the

JDBC

2.0

Extensions

Specification.

To

make

DataSource

connections

manageable

by

this

CM

that

works

only

with

RAs,

WebSphere

Application

Server

Version

5.0

provides

its

own

resource

adapter.

From

the

CM

point

of

view,

JDBC

DataSources

and

JCA

connection

factories

look

the

same.

Users

of

DataSources

do

not

experience

any

programmatic

or

behavioral

differences

in

their

applications

because

of

the

underlying

JCA

architecture.

JDBC

users

still

configure

and

use

DataSources

according

to

the

JDBC

programming

model.

Applications

migrating

from

previous

versions

of

WebSphere

Application

Server

might

experience

some

behavioral

differences

because

of

the

change

from

J2EE

1.2

requirements

to

J2EE

1.3

requirements.

These

differences

are

not

related

to

the

adoption

of

the

JCA

architecture.

If

you

have

J2EE

1.2

applications

using

the

JDBC

API

that

you

wish

to

run

in

WebSphere

Application

Server

5.0,

the

JDBC

CM

from

Version

4.0

is

still

provided

as

a

configuration

option.

Using

this

configuration

option

enables

J2EE

1.2

Chapter

2.

Accessing

data

from

applications

25

applications

to

run

unaltered.

If

you

migrate

a

Version

4.0

application

to

Version

5.0,

using

the

Version

5.0

migration

tools,

the

application

automatically

uses

the

Version

4.0

connection

manager

after

migration.

However,

EJB

2.0

modules

in

J2EE

1.3

applications

cannot

use

the

JDBC

CM

from

Version

4.0.

Connection

pooling

When

accessing

any

database,

the

initial

database

connection

is

an

expensive

operation.

Connection

pooling

enables

administrators

to

establish

a

pool

of

database

connections

that

applications

can

share

on

an

application

server.

When

connection

pooling

capabilities

are

used,

performance

improvements

up

to

20

times

the

normal

results

are

realized.

WebSphere

Application

Server

does

not

support

JDBC

3.0.

Each

time

a

resource

attempts

to

access

a

backend

store

(such

as

a

database),

the

resource

must

connect

to

that

data

store.

A

connection

requires

resources

to

create,

maintain,

and

then

release

the

connection

when

it

is

no

longer

required.

The

total

data

store

overhead

for

an

application

is

particularly

high

for

Web-based

applications

because

Web

users

connect

and

disconnect

more

frequently.

In

addition,

user

interactions

are

typically

shorter.

Often,

more

effort

is

spent

connecting

and

disconnecting

than

is

spent

during

the

interactions.

Also,

because

Internet

requests

can

arrive

from

virtually

anywhere,

you

can

find

usage

volumes

large

and

difficult

to

predict.

To

help

lessen

these

overhead

problems,

the

WebSphere

Application

Server

enables

administrators

to

establish

a

pool

of

backend

connections

that

applications

can

share

on

an

application

server.

Connection

pooling

spreads

the

connection

overhead

across

several

user

requests,

thereby

conserving

resources

for

future

requests.

WebSphere

Application

Server

supports

JDBC

2.0

Standard

Extension

APIs

to

provide

support

for

connection

pooling

and

connection

reuse.

The

connection

pool

is

used

to

direct

JDBC

calls

within

the

application,

as

well

as

for

enterprise

beans

using

the

database.

Each

entity

EJB

transaction

requires

an

additional

connection

to

the

database

specifically

to

handle

the

transaction.

Take

this

into

account

when

calculating

the

number

of

data

source

connections.

On

UNIX

platforms,

a

separate

DB2

process

is

created

for

each

connection

and

these

processes

quickly

affect

performance

on

systems

with

low

memory

and

cause

errors.

If

clones

are

used,

one

data

pool

exists

for

each

clone.

This

is

important

when

configuring

the

database

maximum

connections.

Benefits

of

connection

pooling

Connection

pooling

can

improve

the

response

time

of

any

application

that

requires

connections,

especially

Web-based

applications.

When

a

user

makes

a

request

over

the

Web

to

a

resource,

the

resource

accesses

a

data

source.

With

connection

pooling,

most

user

requests

do

not

incur

the

overhead

of

creating

a

new

connection

because

the

data

source

can

locate

and

use

an

existing

connection

from

the

pool

of

connections.

When

the

request

is

satisfied

and

the

response

is

returned

to

the

user,

the

resource

returns

the

connection

to

the

connection

pool

for

reuse.

The

overhead

of

a

disconnect

is

avoided.

Each

user

request

incurs

a

fraction

of

the

26

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

cost

for

connecting

or

disconnecting.

After

the

initial

resources

are

used

to

produce

the

connections

in

the

pool,

additional

overhead

is

insignificant

because

the

existing

connections

are

reused.

When

to

use

connection

pooling

Use

WebSphere

connection

pooling

in

an

application

that

meets

any

of

the

following

criteria:

v

It

cannot

tolerate

the

overhead

of

obtaining

and

releasing

connections

whenever

a

connection

is

used.

v

It

requires

Java

Transaction

API

(JTA)

transactions

within

WebSphere

Application

Server.

v

It

needs

to

share

connections

among

multiple

users

within

the

same

transaction.

v

It

needs

to

take

advantage

of

product

features

for

managing

local

transactions

within

the

application

server.

v

It

does

not

manage

the

pooling

of

its

own

connections.

v

It

does

not

manage

the

specifics

of

creating

a

connection,

such

as

the

database

name,

user

name,

or

password

How

connections

are

pooled

together

Whenever

you

configure

a

unique

data

source

or

connection

factory,

you

are

required

to

give

it

a

unique

Java

Naming

and

Directory

Interface

(JNDI)

name.

This

JNDI

name,

along

with

its

configuration

information,

is

used

to

create

a

connection

pool.

A

separate

connection

pool

exists

for

each

configured

data

source

or

connection

factory.

A

separate

instance

of

a

given

configured

connection

pool

is

created

on

each

application

server

that

uses

that

data

source

or

connection

factory.

For

example,

if

you

run

a

three

server

cluster

in

which

all

of

the

servers

use

myDataSource,

and

myDataSource

has

a

maximum

connections

setting

of

10,

then

you

can

generate

up

to

30

connections

(three

servers

times

10

connections).

Be

sure

to

consider

this

fact

when

determining

how

many

connections

to

your

backend

resource

you

can

support.

It

is

also

important

to

note

that

when

using

connection

sharing,

it

is

only

possible

to

share

connections

obtained

from

the

same

connection

pool.

Avoiding

a

deadlock:

Deadlock

can

occur

if

the

application

requires

more

than

one

concurrent

connection

per

thread,

and

the

database

connection

pool

is

not

large

enough

for

the

number

of

threads.

Suppose

each

of

the

application

threads

requires

two

concurrent

database

connections

and

the

number

of

threads

is

equal

to

the

maximum

connection

pool

size.

Deadlock

can

occur

when

both

of

the

following

are

true:

v

Each

thread

has

its

first

database

connection,

and

all

are

in

use.

v

Each

thread

is

waiting

for

a

second

database

connection,

and

none

would

become

available

since

all

threads

are

blocked.

To

prevent

the

deadlock

in

this

case,

the

Max

Connections

value

for

the

database

connection

pool

should

be

increased

by

at

least

one.

Doing

this

would

allow

for

at

least

one

of

the

waiting

threads

to

obtain

its

second

database

connection

and

to

avoid

a

deadlock.

To

avoid

deadlock,

code

the

application

to

use,

at

most,

one

connection

per

thread.

If

the

application

is

coded

to

require

C

concurrent

database

connections

per

thread,

the

connection

pool

must

support

at

least

the

following

number

of

connections,

where

T

is

the

maximum

number

of

threads.

T

*

(C

-

1)

+

1

Chapter

2.

Accessing

data

from

applications

27

The

connection

pool

settings

are

directly

related

to

the

number

of

connections

that

the

database

server

is

configured

to

support.

If

the

maximum

number

of

connections

in

the

pool

is

raised,

and

the

corresponding

settings

in

the

database

are

not

raised,

the

application

fails

and

SQL

exception

errors

are

displayed

in

the

SYSOUT

of

the

application

servant

region.

Connection

life

cycle

A

ManagedConnection

object

is

always

in

one

of

three

states:

DoesNotExist,

InFreePool,

or

InUse.

Before

a

connection

is

created,

it

must

be

in

the

DoesNotExist

state.

After

a

connection

is

created,

it

can

be

in

either

the

InUse

or

the

InFreePool

state,

depending

on

whether

it

is

allocated

to

an

application.

Between

these

three

states

are

transitions.

These

transitions

are

controlled

by

guarding

conditions.

A

guarding

condition

is

one

in

which

true

indicates

when

you

can

take

the

transition

into

another

legal

state.

For

example,

you

can

make

the

transition

from

the

InFreePool

to

InUse

state

only

if:

v

the

application

has

called

the

data

source

or

connection

factory

.getConnection

method

(getConnection)

v

a

free

connection

is

available

in

the

pool

with

matching

properties

(freeConnectionAvailable)

v

and

one

of

the

two

following

conditions

are

true:

–

the

getConnection

request

is

on

behalf

of

a

resource

reference

that

is

marked

unsharable

–

the

getConnection

request

is

on

behalf

of

a

resource

reference

that

is

marked

shareable

but

no

shareable

connection

in

use

has

the

same

properties.

This

transition

description

follows:

InFreePool

>

InUse:

getConnection

AND

freeConnectionAvailable

AND

NOT(shareableConnectionAvailable)

Here

is

a

list

of

guarding

conditions

and

descriptions.

Condition

Description

ageTimeoutExpired

Connection

is

older

then

its

ageTimeout

value.

close

Application

calls

close

method

on

the

Connection

object.

fatalErrorNotification

A

connection

has

just

experienced

a

fatal

error.

freeConnectionAvailable

A

connection

with

matching

properties

is

available

in

the

free

pool.

getConnection

Application

calls

getConnection

method

on

DataSource

or

ConnectionFactory

object.

markedStale

Connection

is

marked

as

stale,

typically

in

response

to

a

FatalErrorNotification.

noOtherReferences

There

is

only

one

connection

handle

to

the

ManagedConnection,

and

the

Transaction

Service

is

not

holding

a

reference

to

the

ManagedConnection.

28

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Condition

Description

noTx

No

transaction

is

in

force.

poolSizeGTMin

Connection

pool

size

is

greater

than

the

minimum

pool

size

(minimum

number

of

connections)

poolSizeLTMax

Pool

size

is

less

than

the

maximum

pool

size

(maximum

number

of

connections)

shareableConnectionAvailable

The

getConnection

request

was

for

a

shareable

connection

and

one

with

matching

properties

is

in

use

and

available

to

share.

TxEnds

The

transaction

has

ended.

unshareableConnectionRequest

The

getConnection

request

is

for

an

unshareable

connection.

unusedTimeoutExpired

Connection

is

in

the

free

pool

and

not

in

use

past

its

unused

timeout

value.

Getting

connections

The

first

set

of

transitions

covered

are

those

in

which

the

application

requests

a

connection

from

either

a

data

source

or

a

connection

factory.

In

some

of

these

scenarios,

a

new

connection

to

the

database

results.

In

others,

the

connection

might

be

retrieved

from

the

connection

pool

or

shared

with

another

request

for

a

connection.

DoesNotExist

Every

connection

begins

its

life

cycle

in

the

DoesNotExist

state.

When

an

application

server

starts,

the

connection

pool

does

not

exist.

Therefore,

there

are

no

connections.

The

first

connection

is

not

created

until

an

application

requests

its

first

connection.

Additional

connections

are

created

as

needed,

according

to

the

guarding

condition.

getConnection

AND

NOT(freeConnectionAvailable)

AND

poolSizeLTMax

AND

(NOT(shareableConnectionAvailable)

OR

unshareableConnectionRequest)

This

transition

specifies

that

a

Connection

object

is

not

created

unless

the

following

conditions

occur:

v

The

application

calls

the

getConnection()

method

on

the

data

source

or

connection

factory

v

No

connections

are

available

in

the

free

pool

(NOT(freeConnectionAvailable))

v

The

pool

size

is

less

than

the

maximum

pool

size

(poolSizeLTMax)

v

If

the

request

is

for

a

sharable

connection

and

there

is

no

sharable

connection

already

in

use

with

the

same

sharing

properties

(NOT(shareableConnectionAvailable))

OR

the

request

is

for

an

unsharable

connection

(unshareableConnectionRequest)

All

connections

begin

in

the

DoesNotExist

state

and

are

only

created

when

the

application

requests

a

connection.

The

pool

grows

from

0

to

the

maximum

number

of

connections

as

applications

request

new

connections.

The

pool

is

not

created

with

the

minimum

number

of

connections

when

the

server

starts.

If

the

request

is

for

a

sharable

connection

and

a

connection

with

the

same

sharing

properties

is

already

in

use

by

the

application,

the

connection

is

shared

by

two

or

Chapter

2.

Accessing

data

from

applications

29

more

requests

for

a

connection.

In

this

case,

a

new

connection

is

not

created.

For

users

of

the

JDBC

API

these

sharing

properties

are

most

often

userid/password

and

transaction

context;

for

users

of

the

Resource

Adapter

Common

Client

Interface

(CCI)

they

are

typically

ConnectionSpec,

Subject,

and

transaction

context.

InFreePool

The

transition

from

the

InFreePool

state

to

the

InUse

state

is

the

most

common

transition

when

the

application

requests

a

connection

from

the

pool.

InFreePool>InUse:

getConnection

AND

freeConnectionAvailable

AND

(unshareableConnectionRequest

OR

NOT(shareableConnectionAvailable))

This

transition

states

that

a

connection

is

placed

in

use

from

the

free

pool

if:

v

the

application

has

issued

a

getConnection()

call

v

a

connection

is

available

for

use

in

the

connection

pool

(freeConnectionAvailable),

v

and

one

of

the

following

is

true:

–

the

request

is

for

an

unsharable

connection

(unsharableConnectionRequest)

–

no

connection

with

the

same

sharing

properties

is

already

in

use

in

the

transaction.

(NOT(sharableConnectionAvailable)).

Any

connection

request

that

a

connection

from

the

free

pool

can

fulfill

does

not

result

in

a

new

connection

to

the

database.

Therefore,

if

there

is

never

more

than

one

connection

used

at

a

time

from

the

pool

by

any

number

of

applications,

the

pool

never

grows

beyond

a

size

of

one.

This

number

can

be

less

than

the

minimum

number

of

connections

specified

for

the

pool.

One

way

that

a

pool

grows

to

the

minimum

number

of

connections

is

if

the

application

has

multiple

concurrent

requests

for

connections

that

must

result

in

a

newly

created

connection.

InUse

The

idea

of

connection

sharing

is

seen

in

the

transition

on

the

InUse

state.

InUse>InUse:

getConnection

AND

ShareableConnectionAvailable

This

transition

states

that

if

an

application

requests

a

shareable

connection

(getConnection)

with

the

same

sharing

properties

as

a

connection

that

is

already

in

use

(ShareableConnectionAvailable),

the

existing

connection

is

shared.

The

same

user

(user

name

and

password,

or

subject,

depending

on

authentication

choice)

can

share

connections

but

only

within

the

same

transaction

and

only

when

all

of

the

sharing

properties

match.

For

JDBC

connections,

these

properties

include

the

isolationLevel

which

is

configurable

on

the

resource-reference

(IBM

WebSphere

extension)

to

data

source

default.

For

a

resource

adapter

factory

connection,

these

properties

include

those

specified

on

the

ConnectionSpec.

Because

a

transaction

is

normally

associated

with

a

single

thread,

you

should

never

share

connections

across

threads.

Note:

It

is

possible

to

see

the

same

connection

on

multiple

threads

at

the

same

time,

but

this

situation

is

an

error

state

usually

caused

by

an

application

programming

error.

30

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Returning

connections

All

of

the

transitions

so

far

have

covered

getting

a

connection

for

application

use.

From

this

point,

the

transitions

result

in

a

connection

closing

and

either

returning

to

the

free

pool

or

being

destroyed.

Applications

should

explicitly

close

connections

(note:

the

connection

that

the

user

gets

back

is

really

a

connection

handle)

by

calling

close()

on

the

Connection

object.

In

most

cases,

this

action

results

in

the

following

transition:

InUse>InFreePool:

(close

AND

noOtherReferences

AND

NoTx

AND

UnshareableConnection)

OR

(ShareableConnection

AND

TxEnds)

Conditions

that

cause

the

transition

from

the

InUse

state

are:

v

If

the

application

(or

the

container)

calls

close()

(close)

and

there

are

no

references

(noOtherReferences)

either

by

the

application

(application

sharing)

or

by

the

transaction

manager

(NoTx

-

who

holds

a

reference

when

the

connection

is

enlisted

in

a

transaction),

the

Connection

object

returns

to

the

free

pool.

v

If

the

connection

was

enlisted

in

a

transaction

but

the

transaction

manager

ends

the

transaction

(txEnds),

and

the

connection

was

a

shareable

connection

(ShareableConnection),

the

connection

closes

and

returns

to

the

pool.

When

the

application

calls

close()

on

a

connection,

it

is

returning

the

connection

to

the

pool

of

free

connections;

it

is

not

closing

the

connection

to

the

data

store.

When

the

application

calls

close()

on

a

currently

shared

connection,

the

connection

is

not

returned

to

the

free

pool.

Only

after

the

application

drops

the

last

reference

to

the

connection,

and

the

transaction

is

over,

is

the

connection

returned

to

the

pool.

Applications

using

unsharable

connections

must

take

care

to

close

connections

in

a

timely

manner.

Failure

to

do

so

can

starve

out

the

connection

pool

making

it

impossible

for

any

application

running

on

the

server

to

get

a

connection.

When

the

application

calls

close()

on

a

connection

enlisted

in

a

transaction,

the

connection

is

not

returned

to

the

free

pool.

Because

the

transaction

manager

must

also

hold

a

reference

to

the

connection

object,

the

connection

cannot

return

to

the

free

pool

until

the

transaction

ends.

Once

a

connection

is

enlisted

in

a

transaction,

you

cannot

use

it

in

any

other

transaction

by

any

other

application

until

after

the

transaction

is

complete.

There

is

a

case

where

an

application

calling

close()

can

result

in

the

connection

to

the

data

store

closing

and

bypassing

the

connection

return

to

the

pool.

This

situation

happens

if

one

of

the

connections

in

the

pool

is

considered

stale.

A

connection

is

considered

stale

if

you

can

no

longer

use

it

to

contact

the

data

store.

For

example,

a

connection

is

marked

stale

if

the

data

store

server

is

shut

down.

When

a

connection

is

marked

as

stale,

the

entire

pool

is

cleaned

out

by

default

because

it

is

very

likely

that

all

of

the

connections

are

stale

for

the

same

reason

(or

you

can

set

your

configuration

to

clean

just

the

failing

connection).

This

cleansing

includes

marking

all

of

the

currently

InUse

connections

as

stale

so

they

are

destroyed

upon

closing.

The

following

transition

states

the

behavior

on

a

call

to

close()

when

the

connection

is

marked

as

stale:

InUse>DoesNotExist:

close

AND

markedStale

AND

NoTx

AND

noOtherReferences

Chapter

2.

Accessing

data

from

applications

31

This

transition

states

that

if

the

application

calls

close()

on

the

connection

and

the

connection

is

marked

as

stale

during

the

pool

cleansing

step

(markedStale),

the

connection

object

closes

to

the

data

store

and

is

not

returned

to

the

pool.

Finally,

you

can

close

connections

to

the

data

store

and

remove

them

from

the

pool.

This

transition

states

that

there

are

three

cases

in

which

a

connection

is

removed

from

the

free

pool

and

destroyed.

1.

If

a

fatal

error

notification

is

received

from

the

resource

adapter

(or

data

source).

A

fatal

error

notification

(FatalErrorNotification)

is

received

from

the

resource

adaptor

when

something

happens

to

the

connection

to

make

it

unusable.

All

connections

currently

in

the

free

pool

are

destroyed.

2.

If

the

connection

is

in

the

free

pool

for

longer

than

the

unused

timeout

period

(UnusedTimeoutExpired)

and

the

pool

size

is

greater

than

the

minimum

number

of

connections

(poolSizeGTMin),

the

connection

is

removed

from

the

free

pool

and

destroyed.

This

mechanism

enables

the

pool

to

shrink

back

to

its

minimum

size

when

the

demand

for

connections

decreases.

3.

If

an

age

timeout

is

configured

and

a

given

connection

is

older

than

the

timeout.

This

mechanism

provides

a

way

to

recycle

connections

based

on

age.

Unshareable

and

shareable

connections

The

product

supports

both

unshareable

and

shareable

connections.

An

unshareable

connection

is

not

shared

with

other

components

in

the

application.

The

component

using

this

connection

has

full

control

of

this

connection.

You

can

share

a

shareable

connection

with

other

components

within

the

same

transaction

as

long

as

each

getConnection

request

has

the

same

connection

properties.

To

enable

connection

sharing

for

data

sources,

the

following

connection

properties

must

be

the

same:

v

Java

Naming

and

Directory

Interface

(JNDI)

name.

While

not

actually

a

connection

property,

this

requirement

simply

means

that

you

can

only

share

connections

from

the

same

dataSource

in

the

same

server.

v

Resource

authentication

v

In

relational

databases:

–

Isolation

level

(corresponds

to

Access

Intent

in

the

CMP

bean)

–

Readonly

–

Catalog

–

TypeMap

To

enable

connection

sharing

for

resource

adapters

within

the

same

transaction,

the

following

connection

properties

must

be

the

same:

v

JNDI

name.

While

not

actually

a

connection

property,

this

requirement

simply

means

that

you

can

only

share

connections

from

the

same

resource

adapter

in

the

same

server.

v

Resource

authentication

In

addition,

the

ConnectionSpec

used

to

get

the

connection

must

also

be

the

same.

For

more

information

on

sharing

a

connection

with

a

CMP

bean,

see

Sharing

a

connection

with

a

CMP

bean.

Access

to

a

resource

marked

as

Unshareable

means

that

there

is

a

one-to-one

relationship

between

the

connection

handle

a

component

is

using

and

the

physical

connection

the

handle

is

associated

with.

This

access

implies

that

every

call

to

getConnection

returns

a

connection

handle

solely

for

the

requesting

user.

Typically,

32

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

you

must

choose

unshareable

if

you

might

do

things

to

the

connection

that

could

result

in

unexpected

behavior

occurring

to

another

application

that

is

sharing

the

connection

(for

example,

changing

the

isolation

level).

Marking

a

resource

as

Shareable

allows

for

greater

scalability.

Instead

of

creating

new

physical

connections

on

every

getConnection

invocation,

the

physical

connection

(that

is,

managed

connection)

is

shared

through

multiple

connection

handles,

as

long

as

each

getConnection

request

has

the

same

connection

properties.

But,

sharing

a

connection

means

that

each

user

must

not

do

anything

to

the

connection

that

could

change

its

behavior

and

disrupt

a

sharing

partner

(for

example,

changing

the

isolation

level).

The

user

also

cannot

code

an

application

expecting

sharing

to

take

place

because

it

is

up

to

the

run

time

to

decide

whether

or

not

to

share

a

particular

connection.

For

WebSphere

Application

Server,

all

sharing

of

connections

is

relative

to

the

current

Unit

of

Work

(UOW)

boundary.

Anyone

within

a

specific

transaction,

when

getting

a

connection

from

a

specific

connection

pool,

gets

a

handle

to

the

same

physical

connection

(if

the

sharing

properties

are

the

same).

Factors

that

determine

sharing

The

listing

here

is

not

an

exhaustive

one.

The

product

might

or

might

not

share

connections

under

different

circumstances.

v

Only

connections

acquired

with

the

same

resource

reference

(resource-ref),

which

specifies

the

res-sharing-scope

as

Shareable,

are

candidates

for

sharing.

The

resource-ref

properties

of

res-sharing-scope

and

res-auth

and

the

IBM

extension

isolationLevel

help

determine

if

it

is

possible

to

share

a

connection.

IBM

extension

isolationLevel

is

stored

in

IBM

deployment

descriptor

extension

file;

for

example:

ibm-ejb-jar-ext.xmi.

v

You

can

only

share

connections

that

are

requested

with

the

same

properties.

v

Connection

Sharing

only

occurs

between

different

component

instances

if

they

are

within

a

transaction

(container-

or

user-initiated

transaction).

v

Connection

Sharing

only

occurs

within

a

sharing

boundary.

Current

sharing

boundaries

include

Transactions

and

LocalTransactionContainment

(LTC)

boundaries.

v

Connection

Sharing

rules

within

an

LTC

Scope:

–

For

shareable

connections,

only

Connection

Reuse

is

allowed

within

a

single

component

instance.

Connection

reuse

occurs

when

the

following

actions

are

taken

with

a

connection:

get,

use,

commit/rollback,

close;

get,

use,

commit/rollback,

close.

Note

that

if

you

use

the

LTC

resolution-control

of

ContainerAtBoundary

then

no

start/commit

is

needed

because

that

action

is

handled

by

the

container.

The

connection

returned

on

the

second

get

is

the

same

connection

as

that

returned

on

the

first

get

(if

the

same

properties

are

used).

Because

the

connection

use

is

serial,

only

one

connection

handle

to

the

underlying

physical

connection

is

used

at

a

time,

so

true

connection

sharing

does

not

take

place.

The

term

″reuse″

is

more

accurate.
v

Shareable

connections

between

transactions

(either

container-managed

transactions

(CMT),

bean-managed

transactions

(BMT),

or

LTC

transactions)

follow

these

caching

rules:

–

In

general,

setting

properties

on

shareable

connections

is

not

allowed

because

a

user

of

one

connection

handle

might

not

anticipate

a

change

made

by

another

connection

handle.

This

limitation

is

part

of

the

J2EE

1.3

standard.

–

General

users

of

resource

adapters

can

set

the

connection

properties

on

the

connection

factory

getConnection

call

by

passing

them

in

a

ConnectionSpec.

However,

the

properties

set

on

the

connection

during

one

transaction

are

not

guaranteed

to

be

the

same

when

used

in

the

next

transaction.

Because

it

is

Chapter

2.

Accessing

data

from

applications

33

not

valid

to

share

connections

outside

of

a

sharing

scope,

connection

handles

are

moved

off

of

the

physical

connection

with

which

they

are

currently

associated

when

a

transaction

ends.

That

physical

connection

is

returned

to

the

free

connection

pool.

Connections

are

cleaned

before

going

in

the

free

pool.

The

next

time

the

handle

is

used,

it

is

automatically

associated

with

an

appropriate

connection.

The

appropriateness

is

based

on

the

security

login

information,

connection

properties,

and

(for

the

JDBC

API)

the

isolation

level

specified

in

the

extended

resource

reference,

passed

in

on

the

original

request

that

returned

the

current

handle.

Any

properties

set

on

the

connection

after

it

was

retrieved

are

lost.

–

For

JDBC

users,

WebSphere

Application

Server

provides

an

extension

to

enable

you

to

pass

the

connection

properties

through

the

ConnectionSpec.

Use

caution

when

setting

properties

and

sharing

connections

in

a

local

transaction

scope.

Ensure

that

other

components

with

which

the

connection

is

shared

are

expecting

the

behavior

resulting

from

your

settings.
v

You

cannot

set

the

IsolationLevel

when

using

a

shareable

connection

for

the

JDBC

API

using

a

relational

resource

adapter

in

a

global

transaction.

The

product

provides

an

extension

to

the

resource

reference

to

enable

you

to

specify

the

isolation

level.

If

your

application

requires

the

use

of

multiple

isolation

levels,

create

multiple

resource

references

and

map

them

to

the

same

data

source

or

connection

factory.

Sharing

a

connection

with

a

CMP

bean

WebSphere

Application

Server

allows

you

to

share

a

physical

connection

between

a

CMP

bean,

a

BMP

bean,

and

a

JDBC

application

to

reduce

the

resource

allocation

or

deadlock

scenarios.

There

are

several

ways

to

ensure

that

all

these

Entity

beans

and

the

JDBC

applications

are

sharing

the

same

physical

connection.

v

Sharing

a

connection

between

CMP

beans

or

methods

When

all

CMP

bean

methods

use

the

same

access

intent,

they

all

share

the

same

physical

connection.

A

different

access

intent

policy

triggers

the

allocation

of

a

different

physical

connection.

For

example,

a

CMP

bean

has

two

methods;

method

1

is

associated

with

wsPessimisticUpdate

intent,

whereas

method

2

has

wsOptimisticUpdate

access

intent.

Method

1

and

method

2

cannot

share

the

same

physical

connection

within

a

transaction.

In

other

words,

an

XA

DataSource

is

required

to

run

in

a

global

transaction.

You

can

experience

some

deadlocks

from

a

database

if

both

methods

try

to

access

the

same

table.

Therefore,

sharing

a

connection

is

determined

by

the

access

intents

that

are

defined

in

the

CMP

methods.

v

Sharing

a

connection

between

CMP

and

BMP

beans

There

are

two

options

to

ensure

that

both

CMP

and

BMP

beans

share

the

same

physical

connection:

–

Define

the

same

access

intent

on

both

CMP

and

BMP

bean

methods.

Because

both

use

the

same

access

intent,

they

share

the

same

physical

connection.

The

advantage

to

using

this

option

is

that

the

backend

is

transparent

to

a

BMP

bean;

however,

this

BMP

is

not

portable

because

it

uses

the

WebSphere

extended

API

to

handle

the

isolation

level.

For

more

information,

refer

to

the

code

example

in

Example:

Accessing

data

using

IBM

extended

APIs

to

share

connections

between

container-managed

and

bean-managed

persistence

beans.

–

Determine

the

isolation

level

that

the

access

intent

uses

on

a

CMP

bean

method,

then

use

the

corresponding

isolation

level

that

is

specified

on

the

resource

reference

to

look

up

a

data

source

and

a

connection.

This

option

is

more

of

a

manual

process,

and

the

isolation

level

might

be

different

from

database

to

database.

For

more

information

refer

to

the

isolation

level

and

34

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

access

intent

mapping

table:

Access

intent

isolation

levels

and

update

locks

and

the

Isolation

level

and

resource

reference

section.
v

Sharing

a

connection

between

CMP

and

a

JDBC

application

that

is

used

by

a

servlet

or

a

Session

Bean

Determine

the

isolation

level

that

the

access

intent

uses

on

a

CMP

bean

method,

then

use

the

corresponding

isolation

level

specified

on

the

resource

reference

to

look

up

a

data

source

and

a

connection.

For

more

information

refer

to

Access

intent

isolation

levels

and

update

locks

and

Isolation

level

and

resource

reference.

Connection

handles

A

connection

handle

is

a

representation

of

a

physical

connection.

To

use

a

backend

resource

(such

as

a

relational

database)

in

the

WebSphere

Application

Server

you

must

get

a

connection

to

that

resource.

When

you

call

the

getConnection()

method,

you

get

a

connection

handle

returned.

The

handle

is

not

the

physical

connection.

The

physical

connection

is

managed

by

the

connection

manager.

There

are

two

significant

configurations

or

usage

patterns

that

affect

how

connection

handles

are

used

and

how

they

behave.

The

first

is

the

res-sharing-scope,

which

is

defined

by

the

resource-reference

used

to

look

up

the

DataSource

or

Connection

Factory.

This

property

tells

the

connection

manager

whether

or

not

you

can

share

this

connection.

The

second

factor

that

affects

connection

handle

behavior

is

the

usage

pattern.

There

are

essentially

two

usage

patterns.

The

first

is

called

the

get/use/close

pattern.

It

is

used

within

a

single

method

and

without

calling

another

method

that

might

get

a

connection

from

the

same

data

source

or

connection

factory.

An

application

using

this

pattern

does

the

following:

1.

gets

a

connection

2.

does

its

work

3.

commits

(if

appropriate)

4.

closes

the

connection.

The

second

usage

pattern

is

called

the

cached

handle

pattern.

This

is

where

an

application:

1.

gets

a

connection

2.

begins

a

global

transaction

3.

does

work

on

the

connection

4.

commits

a

global

transaction

5.

does

work

on

the

connection

again

A

cached

handle

is

a

connection

handle

that

is

held

across

transaction

and

method

boundaries

by

an

application.

Keep

in

mind

the

following

considerations

for

using

cached

handles:

v

Cached

handle

support

requires

some

additional

connection

handle

management

across

these

boundaries,

which

can

impact

performance.

For

example,

in

a

JDBC

application,

Statements,

PreparedStatements,

and

ResultSets

are

closed

implicitly

after

a

transaction

ends,

but

the

connection

remains

valid.

v

You

are

encouraged

not

to

cache

the

connection

across

the

transaction

boundary

for

shareable

connections;

the

get/use/close

pattern

is

preferred.

v

5.1 +

Caching

of

connection

handles

across

servlet

methods

is

limited

to

Java

Database

Connectivity

(JDBC)

and

Java

Message

Service

(JMS)

resources.

Other

Chapter

2.

Accessing

data

from

applications

35

non-relational

resources,

such

as

Customer

Information

Control

System

(CICS)

or

IMS,

currently

cannot

have

their

connection

handles

cached

in

a

servlet;

you

need

to

get,

use,

and

close

the

connection

handle

within

each

method

invocation.

(This

limitation

only

applies

to

single-threaded

servlets

because

multithreaded

servlets

do

not

allow

caching

of

connection

handles.)

The

following

code

segment

shows

the

cached

connection

pattern.

Connection

conn

=

ds.getConnection();

ut.begin();

conn.prepareStatement(".....");

-->

Connection

runs

in

global

transaction

mode

...

ut.commit();

conn.prepareStatement(".....");

--->

Connection

still

valid

but

runs

in

autoCommit(True);

...

Unshareable

connections

Some

characteristics

of

connection

handles

retrieved

with

a

res-sharing-scope

of

unshareable

are

described

in

the

following

sections.

The

possible

benefits

of

unshared

connections

v

Your

application

always

maintains

a

direct

link

with

a

physical

connection

(managed

connection).

v

The

connection

always

has

a

one-to-one

relationship

between

the

connection

handle

and

the

managed

connection.

v

In

most

cases,

the

connection

does

not

close

until

the

application

closes

it.

v

You

can

use

a

cached

unshared

connection

handle

across

multiple

transactions.

v

The

connection

can

have

a

performance

advantage

in

some

cached

handle

situations.

Because

unshared

connections

do

not

have

the

overhead

of

moving

connection

handles

off

managed

connections

at

the

end

of

the

transaction,

there

is

less

overhead

in

using

a

cached

unshared

connection.

The

possible

drawbacks

of

unshared

connections

v

Inefficient

use

of

your

connection

resources.

For

example,

if

within

a

single

transaction

you

get

more

than

one

connection

(with

the

same

properties)

using

the

same

data

source

or

connection

factory

(same

resource-ref)

then

you

use

multiple

physical

connections

when

you

use

unshareable

connections.

v

Wasted

connections.

It

is

important

not

to

keep

the

connection

handle

open

(that

is,

you

have

not

called

the

close()

method)

any

longer

then

it

is

needed.

As

long

as

you

keep

an

unshareable

connection

open

you

tie

up

the

physical

connection,

even

if

you

currently

are

not

using

it.

v

Deadlock

considerations.

Depending

on

how

your

components

interact

with

the

database

within

a

transaction,

using

unshared

connections

can

lead

to

deadlocks

in

the

database.

For

example,

within

a

transaction,

component

A

gets

a

connection

to

data

source

X

and

updates

table

1,

and

then

calls

component

B.

Component

B

gets

another

connection

to

data

source

X,

and

updates/reads

table

1

(or

even

worse

the

same

row

as

component

A).

In

some

circumstances,

depending

on

the

particular

database,

its

locking

scheme,

and

the

transaction

isolation

level,

a

deadlock

can

occur.

In

the

same

scenario,

but

with

a

shared

connection,

a

deadlock

does

not

occur

because

all

the

work

was

done

on

the

same

connection.

It

is

worth

noting

that

when

writing

code

which

uses

shared

connections,

it

is

important

that

the

code

be

written

in

such

a

way

that

it

expects

other

work

to

be

done

on

the

same

connection,

possibly

within

the

same

transaction.

If

you

decide

to

use

an

unshareable

connection,

you

must

set

the

maximum

connections

property

on

the

connection

factory

or

data

source

correctly.

An

exception

occurs

if

you

try

to

exceed

the

maximum

connections

value.

36

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Shareable

connections

Some

characteristics

of

connection

handles

retrieved

with

a

res-sharing-scope

of

shareable

are

described

in

the

following

sections.

The

possible

benefits

of

shared

connections

v

They

can

share

a

managed

connection

with

one

or

more

connection

handles

within

a

sharing,

boundary

depending

upon

how

the

handle

is

retrieved

and

which

connection

properties

are

used.

v

They

can

more

efficiently

use

resources.

Shareable

connections

are

not

valid

outside

of

their

sharing

boundary.

For

this

reason,

at

the

end

of

a

sharing

boundary

(such

as

transaction)

the

connection

handle

is

no

longer

associated

with

the

managed

connection

it

was

using

within

the

sharing

boundary

(this

applies

only

when

using

the

cached

handle

pattern).

The

managed

connection

is

returned

to

the

free

connection

pool

for

reuse.

Connection

resources

are

not

held

longer

than

the

end

of

the

current

sharing

scope.

If

the

cached

handle

pattern

is

used,

then

the

next

time

the

handle

is

used

within

a

new

sharing

scope,

the

application

server

run

time

assures

that

the

handle

is

reassociated

with

a

managed

connection

appropriate

for

the

current

sharing

scope

and

with

the

same

properties

with

which

the

handle

was

originally

retrieved.

Remember

that

it

is

not

appropriate

to

change

properties

on

a

shareable

connection.

If

properties

are

changed,

other

components

that

share

the

same

connection

might

experience

unexpected

behavior.

Futhermore,

when

using

cached

handles,

the

value

of

the

changed

property

might

not

be

remembered

across

sharing

scopes.

The

possible

drawbacks

of

shared

connections

v

Sharing

within

a

single

component

(such

as

an

enterprise

bean

and

its

related

Java

objects)

is

not

always

supported.

The

current

specification

allows

resource

adapters

the

choice

of

only

allowing

one

active

connection

handle

at

a

time.

If

a

resource

adapter

chooses

to

implement

this

option

then

the

following

scenario

results

in

an

invalid

handle

exception:

A

component

using

shareable

connections

gets

a

connection

and

uses

it.

Without

closing

the

connection,

the

component

calls

a

utility

class

(Java

object)

which

gets

a

connection

(handle)

to

the

same

managed

connection

and

uses

it.

Because

the

resource

adapter

only

supports

one

active

handle,

the

first

connection

handle

is

no

longer

valid.

If

the

utility

object

returns

without

closing

its

handle,

the

first

handle

remains

invalid

and

use

of

it

causes

an

exception.

Note:

This

exception

occurs

only

when

calling

a

utility

object

(a

Java

object).

Not

all

resource

adapters

have

this

limitation,

it

depends

on

their

implementation.

The

WebSphere

Relational

Resource

Adapter

(RRA)

does

not

have

this

limitation.

Any

DataSource

used

through

the

RRA

does

not

have

this

limitation.

If

you

encounter

a

resource

adapter

with

this

limitation

you

can

work

around

it

by

serializing

your

access

to

the

managed

connection.

If

you

always

close

your

connection

handle

before

getting

another,

or

close

your

handle

before

calling

code

which

gets

another

handle,

and

you

always

close

your

handle

before

you

return

from

the

method,

you

can

allow

two

pieces

of

code

to

share

the

same

managed

connection.

You

just

cannot

use

the

connection

for

both

events

at

the

same

time.

v

Trying

to

change

the

isolation

level

on

a

shareable

JDBC

based

connection

in

a

global

transaction

(those

supported

by

the

RRA)

causes

an

exception.

The

correct

way

to

get

connections

with

different

transaction

isolation

levels

is

by

configuring

the

IBM

extended

resource-reference.

Chapter

2.

Accessing

data

from

applications

37

v

Closing

connection

handles

for

shareable

connections

by

an

application

is

NOT

supported

and

causes

errors.

However,

you

can

avoid

this

limitation

by

using

the

Relational

Resource

Adapter.

Connections

and

transactions

All

connection

usage

occurs

within

the

scope

of

either

a

global

transaction

or

a

local

transaction

containment

(LTC).

Connection

behavior

depends

on

your

current

operating

scope.

This

article

discusses

some

of

the

common

characteristics

you

see

when

using

connections

in

one

of

the

transaction

scopes

of

the

product.

You

can

only

share

connections

within

a

global

transaction

scope

(assuming

other

sharing

rules

are

met).

However,

you

can

serially

reuse

connections

within

an

LTC

scope.

A

a

get/use/close

connection

pattern

followed

by

another

get/use/close

(to

the

same

data

source

or

connection

factory)

enables

you

to

reuse

the

same

connection.

See

Unshareable

and

shareable

connections

for

more

details.

JDBC

AutoCommit

behavior

All

JDBC

connections,

when

first

obtained

through

a

getConnection

call,

have

AutoCommit

=

TRUE

by

default.

v

If

you

operate

within

an

LTC

and

have

its

resolution-control

set

to

Application,

then

AutoCommit

remains

TRUE

unless

changed

by

the

application.

v

If

you

operate

within

an

LTC

and

have

its

resolution-control

set

to

ContainerAtBoundary,

then

the

application

should

not

touch

the

AutoCommit

setting.

The

WebSphere

Application

Server

run

time

sets

the

AutoCommit

value

to

FALSE

before

work

begins,

then

commits

or

rolls

back

the

work

as

appropriate

at

the

end

of

the

LTC

scope.

v

If

you

use

a

connection

within

a

global

transaction,

then

regardless

of

the

user

changing

the

AutoCommit

setting,

upon

first

use

of

the

connection

to

do

work

the

database

ignores

the

AutoCommit

setting

so

that

the

transaction

service

that

controls

the

commit

and

rollback

processing

can

manage

the

transaction

.

After

the

transaction

completes,

the

AutoCommit

value

returns

to

the

value

it

had

before

the

first

use

of

the

connection.

So

even

if

the

AutoCommit

value

is

set

to

TRUE

before

the

connection

is

used

in

a

global

transaction,

you

need

not

set

the

value

to

FALSE

since

the

value

is

ignored

by

the

database.

In

this

example,

after

the

transaction

completes,

the

AutoCommit

value

of

the

connection

returns

to

TRUE.

v

If

you

use

multiple

distinct

connections

within

a

global

transaction,

all

work

is

guaranteed

to

commit

or

roll

back

together.

This

is

not

the

case

for

a

local

transaction

containment

(LTC

scope).

Within

an

LTC,

work

done

on

one

connection

commits

or

rolls

back

independently

from

work

done

on

any

other

connection

within

the

LTC.

One-phase

commit

and

two-phase

commit

resources

One-phase

commit

resources

are

such

that

work

being

done

on

a

one

phase

connection

cannot

mix

with

other

connections

and

ensure

that

the

work

done

on

all

of

the

connections

completes

or

fails

atomically

.

The

product

does

not

allow

more

than

one

one-phase

commit

connection

in

a

global

transaction.

Futhermore,

it

does

not

allow

a

one-phase

commit

connection

in

a

global

transaction

with

one

or

more

two-phase

commit

connections.

You

can

coordinate

only

multiple

two-phase

commit

connections

within

a

global

transaction.

38

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Note

that

any

time

you

do

multiple

getConnection

calls

using

a

resource

reference

that

specifies

res-sharing-scope=Unshareable

,

then

you

get

multiple

physical

connections.

This

situation

also

occurs

when

res-sharing-scope=Shareable

but

the

sharing

rules

are

broken.

In

either

case,

if

you

run

in

a

global

transaction,

ensure

the

resources

involved

are

enabled

for

two-phase

commit

(also

sometimes

referred

to

as

JTA

Enabled).

Failure

to

do

so

results

in

an

XAException

that

logs

the

following

message:

WTRN0063E:

An

illegal

attempt

to

enlist

a

one

phase

capable

resource

with

existing

two

phase

capable

resources

has

occurred.

Developing

data

access

applications

Note:

WebSphere

Application

Server

does

not

support

JDBC

3.0.

You

can

access

data

in

various

ways:

v

using

standard

or

extended

APIs

v

using

container-managed

persistence

beans

v

using

bean-managed

persistence

beans,

session

beans,

or

Web

components.
1.

Decide

how

to

implement

data

access.

The

Enterprise

JavaBeans

(EJB)

programming

model

provides

several

distinct

server-side

component

types:

entity,

session,

and

message-driven

beans,

and

servlets.

Of

these

types,

entity

beans

are

typically

used

to

model

business

components

in

an

application.

Entity

beans

have

both

state

and

behavior.

The

state

of

entity

beans

is

persistent

and

is

stored

in

a

database.

As

changes

are

made

to

an

entity

bean,

its

state

is

kept

in

synchronization

with

the

database

record

representing

the

bean.

There

are

two

types

of

entity

beans

provided

by

the

EJB

model

and

these

two

types

differ

in

the

mechanism

used

to

provide

persistence.

These

two

types

of

entity

beans

are

container-managed

persistence

(CMP)

beans

and

bean-managed

persistence

(BMP)

beans.

With

BMP

beans,

the

developer

manually

produces

code

to

manage

the

persistent

state

of

the

bean.

With

CMP

beans,

the

EJB

container

manages

the

beans

persistent

state.

Persistent

state

management

is

a

complex

and

difficult

task

and

using

CMP

beans

allows

the

developer

to

concentrate

on

business

logic

by

delegating

persistence

behavior

to

the

container.

Typical

examples

of

CMP

beans

are

Customer,

Account,

and

so

on.

Because

CMP

beans

are

objects,

their

data

(state)

is

accessed

using

field

accessors.

For

example,

a

Customer

entity

bean

is

likely

to

have

fields

such

as

name

and

phoneNumber.

These

pieces

of

data

are

accessed

using

the

accessor

methods

getName()/setName()

and

getPhoneNumber()/setPhoneNumber().

As

a

developer,

you

are

not

concerned

with

how

this

data

is

eventually

stored

and

retrieved

from

the

backend

database

and

can

assume

that

the

integrity

of

the

data

is

maintained

by

the

container.

Starting

with

WebSphere

Application

Server

Version

5.0.1,

you

can

use

Structured

Query

Language

in

Java

(SQLJ)

support

with

both

BMP

and

CMP

beans

when

you

are

using

the

DB2

Universal

JDBC

driver

provider

with

DB2

as

your

backend

database.

You

can

also

use

SQLJ

support

with

BMP

beans

when

you

are

using

the

DB2

for

z/OS

Local

JDBC

provider

(RRS)

with

DB2

for

z/OS

as

your

backend

database.

DB2

for

z/OS

users

who

wish

to

use

SQLJ

support

with

CMP

beans

must

use

the

DB2

Universal

JDBC

driver

provider.

2.

Create

a

JDBC

provider

and

data

source

(Creating

and

configuring

a

JDBC

provider

and

data

source

),

or

create

a

J2EE

Connector

Architecture

(JCA)

connection

factory

(Configuring

Java

2

Connector

connection

factories

in

the

administrative

console).

An

application

component

uses

a

connection

factory

to

access

a

connection

instance,

which

the

component

then

uses

to

connect

to

the

underlying

enterprise

information

system

(EIS).

A

data

source

is

associated

Chapter

2.

Accessing

data

from

applications

39

with

a

JDBC

provider

that

supplies

the

specific

JDBC

driver

implementation

class.

The

data

source

represents

the

JCA

connection

factory

for

the

relational

resource

adapter.

3.

Look

up

a

data

source

or

connection

factory

using

a

resource

reference

(Looking

up

data

sources

with

resource

references

for

relational

access).

Using

a

resource

reference

to

access

your

data

source

or

connection

factory

is

required

when

running

in

WebSphere

Application

Server.

4.

Get

a

connection

to

a

data

source

(Connection

management

architecture).

The

connection

management

architecture

for

both

relational

and

procedural

access

to

enterprise

information

systems

(EIS)

is

based

on

the

J2EE

Connector

Architecture

(JCA)

specification.

The

Connection

Manager

(CM),

which

pools

and

manages

connections

within

an

application

server,

is

capable

of

managing

connections

obtained

through

both

resource

adapters

(RAs)

defined

by

the

JCA

specification,

and

DataSources

defined

by

the

JDBC

2.0

Extensions

Specification.

5.

Use

thread

identity

to

assign

an

owner

to

the

connection.

Data

access

application

programming

interface

support

Applications

can

access

the

backend

data

through

the

standard

J2EE

1.3

defined

application

programming

interfaces

(APIs).

The

standard

APIs

do

not

always

provide

a

complete

solution

for

an

application

that

runs

in

an

application

server.

For

example,

the

JDBC

programming

model

sometimes

does

not

completely

work

with

the

J2EE

Connector

Architecture

(JCA)

Specification

(even

though

the

JCA

architecture

has

explicitly

specified

that

it

integrates

with

the

JDBC

programming

model).

These

gaps

cause

some

incompatibility

between

the

JDBC

and

JCA

programming

models.

When

getting

and

using

shareable

connections

in

a

global

transaction,

it

is

not

valid

to

change

a

property

on

the

connection

after

you

obtain

it.

Changes

can

unknowingly

affect

other

users

who

share

the

same

connection.

The

J2EE

Connector

Architecture

(JCA)

Specification

supports

telling

the

resource

adapter

the

specific

properties

settings

at

the

time

you

request

the

connection

(using

the

getConnection

method)

by

passing

in

a

ConnectionSpec.

The

ConnectionSpec

contains

the

necessary

connection

properties

used

to

get

a

connection.

After

you

obtain

a

connection

from

this

environment,

your

application

does

not

need

to

alter

the

properties.

The

JDBC

programming

model

does

not

have

the

same

interface

to

specify

the

connection

properties.

Instead,

it

gets

the

connection

first,

then

sets

the

properties

on

the

connection.

In

the

case

of

a

shareable

connection,

changing

the

connection

properties

impacts

all

the

connections

shared

with

the

same

physical

connection.

WebSphere

Application

Server

provides

the

following

extensions

to

fill

in

the

gaps

between

these

two

specifications.

v

WSDataSource

interface

-

this

interface

extends

javax.sql.DataSource,

and

enables

a

component

or

an

application

to

specify

the

connection

properties

through

the

WebSphere

Application

Server

JDBCConnectionSpec

to

get

a

specific

connection.

–

getConnection(JDBCConnectionSpec)

-

this

method

returns

a

specific

connection

which

has

the

JCA

compliant

connection

behavior.

–

For

more

information

see

the

Javadoc

wsdatasource

in

the

Javadoc

index.
v

JDBCConnectionSpec

interface

-

this

interface

extends

the

com.ibm.websphere.rsadapter.WSConnectionSpec,

which

extends

javax.resources.cci.ConnectionSpec.

The

standard

ConnectionSpec

interface

provides

40

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

only

the

interface

marker

without

any

get

and

set

methods.

The

WSConnectionSpec

and

JDBCConnectionSpec

define

a

set

of

get

and

set

methods

used

by

the

WebSphere

Application

Server

run

time.

This

interface

enables

the

application

to

specify

all

the

essential

connection

properties

in

order

to

get

an

appropriate

connection.

You

can

create

this

class

from

the

WebSphere

WSRRAFactory.

For

more

information

see

the

Javadoc

JDBCConnection

in

the

Javadoc

index.

v

WSRRAFactory

-

this

is

the

Relational

Resource

Adapter

Factory

which

allows

the

user

to

create

a

JDBCConnectionSpec

or

other

resource

adapter

related

object.

For

more

information

see

the

Javadoc

wsrrafactory

in

the

Javadoc

index

Example:

Accessing

data

using

IBM

extended

APIs

for

connections

If

your

application

runs

with

a

shareable

connection

that

might

be

shared

with

other

container-managed

persistence

(CMP)

beans

within

a

transaction,

it

is

recommended

that

you

use

the

WebSphere

Application

Server

extended

APIs

to

get

the

connection.

When

you

use

these

APIs,

you

cannot

port

your

application

to

other

application

servers.

You

can

access

an

extended

API

in

your

JDBC

application.

Instead

of

using

the

DataSource

interface,

you

use

the

WSDataSource

interface.

The

following

code

segment

illustrates

how

to

get

the

connection.

import

com.ibm.websphere.rsadapter.*;

...

//

Create

a

JDBCConnectionSpec

and

set

connection

properties.

If

this

connection

is

shared

with

the

CMP

bean,

make

sure

that

the

isolation

level

is

the

same

as

the

isolation

level

that

is

mapped

by

the

Access

Intent

defined

on

the

CMP

bean.

JDBCConnectionSpec

connSpec

=

WSRRAFactory.createJDBCConnectionSpec();

connSpec.setTransactionIsolation(CONNECTION.TRANSACTION_REPEATABLE_READ);

connSpec.setCatalog("DEPT407");

//Use

WSDataSource

to

get

the

connection

Connection

conn

=

((WSDataSource)datasource).getConnection(connSpec);

Example:

Accessing

data

using

IBM

extended

APIs

to

share

connections

between

container-managed

and

bean-managed

persistence

beans

If

your

application

runs

with

a

shareable

connection

that

might

be

shared

with

other

container-managed

persistence

(CMP)

beans

within

a

transaction,

it

is

recommended

that

you

use

the

WebSphere

Application

Server

extended

APIs

to

get

the

connection.

When

you

use

these

APIs,

you

cannot

port

your

application

to

other

application

servers.

You

can

access

an

extended

API

in

your

JDBC

application.

Instead

of

using

the

DataSource

interface,

you

use

the

WSDataSource

interface.

To

ensure

that

both

CMP

and

bean-managed

persistence

(BMP)

beans

are

sharing

the

same

physical

connection,

you

can

define

the

same

Access

Intent

profile

on

both

the

CMP

and

BMP

beans.

Inside

your

BMP

method,

you

can

get

the

right

isolation

level

from

the

relational

resource

adapter

helper

class.

Chapter

2.

Accessing

data

from

applications

41

package

fvt.example;

import

java.sql.Connection;

import

java.sql.PreparedStatement;

import

java.sql.ResultSet;

import

java.sql.SQLException;

import

javax.ejb.CreateException;

import

javax.ejb.DuplicateKeyException;

import

javax.ejb.EJBException;

import

javax.ejb.ObjectNotFoundException;

import

javax.sql.DataSource;

//

following

imports

are

used

by

the

IBM

extended

API

import

com.ibm.websphere.appprofile.accessintent.AccessIntent;

import

com.ibm.websphere.appprofile.accessintent.AccessIntentService;

import

com.ibm.websphere.rsadapter.JDBCConnectionSpec;

import

com.ibm.websphere.rsadapter.WSCallHelper;

import

com.ibm.websphere.rsadapter.WSDataSource;

import

com.ibm.websphere.rsadapter.WSRRAFactory;

/**

*

Bean

implementation

class

for

Enterprise

Bean:

Simple

*/

public

class

SimpleBean

implements

javax.ejb.EntityBean

{

private

javax.ejb.EntityContext

myEntityCtx;

//

Initial

context

used

for

lookup.

private

javax.naming.InitialContext

ic

=

null;

//

define

a

JDBCConnectionSpec

as

instance

variable

private

JDBCConnectionSpec

connSpec;

//

define

an

AccessIntentService

which

is

used

to

get

//

an

AccessIntent

object.

private

AccessIntentService

aiService;

//

AccessIntent

object

used

to

get

Isolation

level

private

AccessIntent

intent

=

null;

//

Persitence

table

name

private

String

tableName

=

"cmtest";

//

DataSource

JNDI

name

private

String

dsName

=

"java:comp/env/jdbc/SimpleDS";

//

DataSource

private

DataSource

ds

=

null;

//

bean

instance

variables.

private

int

id;

private

String

name;

/**

*

In

setEntityContext

method,

you

need

to

get

the

AccessIntentService

*

object

in

order

for

the

subsequent

methods

to

get

the

AccessIntent

*

object.

*

Other

ejb

methods

will

call

the

private

getConnection()

to

get

the

42

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

*

connection

which

has

all

specific

connection

properties

*/

public

void

setEntityContext(javax.ejb.EntityContext

ctx)

{

myEntityCtx

=

ctx;

try

{

aiService

=

(AccessIntentService)

getInitialContext().lookup(

"java:comp/websphere/AppProfile/AccessIntentService");

ds

=

(DataSource)

getInitialContext().lookup(dsName);

}

catch

(javax.naming.NamingException

ne)

{

throw

new

javax.ejb.EJBException(

"Naming

exception:

"

+

ne.getMessage());

}

}

/**

*

ejbCreate

*/

public

fvt.example.SimpleKey

ejbCreate(int

newID)

throws

javax.ejb.CreateException,

javax.ejb.EJBException

{

Connection

conn

=

null;

PreparedStatement

ps

=

null;

//

Insert

SQL

String

String

sql

=

"INSERT

INTO

"

+

tableName

+

"

(id,

name)

VALUES

(?,

?)";

id

=

newID;

name

=

"";

try

{

//

call

the

common

method

to

get

the

specific

connection

conn

=

getConnection();

}

catch

(java.sql.SQLException

sqle)

{

throw

new

EJBException("SQLException

caught:

"

+

sqle.getMessage());

}

catch

(javax.resource.ResourceException

re)

{

throw

new

EJBException(

"ResourceException

caught:

"

+

re.getMessage());

}

try

{

ps

=

conn.prepareStatement(sql);

ps.setInt(1,

id);

ps.setString(2,

name);

if

(ps.executeUpdate()

!=

1)

{

throw

new

CreateException("Failed

to

add

a

row

to

the

DB");

}

}

catch

(DuplicateKeyException

dke)

{

throw

new

javax.ejb.DuplicateKeyException(

id

+

"has

already

existed");

}

catch

(SQLException

sqle)

{

throw

new

javax.ejb.CreateException(sqle.getMessage());

}

catch

(CreateException

ce)

{

throw

ce;

}

finally

{

Chapter

2.

Accessing

data

from

applications

43

if

(ps

!=

null)

{

try

{

ps.close();

}

catch

(Exception

e)

{

}

}

}

return

new

SimpleKey(id);

}

/**

*

ejbLoad

*/

public

void

ejbLoad()

throws

javax.ejb.EJBException

{

Connection

conn

=

null;

PreparedStatement

ps

=

null;

ResultSet

rs

=

null;

String

loadSQL

=

null;

try

{

//

call

the

common

method

to

get

the

specific

connection

conn

=

getConnection();

}

catch

(java.sql.SQLException

sqle)

{

throw

new

EJBException("SQLException

caught:

"

+

sqle.getMessage());

}

catch

(javax.resource.ResourceException

re)

{

throw

new

EJBException(

"ResourceException

caught:

"

+

re.getMessage());

}

//

You

need

to

determine

which

select

statement

to

be

used

based

on

the

//

AccessIntent

type:

//

If

READ,

then

uses

a

normal

SELECT

statement.

Otherwise

uses

a

//

SELECT...FORUPDATE

statement

//

If

your

backend

is

SQLServer,

then

you

can

use

different

syntax

for

//

the

FOR

UPDATE

clause.

if

(intent.getAccessType()

==

AccessIntent.ACCESS_TYPE_READ)

{

loadSQL

=

"SELECT

*

FROM

"

+

tableName

+

"

WHERE

id

=

?";

}

else

{

loadSQL

=

"SELECT

*

FROM

"

+

tableName

+

"

WHERE

id

=

?

FOR

UPDATE";

}

SimpleKey

key

=

(SimpleKey)

getEntityContext().getPrimaryKey();

try

{

ps

=

conn.prepareStatement(loadSQL);

ps.setInt(1,

key.id);

rs

=

ps.executeQuery();

if

(rs.next())

{

id

=

rs.getInt(1);

name

=

rs.getString(2);

}

else

{

throw

new

EJBException("Cannot

load

id

=

"

+

key.id);

}

}

catch

(SQLException

sqle)

{

throw

new

EJBException(sqle.getMessage());

}

44

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

finally

{

try

{

if

(rs

!=

null)

rs.close();

}

catch

(Exception

e)

{

}

try

{

if

(ps

!=

null)

ps.close();

}

catch

(Exception

e)

{

}

try

{

if

(conn

!=

null)

conn.close();

}

catch

(Exception

e)

{

}

}

}

/**

*

This

method

will

use

the

AccessIntentService

to

get

the

access

intent;

*

then

gets

the

isolation

level

from

the

DataStoreHelper

*

and

sets

it

in

the

connection

spec;

then

uses

this

connection

*

spec

to

get

a

connection

which

has

the

specific

connection

*

properties.

**/

private

Connection

getConnection()

throws

java.sql.SQLException,

javax.resource.ResourceException,

EJBException

{

//

get

current

access

intent

object

using

EJB

context

intent

=

aiService.getAccessIntent(myEntityCtx);

//

Assume

this

bean

only

supports

the

pessimistic

concurrency

if

(intent.getConcurrencyControl()

!=

AccessIntent.CONCURRENCY_CONTROL_PESSIMISTIC)

{

throw

new

EJBException("Bean

supports

only

pessimistic

concurrency");

}

//

determine

correct

isolation

level

for

currently

configured

database

//

using

DataStoreHelper

int

isoLevel

=

WSCallHelper.getDataStoreHelper(ds).getIsolationLevel(intent);

connSpec

=

WSRRAFactory.createJDBCConnectionSpec();

connSpec.setTransactionIsolation(isoLevel);

//

Get

connection

using

connection

spec

Connection

conn

=

((WSDataSource)

ds).getConnection(connSpec);

return

conn;

}

Container-managed

persistence

features

The

container-managed

persistence

(CMP)

features

include

those

defined

by

the

EJB

2.0

Specification,

as

well

as

capabilities

that

are

beyond

the

specification.

EJB

2.0

specified

capabilities

Container-Managed

Relationships

(CMR)

is

one

of

the

most

significant

new

features

added

by

the

EJB

2.0

Specification.

Like

Inheritance,

relationships

are

a

key

component

of

object-oriented

software

development

and

non-trivial

object

models

Chapter

2.

Accessing

data

from

applications

45

can

form

complex

networks

with

these

relationships.

The

EJB

2.0

Specification

adds

relationships

to

the

EJB

programming

model

and

requires

that

the

container

be

responsible

for

their

maintenance.

The

container

automatically

manages

the

state

of

CMP

entity

beans.

This

management

includes

synchronizing

the

state

of

the

bean

with

the

underlying

database

when

necessary

and

also

managing

any

relationships

(CMRs)

with

other

entity

beans.

The

bean

developer

is

relieved

of

writing

any

database

specific

code

and,

instead,

can

focus

on

business

logic.

Local

interfaces

are

another

feature

introduced

in

the

EJB

2.0

Specification.

Local

component

interfaces

allow

co-located

beans

to

interact

without

the

overhead

associated

with

remote

access.

Value-add

features

Several

capabilities

are

provided

to

enhance

the

function

of

CMP

entity

beans

that

go

beyond

those

capabilities

defined

by

the

specification.

These

include:

Entity

bean

inheritance

Inheritance

is

a

key

aspect

of

object-oriented

software

development

and

is

a

capability

currently

missing

from

the

EJB

2.0

Specification.

The

use

of

inheritance

enables

a

developer

to

define

fields,

relationships,

and

business

logic

in

a

superclass

entity

bean

that

are

inherited

by

all

subclasses.

See

the

section

EJB

inheritance

of

the

WebSphere

Studio

Application

Developer

(WSAD)

documentation

for

details

on

using

inheritance

with

WebSphere

Application

Server

and

entity

beans.

Access

Intent

Policies

Access

intent

policies

provide

J2EE

application

developers

the

mechanism

by

which

they

can

indicate

the

intent

of

an

application’s

interaction

with

the

essential

state

for

entity

beans

in

order

that

the

persistence

mechanisms

can

make

appropriate

optimizations.

For

example,

if

it

is

known

that

an

entity

is

not

updated

during

the

course

of

a

transaction,

then

the

persistence

management

is

able

to

ease

up

on

the

concurrency

control

and

still

maintain

data

integrity

by

disallowing

update

operations

on

that

bean

for

the

duration

of

the

transaction.

Caching

data

across

transactions

Data

caching

across

transactions

is

a

configurable

option

set

by

the

bean

deployer

that

can

greatly

improve

performance.

Essentially,

this

is

for

data

that

changes

infrequently.

The

option

is

known

as

LifetimeInCache.

The

data

for

an

entity

configured

for

lifetime

in

cache

is

stored

in

a

cache

until

its

specified

lifetime

expires.

Requests

on

the

entity

during

that

configured

lifetime

use

the

cached

data,

and

do

not

result

in

the

execution

of

queries

against

the

underlying

data

store.

Lifetime

can

be

expressed

as

time

elapsed

since

the

data

was

retrieved

from

the

data

store

or

until

a

specific

time

of

day

or

week.

See

the

LifetimeInCache

help

sections

of

the

Assembly

Toolkit

(ATK)

for

more

details.

Container-managed

persistence

restrictions

and

exceptions

The

container-managed

persistence

(CMP)

features

have

certain

restrictions

when

used

in

specific

ways.

Enterprise

bean

deployment

and

Sybase

IMAGE

type

restriction

When

deploying

enterprise

beans

with

container

managed

persistence

(CMP)

types

that

are

non-primitive

and

do

not

have

a

natural

Java

Database

Connectivity

(JDBC)

mapping,

the

deployment

tool

maps

the

CMP

type

to

a

binary

type

in

the

46

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

database,

where

it

is

stored

as

a

serialized

instance.

For

Sybase,

the

tool

uses

the

JDBC

type

LONG

VARBINARY.

The

Sybase

driver

maps

LONG

VARBINARY

to

the

native

type

IMAGE.

Although

the

type

VARBINARY

has

fewer

restrictions

than

IMAGE

in

Sybase,

you

cannot

use

it

because

it

is

limited

to

a

size

of

255

bytes,

which

is

too

small

for

typical

serialized

Java

objects.

The

specific

restrictions

on

the

IMAGE

type

are:

v

You

cannot

use

the

IMAGE

type

in

the

WHERE

clause

of

an

SQL

query.

You

can

encounter

this

restriction

whenever

an

enterprise

bean

contains

an

EJB-QL

query

that

has

a

CMP

type

in

the

WHERE

clause,

which

maps

to

the

IMAGE

type

in

the

Sybase

relational

database

(RDB).

v

You

cannot

use

IMAGE

type

in

select

queries

marked

DISTINCT.

This

situation

arises

in

these

user

scenarios:

–

When

the

DISTINCT

key

word

is

specified

in

an

EJB-QL

select

query

having

a

Java

type

mapping

to

IMAGE.

–

When

Enterprise

beans

have

finder

and

ejbSelect()

methods

returning

java.util.

Set

and

have

CMP

types

mapping

to

IMAGE.

To

work

around

this

restriction,

edit

the

EJB

mappings

in

the

WebSphere

Studio

Application

Developer

toolset

and

do

either

of

the

following:

v

If

you

are

sure

that

the

serialized

instance

of

the

CMP

type

is

never

larger

than

255

bytes,

you

can

change

the

CMP

type

mapping

from

IMAGE

or

LONG

VARBINARY

to

VARBINARY.

v

Map

the

CMP

type

to

multiple

RDB

fields

through

a

composer.

For

example,

if

the

CMP

type

is

a

Java

object

X

with

an

int

field

and

a

string

field,

then

map

X

to

two

RDB

fields

INTEGER

and

VARCHAR,

using

a

composer.

Refer

to

the

WebSphere

Studio

Application

Developer

documentation

for

more

information

about

using

composers.

A

ClassCastException

exception

is

thrown

when

running

container

managed

persistence

1.1

beans

If

you

created

your

Enterprise

JavaBeans

(EJB)

application

using

WebSphere

Studio

Application

Developer

or

WebSphere

Studio

Application

Developer

Integration

Edition,

Version

4.0.x

,

and

the

application

contains

container

managed

persistence

(CMP)

1.1

beans

with

associations

(relationships),

you

might

receive

a

java.lang.ClassCastException

exception

when

you

run

your

application

on

WebSphere

Application

Server

Enterprise,

Version

5.0.2

and

WebSphere

Business

Integration

Server

Foundation,

Version

5.1

or

later

The

cast

operation

generated

by

WebSphere

Studio

Application

Developer

or

WebSphere

Studio

Application

Developer

Integration

Edition,

Version

4.0.x

does

not

use

the

javax.rmi.PortableRemoteObject.narrow(...)

object

to

convert

the

remote

object

to

the

remote

interface

of

CMP

beans

in

the

XToYLink.java

(or

YToXLink.java)

class

where

X

and

Y

are

CMP

1.1

beans.

Recommended

response

1.

Locate

the

following

methods

in

all

link

classes,

for

example,

XToYLink.java

and

YToXLink.javawhere

X

and

Y

are

CMP

1.1

beans:

public

void

secondaryAddElementCounterLinkOf(javax.ejb.EJBObject

anEJB)

public

void

secondaryRemoveElementCounterLinkOf(javax.ejb.EJBObject

anEJB)

public

void

secondarySetCounterLinkOf(javax.ejb.EJBObject

anEJB)

Chapter

2.

Accessing

data

from

applications

47

2.

Add

the

javax.rmi.PortableRemoteObject.narrow(...)

object

to

convert

the

remote

object

to

the

remote

interface

of

CMP

beans.

For

example,

change

the

following

original

method:

public

void

secondaryAddElementCounterLinkOf(javax.ejb.EJBObject

anEJB)

throws

java.rmi.RemoteException

{

if

(anEJB

!=

null)

((X)

anEJB).secondaryAddY((Y)

getEntityContext().getEJBObject());

to:

public

void

secondaryAddElementCounterLinkOf(javax.ejb.EJBObject

anEJB)

throws

java.rmi.RemoteException

{

Note:

The

previous

code

should

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

if

(anEJB

!=

null)

((X)

anEJB).secondaryAddY((Y)

javax.rmi.PortableRemoteObject.narrow(getEntityContext().getEJBObject(),

Y.class));

Looking

up

data

sources

with

resource

references

for

relational

access

Using

a

resource

reference

to

access

your

data

source

or

connection

factory

is

required

when

running

in

WebSphere

Application

Server.

Some

of

the

reasons

follow:

v

If

a

data

source

is

looked

up

directly,

the

connection

gets

all

default

properties

for

the

missing

resource

reference.

For

example,

the

sharing-scope

is

a

shareable

connection

resulting

in

the

possibility

that

the

physical

connection

is

the

same

each

time

the

connection

is

requested

from

the

data

source.

This

situation

can

cause

a

multitude

of

problems

if

you

expect

unshareable

connections.

v

It

relieves

the

programmer

from

having

to

know

the

name

of

the

actual

data

source

at

the

target

application

server.

v

You

can

set

the

default

isolation

level

for

the

data

source

through

resource

references.

With

no

resource

reference

you

get

the

default

for

the

JDBC

driver

you

use.

Use

a

resource

reference

(resource-ref)

for

looking

up

a

data

source

through

the

standard

Java

Naming

and

Directory

Interface

(JNDI)

naming

interface.

The

JNDI

name

defined

in

the

resource-ref

is

a

logical

name

of

the

data

source.

Have

your

application

use

this

JNDI

name

to

look

up

a

data

source

instead

of

using

the

JNDI

name

that

is

defined

on

the

data

source.

Later,

you

can

substitute

the

real

name,

either

by

using

the

Assembly

Toolkit

(ATK)

or

during

installation

of

the

application

EAR

file

onto

the

server.

For

example,

assume

that

you

use

a

DataSource

jdbc/Section

as

illustrated

in

the

code

below.

javax.sql.DataSource

specificDataSource

=

(javax.sql.DataSource)

(new

InitialContext()).lookup("java:comp/env/jdbc/Section");

In

the

ATK,

specify

the

name

(jdbc/Section)

as

the

resource

reference.

If

you

know

the

name

of

the

DataSource,

you

specify

it

in

the

resource

references

Bindings

page.

48

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Isolation

level

and

resource

reference

In

a

J2EE

1.2

module,

you

can

specify

the

isolation

level

at

an

enterprise

bean

method

level,

bean

level,

or

module

level.

This

capability

has

been

removed

from

the

J2EE

1.3

module.

WebSphere

Application

Server

Version

5.0

is

compliant

with

the

J2EE

1.3

specification;

therefore

you

cannot

specify

isolation

level

on

the

EJB

method

level

or

bean

level.

Also,

if

a

JDBC

application,

a

bean-managed

persistence

(BMP)

bean,

or

a

servlet

runs

in

a

global

transaction,

and

you

are

using

shareable

connections,

you

cannot

set

the

isolation

level

on

a

connection.

When

a

container-managed

persistence

(CMP)

bean

uses

a

new

data

source

to

access

a

backend

database,

the

isolation

level

is

determined

by

the

WebSphere

Application

Server

run

time

based

on

the

type

of

access

intent

that

this

method

or

the

bean

has

chosen.

All

other

connection

users

can

also

use

the

access

intent

and

application

profile

support

to

manage

their

concurrency

control.

For

all

JDBC

connections

(excluding

those

used

by

CMP

beans),

you

can

specify

an

isolation

level

default

on

the

resource

reference.

For

shareable

connections

that

run

in

global

transactions,

this

default

is

the

only

way

to

set

the

isolationLevel

for

connections.

Trying

to

directly

set

the

isolation

level

through

the

setTransactionIsolation()

method

on

a

shareable

connection

that

runs

in

a

global

transaction

is

not

allowed.

To

use

a

different

isolation

level

on

connections,

you

must

provide

a

different

resource

reference.

Set

these

defaults

through

the

Assembly

Toolkit

(ATK).

Each

resource

reference

associates

with

one

isolation

level.

When

your

application

uses

this

resource

reference

Java

Naming

and

Directory

Interface

(JNDI)

name

to

look

up

a

data

source,

every

connection

returned

from

this

data

source

using

this

resource

reference

has

the

same

isolation

level.

Components

needing

to

use

shareable

connections

with

multiple

isolation

levels

can

create

multiple

resource

references,

giving

them

different

JNDI

names,

and

have

their

code

look

up

the

appropriate

data

source

for

the

isolation

level

they

need.

In

this

way,

you

use

separate

connections

with

the

different

isolation

levels

enabled

on

them.

It

is

possible

to

map

these

multiple

resource

references

to

the

same

configured

data

source.

The

connections

still

come

from

the

same

underlying

pool,

however,

the

connection

manager

does

not

allow

sharing

of

connections

requested

by

resource

references

with

different

isolation

levels.

For

example,

a

data

source

is

bound

to

two

resource

references:

jdbc/RRResRef

and

jdbc/RCResRef.

RRResRef

has

the

RepeatableRead

isolation

level

defined.

RCResRef

has

the

ReadCommitted

isolation

level

defined.

If

your

application

wants

to

update

the

tables

or

a

BMP

bean

updates

some

attributes,

it

can

use

the

jdbc/RRResRef

JNDI

name

to

look

up

the

data

source

instance.

All

connections

returned

from

the

data

source

instance

have

a

RepeatableRead

isolation

level.

If

the

application

wants

to

perform

a

query

for

read

only,

then

it

is

better

to

use

the

jdbc/RCResRef

JNDI

name

to

look

up

the

data

source.

Creating

or

changing

a

resource

reference:

A

resource

reference

supports

application

provider

access

to

a

resource

(such

as

a

data

source,

URL,

or

mail

provider)

using

a

logical

name

rather

than

the

actual

Chapter

2.

Accessing

data

from

applications

49

name

in

the

run

time

environment.

This

ability

insulates

the

application

provider

from

the

run

time

configuration,

and

simplifies

the

process

of

changing

the

run

time

configuration.

Resource

references

are

declared

in

the

deployment

descriptor

by

the

application

provider.

At

some

point

in

the

application

deployment

process,

you

must

bind

the

resource

reference

to

the

actual

name

of

the

resource

in

the

run

time

environment.

1.

Start

the

Assembly

Toolkit.

2.

Import

the

enterprise

application

(EAR

file)

you

want

to

change.

3.

Display

the

resource

references

for

the

type

of

application

component:

v

If

an

enterprise

bean

uses

the

resource

reference:

–

Expand

the

name

of

the

EAR

file

–

Expand

EJB

Modules

–

Expand

the

EJB

module

wanted

–

Expand

the

section

for

the

appropriate

type

of

enterprise

bean

(Session

Beans

or

Entity

Beans)

–

Expand

the

enterprise

bean
v

If

a

servlet

uses

the

resource

reference:

–

Expand

the

name

of

the

EAR

file

–

Expand

Web

Modules

–

Expand

the

Web

module

wanted
v

If

an

application

client

uses

the

resource

reference:

–

Expand

the

name

of

the

EAR

file

–

Expand

Application

Clients

–

Expand

the

application

client

module

wanted

4.

Right-click

the

module

whose

resource

references

you

want

to

change

and

click

Open

With

>

Deployment

Descriptor

Editor.

5.

For

servlets

and

application

clients,

click

Add.

For

EJB

modules,

select

the

particular

bean

and

click

Add.

6.

Select

the

resource

reference

option

and

click

Next.

7.

Specify

the

settings

and

click

Finish.

8.

Select

the

References

tab

and,

under

WebSphere

Extensions,

select

an

isolation

level.

9.

Under

WebSphere

Bindings,

specify

a

JNDI

name.

10.

Close

the

deployment

descriptor

editor

and

save

your

changes.

11.

Generate

the

code.

(For

details

on

this

task,

see

the

Information

Center

topic

Assembling

>

Applications

>

Assembly

tools

>

Mapping

enterprise

beans

to

database

tables

>

Generating

code

for

EJB

deployment.)

Binding

to

a

data

source:

During

either

application

assembly

or

deployment,

you

must

bind

the

resource

reference

to

the

actual

name

of

the

resource

in

the

run

time

environment.

You

can

take

this

action

in

the

Assembly

Toolkit

(ATK)

or

as

one

of

the

steps

during

installation

of

the

application

EAR

file.

Bean-managed

persistence

bean:

When

developing

your

bean-managed

persistence

(BMP)

bean

you

generally

lack

knowledge

about

the

name

of

the

data

source

on

the

target

application

server.

In

your

code,

do

not

look

up

the

data

source

directly.

Instead,

you

look

up

the

resource

reference

from

the

java:comp/env

namespace

file.

Let

us

assume

that

you

look

up

the

resource

reference

named

ref/ds

as

illustrated

in

the

code

below.

50

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

javax.sql.DataSource

dSource

=

(javax.sql.DataSource)((new

InitialContext()).lookup

("java:/comp/env/ref/ds"));

Note:

The

previous

code

should

be

entered

on

one

line;

it

is

split

for

formatting

purposes

here.

In

the

ATK,

you

specify

the

name

ref/ds

in

the

Resource

Reference

page

on

the

General

Tab.

If

you

know

the

name

of

the

data

source

you

can

specify

it

in

this

Resource

References

page

on

the

Bindings

Tab.

Note

that

if

you

do

not

specify

it

here

,

you

must

provide

this

Java

Naming

and

Directory

Interface

(JNDI)

name

when

you

install

the

application

EAR

file.

Container-managed

persistence

bean:

In

a

container-managed

persistence

(CMP)

bean

you

do

not

specify

the

DataSource

in

the

code.

Instead,

you

specify

the

CMP

Connection

Factory

JNDI

name

as

a

WebSphere

binding

property

for

each

bean

during

application

assembly.

Servlets

and

JavaServer

Pages

Files:

In

a

servlet

application,

you

look

up

the

DataSource

exactly

as

you

look

it

up

in

the

BMP

bean

case.

Access

intent

and

isolation

level:

The

access

intent

service

enables

developers

to

precisely

tune

the

management

of

application

persistence.

Access

intent

enables

developers

to

configure

applications

so

that

the

EJB

container

and

its

agents

can

make

performance

optimizations

for

entity

bean

access.

Entity

beans

and

entity

bean

methods

are

configured

with

access

intent

policies.

A

policy

is

acted

upon

by

either

the

combination

of

the

WebSphere

EJB

container

and

Persistence

Manager

(for

container-managed

persistence

(CMP)

entities)

or

by

bean-managed

persistence

(BMP)

entities

directly.

Note

that

access

intent

policies

apply

to

entity

beans

only.

Access

intent

--

isolation

levels

and

update

locks:

The

combination

of

concurrency

and

access

type

determines

the

isolation

level

for

the

persistence

manager.

The

actual

isolation

level

depends

upon

the

particular

database,

as

shown

in

the

following

table.

AccessIntent

profile

Isolation

level

For

Update

Sybase

DB2

Oracle*

Informix

Cloudscape

SQL

Server

wsPessimistic

Update-Weakest

LockAtLoad

(Default

policy)

RR

RC

RR

RR

RR

RR

No

(*Oracle,

Yes)

wsPessimistic

Update

RR

RC

RR

RR

RR

RR

Yes

wsPessimistic

Read

RR

RC

RR

RR

RR

RR

No

wsOptimistic

Update

RC

RC

RC

RC

RC

RC

No

wsOptimistic

Read

RC

RC

RC

RC

RC

RC

No

Chapter

2.

Accessing

data

from

applications

51

AccessIntent

profile

Isolation

level

For

Update

Sybase

DB2

Oracle*

Informix

Cloudscape

SQL

Server

wsPessimistic

UpdateNo

-Collisions

RC

RC

RC

RC

RC

RC

No

wsPessimistic

Update

-Exclusive

S

S

S

S

S

S

Yes

v

RC

=

JDBC

Read

committed

v

RR

=

JDBC

Repeatable

read

v

S

=

JDBC

Serializable

v

*

Note:

Oracle

does

not

support

JDBC

Repeatable

Read

(RR).

Therefore,

wsPessimisticUpdate-weakestLockAtLoad

and

wsPessimisticUpdate

behave

the

same

way

on

Oracle

as

do

wsPessismisticRead

and

wsOptimisticRead.

Because

of

an

Oracle

restriction,

the

OracleXADataSource

JDBC

class

cannot

run

with

an

S

transaction

isolation

level.

So

you

cannot

use

this

class

to

run

an

application

containing

enterprise

beans

whose

access

intent

policies

are

configured

to

cause

the

bean

to

load

with

RR

isolation.

Custom

finder

SQL

dynamic

enhancement:

To

ensure

data

integrity

for

applications

using

custom

finders

defined

on

Enterprise

JavaBeans

(EJB)

version

1.1

home

interfaces,

WebSphere

Application

Server

version

5.x

uses

custom

finder

Structured

Query

Language

(SQL)

dynamic

enhancement

to

maintain

correct

SQL

locking

semantics.

WebSphere

Application

Server

uses

SQL

clauses

applied

to

the

custom

finder

SQL

statements

for

those

custom

finders

defined

with

the

Update

attribute

and

certain

method-level

isolation

level

settings.

These

dynamic

enhancements

are

applied

only

if

the

backend

data

store

supports

these

clauses.

This

support

takes

affect

at

run

time

when

the

run

time

attempts

to

execute

Container

Managed

Persistence

(CMP)

persistence

operations

associated

with

the

custom

finders.

To

ensure

that

the

SQL

dynamic

enhancements

occur

correctly

for

custom

finders

defined

on

an

EJB

version

1.1

home

interface

accessing

a

backend

data

store

that

requires

the

special

SQL

locking

clauses,

WebSphere

Application

Server

provides

new

Java

Virtual

Machine

(JVM)

and

bean

(module)

properties.

These

properties

enable

you

to

indicate

which

custom

finders

should

be

enhanced,

provided

the

backend

store

supports

the

SQL

clauses.

For

more

information

about

these

properties,

see

Custom

finder

SQL

dynamic

enhancement

properties.

There

are

several

important

items

to

consider

when

using

this

functionality:

v

this

support

only

applies

to

EJB

version

1.1

CMP

Custom

Finder

methods

v

Option

A

CMP

beans

and

CMP

beans

involved

in

an

inheritance

relationship

are

not

supported

v

applications

using

this

capability

in

WebSphere

Application

Server

for

z/OS

Version

4.x

continue

to

function,

but

you

must

address

some

compatibility

issues:

–

the

default

behavior

of

the

WebSphere

Application

Server

Version

5.x

product

is

the

opposite

of

the

Version

4.x

product,

that

is,

the

default

for

5.x

is

not

to

enhance

custom

finder

SQL

statements

unless

directed

to

by

specific

settings.

If

your

WebSphere

Application

Server

for

z/OS

installation

relies

on

the

automatic

dynamic

enhancement

of

all

custom

finders

in

all

applications

52

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

installed,

you

must

set

the

com.ibm.websphere.ejbcontainer.customfinder.honorAccessIntent

indicator

to

all.

–

If

an

application

contains

a

bean

which

has

the

com.ibm.websphere.persistence.bean.managed.custom.finder.access.intent

indicator

set

into

its

env-var

settings,

that

indicator

continues

to

be

used,

provided

the

dynamic

SQL

enhancement

features

of

the

Version

5.x

product

are

enabled.

For

more

information,

see

Custom

finder

SQL

dynamic

enhancement

properties

Establishing

custom

finder

SQL

dynamic

enhancement

server-wide:

To

establish

this

support

on

a

server-wide

basis,

that

is,

dynamic

SQL

enhancement

of

all

custom

finders

defined

in

all

beans

is

enabled,

use

the

following

steps.

1.

Open

the

administrative

console.

2.

Select

Servers.

3.

Select

Application

Servers.

4.

Select

the

server

you

want

to

configure.

5.

In

the

Additional

Properties

area,

select

Process

Definition.

6.

In

the

Additional

Properties

area,

select

Control

or

Servant.

Select

Control

to

define

the

property

in

the

Control,

Servant

to

define

the

property

in

the

Servant.

7.

In

the

Additional

Properties

area,

select

Java

Virtual

Machine.

8.

Select

Custom

Properties.

9.

Select

com.ibm.websphere.ejbcontainer.customfinder.honorAccessIntent

and

enter

a

value

of

all.

If

the

property

is

not

present

in

the

list,

create

a

new

property

name,

enter

the

name

com.ibm.websphere.ejbcontainer.customfinder.honorAccessIntent

and

the

value

all.

Establishing

custom

finder

SQL

dynamic

enhancement

on

a

set

of

beans:

To

establish

this

support

for

all

custom

finders

defined

on

a

set

of

beans

use

the

following

steps.

1.

Open

the

administrative

console.

2.

Select

Servers.

3.

Select

Application

Servers.

4.

Select

the

server

you

want

to

configure.

5.

In

the

Additional

Properties

area,

select

Process

Definition.

6.

In

the

Additional

Properties

area,

select

Control

or

Servant.

Select

Control

to

define

the

property

in

the

Control,

Servant

to

define

the

property

in

the

Servant.

7.

In

the

Additional

Properties

area,

select

Java

Virtual

Machine.

8.

Select

Custom

Properties.

9.

Select

com.ibm.websphere.ejbcontainer.customfinder.honorAccessIntent

and

enter

a

value

that

corresponds

to

a

list

of

beans

that

need

this

support,

with

each

bean’s

name

separated

from

the

others

by

a

colon

(:).

For

example,

beanA:beanB:beanC.

If

the

property

is

not

present

in

the

list,

create

a

new

property

name,

enter

the

name

com.ibm.websphere.ejbcontainer.customfinder.honorAccessIntent

and

enter

the

list

as

the

value.

Establishing

custom

finder

SQL

dynamic

enhancement

for

specific

custom

finders:

Chapter

2.

Accessing

data

from

applications

53

To

establish

this

support

for

specific

custom

finders

use

the

following

steps.

1.

Start

a

J2EE

application

development

environment

of

your

choice.

2.

Create

or

edit

the

application

EAR

file

needing

this

support.

3.

Check

for

an

environmental

variable

called

com.ibm.websphere.ejbcontainer.customfinder.honorAccessIntent.methodLevel.

If

the

variable

does

not

already

exist,

add

it

to

the

EAR

file.

4.

Give

the

variable

a

value

that

corresponds

to

a

list

of

method

names

(including

parameter

lists)

with

each

name

separated

from

the

others

by

a

colon

(:).

5.

Deploy

and

install

the

application.

Disabling

custom

finder

SQL

dynamic

enhancement

for

custom

finders

on

a

specific

bean:

To

disable

this

support

for

all

custom

finders

defined

on

a

specific

bean,

provided

that

the

server

wide

support

is

enabled,

follow

these

steps.

1.

Start

a

J2EE

application

development

environment

of

your

choice.

2.

Create

or

edit

the

application

EAR

file

needing

this

support.

3.

Check

for

an

environmental

variable

called

com.ibm.websphere.persistence.bean.managed.custom.finder.access.intent

with

a

value

of

true.

If

the

variable

does

not

already

exist,

add

it

to

the

EAR

file.

4.

Ensure

that

the

server-wide

setting

com.ibm.websphere.ejbcontainer.customfinder.honorAccessIntent

is

in

place

on

the

target

server.

5.

Deploy

and

install

the

application.

Custom

finder

SQL

dynamic

enhancement

properties:

Use

this

page

to

modify

custom

finder

SQL

dynamic

enhancement

properties

settings.

To

ensure

that

the

Structured

Query

Language

(SQL)

dynamic

enhancements

occur

correctly

for

custom

finders

defined

on

an

EJB

1.1

Home

interface

utilizing

a

backend

data

store

that

requires

the

special

SQL

locking

clauses,

the

following

Java

Virtual

Machine

(JVM)

and

bean

(module)

properties

are

provided.

These

properties

enable

you

to

indicate

which

custom

finders

to

enhance,

provided

the

backend

data

store

supports

the

SQL

clauses.

To

view

this

administrative

console

page,

click

Servers

>

Application

Servers

>

server

>

Process

Definition

>

Control

(to

define

the

property

in

the

Control)

or

Servant

(to

define

the

property

in

the

Servant)

>

Java

Virtual

Machine

>

Custom

Properties

.

com.ibm.websphere.ejbcontainer.customfinder.honorAccessIntent:

Used

to

indicate

which

Enterprise

beans

should

have

custom

finder

SQL

dynamic

enhancement

enabled

at

runtime.

This

property

takes

effect

at

the

server

level.

Any

EJB

1.1

home

interface

defined

custom

finder

(prefix

named

find)

that

has

Update

as

an

access

intent

is

a

candidate

for

custom

finder

SQL

dynamic

enhancement

based

on

its

specified

isolation

level.

If

the

backend

data

store

requires

special

SQL

semantics,

they

are

applied.

The

particular

SQL

used

varies

according

to

the

isolation

level

you

choose

for

beans

in

the

application,

as

well

the

backend

data

base

being

used.

If

set

to

all,

custom

finder

SQL

dynamic

enhancement

is

enabled

for

all

custom

finders

defined

in

any

beans

that

are

installed

into

the

container.

If

set

to

J2EENAME[:J2EENAME],

54

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

where

J2EENAME

is

a

fully

qualified

package

or

bean

name,

custom

finder

SQL

dynamic

enhancement

is

enabled

for

only

the

custom

finders

defined

in

the

beans

that

are

installed

into

the

container

and

represented

by

the

bean

names

denoted.

Note:

Some

of

your

applications

might

use

custom

finders

that

have

been

manually

coded

and

already

contain

the

SQL

locking

clauses,

or

keywords

ORDER

BY

and

DISTINCT

on

the

SELECT

operation.

In

these

instances,

if

the

runtime

attempts

SQL

dynamic

enhancement

the

possibility

exists

of

introducing

malformed

SQL

statements

to

the

underlying

backend

data

store.

If

an

application

contains

these

custom

finders,

then

you

must

be

careful

when

specifying

the

value

for

the

JVM

property

com.ibm.websphere.ejbcontainer.customfinder.honorAccessIntent.

A

value

of

all

causes

custom

finder

SQL

dynamic

enhancement

to

occur

for

every

custom

finder

method

defined

with

an

access

intent

of

Update

found

in

all

beans

installed

in

the

application

server,

thus

introducing

malformed

SQL

for

that

subset

of

custom

finders.

To

prevent

this

from

happening,

do

not

set

the

server-wide

setting

to

all.

Instead,

use

the

bean

method

level

property,

com.ibm.websphere.ejbcontainer.customfinder.honorAccessIntent.methodLevel

to

indicate

on

a

per

bean

basis

only

those

custom

finder

methods

that

should

have

the

custom

finder

SQL

dynamic

enhancement

executed

on

them

at

runtime.

com.ibm.websphere.ejbcontainer.customfinder.honorAccessIntent.methodLevel:

Used

to

indicate

custom

finder

SQL

dynamic

enhancement

be

enabled

at

the

method

level

on

a

particular

bean.

When

a

bean

is

defined

with

this

property

set

to

a

list

of

one

or

more

custom

finder

methods,

any

custom

finder

(prefix

named

find)

defined

on

the

home

interface

that

has

a

matching

method

name

and

parameter

signature

has

SQL

locking

semantics

applied

at

runtime.

This

occurs

only

if

the

custom

finder

method

has

an

access

intent

of

Update

specified

and

the

backend

data

store

supports

the

SQL

clauses.

The

particular

SQL

used

varies

according

to

the

isolation

level

chosen

for

the

application

as

well

as

the

backend

data

store

being

used.

Data

type

String

com.ibm.websphere.persistence.bean.managed.custom.finder.access.intent:

Used

by

WebSphere

Application

Server

for

z/OS

Version

4.x

users

to

indicate

that

the

SQL

enhancement

capability

should

not

be

applied

to

applications

installed

in

the

WebSphere

Application

Server

for

z/OS

product.

The

default

behavior

of

the

WebSphere

Application

Server

for

z/OS

Version

4.x

product

is

to

perform

the

dynamic

SQL

enhancements.

For

those

z/OS

users

choosing

not

to

participate

in

dynamic

SQL

enhancement

of

custom

finders

in

the

Version

4.x

product,

this

attribute

is

used

to

make

this

indication

at

both

the

bean

and

the

server

level.

At

the

bean

level,

a

name/value

pair

consisting

of

this

attribute

name

and

a

value

of

true

disables

the

SQL

enhancement

of

any

custom

finder

defined

on

the

given

bean’s

home

interface.

Chapter

2.

Accessing

data

from

applications

55

At

the

server

level,

an

entry

into

the

WebSphere

Application

Server

for

z/OS

server

property

file

with

a

value

of

true

disables

the

SQL

enhancement

of

all

beans

installed

in

the

given

server.

This

custom

finder

enhancement

attribute

continues

to

be

supported

by

the

runtime

at

the

bean

level

in

the

Version

5.x

product.

Its

use

as

a

server

wide

indicator

has

been

deprecated

by

the

fact

that

the

default

behavior

of

Version

5.x

is

to

not

dynamically

enhance

custom

finder

SQL.

Note:

If

your

WebSphere

Application

Server

for

z/OS

installation

relies

on

the

automatic

dynamic

enhancement

of

all

custom

finders

in

all

applications

installed,

you

should

set

the

com.ibm.websphere.ejbcontainer.customfinder.honorAccessIntent

indicator

to

all.

If

an

application

contains

a

bean

that

has

the

com.ibm.websphere.persistence.bean.managed.custom.finder.access.intent

indicator

set

into

its

env-var

settings,

that

indicator

continues

to

be

used,

provided

the

dynamic

SQL

enhancement

features

of

the

Version

5.x

product

are

enabled

as

described

above.

Data

type

String

Some

notes

about

precedence:

v

The

com.ibm.websphere.ejbcontainer.customfinder.honorAccessIntent.methodLevel

attribute

overrides

any

server-wide

or

bean

level

attribute

setting

v

Any

bean

listed

through

a

J2EE

Name

in

the

com.ibm.websphere.ejbcontainer.customfinder.honorAccessIntent

indicator

causes

dynamic

enhancement

to

occur

for

custom

finders

defined

for

that

bean,

even

if

the

default

behavior

is

in

effect

for

the

server

in

question.

v

The

com.ibm.websphere.persistence.bean.managed.custom.finder.access.intent

attribute

disables

a

particular

bean’s

use

of

this

feature

if

the

server-wide

setting

or

bean

setting

is

enabled

and

no

method

level

settings

are

specified.

Data

access

from

J2EE

Connector

Architecture

applications

To

access

data

from

a

J2EE

Connector

Architecture

(JCA)

compliant

application

in

WebSphere

Application

Server,

you

can

use

encapsulated

session

beans

and

JCA

connectors.

Use

WebSphere

Studio

Application

Developer

Integration

Edition

(WSADIE)

4.1.1

to

create

a

SessionBean

that

encapsulates

the

access

to

the

backend.

To

find

help

on

this

subject,

see

the

documentation

for

WSADIE.

Accessing

data

using

J2EE

Connector

Architecture

connectors

As

indicated

in

the

J2EE

Connector

Architecture

(JCA)

Specification,

each

enterprise

information

system

(EIS)

needs

a

resource

adapter

and

a

connection

factory.

This

connection

factory

is

then

accessed

through

the

following

programming

model.

If

you

use

WebSphere

Studio

Application

Development

(WSAD)

tools,

most

of

the

following

deployment

descriptors

and

code

are

generated

for

you.

This

example

shows

the

manual

method

of

accessing

an

EIS

resource.

For

each

EIS

connection,

do

the

following:

56

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

1.

Declare

a

connection

factory

resource

reference

in

your

application

component’s

deployment

descriptors,

as

described

in

this

example:

<resource-ref>

<description>description</description>

<res-ref-name>eis/myConnection</res-ref-name>

<res-type>javax.resource.cci.ConnectionFactory</res-type>

<res-auth>Application</res-auth>

</resource-ref>

2.

Configure,

during

deployment,

each

resource

adapter

and

associated

connection

factory

through

the

console.

See

Configuring

J2C

resource

adapters

and

Configuring

J2C

connection

factories

for

more

information.

3.

Locate

the

corresponding

connection

factory

for

the

EIS

resource

adapter

using

Java

Naming

and

Directory

Interface

(JNDI)

lookup

in

your

application

component,

during

run

time.

4.

Get

the

connection

to

the

EIS

from

the

connection

factory.

5.

Create

an

interaction

from

the

Connection

object.

6.

Create

an

InteractionSpec

object.

Set

the

function

to

execute

in

the

InteractionSpec

object.

7.

Create

a

Record

instance

for

the

input

and

output

data

used

by

function.

8.

Execute

the

function

through

the

Interaction

object.

9.

Process

the

record

data

from

the

function.

10.

Close

the

connection.

The

following

code

segment

shows

how

an

application

component

might

create

an

interaction

and

execute

it

on

the

EIS:

javax.resource.cci.ConnectionFactory

connectionFactory

=

null;

javax.resource.cci.Connection

connection

=

null;

javax.resource.cci.Interaction

interaction

=

null;

javax.resource.cci.InteractionSpec

interactionSpec

=

null;

javax.resource.cci.Record

inRec

=

null;

javax.resource.cci.Record

outRec

=

null;

try

{

//

Locate

the

application

component

and

perform

a

JNDI

lookup

javax.naming.InitialContext

ctx

=

new

javax.naming.InitialContext();

connectionFactory

=

(javax.resource.cci.ConnectionFactory)

ctx.lookup("java:comp/env/eis/myConnection");

//

create

a

connection

connection

=

connectionFactory.getConnection();

//

Create

Interaction

and

an

InteractionSpec

interaction

=

connection.createInteraction();

interactionSpec

=

new

InteractionSpec();

interactionSpec.setFunctionName("GET");

//

Create

input

record

inRec

=

new

javax.resource.cci.Record();

//

Execute

an

interaction

interaction.execute(interactionSpec,

inRec,

outRec);

//

Process

the

output...

}

catch

(Exception

e)

{

//

Exception

Handling

}

finally

{

if

(interaction

!=

null)

{

try

{

Chapter

2.

Accessing

data

from

applications

57

interaction.close();

}

catch

(Exception

e)

{/*

ignore

the

exception*/}

}

if

(connection

!=

null)

{

try

{

connection.close();

}

catch

(Exception

e)

{/*

ignore

the

exception

*/}

}

}

Example:

Connection

factory

lookup

import

javax.resource.cci.*;

import

javax.resource.ResourceException;

import

javax.naming.*;

import

java.util.*;

/**

*

This

class

is

used

to

look

up

a

connection

factory.

*/

public

class

ConnectionFactoryLookup

{

String

jndiName

=

"java:comp/env/eis/SampleConnection";

boolean

verbose

=

false;

/**

*

main

method

*/

public

static

void

main(String[]

args)

{

ConnectionFactoryLookup

cfl

=

new

ConnectionFactoryLookup();

cfl.checkParam(args);

try

{

cfl.lookupConnectionFactory();

}

catch(javax.naming.NamingException

ne)

{

System.out.println("Caught

this

"

+

ne);

ne.printStackTrace(System.out);

}

catch(javax.resource.ResourceException

re)

{

System.out.println("Caught

this

"

+

re);

re.printStackTrace(System.out);

}

}

/**

*

This

method

does

a

simple

Connection

Factory

lookup.

*

*

After

the

Connection

Factory

is

looked

up,

a

connection

is

got

from

*

the

Connection

Factory.

Then

the

Connection

MetaData

is

retrieved

*

to

verfiy

the

connection

is

workable.

*/

public

void

lookupConnectionFactory()

throws

javax.naming.NamingException,

javax.resource.ResourceException

{

javax.resource.cci.ConnectionFactory

factory

=

null;

javax.resource.cci.Connection

conn

=

null;

javax.resource.cci.ConnectionMetaData

metaData

=

null;

try

{

//

lookup

the

connection

factory

if

(verbose)

System.out.println("Look

up

the

connection

factory...");

InitialContext

ic

=

new

InitialContext();

58

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

factory

=

(ConnectionFactory)

ic.lookup(jndiName);

//

Get

connection

if

(verbose)

System.out.println("Get

the

connection...");

conn

=

factory.getConnection();

//

Get

ConnectionMetaData

metaData

=

conn.getMetaData();

//

Print

out

the

metadata

Informatin.

if

(verbose)

System.out.println("

**

EISProductName

:"

+

metaData.getEISProductName());

if

(verbose)

System.out.println("

EISProductVersion:"

+

metaData.getEISProductName());

if

(verbose)

System.out.println("

UserName

:"

+

metaData.getUserName());

System.out.println("Connection

factory

"+jndiName+"

is

successfully

looked

up");

}

catch

(javax.naming.NamingException

ne)

{

//

Connection

factory

cannot

be

looked

up.

throw

ne;

}

catch

(javax.resource.ResourceException

re)

{

//

Something

wrong

with

connections.

throw

re;

}

finally

{

if

(conn

!=

null)

{

try

{

conn.close();

}

catch

(javax.resource.ResourceException

re)

{

}

}

}

}

/**

*

Check

and

gather

all

the

parameters.

*/

private

void

checkParam(String

args[])

{

int

i

=

0,

j;

String

arg;

char

flag;

boolean

help

=

false;

//

parse

out

the

options

while

(i

<

args.length

&&

args[i].startsWith("-"))

{

arg

=

args[i++];

//

get

the

database

name

if

(arg.equalsIgnoreCase("-jndiName"))

{

if

(i

<

args.length)

jndiName

=

args[i++];

else

{

System.err.println("-jndiName

requires

a

J2C

Connection

Factory

JNDI

name");

break;

}

}

else

{

//

check

for

verbose,

cmp

,

bmp

for

(j

=

1;

j

<

arg.length();

j++)

{

flag

=

arg.charAt(j);

switch

(flag)

{

case

’v’

:

case

’V’

:

verbose

=

true;

break;

case

’h’

:

case

’H’

:

Chapter

2.

Accessing

data

from

applications

59

help

=

true;

break;

default

:

System.err.println("illegal

option

"

+

flag);

break;

}

}

}

}

if

((i

!=

args.length)

||

help)

{

System.err.println("Usage:

java

ConnectionFactoryLookup

[-v]

[-h]");

System.err.println("

[-jndiName

the

J2C

Connection

Factory

JNDI

name]");

System.err.println("-v=verbose");

System.err.println("-h=this

information");

System.exit(1);

}

}

}

J2EE

Connector

Architecture

migration

tips

Previous

WebSphere

Application

Server

versions

provided

an

initial

implementation

of

the

J2EE

Connector

Architecture

(JCA)

specification,

Version

1.0.

This

implementation

provided

basic

run

time

support

based

on

the

final

JCA

1.0

Specification,

but

it

was

not

a

complete

implementation.

The

product

now

provides

a

complete

implementation

of

the

JCA

1.0

Specification,

which

supports:

v

Connection

sharing

(res-sharing-scope).

v

Get/use/close

programming

model

for

connection

handles.

v

Get/use/cache

programming

model

for

connection

handles.

v

XA,

Local,

and

No

Transaction

models

of

resource

adapters,

including

XA

recovery.

v

Security

options

A

and

C

per

the

specification.

If

you

move

from

one

of

the

earlier

implementations

of

the

J2EE

Connector

Architecture

to

the

current

implementation,

be

aware

of

the

following:

v

This

version

supports

the

res-sharing-scope

tag

within

the

resource

reference

(resource-ref)

element.

This

tag

was

not

available

in

previous

versions

and

defaulted

to

shareable

connections.

Version

5.0

supports

both

shareable

and

unshareable

connections.

v

The

current

product

supports

the

Web

container.

Both

enterprise

bean

and

Web

components

can

utilize

the

J2EE

Connector

Architecture.

v

Both

connection

handle

usage

patterns

(get/use/close

and

get/use/cache)

are

supported.

The

get/use/close

pattern

indicates

that

a

connection

is

retrieved,

used,

and

closed

all

within

the

same

transaction

or

method

boundary.

The

get/use/cache

pattern

indicates

that

you

can

cache

a

connection

across

transaction

or

method

boundaries.

v

The

current

version

supports

additional

authentication

mechanisms.

The

capability

to

support

Options

A

and

C

per

the

JCA

specification

is

provided,

as

well

as

support

for

res-auth

settings

of

either

Application

or

Container.

In

previous

versions,

the

res-auth

setting

was

basically

ignored,

therefore

it

was

treated

as

if

res-auth

was

set

to

Application.

If

your

existing

applications

had

res-auth

set

to

Container,

they

might

behavior

differently

if

you

install

them

into

a

current

environment

without

any

changes.

60

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

v

You

can

no

longer

specify

pool

and

subpool

names.

The

pool

name

is

based

on

the

data

source

or

connection

factory’s

Java

Naming

and

Directory

Interface

(JNDI)

name.

Subpools

were

eliminated

to

provide

better

performance.

For

applications

that

use

WebServices

and

JCA

Connectors,

there

are

some

additional

points

to

be

aware

of:

v

Applications

generated

on

WebSphere

Studio

Application

Developer

--

Integration

Edition

Version

4.1.1

can

run

on

WebSphere

Application

Server

Version

4.0.4

and

WebSphere

Application

Server

Enterprise

Version

4.1.

v

Applications

generated

on

WebSphere

Studio

Application

Developer

--

Integration

Edition

Version

5.0

can

run

on

WebSphere

Application

Server

Version

5.0

and

WebSphere

Application

Server

Enterprise

Version

5.0.

v

Applications

generated

on

WebSphere

Studio

Application

Developer

--

Integration

Edition

Version

4.1.1

can

run

unchanged

on

WebSphere

Application

Server

Enterprise

Version

5.0,

but

can

only

run

on

WebSphere

Application

Server

Version

5.0

if

the

applications

are

regenerated

using

WebSphere

Studio

Application

Developer

--

Integration

Edition

Version

5.0

tools.

This

limitation

is

because

of

the

wsd14j.jar

file.

As

delivered

in

WebSphere

Application

Server

Enterprise

Version

4.1,

the

file

is

not

fully

compliant

with

JSR

110

(JSR

110

was

not

final

at

the

time

that

4.1

shipped).

The

wsd14j.jar

file

shipped

with

WebSphere

Application

Server

Version

5.0

is

compliant.

However,

because

most

of

the

classes

have

the

same

package

names

and

interfaces,

BUT

NOT

ALL,

the

two

wsd14j.jar

files

cannot

co-exist

in

the

same

WebSphere

Application

Server

installation.

Data

access

from

an

enterprise

entity

bean

Container-managed

persistence

(CMP)

developers

can

use

access

intent

to

provide

hints

on

how

the

application

server

run

time

should

manage

the

details

of

persistence

without

having

to

explicitly

manage

any

of

the

persistence

logic

from

within

their

application.

However,

there

are

still

situations

where

developers

must

develop

bean-managed

persistence

(BMP)

entity

beans.

Because

the

only

meaningful

difference

between

BMP

and

CMP

components

is

who

provides

the

persistence

logic,

BMP

beans

should

leverage

access

intent

hints

just

the

same

as

the

application

server

does

on

behalf

of

CMP

beans.

This

ability

becomes

especially

important

when

BMP

entities

and

CMP

entities

want

to

share

connections.

BMP

beans

configured

with

the

same

concurrency

as

the

CMP

beans

and

implemented

to

the

same

isolation

level

mapping

as

the

CMP

can

share

connections.

Developers

can

apply

access

intent

policies

to

BMP

entity

beans

as

well

as

to

CMP

entity

beans.

It

is

expected

that

BMP

developers

use

only

those

access

intent

attributes

that

are

important

to

a

particular

BMP

bean.

The

access

intent

service

interface

is

bound

into

the

java:comp

namespace

for

each

particular

BMP

bean.

The

access

intent

policy

retrieved

from

the

access

intent

service

is

current

from

the

time

that

the

ejbLoad

process

is

called

until

the

time

that

the

ejbStore

process

completes

its

invocation.

Data

access

bean

types

Note:

WebSphere

Application

Server

does

not

support

JDBC

3.0.

Chapter

2.

Accessing

data

from

applications

61

Data

access

beans

are

essentially

a

class

library

that

makes

it

easier

to

access

a

database.

The

library

contains

a

set

of

beans

with

methods

that

access

the

database

through

the

JDBC

API.

There

are

several

sets

of

classes

referred

to

as

data

access

beans.

To

make

things

clearer,

you

can

refer

to

the

classes

by

the

name

of

the

JAR

file

that

contains

them:

databeans.jar

-

This

JAR

file

ships

with

the

WebSphere

Application

Server.

This

file

contains

classes

that

enable

you

to

access

the

database

using

the

JDBC

API.

ivjdab.jar

-

This

JAR

file

ships

with

Visual

Age

for

Java

(VAJ).

This

file

contains

all

of

the

classes

in

the

databeans.jar

file

and

classes

that

support

easy

use

of

the

data

access

beans

from

the

VAJ

Visual

Composition

Editor.

dbbeans.jar

-

This

JAR

file

ships

with

WebSphere

Studio

Site

Developer

(WSSD)

and

WebSphere

Studio

Application

Developer

(WSAD).

This

file

contains

a

set

of

data

access

beans

to

more

closely

conform

to

the

JDBC

2.0

RowSet

standard.

For

the

current

product,

data

access

beans

remain

unchanged

from

WebSphere

Application

Server

Version

4.0.

The

com.ibm.db

package

is

provided

to

support

existing

applications

that

use

data

access

beans.

IBM

strongly

suggests

that

any

new

applications

using

data

access

beans

be

developed

using

the

com.ibm.db.beans

package

that

is

provided

with

WebSphere

Studio

Application

Developer

(WSAD).

If

you

want

to

continue

using

applications

that

use

the

com.ibm.db

package,

see

the

WebSphere

Application

Server

Version

4.0

documentation

concerning

data

access

beans.

An

example

is

shown

here:

Example:

Using

data

access

beans

in

Version

4.0.

If

you

want

to

create

new

applications

that

use

the

com.ibm.db.beans

package,

see

the

WSAD

documentation

concerning

data

access

beans.

An

example

is

shown

here:

Example:

Using

data

access

beans

in

Version

5.0

Example:

Using

data

access

beans

in

Version

4.0

package

examples;

import

com.ibm.db.uibeans.*;

import

com.ibm.db.*;

/**

*

This

type

was

created

in

VisualAge.

*/

public

class

SelectStatementExample

{

/**

*

GenericTest

constructor

comment.

*/

public

SelectStatementExample()

{

super();

}

/**

*

Starts

the

application.

*

@param

args

an

array

of

command-line

arguments

*/

public

static

void

main(java.lang.String[]

args)

{

//

Objects

SelectStatement

stmt

=

new

SelectStatement();

DatabaseConnection

conn

=

new

DatabaseConnection();

StatementMetaData

metaData

=

new

StatementMetaData();

SelectResult

result;

62

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

//

Set

properties

for

connection

conn.setDriverName("COM.ibm.db2.jdbc.app.DB2Driver");

conn.setDataSourceName("jdbc:db2:Sample");

conn.setUserID("userid");

conn.setPassword("password");

//

Set

SQL

statement

metaData.setSQL("SELECT

*

FROM

DEPARTMENT");

//

Associate

connection

and

metadata

with

stmt

stmt.setConnection(conn);

stmt.setMetaData(metaData);

try

{

//

Execute

SQL

statement

stmt.execute();

//

Process

results

result

=

stmt.getResult();

for

(int

i

=

1;

i

<=

result.getNumRows();

i++)

{

System.out.println(result.getColumnValueToString(1));

System.out.println(result.getColumnValueToString(2));

result.nextRow();

}

//

Release

JDBC

resources

result.close();

//

Close

the

database

connection

conn.disconnect();

}

catch

(DataException

ex)

{

ex.printStackTrace();

}

}

}

Example:

Using

data

access

beans

in

Version

5.0

package

example;

import

com.ibm.db.beans.*;

import

java.sql.SQLException;

public

class

DBSelectExample

{

public

static

void

main(String[]

args)

{

DBSelect

select

=

null;

select

=

new

DBSelect();

try

{

//

Set

database

connection

information

select.setDriverName("COM.ibm.db2.jdbc.app.DB2Driver");

select.setUrl("jdbc:db2:SAMPLE");

select.setUsername("userid");

select.setPassword("password");

//

Specify

the

SQL

statement

to

be

executed

select.setCommand("SELECT

*

FROM

DEPARTMENT");

//

Execute

the

statement

and

retrieve

the

result

set

into

the

cache

select.execute();

//

If

result

set

is

not

empty

if

(select.onRow())

{

do

{

Chapter

2.

Accessing

data

from

applications

63

//

display

first

column

of

result

set

System.out.println(select.getColumnAsString(1));

System.out.println(select.getColumnAsString(2));

}

while

(select.next());

}

//

Release

the

JDBC

resources

and

close

the

connection

select.close();

}

catch

(SQLException

ex)

{

ex.printStackTrace();

}

}

}

Accessing

data

from

application

clients

To

access

a

database

directly

from

a

J2EE

application

client,

you

retrieve

a

javax.sql.DataSource

object

from

a

resource

reference

configured

in

the

client

deployment

descriptor.

This

resource

reference

is

configured

as

part

of

the

deployment

descriptor

for

the

client

application,

and

provides

a

reference

to

a

preconfigured

data

source

object.

Note

that

data

access

from

an

application

client

uses

the

JDBC

driver

connection

functionalities

directly

from

the

client

side.

It

does

not

take

advantage

of

the

additional

pooling

support

available

in

the

application

server

run

time.

For

this

reason,

your

client

application

should

utilize

an

enterprise

bean

running

on

the

server

side

to

perform

data

access.

This

enterprise

bean

can

then

take

advantage

of

the

connection

reuse

and

additional

added

functionality

provided

by

the

product

run

time.

1.

Import

the

appropriate

JDBC

API

and

naming

packages:

import

java.sql.*;

import

javax.sql.*;

import

javax.naming.*;

2.

Create

the

initial

naming

context:

InitialContext

ctx

=

new

InitialContext();

3.

Use

the

InitialContext

to

look

up

a

data

source

object

from

a

resource

reference.

javax.sql.DataSource

ds

=

(DataSource)ctx.lookup("java:comp/env/jdbc/myDS");

//where

jdbc/myDS

is

the

name

of

the

resource

reference

4.

Get

a

java.sql.Connection

from

the

data

source.

v

If

no

user

ID

and

password

are

required

for

the

connection,

or

if

you

are

going

to

use

the

defaultUser

and

defaultPassword

that

are

specified

when

the

data

source

is

created

in

the

Application

Client

Resource

Configuration

tool

(ACRCT)

in

a

future

step:

java.sql.Connection

conn

=

ds.getConnection();

v

Otherwise,

you

should

make

the

connection

with

a

specific

user

ID

and

password:

java.sql.Connection

conn

=

ds.getConnection("user",

"password");

//where

user

and

password

are

the

user

id

and

password

for

the

connection

5.

Run

a

database

query

using

the

java.sql.Statement,

java.sql.PreparedStatement,

or

java.sql.CallableStatement

interfaces

as

appropriate.

Statement

stmt

=

conn.createStatement();

String

query

=

"Select

FirstNme

from

"

+

owner.toUpperCase()

+

".Employee

where

LASTNAME

=

’"

+

searchName

+

"’";

ResultSet

rs

=

stmt.executeQuery(query);

while

(rs.next())

{

firstNameList.addElement(rs.getString(1));

}

64

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Note:

The

String

query

statement

in

the

previous

block

of

code

should

be

entered

on

one

line;

it

is

split

for

formatting

purposes

here.

6.

Close

the

database

objects

used

in

the

previous

step,

including

any

ResultSet,

Statement,

PreparedStatement,

or

CallableStatement

objects.

7.

Close

the

connection.

Ideally,

you

should

close

the

connection

in

a

finally

block

of

the

try...catch

wrapped

around

the

database

operation.

This

action

ensures

that

the

connection

gets

closed,

even

in

the

case

of

an

exception.

conn.close();

Connection

thread

identity

WebSphere

Application

Server

for

z/OS

allows

you

to

assign

a

thread

identifier

as

an

owner

of

a

connection,

when

you

first

obtain

the

connection.

The

thread

identity

function

only

applies

to

J2EE

Connector

Architecture

(JCA)

resource

adapters

and

Relational

Resource

Adapter

(RRA)

wrappered

Java

Database

Connectivity

(JDBC)

providers

that

support

the

use

of

thread

identity

for

connection

ownership.

The

following

table

lists

the

JCA

resource

adapter,

the

JDBC

provider,

and

the

WebSphere

MQ

JMS

Provider

configurations

that

support

thread

identity

and

OS

thread

security

.

It

also

provides

the

level

of

thread

identity

support:

Connectors

Thread

identity

support

thread

security

IMS

Connector

-

local

ConnectionFactory

configuration

ALLOWED

Not

supported

IMS

Connector

-

remote

ConnectionFactory

configuration

NOTALLOWED

Not

supported

CTG

CICSECIConnector

-

local

ConnectionFactory

configuration

ALLOWED

Not

supported

CTG

CICSECIConnector

-

remote

ConnectionFactory

configuration

NOTALLOWED

Not

supported

IMS

JDBC

Connector

-

local

ConnectionFactory

configuration

(By

default,

IMS

JDBC

only

supports

this

type

of

configuration.)

REQUIRED

True

RRA

DB2

for

z/OS

local

JDBC

provider

-

data

sources

configured

to

the

local

DB2

ALLOWED

True

RRA

DB2

Universal

JDBC

Driver

Provider

using

Type

2

connectivity

ALLOWED

True

RRA

DB2

Universal

JDBC

Driver

Provider

using

Type

4

connectivity

NOTALLOWED

Not

supported

WebSphere

Application

Server

for

z/OS

allows

resource

adapters

and

JDBC

providers

to

define

the

level

of

thread

identity

support

for

the

defined

connection

factories

or

data

sources.

The

level

of

support

can

be:

v

ALLOWED,

which

indicates

thread

identity

for

connection

ownership

is

allowed

for

this

configuration.

v

NOTALLOWED,

which

indicates

thread

identity

for

connection

ownership

is

not

allowed

for

this

configuration.

v

REQUIRED,

which

indicates

thread

identity

for

connection

ownership

is

required.

The

thread

identity

function

is

only

available

in

those

server

configurations

where

JCA

connectors

or

JDBC

providers

access

local

z/OS

resources

through

callable

Chapter

2.

Accessing

data

from

applications

65

(not

TCP/IP)

interfaces.

So,

for

example,

CICS

and

IMS

provide

thread

identity

support

only

if

the

target

CICS

or

IMS

is

configured

on

the

same

system

as

the

z/OS

WebSphere

Application

Server.

To

use

thread

identity

when

getting

connections

to

a

connection

factory

or

JDBC

data

source

for

your

application,

you

must

specify

resauth=Container

for

the

connection

factory

or

JDBC

data

source.

Use

the

the

Application

Assembly

Tool

(AAT)

or

WebSphere

Studio

Application

Developer

Integration

Edition

(WSADIE)

to

indicate

the

resauth=Container

setting.

When

the

level

of

thread

identity

support

provided

by

the

connector

configuration

is

ALLOWED,

if

you

want

to

use

thread

identity

for

the

connections,

you

cannot

specify

a

Container-managed

alias

when

you

define

the

connection

factory

or

JDBC

data

source.

If

you

specify

a

Container-managed

alias,

the

userid

defined

by

the

alias

is

assigned

as

the

owning

id

for

the

connections

obtained

by

the

application.

When

the

JDBC

provider

supports

thread

identity,

the

thread

identity

function

is

only

used

when

data

sources

configured

for

that

provider

are

used

by

Version

2.0

EJB

modules

and

Version

2.3

servlets.

WebSphere

Application

Server

for

z/OS

also

allows

supported

resource

adapters

and

JDBC

providers

to

enable

OS

thread

security

in

conjunction

with

thread

identity

support.

You

can

use

OS

thread

security

when:

v

The

server

configuration

supports

both

thread

identity

and

thread

security.

v

5.1 +

The

Connection

Manager

RunAs

Identity

Enabled

property

is

enabled.

You

can

configure

the

server

to

allow

Connection

Manager

RunAs

Identity

Enabled

support

by

navigating

through

the

following

panels

in

the

administrative

console:

Security

>

Global

Security

>

z/OS

Security

Options

On

the

z/OS

Security

Options

panel,

check

the

box

entitled,

Connection

Manager

RunAs

Identity

Enabled,

and

then

select

Apply.

If

these

conditions

are

met,

the

system

creates

an

access

control

environment

element

(ACEE)

for

the

user

associated

with

the

thread.

5.1 +

Users

of

previous

versions

of

WebSphere

Application

Server

for

z/OS

will

note

that

the

instructions

for

enabling

OS

Thread

Security

have

changed.

Previously,

OS

Thread

Security

was

enabled

using

a

checkbox

named

Enable

Synch

to

Thread.

Users

who

wish

to

enable

OS

Thread

Security

must

now

use

the

checkbox

named

Connection

Manager

RunAs

Identity

Enabled

Using

thread

identity

support

Perform

the

following

steps

to

enable

the

thread

identity

function

for

the

connection

factories

or

JDBC

provider

data

sources

created

with

the

supported

JCA

resource

adapters

and

JDBC

providers:

1.

Define

resauth=Container

for

the

application

resource

reference

(the

equivalent

for

CMPs

is

resourceAuthorization=Container)

2.

Ensure

the

JCA

resource

adapters,

WebSphere

MQ

JMS

Provider,

or

JDBC

providers

support

the

thread

identity

function.

Review

the

supported

resource

adapters

and

datasource

providers,

and

the

level

of

support:

REQUIRED,

ALLOWED,

and

NOTALLOWED.

66

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

If

the

adapter

or

provider

is

not

listed,

then

thread

identity

support

is

NOTALLOWED,

by

default.

3.

Set

the

Container-managed

authentication

alias

to

NULL,

if

you

configure

the

connector

locally.

When

the

connector

is

configured

locally,

the

resource

adapter

determines

the

level

of

thread

identity

support

as

ALLOWED.

If

thread

identity

support

is

allowed

and

you

specify

Container-managed

authentication

alias

as

NULL,

the

connector

uses

the

current

thread

identity

as

the

owner

for

each

connection

that

is

created.

When

the

resource

adapter,

WebSphere

MQ

JMS

Provider,

or

JDBC

provider

determines

that

the

level

of

thread

identity

support

is

REQUIRED,

any

specification

for

the

Container-managed

authentication

alias

is

ignored.

Thread

identity

support

in

this

case

always

applies.

4.

Determine

connector

behavior

when

global

security

is

a

factor.

Note:

With

Bean-Managed

Persistence

(BMP)

beans,

if

you

obtain

a

connection

under

the

ejbLoad()

or

ejbStore()

functions

during

pre-invoke

or

post-invoke

method

processing,

your

thread

identity

support

does

not

become

the

RunAs

identity

because

the

container

during

this

processing

is

running

under

server

identity.

(For

details

on

the

RunAs

identity,

see

the

Information

Center

topic

Deploying

>

Security

>

Deploying

secured

applications

>

Delegations.)

With

BMP

beans,

instead

of

using

thread

identity,

specify

a

Container-managed

alias

to

associate

the

user

with

the

connection.

Security

states

with

thread

identity

support

The

combinations

of

global

security,

server

configurations,

connector

configurations,

and

container-managed

alias

support

determine

the

processing

that

results

when

you

use

the

thread

identity

function.

Thread

identity

support

is

only

available

with

specific

resource

adapters

and

JDBC

providers.

Review

the

supported

resource

adapters

and

JDBC

providers

to

determine

if

you

can

use

thread

identity.

If

your

resource

adapter

or

JDBC

provider

is

in

the

supported

list,

use

the

following

tables

to

determine

the

processing

that

occurs,

based

on

the

settings

of

the

specified

properties:

Table

1.

Table

1.

Security

state

Global

security

enabled?

Yes

No

Go

to

table

2.

Go

to

table

3.

Table

2.

Table

2.

Global

security

enabled

Container-managed

alias

specified?

No

Yes

Connector

Allows

or

Requires

Thread

Identity?

Connector

Requires

Thread

Identity?

No

Yes

No

Yes

Chapter

2.

Accessing

data

from

applications

67

Table

2.

Table

2.

Global

security

enabled

(continued)

Processing

is

dependent

on

connector:

may

throw

exception

may

default

to

connector

user/password

custom

properties

Connector

requires

OS

thread

security?

Use

specified

alias

Connector

requires

OS

thread

security?

No

Yes

No

Yes

Use

identity

associated

with

current

thread

Server

Sync-To-Thread

enabled?

Use

identity

associated

with

current

thread

Server

Sync-To-Thread

enabled?

No

Yes

No

Yes

Use

Server

identity

Use

identity

associated

with

current

thread

Use

server

identity

Use

identity

associated

with

current

thread

Table

3.

Table

3.

Global

Security

is

not

enabled

Container-managed

alias

specified?

No

Yes

Connector

ALLOWS

or

REQUIRES

thread

identity

o

be

used

when

getting

a

connection

Connector

REQUIRES

thread

identity

to

be

used

when

getting

a

connection?

No

Yes

No

Yes

Processing

is

dependent

on

connector:

v

May

throw

exception

v

May

default

to

connector

user/password

custom

properties

User

server

identity

Use

specified

alias

Use

server

identity

Exceptions

pertaining

to

data

access

All

enterprise

bean

container-managed

persistence

(CMP)

beans

under

the

EJB

2.0

Specification

receive

a

standard

EJBException

when

an

operation

fails.

JDBC

applications

receive

a

standard

SQLException

if

any

JDBC

operation

fails.

The

product

provides

special

exceptions

for

its

relational

resource

adapter

(RRA),

to

indicate

that

the

connection

currently

held

is

no

longer

valid.

The

ConnectionWaitTimeoutException

indicates

that

the

application

timed

out

trying

to

get

a

connection.

The

StaleConnectionException

indicates

that

the

connection

is

no

longer

valid.

Connection

wait

timeout

The

ConnectionWaitTimeout

exception

indicates

that

the

application

has

waited

for

the

number

of

seconds

specified

by

the

connection

timeout

setting

and

has

not

received

a

connection.

This

situation

can

occur

when

the

pool

is

at

maximum

size

and

all

of

the

connections

are

in

use

by

other

applications

for

the

duration

of

the

68

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

wait.

In

addition,

there

are

no

connections

currently

in

use

that

the

application

can

share

because

either

the

connection

properties

do

not

match,

or

the

connection

is

in

a

different

transaction.

When

using

a

Version

4.0

data

source,

the

ConnectionWaitTimeout

throws

an

exception

whose

class

is

com.ibm.ejs.cm.pool.ConnectionWaitTimeoutException.

For

connection

factories,

the

ConnectionWaitTimeout

throws

a

ResourceException

whose

class

is

com.ibm.websphere.ce.j2c.ConnectionWaitTimeoutException.

Finally,

Version

5.0

data

sources

throw

an

SQLException

subclass

called

com.ibm.websphere.ce.cm.ConnectionWaitTimeoutException.

Example:

Handling

data

access

exception

-

ConnectionWaitTimeoutException

(for

the

JDBC

API):

In

all

cases

in

which

the

ConnectionWaitTimeoutException

is

caught,

there

is

very

little

to

do

for

recovery.

The

following

code

fragment

shows

how

to

use

this

exception

in

the

JDBC

API:

public

void

test1()

{

java.sql.Connection

conn

=

null;

java.sql.Statement

stmt

=

null;

java.sql.ResultSet

rs

=

null;

try

{

//

Look

for

datasource

java.util.Properties

props

=

new

java.util.Properties();

props.put(

javax.naming.Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.websphere.naming.WsnInitialContextFactory");

ic

=

new

javax.naming.InitialContext(props);

javax.sql.DataSource

ds1

=

(javax.sql.DataSource)

ic.lookup(jndiString);

//

Get

Connection.

conn

=

ds1.getConnection();

stmt

=

conn.createStatement();

rs

=

stmt.executeQuery("select

*

from

mytable

where

this

=

54");

}

catch

(com.ibm.websphere.ce.cm.ConnectionWaitTimeoutException

cwte)

{

//notify

the

user

that

the

system

could

not

provide

a

//connection

to

the

database.

This

usually

happens

when

the

//connection

pool

is

full

and

there

is

no

connection

//available

for

to

share.

}

catch

(java.sql.SQLException

sqle)

{

//

handle

other

database

problems.

}

finally

{

if

(rs

!=

null)

try

{

rs.close();

}

catch

(java.sql.SQLException

sqle1)

{

}

if

(stmt

!=

null)

try

{

stmt.close();

}

catch

(java.sql.SQLException

sqle1)

{

}

if

(conn

!=

null)

try

{

conn.close();

Chapter

2.

Accessing

data

from

applications

69

}

catch

(java.sql.SQLException

sqle1)

{

}

}

}

Example:

Handling

data

access

exception

-

ConnectionWaitTimeoutException

(for

J2EE

Connector

Architecture):

In

all

cases

in

which

the

ConnectionWaitTimeoutException

is

caught,

there

is

very

little

to

do

for

recovery.

The

following

code

fragment

shows

how

to

use

this

exception

in

J2EE

Connector

Architecture

(JCA):

/**

*

This

method

does

a

simple

Connection

test.

*/

public

void

testConnection()

throws

javax.naming.NamingException,

javax.resource.ResourceException,

com.ibm.websphere.ce.j2c.ConnectionWaitTimeoutException

{

Note:

The

previous

line

of

code

should

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

javax.resource.cci.ConnectionFactory

factory

=

null;

javax.resource.cci.Connection

conn

=

null;

javax.resource.cci.ConnectionMetaData

metaData

=

null;

try

{

//

lookup

the

connection

factory

if

(verbose)

System.out.println("Look

up

the

connection

factory...");

try

{

factory

=

(javax.resource.cci.ConnectionFactory)

(new

InitialContext()).

lookup("java:comp/env/eis/Sample");

Note:

The

previous

line

of

code

should

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.
}

catch

(javax.naming.NamingException

ne)

{

//

Connection

factory

cannot

be

looked

up.

throw

ne;

}

//

Get

connection

if

(verbose)

System.out.println("Get

the

connection...");

conn

=

factory.getConnection();

//

Get

ConnectionMetaData

metaData

=

conn.getMetaData();

//

Print

out

the

metadata

Informatin.

System.out.println("EISProductName

is

"

+

metaData.getEISProductName());

}

catch

(com.ibm.websphere.ce.j2c.ConnectionWaitTimeoutException

cwtoe)

{

//

Connection

Wait

Timeout

throw

cwtoe;

}

catch

(javax.resource.ResourceException

re)

{

//

Something

wrong

with

connections.

throw

re;

}

finally

{

if

(conn

!=

null)

{

try

{

conn.close();

}

catch

(javax.resource.ResourceException

re)

{

70

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

}

}

}

}

Stale

connections

The

product

provides

a

special

subclass

of

java.sql.SQLException

when

using

connection

pooling

to

access

a

relational

database.

This

com.ibm.websphere.ce.cm.StaleConnectionException

subclass

exists

in

both

a

WebSphere

4.0

data

source

and

in

the

new

data

source

using

the

relational

resource

adapter,

and

is

used

to

indicate

that

the

connection

currently

held

is

no

longer

valid.

This

situation

can

occur

for

many

reasons,

including

the

following:

v

The

application

tries

to

get

a

connection

and

fails,

as

when

the

database

is

not

started.

v

A

connection

is

no

longer

usable

because

of

a

database

failure.

When

an

application

tries

to

use

a

previously

obtained

connection,

the

connection

is

no

longer

valid.

In

this

case,

all

connections

currently

in

use

by

the

application

can

get

this

error

when

they

try

to

use

the

connection.

v

The

connection

is

orphaned

(because

the

application

had

not

used

it

in

at

most

two

times

the

value

of

the

unused

timeout

setting)

and

the

application

tries

to

use

the

orphaned

connection.

This

case

applies

only

to

Version

4.0

data

sources.

v

The

application

tries

to

use

a

JDBC

resource,

such

as

a

statement,

obtained

on

a

stale

connection.

v

A

connection

is

closed

by

the

Version

4.0

data

source

auto

connection

cleanup

and

is

no

longer

usable.

Auto

connection

cleanup

is

the

standard

mode

in

which

connection

management

operates.

This

mode

indicates

that

at

the

end

of

a

transaction,

the

transaction

manager

closes

all

connections

enlisted

in

that

transaction.

This

enables

the

transaction

manager

to

ensure

that

connections

are

not

held

for

excessive

periods

of

time

and

that

the

pool

does

not

reach

its

maximum

number

of

connections

prematurely.

One

ramification

of

having

the

transaction

manager

close

the

connections

and

return

the

connection

to

the

free

pool

after

a

transaction

ends,

is

that

an

application

cannot

obtain

a

connection

in

one

transaction

and

try

to

use

it

in

another

transaction.

If

the

application

tries

this,

a

StaleConnectionException

is

thrown

because

the

connection

is

already

closed.

In

the

case

of

trying

to

use

an

orphaned

connection

or

a

connection

cleaned

up

by

auto

connection

cleanup,

a

StaleConnectionException

indicates

that

the

application

has

attempted

to

use

a

connection

already

returned

to

the

connection

pool.

It

does

not

indicate

an

actual

problem

with

the

connection.

However,

other

cases

of

a

StaleConnectionException

indicate

that

the

connection

to

the

database

has

gone

bad,

or

stale.

Once

a

connection

has

gone

stale,

you

cannot

recover

it,

and

you

must

completely

close

the

connection

rather

than

returning

it

to

the

pool.

Detecting

stale

connections

When

a

connection

to

the

database

becomes

stale,

operations

on

that

connection

result

in

an

SQLException

from

the

JDBC

driver.

Because

an

SQLException

is

a

rather

generic

exception,

it

contains

state

and

error

code

values

that

you

can

use

to

determine

the

meaning

of

the

exception.

However,

the

meanings

of

these

states

and

error

codes

vary

depending

on

the

database

vendor.

The

connection

pooling

run

time

maintains

a

mapping

of

which

SQL

state

and

error

codes

indicate

a

StaleConnectionException

for

each

database

vendor

supported.

When

the

connection

pooling

run

time

catches

any

SQLException,

it

checks

to

see

if

this

SQLException

is

considered

a

StaleConnectionException

for

the

database

server

in

use.

Chapter

2.

Accessing

data

from

applications

71

Recovering

from

stale

connections

Recovering

from

stale

connections

is

a

joint

effort

between

the

application

server

run

time

and

the

application

developer.

From

an

application

server

perspective,

the

connection

pool

is

purged

based

on

its

PurgePolicy

setting.

Explicitly

catching

a

StaleConnectionException

is

not

required

in

an

application.

Because

applications

are

already

required

to

catch

java.sql.SQLException,

and

StaleConnectionException

extends

SQLException,

StaleConnectionException

can

be

thrown

from

any

method

that

is

declared

to

throw

SQLException,

and

is

caught

automatically

in

the

general

catch-block.

However,

explicitly

catching

StaleConnectionException

makes

it

possible

for

an

application

to

recover

from

bad

connections.

When

application

code

catches

StaleConnectionException,

it

should

take

explicit

steps

to

handle

the

exception.

Example:

Handling

data

access

exception

-

StaleConnectionException:

When

an

application

receives

a

StaleConnectionException

on

a

database

operation,

it

indicates

that

the

connection

currently

held

is

no

longer

valid.

While

it

is

possible

to

get

a

StaleConnectionException

on

any

database

operation,

the

most

common

time

to

see

a

StaleConnectionException

thrown

is

the

first

time

that

a

connection

is

used,

just

after

it

is

retrieved.

Because

connections

are

pooled,

a

database

failure

is

not

detected

until

the

operation

immediately

following

its

retrieval

from

the

pool,

which

is

the

first

time

communication

to

the

database

is

attempted.

It

is

only

when

a

failure

is

detected

that

the

connection

is

marked

stale.

StaleConnectionException

occurs

less

often

if

each

method

that

accesses

the

database

gets

a

new

connection

from

the

pool.

Many

StaleConnectionExceptions

are

caused

by

intermittent

problems

with

the

network

of

the

database

server.

Obtaining

a

new

connection

and

retrying

the

operation

can

result

in

successful

completion

without

exceptions

to

the

end

user.

In

some

cases

it

is

advantageous

to

add

a

small

wait

time

between

the

retries

to

give

the

database

server

more

time

to

recover.

However,

applications

should

not

retry

operations

indefinitely,

in

case

the

database

is

down

for

an

extended

period

of

time.

Before

the

application

can

obtain

a

new

connection

for

a

retry

of

the

operation,

roll

back

the

transaction

in

which

the

original

connection

was

involved

and

begin

a

new

transaction.

You

can

break

down

details

on

this

action

into

two

categories:

Objects

operating

in

a

bean-managed

global

transaction

context

begun

in

the

same

method

as

the

database

access.

A

servlet

or

session

bean

with

bean-managed

transactions

(BMT)

can

start

a

global

transaction

explicitly

by

calling

begin()

on

a

javax.transaction.UserTransaction

object,

which

you

can

retrieve

from

naming

or

from

the

bean

EJBContext

object.

To

commit

a

bean-managed

transaction,

the

application

calls

commit()

on

the

UserTransaction

object.

To

roll

back

the

transaction,

the

application

calls

rollback().

Entity

beans

and

non-BMT

session

beans

cannot

explicitly

begin

global

transactions.

If

an

object

that

explicitly

started

a

bean-managed

transaction

receives

a

StaleConnectionException

on

a

database

operation,

close

the

connection

and

roll

back

the

transaction.

At

this

point,

the

application

developer

can

decide

to

begin

a

new

transaction,

get

a

new

connection,

and

retry

the

operation.

The

following

code

fragment

shows

an

example

of

handling

StaleConnectionExceptions

in

this

scenario:

72

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

//get

a

userTransaction

javax.transaction.UserTransaction

tran

=

getSessionContext().getUserTransaction();

//retry

indicates

whether

to

retry

or

not

//numOfRetries

states

how

many

retries

have

//

been

attempted

boolean

retry

=

false;

int

numOfRetries

=

0;

java.sql.Connection

conn

=

null;

java.sql.Statement

stmt

=

null;

do

{

try

{

//begin

a

transaction

tran.begin();

//Assumes

that

a

datasource

has

already

been

obtained

//from

JNDI

conn

=

ds.getConnection();

conn.setAutoCommit(false);

stmt

=

conn.createStatement();

stmt.execute("INSERT

INTO

EMPLOYEES

VALUES

(0101,

’Bill’,

’R’,

’Smith’)");

tran.commit();

retry

=

false;

}

catch(com.ibm.websphere.ce.cm.StaleConnectionException

sce)

{

//if

a

StaleConnectionException

is

caught

//

rollback

and

retry

the

action

try

{

tran.rollback();

}

catch

(java.lang.Exception

e)

{

//deal

with

exception

//in

most

cases,

this

can

be

ignored

}

if

(numOfRetries

<

2)

{

retry

=

true;

numOfRetries++;

}

else

{

retry

=

false;

}

}

catch

(java.sql.SQLException

sqle)

{

//deal

with

other

database

exception

retry

=

false

}

finally

{

//always

cleanup

JDBC

resources

try

{

if(stmt

!=

null)

stmt.close();

}

catch

(java.sql.SQLException

sqle)

{

//usually

can

ignore

}

try

{

if(conn

!=

null)

conn.close();

}

catch

(java.sql.SQLException

sqle)

{

//usually

can

ignore

}

}

}

while

(retry)

;

Objects

operating

in

a

global

transaction

context

and

transaction

not

begun

in

the

same

method

as

the

database

access.

When

the

object

which

receives

the

StaleConnectionException

does

not

have

direct

control

over

the

transaction,

such

as

in

a

container-managed

transaction

case,

the

object

must

mark

the

transaction

for

rollback,

and

then

indicate

to

its

caller

to

retry

the

transaction.

In

most

cases,

you

can

do

this

by

throwing

an

application

exception

which

indicates

to

retry

that

operation.

However

this

action

is

not

always

allowed,

and

often

a

method

is

defined

only

to

throw

a

particular

exception.

This

is

the

case

with

the

Chapter

2.

Accessing

data

from

applications

73

ejbLoad

and

ejbStore

methods

on

an

enterprise

bean.

The

next

two

examples

explain

each

of

these

scenarios.

Example

1:

Database

access

method

can

throw

application

exception.

When

the

method

that

accesses

the

database

is

free

to

throw

whatever

exception

is

required,

the

best

practice

is

to

catch

StaleConnectionException

and

rethrow

some

application

exception

that

yopu

can

interpret

to

retry

the

method.

The

following

example

shows

an

EJB

client

calling

a

method

on

an

entity

bean

with

transaction

demarcation

TX_REQUIRED,

which

means

that

the

container

begins

a

global

transaction

when

insertValue

is

called:

public

class

MyEJBClient

{

//...

other

methods

here

...

public

void

myEJBClientMethod()

{

MyEJB

myEJB

=

myEJBHome.findByPrimaryKey("myEJB");

boolean

retry

=

false;

do

{

try

{

retry

=

false;

myEJB.insertValue();

}

catch(RetryableConnectionException

retryable)

{

retry

=

true;

}

catch(Exception

e)

{

/*

handle

some

other

problem

*/

}

}

while

(retry);

}

}

//end

MyEJBClient

public

class

MyEJB

implements

javax.ejb.EntityBean

{

//...

other

methods

here

...

public

void

insertValue()

throws

RetryableConnectionException,

java.rmi.RemoteException

{

try

{

conn

=

ds.getConnection();

stmt

=

conn.createStatement();

stmt.execute("INSERT

INTO

my_table

VALUES

(1)");

}

catch(com.ibm.websphere.ce.cm.StaleConnectionException

sce)

{

getSessionContext().setRollbackOnly();

throw

new

RetryableConnectionException();

}

catch(java.sql.SQLException

sqle)

{

//handle

other

database

problem

}

finally

{

21

//always

cleanup

JDBC

resources

try

{

if(stmt

!=

null)

stmt.close();

}

catch

(java.sql.SQLException

sqle)

{

//usually

can

ignore

}

try

{

if(conn

!=

null)

conn.close();

}

catch

(java.sql.SQLException

sqle)

{

//usually

can

ignore

}

}

}

}

//end

MyEJB

74

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

MyEJBClient

first

gets

a

MyEJB

bean

from

the

home

interface,

assumed

to

have

been

previously

retrieved

from

the

Java

Naming

and

Directory

Interface

(JNDI).

It

then

calls

insertValue()

on

the

bean.

The

method

on

the

bean

gets

a

connection

and

tries

to

insert

a

value

into

a

table.

If

one

of

the

methods

fails

with

a

StaleConnectionException,

it

marks

the

transaction

for

rollbackOnly

(which

forces

the

caller

to

roll

back

this

transaction)

and

throws

a

new

RetryableConnectionException,

cleaning

up

the

resources

before

the

exception

is

thrown.

The

RetryableConnectionException

is

simply

an

application-defined

exception

that

tells

the

caller

to

retry

the

method.

The

caller

monitors

RetryableConnectionException

and,

if

it

is

caught,

retries

the

method.

In

this

example,

because

the

container

is

beginning

and

ending

the

transaction,

no

transaction

management

is

needed

in

the

client

or

the

server.

Of

course,

the

client

could

start

a

bean-managed

transaction

and

the

behavior

would

still

be

the

same,

provided

that

the

client

also

committed

or

rolled

back

the

transaction.

Example

2:

Database

access

method

can

throw

only

RemoteException

or

EJBException.

Not

all

methods

are

allowed

to

throw

exceptions

defined

by

the

application.

If

you

use

bean-managed

persistence

(BMP),

use

the

ejbLoad()

and

ejbStore()

methods

to

store

the

bean

state.

The

only

exceptions

thrown

from

these

methods

are

java.rmi.RemoteException

or

javax.ejb.EJBException,

so

you

cannot

use

something

similar

to

the

previous

example.

If

you

use

container-managed

persistence

(CMP),

the

container

persists

the

bean,

and

it

is

the

container

that

sees

StaleConnectionException.

If

a

stale

connection

is

detected,

by

the

time

the

exception

is

returned

to

the

client

it

is

simply

a

RemoteException,

and

so

a

simple

catch-block

does

not

suffice.

There

is

a

way

to

determine

if

the

root

cause

of

a

RemoteException

is

a

StaleConnectionException.

When

RemoteException

is

thrown

to

wrap

another

exception,

the

original

exception

is

usually

retained.

All

RemoteException

instances

have

a

detail

property,

which

is

of

type

java.lang.Throwable.

With

this

detail,

you

can

trace

back

to

the

original

exception

and,

if

it

is

a

StaleConnectionException,

retry

the

transaction.

In

reality,

when

one

of

these

RemoteExceptions

flows

from

one

Java

Virtual

Machine

API

to

the

next,

the

detail

is

lost,

so

it

is

better

to

start

a

transaction

in

the

same

server

as

the

database

access

occurs.

For

this

reason,

the

following

example

shows

an

entity

bean

accessed

by

a

session

bean

with

bean-managed

transaction

demarcation.

public

class

MySessionBean

extends

javax.ejb.SessionBean

{

...

other

methods

here

...

public

void

mySessionBMTMethod()

throws

java.rmi.RemoteException

{

javax.transaction.UserTransaction

tran

=

getSessionContext().getUserTransaction();

boolean

retry

=

false;

do

{

try

{

retry

=

false;

tran.begin();

//

causes

ejbLoad()

to

be

invoked

myBMPBean.myMethod();

//

causes

ejbStore()

to

be

invoked

tran.commit();

Chapter

2.

Accessing

data

from

applications

75

}

catch(java.rmi.RemoteException

re)

{

try

{

tran.rollback();

}

catch(Exception

e)

{

//can

ignore

}

if

(causedByStaleConnection(re))

retry

=

true;

else

throw

re;

}

catch(Exception

e)

{

//

handle

some

other

problem

}

finally

{

//always

cleanup

JDBC

resources

try

{

if(stmt

!=

null)

stmt.close();

}

catch

(java.sql.SQLException

sqle)

{

//usually

can

ignore

}

try

{

if(conn

!=

null)

conn.close();

}

catch

(java.sql.SQLException

sqle)

{

//usually

can

ignore

}

}

}

while

(retry);

}

public

boolean

causedByStaleConnection(java.rmi.RemoteException

remoteException)

{

java.rmi.RemoteException

re

=

remoteException;

Throwable

t

=

null;

while

(true)

{

t

=

re.detail;

try

{

re

=

(java.rmi.RemoteException)t;

}

catch(ClassCastException

cce)

{

return

(t

instanceof

com.ibm.websphere.ce.cm.StaleConnectionException);

}

}

}

}

public

class

MyEntityBean

extends

javax.ejb.EntityBean

{

...

other

methods

here

...

public

void

ejbStore()

throws

java.rmi.RemoteException

{

try

{

conn

=

ds.getConnection();

stmt

=

conn.createStatement();

stmt.execute("UPDATE

my_table

SET

value=1

WHERE

primaryKey="

+

myPrimaryKey);

}

catch(com.ibm.websphere.ce.cm.StaleConnectionException

sce)

{

//always

cleanup

JDBC

resources

try

{

if(stmt

!=

null)

stmt.close();

}

catch

(java.sql.SQLException

sqle)

{

//usually

can

ignore

}

try

{

if(conn

!=

null)

conn.close();

}

catch

(java.sql.SQLException

sqle)

{

76

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

//usually

can

ignore

}

//

rollback

the

tran

when

method

returns

getEntityContext().setRollbackOnly();

throw

new

java.rmi.RemoteException("Exception

occurred

in

ejbStore",

sce);

}

catch(java.sql.SQLException

sqle)

{

//

handle

some

other

problem

}

}

}

In

mySessionBMTMethod():

v

the

session

bean

first

retrieves

a

UserTransaction

object

from

the

session

context

and

then

begins

a

global

transaction.

v

Next,

it

calls

a

method

on

the

entity

bean,

which

calls

the

ejbLoad()

method.

If

ejbLoad()

runs

successfully,

the

client

then

commits

the

transaction,

causing

the

ejbStore()

method

to

be

called.

v

In

ejbStore(),

the

entity

bean

gets

a

connection

and

writes

its

state

to

the

database;

if

the

connection

retrieved

is

stale,

the

transaction

is

marked

rollbackOnly

and

a

new

RemoteException

that

wraps

the

StaleConnectionException

is

thrown.

That

exception

is

then

caught

by

the

client,

which

cleans

up

the

JDBC

resources,

rolls

back

the

transaction,

and

calls

causedByStaleConnection(),

which

determines

if

a

StaleConnectionException

is

buried

somewhere

in

the

exception.

v

If

the

method

returns

true,

the

retry

flag

is

set

and

the

transaction

is

retried;

otherwise,

the

exception

is

rethrown

to

the

caller.

v

The

causedByStaleConnection()

method

looks

through

the

chain

of

detail

attributes

to

find

the

original

exception.

Multiple

wrapping

of

exceptions

can

occur

by

the

time

the

exception

finally

gets

back

to

the

client,

so

the

method

keeps

searching

until

it

encounters

a

non-RemoteException.

If

this

final

exception

is

a

StaleConnectionException,

you

found

it

and

true

is

returned;

otherwise,

there

is

no

StaleConnectionException

in

the

list

(because

StaleConnectionException

can

never

be

cast

to

a

RemoteException),

and

false

is

returned.

v

If

you

are

talking

to

a

CMP

bean

instead

of

to

a

BMP

bean,

the

session

bean

is

exactly

the

same.

The

CMP

bean’s

ejbStore()

method

would

most

likely

be

empty,

and

the

container

after

calling

it

would

persist

the

bean

with

generated

code.

v

If

a

stale

connection

exception

occurs

during

persistence,

it

is

wrapped

with

a

RemoteException

and

returned

to

the

caller.

The

causedByStaleConnection()

method

would

again

look

through

the

exception

chain

and

find

the

root

exception,

which

would

be

StaleConnectionException.
Objects

operating

in

a

local

transaction

context.

When

a

database

operation

occurs

outside

of

a

global

transaction

context,

a

local

transaction

is

implicitly

begun

by

the

container.

This

includes

servlets

or

JSPs

which

do

not

begin

transactions

with

the

UserTransaction

interface,

as

well

as

enterprise

beans

running

in

unspecified

transaction

contexts.

As

with

global

transactions,

you

must

roll

back

the

local

transaction

before

the

operation

is

retried.

In

these

cases,

the

local

transaction

containment

Chapter

2.

Accessing

data

from

applications

77

usually

ends

when

the

business

method

ends.

The

one

exception

is

if

you

are

using

activity

sessions.

In

this

case

the

activity

session

must

end

before

attempting

to

get

a

new

connection.

When

the

local

transaction

occurs

in

an

enterprise

bean

running

in

an

unspecified

transaction

context,

the

enterprise

bean

client

object,

outside

of

the

local

transaction

containment,

could

use

the

method

described

in

the

previous

bullet

to

retry

the

transaction.

However,

when

the

local

transaction

containment

takes

place

as

part

of

a

servlet

or

JSP

file,

there

is

no

client

object

available

to

retry

the

operation.

For

this

reason,

it

is

recommended

to

avoid

database

operations

in

servlets

and

JSP

files

unless

they

are

a

part

of

a

user

transaction.

Example:

Developing

servlet

with

user

transaction:

//===================START_PROLOG======================================

//

//

5630-A23,

5630-A22,

//

(C)

COPYRIGHT

International

Business

Machines

Corp.

2002

//

All

Rights

Reserved

//

Licensed

Materials

-

Property

of

IBM

//

US

Government

Users

Restricted

Rights

-

Use,

duplication

or

//

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

//

//

IBM

DISCLAIMS

ALL

WARRANTIES

WITH

REGARD

TO

THIS

SOFTWARE,

INCLUDING

//

ALL

IMPLIED

WARRANTIES

OF

MERCHANTABILITY

AND

FITNESS

FOR

A

PARTICULAR

//

PURPOSE.

IN

NO

EVENT

SHALL

IBM

BE

LIABLE

FOR

ANY

SPECIAL,

INDIRECT

OR

//

CONSEQUENTIAL

DAMAGES

OR

ANY

DAMAGES

WHATSOEVER

RESULTING

FROM

LOSS

OF

//

USE,

DATA

OR

PROFITS,

WHETHER

IN

AN

ACTION

OF

CONTRACT,

NEGLIGENCE

OR

//

OTHER

TORTIOUS

ACTION,

ARISING

OUT

OF

OR

IN

CONNECTION

WITH

THE

USE

//

OR

PERFORMANCE

OF

THIS

SOFTWARE.

//

//===================END_PROLOG==

package

WebSphereSamples.ConnPool;

import

java.io.*;

import

javax.servlet.*;

import

javax.servlet.http.*;

import

java.util.*;

//

Import

JDBC

packages

and

naming

service

packages.

Note

the

lack

//

of

an

IBM

Extensions

package

import.

This

is

no

longer

required.

import

java.sql.*;

import

javax.sql.*;

import

javax.naming.*;

import

javax.transaction.*;

public

class

EmployeeListTran

extends

HttpServlet

{

private

static

DataSource

ds

=

null;

private

UserTransaction

ut

=

null;

private

static

String

title

=

"Employee

List";

//

**

//

*

Initialize

servlet

when

it

is

first

loaded.

*

//

*

Get

information

from

the

properties

file,

and

look

up

the

*

//

*

DataSource

object

from

JNDI

to

improve

performance

of

the

*

//

*

the

servlet’s

service

methods.

*

//

**

public

void

init(ServletConfig

config)

throws

ServletException

{

super.init(config);

getDS();

}

//

**

78

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

//

*

Perform

the

JNDI

lookup

for

the

DataSource

and

*

//

*

User

Transaction

objects.

*

//

*

This

method

is

invoked

from

init(),

and

from

the

service

*

//

*

method

of

the

DataSource

is

null

*

//

**

private

void

getDS()

{

try

{

Hashtable

parms

=

new

Hashtable();

parms.put(Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.websphere.naming.WsnInitialContextFactory");

InitialContext

ctx

=

new

InitialContext(parms);

//

Perform

a

naming

service

lookup

to

get

the

DataSource

object.

ds

=

(DataSource)ctx.lookup("java:comp/env/jdbc/SampleDB");

ut

=

(UserTransaction)

ctx.lookup("java:comp/UserTransaction");

}

catch

(Exception

e)

{

System.out.println("Naming

service

exception:

"

+

e.getMessage());

e.printStackTrace();

}

}

//

**

//

*

Respond

to

user

GET

request

*

//

**

public

void

doGet(HttpServletRequest

req,

HttpServletResponse

res)

throws

ServletException,

IOException

Note:

The

previous

line

of

code

should

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

{

Connection

conn

=

null;

Statement

stmt

=

null;

ResultSet

rs

=

null;

Vector

employeeList

=

new

Vector();

//

Set

retryCount

to

the

number

of

times

you

would

like

to

retry

after

a

//

StaleConnectionException

int

retryCount

=

5;

//

If

the

Database

code

processes

successfully,

we

will

set

error

=

false

boolean

error

=

true;

do

{

try

{

//Start

a

new

Transaction

ut.begin();

//

Get

a

Connection

object

conn

using

the

DataSource

factory.

conn

=

ds.getConnection();

//

Run

DB

query

using

standard

JDBC

coding.

stmt

=

conn.createStatement();

String

query

=

"Select

FirstNme,

MidInit,

LastName

"

+

"from

Employee

ORDER

BY

LastName";

rs

=

stmt.executeQuery(query);

while

(rs.next())

{

employeeList.addElement(rs.getString(3)

+

",

"

+

rs.getString(1)

+

"

"

+

rs.getString(2));

Note:

The

previous

line

of

code

(beginning

employeeList.addElement)

should

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

}

//Set

error

to

false

to

indicate

successful

completion

of

the

database

work

error=false;

}

catch

(com.ibm.ejs.cm.pool.ConnectionWaitTimeoutException

cw)

{

//

This

exception

is

thrown

if

a

connection

can

not

be

obtained

from

the

//

pool

within

a

configurable

amount

of

time.

Frequent

occurrences

of

Chapter

2.

Accessing

data

from

applications

79

//

this

exception

indicate

an

incorrectly

tuned

connection

pool

System.out.println("Connection

Wait

Timeout

Exception

during

get

connection

or

process

SQL:

"

+

c.getMessage());

Note:

The

previous

line

of

code

should

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.
//In

general,

we

do

not

want

to

retry

after

this

exception,

so

set

retry

count

to

0

//and

rollback

the

transaction

try

{

ut.setRollbackOnly();

}

catch

(SecurityException

se)

{

//Thrown

to

indicate

that

the

thread

is

not

allowed

to

roll

back

the

transaction.

System.out.println("Security

Exception

setting

rollback

only!

"

+

se.getMessage());

}

catch

(IllegalStateException

ise)

{

//Thrown

if

the

current

thread

is

not

associated

with

a

transaction.

System.out.println("Illegal

State

Exception

setting

rollback

only!

"

+

ise.getMessage());

Note:

The

previous

line

of

code

should

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

}

catch

(SystemException

sye)

{

//Thrown

if

the

transaction

manager

encounters

an

unexpected

error

condition

System.out.println("System

Exception

setting

rollback

only!

"

+

sye.getMessage());

}

retryCount=0;

}

catch

(com.ibm.websphere.ce.cm.StaleConnectionException

sc)

{

//

This

exception

indicates

that

the

connection

to

the

database

is

no

longer

valid.

//Rollback

the

transaction,

then

retry

several

times

to

attempt

to

obtain

a

valid

//connection,

display

an

error

message

if

the

connection

still

can

not

be

obtained.

System.out.println("Stale

Connection

Exception

during

get

connection

or

process

SQL:

"

+

sc.getMessage());

Note:

The

previous

line

of

code

should

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.
try

{

ut.setRollbackOnly();

}

catch

(SecurityException

se)

{

//Thrown

to

indicate

that

the

thread

is

not

allowed

to

roll

back

the

transaction.

System.out.println("Security

Exception

setting

rollback

only!

"

+

se.getMessage());

}

catch

(IllegalStateException

ise)

{

//Thrown

if

the

current

thread

is

not

associated

with

a

transaction.

System.out.println("Illegal

State

Exception

setting

rollback

only!

"

+

ise.getMessage());

Note:

The

previous

line

of

code

should

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

}

catch

(SystemException

sye)

{

//Thrown

if

the

transaction

manager

encounters

an

unexpected

error

condition

System.out.println("System

Exception

setting

rollback

only!

"

+

sye.getMessage());

}

80

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

if

(--retryCount

==

0)

{

System.out.println("Five

stale

connection

exceptions,

displaying

error

page.");

}

}

catch

(SQLException

sq)

{

System.out.println("SQL

Exception

during

get

connection

or

process

SQL:

"

+

sq.getMessage());

Note:

The

previous

line

of

code

should

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.
//In

general,

we

do

not

want

to

retry

after

this

exception,

so

set

retry

count

to

0

//and

rollback

the

transaction

try

{

ut.setRollbackOnly();

}

catch

(SecurityException

se)

{

//Thrown

to

indicate

that

the

thread

is

not

allowed

to

roll

back

the

transaction.

System.out.println("Security

Exception

setting

rollback

only!

"

+

se.getMessage());

}

catch

(IllegalStateException

ise)

{

//Thrown

if

the

current

thread

is

not

associated

with

a

transaction.

System.out.println("Illegal

State

Exception

setting

rollback

only!

"+

ise.getMessage());

}

catch

(SystemException

sye)

{

//Thrown

if

the

transaction

manager

encounters

an

unexpected

error

condition

System.out.println("System

Exception

setting

rollback

only!

"

+

sye.getMessage());

}

retryCount=0;

}

catch

(NotSupportedException

nse)

{

//Thrown

by

UserTransaction

begin

method

if

the

thread

is

already

associated

with

a

//transaction

and

the

Transaction

Manager

implementation

does

not

support

nested

transactions.

System.out.println("NotSupportedException

on

User

Transaction

begin:

"

+

nse.getMessage());

}

catch

(SystemException

se)

{

//Thrown

if

the

transaction

manager

encounters

an

unexpected

error

condition

System.out.println("SystemException

in

User

Transaction:

"

+

se.getMessage());

}

catch

(Exception

e)

{

System.out.println("Exception

in

get

connection

or

process

SQL:

"

+

e.getMessage());

//In

general,

we

do

not

want

to

retry

after

this

exception,

so

set

retry

count

to

5

//and

rollback

the

transaction

try

{

ut.setRollbackOnly();

}

catch

(SecurityException

se)

{

//Thrown

to

indicate

that

the

thread

is

not

allowed

to

roll

back

the

transaction.

System.out.println("Security

Exception

setting

rollback

only!

"

+

se.getMessage());

}

catch

(IllegalStateException

ise)

{

//Thrown

if

the

current

thread

is

not

associated

with

a

transaction.

System.out.println("Illegal

State

Exception

setting

rollback

only!

"

+

ise.getMessage());

}

catch

(SystemException

sye)

{

//Thrown

if

the

transaction

manager

encounters

an

unexpected

error

condition

System.out.println("System

Exception

setting

rollback

only!

"

+

sye.getMessage());

}

retryCount=0;

}

finally

{

//

Always

close

the

connection

in

a

finally

statement

to

ensure

proper

//

closure

in

all

cases.

Closing

the

connection

does

not

close

and

Chapter

2.

Accessing

data

from

applications

81

//

actual

connection,

but

releases

it

back

to

the

pool

for

reuse.

if

(rs

!=

null)

{

try

{

rs.close();

}

catch

(Exception

e)

{

System.out.println("Close

Resultset

Exception:

"

+

e.getMessage());

}

}

if

(stmt

!=

null)

{

try

{

stmt.close();

}

catch

(Exception

e)

{

System.out.println("Close

Statement

Exception:

"

+

e.getMessage());

}

}

if

(conn

!=

null)

{

try

{

conn.close();

}

catch

(Exception

e)

{

System.out.println("Close

connection

exception:

"

+

e.getMessage());

}

}

try

{

ut.commit();

}

catch

(RollbackException

re)

{

//Thrown

to

indicate

that

the

transaction

has

been

rolled

back

rather

than

committed.

System.out.println("User

Transaction

Rolled

back!

"

+

re.getMessage());

}

catch

(SecurityException

se)

{

//Thrown

to

indicate

that

the

thread

is

not

allowed

to

commit

the

transaction.

System.out.println("Security

Exception

thrown

on

transaction

commit:

"

+

se.getMessage());

Note:

The

previous

line

of

code

should

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.
}

catch

(IllegalStateException

ise)

{

//Thrown

if

the

current

thread

is

not

associated

with

a

transaction.

System.out.println("Illegal

State

Exception

thrown

on

transaction

commit:

"

+

ise.getMessage());

}

catch

(SystemException

sye)

{

//Thrown

if

the

transaction

manager

encounters

an

unexpected

error

condition

System.out.println("System

Exception

thrown

on

transaction

commit:

"

+

sye.getMessage());

}

catch

(Exception

e)

{

System.out.println("Exception

thrown

on

transaction

commit:

"

+

e.getMessage());

}

}

}

while

(

error==true

&&

retryCount

>

0

);

//

Prepare

and

return

HTML

response,

prevent

dynamic

content

from

being

cached

//

on

browsers.

res.setContentType("text/html");

res.setHeader("Pragma",

"no-cache");

res.setHeader("Cache-Control",

"no-cache");

res.setDateHeader("Expires",

0);

try

{

ServletOutputStream

out

=

res.getOutputStream();

out.println("<HTML>");

out.println("<HEAD><TITLE>"

+

title

+

"</TITLE></HEAD>");

82

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

out.println("<BODY>");

if

(error==true)

{

out.println("<H1>There

was

an

error

processing

this

request.</H1>

Please

try

the

request

again,

or

contact

"

+

"

the

System

Administrator");

Note:

The

previous

if

statement

should

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

}

else

if

(employeeList.isEmpty())

{

out.println("<H1>Employee

List

is

Empty</H1>");

}

else

{

out.println("<H1>Employee

List

</H1>");

for

(int

i

=

0;

i

<

employeeList.size();

i++)

{

out.println(employeeList.elementAt(i)

+

"
");

}

}

out.println("</BODY></HTML>");

out.close();

}

catch

(IOException

e)

{

System.out.println("HTML

response

exception:

"

+

e.getMessage());

}

}

}

Example:

Developing

session

bean

with

container

managed

transaction:

//===================START_PROLOG======================================

//

//

5630-A23,

5630-A22,

//

(C)

COPYRIGHT

International

Business

Machines

Corp.

2002

//

All

Rights

Reserved

//

Licensed

Materials

-

Property

of

IBM

//

US

Government

Users

Restricted

Rights

-

Use,

duplication

or

//

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

//

//

IBM

DISCLAIMS

ALL

WARRANTIES

WITH

REGARD

TO

THIS

SOFTWARE,

INCLUDING

//

ALL

IMPLIED

WARRANTIES

OF

MERCHANTABILITY

AND

FITNESS

FOR

A

PARTICULAR

//

PURPOSE.

IN

NO

EVENT

SHALL

IBM

BE

LIABLE

FOR

ANY

SPECIAL,

INDIRECT

OR

//

CONSEQUENTIAL

DAMAGES

OR

ANY

DAMAGES

WHATSOEVER

RESULTING

FROM

LOSS

OF

//

USE,

DATA

OR

PROFITS,

WHETHER

IN

AN

ACTION

OF

CONTRACT,

NEGLIGENCE

OR

//

OTHER

TORTIOUS

ACTION,

ARISING

OUT

OF

OR

IN

CONNECTION

WITH

THE

USE

//

OR

PERFORMANCE

OF

THIS

SOFTWARE.

//

//===================END_PROLOG==

package

WebSphereSamples.ConnPool;

import

java.rmi.RemoteException;

import

java.util.*;

import

java.sql.*;

import

javax.sql.*;

import

javax.ejb.*;

import

javax.naming.*;

/***

*

This

bean

is

designed

to

demonstrate

Database

Connections

in

a

*

Container

Managed

Transaction

Session

Bean.

Its

transaction

attribute

*

*

should

be

set

to

TX_REQUIRED

or

TX_REQUIRES_NEW.

*

**

*/

public

class

ShowEmployeesCMTBean

implements

SessionBean

{

private

javax.ejb.SessionContext

mySessionCtx

=

null;

final

static

long

serialVersionUID

=

3206093459760846163L;

Chapter

2.

Accessing

data

from

applications

83

private

javax.sql.DataSource

ds;

//**

//*

ejbActivate

calls

the

getDS

method,

which

does

the

JNDI

lookup

for

the

DataSource.

//*

Because

the

DataSource

lookup

is

in

a

separate

method,

we

can

also

invoke

it

from

//*

the

getEmployees

method

in

the

case

where

the

DataSource

field

is

null.

//**

public

void

ejbActivate()

throws

java.rmi.RemoteException

{

getDS();

}

/**

*

ejbCreate

method

*

@exception

javax.ejb.CreateException

*

@exception

java.rmi.RemoteException

*/

public

void

ejbCreate()

throws

javax.ejb.CreateException,

java.rmi.RemoteException

{}

/**

*

ejbPassivate

method

*

@exception

java.rmi.RemoteException

*/

public

void

ejbPassivate()

throws

java.rmi.RemoteException

{}

/**

*

ejbRemove

method

*

@exception

java.rmi.RemoteException

*/

public

void

ejbRemove()

throws

java.rmi.RemoteException

{}

//**

//*

The

getEmployees

method

runs

the

database

query

to

retrieve

the

employees.

//*

The

getDS

method

is

only

called

if

the

DataSource

variable

is

null.

//*

Because

this

session

bean

uses

Container

Managed

Transactions,

it

cannot

retry

the

//*

transaction

on

a

StaleConnectionException.

However,

it

can

throw

an

exception

to

//*

its

client

indicating

that

the

operation

is

retriable.

*

//**

public

Vector

getEmployees()

throws

com.ibm.ejs.cm.pool.ConnectionWaitTimeoutException,

SQLException,

RetryableConnectionException

{

Note:

The

previous

line

of

code

should

be

entered

on

one

line;

here

it

is

split

for

formatting

purposes.
Connection

conn

=

null;

Statement

stmt

=

null;

ResultSet

rs

=

null;

Vector

employeeList

=

new

Vector();

if

(ds

==

null)

getDS();

try

{

//

Get

a

Connection

object

conn

using

the

DataSource

factory.

conn

=

ds.getConnection();

//

Run

DB

query

using

standard

JDBC

coding.

stmt

=

conn.createStatement();

String

query

=

"Select

FirstNme,

MidInit,

LastName

"

+

"from

Employee

ORDER

BY

LastName";

rs

=

stmt.executeQuery(query);

while

(rs.next())

{

employeeList.addElement(rs.getString(3)

+

",

"

+

rs.getString(1)

+

"

"

+

rs.getString(2));

Note:

The

previous

line

of

code

should

be

entered

on

one

line;

here

it

is

split

for

formatting

purposes.

}

}

catch

(com.ibm.websphere.ce.cm.StaleConnectionException

se)

{

84

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

//

This

exception

indicates

that

the

connection

to

the

database

is

no

longer

valid.

//

Rollback

the

transaction,

and

throw

an

exception

to

the

client

indicating

they

//

can

retry

the

transaction

if

desired.

System.out.println("Stale

Connection

Exception

during

get

connection

or

process

SQL:

"

+

se.getMessage());

Note:

The

previous

line

of

code

should

be

entered

on

one

line;

here

it

is

split

for

formatting

purposes.
System.out.println("Rolling

back

transaction

and

throwing

RetryableConnectionException");

mySessionCtx.setRollbackOnly();

throw

new

RetryableConnectionException(se.toString());

}

catch

(com.ibm.ejs.cm.pool.ConnectionWaitTimeoutException

cw)

{

//

This

exception

is

thrown

if

a

connection

can

not

be

obtained

from

the

//

pool

within

a

configurable

amount

of

time.

Frequent

occurrences

of

//

this

exception

indicate

an

incorrectly

tuned

connection

pool

System.out.println("Connection

Wait

Timeout

Exception

during

get

connection

or

process

SQL:

"

+

cw.getMessage());

Note:

The

previous

line

of

code

should

be

entered

on

one

line;

here

it

is

split

for

formatting

purposes.
throw

cw;

}

catch

(SQLException

sq)

{

//Throwing

a

remote

exception

will

automatically

roll

back

the

container

managed

//transaction

System.out.println("SQL

Exception

during

get

connection

or

process

SQL:

"

+

sq.getMessage());

Note:

The

previous

line

of

code

should

be

entered

on

one

line;

here

it

is

split

for

formatting

purposes.
throw

sq;

}

finally

{

//

Always

close

the

connection

in

a

finally

statement

to

ensure

proper

//

closure

in

all

cases.

Closing

the

connection

does

not

close

and

//

actual

connection,

but

releases

it

back

to

the

pool

for

reuse.

if

(rs

!=

null)

{

try

{

rs.close();

}

catch

(Exception

e)

{

System.out.println("Close

Resultset

Exception:

"

+

e.getMessage());

}

}

if

(stmt

!=

null)

{

try

{

stmt.close();

}

catch

(Exception

e)

{

System.out.println("Close

Statement

Exception:

"

+

e.getMessage());

}

}

if

(conn

!=

null)

{

try

{

conn.close();

}

Chapter

2.

Accessing

data

from

applications

85

catch

(Exception

e)

{

System.out.println("Close

connection

exception:

"

+

e.getMessage());

}

}

}

return

employeeList;

}

/**

*

getSessionContext

method

*

@return

javax.ejb.SessionContext

*/

public

javax.ejb.SessionContext

getSessionContext()

{

return

mySessionCtx;

}

//**

//*

The

getDS

method

performs

the

JNDI

lookup

for

the

DataSource.

*

//*

This

method

is

called

from

ejbActivate,

and

from

getEmployees

if

the

DataSource

//*

object

is

null.

*

//**

private

void

getDS()

{

try

{

Hashtable

parms

=

new

Hashtable();

parms.put(Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.websphere.naming.WsnInitialContextFactory");

InitialContext

ctx

=

new

InitialContext(parms);

//

Perform

a

naming

service

lookup

to

get

the

DataSource

object.

ds

=

(DataSource)ctx.lookup("java:comp/env/jdbc/SampleDB");

}

catch

(Exception

e)

{

System.out.println("Naming

service

exception:

"

+

e.getMessage());

e.printStackTrace();

}

}

/**

*

setSessionContext

method

*

@param

ctx

javax.ejb.SessionContext

*

@exception

java.rmi.RemoteException

*/

public

void

setSessionContext(javax.ejb.SessionContext

ctx)

throws

java.rmi.RemoteException

{

mySessionCtx

=

ctx;

}

}

//===================START_PROLOG======================================

//

//

5630-A23,

5630-A22,

//

(C)

COPYRIGHT

International

Business

Machines

Corp.

2002

//

All

Rights

Reserved

//

Licensed

Materials

-

Property

of

IBM

//

US

Government

Users

Restricted

Rights

-

Use,

duplication

or

//

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

//

//

IBM

DISCLAIMS

ALL

WARRANTIES

WITH

REGARD

TO

THIS

SOFTWARE,

INCLUDING

//

ALL

IMPLIED

WARRANTIES

OF

MERCHANTABILITY

AND

FITNESS

FOR

A

PARTICULAR

//

PURPOSE.

IN

NO

EVENT

SHALL

IBM

BE

LIABLE

FOR

ANY

SPECIAL,

INDIRECT

OR

//

CONSEQUENTIAL

DAMAGES

OR

ANY

DAMAGES

WHATSOEVER

RESULTING

FROM

LOSS

OF

//

USE,

DATA

OR

PROFITS,

WHETHER

IN

AN

ACTION

OF

CONTRACT,

NEGLIGENCE

OR

//

OTHER

TORTIOUS

ACTION,

ARISING

OUT

OF

OR

IN

CONNECTION

WITH

THE

USE

//

OR

PERFORMANCE

OF

THIS

SOFTWARE.

//

//===================END_PROLOG==

package

WebSphereSamples.ConnPool;

/**

*

This

is

a

Home

interface

for

the

Session

Bean

*/

86

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

public

interface

ShowEmployeesCMTHome

extends

javax.ejb.EJBHome

{

/**

*

create

method

for

a

session

bean

*

@return

WebSphereSamples.ConnPool.ShowEmployeesCMT

*

@exception

javax.ejb.CreateException

*

@exception

java.rmi.RemoteException

*/

WebSphereSamples.ConnPool.ShowEmployeesCMT

create()

throws

javax.ejb.CreateException,

java.rmi.RemoteException;

Note:

The

previous

line

of

code

should

be

entered

on

one

line;

here

it

is

split

for

formatting

purposes.
}

//===================START_PROLOG======================================

//

//

5630-A23,

5630-A22,

//

(C)

COPYRIGHT

International

Business

Machines

Corp.

2002

//

All

Rights

Reserved

//

Licensed

Materials

-

Property

of

IBM

//

US

Government

Users

Restricted

Rights

-

Use,

duplication

or

//

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

//

//

IBM

DISCLAIMS

ALL

WARRANTIES

WITH

REGARD

TO

THIS

SOFTWARE,

INCLUDING

//

ALL

IMPLIED

WARRANTIES

OF

MERCHANTABILITY

AND

FITNESS

FOR

A

PARTICULAR

//

PURPOSE.

IN

NO

EVENT

SHALL

IBM

BE

LIABLE

FOR

ANY

SPECIAL,

INDIRECT

OR

//

CONSEQUENTIAL

DAMAGES

OR

ANY

DAMAGES

WHATSOEVER

RESULTING

FROM

LOSS

OF

//

USE,

DATA

OR

PROFITS,

WHETHER

IN

AN

ACTION

OF

CONTRACT,

NEGLIGENCE

OR

//

OTHER

TORTIOUS

ACTION,

ARISING

OUT

OF

OR

IN

CONNECTION

WITH

THE

USE

//

OR

PERFORMANCE

OF

THIS

SOFTWARE.

//

//===================END_PROLOG==

package

WebSphereSamples.ConnPool;

/**

*

This

is

an

Enterprise

Java

Bean

Remote

Interface

*/

public

interface

ShowEmployeesCMT

extends

javax.ejb.EJBObject

{

/**

*

*

@return

java.util.Vector

*/

java.util.Vector

getEmployees()

throws

java.sql.SQLException,

java.rmi.RemoteException,

com.ibm.ejs.cm.pool.ConnectionWaitTimeoutException,

WebSphereSamples.ConnPool.RetryableConnectionException;

Note:

The

previous

line

of

code

(beginning

java.util.Vector)

should

be

entered

on

one

line;

here

it

is

split

for

formatting

purposes.
}

//===================START_PROLOG======================================

//

//

5630-A23,

5630-A22,

//

(C)

COPYRIGHT

International

Business

Machines

Corp.

2002

//

All

Rights

Reserved

//

Licensed

Materials

-

Property

of

IBM

//

US

Government

Users

Restricted

Rights

-

Use,

duplication

or

//

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

//

//

IBM

DISCLAIMS

ALL

WARRANTIES

WITH

REGARD

TO

THIS

SOFTWARE,

INCLUDING

//

ALL

IMPLIED

WARRANTIES

OF

MERCHANTABILITY

AND

FITNESS

FOR

A

PARTICULAR

//

PURPOSE.

IN

NO

EVENT

SHALL

IBM

BE

LIABLE

FOR

ANY

SPECIAL,

INDIRECT

OR

//

CONSEQUENTIAL

DAMAGES

OR

ANY

DAMAGES

WHATSOEVER

RESULTING

FROM

LOSS

OF

Chapter

2.

Accessing

data

from

applications

87

//

USE,

DATA

OR

PROFITS,

WHETHER

IN

AN

ACTION

OF

CONTRACT,

NEGLIGENCE

OR

//

OTHER

TORTIOUS

ACTION,

ARISING

OUT

OF

OR

IN

CONNECTION

WITH

THE

USE

//

OR

PERFORMANCE

OF

THIS

SOFTWARE.

//

//===================END_PROLOG==

package

WebSphereSamples.ConnPool;

/**

*

Exception

indicating

that

the

operation

can

be

retried

*

Creation

date:

(4/2/2001

10:48:08

AM)

*

@author:

Administrator

*/

public

class

RetryableConnectionException

extends

Exception

{

/**

*

RetryableConnectionException

constructor.

*/

public

RetryableConnectionException()

{

super();

}

/**

*

RetryableConnectionException

constructor.

*

@param

s

java.lang.String

*/

public

RetryableConnectionException(String

s)

{

super(s);

}

}

Example:

Developing

session

bean

with

bean

managed

transaction:

//===================START_PROLOG======================================

//

//

5630-A23,

5630-A22,

//

(C)

COPYRIGHT

International

Business

Machines

Corp.

2002

//

All

Rights

Reserved

//

Licensed

Materials

-

Property

of

IBM

//

US

Government

Users

Restricted

Rights

-

Use,

duplication

or

//

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

//

//

IBM

DISCLAIMS

ALL

WARRANTIES

WITH

REGARD

TO

THIS

SOFTWARE,

INCLUDING

//

ALL

IMPLIED

WARRANTIES

OF

MERCHANTABILITY

AND

FITNESS

FOR

A

PARTICULAR

//

PURPOSE.

IN

NO

EVENT

SHALL

IBM

BE

LIABLE

FOR

ANY

SPECIAL,

INDIRECT

OR

//

CONSEQUENTIAL

DAMAGES

OR

ANY

DAMAGES

WHATSOEVER

RESULTING

FROM

LOSS

OF

//

USE,

DATA

OR

PROFITS,

WHETHER

IN

AN

ACTION

OF

CONTRACT,

NEGLIGENCE

OR

//

OTHER

TORTIOUS

ACTION,

ARISING

OUT

OF

OR

IN

CONNECTION

WITH

THE

USE

//

OR

PERFORMANCE

OF

THIS

SOFTWARE.

//

//===================END_PROLOG==

package

WebSphereSamples.ConnPool;

import

java.rmi.RemoteException;

import

java.util.*;

import

java.sql.*;

import

javax.sql.*;

import

javax.ejb.*;

import

javax.naming.*;

import

javax.transaction.*;

/***

*

This

bean

is

designed

to

demonstrate

Database

Connections

in

a

*

Bean-Managed

Transaction

Session

Bean.

Its

transaction

attribute

*

should

be

set

to

TX_BEANMANAGED.

***/

public

class

ShowEmployeesBMTBean

implements

SessionBean

{

private

javax.ejb.SessionContext

mySessionCtx

=

null;

88

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

final

static

long

serialVersionUID

=

3206093459760846163L;

private

javax.sql.DataSource

ds;

private

javax.transaction.UserTransaction

userTran;

//**

//*

ejbActivate

calls

the

getDS

method,

which

makes

the

JNDI

lookup

for

the

DataSource

//*

Because

the

DataSource

lookup

is

in

a

separate

method,

we

can

also

invoke

it

from

//*

the

getEmployees

method

in

the

case

where

the

DataSource

field

is

null.

//**

public

void

ejbActivate()

throws

java.rmi.RemoteException

{

getDS();

}

/**

*

ejbCreate

method

*

@exception

javax.ejb.CreateException

*

@exception

java.rmi.RemoteException

*/

public

void

ejbCreate()

throws

javax.ejb.CreateException,

java.rmi.RemoteException

{}

/**

*

ejbPassivate

method

*

@exception

java.rmi.RemoteException

*/

public

void

ejbPassivate()

throws

java.rmi.RemoteException

{}

/**

*

ejbRemove

method

*

@exception

java.rmi.RemoteException

*/

public

void

ejbRemove()

throws

java.rmi.RemoteException

{}

//**

//*

The

getEmployees

method

runs

the

database

query

to

retrieve

the

employees.

//*

The

getDS

method

is

only

called

if

the

DataSource

or

userTran

variables

are

null.

//*

If

a

StaleConnectionException

occurs,

the

bean

retries

the

transaction

5

times,

//*

then

throws

an

EJBException.

*

//**

public

Vector

getEmployees()

throws

EJBException

{

Connection

conn

=

null;

Statement

stmt

=

null;

ResultSet

rs

=

null;

Vector

employeeList

=

new

Vector();

//

Set

retryCount

to

the

number

of

times

you

would

like

to

retry

after

a

//StaleConnectionException

int

retryCount

=

5;

//

If

the

Database

code

processes

successfully,

we

will

set

error

=

false

boolean

error

=

true;

if

(ds

==

null

||

userTran

==

null)

getDS();

do

{

try

{

//try/catch

block

for

UserTransaction

work

//Begin

the

transaction

userTran.begin();

try

{

//try/catch

block

for

database

work

//Get

a

Connection

object

conn

using

the

DataSource

factory.

conn

=

ds.getConnection();

//

Run

DB

query

using

standard

JDBC

coding.

stmt

=

conn.createStatement();

String

query

=

"Select

FirstNme,

MidInit,

LastName

"

+

"from

Employee

ORDER

BY

LastName";

rs

=

stmt.executeQuery(query);

while

(rs.next())

{

Chapter

2.

Accessing

data

from

applications

89

employeeList.addElement(rs.getString(3)

+

",

"

+

}

//Set

error

to

false,

as

all

database

operations

are

successfully

completed

error

=

false;

}

catch

(com.ibm.websphere.ce.cm.StaleConnectionException

se)

{

//

This

exception

indicates

that

the

connection

to

the

database

is

no

longer

valid.

//

Rollback

the

transaction,

and

throw

an

exception

to

the

client

indicating

they

//

can

retry

the

transaction

if

desired.

System.out.println("Stale

Connection

Exception

during

get

connection

or

process

SQL:

"

+

se.getMessage());

Note:

The

previous

line

of

code

must

be

entered

on

one

line;

here

it

is

split

for

formatting

purposes.

userTran.rollback();

if

(--retryCount

==

0)

{

//If

we

have

already

retried

the

requested

number

of

times,

throw

an

EJBException.

throw

new

EJBException("Transaction

Failure:

"

+

se.toString());

}

else

{

System.out.println("Retrying

transaction,

retryCount

=

"

+

retryCount);

}

}

catch

(com.ibm.ejs.cm.pool.ConnectionWaitTimeoutException

cw)

{

//

This

exception

is

thrown

if

a

connection

can

not

be

obtained

from

the

//

pool

within

a

configurable

amount

of

time.

Frequent

occurrences

of

//

this

exception

indicate

an

incorrectly

tuned

connection

pool

System.out.println("Connection

Wait

Timeout

Exception

during

get

connection

or

process

SQL:

"

+

cw.getMessage());

Note:

The

previous

line

of

code

must

be

entered

on

one

line;

here

it

is

split

for

formatting

purposes.

userTran.rollback();

throw

new

EJBException("Transaction

failure:

"

+

cw.getMessage());

}

catch

(SQLException

sq)

{

//

This

catch

handles

all

other

SQL

Exceptions

System.out.println("SQL

Exception

during

get

connection

or

process

SQL:

"

+

sq.getMessage());

userTran.rollback();

throw

new

EJBException("Transaction

failure:

"

+

sq.getMessage());

}

finally

{

//

Always

close

the

connection

in

a

finally

statement

to

ensure

proper

//

closure

in

all

cases.

Closing

the

connection

does

not

close

and

//

actual

connection,

but

releases

it

back

to

the

pool

for

reuse.

if

(rs

!=

null)

{

try

{

rs.close();

}

catch

(Exception

e)

{

System.out.println("Close

Resultset

Exception:

"

+

e.getMessage());

}

}

if

(stmt

!=

null)

{

try

{

stmt.close();

}

catch

(Exception

e)

{

System.out.println("Close

Statement

Exception:

"

+

e.getMessage());

90

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

}

}

if

(conn

!=

null)

{

try

{

conn.close();

}

catch

(Exception

e)

{

System.out.println("Close

connection

exception:

"

+

e.getMessage());

}

}

}

if

(!error)

{

//Database

work

completed

successfully,

commit

the

transaction

userTran.commit();

}

//Catch

UserTransaction

exceptions

}

catch

(NotSupportedException

nse)

{

//Thrown

by

UserTransaction

begin

method

if

the

thread

is

already

associated

with

a

//transaction

and

the

Transaction

Manager

implementation

does

not

support

nested

transactions.

System.out.println("NotSupportedException

on

User

Transaction

begin:

"

+

nse.getMessage());

throw

new

EJBException("Transaction

failure:

"

+

nse.getMessage());

}

catch

(RollbackException

re)

{

//Thrown

to

indicate

that

the

transaction

has

been

rolled

back

rather

than

committed.

System.out.println("User

Transaction

Rolled

back!

"

+

re.getMessage());

throw

new

EJBException("Transaction

failure:

"

+

re.getMessage());

}

catch

(SystemException

se)

{

//Thrown

if

the

transaction

manager

encounters

an

unexpected

error

condition

System.out.println("SystemException

in

User

Transaction:

"+

se.getMessage());

throw

new

EJBException("Transaction

failure:

"

+

se.getMessage());

}

catch

(Exception

e)

{

//Handle

any

generic

or

unexpected

Exceptions

System.out.println("Exception

in

User

Transaction:

"

+

e.getMessage());

throw

new

EJBException("Transaction

failure:

"

+

e.getMessage());

}

}

while

(error);

return

employeeList;

}

/**

*

getSessionContext

method

comment

*

@return

javax.ejb.SessionContext

*/

public

javax.ejb.SessionContext

getSessionContext()

{

return

mySessionCtx;

}

//**

//*

The

getDS

method

performs

the

JNDI

lookup

for

the

DataSource.

//*

This

method

is

called

from

ejbActivate,

and

from

getEmployees

if

the

DataSource

//*

object

is

null.

//**

private

void

getDS()

{

try

{

Hashtable

parms

=

new

Hashtable();

parms.put(Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.websphere.naming.WsnInitialContextFactory");

InitialContext

ctx

=

new

InitialContext(parms);

//

Perform

a

naming

service

lookup

to

get

the

DataSource

object.

ds

=

(DataSource)ctx.lookup("java:comp/env/jdbc/SampleDB");

//Create

the

UserTransaction

object

userTran

=

mySessionCtx.getUserTransaction();

Chapter

2.

Accessing

data

from

applications

91

}

catch

(Exception

e)

{

System.out.println("Naming

service

exception:

"

+

e.getMessage());

e.printStackTrace();

}

}

/**

*

setSessionContext

method

*

@param

ctx

javax.ejb.SessionContext

*

@exception

java.rmi.RemoteException

*/

public

void

setSessionContext(javax.ejb.SessionContext

ctx)

throws

java.rmi.RemoteException

{

mySessionCtx

=

ctx;

}

}

//===================START_PROLOG======================================

//

//

5630-A23,

5630-A22,

//

(C)

COPYRIGHT

International

Business

Machines

Corp.

2002

//

All

Rights

Reserved

//

Licensed

Materials

-

Property

of

IBM

//

US

Government

Users

Restricted

Rights

-

Use,

duplication

or

//

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

//

//

IBM

DISCLAIMS

ALL

WARRANTIES

WITH

REGARD

TO

THIS

SOFTWARE,

INCLUDING

//

ALL

IMPLIED

WARRANTIES

OF

MERCHANTABILITY

AND

FITNESS

FOR

A

PARTICULAR

//

PURPOSE.

IN

NO

EVENT

SHALL

IBM

BE

LIABLE

FOR

ANY

SPECIAL,

INDIRECT

OR

//

CONSEQUENTIAL

DAMAGES

OR

ANY

DAMAGES

WHATSOEVER

RESULTING

FROM

LOSS

OF

//

USE,

DATA

OR

PROFITS,

WHETHER

IN

AN

ACTION

OF

CONTRACT,

NEGLIGENCE

OR

//

OTHER

TORTIOUS

ACTION,

ARISING

OUT

OF

OR

IN

CONNECTION

WITH

THE

USE

//

OR

PERFORMANCE

OF

THIS

SOFTWARE.

//

//===================END_PROLOG==

package

WebSphereSamples.ConnPool;

/**

*

This

is

a

Home

interface

for

the

Session

Bean

*/

public

interface

ShowEmployeesBMTHome

extends

javax.ejb.EJBHome

{

/**

*

create

method

for

a

session

bean

*

@return

WebSphereSamples.ConnPool.ShowEmployeesBMT

*

@exception

javax.ejb.CreateException

*

@exception

java.rmi.RemoteException

*/

WebSphereSamples.ConnPool.ShowEmployeesBMT

create()

throws

javax.ejb.CreateException,

java.rmi.RemoteException;

Note:

The

previous

line

of

code

must

be

entered

on

one

line;

here

it

is

split

for

formatting

purposes.
}

//===================START_PROLOG======================================

//

//

5630-A23,

5630-A22,

//

(C)

COPYRIGHT

International

Business

Machines

Corp.

2002

//

All

Rights

Reserved

//

Licensed

Materials

-

Property

of

IBM

//

US

Government

Users

Restricted

Rights

-

Use,

duplication

or

//

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

//

//

IBM

DISCLAIMS

ALL

WARRANTIES

WITH

REGARD

TO

THIS

SOFTWARE,

INCLUDING

//

ALL

IMPLIED

WARRANTIES

OF

MERCHANTABILITY

AND

FITNESS

FOR

A

PARTICULAR

//

PURPOSE.

IN

NO

EVENT

SHALL

IBM

BE

LIABLE

FOR

ANY

SPECIAL,

INDIRECT

OR

92

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

//

CONSEQUENTIAL

DAMAGES

OR

ANY

DAMAGES

WHATSOEVER

RESULTING

FROM

LOSS

OF

//

USE,

DATA

OR

PROFITS,

WHETHER

IN

AN

ACTION

OF

CONTRACT,

NEGLIGENCE

OR

//

OTHER

TORTIOUS

ACTION,

ARISING

OUT

OF

OR

IN

CONNECTION

WITH

THE

USE

//

OR

PERFORMANCE

OF

THIS

SOFTWARE.

//

//===================END_PROLOG==

package

WebSphereSamples.ConnPool;

/**

*

This

is

an

Enterprise

Java

Bean

Remote

Interface

*/

public

interface

ShowEmployeesBMT

extends

javax.ejb.EJBObject

{

/**

*

*

@return

java.util.Vector

*/

java.util.Vector

getEmployees()

throws

java.rmi.RemoteException,

javax.ejb.EJBException;

}

Example:

Developing

entity

bean

with

bean

managed

persistence

(container

managed

transaction):

//===================START_PROLOG======================================

//

//

5630-A23,

5630-A22,

//

(C)

COPYRIGHT

International

Business

Machines

Corp.

2002

//

All

Rights

Reserved

//

Licensed

Materials

-

Property

of

IBM

//

US

Government

Users

Restricted

Rights

-

Use,

duplication

or

//

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

//

//

IBM

DISCLAIMS

ALL

WARRANTIES

WITH

REGARD

TO

THIS

SOFTWARE,

INCLUDING

//

ALL

IMPLIED

WARRANTIES

OF

MERCHANTABILITY

AND

FITNESS

FOR

A

PARTICULAR

//

PURPOSE.

IN

NO

EVENT

SHALL

IBM

BE

LIABLE

FOR

ANY

SPECIAL,

INDIRECT

OR

//

CONSEQUENTIAL

DAMAGES

OR

ANY

DAMAGES

WHATSOEVER

RESULTING

FROM

LOSS

OF

//

USE,

DATA

OR

PROFITS,

WHETHER

IN

AN

ACTION

OF

CONTRACT,

NEGLIGENCE

OR

//

OTHER

TORTIOUS

ACTION,

ARISING

OUT

OF

OR

IN

CONNECTION

WITH

THE

USE

//

OR

PERFORMANCE

OF

THIS

SOFTWARE.

//

//===================END_PROLOG==

package

WebSphereSamples.ConnPool;

import

java.rmi.RemoteException;

import

java.util.*;

import

javax.ejb.*;

import

java.sql.*;

import

javax.sql.*;

import

javax.ejb.*;

import

javax.naming.*;

/**

*

This

is

an

Entity

Bean

class

with

five

BMP

fields

*

String

firstName,

String

lastName,

String

middleInit

*

String

empNo,

int

edLevel

*/

public

class

EmployeeBMPBean

implements

EntityBean

{

private

javax.ejb.EntityContext

entityContext

=

null;

final

static

long

serialVersionUID

=

3206093459760846163L;

private

java.lang.String

firstName;

private

java.lang.String

lastName;

private

String

middleInit;

private

javax.sql.DataSource

ds;

private

java.lang.String

empNo;

Chapter

2.

Accessing

data

from

applications

93

private

int

edLevel;

/**

*

ejbActivate

method

*

@exception

java.rmi.RemoteException

*

ejbActivate

calls

getDS(),

which

perfoms

the

*

JNDI

lookup

for

the

datasource.

*/

public

void

ejbActivate()

throws

java.rmi.RemoteException

{

getDS();

}

/**

*

ejbCreate

method

for

a

BMP

entity

bean

*

@return

WebSphereSamples.ConnPool.EmployeeBMPKey

*

@param

key

WebSphereSamples.ConnPool.EmployeeBMPKey

*

@exception

javax.ejb.CreateException

*

@exception

java.rmi.RemoteException

*/

public

WebSphereSamples.ConnPool.EmployeeBMPKey

ejbCreate(String

empNo,

String

firstName,

String

lastName,

String

middleInit,

int

edLevel)

throws

javax.ejb.CreateException,

java.rmi.RemoteException

{

Note:

The

previous

line

of

code

(beginning

public

WebSphereSamples)

should

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.
Connection

conn

=

null;

PreparedStatement

ps

=

null;

if

(ds

==

null)

getDS();

this.empNo

=

empNo;

this.firstName

=

firstName;

this.lastName

=

lastName;

this.middleInit

=

middleInit;

this.edLevel

=

edLevel;

String

sql

=

"insert

into

Employee

(empNo,

firstnme,

midinit,

lastname,

edlevel)

values

(?,?,?,?,?)";

Note:

The

previous

line

of

code

should

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.
try

{

conn

=

ds.getConnection();

ps

=

conn.prepareStatement(sql);

ps.setString(1,

empNo);

ps.setString(2,

firstName);

ps.setString(3,

middleInit);

ps.setString(4,

lastName);

ps.setInt(5,

edLevel);

if

(ps.executeUpdate()

!=

1){

System.out.println("ejbCreate

Failed

to

add

user.");

throw

new

CreateException("Failed

to

add

user.");

}

}

catch

(com.ibm.websphere.ce.cm.StaleConnectionException

se)

{

//

This

exception

indicates

that

the

connection

to

the

database

is

no

longer

valid.

//

Rollback

the

transaction,

and

throw

an

exception

to

the

client

indicating

they

//

can

retry

the

transaction

if

desired.

System.out.println("Stale

Connection

Exception

during

get

connection

or

process

SQL:

"

+

se.getMessage());

Note:

The

previous

line

of

code

should

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

94

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

throw

new

CreateException(se.getMessage());

}

catch

(SQLException

sq)

{

System.out.println("SQL

Exception

during

get

connection

or

process

SQL:

"

+

sq.getMessage());

throw

new

CreateException(sq.getMessage());

}

finally

{

//

Always

close

the

connection

in

a

finally

statement

to

ensure

proper

//

closure

in

all

cases.

Closing

the

connection

does

not

close

and

//

actual

connection,

but

releases

it

back

to

the

pool

for

reuse.

if

(ps

!=

null)

{

try

{

ps.close();

}

catch

(Exception

e)

{

System.out.println("Close

Statement

Exception:

"

+

e.getMessage());

}

}

if

(conn

!=

null)

{

try

{

conn.close();

}

catch

(Exception

e)

{

System.out.println("Close

connection

exception:

"

+

e.getMessage());

}

}

}

return

new

EmployeeBMPKey(this.empNo);

}

/**

*

ejbFindByPrimaryKey

method

*

@return

WebSphereSamples.ConnPool.EmployeeBMPKey

*

@param

primaryKey

WebSphereSamples.ConnPool.EmployeeBMPKey

*

@exception

java.rmi.RemoteException

*

@exception

javax.ejb.FinderException

*/

public

WebSphereSamples.ConnPool.EmployeeBMPKey

ejbFindByPrimaryKey

(WebSphereSamples.ConnPool.EmployeeBMPKey

primaryKey)

throws

java.rmi.RemoteException,

javax.ejb.FinderException

{

Note:

The

previous

line

of

code

(beginning

public

WebSphereSamples.ConnPool...)

should

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.
loadByEmpNo(primaryKey.empNo);

return

primaryKey;

}

/**

*

ejbLoad

method

*

@exception

java.rmi.RemoteException

*/

public

void

ejbLoad()

throws

java.rmi.RemoteException

{

try

{

EmployeeBMPKey

pk

=

(EmployeeBMPKey)

entityContext.getPrimaryKey();

loadByEmpNo(pk.empNo);

}

catch

(FinderException

fe)

{

throw

new

RemoteException("Cannot

load

Employee

state

from

database.");

}

}

/**

*

ejbPassivate

method

*

@exception

java.rmi.RemoteException

*/

public

void

ejbPassivate()

throws

java.rmi.RemoteException

{}

/**

*

ejbPostCreate

method

for

a

BMP

entity

bean

*

@param

key

WebSphereSamples.ConnPool.EmployeeBMPKey

Chapter

2.

Accessing

data

from

applications

95

*

@exception

java.rmi.RemoteException

*/

public

void

ejbPostCreate(String

empNo,

String

firstName,

String

lastName,

String

middleInit,

int

edLevel)

throws

java.rmi.RemoteException

{}

Note:

The

previous

line

of

code

should

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.
/**

*

ejbRemove

method

*

@exception

java.rmi.RemoteException

*

@exception

javax.ejb.RemoveException

*/

public

void

ejbRemove()

throws

java.rmi.RemoteException,

javax.ejb.RemoveException

{

if

(ds

==

null)

GetDS();

String

sql

=

"delete

from

Employee

where

empNo=?";

Connection

con

=

null;

PreparedStatement

ps

=

null;

try

{

con

=

ds.getConnection();

ps

=

con.prepareStatement(sql);

ps.setString(1,

empNo);

if

(ps.executeUpdate()

!=

1){

throw

new

RemoteException("Cannot

remove

employee:

"

+

empNo);

}

}

catch

(com.ibm.websphere.ce.cm.StaleConnectionException

se)

{

//

This

exception

indicates

that

the

connection

to

the

database

is

no

longer

valid.

//

Rollback

the

transaction,

and

throw

an

exception

to

the

client

indicating

they

//

can

retry

the

transaction

if

desired.

System.out.println("Stale

Connection

Exception

during

get

connection

or

process

SQL:

"

+

se.getMessage());

Note:

The

previous

line

of

code

should

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

throw

new

RemoteException(se.getMessage());

}

catch

(SQLException

sq)

{

System.out.println("SQL

Exception

during

get

connection

or

process

SQL:

"

+

sq.getMessage());

throw

new

RemoteException(sq.getMessage());

}

finally

{

//

Always

close

the

connection

in

a

finally

statement

to

ensure

proper

//

closure

in

all

cases.

Closing

the

connection

does

not

close

and

//

actual

connection,

but

releases

it

back

to

the

pool

for

reuse.

if

(ps

!=

null)

{

try

{

ps.close();

}

catch

(Exception

e)

{

System.out.println("Close

Statement

Exception:

"

+

e.getMessage());

}

}

if

(con

!=

null)

{

try

{

con.close();

}

catch

(Exception

e)

{

System.out.println("Close

connection

exception:

"

+

e.getMessage());

}

96

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

}

}

}

try

{

con

=

ds.getConnection();

ps

=

con.prepareStatement(sql);

ps.setString(1,

empNo);

if

(ps.executeUpdate()

!=

1){

throw

new

RemoteException("Cannot

remove

employee:

"

+

empNo);

}

}

catch

(com.ibm.websphere.ce.cm.StaleConnectionException

se)

{

//

This

exception

indicates

that

the

connection

to

the

database

is

no

longer

valid.

//

Rollback

the

transaction,

and

throw

an

exception

to

the

client

indicating

they

//

can

retry

the

transaction

if

desired.

System.out.println("Stale

Connection

Exception

during

get

connection

or

process

SQL:

"

+

se.getMessage());

Note:

The

previous

line

of

code

should

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

throw

new

RemoteException(se.getMessage());

}

catch

(SQLException

sq)

{

System.out.println("SQL

Exception

during

get

connection

or

process

SQL:

"

+

sq.getMessage());

throw

new

RemoteException(sq.getMessage());

}

finally

{

//

Always

close

the

connection

in

a

finally

statement

to

ensure

proper

//

closure

in

all

cases.

Closing

the

connection

does

not

close

and

//

actual

connection,

but

releases

it

back

to

the

pool

for

reuse.

if

(ps

!=

null)

{

try

{

ps.close();

}

catch

(Exception

e)

{

System.out.println("Close

Statement

Exception:

"

+

e.getMessage());

}

}

if

(con

!=

null)

{

try

{

con.close();

}

catch

(Exception

e)

{

System.out.println("Close

connection

exception:

"

+

e.getMessage());

}

}

}

}

}

catch

(com.ibm.websphere.ce.cm.StaleConnectionException

se)

{

//

This

exception

indicates

that

the

connection

to

the

database

is

no

longer

valid.

//

Rollback

the

transaction,

and

throw

an

exception

to

the

client

indicating

they

//

can

retry

the

transaction

if

desired.

System.out.println("Stale

Connection

Exception

during

get

connection

or

process

SQL:

"

+

se.getMessage());

Note:

The

previous

line

of

code

should

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

Chapter

2.

Accessing

data

from

applications

97

throw

new

RemoteException(se.getMessage());

}

catch

(SQLException

sq)

{

System.out.println("SQL

Exception

during

get

connection

or

process

SQL:

"

+

sq.getMessage());

throw

new

RemoteException(sq.getMessage());

}

finally

{

//

Always

close

the

connection

in

a

finally

statement

to

ensure

proper

//

closure

in

all

cases.

Closing

the

connection

does

not

close

and

//

actual

connection,

but

releases

it

back

to

the

pool

for

reuse.

if

(ps

!=

null)

{

try

{

ps.close();

}

catch

(Exception

e)

{

System.out.println("Close

Statement

Exception:

"

+

e.getMessage());

}

}

if

(con

!=

null)

{

try

{

con.close();

}

catch

(Exception

e)

{

System.out.println("Close

connection

exception:

"

+

e.getMessage());

}

}

}

}

/**

*

Get

the

employee’s

edLevel

*

Creation

date:

(4/20/2001

3:46:22

PM)

*

@return

int

*/

public

int

getEdLevel()

{

return

edLevel;

}

/**

*

getEntityContext

method

*

@return

javax.ejb.EntityContext

*/

public

javax.ejb.EntityContext

getEntityContext()

{

return

entityContext;

}

/**

*

Get

the

employee’s

first

name

*

Creation

date:

(4/19/2001

1:34:47

PM)

*

@return

java.lang.String

*/

public

java.lang.String

getFirstName()

{

return

firstName;

}

/**

*

Get

the

employee’s

last

name

*

Creation

date:

(4/19/2001

1:35:41

PM)

*

@return

java.lang.String

*/

public

java.lang.String

getLastName()

{

return

lastName;

}

/**

*

get

the

employee’s

middle

initial

*

Creation

date:

(4/19/2001

1:36:15

PM)

*

@return

char

*/

98

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

public

String

getMiddleInit()

{

return

middleInit;

}

/**

*

Lookup

the

DataSource

from

JNDI

*

Creation

date:

(4/19/2001

3:28:15

PM)

*/

private

void

getDS()

{

try

{

Hashtable

parms

=

new

Hashtable();

parms.put(Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.websphere.naming.WsnInitialContextFactory");

InitialContext

ctx

=

new

InitialContext(parms);

//

Perform

a

naming

service

lookup

to

get

the

DataSource

object.

ds

=

(DataSource)ctx.lookup("java:comp/env/jdbc/SampleDB");

}

catch

(Exception

e)

{

System.out.println("Naming

service

exception:

"

+

e.getMessage());

e.printStackTrace();

}

}

/**

*

Load

the

employee

from

the

database

*

Creation

date:

(4/19/2001

3:44:07

PM)

*

@param

empNo

java.lang.String

*/

private

void

loadByEmpNo(String

empNoKey)

throws

javax.ejb.FinderException{

String

sql

=

"select

empno,

firstnme,

midinit,

lastname,

edLevel

from

employee

where

empno

=

?";

Connection

conn

=

null;

PreparedStatement

ps

=

null;

ResultSet

rs

=

null;

if

(ds

==

null)

getDS();

try

{

//

Get

a

Connection

object

conn

using

the

DataSource

factory.

conn

=

ds.getConnection();

//

Run

DB

query

using

standard

JDBC

coding.

ps

=

conn.prepareStatement(sql);

ps.setString(1,

empNoKey);

rs

=

ps.executeQuery();

if

(rs.next())

{

empNo=

rs.getString(1);

firstName=rs.getString(2);

middleInit=rs.getString(3);

lastName=rs.getString(4);

edLevel=rs.getInt(5);

}

else

{

throw

new

ObjectNotFoundException("Cannot

find

employee

number

"

+

empNoKey);

}

}

catch

(com.ibm.websphere.ce.cm.StaleConnectionException

se)

{

//

This

exception

indicates

that

the

connection

to

the

database

is

no

longer

valid.

//

Rollback

the

transaction,

and

throw

an

exception

to

the

client

indicating

they

//

can

retry

the

transaction

if

desired.

System.out.println("Stale

Connection

Exception

during

get

connection

or

process

SQL:

"

+

se.getMessage());

Note:

The

previous

line

of

code

should

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

Chapter

2.

Accessing

data

from

applications

99

throw

new

FinderException(se.getMessage());

}

catch

(SQLException

sq)

{

System.out.println("SQL

Exception

during

get

connection

or

process

SQL:

"

+

sq.getMessage());

throw

new

FinderException(sq.getMessage());

}

finally

{

//

Always

close

the

connection

in

a

finally

statement

to

ensure

proper

//

closure

in

all

cases.

Closing

the

connection

does

not

close

and

//

actual

connection,

but

releases

it

back

to

the

pool

for

reuse.

if

(rs

!=

null)

{

try

{

Rs.close();

}

catch

(Exception

e)

{

System.out.println("Close

Resultset

Exception:

"

+

e.getMessage());

}

}

if

(ps

!=

null)

{

try

{

ps.close();

}

catch

(Exception

e)

{

System.out.println("Close

Statement

Exception:

"

+

e.getMessage());

}

}

if

(conn

!=

null)

{

try

{

conn.close();

}

catch

(Exception

e)

{

System.out.println("Close

connection

exception:

"

+

e.getMessage());

}

}

}

}

/**

*

set

the

employee’s

education

level

*

Creation

date:

(4/20/2001

3:46:22

PM)

*

@param

newEdLevel

int

*/

public

void

setEdLevel(int

newEdLevel)

{

edLevel

=

newEdLevel;

}

/**

*

setEntityContext

method

*

@param

ctx

javax.ejb.EntityContext

*

@exception

java.rmi.RemoteException

*/

public

void

setEntityContext(javax.ejb.EntityContext

ctx)

throws

java.rmi.RemoteException

{

entityContext

=

ctx;

}

/**

*

set

the

employee’s

first

name

*

Creation

date:

(4/19/2001

1:34:47

PM)

*

@param

newFirstName

java.lang.String

*/

public

void

setFirstName(java.lang.String

newFirstName)

{

firstName

=

newFirstName;

}

/**

*

set

the

employee’s

last

name

*

Creation

date:

(4/19/2001

1:35:41

PM)

*

@param

newLastName

java.lang.String

*/

public

void

setLastName(java.lang.String

newLastName)

{

100

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

lastName

=

newLastName;

}

/**

*

set

the

employee’s

middle

initial

*

Creation

date:

(4/19/2001

1:36:15

PM)

*

@param

newMiddleInit

char

*/

public

void

setMiddleInit(String

newMiddleInit)

{

middleInit

=

newMiddleInit;

}

/**

*

unsetEntityContext

method

*

@exception

java.rmi.RemoteException

*/

public

void

unsetEntityContext()

throws

java.rmi.RemoteException

{

entityContext

=

null;

}

}

//===================START_PROLOG======================================

//

//

5630-A23,

5630-A22,

//

(C)

COPYRIGHT

International

Business

Machines

Corp.

2002

//

All

Rights

Reserved

//

Licensed

Materials

-

Property

of

IBM

//

US

Government

Users

Restricted

Rights

-

Use,

duplication

or

//

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

//

//

IBM

DISCLAIMS

ALL

WARRANTIES

WITH

REGARD

TO

THIS

SOFTWARE,

INCLUDING

//

ALL

IMPLIED

WARRANTIES

OF

MERCHANTABILITY

AND

FITNESS

FOR

A

PARTICULAR

//

PURPOSE.

IN

NO

EVENT

SHALL

IBM

BE

LIABLE

FOR

ANY

SPECIAL,

INDIRECT

OR

//

CONSEQUENTIAL

DAMAGES

OR

ANY

DAMAGES

WHATSOEVER

RESULTING

FROM

LOSS

OF

//

USE,

DATA

OR

PROFITS,

WHETHER

IN

AN

ACTION

OF

CONTRACT,

NEGLIGENCE

OR

//

OTHER

TORTIOUS

ACTION,

ARISING

OUT

OF

OR

IN

CONNECTION

WITH

THE

USE

//

OR

PERFORMANCE

OF

THIS

SOFTWARE.

//

//===================END_PROLOG==

package

WebSphereSamples.ConnPool;

/**

*

This

is

a

Home

interface

for

the

Entity

Bean

*/

public

interface

EmployeeBMPHome

extends

javax.ejb.EJBHome

{

/**

*

*

@return

WebSphereSamples.ConnPool.EmployeeBMP

*

@param

empNo

java.lang.String

*

@param

firstName

java.lang.String

*

@param

lastName

java.lang.String

*

@param

middleInit

java.lang.String

*

@param

edLevel

int

*/

WebSphereSamples.ConnPool.EmployeeBMP

create(java.lang.String

empNo,

java.lang.String

firstName,

java.lang.String

lastName,

java.lang.String

middleInit,

int

edLevel)

throws

javax.ejb.CreateException,

java.rmi.RemoteException;

Note:

The

previous

line

of

code

(beginning

WebSphereSamples.ConnPool...)

should

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.
/**

*

findByPrimaryKey

method

comment

*

@return

WebSphereSamples.ConnPool.EmployeeBMP

*

@param

key

WebSphereSamples.ConnPool.EmployeeBMPKey

*

@exception

java.rmi.RemoteException

*

@exception

javax.ejb.FinderException

Chapter

2.

Accessing

data

from

applications

101

*/

WebSphereSamples.ConnPool.EmployeeBMP

findByPrimaryKey(WebSphereSamples.ConnPool.

EmployeeBMPKey

key)

throws

java.rmi.RemoteException,

javax.ejb.FinderException;

Note:

The

previous

line

of

code

should

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.
}

//===================START_PROLOG======================================

//

//

5630-A23,

5630-A22,

//

(C)

COPYRIGHT

International

Business

Machines

Corp.

2002

//

All

Rights

Reserved

//

Licensed

Materials

-

Property

of

IBM

//

US

Government

Users

Restricted

Rights

-

Use,

duplication

or

//

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

//

//

IBM

DISCLAIMS

ALL

WARRANTIES

WITH

REGARD

TO

THIS

SOFTWARE,

INCLUDING

//

ALL

IMPLIED

WARRANTIES

OF

MERCHANTABILITY

AND

FITNESS

FOR

A

PARTICULAR

//

PURPOSE.

IN

NO

EVENT

SHALL

IBM

BE

LIABLE

FOR

ANY

SPECIAL,

INDIRECT

OR

//

CONSEQUENTIAL

DAMAGES

OR

ANY

DAMAGES

WHATSOEVER

RESULTING

FROM

LOSS

OF

//

USE,

DATA

OR

PROFITS,

WHETHER

IN

AN

ACTION

OF

CONTRACT,

NEGLIGENCE

OR

//

OTHER

TORTIOUS

ACTION,

ARISING

OUT

OF

OR

IN

CONNECTION

WITH

THE

USE

//

OR

PERFORMANCE

OF

THIS

SOFTWARE.

//

//===================END_PROLOG==

package

WebSphereSamples.ConnPool;

/**

*

This

is

an

Enterprise

Java

Bean

Remote

Interface

*/

public

interface

EmployeeBMP

extends

javax.ejb.EJBObject

{

/**

*

*

@return

int

*/

int

getEdLevel()

throws

java.rmi.RemoteException;

/**

*

*

@return

java.lang.String

*/

java.lang.String

getFirstName()

throws

java.rmi.RemoteException;

/**

*

*

@return

java.lang.String

*/

java.lang.String

getLastName()

throws

java.rmi.RemoteException;

/**

*

*

@return

java.lang.String

*/

java.lang.String

getMiddleInit()

throws

java.rmi.RemoteException;

/**

*

*

@return

void

*

@param

newEdLevel

int

*/

void

setEdLevel(int

newEdLevel)

throws

java.rmi.RemoteException;

/**

*

*

@return

void

*

@param

newFirstName

java.lang.String

*/

void

setFirstName(java.lang.String

newFirstName)

throws

java.rmi.RemoteException;

/**

102

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

*

*

@return

void

*

@param

newLastName

java.lang.String

*/

void

setLastName(java.lang.String

newLastName)

throws

java.rmi.RemoteException;

/**

*

*

@return

void

*

@param

newMiddleInit

java.lang.String

*/

void

setMiddleInit(java.lang.String

newMiddleInit)

throws

java.rmi.RemoteException;

}

//===================START_PROLOG======================================

//

//

5630-A23,

5630-A22,

//

(C)

COPYRIGHT

International

Business

Machines

Corp.

2002

//

All

Rights

Reserved

//

Licensed

Materials

-

Property

of

IBM

//

US

Government

Users

Restricted

Rights

-

Use,

duplication

or

//

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

//

//

IBM

DISCLAIMS

ALL

WARRANTIES

WITH

REGARD

TO

THIS

SOFTWARE,

INCLUDING

//

ALL

IMPLIED

WARRANTIES

OF

MERCHANTABILITY

AND

FITNESS

FOR

A

PARTICULAR

//

PURPOSE.

IN

NO

EVENT

SHALL

IBM

BE

LIABLE

FOR

ANY

SPECIAL,

INDIRECT

OR

//

CONSEQUENTIAL

DAMAGES

OR

ANY

DAMAGES

WHATSOEVER

RESULTING

FROM

LOSS

OF

//

USE,

DATA

OR

PROFITS,

WHETHER

IN

AN

ACTION

OF

CONTRACT,

NEGLIGENCE

OR

//

OTHER

TORTIOUS

ACTION,

ARISING

OUT

OF

OR

IN

CONNECTION

WITH

THE

USE

//

OR

PERFORMANCE

OF

THIS

SOFTWARE.

//

//===================END_PROLOG==

package

WebSphereSamples.ConnPool;

/**

*

This

is

a

Primary

Key

Class

for

the

Entity

Bean

**/

public

class

EmployeeBMPKey

implements

java.io.Serializable

{

public

String

empNo;

final

static

long

serialVersionUID

=

3206093459760846163L;

/**

*

EmployeeBMPKey()

constructor

*/

public

EmployeeBMPKey()

{

}

/**

*

EmployeeBMPKey(String

key)

constructor

*/

public

EmployeeBMPKey(String

key)

{

empNo

=

key;

}

/**

*

equals

method

*

-

user

must

provide

a

proper

implementation

for

the

equal

method.

The

generated

*

method

assumes

the

key

is

a

String

object.

*/

public

boolean

equals

(Object

o)

{

if

(o

instanceof

EmployeeBMPKey)

return

empNo.equals(((EmployeeBMPKey)o).empNo);

else

return

false;

}

/**

*

hashCode

method

*

-

user

must

provide

a

proper

implementation

for

the

hashCode

method.

The

generated

Chapter

2.

Accessing

data

from

applications

103

*

method

assumes

the

key

is

a

String

object.

*/

public

int

hashCode

()

{

return

empNo.hashCode();

Example:

Handling

data

access

exception

-

error

mapping

in

DataStoreHelper

Error

mapping

is

necessary

because

various

database

vendors

can

provide

differing

SQL

errors

and

codes

that

might

mean

the

same

things.

For

example,

the

StaleConnectionException

has

different

codes

in

different

databases.

The

DB2

SQLCODEs

of

1015,

1034,

1036

and

so

on,

indicate

that

the

connection

is

no

longer

available

because

of

a

temporary

database

problem.

The

Oracle

SQLCODEs

of

28,

3113,

3114

and

so

on

indicate

the

same

situation.

To

provide

portability

for

applications,

WebSphere

Application

Server

provides

a

DataStoreHelper

interface

to

enable

mapping

of

these

codes

to

the

WebSphere

Application

Server

exceptions.

The

following

code

segment

illustrates

how

to

add

two

error

codes

into

the

error

map:

public

class

NewDSHelper

extends

GenericDataStoreHelper

{

public

NewDSHelper()

{

super(null);

java.util.Hashtable

myErrorMap

=

null;

myErrorMap

=

new

java.util.Hashtable(2);

myErrorMap.put(new

Integer(-803),

myDuplicateKeyException.class);

myErrorMap.put(new

Integer(-1015),

myStaleConnectionException.class);

myErrorMap.put("S1000",

MyTableNotFoundException.class);

setUserDefinedMap(myErrorMap);

...

}

}

Using

embedded

Structured

Query

Language

in

Java

(SQLJ)

support

WebSphere

Application

Server

for

z/OS

Version

5.1

provides

support

for

applications

that

use

Structured

Query

Language

in

Java

(SQLJ

)

to

connect

to

a

DB2

for

z/OS

backend

database.

The

level

of

support

provided

depends

on

the

driver

that

is

used

to

connect

to

DB2

for

z/OS

such

as:

v

The

DB2

for

z/OS

Legacy

Driver

in

conjunction

with

the

DB2

for

z/OS

Local

JDBC

Provider

(RRS)

which

supports

the

use

of

SQLJ

backed

servlets,

session

beans,

and

entity

beans

using

Bean

Managed

Persistence

v

The

DB2

Universal

JDBC

Driver

in

conjunction

with

the

DB2

Universal

JDBC

Driver

Provider

which

supports

the

use

of

SQLJ

backed

servlets,

session

beans,

and

entity

beans

using

Bean

Managed

Persistence

or

Container

Managed

Persistence

Assembling

data

access

applications

1.

Define

the

resource

reference

attributes

through

the

Assembly

Toolkit.

2.

Bind

this

resource

reference

to

a

resource

like

a

J2EE

Connector

Architecture

(JCA)

connection

factory

or

a

data

source.

3.

Configure

isolation

level,

access

intent

assembly

settings.

a.

Right-click

your

EJB

module

in

a

J2EE

Hierarchy

view

and

click

Open

With

>

Deployment

Descriptor

Editor.

b.

In

an

EJB

Deployment

Descriptor

editor,

select

the

Access

tab.

104

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

c.

Under

Isolation

Level,

click

Add.

d.

Select

the

isolation

level,

enterprise

beans,

and

method

elements.

For

information

on

isolation

levels,

press

F1.

e.

Click

Finish.
4.

Map

enterprise

beans

to

database

tables.

Resource

adapter

archive

file

A

Resource

Adapter

Archive

(RAR)

file

is

a

Java

archive

(JAR)

file

used

to

package

a

resource

adapter

for

the

Java

2

Connector

(J2C)

Architecture

for

WebSphere

Application

Server.

A

RAR

file

can

contain

the

following:

v

Enterprise

information

system

(EIS)

supplied

resource

adapter

implementation

code

in

the

form

of

JAR

files

or

other

executables,

such

as

dynamic

link

lists

(DLL).

v

Utility

classes.

v

Static

documents,

such

as

HTML

files,

images,

and

sound

files.

v

J2C

common

client

interfaces,

such

as

cci.jar.

The

standard

file

extension

of

a

RAR

file

is

.rar.

In

the

Assembly

Toolkit,

RAR

files

are

called

connectors.

Assembling

resource

adapter

(connector)

modules

A

resource

adapter

archive

(RAR)

file

contains

code

that

implements

a

library

for

connecting

with

a

backend

Enterprise

Information

System

(EIS).

You

might

see

the

terms

resource

adapter

modules,

resource

adapter

connectors

and

resource

adapter

archive

files

used

interchangeably.

Use

the

Assembly

Toolkit

to

assemble

a

connector

in

any

of

the

following

ways:

v

Import

an

existing

RAR

file.

v

Create

a

new

connector

module.
1.

Start

the

Assembly

Toolkit.

2.

Optional:

Open

the

J2EE

perspective

to

work

with

J2EE

projects.

Click

Window

>

Open

Perspective

>

Other

>

J2EE.

3.

Optional:

Open

the

J2EE

Hierarchy

view.

Click

Window

>

Show

View

>

J2EE

Hierarchy.

Other

helpful

views

include

the

Project

Navigator

view

(Window

>

Show

View

>

Other

>

J2EE

>

Project

Navigator)

and

the

Navigator

view

(Window

>

Show

View

>

Navigator).

4.

Migrate

RAR

files

created

with

the

Application

Assembly

Tool

(AAT)

or

a

different

tool

to

the

Assembly

Toolkit.

To

migrate

files,

import

your

RAR

files

or

connector

modules

to

the

Assembly

Toolkit.

5.

Create

a

new

connector

module.

6.

Verify

the

contents

of

the

new

connector

module

in

either

of

the

following

ways:

v

In

the

J2EE

Hierarchy

view,

expand

Conector

Modules

and

view

the

new

module.

v

Click

Window

>

Show

View

>

Navigator

to

see

the

associated

files

for

the

connector

module

in

a

Navigator

view.

Chapter

2.

Accessing

data

from

applications

105

Deploying

data

access

applications

Before

installing

a

data

access

application

into

the

WebSphere

Application

Server

environment,

you

must

first

ensure

that

the

appropriate

database

objects

are

available.

This

action

includes

creating

and

configuring

any

databases

or

tables

required,

setting

necessary

configuration

parameters

to

handle

expected

load,

and

configuring

any

necessary

JDBC

providers

and

data

source

objects

for

servlets,

enterprise

beans,

and

client

applications

to

use.

1.

If

your

database

configuration

does

not

already

exist:

a.

Create

a

database

to

hold

the

data.

b.

Create

tables

required

by

your

application.

If

your

application

uses

entity

enterprise

beans

to

access

the

data

You

can

create

the

tables

using

the

data

definition

language

(DDL)

generated

from

the

enterprise

bean

configuration.

For

more

information,

see

Recreating

database

tables

from

the

exported

table

data

definition

language.

If

your

application

does

not

use

entity

beans

You

must

use

your

database

server

interfaces

to

create

the

tables.
c.

See

Minimum

required

properties

for

vendor-specific

data

sources

for

certain

vendor’s

databases

requirements.
2.

3.

See

Creating

a

JDBC

provider

using

the

administrative

console

if

your

enterprise

application

contains

a

Web

application

or

an

EJB

application

that

uses

connection

pooling

to

access

a

relational

database.

4.

See

Configuring

data

access

for

application

clients

if

your

enterprise

application

contains

an

application

client

that

accesses

a

relational

database.

5.

Consider

the

security

of

lookups

with

component

managed

authentication.

See

Security

of

lookups

with

component

managed

authentication

for

more

information.

Installing

Java

2

Connector

resource

adapters

1.

Click

Resources.

2.

Click

Resource

Adapters.

3.

Click

Install

RAR.

The

Install

RAR

button

opens

a

dialog

that

enables

you

to

install

a

J2EE

Connector

Architecture

(JCA)

connector

and

create

a

resource

adapter

for

it.

You

can

also

use

the

New

button,

but

the

New

button

creates

only

a

new

resource

adapter

(the

JCA

connector

must

already

be

installed

on

the

system).

Note:

When

installing

a

RAR

file

using

this

dialog,

the

scope

you

define

on

the

Resource

Adapters

page

has

no

effect

on

where

the

RAR

file

is

installed.

You

can

install

RAR

files

only

at

the

node

level.

The

node

on

which

the

file

is

installed

is

determined

by

the

scope

on

the

Install

RAR

page.

(The

scope

you

set

on

the

Resource

Adapters

page

determines

the

scope

of

the

new

resource

adapters,

which

you

can

install

at

the

server,

node,

or

cell

level.)

4.

Browse

to

find

the

appropriate

RAR

file.

v

If

your

RAR

file

is

located

on

your

local

workstation,

select

Local

path

and

browse

to

find

the

file.

v

If

your

RAR

file

is

located

on

your

server,

select

Server

path

and

specify

the

fully

qualified

path

to

the

file.

106

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

5.

Click

Next.

6.

Enter

the

resource

adapter

name

and

any

other

properties

needed

under

General

Properties.

If

you

install

a

J2C

Resource

Adapter

that

includes

Native

path

elements,

consider

the

following:

If

you

have

more

than

one

native

path

element,

and

one

of

the

native

libraries

(native

library

A)

is

dependent

on

another

library

(native

library

B),

then

you

must

copy

native

library

B

to

a

system

directory.

Because

of

limitations

on

Windows

NT

and

most

Unix

platforms,

an

attempt

to

load

a

native

library

does

not

look

in

the

current

directory.

7.

Click

OK.

Installing

resource

adapters

within

applications

1.

Assemble

an

application

with

resource

adapter

archive

(RAR)

modules

in

it.

See

Assembling

applications.

2.

Install

the

application

following

the

steps

in

Installing

a

new

application.

In

the

Map

modules

to

application

servers

step,

specify

target

servers

or

clusters

for

each

RAR

file.

Be

sure

to

map

all

other

modules

that

use

the

resource

adapters

defined

in

the

RAR

modules

to

the

same

targets.

3.

Click

Finish

>

Save

to

save

the

changes.

4.

Create

connection

factories

for

the

newly

installed

application.

a.

Open

the

administrative

console.

b.

Click

Applications

>

Enterprise

Applications

>

application

name.

c.

Click

Connector

Modules

in

the

Related

Items

section

of

the

page.

d.

Click

filename.rar.

e.

Click

Resource

adapter

in

the

Additional

Properties

section

of

the

page.

f.

Click

J2C

Connection

Factories

in

the

Additional

Properties

section

of

the

page.

g.

Click

on

an

existing

connection

factory

to

update

it,

or

New

to

create

a

new

one.

If

you

install

a

J2C

Resource

Adapter

that

includes

Native

path

elements,

consider

the

following:

If

you

have

more

than

one

native

path

element,

and

one

of

the

native

libraries

(native

library

A)

is

dependent

on

another

library

(native

library

B),

then

you

must

copy

native

library

B

to

a

system

directory.

Because

of

limitations

on

Windows

NT

and

most

Unix

platforms,

an

attempt

to

load

a

native

library

does

not

look

in

the

current

directory.

After

you

create

and

save

the

connection

factories,

you

can

modify

the

resource

references

defined

in

various

modules

of

the

application

and

specify

the

Java

Naming

and

Directory

Interface

(JNDI)

names

of

the

connection

factories

wherever

appropriate.

Note:

A

given

native

library

can

only

be

loaded

one

time

for

each

instance

of

the

Java

virtual

machine

(JVM).

Because

each

application

has

its

own

classloader,

separate

applications

with

embedded

RAR

files

cannot

both

use

the

same

native

library.

The

second

application

receives

an

exception

when

it

tries

to

load

the

library.

If

any

application

deployed

on

the

application

server

uses

an

embedded

RAR

file

that

includes

native

path

elements,

then

you

must

always

ensure

that

you

shut

down

the

application

server

cleanly,

with

no

outstanding

transactions.

If

the

application

server

does

not

shut

down

cleanly

it

performs

recovery

upon

server

restart

and

loads

any

required

RAR

files

and

native

libraries.

On

completion

of

recovery,

do

not

attempt

Chapter

2.

Accessing

data

from

applications

107

any

application-related

work.

Shut

down

the

server

and

restart

it.

No

further

recovery

is

attempted

by

the

application

server

on

this

restart,

and

normal

application

processing

can

proceed.

Resource

Adapters

collection

Use

this

page

to

select

a

Resource

Adapter,

which

represents

an

archive

file

containing

code

that

implements

a

library

for

connecting

with

some

EIS

(Enterprise

Information

System)

backend

such

as

CICS,

SAP,

or

PeopleSoft.

To

view

this

administrative

console

page,

click

Resources

>Resource

Adapters.

Name:

Specifies

a

list

of

the

available

resource

adapters.

These

resource

adapters

can

be

supplied

by

a

third

party

vendor

other

than

IBM.

Typically,

a

single

resource

adapter

can

only

connect

to

one

type

of

backend

system

(EIS)

but

it

can

support

many

different

configurations

for

connections

to

that

EIS.

The

resource

adapter

has

many

configuration

properties

that

are

defined

in

the

J2C

specification

and

set

by

the

vendor

who

supplies

the

code.

Data

type

String

Resource

adapter

settings:

Use

this

page

to

specify

settings

for

a

Resource

Adapter.

This

resource

adapter

can

be

supplied

by

a

third

party

vendor

other

than

IBM.

Typically,

a

single

resource

adapter

can

only

connect

to

one

type

of

backend

system

(EIS)

but

it

can

support

many

different

configurations

for

connections

to

that

EIS.

The

resource

adapter

has

many

configuration

properties

that

are

defined

in

the

J2C

specification

and

set

by

the

vendor

who

supplies

the

code.

To

view

this

administrative

console

page,

click

Resources

>Resource

Adapters

>

resource_adapter.

Scope:

Specifies

the

level

to

which

this

resource

definition

is

visible

--

the

cell,

node,

or

server

level.

WebSphere

5.0

allows

resources

such

as

JDBCProviders,

Namespace

Bindings,

or

Shared

Libraries

at

multiple

scopes,

with

resources

defined

at

more

specific

scopes

overriding

duplicates

which

are

defined

at

more

general

scopes.

Cell

The

most

general

scope.

Resources

defined

at

the

Cell

scope

are

visible

from

all

Nodes

and

servers,

unless

they

have

been

overridden.

To

view

resources

defined

in

the

cell

scope,

do

not

specify

a

server

or

a

node

name

in

the

scope

selection

form.

Node

The

default

scope

for

most

resource

types.

Resources

defined

at

the

Node

scope

override

any

duplicates

defined

at

the

Cell

scope

and

are

visible

to

all

servers

on

the

same

node,

unless

they

have

been

overridden

at

a

server

scope

on

that

node.

To

view

resources

defined

in

a

node

scope,

do

not

specify

a

server,

but

select

a

node

name

in

the

scope

selection

form.

Server

The

most

specific

scope

for

defining

resources.

Resources

defined

at

the

Server

scope

override

any

duplicate

resource

definitions

defined

at

the

Cell

scope

or

parent

Node

scope

and

are

visible

only

to

a

specific

server.

To

108

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

view

resources

defined

in

a

server

scope,

specify

a

server

name

as

well

as

a

node

name

in

the

scope

selection

form.

When

resources

are

created,

they

are

always

created

into

the

current

scope

that

is

selected

in

the

panel.

To

view

resources

in

other

scopes,

specify

a

different

node

or

server

in

the

scope

selection

form.

Data

type

String

Name:

Specifies

the

name

of

the

resource

provider.

A

string

with

no

spaces

meant

to

be

a

meaningful

text

identifier

for

the

resource

provider.

Data

type

String

Description:

Specifies

a

text

description

of

the

resource

factory.

A

free-form

text

string

to

describe

the

resource

factory

and

its

purpose.

Data

type

String

Archive

path:

Specifies

the

path

to

the

.RAR

file

containing

the

module

for

this

resource

adapter.

Data

type

String

Classpath:

Specifies

a

list

of

paths

or

JAR

file

names

which

together

form

the

location

for

the

resource

provider

classes.

This

includes

any

additional

libraries

needed

by

the

resource

adapter.

The

resource

adapter

code

base

itself

is

automatically

added

to

the

classpath,

but

if

anything

outside

the

.RAR

is

needed

it

can

be

specified

here.

Data

type

String

Native

path:

Specifies

a

list

of

paths

which

forms

the

location

for

the

resource

provider

native

libraries.

The

resource

adapter

code

base

itself

is

automatically

added

to

the

classpath,

but

if

anything

outside

the

.RAR

is

needed

it

can

be

specified

here.

Data

type

String

Chapter

2.

Accessing

data

from

applications

109

Ensuring

applications

obtain

valid

connections

If

your

application

is

accessing

pooled

connections,

you

can

enable

connection

pretesting

to

help

prevent

it

from

obtaining

connections

that

are

no

longer

valid.

Connection

pretesting

is

a

way

to

test

connections

from

the

free

pool

before

giving

them

to

the

client.

When

a

backend

resource,

such

as

a

database,

fails,

pooled

connections

that

are

not

valid

might

exist

in

the

free

pool.

This

is

likely

when

the

purge

policy

is

failingConnectionOnly,

meaning

only

the

failing

connection

is

removed

from

the

pool.

Depending

on

the

failure,

the

remaining

connections

in

the

pool

might

not

be

valid.

1.

Enable

and

configure

connection

pretesting.

a.

Open

the

j2c.properties

file.

The

file

is

located

in

install_root/properties/j2c.properties.

b.

Using

the

example

in

the

file,

create

an

<advanced

connection

properties>

entry

corresponding

to

your

datasource.

c.

Enable

connection

pretesting.

Set

<testConnection>

to

true.

d.

Specify

how

often

to

retry,

should

the

pretest

fail.

Set

<testConnectionRetryInterval>

to

the

number

of

seconds

for

the

pretest

connection

thread

to

wait

between

attempts

to

create

and

pretest

a

connection.

It

will

do

so

until

it

is

successful,

at

which

point

the

connection

pool

starts

processing

getConnection()

requests

and

the

pretest

connection

thread

ends.

If

the

pretest

fails,

new

connection

requests

are

rejected

with

a

ResourceAllocationException

indicating

Failed

preTestConnection.

Pool

requests

are

blocked

until

the

test

connection

thread

is

successful.

For

example,

this

j2c.properties

configuration

enables

connection

pretesting

to

occur

every

5

seconds

until

it

is

successful:

<advanced-connection-properties

connectionFactoryJNDIName=jdbc/DataSource>

<testConnection>true</testConnection>

<testConnectionRetryInterval>5</testConnectionRetryInterval>

</advanced-connection-properties>

2.

Specify

the

SQL

statement

to

use

when

connection

pretesting

is

enabled.

Configure

a

preTestSQLString

custom

property

for

the

data

source.

a.

Open

the

administrative

console.

b.

Navigate

to

Resources

>

JDBC_provider

>

Data

Sources

>

data_source

>

Custom

Properties.

c.

Specify

preTestSQLString

as

the

property

name.

d.

Specify

an

SQL

statement

as

the

property

value.

This

SQL

statement

is

used

for

connection

pretesting,

which

helps

to

ensure

that

applications

obtain

valid

data

sources

from

connection

pools.

When

connection

pretesting

is

enabled,

the

SQL

statement

is

executed

to

determine

whether

the

connection

is

good.

See

“Database

connection

settings

that

can

be

added

to

the

administrative

console”

on

page

111

for

help

configuring

this

property.

Note:

It

is

important

to

specify

a

valid

SQL

statement

for

the

preTestSQLString

custom

property

for

best

performance.

The

SQL

statement

should

be

one

that

is

executed

quickly

and

does

not

result

in

any

exception

thrown.

If

an

exception

is

thrown,

WebSphere

Application

Server

run

time

needs

to

check

whether

the

exception

110

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

indicates

the

connection

is

bad

or

not.

This

additional

checking

can

affect

performance.

One

example

of

this

SQL

statement

is

″SELECT

1

from

[TESTTABLE]″,

in

which

[TESTTABLE]

is

a

valid

table

with

only

a

few

rows.

A

similarly

appropriate

selection

for

an

Oracle

data

source

is

″SELECT

USER

FROM

DUAL″.

j2c.properties

file

Use

the

j2c.properties

file

to

configure

additional

database

connection

settings

beyond

those

available

in

the

administrative

console.

For

example,

you

can

enable

connection

pretesting,

which

helps

to

ensure

that

applications

obtain

valid

database

connections

from

connection

pools.

Location

The

file

is

located

at

install_root/properties/j2c.properties.

Usage

notes

v

Is

this

file

read-only?

No

v

How

do

you

edit

this

file?

Edit

this

file

directly,

in

conjunction

with

administrative

console

settings

and

custom

properties.

v

Is

this

file

updated

by

a

product

component?

No.

v

How

and

when

are

the

contents

of

this

file

used?

The

j2c.properties

file

is

used

to

specify

fine-tuning

parameters

of

the

JCA

connection

management

runtime.

It

is

interrogated

by

various

parts

of

the

pool

manager

and

connection

manager.

If

the

file

is

not

found,

or

if

a

particular

value

is

not

found

in

the

file,

suitable

default

values

are

used.

v

What

must

you

do

to

have

changes

take

effect?

Use

any

editor

to

save

the

file,

then

stop

and

restart

the

server.

Database

connection

settings

that

can

be

added

to

the

administrative

console

Use

the

Properties

page

to

set

and

monitor

settings

associated

with

database

connections,

but

that

are

not

displayed

on

the

main

settings

page

by

default.

To

view

the

administrative

console

page,

click

Resources

>

JDBC_provider

>

Data

Sources

>

data_source

>

Custom

Properties.

To

add

properties

to

the

page,

click

New

and

enter

at

least

a

name

(case-sensitive)

and

value

for

the

property.

Then

click

Apply.

When

you

are

finished

entering

properties,

click

OK

preTestSQLString:

Specify

the

SQL

statement

to

use

for

connection

pretesting,

which

helps

to

ensure

that

applications

obtain

valid

data

sources

from

connection

pools.

When

connection

pretesting

is

enabled,

the

SQL

statement

is

executed

to

determine

whether

the

connection

is

good.

It

is

important

to

specify

a

valid

SQL

statement

for

the

preTestSQLString

custom

property

for

best

performance.

The

SQL

statement

should

be

one

that

is

executed

quickly

and

does

not

result

in

any

exception

thrown.

For

example,

you

might

Chapter

2.

Accessing

data

from

applications

111

specify

SELECT

COUNT(*)

from

TESTTABLE.

Data

type

String

-

Valid

SQL

statement

Default

v

For

Oracle

database:

SELECT

USER

FROM

DUAL

v

For

other

supported

databases:

SELECT

COUNT(*)

FROM

rra.x1x1x0x4x

Creating

and

configuring

a

JDBC

provider

and

data

source

1.

Decide

which

data

source

to

use:

Data

source

(Version

4.0),

see

Data

Sources

(Version

4)

or

a

Version

5.0

data

source,

see

Data

Source

collection

.

2.

Create

a

JDBC

provider.

From

the

administrative

console,

see

Creating

a

JDBC

provider

using

the

administrative

console.

OR

Using

the

Java

Management

Extensions

(JMX)

API,

see

Creating

a

JDBC

provider

and

data

source

using

the

Java

Management

Extensions

API.

3.

Create

a

data

source.

From

the

administrative

console,

see

Creating

a

data

source

using

the

administrative

console.

OR

Using

the

JMX

API,

see

Creating

a

JDBC

provider

and

data

source

using

the

Java

Management

Extensions

API.

4.

Bind

the

resource

reference.

See

Binding

to

a

data

source

5.

Test

the

connection

(for

non-container-managed

persistence

usage).

Note:

When

the

data

source

configuration

is

saved,

it

will

be

saved

in

the

resource.xml

file.

You

should

not

need

to

modify

the

jdbc-resource-
provider-templates.xml.

However,

special

consideration

should

be

taken

if

you

need

to

update

the

jdbc-resource-provider-templates.xml

file.

See

Creating

and

configuring

a

JDBC

provider

and

data

source

using

the

Java

Management

Extensions

API.

Verifying

a

connection

Many

test

connection

problems

can

be

easily

fixed

by

verifying

some

configuration

parameters

This

article

provides

a

checklist

of

steps

that

you

must

complete

to

enable

a

successful

connection.

Click

on

the

link

for

more

information

on

a

specific

step.

If

your

connection

is

still

not

successful

after

completing

these

steps

and

reviewing

the

applicable

information,

check

the

SYSOUT

of

your

application

servant

region

for

warning

or

exception

messages.

1.

Create

the

authentication

data

alias.

2.

Create

the

JDBC

provider.

3.

Create

a

Version

5.0

or

4.0

data

source.

4.

Save

the

data

source.

5.

Restart

the

server.

If

you

are

running

Websphere

Application

Server

Version

5.0.2,

you

do

not

have

to

complete

this

step

unless

you

also

created

a

new

Java

Authentication

and

Authorization

Service

(JAAS)

entry.

112

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

6.

Test

the

connection

You

can

test

your

connection

from

the

data

source

collection

view

or

the

data

source

details

view.

Access

either

view

in

the

administrative

console,

and

then

select

a

connection

from

the

list.

Click

the

test

connection

button

on

the

connection.

You

must

complete

all

the

steps

and

restart

the

server

before

you

test

the

connection.

Neither

the

authentication

data

alias

nor

the

WebSphere

Application

Server

environment

variables

(in

Version

5.0.1)

are

available

before

a

server

restart.

Creating

and

configuring

a

JDBC

provider

using

the

administrative

console

To

access

a

database

you

must

first

create

a

JDBC

provider.

You

can

do

this

from

the

administrative

console.

You

need

to

know

where

your

database

software

is

installed

and

where

the

drivers

are

located.

1.

Open

the

administrative

console.

2.

Click

Resources

>

JDBC

Providers.

3.

Select

the

scope

of

your

definition.

4.

Click

New.

5.

Use

the

drop-down

list

to

select

the

type

of

JDBC

provider

to

create.

If

the

list

of

supported

JDBC

provider

types

does

not

include

the

JDBC

provider

that

you

want

to

use,

select

the

User-Defined

JDBC

Provider.

Consult

the

JDBC

provider

vendor’s

documentation

for

information

on

specific

required

properties.

Do

not

change

the

name

of

the

JDBC

provider

if

you

create

it

by

selecting

an

existing

JDBC

provider

from

the

drop-down

list.

This

restriction

does

not

apply

if

you

are

using

the

User-Defined

JDBC

Provider

feature

and

supplying

the

provider

information.

6.

Click

Apply

to

view

the

settings

page

for

your

JDBC

provider.

7.

Enter

the

properties

for

your

JDBC

provider

For

more

information,

see

JDBC

Provider

settings.

8.

Click

Apply

to

view

the

page

with

your

new

JDBC

provider

settings.

Note

that

there

is

now

an

Additional

Properties

section

on

this

page.

To

set

up

a

data

source,

click

one

of

the

data

sources

links.

For

more

information

about

creating

a

data

source,

see

Creating

a

data

source

with

the

administrative

console.

9.

Click

OK

to

return

to

the

JDBC

providers

page,

where

your

new

JDBC

provider

appears

in

the

list.

JDBC

Provider

collection:

Use

this

page

to

view

a

JDBC

provider.

To

view

this

administrative

console

page,

click

Resources

>

JDBC

Providers

in

the

console

navigation

tree.

Notice

the

Scope

of

your

JDBC

provider.

If

you

pick

anything

other

than

the

default

of

Node

the

provider

might

not

be

available

in

other

scope

contexts.

Name:

Specifies

a

text

identifier

for

this

provider.

Chapter

2.

Accessing

data

from

applications

113

For

example

this

field

can

be

DB2

JDBC

Provider

(XA).

Data

type

String

Description:

Specifies

a

text

string

describing

this

provider.

Data

type

String

JDBC

provider

settings:

Use

this

page

to

create

or

modify

JDBC

provider

settings

To

view

this

administrative

console

page,

click

Resources

>

JDBC

Providers

>

JDBC_provider.

Scope:

Specifies

the

level

to

which

this

resource

definition

is

visible

--

the

cell,

node,

or

server

level.

Resources

such

as

JDBC

Providers,

Namespace

bindings,

or

shared

libraries

can

be

defined

at

multiple

scopes,

with

resources

defined

at

more

specific

scopes

overriding

duplicates

which

are

defined

at

more

general

scopes.

Note

that

no

matter

what

the

scope

of

a

defined

resource,

the

resource’s

properties

only

apply

at

an

individual

server

level.

For

example,

if

you

define

the

scope

of

a

data

source

at

the

Cell

level,

all

users

in

that

Cell

can

look

up

and

use

that

data

source,

which

is

unique

within

that

Cell.

However,

resource

property

settings

are

local

to

each

server

in

the

Cell.

For

example,

if

you

define

max

connections

to

10,

then

each

server

in

that

Cell

can

have

10

connections.

Cell

The

most

general

scope.

Resources

defined

at

the

Cell

scope

are

visible

from

all

Nodes

and

servers,

unless

they

are

overridden.

To

view

resources

defined

in

the

cell

scope,

do

not

specify

a

server

or

a

node

name

in

the

scope

selection

form.

Node

The

default

scope

for

most

resource

types.

Resources

defined

at

the

Node

scope

override

any

duplicates

defined

at

the

Cell

scope

and

are

visible

to

all

servers

on

the

same

node,

unless

they

are

overridden

at

a

server

scope

on

that

node.

To

view

resources

defined

in

a

node

scope,

do

not

specify

a

server,

but

select

a

node

name

in

the

scope

selection

form.

Server

The

most

specific

scope

for

defining

resources.

Resources

defined

at

the

Server

scope

override

any

duplicate

resource

definitions

defined

at

the

Cell

scope

or

parent

Node

scope

and

are

visible

only

to

a

specific

server.

To

view

resources

defined

in

a

server

scope,

specify

a

server

name

as

well

as

a

node

name

in

the

scope

selection

form.

When

resources

are

created,

they

are

always

created

into

the

current

scope

selected

in

the

panel.

To

view

resources

in

other

scopes,

specify

a

different

node

or

server

in

the

scope

selection

form.

Data

type

String

Name:

114

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Specifies

the

name

of

the

resource

provider.

Data

type

String

Description:

Specifies

a

text

description

for

the

resource

provider.

Data

type

String

Classpath:

Specifies

a

list

of

paths

or

JAR

file

names

which

together

form

the

location

for

the

resource

provider

classes.

For

example,

For

example,

/usr/lpp/db2/db2710/classes/db2j2classes.zip

Classpath

entries

are

separated

by

using

the

ENTER

key

and

must

not

contain

path

separator

characters

(such

as

’;’

or

’:’).

Classpaths

contain

variable

(symbolic)

names

which

you

can

substitute

using

a

variable

map.

Check

the

driver

installation

notes

for

the

specific

required

JAR

file

names.

Data

type

String

Native

Library

Path:

Specifies

a

list

of

paths

that

forms

the

location

for

the

resource

provider

native

libraries.

Native

path

entries

are

separated

by

using

the

ENTER

key

and

must

not

contain

path

separator

characters

(such

as

’;’

or

’:’).

Native

paths

can

contain

variable

(symbolic)

names

which

you

can

substitute

using

a

variable

map.

Data

type

String

Implementation

Classname:

Specifies

the

Java

class

name

of

the

JDBC

driver

implementation.

This

class

is

available

in

the

driver

file

mentioned

in

the

Classpath

description

above.

For

example

COM.ibm.db2.jdbc.DB2XADataSource.

Data

type

String

New

JDBC

Provider:

Use

this

page

to

choose

a

type

of

JDBC

Provider

to

create.

To

view

this

administrative

console

page,

click

Resources

>JDBC

Providers

>

New.

JDBC

Providers:

Specifies

the

names

of

the

supported

JDBC

Provider

types.

Chapter

2.

Accessing

data

from

applications

115

If

the

list

of

supported

JDBC

Provider

types

does

not

include

the

JDBC

Provider

that

you

want

to

use,

select

the

User-Defined

JDBC

Provider.

You

might

need

to

consult

the

documentation

for

the

JDBC

Provider

for

more

information

on

specific

properties

required

by

that

provider.

Data

type

Drop-down

list

Configuring

the

Application

Server

for

use

with

the

DB2

Universal

JDBC

Driver

This

topic

describes

how

to

configure

the

WebSphere

Application

Server

for

z/OS

for

use

with

the

DB2

Universal

JDBC

Driver.

This

information

applies

only

to

Universal

Driver

type

2

connectivity

on

DB2

UDB

for

z/OS.

Ensure

that

DB2

for

z/OS

Version

7

or

higher

is

installed

on

your

z/OS

system.

To

enable

the

DB2

Universal

JDBC

Driver

to

run

under

WebSphere

Application

Server

for

z/OS,

open

the

WebSphere

Application

Server

for

z/OS

administrative

console

and

perform

the

following

steps:

1.

Identify

the

DB2

Universal

JDBC

Driver

to

WebSphere

Application

Server

for

z/OS.

To

identify

the

DB2

Universal

JDBC

Driver

to

WebSphere

Application

Server

for

z/OS,

do

the

following

to

provide

the

location

of

the

driver

files

and

the

location

of

the

global

properties

file:

a.

In

the

administrative

console,

select

Environment

>

Manage

WebSphere

variables.

b.

In

the

WebSphere

variables

page,

select

New.

c.

Enter

DB2UNIVERSAL_JDBC_DRIVER_PATH

for

Name

and

the

path

for

the

DB2

Universal

JDBC

Driver

for

Value.

(The

usual

path

is

/usr/lpp/db2810/jcc.)

d.

Click

OK

and

then

Save.
2.

Create

a

JDBC

Provider

for

the

DB2

Universal

JDBC

Driver.

To

create

a

new

JDBC

provider

that

is

associated

with

the

DB2

Universal

JDBC

Driver:

a.

In

the

administrative

console,

select

Resources

>

JDBC

Providers.

b.

Under

Scope,

select

a

server,

and

then

click

Apply.

DO

NOT

select

the

same

server

for

the

JDBC

provider

for

the

DB2

Universal

Driver

as

is

already

being

as

the

JDBC

provider

for

the

JDBC/SQLJ

Driver

for

z/OS.

c.

In

the

same

panel,

select

New.

d.

In

the

JDBC

providers

drop-down

list,

click

User-defined

JDBC

Provider,

and

then

click

Apply.

e.

Enter

the

following

values

for

the

JDBC

provider:

Name

Description

Custom

JDBC

2.0-compliant

provider

configuration

Classpath

v

${DB2UNIVERSAL_JDBC_DRIVER_PATH}/classes/db2jcc.jar

v

${DB2UNIVERSAL_JDBC_DRIVER_PATH}/classes/db2jcc_license_cisuz.jar

v

${DB2UNIVERSAL_JDBC_DRIVER_PATH}/classes/sqlj.zip

Native

Library

Path

${DB2UNIVERSAL_JDBC_DRIVER_PATH}/lib

116

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Implementation

Classname

com.ibm.db2.jcc.DB2ConnectionPoolDataSource
f.

Click

Apply,

and

then

click

Save.
3.

Create

a

data

source

for

the

DB2

Universal

JDBC

Driver

JDBC

provider.

a.

In

the

administrative

console,

select

Resources

>

JDBC

Providers.

b.

In

the

JDBC

providers

drop-down

list,

select

Universal

Driver

type

2

connectivity

on

DB2

UDB

for

z/OS

JDBC

provider.

c.

Select

Data

Sources,

and

then

click

New.

d.

Complete

the

Data

Source

page:

1)

Fill

in

the

following

fields:

Name

DB2JccT2zOSDataSource

JNDI

Name

jdbc/DB2JccT2zOSDataSource

Description

New

JDBC

DataSource
2)

Select

the

Container

managed

persistence

checkbox.

3)

Optionally,

enter

a

value

in

the

Container-managed

Authentication

Alias

field.

If

your

system

administrator

set

up

an

authentication

alias

that

contains

the

user

ID

and

password

that

is

to

be

associated

with

all

connections

that

are

obtained

from

the

data

source,

specify

that

authentication

alias.

Otherwise,

leave

this

field

blank.

If

all

of

the

following

conditions

are

true,

all

connections

that

are

obtained

from

the

data

source

are

associated

with

the

server:

v

The

Container-managed

Authentication

Alias

field

is

blank.

v

The

resource

reference

to

which

the

data

source

is

bound

is

defined

with

resAuth=Container.

Use

the

Application

Assembly

Tool

(AAT)

or

WebSphere

Studio

Application

Developer

Integration

Edition

(WSADIE)

to

indicate

the

resauth=Container

setting.
e.

Click

Apply,

and

then

select

Custom

Properties.

f.

In

the

Custom

Properties

Page,

select

New

g.

Create

each

of

the

following

variables.

Enter

the

Name

fields

exactly

as

shown.

After

creating

a

variable,

click

Apply.

Name

Value

Description

databaseName

The

name

of

the

data

source,

which

is

the

same

as

the

DB2

location

name.

New

JDBC

DataSource,

or

some

other

descriptive

name.

loginTimeout

0

Any

value.

planName

If

you

bound

the

JDBC

packages

into

a

plan,

the

name

of

that

plan.

NULLID

otherwise.

The

default

is

DSNJDBC.

Any

value.

h.

Optionally,

repeat

the

previous

two

steps

to

create

variables

for

any

of

the

other

DB2

Universal

JDBC

Driver

properties

that

are

listed

in

DB2

Universal

Database

for

OS/390

and

z/OS

Application

Programming

Guide

and

Reference

for

Javatm,

SC26-9932-04.
a.

Click

Save.

Chapter

2.

Accessing

data

from

applications

117

4.

Bind

JDBC

DataSource

references

to

a

DB2

Universal

JDBC

Driver

data

source.

Before

you

can

run

a

JDBC

application

in

WebSphere

Application

Server,

under

the

DB2

Universal

JDBC

Driver,

you

must

bind

the

JDBC

DataSource

references

in

your

application

to

the

data

source

that

you

defined

under

the

JDBC

provider

for

Universal

Driver

type

2

connectivity

on

DB2

UDB

for

z/OS.

See

the

Information

Center

topic

Deploying

>

Applications

>

Deployment

>

Installing

a

new

application

>

Preparing

for

application

installation

settings

for

a

description

of

how

to

create

this

bind.

The

DB2

Universal

JDBC

Driver

can

now

run

under

the

Application

Server.

Creating

and

configuring

a

data

source

using

the

administrative

console

After

you

create

a

JDBC

provider,

you

must

create

a

data

source

to

access

the

backend

data

store.

Follow

these

steps

to

create

either

a

new

Version

5.0

data

source

or

a

Version

4.0

data

source.

1.

Open

the

administrative

console.

2.

Click

Resources

>

JDBC

Providers.

3.

You

might

need

to

change

the

Scope

selection

to

find

the

JDBC

provider

for

which

you

want

to

create

a

data

source.

Scope

settings

are

used

to

limit

the

availability

of

resources

to

a

particular

cell,

node,

or

server.

When

new

items

are

created

in

this

view,

they

are

created

within

the

current

scope.

4.

Choose

the

JDBC

resource

provider

in

which

you

want

to

create

the

data

source.

The

detail

page

for

this

provider

appears.

5.

Click

Data

Sources

in

Additional

Properties

if

you

want

to

create

a

Version

5.0

data

source.

If

you

want

to

create

a

Version

4.0

data

source,

click

Data

Sources

(Version

4)

in

Additional

Properties.

The

Data

Sources

or

Data

Sources

(Version

4)

page

appears.

6.

Click

New

to

display

the

settings

page

for

your

V5.0

or

V4.0

data

source.

7.

Enter

the

properties

for

your

data

source.

For

your

Version

5.0

data

source:

v

Optionally

choose

an

existing

Component-managed

Authentication

Alias

or

Container-managed

Authentication

Alias

from

the

lists.

These

aliases

are

used

for

database

authentication

in

run

time.

If

you

do

not

set

one

of

these

fields

and

your

database

requires

the

user

ID

and

password

to

get

a

connection,

then

you

receive

an

exception

during

run

time.

If

your

resource

authentication

(res-auth)

is

set

to

Application,

set

the

alias

in

the

Component-managed

Authentication

Alias.

If

your

res-auth

is

set

to

Container,

set

the

Container-managed

Authentication

Alias.

If

your

database

does

not

support

a

user

ID

and

password

on

a

connection

(for

example,

Cloudscape),

then

do

not

specify

the

alias

in

either

one

of

these

entries.

Because

defining

a

user

ID

and

password

in

the

Custom

Properties

page

is

not

always

desirable

(your

password

can

be

seen

by

anyone

who

accesses

the

resources.xml

file),

you

can

define

the

user

ID

and

password

as

an

alias.

To

define

a

new

alias

from

the

J2C

Authentication

Data

Entries

choice,

follow

these

steps:

a.

Click

Apply.

The

J2C

Authentication

Data

Entries

choice

does

not

appear

on

the

″New″

data

source

page,

but

does

appear

on

an

existing

data

source’s

page.

Because

you

were

just

creating

a

new

data

source,

you

must

click

on

the

apply

button

for

the

J2C

Authentication

Data

Entries

choice

to

show.

This

also

saves

the

properties

that

you

have

already

applied

to

this

data

source.

b.

Click

J2C

Authentication

Data

Entries

in

the

Related

Items

section.

118

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

c.

Click

New

on

the

J2C

Authentication

Data

Entries

page.

d.

Fill

in

the

fields

on

the

resulting

page.

Click

Apply.

e.

Return

to

the

data

source

page.

f.

If

the

new

alias

does

not

appear

in

the

picklists

for

Component-

or

Container-managed

Authentication

Alias,

close

the

page

and

re-open

it.

For

more

information,

see

Data

source

settings,

Data

source

(Version

4)

settings.,

and

Minimum

required

properties

for

vendor-specific

data

sources

8.

Click

Apply

to

view

a

page

with

your

new

data

source

settings.

Note

that

there

are

now

Additional

Properties

and

Related

Items

sections

on

this

page.

Additional

Properties

contains

the

Connection

Pool

and

Custom

Properties

choices.

Some

database

vendors

might

require

additional

custom

properties

for

data

sources

that

access

the

database.

Click

on

either

or

both

of

these

to

modify

their

properties.

The

Related

Items

section

contains

the

J2C

Authentication

Data

Entries

choice.

Here,

you

can

specify

a

list

of

user

IDs

and

passwords

for

use

by

Java

2

Connector

(J2C)

security.

9.

Click

Save.

10.

Return

to

the

data

source

page

to

confirm

that

your

new

data

source

appears

in

the

list.

Data

Source

collection:

Use

this

page

to

create

or

modify

a

Version

5.0

data

source.

To

view

this

administrative

console

page,

click

Resources

>

JDBC

Providers

>

JDBC_provider

>

Data

Sources.

Name:

Specifies

the

display

name

of

this

data

source.

Data

type

String

JNDI

name:

Specifies

the

Java

Naming

and

Directory

Interface

(JNDI)

name

for

this

data

source.

Data

type

String

Description:

Specifies

a

text

description

of

the

data

source.

Data

type

String

Category:

Specifies

a

string

that

you

can

use

to

classify

or

group

a

data

source.

Data

type

String

Data

Sources

(Version

4):

Chapter

2.

Accessing

data

from

applications

119

Use

this

page

to

view

the

settings

of

a

Version

4.0

style

data

source.

These

Version

4.0

data

sources

use

the

WebSphere

Application

Server

Version

4.0

Connection

Manager

architecture.

All

EJB

1.1

modules

must

use

a

Version

4.0

data

source.

To

view

this

administrative

console

page,

click

Resources

>

JDBC

Providers

>

JDBC_provider

>

Data

Sources

(Version

4).

Name:

Specifies

a

text

identifier

of

the

data

source.

Data

type

String

JNDI

Name:

Specifies

the

Java

Naming

and

Directory

Interface

(JNDI)

name

of

the

data

source.

Data

type

String

Description:

Specifies

a

text

description

of

the

data

source.

Data

type

String

Category:

Specifies

a

text

string

that

you

can

use

to

classify

or

group

the

data

source.

Data

type

String

Data

source

(Version

4)

settings:

Use

this

page

to

create

a

Version

4.0

style

data

source.

This

data

source

uses

the

WebSphere

Application

Server

Version

4.0

Connection

Manager

architecture.

All

the

EJB1.x

modules

must

use

this

data

source.

To

view

this

administrative

console

page,

click

Resources

>

JDBC

Providers

>

JDBC_provider

>

Data

Sources

(Version

4)

>

data_source.

Scope:

Specifies

the

level

to

which

this

resource

definition

is

visible

--

the

cell,

node,

or

server

level.

Resources

such

as

JDBC

Providers,

Namespace

bindings,

or

shared

libraries

can

be

defined

at

multiple

scopes,

with

resources

defined

at

more

specific

scopes

overriding

duplicates

which

are

defined

at

more

general

scopes.

Note

that

no

matter

what

the

scope

of

a

defined

resource,

the

resource’s

properties

only

apply

at

an

individual

server

level.

For

example,

if

you

define

the

scope

of

a

data

source

at

the

Cell

level,

all

users

in

that

Cell

can

look

up

and

use

that

data

120

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

source,

which

is

unique

within

that

Cell.

However,

resource

property

settings

are

local

to

each

server

in

the

Cell.

For

example,

if

you

define

max

connections

to

10,

then

each

server

in

that

Cell

can

have

10

connections.

Cell

The

most

general

scope.

Resources

defined

at

the

Cell

scope

are

visible

from

all

Nodes

and

servers,

unless

they

are

overridden.

To

view

resources

defined

in

the

cell

scope,

do

not

specify

a

server

or

a

node

name

in

the

scope

selection

form.

Node

The

default

scope

for

most

resource

types.

Resources

defined

at

the

Node

scope

override

any

duplicates

defined

at

the

Cell

scope

and

are

visible

to

all

servers

on

the

same

node,

unless

they

are

overridden

at

a

server

scope

on

that

node.

To

view

resources

defined

in

a

node

scope,

do

not

specify

a

server,

but

select

a

node

name

in

the

scope

selection

form.

Server

The

most

specific

scope

for

defining

resources.

Resources

defined

at

the

Server

scope

override

any

duplicate

resource

definitions

defined

at

the

Cell

scope

or

parent

Node

scope

and

are

visible

only

to

a

specific

server.

To

view

resources

defined

in

a

server

scope,

specify

a

server

name

as

well

as

a

node

name

in

the

scope

selection

form.

When

resources

are

created,

they

are

always

created

into

the

current

scope

selected

in

the

panel.

To

view

resources

in

other

scopes,

specify

a

different

node

or

server

in

the

scope

selection

form.

Data

type

String

Name:

Specifies

the

display

name

for

the

resource.

For

example

you

can

set

this

field

to

Test

Data

Source.

Data

type

String

JNDI

Name:

Specifies

the

Java

Naming

and

Directory

Interface

(JNDI)

name.

Distributed

computing

environments

often

employ

naming

and

directory

services

to

obtain

shared

components

and

resources.

Naming

and

directory

services

associate

names

with

locations,

services,

information,

and

resources.

Naming

services

provide

name-to-object

mappings.

Directory

services

provide

information

on

objects

and

the

search

tools

required

to

locate

those

objects.

There

are

many

naming

and

directory

service

implementations,

and

the

interfaces

to

them

vary.

JNDI

provides

a

common

interface

that

is

used

to

access

the

various

naming

and

directory

services.

For

example,

you

can

use

the

name

jdbc/markSection.

If

you

leave

this

field

blank

a

JNDI

name

is

generated

from

the

name

of

the

data

source.

For

example,

a

data

source

name

of

markSection

generates

a

JNDI

name

of

jdbc/markSection.

After

you

set

this

value,

save

it,

and

restart

the

server,

you

can

see

this

string

when

you

run

dumpnamespace.

Chapter

2.

Accessing

data

from

applications

121

Data

type

String

Description:

Specifies

a

text

description

for

the

resource.

Data

type

String

Category:

Specifies

a

category

string

that

you

can

use

to

classify

or

group

the

resource.

Data

type

String

Database

Name:

Specifies

the

name

of

the

database

that

this

data

source

accesses.

For

example,

you

can

call

the

database

SAMPLE.

Data

type

String

Default

User

ID:

Specifies

the

user

name

to

use

for

connecting

to

the

database.

For

example,

you

can

use

the

ID

db2admin.

Data

type

String

Default

Password:

Specifies

the

password

used

for

connecting

to

the

database.

For

example,

you

can

use

the

password

db2admin.

Data

type

String

Custom

Properties

collection:

Use

this

page

to

view

the

custom

properties.

Custom

properties

are

unique

to

each

resource,

zero

or

more

can

be

required.

Note:

After

you

enter

this

page,

the

first

thing

to

do

is

click

on

the

Required

field

to

sort

in

descending

order.

All

of

the

required

(true)

values

are

then

sorted

at

the

beginning

of

the

page.

You

must

repeat

this

process

until

all

the

required

properties

are

set.

To

view

this

administrative

console

page,

click

Resources

>JDBC

Providers

>

JDBC_provider

>

Data

Sources

>

data_source>

Custom

Properties.

Name:

122

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Specifies

the

property

name.

You

must

ensure

that

the

resource

adapter

has

the

setting

for

this

name.

Data

type

String

Value:

Specifies

the

property

value.

Data

type

Integer

Description:

Specifies

text

to

describe

any

bounds

or

well-defined

values

for

this

property.

Data

type

String

Required:

Specifies

properties

that

are

required

for

this

resource.

Data

type

String

Custom

property

settings:

Use

this

page

to

set

custom

properties

that

might

be

required

for

Resource

Providers

and

Resource

Factories

To

view

this

administrative

console

page,

click

Resources

>JDBC

Providers

>

JDBC_provider

>

Data

Sources

>

data_source>

Custom

Properties

>

custom_property.

Scope:

Specifies

the

level

to

which

this

resource

definition

is

visible

--

the

cell,

node,

or

server

level.

Resources

such

as

JDBC

Providers,

Namespace

bindings,

or

shared

libraries

can

be

defined

at

multiple

scopes,

with

resources

defined

at

more

specific

scopes

overriding

duplicates

which

are

defined

at

more

general

scopes.

Note

that

no

matter

what

the

scope

of

a

defined

resource,

the

resource’s

properties

only

apply

at

an

individual

server

level.

For

example,

if

you

define

the

scope

of

a

data

source

at

the

Cell

level,

all

users

in

that

Cell

can

look

up

and

use

that

data

source,

which

is

unique

within

that

Cell.

However,

resource

property

settings

are

local

to

each

server

in

the

Cell.

For

example,

if

you

define

max

connections

to

10,

then

each

server

in

that

Cell

can

have

10

connections.

Cell

The

most

general

scope.

Resources

defined

at

the

Cell

scope

are

visible

from

all

Nodes

and

servers,

unless

they

are

overridden.

To

view

resources

defined

in

the

cell

scope,

do

not

specify

a

server

or

a

node

name

in

the

scope

selection

form.

Node

The

default

scope

for

most

resource

types.

Resources

defined

at

the

Node

scope

override

any

duplicates

defined

at

the

Cell

scope

and

are

visible

to

all

servers

on

the

same

node,

unless

they

are

overridden

at

a

server

scope

Chapter

2.

Accessing

data

from

applications

123

on

that

node.

To

view

resources

defined

in

a

node

scope,

do

not

specify

a

server,

but

select

a

node

name

in

the

scope

selection

form.

Server

The

most

specific

scope

for

defining

resources.

Resources

defined

at

the

Server

scope

override

any

duplicate

resource

definitions

defined

at

the

Cell

scope

or

parent

Node

scope

and

are

visible

only

to

a

specific

server.

To

view

resources

defined

in

a

server

scope,

specify

a

server

name

as

well

as

a

node

name

in

the

scope

selection

form.

When

resources

are

created,

they

are

always

created

into

the

current

scope

selected

in

the

panel.

To

view

resources

in

other

scopes,

specify

a

different

node

or

server

in

the

scope

selection

form.

Data

type

String

Required:

Specifies

properties

that

are

required

for

this

resource.

Setting

can

be

true

or

false.

Data

type

String

Name:

Specifies

the

name

associated

with

this

property

(PortNumber,

ConnectionURL,

etc).

Data

type

String

Value:

Specifies

the

value

associated

with

this

property

in

this

property

set.

Data

type

Integer

Description:

Specifies

text

to

describe

any

bounds

or

well-defined

values

for

this

property.

Data

type

String

Type:

Specifies

the

fully

qualified

Java

data

type

of

this

property

.

There

are

specific

types

that

are

valid:

v

java.lang.Boolean

v

java.lang.String

v

java.lang.Integer

v

java.lang.Double

v

java.lang.Byte

v

java.lang.Short

v

java.lang.Long

124

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

v

java.lang.Float

v

java.lang.Character

Data

type

Pick

file

Custom

Properties

(Version

4)

collection:

Use

this

page

to

view

properties

for

a

Version

4.0

datasource.

To

view

this

administrative

console

page,

click

Resources

>

JDBC

Providers

>

JDBC_provider

>

Data

Sources

(Version

4)

>

data_source

>

Custom

Properties

Name:

Specifies

the

name

of

the

custom

property

Insure

that

the

data

source

has

the

setter

of

this

property.

Data

type

String

Value:

Specifies

the

value

of

the

custom

property.

Data

type

Integer

Description:

Specifies

text

to

describe

any

bounds

or

well-defined

values

for

this

property.

Data

type

String

Required:

Specifies

properties

that

are

required

for

this

resource.

Data

type

String

Custom

property

(Version

4)

settings:

Use

this

page

to

add

properties

for

a

Version

4.0

datasource.

To

view

this

administrative

console

page,

click

Resources

>JDBC

Providers>

JDBC_provider

>

Data

Sources

(Version

4)

>

data_source

>

Custom

Properties

>

custom_property.

Scope:

Specifies

the

level

to

which

this

resource

definition

is

visible

--

the

cell,

node,

or

server

level.

Resources

such

as

JDBC

Providers,

Namespace

bindings,

or

shared

libraries

can

be

defined

at

multiple

scopes,

with

resources

defined

at

more

specific

scopes

overriding

duplicates

which

are

defined

at

more

general

scopes.

Chapter

2.

Accessing

data

from

applications

125

Note

that

no

matter

what

the

scope

of

a

defined

resource,

the

resource’s

properties

only

apply

at

an

individual

server

level.

For

example,

if

you

define

the

scope

of

a

data

source

at

the

Cell

level,

all

users

in

that

Cell

can

look

up

and

use

that

data

source,

which

is

unique

within

that

Cell.

However,

resource

property

settings

are

local

to

each

server

in

the

Cell.

For

example,

if

you

define

max

connections

to

10,

then

each

server

in

that

Cell

can

have

10

connections.

Cell

The

most

general

scope.

Resources

defined

at

the

Cell

scope

are

visible

from

all

Nodes

and

servers,

unless

they

are

overridden.

To

view

resources

defined

in

the

cell

scope,

do

not

specify

a

server

or

a

node

name

in

the

scope

selection

form.

Node

The

default

scope

for

most

resource

types.

Resources

defined

at

the

Node

scope

override

any

duplicates

defined

at

the

Cell

scope

and

are

visible

to

all

servers

on

the

same

node,

unless

they

are

overridden

at

a

server

scope

on

that

node.

To

view

resources

defined

in

a

node

scope,

do

not

specify

a

server,

but

select

a

node

name

in

the

scope

selection

form.

Server

The

most

specific

scope

for

defining

resources.

Resources

defined

at

the

Server

scope

override

any

duplicate

resource

definitions

defined

at

the

Cell

scope

or

parent

Node

scope

and

are

visible

only

to

a

specific

server.

To

view

resources

defined

in

a

server

scope,

specify

a

server

name

as

well

as

a

node

name

in

the

scope

selection

form.

When

resources

are

created,

they

are

always

created

into

the

current

scope

selected

in

the

panel.

To

view

resources

in

other

scopes,

specify

a

different

node

or

server

in

the

scope

selection

form.

Data

type

String

Required:

Specifies

properties

that

are

required

for

this

resource.

Data

type

String

Name:

Specifies

the

name

associated

with

this

property

(PortNumber,

ConnectionURL,

etc).

Insure

that

the

data

source

has

the

setter

of

this

property.

Data

type

String

Value:

Specifies

the

value

associated

with

this

property

in

this

property

set.

Data

type

Integer

Description:

Specifies

text

to

describe

any

bounds

or

well-defined

values

for

this

property.

Data

type

String

126

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Type:

Specifies

the

fully

qualified

Java

type

of

this

property

(java.lang.Integer,

java.lang.Byte).

Data

type

String

Creating

a

JDBC

provider

on

multiple

nodes

These

are

the

instructions

to

create

a

JDBC

provider

in

a

Network

Development

(ND)

environment.

This

sample

configuration

involves

two

base

nodes:

node

A

and

node

B

added

to

ND

on

node

C.

1.

Open

the

administrative

console.

2.

Click

Resources

>

JDBC

Providers.

The

default

listing

is

at

the

node

level.

3.

Leave

the

node

text

field

blank

and

click

Apply

to

change

the

scope

to

the

cell

level.

4.

Click

New

to

create

a

new

JDBC

provider

at

the

cell

level.

The

classpath

for

your

new

JDBC

provider

will

already

be

filled

in,

and

part

of

that

classpath

will

be

specified

using

a

symbolic

variable,

for

example

${DB2390_JDBC_DRIVER_PATH}/classes/db2j2classes.zip.

Leave

it

at

the

default.

5.

Finish

creating

the

JDBC

provider.

6.

Click

Environment.

7.

Click

Manage

WebSphere

Variables.

8.

For

each

node,

select

the

symbolic

variable

used

in

the

classpath

of

your

JDBC

provider,

and

provide

a

value

that

is

appropriate

for

the

selected

node.

For

example,

if

the

classpath

of

your

JDBC

provider

uses

the

symbolic

variable

${DB2390_JDBC_DRIVER_PATH},

you

might

supply

the

value

/usr/lpp/db2

on

one

node

and

/usr/lpp/db2710

on

another

node,

depending

on

where

your

DB2

390

installation

is

located.

9.

Click

DB2_JDBC_DRIVER_PATH

(this

already

exists

by

default).

Here

provide

the

path

(in

the

value

field)

where

db2java.zip

exists

on

the

selected

node.

10.

Click

Apply

and

save

the

changes.

Note:

This

variable

must

be

defined

on

each

node

under

the

cell.

Creating

and

configuring

a

JDBC

provider

and

data

source

using

the

Java

Management

Extensions

API

You

need

two

JAR

files

in

your

classpath

--

wsexception.jar

and

wasjmx.jar.

The

following

command

is

an

example

for

setting

your

classpath:

export

CLASSPATH=$CLASSPATH:/WebSphere/V5R1M0/AppServer/lib/wsexception.jar:

/WebSphere/V5R1M0/AppServer/lib/wasjmx.jar

Note:

You

must

enter

this

command

on

one

line;

here

it

is

split

for

formatting

purposes

only.

The

usual

program

follows

these

main

points:

1.

Look

up

the

host

and

get

an

administration

client

handle.

2.

Get

a

configuration

service

handle.

3.

Update

the

resource.xml

file

using

the

configuration

service

as

desired.

a.

Add

a

JDBC

provider

Chapter

2.

Accessing

data

from

applications

127

b.

Add

the

data

source

c.

Add

the

connection

factory

(for

container-managed

persistence)
4.

Reload

the

resource.xml

file

to

bind

the

newly

created

data

source

into

the

JNDI

namespace.

Perform

this

step

if

you

want

to

use

the

newly

created

data

source

right

away

without

restarting

the

application

server.

a.

Locate

the

DataSourceConfigHelper

MBean

using

the

name.

b.

Put

together

the

signature

and

parameters

for

the

call.

c.

Invoke

the

reload()

call.
Note:

The

jdbc-resource-provider-templates.xml

file

should

be

handled

as

read

only.

When

updating

this

file,

special

consideration

should

be

taken.

Before

installing

the

PTF,

you

should

save

your

updated

jdbc-resource-provider-
templates.xml

file.

After

applying

the

PTF,

you

will

need

to

verify

that

the

new

jdbc-resource-provider-templates.xml

file

has

your

correct

entries.

If

the

entries

are

not

valid,

you

will

have

to

merge

your

changes

into

this

new

jdbc-resource-provider-templates.xml

file

manually.

Example:

Using

the

Java

Management

Extensions

API

to

create

a

JDBC

driver

and

data

source

for

container-managed

persistence:

//

//

"This

program

may

be

used,

executed,

copied,

modified

and

distributed

without

royalty

//

for

the

purpose

of

developing,

using,

marketing,

or

distributing."

//

//

Product

5630-A36,

(C)

COPYRIGHT

International

Business

Machines

Corp.,

2001,

2002

//

All

Rights

Reserved

*

Licensed

Materials

-

Property

of

IBM

//

import

java.util.*;

import

javax.sql.*;

import

javax.transaction.*;

import

javax.management.*;

import

java.io.*;

import

com.ibm.websphere.management.*;

import

com.ibm.websphere.management.configservice.*;

import

com.ibm.ws.management.*;

import

com.ibm.ws.exception.*;

/**

*

Creates

a

node-scoped

resource.xml

entry

for

a

*

DB2

for

zOS

Local

JDBC

Provider

(RRS)

DataSource

*

when

WebSphere

security

is

not

enabled

*

*

The

datasource

created

is

for

CMP

use.

*

*

To

run

this

example,

the

following

must

be

done:

*

*

1)

Set

the

WAS_HOME

environment

variable

to

the

location

of

*

your

WebSphere

Application

Server

for

z/OS

Configuration

*

directory

*

*

Example:

export

WAS_HOME=/WebSphereV5R1M0/AppServer

*

*

2)

Set

the

following

environment

variables:

*

*

export

WAS_LIB=$WAS_HOME/lib

*

export

WAS_CLASSPATH=[DIRECTORY_CONTAINING_THIS_FILE]

*

export

WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/jmxc.jar

*

export

WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/wsexception.jar

*

export

WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/admin.jar

*

export

WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/wasjmx.jar

*

export

WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_HOME/java/jre/lib/ext/mail.jar

*

export

WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/ibmjlog.jar

128

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

*

*

3)

Execute

the

following

commands:

*

*

javac

-classpath

$WAS_CLASSPATH

CreateDataSourceCMP.java

*

java

-classpath

$WAS_CLASSPATH

CreateDataSourceCMP

*/

public

class

CreateDataSourceCMP

{

String

dsName

=

"MyDataSourceCMP";//

ds

display

name

,

also

jndi

name

and

CF

name

String

dbName

=

"LOC1";

//

database

name

String

authDataAlias

=

"IBMUSER";

//

an

authentication

data

alias

String

uid

=

"IBMUSER";

//

userid

String

pw

=

"IBMUSER";

//

password

String

dbclasspath

=

"/db2beta/db2710/classes/db2j2classes.zip";

//

path

to

the

db

driver

String

dblibpath

=

"/db2beta/db2710/lib";

//

path

to

the

db

lib

directory

/**

*

Main

method.

*/

public

static

void

main(String[]

args)

{

CreateDataSourceCMP

cds

=

new

CreateDataSourceCMP();

try

{

cds.run(args);

}

catch

(com.ibm.ws.exception.WsException

ex)

{

System.out.println("Caught

this

"

+

ex);

ex.printStackTrace();

ex.getCause().printStackTrace();

}

catch

(Exception

ex)

{

System.out.println("Caught

this

"

+

ex);

ex.printStackTrace();

}

}

/**

*

This

method

creates

the

datasource

using

JMX.

*

The

datasource

created

here

is

only

written

into

resources.xml.

*

It

is

not

bound

into

namespace

until

the

server

is

restarted,

or

an

application

started

*/

public

void

run(String[]

args)

throws

Exception

{

try

{

//

Initialize

the

AdminClient.

Properties

adminProps

=

new

Properties();

adminProps.setProperty(AdminClient.CONNECTOR_TYPE,

AdminClient.CONNECTOR_TYPE_SOAP);

adminProps.setProperty(AdminClient.CONNECTOR_HOST,

"localhost");

adminProps.setProperty(AdminClient.CONNECTOR_PORT,

"8880");

AdminClient

adminClient

=

AdminClientFactory.createAdminClient(adminProps);

//

Get

the

ConfigService

implementation.

com.ibm.websphere.management.configservice.ConfigServiceProxy

configService

=

new

com.ibm.websphere.management.configservice.ConfigServiceProxy(adminClient);

Session

session

=

new

Session();

//

Use

this

group

to

add

to

the

node

scoped

resource.xml.

ObjectName

node1

=

ConfigServiceHelper.createObjectName(null,

"Node",

null);

ObjectName[]

matches

=

configService.queryConfigObjects(session,

null,

node1,

null);

node1

=

matches[0];

//

use

the

first

node

found

//

Use

this

group

to

add

to

the

server1

scoped

resource.xml.

ObjectName

server1

=

ConfigServiceHelper.createObjectName(null,

"Server",

"server1");

matches

=

configService.queryConfigObjects(session,

null,

server1,

null);

server1

=

matches[0];

//

use

the

first

server

found

//

Create

the

JDBCProvider

String

providerName

=

"My

DB2

for

zOS

Local

JDBC

Provider

(RRS)

for

CMP";

System.out.println("Creating

JDBCProvider

"

+

providerName

);

Chapter

2.

Accessing

data

from

applications

129

//

Prepare

the

attribute

list

AttributeList

provAttrs

=

new

AttributeList();

provAttrs.add(new

Attribute("name",

providerName));

provAttrs.add(new

Attribute("implementationClassName",

"com.ibm.db2.jcc.DB2ConnectionPoolDataSource"));

Note:

The

previous

line

of

code

(beginning

provAttrs.add(new

Attribute(″implementationClassName...)

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes

only.

provAttrs.add(new

Attribute("description","Legacy

DB2

for

z/OS

driver

using

RRS"));

//create

it

ObjectName

jdbcProv

=

configService.createConfigData(session,node1,"JDBCProvider",

"resources.jdbc:JDBCProvider",

provAttrs);

Note:

The

previous

line

of

code

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes

only.

//

now

plug

in

the

classpath

configService.addElement(session,jdbcProv,"classpath",dbclasspath,-1);

configService.addElement(session,jdbcProv,"nativepath",dblibpath,-1);

//

Search

for

RRA

so

we

can

link

it

to

the

datasource

ObjectName

rra

=

ConfigServiceHelper.createObjectName

(null,

"J2CResourceAdapter",

null);

Note:

The

previous

line

of

code

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes

only.

matches

=

configService.queryConfigObjects(session,

node1,

rra,

null);

rra

=

matches[0];

//

use

the

first

J2CResourceAdapter

segment

for

builtin_rra

//

Prepare

the

attribute

list

AttributeList

dsAttrs

=

new

AttributeList();

dsAttrs.add(new

Attribute("name",

dsName));

dsAttrs.add(new

Attribute("jndiName",

"jdbc/"

+

dsName));

dsAttrs.add(new

Attribute("datasourceHelperClassname",

"com.ibm.websphere.rsadapter.DB2DataStoreHelper"));

Note:

The

previous

line

of

code

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes

only.

dsAttrs.add(new

Attribute("statementCacheSize",

new

Integer(10)));

dsAttrs.add(new

Attribute("relationalResourceAdapter",

rra));

//

this

is

where

we

make

the

link

to

"builtin_rra"

dsAttrs.add(new

Attribute("description",

"JDBC

Datasource

for

CMP

usage"));

dsAttrs.add(new

Attribute("authDataAlias",

authDataAlias));

//

Create

the

datasource

System.out.println("

**

Creating

datasource");

ObjectName

dataSource

=

configService.createConfigData

(session,jdbcProv,"DataSource",

"resources.jdbc:DataSource",dsAttrs);

Note:

The

previous

line

of

code

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes

only.

//

Add

a

propertySet.

AttributeList

propSetAttrs

=

new

AttributeList();

ObjectName

resourcePropertySet

=

configService.createConfigData

(session,dataSource,"propertySet","",propSetAttrs);

Note:

The

previous

line

of

code

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes

only.

130

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

//

Add

resourceProperty

databaseName

AttributeList

propAttrs1

=

new

AttributeList();

propAttrs1.add(new

Attribute("name",

"databaseName"));

propAttrs1.add(new

Attribute("type",

"java.lang.String"));

propAttrs1.add(new

Attribute("value",

dbName));

configService.addElement(session,resourcePropertySet,

"resourceProperties",propAttrs1,-1);

Note:

The

previous

line

of

code

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes

only.

//

Now

Create

the

corresponding

J2CResourceAdapter

Connection

Factory

object.

ObjectName

jra

=

ConfigServiceHelper.createObjectName(null,"J2CResourceAdapter",null);

//

Get

all

the

J2CResourceAdapter,

and

I

want

to

add

my

datasource

System.out.println("

**

Get

all

J2CResourceAdapter’s");

ObjectName[]

jras

=

configService.queryConfigObjects(session,

node1,

jra,

null);

int

i=0;

for

(;i<

jras.length;i++)

{

System.out.println(ConfigServiceHelper.getConfigDataType(jras[i])

+

"

"

+

i

+

"

=

"

Note:

The

previous

line

of

code

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes

only.
+

jras[i].getKeyProperty(SystemAttributes._WEBSPHERE_CONFIG_DATA_DISPLAY_NAME)

+

"\nFrom

scope

="

+

jras[i].getKeyProperty(SystemAttributes._WEBSPHERE_CONFIG_DATA_ID));

//

quit

on

the

first

builtin_rra

if

(jras[i].getKeyProperty(SystemAttributes._WEBSPHERE_CONFIG_DATA_DISPLAY_NAME)

.equals("WebSphere

Relational

Resource

Adapter"))

{

Note:

The

previous

line

of

code

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes

only.

break;

}

}

if

(i

>=

jras.length)

{

System.out.println("Did

not

find

builtin_rra

J2CResourceAdapter

object

creating

CF

anyways"

);

Note:

The

previous

line

of

code

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes

only.

}

else

{

System.out.println("Found

builtin_rra

J2CResourceAdapter

object

at

index

"

+

i

+

"

creating

CF"

);

Note:

The

previous

line

of

code

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes

only.

}

//

Prepare

the

attribute

list

AttributeList

cfAttrs

=

new

AttributeList();

cfAttrs.add(new

Attribute("name",

dsName

+

"_CF"));

cfAttrs.add(new

Attribute("authMechanismPreference","BASIC_PASSWORD"));

cfAttrs.add(new

Attribute("authDataAlias",authDataAlias));

cfAttrs.add(new

Attribute("cmpDatasource",

dataSource

));

Chapter

2.

Accessing

data

from

applications

131

//

this

is

where

we

make

the

link

to

DataSource’s

xmi:id

ObjectName

cf

=

configService.createConfigData(session,jras[i],"CMPConnectorFactory",

"resources.jdbc:CMPConnectorFactory",cfAttrs);

Note:

The

previous

line

of

code

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes

only.

//

=====

start

Security

section

System.out.println("Creating

an

authorization

data

alias

"

+

authDataAlias);

//

Find

the

parent

security

object

ObjectName

security

=

ConfigServiceHelper.createObjectName(null,

"Security",

null);

ObjectName[]

securityName

=

configService.queryConfigObjects

(session,

null,

security,

null);

Note:

The

previous

line

of

code

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes

only.

security=securityName[0];

//

Prepare

the

attribute

list

AttributeList

authDataAttrs

=

new

AttributeList();

authDataAttrs.add(new

Attribute("alias",

authDataAlias));

authDataAttrs.add(new

Attribute("userId",

uid));

authDataAttrs.add(new

Attribute("password",

pw));

authDataAttrs.add(new

Attribute("description","Auto

created

alias

for

datasource"));

//create

it

ObjectName

authDataEntry

=

configService.createConfigData

(session,security,"authDataEntries",

"JAASAuthData",authDataAttrs);

Note:

The

previous

line

of

code

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes

only.
//

=====

end

Security

section

//

Save

the

session

System.out.println("Saving

session"

);

configService.save(session,

false);

//

reload

resources.xml

to

bind

the

new

datasource

into

the

name

space

reload(adminClient,true);

}

catch

(Exception

ex)

{

ex.printStackTrace(System.out);

throw

ex;

}

}

/**

*

Get

the

DataSourceConfigHelperMbean

and

call

reload()

on

it

*

*

@param

adminClient

*

@param

verbose

true

-

print

messages

to

stdout

*/

public

void

reload(AdminClient

adminClient,boolean

verbose)

{

if

(verbose)

{

System.out.println("Finding

the

Mbean

to

call

reload()");

}

//

First

get

the

Mbean

ObjectName

handle

=

null;

try

{

ObjectName

queryName

=

new

ObjectName("WebSphere:type=DataSourceCfgHelper,*");

Set

s

=

adminClient.queryNames(queryName,

null);

Iterator

iter

=

s.iterator();

if

(iter.hasNext())

handle

=

(ObjectName)iter.next();

132

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

}

catch

(MalformedObjectNameException

mone)

{

System.out.println("Check

the

program

variable

queryName"

+

mone);

}

catch

(com.ibm.websphere.management.exception.ConnectorException

ce)

{

System.out.println("Cannot

connect

to

the

application

server"

+

ce);

}

if

(verbose)

{

System.out.println("Calling

reload()");

}

Object

result

=

null;

try

{

result

=

adminClient.invoke(handle,

"reload",

new

Object[]

{},

new

String[]

{});

}

catch

(MBeanException

mbe)

{

if

(verbose)

{

System.out.println("\tMbean

Exception

calling

reload"

+

mbe);

}

}

catch

(InstanceNotFoundException

infe)

{

System.out.println("Cannot

find

reload

");

}

catch

(Exception

ex)

{

System.out.println("Exception

occurred

calling

reload()"

+

ex);

}

if

(result==null

&&

verbose)

{

System.out.println("OK

reload()");

}

}

}

Example:

Using

the

Java

Management

Extensions

API

to

create

a

JDBC

driver

and

data

source

for

bean-managed

persistence,

session

beans,

or

servlets:

//

"This

program

may

be

used,

executed,

copied,

modified

and

distributed

without

royalty

for

the

//

purpose

of

developing,

using,

marketing,

or

distributing."

//

//

Product

5630-A36,

(C)

COPYRIGHT

International

Business

Machines

Corp.,

2001,

2002

//

All

Rights

Reserved

*

Licensed

Materials

-

Property

of

IBM

//

import

java.util.*;

import

javax.sql.*;

import

javax.transaction.*;

import

javax.management.*;

import

com.ibm.websphere.management.*;

import

com.ibm.websphere.management.configservice.*;

import

com.ibm.ws.exception.WsException;

/**

*

Creates

a

node-scoped

resource.xml

entry

for

a

*

DB2

for

zOS

Local

JDBC

Provider

(RRS)

DataSource

*

when

WebSphere

security

is

not

enabled

*

*

To

run

this

example,

the

following

must

be

done:

*

*

1)

Set

the

WAS_HOME

environment

variable

to

the

location

of

*

your

WebSphere

Application

Server

for

z/OS

Configuration

*

directory

*

*

Example:

export

WAS_HOME=/WebSphereV5R1M0/AppServer

*

*

2)

Set

the

following

environment

variables:

*

*

export

WAS_LIB=$WAS_HOME/lib

*

export

WAS_CLASSPATH=[DIRECTORY_CONTAINING_THIS_FILE]

*

export

WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/jmxc.jar

*

export

WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/wsexception.jar

*

export

WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/admin.jar

*

export

WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/wasjmx.jar

Chapter

2.

Accessing

data

from

applications

133

*

export

WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_HOME/java/jre/lib/ext/mail.jar

*

export

WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/ibmjlog.jar

*

*

3)

Execute

the

following

commands:

*

*

javac

-classpath

$WAS_CLASSPATH

CreateDataSourceBMP.java

*

java

-classpath

$WAS_CLASSPATH

CreateDataSourceBMP

*/

public

class

CreateDataSourceBMP

{

String

dsName

=

"MyDataSourceBMP";

//

ds

display

name

,

also

jndi

name

and

CF

name

String

dbName

=

"LOC1";

//

database

name

String

authDataAlias

=

"IBMUSER";

//

an

authentication

data

alias

String

uid

=

"IBMUSER";

//

userid

String

pw

=

"IBMUSER";

//

password

String

dbclasspath

=

"/db2beta/db2710/classes/db2j2classes.zip";

//

path

to

the

db

driver

String

dblibpath

=

"/db2beta/db2710/lib";

//

path

to

the

db

native

library

directory

/**

*

Main

method.

*/

public

static

void

main(String[]

args)

{

CreateDataSourceBMP

cds

=

new

CreateDataSourceBMP();

try

{

cds.run(args);

}

catch

(com.ibm.ws.exception.WsException

ex)

{

System.out.println("Caught

this

"

+

ex

);

ex.printStackTrace();

}

catch

(Exception

ex)

{

System.out.println("Caught

this

"

+

ex

);

ex.printStackTrace();

}

}

/**

*

This

method

creates

the

datasource

using

JMX.

*

*

The

datasource

created

here

is

only

written

into

resources.xml.

*

It

is

not

bound

into

the

namespace

until

the

server

is

restarted,

*

or

an

application

is

started

*/

public

void

run(String[]

args)

throws

Exception

{

try

{

//

Initialize

the

AdminClient.

Properties

adminProps

=

new

Properties();

adminProps.setProperty(AdminClient.CONNECTOR_TYPE,

AdminClient.CONNECTOR_TYPE_SOAP);

adminProps.setProperty(AdminClient.CONNECTOR_HOST,

"localhost");

adminProps.setProperty(AdminClient.CONNECTOR_PORT,

"8880");

AdminClient

adminClient

=

AdminClientFactory.createAdminClient(adminProps);

//

Get

the

ConfigService

implementation.

com.ibm.websphere.management.configservice.ConfigServiceProxy

configService

=

new

com.ibm.websphere.management.configservice.ConfigServiceProxy(adminClient);

Session

session

=

new

Session();

//

Use

this

group

to

add

to

the

node

scoped

resource.xml.

ObjectName

node1

=

ConfigServiceHelper.createObjectName(null,

"Node",

null);

ObjectName[]

matches

=

configService.queryConfigObjects(session,

null,

node1,

null);

node1

=

matches[0];

//

use

the

first

node

found

//

Use

this

group

to

add

to

the

server1

scoped

resource.xml.

ObjectName

server1

=

ConfigServiceHelper.createObjectName(null,

"Server",

"server1");

matches

=

configService.queryConfigObjects(session,

null,

server1,

null);

server1

=

matches[0];

//

use

the

first

server

found

134

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

//

Create

the

JDBCProvider

String

providerName

=

"My

DB2

for

zOS

Local

JDBC

Provider

(RRS)

for

BMP";

System.out.println("Creating

JDBCProvider

"

+

providerName

);

//

Prepare

the

attribute

list

AttributeList

provAttrs

=

new

AttributeList();

provAttrs.add(new

Attribute("name",

providerName));

provAttrs.add(new

Attribute("implementationClassName",

"com.ibm.db2.jcc.DB2ConnectionPoolDataSource"));

Note:

The

previous

line

of

code

(beginning

provAttrs.add(new

Attribute(″implementationClassName″

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

provAttrs.add(new

Attribute("description","Legacy

DB2

for

z/OS

driver

using

RRS"));

//create

it

ObjectName

jdbcProv

=

configService.createConfigData(session,node1,"JDBCProvider",

"resources.jdbc:JDBCProvider",provAttrs);

Note:

The

previous

line

of

code

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

//

now

plug

in

the

classpath

configService.addElement(session,jdbcProv,"classpath",dbclasspath,-1);

configService.addElement(session,jdbcProv,"nativepath",dblibpath,-1);

//

Search

for

RRA

so

we

can

link

it

to

the

datasource

ObjectName

rra

=

ConfigServiceHelper.createObjectName

(null,

"J2CResourceAdapter",

null);

Note:

The

previous

line

of

code

(beginning

ObjectName

rra

=)

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

matches

=

configService.queryConfigObjects(session,

node1,

rra,

null);

rra

=

matches[0];

//

use

the

first

J2CResourceAdapter

segment

for

builtin_rra

//

Prepare

the

attribute

list

AttributeList

dsAttrs

=

new

AttributeList();

dsAttrs.add(new

Attribute("name",

dsName));

dsAttrs.add(new

Attribute("jndiName",

"jdbc/"

+

dsName));

dsAttrs.add(new

Attribute("datasourceHelperClassname",

"com.ibm.websphere.rsadapter.DB2DataStoreHelper"));

Note:

The

previous

line

of

code

(beginning

dsAttrs.add(new

Attribute(″datasourceHelperClassname″

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

dsAttrs.add(new

Attribute("statementCacheSize",

new

Integer(10)));

dsAttrs.add(new

Attribute("relationalResourceAdapter",

rra));

//

the

previous

line

is

where

we

make

the

link

to

"builtin_rra"

dsAttrs.add(new

Attribute("description",

"JDBC

Datasource

for

BMP

usage"));

dsAttrs.add(new

Attribute("authDataAlias",authDataAlias));

//

Create

the

datasource

System.out.println("

**

Creating

datasource");

ObjectName

dataSource

=

configService.createConfigData(session,jdbcProv,"DataSource",

"resources.jdbc:DataSource",dsAttrs);

Note:

The

previous

line

of

code

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

//

Add

a

propertySet.

AttributeList

propSetAttrs

=

new

AttributeList();

ObjectName

resourcePropertySet

=configService.createConfigData

(session,dataSource,"propertySet","",propSetAttrs);

Chapter

2.

Accessing

data

from

applications

135

Note:

The

previous

line

of

code

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

//

Add

resourceProperty

databaseName

AttributeList

propAttrs1

=

new

AttributeList();

propAttrs1.add(new

Attribute("name",

"databaseName"));

propAttrs1.add(new

Attribute("type",

"java.lang.String"));

propAttrs1.add(new

Attribute("value",

dbName));

configService.addElement(session,resourcePropertySet,

"resourceProperties",propAttrs1,-1);

Note:

The

previous

line

of

code

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

//

=====

start

Security

section

System.out.println("Creating

an

authorization

data

alias

"

+

authDataAlias);

//

Find

the

parent

security

object

ObjectName

security

=

ConfigServiceHelper.createObjectName(null,

"Security",

null);

ObjectName[]

securityName

=

configService.queryConfigObjects(session,

null,

security,

null);

Note:

The

previous

line

of

code

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

security=securityName[0];

//

Prepare

the

attribute

list

AttributeList

authDataAttrs

=

new

AttributeList();

authDataAttrs.add(new

Attribute("alias",

authDataAlias));

authDataAttrs.add(new

Attribute("userId",

uid));

authDataAttrs.add(new

Attribute("password",

pw));

authDataAttrs.add(new

Attribute("description","Auto

created

alias

for

datasource"));

//create

it

ObjectName

authDataEntry

=

configService.createConfigData(session,security,"authDataEntries",

"JAASAuthData",authDataAttrs);

Note:

The

previous

line

of

code

(beginning

ObjectName

authDataEntry

=

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

//

=====

end

Security

section

//

Save

the

session

System.out.println("Saving

session"

);

configService.save(session,

false);

//

reload

resources.xml

reload(adminClient,true);

}

catch

(Exception

ex)

{

ex.printStackTrace(System.out);

throw

ex;

}

}

/**

*

Get

the

DataSourceConfigHelperMbean

and

call

reload()

on

it

*

*

@param

adminClient

*

@param

verbose

true

-

print

messages

to

stdout

*/

public

void

reload(AdminClient

adminClient,boolean

verbose)

{

if

(verbose)

{

System.out.println("Finding

the

Mbean

to

call

reload()");

136

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

}

//

First

get

the

Mbean

ObjectName

handle

=

null;

try

{

ObjectName

queryName

=

new

ObjectName("WebSphere:type=DataSourceCfgHelper,*");

Set

s

=

adminClient.queryNames(queryName,

null);

Iterator

iter

=

s.iterator();

if

(iter.hasNext())

handle

=

(ObjectName)iter.next();

}

catch

(MalformedObjectNameException

mone)

{

System.out.println("Check

the

program

variable

queryName"

+

mone);

}

catch

(com.ibm.websphere.management.exception.ConnectorException

ce)

{

System.out.println("Cannot

connect

to

the

application

server"

+

ce);

}

if

(verbose)

{

System.out.println("Calling

reload()");

}

Object

result

=

null;

try

{

result

=

adminClient.invoke(handle,

"reload",

new

Object[]

{},

new

String[]

{});

}

catch

(MBeanException

mbe)

{

if

(verbose)

{

System.out.println("\tMbean

Exception

calling

reload"

+

mbe);

}

}

catch

(InstanceNotFoundException

infe)

{

System.out.println("Cannot

find

reload

");

}

catch

(Exception

ex)

{

System.out.println("Exception

occurred

calling

reload()"

+

ex);

}

if

(result==null

&&

verbose)

{

System.out.println("OK

reload()");

}

}

}

Example:

Test

a

connection

to

a

data

source:

This

resource

adapter

test

program

ensures

that

the

MBean

interfaces

work.

The

following

interfaces

are

tested:

v

getPropertiesForDataSource()

v

reload()

v

testConnectionToDataSource()
//

"This

program

may

be

used,

executed,

copied,

modified

and

distributed

without

royalty

for

the

//

purpose

of

developing,

using,

marketing,

or

distributing."

//

Product

5630-A36,

(C)

COPYRIGHT

International

Business

Machines

Corp.,

2001,

2002

//

All

Rights

Reserved

*

Licensed

Materials

-

Property

of

IBM

import

java.util.*;

import

javax.sql.DataSource;

import

javax.transaction.*;

import

javax.management.*;

import

com.ibm.websphere.management.*;

import

com.ibm.websphere.management.configservice.*;

import

com.ibm.ws.exception.WsException;

import

com.ibm.websphere.rsadapter.DSPropertyEntry;

/**

*

Tests

a

connection

to

a

DataSource

when

WebSphere

*

Security

is

disabled.

*

*

To

run

this

example,

the

following

must

be

done:

*

*

1)

Set

the

WAS_HOME

environment

variable

to

the

location

of

*

your

WebSphere

Application

Server

for

z/OS

Configuration

*

directory

Chapter

2.

Accessing

data

from

applications

137

*

*

Example:

export

WAS_HOME=/WebSphereV5R1M0/AppServer

*

*

2)

Set

the

following

environment

variables:

*

*

export

WAS_LIB=$WAS_HOME/lib

*

export

WAS_CLASSPATH=[DIRECTORY_CONTAINING_THIS_FILE]

*

export

WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/jmxc.jar

*

export

WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/wsexception.jar

*

export

WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/admin.jar

*

export

WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/wasjmx.jar

*

export

WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_HOME/java/jre/lib/ext/mail.jar

*

export

WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/ibmjlog.jar

*

export

WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/utils.jar

*

*

3)

Execute

the

following

commands:

*

*

javac

-classpath

$WAS_CLASSPATH

TestDS.java

*

java

-classpath

$WAS_CLASSPATH

TestDS

*/

public

class

TestDS

{

String

port

=

"8880";

String

host

=

"localhost";

final

static

boolean

verbose

=

true;

/**

*

Main

method.

*/

public

static

void

main(String[]

args)

{

TestDS

cds

=

new

TestDS();

try

{

cds.run(args);

}

catch

(com.ibm.ws.exception.WsException

ex)

{

System.out.println("Caught

this

"

+

ex

);

ex.printStackTrace();

}

catch

(Exception

ex)

{

System.out.println("Caught

this

"

+

ex

);

ex.printStackTrace();

}

}

/**

*

This

method

tests

the

DataSourceCfgHelper

Mbean.

*/

public

void

run(String[]

args)

throws

Exception

{

try

{

System.out.println("Connecting

to

the

application

server.......");

//

Initialize

the

AdminClient.

Properties

adminProps

=

new

Properties();

adminProps.setProperty(AdminClient.CONNECTOR_TYPE,

AdminClient.CONNECTOR_TYPE_SOAP);

adminProps.setProperty(AdminClient.CONNECTOR_HOST,

host);

adminProps.setProperty(AdminClient.CONNECTOR_PORT,

port);

AdminClient

adminClient

=

null;

try

{

adminClient

=

AdminClientFactory.createAdminClient(adminProps);

}

catch

(com.ibm.websphere.management.exception.ConnectorException

ce)

{

System.out.println("Cannot

make

a

connection

to

the

application

server\n"+ce);

System.exit(1);

}

//

First

get

the

Mbean

ObjectName

handle

=

null;

try

{

ObjectName

queryName

=

new

ObjectName("WebSphere:type=DataSourceCfgHelper,*");

Set

s

=

adminClient.queryNames(queryName,

null);

138

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Iterator

iter

=

s.iterator();

if

(iter.hasNext())

handle

=

(ObjectName)iter.next();

}

catch

(MalformedObjectNameException

mone)

{

System.out.println("Check

the

program

variable

queryName"

+

mone);

}

catch

(com.ibm.websphere.management.exception.ConnectorException

ce)

{

System.out.println("Cannot

connect

to

the

application

server"

+

ce);

}

String

dsClassName

=

"com.ibm.db2.jcc.DB2ConnectionPoolDataSource";

String

providerClassPath

=

"/db2beta/db2710/classes/db2j2classes.zip";

String[]

signature

=

{

"java.lang.String",

"java.lang.String"};

Object[]

params

=

{

dsClassName,

providerClassPath};

Object

result

=

null;

if

(verbose)

{

System.out.println("Calling

getPropertiesForDataSource()

for

"

+

dsClassName

+

"\n");

Note:

The

previous

line

of

code

(beginning

System.out.println)

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

}

try

{

//

get

the

properties

result

=

adminClient.invoke(handle,

"getPropertiesForDataSource",

params,

signature);

Note:

The

previous

line

of

code

(beginning

result

=)

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

}

catch

(MBeanException

mbe)

{

if

(verbose)

{

System.out.println("\tMbean

Exception

"

+

dsClassName);

}

}

catch

(InstanceNotFoundException

infe)

{

System.out.println("Cannot

find

"

+

dsClassName);

}

catch

(Exception

ex)

{

System.out.println("Exception

occurred

calling

getPropertiesForDataSource()

for

"

+

dsClassName

+

ex);

Note:

The

previous

line

of

code

(beginning

System.out.println)

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.
}

//

Pretty

print

what

we

found

Iterator

propIterator

=

((List)result).iterator();

System.out.println(format("Name",21)+

"|"

+

format("Default

Value",34)

+

"|"

+

format("Type",17)

+"|Reqd");

Note:

The

previous

line

of

code

(beginning

System.out.println)

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.
String

line

=

"__";

System.out.println(line);

while

(propIterator.hasNext())

{

DSPropertyEntry

dspe

=

(DSPropertyEntry)propIterator.next();

System.out.print(format(dspe.getPropertyName(),21)+"|"+

format(dspe.getDefaultValue(),34)

+

"|");

System.out.println(format(dspe.getPropertyType(),17)

+"|"+

((dspe.isRequired())?

"

Y"

:

"

N"));

Note:

The

previous

two

lines

of

code

(both

beginning

System.out.println)

must

be

entered

on

one

line

each;

they

are

split

here

for

formatting

purposes.

Chapter

2.

Accessing

data

from

applications

139

}

System.out.println(line);

//---------------reload

if

(verbose)

{

System.out.println("Calling

reload()");

}

try

{

result

=

adminClient.invoke(handle,

"reload",

new

Object[]

{},

new

String[]

{});

}

catch

(MBeanException

mbe)

{

if

(verbose)

{

System.out.println("\tMbean

Exception

calling

reload"

+

mbe);

}

}

catch

(InstanceNotFoundException

infe)

{

System.out.println("Cannot

find

reload

");

}

catch

(Exception

ex)

{

System.out.println("Exception

occurred

calling

reload()"

+

ex);

}

if

(result==null

&&

verbose)

{

System.out.println("OK

reload()");

}

//---------------reload

if

(verbose)

{

System.out.println("\nTesting

connection

to

the

database

using

"

+

dsClassName);

}

String

user

=

"IBMUSER";

String

password

=

"IBMUSER";

Properties

props

=

new

Properties();

props.setProperty("databaseName",

"LOC1");

props.setProperty("dataStoreHelperClass",

"com.ibm.websphere.rsadapter.DB2DataStoreHelper");

Note:

The

previous

line

of

code

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

String[]

signature2

=

{

"java.lang.String",

"java.lang.String",

"java.lang.String",

"java.util.Properties",

"java.lang.String","java.util.Locale"};

Note:

The

previous

line

of

code

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

Object[]

params2

=

{

dsClassName,

user,

password,props,

providerClassPath,

Locale.US};

Note:

The

previous

line

of

code

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

Object

result2

=

null;

try

{

//

OK

lets

test.

result2

=

adminClient.invoke(handle,

"testConnectionToDataSource",

params2,

signature2);

Note:

The

previous

line

of

code

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

}

catch

(MBeanException

mbe)

{

if

(verbose)

{

System.out.println("\tMbean

Exception

"

+

dsClassName);

}

}

catch

(InstanceNotFoundException

infe)

{

System.out.println("Cannot

find

"

+

dsClassName);

140

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

}

catch

(RuntimeMBeanException

rme)

{

Exception

ex

=

rme.getTargetException();

ex.printStackTrace(System.out);

throw

ex;

}

catch

(Exception

ex)

{

System.out.println("Exception

occurred

calling

testConnectionToDataSource()

for

"

+

dsClassName

+

ex);

Note:

The

previous

line

of

code

(beginning

System.out.println

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

ex.printStackTrace();

}

//

the

testConnectionToDataSource

method

doesn’t

always

throw

an

exception

//

if

the

test

fails;

it

only

returns

a

String

showing

the

results,

//

so

we

can’t

really

know

if

the

test

was

successful

//

//

the

best

option

here

is

to

just

print

the

String

for

the

user

System.out.println("Test

Result:

"

+

result2);

}

catch

(RuntimeOperationsException

roe)

{

Exception

ex

=

roe.getTargetException();

ex.printStackTrace(System.out);

throw

ex;

}

catch

(Exception

ex)

{

ex.printStackTrace(System.out);

throw

ex;

}

}

/**

*

Format

the

string

right

justified

in

the

space

provided,

*

or

truncate

the

string.

*

*

@param

in

*

@param

length

*

@return

*/

public

String

format(Object

in,

int

length)

{

if

(in

==null)

{

in

=

"-null-";

}

String

ins

=

in.toString();

int

insLength

=

ins.length();

if

(

insLength

>

length)

{

return

ins.substring(0,length);

}

else

{

StringBuffer

sb

=

new

StringBuffer(length);

while

(length

-

insLength

>

0)

{

sb.append("

");

length--;

}

sb.append(ins);

return

sb.toString();

}

}

}

Example:

Creating

a

JDBC

provider

and

data

source

using

Java

Management

Extensions

API

and

the

scripting

tool:

Following

is

a

JACL

(WSadmin

-

scripting

tool)

script

used

to

create

a

data

source

and

test

the

connection.

This

script:

v

Creates

a

data

source

fvtDS_1

v

Creates

a

4.0

data

source

fvtDS_3

Chapter

2.

Accessing

data

from

applications

141

v

Creates

a

container-managed

persistence

(CMP)

data

source

linked

to

fvtDS_1

v

Tests

the

connection
#

Following

is

a

JACL

(WSadmin

-

scripting

tool)

script

used

to

create

a

data

source

#

and

test

the

connection.

#

This

script:

#

Creates

a

data

source

fvtDS_1

#

Creates

a

container-managed

persistence

(CMP)

data

source

linked

to

fvtDS_1

#

The

classpath

that

will

be

used

by

your

database

driver

set

driverClassPath

"/db2beta/db2710/classes/db2j2classes.zip"

set

driverNativePath

"/db2beta/db2710/lib"

set

server

"server1"

set

fvtbase

"c:/wssb/fvtbase"

#

Users

and

passwords..

set

defaultUser

"IBMUSER"

set

defaultPassword

"IBMUSER"

set

aliasName

"IBMUSER"

set

databaseName

"LOC1"

puts

"Add

an

alias

alias1"

set

cell

[$AdminControl

getCell]

set

sec

[$AdminConfig

getid

/Cell:$cell/Security:/]

#---

#

Create

a

JAASAuthData

object

for

component-managed

authentication

#---

puts

"create

JAASAuthData

object

for

alias1"

set

alias_attr

[list

alias

$aliasName]

set

desc_attr

[list

description

"Alias

1"]

set

userid_attr

[list

userId

$defaultUser]

set

password_attr

[list

password

$defaultPassword]

set

attrs

[list

$alias_attr

$desc_attr

$userid_attr

$password_attr]

set

authdata

[$AdminConfig

create

JAASAuthData

$sec

$attrs]

$AdminConfig

save

puts

"Installing

DB2

for

zOS

Local

JDBC

Provider

(RRS)

DataSource"

#Get

the

server

name...

puts

"Finding

the

server

$server"

set

servlist

[$AdminConfig

list

Server]

set

servsize

[llength

$servlist]

foreach

srvr

$servlist

{

set

sname

[lindex

[lindex

[$AdminConfig

show

$srvr

{name}]

0]

1]

if

{($sname

==

$server)}

{

puts

"Found

server

$srvr"

set

serv

$srvr

}

}

puts

"Finding

the

Resource

Adapter"

set

rsadapter

[$AdminConfig

list

J2CResourceAdapter

$serv]

#Now

create

a

JDBC

Provider

for

the

5.0

data

sources

puts

"Creating

the

provider

for

com.ibm.db2.jcc.DB2ConnectionPoolDataSource"

set

attrs1

[subst

{{classpath

$driverClassPath}

{nativepath

$driverNativePath}

{implementationClassName

com.ibm.db2.jcc.DB2ConnectionPoolDataSource}

{name

"FVTProvider2"}

{description

"DB2

JDBC

Provider"}}]

142

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Note:

The

previous

line

of

code

(beginning

set

attrs1)

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.
set

provider1

[$AdminConfig

create

JDBCProvider

$serv

$attrs1]

#Create

the

first

data

source

puts

"Creating

the

datasource

fvtDS_1"

set

attrs2

[subst

{{name

fvtDS_1}

{description

"FVT

DataSource

1"}}]

set

ds1

[$AdminConfig

create

DataSource

$provider1

$attrs2]

#Set

the

properties

for

the

data

source.

set

propSet1

[$AdminConfig

create

J2EEResourcePropertySet

$ds1

{}]

set

attrs3

[subst

{{name

databaseName}

{type

java.lang.String}

{value

$databaseName}}]

$AdminConfig

create

J2EEResourceProperty

$propSet1

$attrs3

set

attrs10

[subst

{{jndiName

jdbc/fvtDS_1}

{statementCacheSize

10}

{datasourceHelperClassname

com.ibm.websphere.rsadapter.DB2DataStoreHelper}

{relationalResourceAdapter

$rsadapter}

{authM

echanismPreference

"BASIC_PASSWORD"}

{authDataAlias

$aliasName}}]

Note:

The

previous

line

of

code

(beginning

set

attrs10)

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.
$AdminConfig

modify

$ds1

$attrs10

#Create

the

connection

pool

object...

$AdminConfig

create

ConnectionPool

$ds1

{{connectionTimeout

1000}

{maxConnections

30}

{minConnections

1}

{agedTimeout

1000}

{reapTime

2000}

{unusedTimeout

3000}

}

Note:

The

previous

line

of

code

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.
#Now

we

will

add

a

connection

factory

for

the

CMPs..

puts

"Creating

the

CMP

Connector

Factory

for

fvtDS_1"

set

attrs12

[subst

{{name

"FVT

DS

1_CF"}

{authMechanismPreference

BASIC_PASSWORD}

{cmpDatasource

$ds1}

{authDataAlias

$aliasName}}]

Note:

The

previous

line

of

code

(beginning

set

attrs12)

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.
set

cf1

[$AdminConfig

create

CMPConnectorFactory

$rsadapter

$attrs12]

#Set

the

properties

for

the

data

source.

$AdminConfig

create

MappingModule

$cf1

{{mappingConfigAlias

"DefaultPrincipalMapping"}

{authDataAlias

"alias1"}}

Note:

The

previous

line

of

code

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.
$AdminConfig

save

Test

connection

The

test

connection

service

enables

developers

to

test

a

connection

to

a

data

source.

There

are

three

ways

to

test

a

connection

to

a

database

that

uses

the

parameters

defined

in

a

data

source

in

the

WebSphere

Application

Server.

You

can

use

the

administrative

console,

the

wsadmin

tool,

or

a

Java

stand

alone

program.

All

three

processes

invoke

the

same

methods

on

the

same

MBean.

Administrative

console:

WebSphere

Application

Server

enables

you

to

test

a

connection

from

the

administrative

console

by

simply

pushing

a

button.

The

Data

Source

Collection

and

Data

Source

Details

pages

have

new

Test

Connection

buttons.

After

you

have

defined

and

saved

a

data

source,

you

can

click

this

button

to

ensure

that

the

parameters

in

the

data

source

definition

are

correct.

On

the

Chapter

2.

Accessing

data

from

applications

143

collection

page,

you

can

select

several

data

sources

and

test

them

all

at

once.

Note

that

there

are

certain

conditions

that

must

be

met

first.

For

more

information,

see

Testing

a

connection

with

the

administrative

console.

Wsadmin

tool:

The

wsadmin

tool

provides

a

scripting

interface

to

a

full

range

of

WebSphere

Application

Server

administration

activities.

Because

the

Test

Connection

functionality

is

implemented

as

a

method

on

an

MBean,

and

wsadmin

can

invoke

MBean

methods,

wsadmin

can

be

utilized

to

test

connections

to

DataSources.

Following

are

the

three

options:

There

is

a

testConnection

facility

in

wsadmin

that

you

can

read

about

in

Example:

Migrating

-

Testing

the

DataSource

object

connection.

The

AdminControl

object

of

wsadmin

has

a

testConnection

operation

that

tests

the

configuration

properties

of

a

data

source

object.

For

information,

see

Testing

a

connection

using

wsadmin.

Finally,

you

can

test

a

connection

by

invoking

the

MBean

operation.

You

can

find

information

about

this

by

referring

to

the

Information

Center

topic

Administering

>

System

administration

>

Scripting

>

Managing

running

objects

with

scripting

>

Operation

management

examples

with

wsadmin

>

Example:

Testing

data

source

connection

using

wsadmin.

Java

stand

alone

program:

The

test

connection

commands

can

also

be

invoked

from

a

Java

program,

by

using

JMX

to

connect

directly

to

the

MBean.

For

information

about

invoking

the

test

connection

operations

before

5.0.1,

see

Example:

Test

a

connection

to

a

data

source.

You

can

invoke

the

same

test

connection

operation

on

the

DataSourceCfgHelper

MBean

from

a

Java

program

that

wsadmin

uses,

passing

in

the

properties

you

want

to

test.

You

can

find

an

example

of

this

code

here:

Example:

Test

a

connection

using

country

and

language

(properties).

While

both

of

these

methods

are

still

viable

with

this

release,

the

preferred

method

is

shown

in

the

following

paragraphs.

The

new

5.0.1

test

connection

method

can

also

be

invoked

through

a

Java

program.

The

advantage

is

that

you

can

pass

the

configuration

ID

of

a

configured

data

source,

rather

than

the

properties

of

the

data

source.

This

program

uses

JMX

to

connect

to

a

running

server

and

invoke

the

testConnection

method

on

the

DataSourceCfgHelper

MBean.

In

a

base

installation,

you

connect

to

the

running

server,

usually

on

port

8880.

The

return

value

from

this

invocation

will

be

either

0,

a

positive

number,

or

an

exception.

0

indicates

that

the

operation

completed

successfully,

with

no

warnings.

A

positive

number

indicates

that

the

operation

completed

successfully,

with

the

number

of

warnings.

An

exception

indicates

that

the

test

of

the

connection

failed.

You

can

find

an

example

of

this

code

here:

Example:

Test

a

connection

using

testConnection(ConfigID).

Testing

a

connection

with

the

administrative

console:

After

you

have

defined

and

saved

a

data

source,

you

can

click

the

Test

Connection

button

to

ensure

that

the

parameters

in

the

data

source

definition

are

correct.

On

144

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

the

collection

panel,

you

can

select

multiple

data

sources

and

test

them

all

at

once.

Be

sure

that

the

following

conditions

are

met

before

using

the

Test

Connection

button.

1.

Depending

on

your

specific

needs,

a

valid

Authentication

Data

alias

may

need

to

exist

and

be

supplied

on

the

data

source

panels.

2.

If

you

are

testing

a

connection

using

a

WebSphere

Application

Server

Version

4.0

type

of

data

source,

ensure

that

the

user

and

password

information

is

filled

in.

3.

If

you

used

a

WebSphere

Environment

entry

for

the

classpath

or

other

fields,

such

as

${DB2390_JDBC_DRIVER_PATH}/classes/db2j2classes.zip,

make

sure

that

you

assign

it

a

value

in

the

Manage

WebSphere

Variables

page.

4.

Click

Test

Connection.

A

Test

Connection

operation

can

have

three

different

outcomes,

each

resulting

in

a

different

message

being

displayed

in

the

messages

panel

of

the

page

on

which

you

press

the

Test

Connection

button.

a.

The

test

can

complete

successfully,

meaning

that

a

connection

is

successfully

obtained

to

the

database

using

the

configured

data

source

parameters.

The

resulting

message

states:

Test

Connection

for

DataSource

DataSourceName

on

process

ProcessName

at

node

NodeName

was

successful.

b.

The

test

can

complete

successfully

with

warnings.

This

means

that

while

a

connection

is

successfully

obtained

to

the

database,

warnings

were

issued.

The

resulting

message

states:

Test

Connection

for

DataSource

DataSourceName

on

process

ProcessName

at

node

NodeName

was

successful

with

warning(s).View

the

JVM

Logs

for

more

details.

The

View

the

JVM

Logs

text

is

a

hyperlink

that

takes

you

to

the

JVM

Logs

console

screen

for

the

process.

c.

The

test

can

fail.

A

connection

to

the

database

with

the

configured

parameters

is

not

obtained.

The

resulting

message

states:

Test

Connection

failed

for

DataSource

DataSourceName

on

process

ProcessName

at

node

NodeName

with

the

following

exception:

ExceptionText.

View

the

JVM

Logs

for

more

details.

Again,

the

text

for

View

the

JVM

Logs

is

a

hyperlink

to

the

appropriate

logs

screen.

Testing

a

connection

using

wsadmin:

The

AdminControl

object

of

wsadmin

has

a

testConnection

operation

that

tests

the

configuration

properties

of

a

data

source

object.

It

takes

a

configuration

ID

as

an

argument.

Note:

This

invocation

style

is

currently

supported

only

for

databases

that

do

not

require

a

user

ID

and

password

to

make

a

connection,

such

as

DB2

on

a

Windows

NT

machine.

1.

Invoke

the

getid

method

for

your

data

source.

2.

Set

the

value

of

the

configuration

id

to

a

variable.

set

myds

[$AdminConfig

getid

/JDBCProvider:mydriver/DataSource:mydatasrc/]

where

/JDBCProvider:mydriver/DataSource:mydatasrc/

is

the

data

source

you

want

to

test.

After

you

have

the

configuration

ID

of

the

data

source,

you

can

test

the

connection

to

the

database.

3.

Test

the

connection

to

the

database.

$AdminControl

testConnection

$myds

Chapter

2.

Accessing

data

from

applications

145

Example:

Test

a

connection

using

country

and

language

(properties):

It

is

possible

to

invoke

the

same

test

connection

operation

on

the

DataSourceCfgHelper

MBean

from

a

Java

program

that

wsadmin

uses,

passing

in

the

properties

you

wish

to

test.

import

java.util.*;

import

javax.sql.DataSource;

import

javax.transaction.*;

import

javax.management.*;

import

com.ibm.websphere.management.*;

import

com.ibm.websphere.management.configservice.*;

import

com.ibm.ws.exception.WsException;

import

com.ibm.websphere.rsadapter.DSPropertyEntry;

/**

*

Tests

a

connection

to

a

DataSource

when

WebSphere

*

Security

is

disabled

*

*

To

run

this

example,

the

following

must

be

done:

*

*

1)

Set

the

WAS_HOME

environment

variable

to

the

location

of

*

your

WebSphere

Application

Server

for

z/OS

Configuration

*

directory

*

*

Example:

export

WAS_HOME=/WebSphereV5R1M0/AppServer

*

*

2)

Set

the

following

environment

variables:

*

*

export

WAS_LIB=$WAS_HOME/lib

*

export

WAS_CLASSPATH=[DIRECTORY_CONTAINING_THIS_FILE]

*

export

WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/jmxc.jar

*

export

WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/wsexception.jar

*

export

WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/admin.jar

*

export

WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/wasjmx.jar

*

export

WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_HOME/java/jre/lib/ext/mail.jar

*

export

WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/ibmjlog.jar

*

export

WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/utils.jar

*

*

3)

Execute

the

following

commands:

*

*

javac

-classpath

$WAS_CLASSPATH

TestDS2.java

*

java

-classpath

$WAS_CLASSPATH

TestDS2

*/

public

class

TestDS2

{

String

port

=

"8880";

String

host

=

"localhost";

final

static

boolean

verbose

=

true;

/**

*

Main

method.

*/

public

static

void

main(String[]

args)

{

TestDS2

cds

=

new

TestDS2();

try

{

cds.run(args);

}

catch

(com.ibm.ws.exception.WsException

ex)

{

System.out.println("Caught

this

"

+

ex

);

ex.printStackTrace();

}

catch

(Exception

ex)

{

System.out.println("Caught

this

"

+

ex

);

ex.printStackTrace();

}

}

/**

146

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

*

This

method

tests

the

DataSourceCfgHelper

Mbean.

*/

public

void

run(String[]

args)

throws

Exception

{

try

{

System.out.println("Connecting

to

the

application

server.......");

/***/

/**

Initialize

the

AdminClient

*/

/***/

Properties

adminProps

=

new

Properties();

adminProps.setProperty(AdminClient.CONNECTOR_TYPE,

AdminClient.CONNECTOR_TYPE_SOAP);

adminProps.setProperty(AdminClient.CONNECTOR_HOST,

host);

adminProps.setProperty(AdminClient.CONNECTOR_PORT,

port);

AdminClient

adminClient

=

null;

try

{

adminClient

=

AdminClientFactory.createAdminClient(adminProps);

}

catch

(com.ibm.websphere.management.exception.ConnectorException

ce)

{

System.out.println("Cannot

make

a

connection

to

the

application

server\n"+ce);

System.exit(1);

}

/***/

/**

Locate

the

Mbean

*/

/***/

ObjectName

handle

=

null;

try

{

ObjectName

queryName

=

new

ObjectName("WebSphere:type=DataSourceCfgHelper,*");

Set

s

=

adminClient.queryNames(queryName,

null);

Iterator

iter

=

s.iterator();

if

(iter.hasNext())

handle

=

(ObjectName)iter.next();

}

catch

(MalformedObjectNameException

mone)

{

System.out.println("Check

the

program

variable

queryName"

+

mone);

}

catch

(com.ibm.websphere.management.exception.ConnectorException

ce)

{

System.out.println("Cannot

connect

to

the

application

server"

+

ce);

}

/***/

/**

Call

the

Mbean

to

get

the

data

source

properties

*/

/***/

String

dsClassName

=

"com.ibm.db2.jcc.DB2ConnectionPoolDataSource";

String

providerClassPath

=

"/db2beta/db2710/classes/db2j2classes.zip";

String[]

signature

=

{

"java.lang.String",

"java.lang.String"};

Object[]

params

=

{

dsClassName,

providerClassPath};

Object

result

=

null;

if

(verbose)

{

System.out.println("Calling

getPropertiesForDataSource()

for

"

+

dsClassName

+

"\n");

Note:

The

previous

line

of

code

(beginning

System.out.println)

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

}

try

{

//

get

the

properties

result

=

adminClient.invoke(handle,

"getPropertiesForDataSource",

params,

signature);

Note:

The

previous

line

of

code

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

}

catch

(MBeanException

mbe)

{

if

(verbose)

{

System.out.println("\tMbean

Exception

"

+

dsClassName);

}

}

catch

(InstanceNotFoundException

infe)

{

Chapter

2.

Accessing

data

from

applications

147

System.out.println("Cannot

find

"

+

dsClassName);

}

catch

(Exception

ex)

{

System.out.println("Exception

occurred

calling

getPropertiesForDataSource()

for

"

+

dsClassName

+

ex);

Note:

The

previous

line

of

code

(beginning

System.out.println)

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

}

//

Pretty

print

what

we

found

Iterator

propIterator

=

((List)result).iterator();

System.out.println(format("Name",21)+

"|"

+

format("Default

Value",34)

+

"|"

+

format("Type",17)

+"|Reqd");

Note:

The

previous

line

of

code

(beginning

System.out.println)

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

String

line

=

"___";

System.out.println(line);

while

(propIterator.hasNext())

{

DSPropertyEntry

dspe

=

(DSPropertyEntry)propIterator.next();

System.out.print(format(dspe.getPropertyName(),21)+"|"+

format(dspe.getDefaultValue(),34)

+

"|");

Note:

The

previous

line

of

code

(beginning

System.out.print(format...)

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

System.out.println(format(dspe.getPropertyType(),17)

+"|"+

((dspe.isRequired())?

"

Y"

:

"

N"));

Note:

The

previous

line

of

code

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

}

System.out.println(line);

/***/

/**

Invoke

the

reload

function

from

the

AdminClient

to

pickup

the

*/

/*

data

source

from

the

naming

space.

*/

/***/

if

(verbose)

{

System.out.println("Calling

reload()");

}

try

{

result

=

adminClient.invoke(handle,

"reload",

new

Object[]

{},

new

String[]

{});

}

catch

(MBeanException

mbe)

{

if

(verbose)

{

System.out.println("\tMbean

Exception

calling

reload"

+

mbe);

}

}

catch

(InstanceNotFoundException

infe)

{

System.out.println("Cannot

find

reload

");

}

catch

(Exception

ex)

{

System.out.println("Exception

occurred

calling

reload()"

+

ex);

}

if

(result==null

&&

verbose)

{

System.out.println("OK

reload()");

}

/***/

/**

Start

to

test

the

connection

to

the

database

*/

/***/

if

(verbose)

{

System.out.println("\nTesting

connection

to

the

database

using

"

+

dsClassName);

148

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

}

String

user

=

"IBMUSER";

String

password

=

"IBMUSER";

Properties

props

=

new

Properties();

props.setProperty("databaseName",

"LOC1");

props.setProperty("dataStoreHelperClass",

"com.ibm.websphere.rsadapter.DB2DataStoreHelper");

Note:

The

previous

line

of

code

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

Object

result2

=

null;

String[]

signature2

=

{

"java.lang.String",

"java.lang.String",

"java.lang.String",

"java.util.Properties",

"java.lang.String",

"java.lang.String","java.lang.String"

};

Note:

The

previous

line

of

code

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

Object[]

params2

=

{

dsClassName,

user,

password,props

,providerClassPath,

"EN",

"US"};

try

{

result2

=

adminClient.invoke(handle,

"testConnectionToDataSource",

params2,

signature2);

Note:

The

previous

line

of

code

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

}

catch

(MBeanException

mbe)

{

if

(verbose)

{

System.out.println("\tMbean

Exception

"

+

dsClassName);

}

}

catch

(InstanceNotFoundException

infe)

{

System.out.println("Cannot

find

"

+

dsClassName);

}

catch

(RuntimeMBeanException

rme)

{

Exception

ex

=

rme.getTargetException();

ex.printStackTrace(System.out);

throw

ex;

}

catch

(Exception

ex)

{

System.out.println("Exception

occurred

calling

testConnectionToDataSource()

for

"

+

dsClassName

+

ex);

Note:

The

previous

line

of

code

(beginning

System.out.println)

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

ex.printStackTrace();

}

//

the

testConnectionToDataSource

method

doesn’t

always

throw

an

exception

//

if

the

test

fails;

it

only

returns

a

String

//showing

the

results,

so

we

can’t

really

know

if

the

//

test

was

successful

//

//

the

best

option

here

is

to

just

print

the

String

for

the

user

System.out.println("Test

Result:

"

+

result2);

}

catch

(RuntimeOperationsException

roe)

{

Exception

ex

=

roe.getTargetException();

ex.printStackTrace(System.out);

throw

ex;

}

catch

(Exception

ex)

{

ex.printStackTrace(System.out);

throw

ex;

}

}

Chapter

2.

Accessing

data

from

applications

149

/**

*

Format

the

string

right

justified

in

the

space

provided,

*

or

truncate

the

string.

*

*

@param

in

*

@param

length

*

@return

*/

public

String

format(Object

in,

int

length)

{

if

(in

==null)

{

in

=

"-null-";

}

String

ins

=

in.toString();

int

insLength

=

ins.length();

if

(

insLength

>

length)

{

return

ins.substring(0,length);

}

else

{

StringBuffer

sb

=

new

StringBuffer(length);

while

(length

-

insLength

>

0)

{

sb.append("

");

length--;

}

sb.append(ins);

return

sb.toString();

}

}

}

Example:

Test

a

connection

using

testConnection(ConfigID):

You

can

pass

the

configuration

ID

of

a

configured

data

source,

rather

than

the

properties

of

the

data

source.

This

program

uses

JMX

to

connect

to

a

running

server

and

invoke

the

testConnection

method

on

the

DataSourceCfgHelper

MBean.

import

java.util.Iterator;

import

java.util.Locale;

import

java.util.Properties;

import

java.util.Set;

import

javax.management.InstanceNotFoundException;

import

javax.management.MBeanException;

import

javax.management.MalformedObjectNameException;

import

javax.management.ObjectName;

import

javax.management.RuntimeMBeanException;

import

javax.management.RuntimeOperationsException;

import

com.ibm.websphere.management.AdminClient;

import

com.ibm.websphere.management.AdminClientFactory;

/**

*

Tests

a

connection

to

a

DataSource

when

WebSphere

*

Security

is

disabled

*

*

To

run

this

example,

the

following

must

be

done:

*

*

1)

Set

the

WAS_HOME

environment

variable

to

the

location

of

*

your

WebSphere

Application

Server

for

z/OS

Configuration

*

directory

*

*

Example:

export

WAS_HOME=/WebSphereV5R1M0/AppServer

*

*

2)

Set

the

following

environment

variables:

*

*

export

WAS_LIB=$WAS_HOME/lib

*

export

WAS_CLASSPATH=[DIRECTORY_CONTAINING_THIS_FILE]

*

export

WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/jmxc.jar

150

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

*

export

WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/wsexception.jar

*

export

WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/admin.jar

*

export

WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/wasjmx.jar

*

export

WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_HOME/java/jre/lib/ext/mail.jar

*

export

WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/ibmjlog.jar

*

export

WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/utils.jar

*

*

3)

Execute

the

following

commands:

*

*

javac

-classpath

$WAS_CLASSPATH

TestDSGUI.java

*

java

-classpath

$WAS_CLASSPATH

TestDSGUI

*/

public

class

TestDSGUI

{

//Use

port

8880

for

base

installation

or

port

8879

for

ND

installation

String

port

=

"8880";

String

host

=

"localhost";

final

static

boolean

verbose

=

true;

//

eg

a

configuration

ID

for

5.1

DataSource

declared

at

the

node

level

private

static

final

String

resURI

=

"cells/SY1/nodes/SY1:resources.xml#DataSource_1080685343915";

Note:

The

previous

line

of

code

must

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

//

eg

a

configuration

ID

for

5.1

DataSource

declared

at

the

server

level

//

private

static

final

String

resURI

=

//"cells/SY1/nodes/SY1/servers/server1/resources.xml#DataSource_6";

public

static

void

main(String[]

args)

{

TestDSGUI

cds

=

new

TestDSGUI();

cds.run(args);

}

/**

*

This

method

tests

the

ResourceMbean.

*/

public

void

run(String[]

args)

{

try

{

System.out.println("Connecting

to

the

application

server.......");

/***/

/**

Initialize

the

AdminClient

*/

/***/

Properties

adminProps

=

new

Properties();

adminProps.setProperty(AdminClient.CONNECTOR_TYPE,

AdminClient.CONNECTOR_TYPE_SOAP);

adminProps.setProperty(AdminClient.CONNECTOR_HOST,

host);

adminProps.setProperty(AdminClient.CONNECTOR_PORT,

port);

AdminClient

adminClient

=

null;

try

{

adminClient

=

AdminClientFactory.createAdminClient(adminProps);

}

catch

(com.ibm.websphere.management.exception.ConnectorException

ce)

{

System.out.println("NLS:

Cannot

make

a

connection

to

the

application

server\n");

ce.printStackTrace();

System.exit(1);

}

/***/

/**

Locate

the

Mbean

*/

/***/

ObjectName

handle

=

null;

try

{

Chapter

2.

Accessing

data

from

applications

151

//

Send

in

a

locator

string

ObjectName

queryName

=

new

ObjectName("WebSphere:type=DataSourceCfgHelper,*");

Set

s

=

adminClient.queryNames(queryName,

null);

Iterator

iter

=

s.iterator();

while

(iter.hasNext())

{

//

use

the

first

MBean

that

is

found

handle

=

(ObjectName)

iter.next();

System.out.println("Found

this

->"

+

handle);

}

if

(handle

==

null)

{

System.out.println("NLS:

Did

not

find

this

MBean>>"

+

queryName);

System.exit(1);

}

}

catch

(MalformedObjectNameException

mone)

{

System.out.println("Check

the

program

variable

queryName"

+

mone);

}

catch

(com.ibm.websphere.management.exception.ConnectorException

ce)

{

System.out.println("Cannot

connect

to

the

application

server"

+

ce);

}

/***/

/**

Build

parameters

to

pass

to

Mbean

*/

/***/

String[]

signature

=

{

"java.lang.String"

};

Object[]

params

=

{

resURI

};

Object

result

=

null;

if

(verbose)

{

System.out.println("\nTesting

connection

to

the

database

using

"

+

handle);

}

try

{

/***/

/**

Start

to

test

the

connection

to

the

database

*/

/***/

result

=

adminClient.invoke(handle,

"testConnection",

params,

signature);

}

catch

(MBeanException

mbe)

{

//

all

user

exceptions

come

in

here

if

(verbose)

{

Exception

ex

=

mbe.getTargetException();

//

The

previous

line

is

the

real

exception

from

the

Mbean

System.out.println("\nNLS:Mbean

Exception

was

received

contains

"

+

ex);

ex.printStackTrace();

System.exit(1);

}

}

catch

(InstanceNotFoundException

infe)

{

System.out.println("Cannot

find

"

+

infe);

}

catch

(RuntimeMBeanException

rme)

{

Exception

ex

=

rme.getTargetException();

ex.printStackTrace(System.out);

throw

ex;

}

catch

(Exception

ex)

{

System.out.println("\nUnexpected

Exception

occurred:

"

+

ex);

ex.printStackTrace();

}

/***/

/**

Process

the

result.

The

result

will

be

the

number

of

warnings

*/

/**

issued.

A

result

of

0

indicates

a

successful

connection

with

*/

/**

no

warnings.

*/

/***/

//A

result

of

0

indicates

a

successful

connection

with

no

warnings.

System.out.println("Result

(number

of

warnings)

=

"

+

result);

}

catch

(RuntimeOperationsException

roe)

{

Exception

ex

=

roe.getTargetException();

152

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

ex.printStackTrace(System.out);

}

catch

(Exception

ex)

{

System.out.println("General

exception

occurred");

ex.printStackTrace(System.out);

}

}

}

Example:

Migrating

-

Testing

the

DataSource

object

connection:

The

following

examples

demonstrate

how

to

test

the

connection

to

a

DataSource

object

in

the

WebSphere

Application

Server

V4.0

and

V5.x:

v

wscp

V4.0

set

myds

/JDBCDriver:mydriver/DataSource:myds/

DataSource

testConnection

$myds

v

wsadmin

V5.x

The

testConnection

command

is

part

of

the

AdminControl

object

because

it

is

an

operational

command.

This

particular

type

of

operational

command

takes

a

configuration

ID

as

an

argument,

so

you

invoke

the

getid

command

on

the

AdminConfig

object:

Using

Jacl:

set

myds

[$AdminConfig

getid

/JDBCProvider:mydriver/DataSource:mydatasrc/]

$AdminControl

testConnection

$myds

5.1 +

Using

Jython:

myds

=

AdminConfig.getid(’/JDBCProvider:mydriver/DataSource:mydatasrc/’)

AdminControl.testConnection(myds)

In

many

cases,

a

user

ID

and

password,

or

other

properties

are

required

to

complete

the

test

connection.

If

this

is

the

case,

you

receive

the

following

message,

which

describes

the

missing

properties:

WASX7216E:

2

attributes

required

for

testConnection

are

missing:

"[user,

password]"

To

complete

this

operation,

please

supply

the

missing

attributes

as

an

option,

following

this

example:

{{user

user_val}

{password

password_val}}

For

this

example,

issue

the

following

commands:

Using

Jacl:

set

myds

[$AdminConfig

getid

/JDBCProvider:mydriver/DataSource:mydatasrc/]

$AdminControl

testConnection

$myds

{{user

myuser}

{password

secret}}

5.1 +

Using

Jython:

myds

=

AdminConfig.getid(’/JDBCProvider:mydriver/DataSource:mydatasrc/’)

AdminControl.testConnection(myds,

[[’user’,

’myuser’],

[’password’,

’secret’]])

Configuring

Java

2

Connector

connection

factories

in

the

administrative

console

1.

Click

Resources.

2.

Click

Resource

Adapters.

3.

Select

a

resource

adapter

under

Resource

Adapters.

4.

Click

J2C

Connection

Factories

under

Additional

Properties

.

5.

Click

New.

6.

Specify

General

Properties

.

7.

Select

the

authentication

preference.

8.

Select

aliases

for

component-managed

authentication,

container-managed

authentication,

or

both.

If

none

are

available,

or

you

want

to

define

a

different

one,

click

Apply

>

J2C

Authentication

Data

Entries

under

Related

Items.

a.

Click

J2C

Auth

Data

Entries

under

Related

Items.

Chapter

2.

Accessing

data

from

applications

153

b.

Click

New.

c.

Specify

General

Properties.

d.

Click

OK.

9.

Click

OK.

10.

Click

the

J2C

connection

factory

you

just

created.

11.

Under

Additional

Properties

click

Connection

Pool.

12.

Change

any

values

desired

by

clicking

the

property

name.

13.

Click

OK.

14.

Click

Custom

Properties

under

Additional

Properties.

15.

Click

any

property

name

to

change

its

value.

Note

that

UserName

and

Password

if

present,

are

overridden

by

the

component-managed

authentication

alias

you

specified

in

a

previous

step.

16.

Click

Save.

Connection

pool

settings

Use

this

page

to

configure

connection

pool

settings.

This

administrative

console

page

is

common

to

a

range

of

resource

types;

for

example,

JDBC

data

sources

and

JMS

queue

connection

factories.

To

view

this

page,

the

path

depends

on

the

type

of

resource,

but

generally

you

select

an

instance

of

the

resource

provider,

then

an

instance

of

the

resource

type,

then

click

Connection

Pool.

For

example:

click

Resources

>

JDBC

Providers

>

JDBC_provider

>

Data

Sources

>

data_source

>

Connection

Pool.

Connection

Timeout:

Specifies

the

interval,

in

seconds,

after

which

a

connection

request

times

out

and

a

ConnectionWaitTimeoutException

is

thrown.

The

wait

is

necessary

when

the

maximum

value

of

connections

(Max

Connections)

to

a

particular

connection

pool

is

reached

.

For

example,

if

Connection

Timeout

is

set

to

300

and

the

maximum

number

of

connections

is

reached,

the

Pool

Manager

waits

for

300

seconds

for

an

available

physical

connection.

If

a

physical

connection

is

not

available

within

this

time,

the

Pool

Manager

throws

a

ConnectionWaitTimeoutException.

It

usually

does

not

make

sense

to

retry

the

getConnection()

method,

because

if

a

longer

wait

time

is

required,

you

should

set

the

Connection

Timeout

setting

to

a

higher

value.

Therefore,

if

this

exception

is

caught

by

the

application,

the

administrator

should

review

the

expected

usage

of

the

application

and

tune

the

connection

pool

and

the

database

accordingly.

If

Connection

Timeout

is

set

to

0,

the

Pool

Manager

waits

as

long

as

necessary

until

a

connection

is

allocated

(which

happens

when

the

number

of

connections

falls

below

the

value

of

Max

Connections).

If

Max

Connections

is

set

to

0,

which

enables

an

infinite

number

of

physical

connections,

then

the

Connection

Timeout

value

is

ignored.

Data

type

Integer

Units

Seconds

Default

180

Range

0

to

max

int

Max

Connections:

154

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Specifies

the

maximum

number

of

physical

connections

that

you

can

create

in

this

pool.

These

are

the

physical

connections

to

the

backend

resource.

Once

this

number

is

reached,

no

new

physical

connections

are

created

and

the

requester

waits

until

a

physical

connection

that

is

currently

in

use

returns

to

the

pool,

or

a

ConnectionWaitTimeoutException

is

thrown.

For

example,

if

the

Max

Connections

value

is

set

to

5,

and

there

are

five

physical

connections

in

use,

the

pool

manager

waits

for

the

amount

of

time

specified

in

Connection

Timeout

for

a

physical

connection

to

become

free.

If

Max

Connections

is

set

to

0,

the

Connection

Timeout

value

is

ignored.

For

better

performance,

set

the

value

for

the

connection

pool

lower

than

the

value

for

the

Max

Connections

option

in

the

Web

container.

Lower

settings,

such

as

10-30

connections,

perform

better

than

higher

settings,

such

as

100.

If

clones

are

used,

one

data

pool

exists

for

each

clone.

Knowing

the

number

of

data

pools

is

important

when

configuring

the

database

maximum

connections.

Min

Connections:

Specifies

the

minimum

number

of

physical

connections

to

maintain.

Until

this

number

is

reached,

the

pool

maintenance

thread

does

not

discard

physical

connections.

However,

no

attempt

is

made

to

bring

the

number

of

connections

up

to

this

number.

If

you

set

a

value

for

Aged

Timeout,

the

minimum

is

not

maintained.

All

connections

with

an

expired

age

are

discarded.

For

example

if

the

Min

Connections

value

is

set

to

3,

and

one

physical

connection

is

created,

the

Unused

Timeout

thread

does

not

discard

that

connection.

By

the

same

token,

the

thread

does

not

automatically

create

two

additional

physical

connections

to

reach

the

Min

Connections

setting.

Data

type

Integer

Default

1

Range

0

to

max

int

Reap

Time:

Specifies

the

interval,

in

seconds,

between

runs

of

the

pool

maintenance

thread.

For

example,

if

Reap

Time

is

set

to

60,

the

pool

maintenance

thread

runs

every

60

seconds.

The

Reap

Time

interval

affects

the

accuracy

of

the

Unused

Timeout

and

Aged

Timeout

settings.

The

smaller

the

interval,

the

greater

the

accuracy.

If

the

pool

maintenance

thread

is

enabled,

set

the

Reap

Time

value

less

than

the

values

of

Unused

Timeout

and

Aged

Timeout.

When

the

pool

maintenance

thread

runs,

it

discards

any

connections

remaining

unused

for

longer

than

the

time

value

specified

in

Unused

Timeout,

until

it

reaches

the

number

of

connections

specified

in

Min

Connections.

The

pool

maintenance

thread

also

discards

any

connections

that

remain

active

longer

than

the

time

value

specified

in

Aged

Timeout.

The

Reap

Time

interval

also

affects

performance.

Smaller

intervals

mean

that

the

pool

maintenance

thread

runs

more

often

and

degrades

performance.

Chapter

2.

Accessing

data

from

applications

155

To

disable

the

pool

maintenance

thread

set

Reap

Time

to

0,

or

set

both

Unused

Timeout

and

Aged

Timeout

to

0.

The

recommended

way

to

disable

the

pool

maintenance

thread

is

to

set

Reap

Time

to

0,

in

which

case

Unused

Timeout

and

Aged

Timeout

are

ignored.

However,

if

Unused

Timeout

and

Aged

Timeout

are

set

to

0,

the

pool

maintenance

thread

runs,

but

only

physical

connections

which

timeout

due

to

non-zero

timeout

values

are

discarded.

Data

type

Integer

Units

Seconds

Default

180

Range

0

to

max

int

Unused

Timeout:

Specifies

the

interval

in

seconds

after

which

an

unused

or

idle

connection

is

discarded.

Set

the

Unused

Timeout

value

higher

than

the

Reap

Timeout

value

for

optimal

performance.

Unused

physical

connections

are

only

discarded

if

the

current

number

of

connections

not

in

use

exceeds

the

Min

Connections

setting.

For

example,

if

the

unused

timeout

value

is

set

to

120,

and

the

pool

maintenance

thread

is

enabled

(Reap

Time

is

not

0),

any

physical

connection

that

remains

unused

for

two

minutes

is

discarded.

Note

that

accuracy

of

this

timeout,

as

well

as

performance,

is

affected

by

the

Reap

Time

value.

See

Reap

Time

for

more

information.

Data

type

Integer

Units

Seconds

Default

1800

Range

0

to

max

int

Aged

Timeout:

Specifies

the

interval

in

seconds

before

a

physical

connection

is

discarded.

Setting

Aged

Timeout

to

0

supports

active

physical

connections

remaining

in

the

pool

indefinitely.

Set

the

Aged

Timeout

value

higher

than

the

Reap

Timeout

value

for

optimal

performance.

For

example,

if

the

Aged

Timeout

value

is

set

to

1200,

and

the

Reap

Time

value

is

not

0,

any

physical

connection

that

remains

in

existence

for

1200

seconds

(20

minutes)

is

discarded

from

the

pool.

Note

that

accuracy

of

this

timeout,

as

well

as

performance,

are

affected

by

the

Reap

Time

value.

See

Reap

Time

for

more

information.

Data

type

Integer

Units

Seconds

Default

0

Range

0

to

max

int

Purge

Policy:

Specifies

how

to

purge

connections

when

a

stale

connection

or

fatal

connection

error

is

detected.

156

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Valid

values

are

EntirePool

and

FailingConnectionOnly.

JCA

data

sources

can

have

either

option.

WebSphere

Version

4.0

data

sources

always

have

a

purge

policy

of

EntirePool.

Data

type

String

Default

EntirePool

Range

EntirePool

All

connections

in

the

pool

are

marked

stale.

Any

connection

not

in

use

is

immediately

closed.

A

connection

in

use

is

closed

and

throws

a

StaleConnectionException

during

the

next

operation

on

that

connection.

Subsequent

getConnection

requests

from

the

application

result

in

new

connections

to

the

database

opening.

When

using

this

purge

policy,

there

is

a

slight

possibility

that

some

connections

in

the

pool

are

closed

unnecessarily

when

they

are

not

stale.

However,

this

is

a

rare

occurrence.

In

most

cases,

a

purge

policy

of

EntirePool

is

the

best

choice.

FailingConnectionOnly

Only

the

connection

that

caused

the

StaleConnectionException

is

closed.

Although

this

setting

eliminates

the

possibility

that

valid

connections

are

closed

unnecessarily,

it

makes

recovery

from

an

application

perspective

more

complicated.

Because

only

the

currently

failing

connection

is

closed,

there

is

a

good

possibility

that

the

next

getConnection

request

from

the

application

can

return

a

connection

from

the

pool

that

is

also

stale,

resulting

in

more

stale

connection

exceptions.

The

Connection

pretest

function

attempts

to

insulate

an

application

from

pooled

connections

that

are

not

valid.

When

a

backend

resource,

such

as

a

database,

goes

down,,

pooled

connections

that

are

not

valid

might

exist

in

the

free

pool.

This

is

especially

true

when

the

purge

policy

is

failingConnectionOnly;

in

this

case,

the

failing

connection

is

removed

from

the

pool.

Depending

on

the

failure,

the

remaining

connections

in

the

pool

might

not

be

valid.

Connection

pool

(Version

4)

settings

Use

this

page

to

create

a

connection

pool

for

a

Version

4.0

data

source.

Chapter

2.

Accessing

data

from

applications

157

To

view

this

administrative

console

page,

click

Resources

>

JDBC

Providers

>

JDBC_provider

>

Data

Sources

(Version

4)

>

data_source

>

Connection

Pool.

Scope:

Specifies

the

level

to

which

this

resource

definition

is

visible

--

the

cell,

node,

or

server

level.

Resources

such

as

JDBC

Providers,

Namespace

bindings,

or

shared

libraries

can

be

defined

at

multiple

scopes,

with

resources

defined

at

more

specific

scopes

overriding

duplicates

which

are

defined

at

more

general

scopes.

Note

that

no

matter

what

the

scope

of

a

defined

resource,

the

resource’s

properties

only

apply

at

an

individual

server

level.

For

example,

if

you

define

the

scope

of

a

data

source

at

the

Cell

level,

all

users

in

that

Cell

can

look

up

and

use

that

data

source,

which

is

unique

within

that

Cell.

However,

resource

property

settings

are

local

to

each

server

in

the

Cell.

For

example,

if

you

define

max

connections

to

10,

then

each

server

in

that

Cell

can

have

10

connections.

Cell

The

most

general

scope.

Resources

defined

at

the

Cell

scope

are

visible

from

all

Nodes

and

servers,

unless

they

are

overridden.

To

view

resources

defined

in

the

cell

scope,

do

not

specify

a

server

or

a

node

name

in

the

scope

selection

form.

Node

The

default

scope

for

most

resource

types.

Resources

defined

at

the

Node

scope

override

any

duplicates

defined

at

the

Cell

scope

and

are

visible

to

all

servers

on

the

same

node,

unless

they

are

overridden

at

a

server

scope

on

that

node.

To

view

resources

defined

in

a

node

scope,

do

not

specify

a

server,

but

select

a

node

name

in

the

scope

selection

form.

Server

The

most

specific

scope

for

defining

resources.

Resources

defined

at

the

Server

scope

override

any

duplicate

resource

definitions

defined

at

the

Cell

scope

or

parent

Node

scope

and

are

visible

only

to

a

specific

server.

To

view

resources

defined

in

a

server

scope,

specify

a

server

name

as

well

as

a

node

name

in

the

scope

selection

form.

When

resources

are

created,

they

are

always

created

into

the

current

scope

selected

in

the

panel.

To

view

resources

in

other

scopes,

specify

a

different

node

or

server

in

the

scope

selection

form.

Data

type

String

Minimum

Pool

Size:

Specifies

the

minimum

number

of

connections

to

maintain

in

the

pool.

The

minimum

pool

size

can

affect

the

performance

of

an

application.

Smaller

pools

require

less

overhead

when

the

demand

is

low

because

fewer

connections

are

held

open

to

the

database.

When

the

demand

is

high,

the

first

applications

experience

a

slow

response

because

new

connections

are

created

if

all

others

in

the

pool

are

in

use.

Data

type

Integer

Default

1

Range

Any

non-negative

integer.

Maximum

Pool

Size:

158

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Specifies

the

maximum

number

of

connections

to

maintain

in

the

pool.

If

the

maximum

number

of

connections

is

reached

and

all

connections

are

in

use,

additional

requests

for

a

connection

wait

up

to

the

number

of

seconds

specified

as

the

connection

timeout.

The

maximum

pool

size

can

affect

the

performance

of

an

application.

Larger

pools

require

more

overhead

when

demand

is

high

because

there

are

more

connections

open

to

the

database

at

peak

demand.

These

connections

persist

until

idled

out

of

the

pool.

If

the

maximum

value

is

smaller,

longer

wait

times

or

possible

connection

timeout

errors

during

peak

times

can

occur.

Ensure

that

the

database

can

support

the

maximum

number

of

connections

in

the

application

server,

in

addition

to

any

load

that

it

has

outside

of

the

application

server.

Data

type

Integer

Default

10

Range

Any

positive

integer

Connection

Timeout:

Specifies

the

maximum

number

of

seconds

an

application

waits

for

a

connection

from

the

pool

before

timing

out

and

throwing

a

ConnectionWaitTimeoutException

to

the

application.

Setting

this

value

to

0

disables

the

connection

timeout.

Data

type

Integer

Units

Seconds

Default

180

Range

Any

non-negative

integer

Idle

Timeout:

Specifies

the

maximum

number

of

seconds

that

an

idle

(unallocated)

connection

can

remain

in

the

pool

before

being

removed

to

free

resources.

Connections

need

to

idle

out

of

the

pool

because

keeping

connections

open

to

the

database

can

cause

database

memory

problems.

However,

not

all

connections

are

idled

out

of

the

pool,

even

if

they

are

older

than

the

Idle

Timeout

setting.

A

connection

is

not

idled

if

removing

the

connection

would

cause

the

pool

to

shrink

below

its

minimum

size.

Setting

this

value

to

0

disables

the

idle

timeout.

Data

type

Integer

Units

Seconds

Default

1800

Range

Any

non-negative

integer

Orphan

Timeout:

Specifies

the

maximum

number

of

seconds

that

an

application

can

hold

a

connection

without

using

it

before

the

connection

returns

to

the

pool

If

there

is

no

activity

on

an

allocated

connection

for

longer

than

the

Orphan

Timeout

setting,

the

connection

is

marked

for

orphaning.

After

another

Orphan

Timeout

number

of

seconds,

if

the

connection

still

has

no

activity,

the

connection

Chapter

2.

Accessing

data

from

applications

159

returns

to

the

pool.

If

the

application

tries

to

use

the

connection

again,

it

is

thrown

a

StaleConnectionException.

Connections

that

are

enlisted

in

a

transaction

are

not

orphaned.

Setting

this

value

to

0

disables

the

orphan

timeout.

Data

type

Integer

Units

Seconds

Default

1800

Range

Any

non-negative

integer

Statement

Cache

Size:

Specifies

the

number

of

cached

prepared

statements

to

keep

per

connection.

The

largest

value

you

would

need

to

set

your

cache

size

to

if

you

do

not

want

any

cache

discards

is

determined

as

follows:

for

each

application

that

uses

this

data

source

on

a

particular

server,

add

up

the

number

of

unique

prepared

statements

(as

determined

by

the

sql

string,

concurrency,

and

the

scroll

type).

This

is

the

maximum

number

of

possible

prepared

statements

that

can

be

cached

on

a

given

connection

over

the

life

of

the

server.

Setting

the

cache

size

to

this

value

means

you

never

have

cache

discards.

This

provides

better

performance.

However,

because

of

potential

resource

limitations,

this

might

not

always

be

possible.

Data

type

Integer

Default

10

Range

Any

non-negative

integer

Auto

Connection

Cleanup:

Specifies

whether

or

not

the

connection

pooling

software

automatically

closes

connections

from

this

data

source

at

the

end

of

a

transaction.

The

default

is

false,

which

indicates

that

when

a

transaction

completes,

WebSphere

Application

Server

closes

the

connection

and

returns

it

to

the

pool.

Any

use

of

the

connection

after

the

transaction

has

ended

results

in

a

StaleConnectionException

because

the

connection

is

closed

and

has

returned

to

the

pool.

This

mechanism

ensures

that

connections

are

not

held

indefinitely

by

the

application.

If

the

value

is

set

to

true,

the

connection

is

not

returned

to

the

pool

at

the

end

of

a

transaction.

In

this

case,

the

application

must

return

the

connection

to

the

pool

by

calling

close().

If

the

application

does

not

close

the

connection,

the

pool

can

run

out

of

connections

for

other

applications

to

use.

Data

type

Check

box

Default

False

(clear)

Configuring

connection

factories

for

resource

adapters

within

applications

1.

Click

Applications.

2.

Click

Install

New

Application.

3.

Browse

to

find

the

appropriate

EAR

file,

which

contains

an

RAR

file.

4.

Click

Next.

5.

Select

resource

ref

mapping

to

a

J2C

Connection

Factory,

then

click

Next.

6.

After

the

application

installs,

click

Applications.

7.

Select

the

application

just

installed.

160

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

8.

Click

Connector

Modules

under

Related

Items.

9.

Select

an

RAR

file

name

on

the

Connector

Modules

page.

10.

Click

Resource

Adapter

under

Additional

Properties.

11.

Click

J2C

Connection

Factories

under

Additional

Properties.

12.

Click

New.

13.

Specify

General

Properties.

14.

Select

the

authentication

preference.

15.

Select

aliases

for

component-managed

authentication,

container-managed

authentication,

or

both.

If

none

are

available,

or

you

want

to

define

a

different

one,

click

Apply

>

J2C

Authentication

Data

Entries

under

Related

Items.

a.

Click

J2C

Auth

Data

Entries

under

Related

Items.

b.

Click

New.

c.

Specify

General

Properties.

d.

Click

OK.
16.

Click

OK.

17.

Click

the

J2C

connection

factory

you

just

created.

18.

Click

Connection

Pool

under

Additional

Properties

.

19.

Change

any

values

desired

by

clicking

on

the

property

name.

20.

Click

OK.

21.

Click

Custom

Properties

under

Additional

Properties.

22.

Click

any

property

name

to

change

its

value.

Note

that

UserName

and

Password

if

present,

are

overridden

by

the

component-managed

authentication

alias

you

specified

in

a

previous

step.

23.

Click

Save.

J2C

Connection

Factories

collection

Use

this

page

to

select

a

connection

factory,

which

represents

one

set

of

connection

configuration

values.

Application

components

such

as

enterprise

beans

have

resource

reference

descriptors

that

refer

to

the

connection

factory,

not

the

resource

adapter.

The

connection

factory

is

really

a

configuration

properties

list

holder.

In

addition

to

the

arbitrary

set

of

configuration

properties

defined

by

the

vendor

of

the

resource

adapter,

there

are

several

standard

configuration

properties

that

apply

to

the

connection

factory.

These

standard

properties

are

used

by

the

Java

2

Connectors

connection

pool

manager

in

the

application

server

run

time

and

are

not

known

by

the

vendor

supplied

resource

adapter

code.

To

view

this

administrative

console

page,

click

Resources

>

Resource

Adapters

>

resource_adapter

>

J2C

Connection

Factories.

Name:

Specifies

a

list

of

the

connection

factory

display

names.

Data

type

String

JNDI

name:

Specifies

the

Java

Naming

and

Directory

Interface

(JNDI)

name

of

this

connection

factory.

Chapter

2.

Accessing

data

from

applications

161

Data

type

String

Description:

Specifies

a

text

description

of

this

connection

factory.

Data

type

String

Category:

Specifies

a

string

that

you

can

use

to

classify

or

group

this

connection

factory.

Data

type

String

J2C

Connection

Factories

settings:

Use

this

page

to

specify

settings

for

a

connection

factory.

To

view

this

administrative

console

page,

click

Resources

>

Resource

Adapters

>

resource_adapter

>

J2C

Connection

Factories

>

connection_factory.

Scope:

Specifies

the

level

to

which

this

resource

definition

is

visible

--

the

cell,

node,

or

server

level.

Resources

such

as

JDBC

Providers,

Namespace

bindings,

or

shared

libraries

can

be

defined

at

multiple

scopes,

with

resources

defined

at

more

specific

scopes

overriding

duplicates

which

are

defined

at

more

general

scopes.

Note

that

no

matter

what

the

scope

of

a

defined

resource,

the

resource’s

properties

only

apply

at

an

individual

server

level.

For

example,

if

you

define

the

scope

of

a

data

source

at

the

Cell

level,

all

users

in

that

Cell

can

look

up

and

use

that

data

source,

which

is

unique

within

that

Cell.

However,

resource

property

settings

are

local

to

each

server

in

the

Cell.

For

example,

if

you

define

max

connections

to

10,

then

each

server

in

that

Cell

can

have

10

connections.

Cell

The

most

general

scope.

Resources

defined

at

the

Cell

scope

are

visible

from

all

Nodes

and

servers,

unless

they

are

overridden.

To

view

resources

defined

in

the

cell

scope,

do

not

specify

a

server

or

a

node

name

in

the

scope

selection

form.

Node

The

default

scope

for

most

resource

types.

Resources

defined

at

the

Node

scope

override

any

duplicates

defined

at

the

Cell

scope

and

are

visible

to

all

servers

on

the

same

node,

unless

they

are

overridden

at

a

server

scope

on

that

node.

To

view

resources

defined

in

a

node

scope,

do

not

specify

a

server,

but

select

a

node

name

in

the

scope

selection

form.

Server

The

most

specific

scope

for

defining

resources.

Resources

defined

at

the

Server

scope

override

any

duplicate

resource

definitions

defined

at

the

Cell

scope

or

parent

Node

scope

and

are

visible

only

to

a

specific

server.

To

view

resources

defined

in

a

server

scope,

specify

a

server

name

as

well

as

a

node

name

in

the

scope

selection

form.

When

resources

are

created,

they

are

always

created

into

the

current

scope

selected

in

the

panel.

To

view

resources

in

other

scopes,

specify

a

different

node

or

server

in

the

scope

selection

form.

162

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Data

type

String

Name:

Specifies

a

list

of

connection

factory

display

names.

Data

type

String

JNDI

Name:

Specifies

the

JNDI

name

of

this

connection

factory.

For

example,

the

name

could

be

eis/myECIConnection.

After

you

set

this

value,

save

it

and

restart

the

server.

You

can

see

this

string

when

you

run

dumpNameSpace.

Data

type

String

Default

eis/display

name

Description:

Specifies

a

text

description

of

this

connection

factory.

Data

type

String

Category:

Specifies

a

string

that

you

can

use

to

classify

or

group

this

connection

factory.

Data

type

String

Authentication

Preference:

Specifies

the

authentication

mechanisms

defined

for

this

connection

factory.

This

setting

specifies

which

of

the

authentication

mechanisms

defined

for

the

corresponding

resource

adapter

applies

to

this

connection

factory.

Common

values,

depending

on

the

capabilities

of

the

resource

adapter,

are:

KERBEROS,

BASIC_PASSWORD,

and

None.

If

None

is

chosen,

the

application

component

is

expected

to

manage

authentication

(<res-auth>Application</res-auth>).

In

this

case,

the

user

ID

and

password

are

taken

from

one

of

the

following:

v

The

component-managed

authentication

alias

v

UserName,

Password

Custom

Properties

v

Strings

passed

on

the

getConnection

method

For

example,

if

two

authentication

mechanism

entries

are

defined

for

a

resource

adapter

in

the

ra.xml

document:

v

<authentication-mechanism-type>BasicPassword</authentication-mechanism-
type>

v

<authentication-mechanism-type>Kerbv5</authentication-mechanism-type>

Chapter

2.

Accessing

data

from

applications

163

the

authentication

preference

specifies

the

mechanism

to

use

for

container-managed

authentication.

An

exception

is

thrown

during

server

startup

if

a

mechanism

that

is

not

supported

by

the

resource

adapter

is

selected.

Data

type

Pick-list

Default

BASIC_PASSWORD

Component-managed

Authentication

Alias:

Specifies

authentication

data

for

component-managed

signon

to

the

resource.

SecurityJAAS

ConfigurationJ2C

Authentication

Data

To

define

a

new

alias

not

already

appearing

in

the

pick

list:

v

Click

Apply

to

expose

Related

Items.

v

Click

J2C

Authentication

Data

Entries.

v

Define

an

alias.

v

Click

the

connection

factory

name

at

the

top

of

the

J2C

Authentication

Data

Entries

page

to

return

to

the

connection

factory

page.

v

Select

the

alias.

Data

type

Pick-list

Container-managed

Authentication

Alias:

Specifies

authentication

data

(a

string

path

converted

to

userid

and

password)

for

container-managed

signon

to

the

resource.

SecurityJAAS

ConfigurationJ2C

Authentication

Data

To

define

a

new

alias

not

already

appearing

in

the

pick

list:

v

Click

Apply

to

expose

Related

Items.

v

Click

J2C

Authentication

Data

Entries.

v

Define

an

alias.

v

Click

the

connection

factory

name

at

the

top

of

the

J2C

Authentication

Data

Entries

page

to

return

to

the

connection

factory

page.

v

Select

the

alias.

Data

type

Pick-list

Mapping-Configuration

Alias:

Allows

users

to

select

from

the

Security

>

JAAS

Configuration

>

Application

Logins

Configuration

list.

The

DefaultPrincipalMapping

JAAS

configuration

maps

the

authentication

alias

to

the

userid

and

password.

You

may

define

and

use

other

mapping

configurations.

Data

type

Pick-list

Connection

factory

JNDI

name

tips

Distributed

computing

environments

often

employ

naming

and

directory

services

to

obtain

shared

components

and

resources.

Naming

and

directory

services

associate

names

with

locations,

services,

information,

and

resources.

164

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Naming

services

provide

name-to-object

mappings.

Directory

services

provide

information

on

objects

and

the

search

tools

required

to

locate

those

objects.

There

are

many

naming

and

directory

service

implementations,

and

the

interfaces

to

them

vary.

Java

Naming

and

Directory

Interface

(JNDI)

provides

a

common

interface

that

is

used

to

access

the

various

naming

and

directory

services.

After

you

have

set

this

value,

saved

it,

and

restarted

the

server,

you

should

be

able

to

see

this

string

when

you

run

dumpnamespace.

For

WebSphere

Application

Server

specifically,

when

you

create

a

data

source

the

default

JNDI

name

is

set

to

jdbc/data_source_name.

When

you

create

a

connection

factory,

its

default

name

is

eis/j2c_connection_factory_name.

You

can,

of

course,

override

these

values

by

specifying

your

own.

In

addition,

if

you

click

the

checkbox

Use

this

data

source

for

container

managed

persistence

(CMP)

when

you

create

the

data

source,

another

reference

is

created

with

the

name

of

eis/jndi_name_of_datasource_CMP.

For

example,

if

a

data

source

has

a

JNDI

name

of

jdbc/myDatasource,

the

CMP

JNDI

name

is

eis/jdbc/myDatasource_CMP.

This

name

is

used

internally

by

CMP

and

is

provided

simply

for

informational

purposes.

When

creating

a

connection

factory

or

data

source,

a

JNDI

name

is

given

by

which

the

connection

factory

or

data

source

can

be

looked

up

by

a

component.

Generally

an

″indirect″

name

with

the

java:comp/env

prefix

should

be

used.

This

makes

any

resource-reference

data

associated

with

the

application

available

to

the

connection

management

runtime,

to

better

manage

resources

based

on

the

res-auth,

res-isolation-level,

res-sharing-scope,

and

res-resolution-control

settings.

While

the

use

of

a

direct

JNDI

name

is

supported,

such

use

results

in

default

values

of

these

resource-ref

data.

You

will

see

an

informational

message

logged

such

as

this:

J2CA0122I:

Resource

reference

abc/myCF

could

not

be

located,

so

default

values

of

the

following

are

used:

[Resource-ref

settings]

res-auth:

1

(APPLICATION)

res-isolation-level:

0

(TRANSACTION_NONE)

res-sharing-scope:

true

(SHAREABLE)

res-resolution-control:

999

(undefined)

Recreating

database

tables

from

the

exported

table

data

definition

language

When

an

EAR

file

deploys

the

target

database

is

selected.

Then

an

appropriate

Table.ddl

file

is

created

that

contains

the

SQL

statements

to

create

the

table

for

the

bean.

To

create

your

table,

using

the

Table.ddl

file

for

DB2:

1.

The

container-managed

bean

(CMP)

enterprise

bean

JAR

file

has

a

Table.ddl

file

that

the

Assembly

Toolkit

(ATK)

generates.

Extract

the

Table.ddl

file

to

a

working

directory

such

as

C:\temp.

2.

To

create

your

tables

using

SPUFI,

extract

the

Table.ddl

file

located

in

your

EJB

JAR,

to

a

temporary

directory

on

your

work

station.

3.

Transfer

this

Table.ddl

file

to

a

data

set

on

your

z/OS

system.

4.

Specify

the

data

set

as

the

input

data

set

to

SPUFI.

Chapter

2.

Accessing

data

from

applications

165

Security

of

lookups

with

component

managed

authentication

Only

the

J2EE

application

client

can

access

Java

2

Connector

(J2C)

connection

factories,

datasources,

or

JMS

queues.

WebSphere

Application

Server

does

not

support

accessing

these

resources

from

other

external

clients.

For

instructions

on

how

to

access

these

resources

through

the

J2EE

Application

client,

see

Data

sources

for

application

clients.

Any

client

running

in

the

WebSphere

Application

Server

process

(such

as

a

Servlet

or

an

enterprise

bean)

within

the

same

cell

that

can

look

up

a

resource

in

the

JNDI

namespace

can

obtain

connections

without

providing

authentication

data.

It

is

important

to

note

that

J2C

authentication

alias

is

per

cell.

An

enterprise

bean

or

Servlet

in

one

application

server

cannot

look

up

a

resource

in

another

server

process

which

is

in

a

different

cell,

because

the

alias

would

not

be

resolved.

Disabling

lookup

security

By

default,

all

lookups

are

secure

as

described

in

the

topic

Security

of

lookups

with

component

managed

authentication.

Although

it

is

not

recommended,

it

is

possible

to

turn

off

the

secure

mode

for

a

particular

datasource

or

connection

factory.

Edit

%WAS_HOME%\properties\j2c.properties

(or

$WAS_HOME/properties/j2c.properties

on

UNIX

or

z/OS

platforms).

Change

this:

<!--

The

security-properties

are

in

a

comment

block.

Uncomment

to

use

-->

<!--

<security-properties

connectionFactoryJNDIName="myDataSource">

<secureMode>false</secureMode>

</security-properties>

-->

to

this,

for

example:

<!--

The

security-properties

are

in

a

comment

block.

Uncomment

to

use

-->

<security-properties

connectionFactoryJNDIName="myDataSource">

<secureMode>false</secureMode>

</security-properties>

Where

″myDataSource″

is

the

JNDI

name

of

the

datasource

or

connection

factory

you

want

to

run

unsecure.

Configuring

data

access

for

application

clients

Configuring

data

access

for

application

clients

involves

specifying

the

resource

reference

and

associated

database

information

required

for

data

access.

This

specification

is

done

as

part

of

the

assembly

and

deployment

steps

for

the

application

client.

There

are

two

essential

tools

needed

to

configure

data

sources

used

by

J2EE

Application

Clients:

the

Assembly

Toolkit

for

defining

the

resource

reference

in

the

deployment

descriptor,

and

the

Application

Client

Resource

Configuration

Tool

(ACRCT)

for

defining

the

connection

to

the

database

in

the

client

deployment

environment.

166

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

http://publib.boulder.ibm.com/infocenter/wasinfo/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/ucli_datasor.html

Data

access

from

an

application

client

uses

the

JDBC

drive

connection

functions

directly

from

the

client

side.

It

does

not

take

advantage

of

the

additional

pooling

support

available

in

the

WebSphere

Application

Server

run

time.

Configuring

data

access

for

an

application

client

does

not

require

configuration

of

a

JDBC

provider

and

data

source

on

the

WebSphere

Application

Server

server

machine.

If

you

want

to

take

advantage

of

the

pooling

and

additional

database

functions

provided

by

WebSphere

Application

Server,

it

is

recommended

that

your

client

application

utilize

an

enterprise

bean

running

on

the

server

side

to

perform

data

access.

Defining

an

application

client

resource

reference

in

the

Assembly

Toolkit

1.

Assemble

your

application

client

module

as

described

in

″Assembling

application

clients.″

2.

Create

a

new

resource

reference:

a.

In

a

J2EE

Hierarchy

view,

right-click

your

application

client

module

and

click

Open

With

>

Deployment

Descriptor

Editor.

b.

On

the

References

tab,

click

Add

>

Resource

Reference

>

Next.

c.

On

the

Add

Resource

Reference

page,

enter

the

Name

of

this

resource

reference.

The

WebSphere

Application

client

run

time

uses

this

name

for

two

purposes:

to

bind

the

object

into

the

java:comp/env

portion

of

the

JNDI

namespace,

and

to

find

client

specific

configuration

information.

If

the

code

for

the

application

client

performs

a

lookup

for

java:comp/env/jdbc/myDB,

the

name

of

the

resource

reference

should

be

jdbc/myDB.

d.

For

Type,

select

javax.sql.DataSource

for

JDBC

connections.

e.

For

Authentication,

select

Application

if

your

client

application

intends

to

provide

authentication

information.

If

the

WebSphere

Application

Client

run

time

provides

the

authentication

information

(as

configured

by

the

Application

Client

Resource

Configuration

tool),

select

Container.

f.

Ignore

the

Sharing

scope

setting;

it

is

unused

in

an

application

client

resource

reference.

All

WebSphere

Application

Client

resources

are

currently

unsharable.

g.

Close

the

deployment

descriptor

and

save

your

changes.

The

JNDI

name

field

appears

under

WebSphere

Bindings

after

your

add

the

reference.

Client

configuration

with

the

ACRCT

There

are

two

client

resources

for

you

to

configure

in

the

Application

Client

Resource

Configuration

Tool

(ACRCT)

to

enable

data

access

from

an

application

client:

a

data

source

provider

and

a

data

source.

Notes

Note:

The

following

WebSphere

objects,

which

can

be

bound

into

the

server

namespace,

are

not

supported

on

the

client:

v

Java

2

Connector

(J2C)

objects

v

Connection

manager

objects

The

WebSphere

Application

Server

Client

does

not

provide

client

database

drivers.

If

your

client

application

uses

a

database

directly,

rather

than

using

an

enterprise

bean,

you

must

provide

the

database

drivers

on

the

client

Chapter

2.

Accessing

data

from

applications

167

machine.

This

action

can

involve

contacting

your

database

vendor

to

acquire

client

database

driver

code

and

licenses.

Instead

of

accessing

the

database

directly,

it

is

recommended

that

your

client

application

use

an

enterprise

bean.

Accessing

a

database

through

an

enterprise

bean

eliminates

the

need

to

have

database

drivers

on

the

client

machine

because

the

database

access

is

handled

by

the

enterprise

bean

running

on

the

WebSphere

Application

Server.

Enterprise

beans

can

also

take

advantage

of

the

additional

database

functions

provided

by

the

WebSphere

Application

Server

run

time.

1.

Configure

a

new

data

source

provider

as

described

in

Configuring

new

data

source

providers.

This

provider

describes

the

JDBC

database

implementation

for

your

client

application.

2.

Enter

the

following

information

on

the

General

Tab:

a.

A

name

for

this

data

source

provider.

b.

A

description

(this

is

optional).

c.

The

classpath

to

the

data

source

provider

implementation

classes

or

JAR

files.

This

is

optional

if

the

implementation

classes

or

JAR

files

are

already

in

the

classpath

configuration

of

the

client.

d.

The

name

of

the

implementation

class.

For

example,

for

DB2

this

value

is

COM.ibm.db2.jdbc.DB2DataSource.

Remember

this

class

must

implement

the

javax.sql.DataSource

class.

The

ACRCT

does

not

verify

this

class

and

you

receive

an

error

when

you

run

your

client

application

if

the

class

does

not

implement

javax.sql.DataSource.

Use

the

Custom

Tab

to

configure

non-standard

properties

of

the

data

source

provider.

This

panel

enables

you

to

enter

property-value

pairs.

During

run

time

the

implementation

classname

is

created

and

any

custom

properties

added

on

this

panel

are

set

on

the

newly

created

data

source

object

using

reflection.

Any

properties

configured

on

this

panel

must

have

an

appropriate

set

method

on

the

data

source

class.

For

example,

assume

there

is

a

property

called

use2Phase

and

its

value

should

be

1.

On

the

custom

panel

you

enter

the

value

use2Phase

into

the

name

column

and

the

value

1

into

the

value

column.

The

WebSphere

Application

Client

run

time

then

uses

reflection

to

find

a

property

on

the

data

source

class

called,

typically

setUse2Phase

and

call

that

method

passing

the

value

of

1.

See

your

database

product

documentation

for

valid

properties

on

your

data

source

implementation.

3.

Click

OK.

4.

Configure

a

new

data

source

as

described

in

Configuring

new

data

sources

for

application

clients.

This

describes

the

client

properties

of

the

database

your

client

application

uses.

5.

Enter

the

following

information

on

the

General

Tab:

a.

A

Name.

This

field

is

required

and

identifies

a

name

for

the

Application

Client

Resource

Configuration

Tool

to

use.

This

name

is

not

used

by

your

client

application

program.

b.

A

description

(this

field

is

optional).

c.

The

JNDI

name.

This

field

is

required

and

must

match

the

value

entered

in

the

Name

field

on

the

Add

Resource

Reference

page

of

the

Assembly

Toolkit.

In

the

example

above,

set

this

value

to

jdbc/myDB.

d.

The

Database

Name

(this

field

is

optional).

e.

Your

userid

in

the

User

field.

This

field

is

optional.

f.

Your

password

in

the

Password

field.

This

password

does

not

display.

This

field

is

optional.

168

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

g.

Your

password

again

to

confirm

in

the

Re-Enter

password

field.

Note:

The

User

and

Password

fields

are

only

used

when

the

Authentication

field

on

the

Add

Resource

Reference

page

of

the

Assembly

Toolkit

is

set

to

Container.

Configuring

Cloudscape

Version

5.1

Note:

Datasources

defined

under

the

DB2

for

z/OS

Local

JDBC

Provider

(RRS),

must

not

be

accessed

from

within

the

same

JVM

as

datasources

defined

under

any

of

the

JDBC

providers

using

the

DB2

(version

8)

Universal

JDBC

Driver.

This

means

that

the

datasources

must

not

be

used

from

within

the

same

server,

and

that

similar

considerations

must

be

taken

for

client

datasource

usage.

In

particular,

datasources

defined

under

the

Cloudscape

(5.1)

Network

Server

Using

Universal

JDBC

Driver

Provider

must

not

be

used

from

the

same

server

as

datasources

defined

under

the

DB2

for

z/OS

Local

JDBC

Provider

(RRS).

The

reason

for

this

restriction

is

that

the

DB2

Universal

JDBC

Driver

uses

the

same

package

and

class

names

(com.ibm.db2.jcc.DB2ConnectionPoolDataSource)

as

the

DB2

for

z/OS

Local

JDBC

Provider

(RRS).

To

understand

this

design,

consider

that

the

DB2

Universal

JDBC

Driver

is

the

DB2

V8-level

replacement

for

the

DB2

V7-level

JDBC

driver

used

by

the

DB2

for

z/OS

Local

JDBC

Provider

(RRS).

Cloudscape

Version

5.1

provides

the

following

two

separate

frameworks

for

running

Cloudscape

with

WebSphere

Application

Server:

v

Embedded:

This

framework

is

the

same

as

the

one

for

Cloudscape

Version

5.0.

To

use

this

framework,

define

a

Cloudscape

JDBC

provider.

See

the

Cloudscape

section

in

the

minimum

required

settings

article

for

more

information.

You

must

use

the

embedded

framework

if

you

are

running

XA.

Cloudscape

does

not

support

XA

on

Network

Server.

v

Network

Server:

This

framework

is

a

new

feature

in

Cloudscape

Version

5.1,

and

removes

these

limitations

that

existed

in

earlier

versions

of

Cloudscape:

–

inability

to

access

a

remote

Cloudscape

instance

–

only

one

JVM

can

boot

up

the

same

database

instance
The

following

steps

describe

how

to

configure

and

run

the

Network

Server

framework.
1.

Start

the

Network

Server

on

the

machine

that

hosts

the

database

instance.

To

start

the

Network

Server,

run

the

startNetworkServer.bat

file,

which

is

located

in

the

WAS_HOME/cloudscape51/bin/networkserver

directory.

On

UNIX

platforms,

the

file

is

startNetwokServer.sh.

2.

Update

the

db2j.properties

file,

which

is

located

in

the

WAS_HOME/cloudscape

directory,

if

necessary.

Cloudscape

should

work

without

any

modifications

to

this

file.

Use

the

entries

in

the

db2j.properties

file

to

turn

on

trace,

change

the

port

number

on

which

Network

Server

listens,

and

enable

other

functions

of

the

Network

Server

framework.

The

default

port

number

on

which

the

Network

Server

listens

is

port

1527.

For

more

information

on

this

file,

see

the

Cloudscape

documentation

at

www.ibm.com/software/data/cloudscape/pubs/collateral.html.

Chapter

2.

Accessing

data

from

applications

169

http://www.ibm.com/software/data/cloudscape/pubs/collateral.html

3.

Define

a

Cloudscape

Network

Server

using

Universal

JDBC

driver

to

connect

Cloudscape

Version

5.1

with

WebSphere

Application

Server

using

the

Network

Server

framework.

4.

Stop

the

Network

Server

by

invoking

the

stopNetworkServer.bat

file.

You

can

find

this

file

in

the

WAS_HOME/cloudscape/bin/networkserver

directory.

On

UNIX

platforms,

the

file

is

stopNetworkServer.sh.

5.

Review

additional

tools

available

in

the

Network

Server

framework.

Find

these

tools

in

the

WAS_HOME/cloudscape/bin/networkserver

directory.

These

tools

are:

v

sysinfo

v

cview

v

ij

v

dropSYSIBM

Use

this

tool

to

drop

the

SYSIBM

schema

and

its

contents.
6.

Create

a

SYSIBM

schema.

If

you

do

not

create

the

SYSIBM

schema,

you

cannot

see

the

datatypes

when

you

create

tables

using

the

cview

graphical

user

interface.

The

db2j.drda.loadSYSIBM

property

in

the

db2j.properties

file

controls

whether

the

schema

is

created

on

the

first

connection

to

the

database.

The

db2j.drda.loadSYSIBM

property

default

value

is

true.

Note:

You

cannot

run

a

new

version

and

an

older

version

of

Cloudscape

in

the

same

WebSphere

Application

Server

environment.

For

datasources

created

under

the

old

version

of

Cloudscape,

you

must

change

the

classpath

in

these

datasources

to

point

to

the

new

version

of

Cloudscape;

otherwise,

the

jar

files

from

both

versions

of

Cloudscape

are

loaded

in

the

same

environment.

This

might

result

in

undesirable

consequences

or

exception

situations.

Note:

When

you

run

ij,

surround

the

dbname

by

double

quotation

marks

(″

″)

if

it

includes

the

full

path

name;

for

example:

ij>

connect

’″c:temp;create=true″’

This

is

’

″

″

’

without

spaces.

Choosing

which

Cloudscape

version

to

use

Occasionally,

WebSphere

Application

Server

offers

updates

to

its

software

in

the

form

of

fixpacks.

Some

of

these

fixpacks

might

include

an

updated

version

of

Cloudscape.

You

have

the

option

to

continue

using

your

current

level

of

Cloudscape

if

you

want

to.

(It

is

not,

however,

recommended

that

you

return

to

a

lower

level

of

Cloudscape

if

a

fixpack

has

overwritten

your

current

one.)

About

the

Cloudscape

versions

included

with

WebSphere

Application

Server

5.0.2

and

5.1

Cloudscape

5.0

database

is

shipped

with

Websphere

Application

Server

5.0.2.

It

is

a

required

part

of

Websphere

Application

Server

and

is

used

for

samples,

the

default

application

and

is

required

for

installation

of

cumulative

fixes.

With

fixpack

2

(5.0.2),

Cloudscape

5.0

and

5.1

were

shipped.

Cloudscape

5.1

is

a

fully

functionally

version

of

the

Cloudscape

database

and

is

supported

in

a

production

environment

with

the

fixpack

2.

Cloudscape

is

installed

in

its

own

subdirectory.

You

should

not

remove

these

directories,

even

if

you

are

not

planning

on

directly

using

Cloudscape.

About

your

migration

options

v

If

you

choose

to

upgrade

to

a

version

of

Cloudscape

later

than

version

5.0,

be

aware

that

after

migration

(using

upgrade=true

connectionAttributes)

you

can

no

longer

run

your

databases

with

Cloudscape

5.0.

170

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

v

5.1 +

If

you

want

to

revert

from

Cloudscape

version

5.1.x

to

a

version

5.0.x,

you

can

issue

the

java

-jar

cloudscapeUninstall.jar

command

to

uninstall

Cloudscape

version

5.1.x.

The

cloudscapeUninstall.jar

file

is

in

the

install_root/cloudscape51/Uninstaller

directory.

v

If

you

want

to

revert

from

either

Cloudscape

version

5.0

or

5.1

to

an

earlier

version,

however,

use

the

following

Steps

for

this

task

as

your

guide.

Note:

If

you

cannot

locate

the

oldVersions

directory

mentioned

in

the

following

steps,

there

is

probably

no

old

version

installed

for

that

release.

1.

For

fixes

applied

to

WebSphere

Application

Server

Version

5.0.2

a.

Open

the

WAS_HOME/cloudscapeCommon/oldVersions

directory

and

pick

the

version

you

want.

b.

Unjar

the

JAR

file

that

you

select

in

step

1.

Put

it

into

a

temporary

directory,

for

example

/tmp.

Now

you

have

two

options:

1)

If

Cloudscape

5.1

is

already

installed:

a)

replace

the

Cloudscape

jar

files

(db2j.jar

and

db2jtools.jar)

in

WAS_HOME/lib

with

those

in

tmp/lib

b)

replace

the

Cloudscape

jar

files

in

WAS_HOME/cloudscape51/lib

with

/tmp/lib.
2)

If

Cloudscape

5.1

is

not

already

installed:

a)

replace

the

following

in

WAS_HOME/cloudscape51

with

those

in

/tmp/z

(where

z

applies

only

to

zOS)

For

non-zOS,

use:

v

WAS_cloudscape51.jar

2.

Complete

this

additional

step

for

fixes

applied

to

WebSphere

Application

Server

Version

5.1

and

beyond:

a.

Open

the

WAS_HOME/cloudscape/oldVersions

directory

and

choose

the

version

that

you

want

b.

Unjar

the

jar

file

that

you

selected

in

step

1.

This

gives

you

a

lib

directory.

c.

Replace

the

jar

file

in

the

WAS_HOME/cloudscape51/lib

with

the

unjared

one.

Cloudscape

Version

5.1

post

installation

instructions

After

installing

Cloudscape

Version

5.1,

you

must

complete

the

following

steps

before

you

can

access

the

database.

1.

Upgrade

or

migrate

any

existing

database

instances.

a.

Backup

an

existing

database.

You

must

complete

a

backup

in

case

you

have

to

access

the

previous

version

of

Cloudscape.

After

you

migrate

a

database,

you

cannot

access

your

old

database

unless

you

perform

a

backup.

b.

Migrate

an

existing

database

by

doing

the

following:

v

Set

the

connectionAttributes

custom

property

to

upgrade=true.

The

data

source

is

located

in

the

WebSphere

Application

Server

administrative

console

under

the

JDBC

providers.

v

If

you

are

using

cview,

located

in

the

WAS_HOME/cloudscape51/bin/embedded

directory,

click

yes

when

you

see

the

upgrade

database

prompt.

Note:

Ensure

you

migrate

defaultDB,

which

is

located

in

the

WAS_HOME/bin/DefaultDB

directory.

Chapter

2.

Accessing

data

from

applications

171

2.

Set

or

change

the

classpath

definitions

in

any

existing

JDBC

providers,

which

are

defined

to

use

Cloudscape.

Cloudscape

jar

files

will

not

load

when

WebSphere

Application

Server

is

active.

Use

the

WebSphere

Application

Server

environment

variable

${CLOUDSCAPE51_JDBC_DRIVER_PATH}\db2j.jar

to

point

to

the

new

version

of

Cloudscape.

The

CLOUDSCAPE51_JDBC_DRIVER_PATH

environment

variable

is

defined

in

WebSphere

Application

Server

with

a

value

of

WAS_HOME/cloudscape51/lib.

3.

If

the

application

server

is

running

Cloudscape

as

a

persistent

store

for

UDDI

in

previous

versions,

additional

steps

are

necessary.

The

server

SystemOut.log

might

issue

this

message:

The

data

source

class

name

com.ibm.db2j.jdbc.db2jConnectionPoolDataSource

could

not

be

found.

This

is

because

the

Cloudscape

.jar

file

has

moved

to

from

its

location

in

version

5.x

to

a

new

location

in

version

5.1.

To

correct

this

situation,

do

the

following:

a.

Upgrade

the

database

to

Cloudscape

5.1.

b.

Rerun

the

install

script,

or

edit

the

classpath

field

in

the

datasource.

Vendor-specific

data

sources

minimum

required

settings

The

following

list

contains

descriptions

for

every

JDBC

provider

supported

in

WebSphere

Application

Server

Versions

5.0,

5.0.1,

and

5.0.2.

It

also

shows

the

supported

data

source

classes

and

their

required

properties.

Specific

fields

are

designated

for

the

user

and

password

properties.

Inclusion

of

a

property

in

the

list

does

not

imply

that

you

should

add

it

to

the

data

source

properties

list.

Rather,

inclusion

in

the

list

means

that

a

value

is

typically

required

for

that

field.

Use

this

list

to

find

the

provider

information:

v

DB2

v

DB2

UDB

for

iSeries

v

DB2

for

z/OS

v

Cloudscape

v

Informix

v

Sybase

v

Oracle

v

MS

SQL

Server

DB2

1.

DB2

Universal

JDBC

Driver

Provider

The

DB2

Universal

JDBC

Driver

is

an

architecture-neutral

JDBC

driver

for

distributed

and

local

DB2

access.

Because

the

Universal

Driver

architecture

is

independent

of

any

particular

JDBC

driver

connectivity

or

target

platform,

it

allows

both

Java

connectivity

(Type

4)

or

Java

Native

Interface

(JNI)

based

connectivity

(Type

2)

in

a

single

driver

instance

to

DB2.

Starting

with

WebSphere

Application

Server

Version

5.0.2,

the

product

now

supports

both

Type

2

and

Type

4

JDBC

drivers.

To

use

the

Type

4

driver,

you

must

install

DB2

Version

8.1

or

a

later

version.

To

use

the

Type

2

driver,

you

must

install

DB2

Version

8.1

Fix

Pack

2

or

a

later

version.

This

driver

only

supports

one

phase

transactions.

This

JDBC

driver

allows

applications

to

use

both

JDBC

and

Structured

Query

Language

in

Java

(SQLJ)

access.

The

DB2

Universal

JDBC

Driver

Provider

supports

one

phase

data

source:

172

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

com.ibm.db2.jcc.DB2ConnectionPoolDataSource

Requires

JDBC

driver

files:

v

db2jcc.jar

After

you

install

DB2,

you

can

find

this

jar

file

in

the

DB2

java

directory.

For

Type

4

JDBC

driver

support

from

a

client

machine

where

DB2

is

not

installed,

copy

this

file

to

the

local

machine.

If

you

install

any

fixes

or

upgrades

to

DB2,

you

must

update

this

file

as

well.

You

must

also

set

the

DB2UNIVERSAL_JDBC_DRIVER_PATH

path

variable

to

point

to

the

db2jcc.jar

file.

See

the

Cloudscape

section

for

more

information

on

the

DB2UNIVERSAL_JDBC_DRIVER_PATH

path

variable.

Note:

To

find

out

the

version

of

the

universal

driver

you

are

using,

issue

this

DB2

command:

java

com.ibm.db2.jcc.DB2Jcc

-version

The

output

for

the

above

example

is:

IBM

DB2

JDBC

Universal

Driver

Architecture

1.5.xx

v

db2jcc_license_cu.jar

This

is

the

DB2

Universal

JDBC

driver

license

file

that

allows

access

to

the

DB2

Universal

database.

Use

this

jar

file

or

the

next

one

to

gain

access

to

the

database.

This

jar

file

ships

with

WebSphere

Application

Server

in

a

directory

defined

by

${UNIVERSAL_JDBC_DRIVER_PATH}environment

variable.

v

db2jcc_license_cisuz.jar

This

is

the

DB2

Universal

JDBC

driver

license

file

that

allows

access

to

the

following

databases:

–

DB2

Universal

–

DB2

for

iSeries

–

DB2

for

z/OS

–

SQLDS
The

db2jcc_license_cisuz.jar

does

not

ship

with

Websphere

Application

Server

and

should

be

located

in

the

same

directory

as

the

db2jcc.jar

file,

so

that

the

DB2UNIVERSAL_JDBC_DRIVER_PATH

points

to

both.

The

classpath

for

this

provider

is

set

as

follows:

<classpath>${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc.jar

</classpath>

<classpath>${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_license_cu.jar</classpath>

<classpath>${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_license_cisuz.jar</classpath>

Note:

The

license

jar

files

are

independent

of

each

other;

therefore,

order

does

not

matter.

Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.DB2UniversalDataStoreHelper

If

you

use

this

driver

provider

to

connect

to

DB2

for

z/OS,

you

must

change

the

data

store

helper

class

to:

com.ibm.websphere.rsadapter.DB2390DataStoreHelper

Requires

a

valid

authentication

alias.

Requires

properties:

v

databaseName

This

is

an

actual

database

name

if

the

driverType

is

set

to

4,

or

a

locally

cataloged

database

name

if

the

driverType

is

set

to

2.

v

driverType

The

JDBC

connectivity

type

of

a

data

source.

There

are

two

permitted

values:

2

and

4.

If

you

want

to

use

Universal

JDBC

Type

2

driver,

set

this

value

to

2.

If

you

want

to

use

Universal

JDBC

Type

4

driver,

set

this

value

to

4.

Chapter

2.

Accessing

data

from

applications

173

v

serverName

The

TCP/IP

address

or

host

name

for

the

Distributed

Relational

Database

Architecture

(DRDA)

server.

Provide

a

value

for

this

property

only

if

your

driverType

is

set

to

4.

This

property

is

not

required

if

your

driverType

is

set

to

2.

v

portNumber

The

TCP/IP

port

number

where

the

DRDA

server

resides.

Provide

a

value

for

this

property

only

if

your

driverType

is

set

to

4.

This

property

is

not

required

if

your

driverType

is

set

to

2.
2.

DB2

Universal

JDBC

Driver

Provider

(XA)

The

DB2

Universal

JDBC

Driver

(XA)

is

an

architecture-neutral

JDBC

driver

for

distributed

and

local

DB2

access.

In

WebSphere

Application

Server

Version

5.0.2,

this

driver

only

supports

Java

Native

Interface

(JNI)

based

connectivity

(Type

2)

in

a

single

driver

instance

to

DB2.

To

use

this

driver,

you

must

install

DB2

Version

8.1

Fix

Pack

2

or

a

later

version.

This

driver

supports

two

phase

transactions

and

the

WebSphere

Application

Server

Version

5.0

data

source.

This

driver

allows

applications

to

use

both

JDBC

and

SQLJ

access.

The

DB2

Universal

JDBC

Driver

Provider

supports

the

two

phase

data

source:

com.ibm.db2.jcc.DB2XADataSource

Requires

JDBC

driver

files:

v

db2jcc.jar

After

you

install

DB2,

you

can

find

this

.jar

file

in

the

DB2

java

directory.

For

Type

4

JDBC

driver

support

from

a

client

machine

where

DB2

is

not

installed,

copy

this

file

to

the

local

machine.

If

you

install

any

fixes

or

upgrades

to

DB2,

you

must

update

this

file

as

well.

You

must

also

set

the

DB2UNIVERSAL_JDBC_DRIVER_PATH

environment

variable

to

point

to

the

db2jcc.jar

file.

See

the

Cloudscape

section

for

more

information

on

the

DB2UNIVERSAL_JDBC_DRIVER_PATH

environment

variable.

Note:

To

find

the

level

of

universal

driver

you

are

using,

issue

the

following

DB2

command:

java

com.ibm.db2.jcc.DB2Jcc

-version

example

output

of

the

above:

IBM

DB2

JDBC

Universal

Driver

Architecture

1.5.xx

v

db2jcc_license_cu.jar

This

is

the

DB2

Universal

JDBC

driver

license

file

that

allows

access

to

the

DB2

Universal

database.

Use

this

jar

file

or

the

next

one

to

gain

access

to

the

database.

This

jar

file

ships

with

WebSphere

Application

Server

in

the

WAS_HOME/universalDriver/lib

directory.

v

db2jcc_license_cisuz.jar

This

is

the

DB2

Universal

JDBC

driver

license

file

that

allows

access

to

the

following

databases:

–

DB2

Universal

–

DB2

for

iSeries

–

DB2

for

z/OS

–

SQLDS
You

must

use

the

right

license

jar

file

to

access

a

specific

database

backend.

Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.DB2UniversalDataStoreHelper

If

you

use

this

driver

provider

to

connect

to

DB2

for

z/OS,

you

must

change

the

data

store

helper

class

to:

com.ibm.websphere.rsadapter.DB2390DataStoreHelper

Requires

a

valid

authentication

alias.

Requires

properties:

v

databaseName

This

is

a

locally

cataloged

database

name.

v

driverType

This

is

the

JDBC

connectivity

type

of

a

data

source.

The

only

permitted

value

is

2.

174

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

3.

DB2

legacy

CLI-based

Type

2

JDBC

Driver

The

DB2

legacy

CLI-based

Type

2

JDBC

Driver

Provider

is

built

on

top

of

DB2

CLI

(Call

Level

Interface).

It

uses

the

DB2

CLI

interface

to

communicate

with

DB2

UDB

servers.

DB2

legacy

CLI-based

Type

2

JDBC

Driver

supports

one

phase

data

source:

COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource

Requires

JDBC

driver

files:

db2java.zip

(Note:

If

you

run

SQLJ

in

DB2

Version

8,

db2jcc.jar

is

also

required.)

Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.DB2DataStoreHelper

Does

not

require

a

valid

authentication

alias.

Requires

properties:

v

databaseName

The

name

of

the

database

from

which

the

data

source

obtains

connections.

Example:

Sample.
4.

DB2

legacy

CLI-based

Type

2

JDBC

Driver

(XA)

The

DB2

legacy

CLI-based

Type

2

JDBC

Driver

(XA)

is

built

on

top

of

DB2

CLI

(Call

Level

Interface).

It

uses

the

DB2

CLI

interface

to

communicate

with

DB2

UDB

servers.

DB2

legacy

CLI-based

Type

2

JDBC

Driver

(XA)

supports

two

phase

data

source:

COM.ibm.db2.jdbc.DB2XADataSource

Requires

JDBC

driver

files:

db2java.zip

(Note:

If

you

run

SQLJ

in

DB2

Version

8,

db2jcc.jar

is

also

required.)

Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.DB2DataStoreHelper

Does

not

require

a

valid

authentication

alias.

Requires

properties:

v

databaseName

The

name

of

the

database

from

which

the

data

source

obtains

connections.

Example:

Sample.
5.

DB2

JDBC

Provider

--

Deprecated

This

JDBC

provider

is

the

same

as

the

DB2

Legacy

CLI-based

Type

2

JDBC

Driver.

This

JDBC

driver

is

deprecated.

Use

the

DB2

Legacy

CLI-based

Type

2

JDBC

Driver

instead

of

this

one.

DB2

JDBC

Provider

supports

one

phase

data

source:

COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource

Requires

JDBC

driver

files:

db2java.zip

(Note:

If

you

run

SQLJ

in

DB2

Version

8,

db2jcc.jar

is

also

required.)

Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.DB2DataStoreHelper

Does

not

require

a

valid

authentication

alias.

Requires

properties:

v

databaseName

The

name

of

the

database

from

which

the

data

source

obtains

connections.

Example:

Sample.
6.

DB2

JDBC

Provider

(XA)

--

Deprecated

This

JDBC

provider

is

the

same

as

the

DB2

Legacy

CLI-based

Type

2

JDBC

Driver

(XA).

This

JDBC

driver

is

deprecated.

Use

the

DB2

Legacy

CLI-based

Type

2

JDBC

Driver

(XA)

instead

of

this

one.

DB2

JDBC

Provider

(XA)

supports

two

phase

data

source:

COM.ibm.db2.jdbc.DB2XADataSource

Chapter

2.

Accessing

data

from

applications

175

Requires

JDBC

driver

files:

db2java.zip

(Note:

If

you

run

SQLJ

in

DB2

Version

8,

db2jcc.jar

is

also

required.)

Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.DB2DataStoreHelper

Does

not

require

a

valid

authentication

alias.

Requires

properties:

v

databaseName

The

name

of

the

database

from

which

the

data

source

obtains

connections.

Example:

Sample.

For

more

information

on

DB2,

visit

the

DB2

Web

site

at:

http://www.ibm.com/software/data/db2/.

DB2

UDB

for

iSeries

1.

DB2

UDB

for

iSeries

(Native

-

Version

5

Release

2

and

later)

The

iSeries

Developer

Kit

for

Java

contains

this

Type

2

JDBC

driver

that

is

built

on

top

of

the

iSeries

DB2

Call

Level

Interface

(CLI)

native

libraries.

Only

use

this

driver

for

local

DB2

connections

on

iSeries.

It

is

not

recommended

for

remote

access.

Use

this

driver

for

iSeries

V5R2,

or

later

releases.

DB2

UDB

for

iSeries

(Native

V5R2

and

later)

supports

one

phase

data

source:

com.ibm.db2.jdbc.app.UDBConnectionPoolDataSource

Requires

JDBC

driver

files:

db2_classes.jar

Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

Does

not

require

an

authentication

alias.

Requires

properties:

v

databaseName

The

name

of

the

relational

database

to

which

the

data

source

connections

are

established.

This

name

must

appear

in

the

iSeries

Relational

Database

Directory.

The

default

is

*LOCAL.
2.

DB2

UDB

for

iSeries

(Native

XA

-

Version

5

Release

2

and

later)

The

iSeries

Developer

Kit

for

Java

contains

this

XA-compliant

Type

2

JDBC

driver

built

on

top

of

the

iSeries

DB2

Call

Level

Interface

(CLI)

native

libraries.

Only

use

this

driver

for

local

DB2

connections

on

iSeries.

It

is

not

recommended

for

remote

access.

Use

this

driver

for

iSeries

V5R2

or

later

releases.

DB2

UDB

for

iSeries

(Native

XA

-

V5R2

and

later)

supports

two

phase

data

source:

com.ibm.db2.jdbc.app.UDBXADataSource

Requires

JDBC

driver

files:

db2_classes.jar

Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

Does

not

require

an

authentication

alias.

Requires

properties:

v

databaseName

The

name

of

the

relational

database

to

which

the

data

source

connections

are

established.

This

name

must

appear

in

the

iSeries

Relational

Database

Directory.

The

default

is

*LOCAL.
3.

DB2

UDB

for

iSeries

(Native

-

Version

5

Release

1

and

earlier)

The

iSeries

Developer

Kit

for

Java

contains

this

Type

2

JDBC

driver

that

is

built

on

top

of

the

iSeries

DB2

Call

Level

Interface

(CLI)

native

libraries.

Only

use

this

driver

for

local

DB2

connections

on

iSeries.

It

is

not

recommended

for

remote

access.

Use

this

driver

for

iSeries

V5R1,

or

earlier

releases.

DB2

UDB

for

iSeries

(Native

V5R1

and

earlier)

supports

one

phase

data

source:

176

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

http://www-3.ibm.com/software/data/db2/

com.ibm.db2.jdbc.app.DB2StdConnectionPoolDataSource

Requires

JDBC

driver

files:

db2_classes.jar

Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

Does

not

require

an

authentication

alias.

Requires

properties:

v

databaseName

The

name

of

the

relational

database

to

which

the

data

source

connections

are

established.

This

name

must

appear

in

the

iSeries

Relational

Database

Directory.

The

default

is

*LOCAL.
The

V5R1

and

earlier

JDBC

drivers,

although

still

supported,

will

receive

no

further

enhancements.

We

recommend

that

you

replace

them

with

the

V5R2

JDBC

driver

providers.

4.

DB2

UDB

for

iSeries

(Native

XA

-

Version

5

Release

1

and

earlier)

The

iSeries

Developer

Kit

for

Java

contains

this

XA-compliant

Type

2

JDBC

driver

built

on

top

of

the

iSeries

DB2

Call

Level

Interface

(CLI)

native

libraries.

Only

use

this

driver

for

local

DB2

connections

on

iSeries.

It

is

not

recommended

for

remote

access.

Use

this

driver

for

iSeries

V5R1,

or

earlier

releases.

DB2

UDB

for

iSeries

(Native

XA

-

V5R1

and

earlier)

supports

two

phase

data

source:

com.ibm.db2.jdbc.app.DB2StdXADataSource

Requires

JDBC

driver

files:

db2_classes.jar

Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

Does

not

require

an

authentication

alias.

Requires

properties:

v

databaseName

The

name

of

the

relational

database

to

which

the

data

source

connections

are

established.

This

name

must

appear

in

the

iSeries

Relational

Database

Directory.

The

default

is

*LOCAL.
The

V5R1

and

earlier

JDBC

drivers,

although

still

supported,

will

receive

no

further

enhancements.

We

recommend

that

you

replace

them

with

the

V5R2

JDBC

driver

providers.

5.

DB2

UDB

for

iSeries

(Toolbox)

This

JDBC

driver,

also

known

as

iSeries

Toolbox

driver

for

Java,

is

provided

in

the

DB2

for

iSeries

database

server.

Use

this

driver

for

remote

DB2

connections

on

iSeries.

We

recommend

you

use

this

driver

instead

of

the

IBM

Developer

Kit

for

Java

JDBC

Driver

to

access

remote

DB2

UDB

for

iSeries

systems.

DB2

UDB

for

iSeries

(Toolbox)

supports

one

phase

data

source:

com.ibm.as400.access.AS400JDBCConnectionPoolDataSource

Requires

JDBC

driver

files:

jt400.jar

Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

Does

not

require

an

authentication

alias

if

WebSphere

Application

Server

and

DB2

UDB

for

iSeries

are

installed

in

the

same

server.

If

they

are

installed

in

different

servers,

the

user

ID

and

password

are

required.

Requires

properties:

v

serverName

The

name

of

the

server

from

which

the

data

source

obtains

connections.

Example:

myserver.mydomain.com.
6.

DB2

UDB

for

iSeries

(Toolbox

XA)

Chapter

2.

Accessing

data

from

applications

177

This

XA

compliant

JDBC

driver,

also

known

as

iSeries

Toolbox

XA

compliant

driver

for

Java,

is

provided

in

the

DB2

for

iSeries

database

server.

Use

this

driver

for

remote

DB2

connections

on

iSeries.

We

recommend

you

use

this

driver

instead

of

the

IBM

Developer

Kit

for

Java

JDBC

Driver

to

access

remote

DB2

UDB

for

iSeries

systems.

DB2

UDB

for

iSeries

(Toolbox

XA)

supports

two

phase

data

source:

com.ibm.as400.access.AS400JDBCXADataSource

Requires

JDBC

driver

files:

jt400.jar

Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

Does

not

require

an

authentication

alias

if

WebSphere

Application

Server

and

DB2

UDB

for

iSeries

are

installed

in

the

same

server.

If

they

are

installed

in

different

servers,

the

user

ID

and

password

are

required.

Requires

properties:

v

serverName

The

name

of

the

server

from

which

the

data

source

obtains

connections.

Example:

myserver.mydomain.com.

For

more

information

on

DB2

UDB

for

iSeries,

visit

the

DB2

Web

site

at:

http://www.ibm.com/software/data/db2/

DB2

for

z/OS

1.

DB2

for

z/OS

JDBC

Provider

The

DB2

for

z/OS

JDBC

Provider

provides

remote

JDBC

access

to

DB2

for

z/OS.

The

DB2

for

z/OS

JDBC

Provider

provides

remote

JDBC

access

to

DB2

on

z/OS.

This

is

the

Legacy

CLI-based

JDBC

driver.

You

cannot

use

this

driver

locally

on

DB2

z/OS.

Use

the

DB2

for

z/OS

Local

JDBC

Provider

(RRS)

on

local

z/OS

systems.

You

cannot

see

this

JDBC

Provider

on

the

JDBC

Provider

drop

down

list

in

the

administrative

console.

To

create

DB2

for

z/OS

data

sources,

use

the

DB2

Legacy

CLI-based

Type

2

JDBC

Driver

instead

of

this

one,

and

change

the

DataStoreHelper

class

to

com.ibm.websphere.rsadapter.DB2390DataStoreHelper.

DB2

for

z/OS

JDBC

provider

supports

one

phase

data

source:

COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource

Requires

JDBC

driver

files:

db2java.zip

Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.DB2390DataStoreHelper

Requires

a

valid

authentication

alias.

Requires

properties:

v

databaseName

The

name

of

the

database

from

which

the

data

source

obtains

connections.

Example:

Sample.
2.

DB2

for

z/OS

JDBC

Provider

(XA)

The

DB2

for

z/OS

JDBC

Provider

provides

remote

XA-compliant

JDBC

access

to

DB2

for

z/OS.

The

DB2

for

z/OS

JDBC

Provider

provides

remote

JDBC

access

to

DB2

on

z/OS.

This

is

the

Legacy

CLI-based

JDBC

driver.

You

cannot

use

this

driver

locally

on

DB2

z/OS.

Use

the

DB2

for

z/OS

Local

JDBC

Provider

(RRS)

on

local

z/OS

systems.

You

cannot

see

this

JDBC

Provider

on

the

JDBC

Provider

drop

down

list

in

the

administrative

console.

To

create

DB2

for

z/OS

XA

data

sources,

use

the

DB2

Legacy

CLI-based

Type

2

JDBC

Driver

(XA)

instead

of

this

one,

and

change

the

DataStoreHelper

class

to

com.ibm.websphere.rsadapter.DB2390DataStoreHelper.

DB2

for

z/OS

JDBC

(XA)

provider

supports

two

phase

data

source:

COM.ibm.db2.jdbc.DB2XADataSource

178

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

http://www-3.ibm.com/software/data/db2/

Requires

JDBC

driver

files:

db2java.zip

Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.DB2390DataStoreHelper

Requires

a

valid

authentication

alias.

Requires

properties:

v

databaseName

The

name

of

the

database

from

which

the

data

source

obtains

connections.

Example:

Sample.
3.

DB2

for

z/OS

Local

JDBC

Provider

(RRS)

The

DB2

for

z/OS

JDBC

Provider

provides

local

JDBC

access

to

DB2

for

z/OS.

The

DB2

for

z/OS

Local

JDBC

Provider

provides

local

JDBC

access

to

DB2

on

z/OS.

This

provider

uses

the

native

z/OS

Resource

Recovery

Services

(RRS)

transaction

manager

to

handle

two-phase

commit

transactions.

You

cannot

see

this

JDBC

Provider

on

the

JDBC

Provider

drop

down

list

in

the

administrative

console.

This

JDBC

Provider

is

only

used

when

accessing

local

databases

in

the

z/OS

system.

Currently

this

JDBC

Provider

is

notonly

supported

in

WebSphere

Application

Server

for

z/OS.

DB2

for

z/OS

Local

JDBC

provider

supports

two

phase

data

source:

COM.ibm.db2.jcc.DB2ConnectionPoolDataSource

Requires

JDBC

driver

files:

db2j2classes.zip

Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.DB2390LocalDataStoreHelper

Does

not

require

a

valid

authentication

alias.

Requires

properties:

v

databaseName

The

name

of

the

database

from

which

the

data

source

obtains

connections.

Example:

Sample.

For

more

information

on

DB2

for

z/OS,

visit

the

DB2

Web

site

at:

http://www.ibm.com/software/data/db2/.

Cloudscape

1.

Cloudscape

JDBC

Provider

The

Cloudscape

JDBC

Provider

provides

the

JDBC

access

to

the

Cloudscape

database.

This

Cloudscape

JDBC

driver

used

the

embedded

framework.

You

cannot

use

any

Version

4.0

data

sources

with

Cloudscape.

Cloudscape

JDBC

Provider

supports

one

phase

data

source:

com.ibm.db2j.jdbc.DB2jConnectionPoolDataSource

Requires

JDBC

driver

files:

db2j.jar.

(This

file

ships

with

WebSphere

Application

Server.

If

you

are

running

Cloudscape

Version

5.1,

you

can

find

this

file

in

the

WAS_HOME/cloudscape/lib

directory).

Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.CloudscapeDataStoreHelper

Does

not

require

a

valid

authentication

alias.

Requires

properties:

v

databaseName

The

name

of

the

database

from

which

the

data

source

obtains

connections.

Example:

Sample.
2.

Cloudscape

JDBC

Provider

(XA)

The

Cloudscape

JDBC

Provider

(XA)

provides

the

XA-compliant

JDBC

access

to

the

Cloudscape

database.

This

Cloudscape

JDBC

driver

uses

the

embedded

framework.

You

cannot

use

any

Version

4.0

data

sources

with

Cloudscape.

Cloudscape

JDBC

Provider

(XA)

supports

two

phase

data

source:

com.ibm.db2j.jdbc.DB2jXADataSource

Chapter

2.

Accessing

data

from

applications

179

http://www-3.ibm.com/software/data/db2/

Requires

JDBC

driver

files:

db2j.jar

(This

file

ships

with

WebSphere

Application

Server.

If

you

are

running

Cloudscape

Version

5.1,

you

can

find

this

file

in

the

WAS_HOME/cloudscape/lib

directory).

Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.CloudscapeDataStoreHelper

Does

not

require

a

valid

authentication

alias.

Requires

properties:

v

databaseName

The

name

of

the

database

from

which

the

data

source

obtains

connections.

Example:

Sample

or

c:\sample.
3.

Cloudscape

Network

Server

using

Universal

JDBC

driver

This

Cloudscape

driver

takes

advantage

of

the

Network

Server

support

that

the

DB2

universal

Type

4

JDBC

driver

provides.

You

cannot

use

any

Version

4.0

data

sources

with

Cloudscape.

Cloudscape

uses

the

DB2

Universal

Driver

when

using

the

Network

Server.

It

supports

one

phase

data

source:

com.ibm.db2.jcc.DB2ConnectionPoolDataSource

Requires

JDBC

driver

files:

v

db2jcc.jar

If

you

install

and

run

DB2,

you

must

use

the

db2jcc.jar

file

that

comes

with

DB2.

To

do

that,

the

classpath

in

the

JDBC

template

for

Cloudscape

network

server

is

set

to

be:

<classpath>${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc.jar</classpath>

<classpath>${UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc.jar</classpath>

<classpath>${CLOUDSCAPE_JDBC_DRIVER_PATH}/db2j.jar</classpath>

<classpath>${CLOUDSCAPE51_JDBC_DRIVER_PATH}/db2j.jar</classpath>

Note:

This

classpath

is

for

Cloudscape

5.1.

<classpath>${CLOUDSCAPE50_JDBC_DRIVER_PATH}/db2j.jar</classpath>

Note:

This

classpath

is

for

Cloudscape

5.0.

<classpath>${UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_license_cu.jar</classpath>

which

means

that

the

db2jcc.jar

from

DB2

always

takes

precedence.

Note

that

this

also

means

that

you

must

set

the

DB2

environment

variable

DB2UNIVERSAL_JDBC_DRIVER_PATH

in

WebSphere

when

you

set

up

your

DB2

datasource.

This

is

instead

of

hard

coding

the

path

of

the

db2jcc.jar

for

DB2

datasources.

v

db2jcc_license_cu.jar

This

file

is

the

DB2

Universal

JDBC

license

file

that

provides

access

to

the

Cloudscape

databases

using

the

Network

Server

framework.

Use

this

file

to

gain

access

to

the

database.

This

file

ships

with

WebSphere

and

is

located

in

${UNIVERSAL_JDBC_DRIVER_PATH}.

Note:

UNIVERSAL_JDBC_DRIVER_PATHis

a

WebSphere

environment

variable

that

is

already

defined

to

the

location

in

Websphere

Application

Server

where

the

license

jar

file

above

is

located,

and

will

only

be

used

if

the

DB2UNIVERSAL_JDBC_DRIVER_PATH

is

not

set.

DB2

users

should

ensure

that

DB2UNIVERSAL_JDBC_DRIVER_PATH

is

set

to

avoid

loading

multiple

vesions

of

the

db2jcc.jar

file.

Note:

DB2UNIVERSAL_JDBC_DRIVER_PATH

is

a

WebSphere

environment

variable

that

you

must

set

to

point

to

the

location

of

180

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

db2jcc.jar

file

(that

comes

with

DB2).

This

variable

is

set

only

if

you

create

a

db2

provider.

See

the

DB2

section

for

more

information

on

the

DB2UNIVERSAL_JDBC_DRIVER_PATH

path

variable.

Note:

Cloudscape

requires

only

db2jcc_license_c.jar;

however,

WebSphere

Application

Server

uses

db2jcc_license_cu.jar

because

this

works

for

both

DB2

UDB

and

Cloudscape.
Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.CloudscapeNetworkServerDataStoreHelper

Note:

The

administrative

console

incorrectly

lists

the

DB2UniversalDataStoreHelper

as

the

default

value

for

the

DataStoreHelper

class.

You

must

change

the

default

value

to

com.ibm.websphere.rsadapter.CloudscapeNetworkServerDataStoreHelper.

Also

change

the

custom

properties,

using

the

instructions

in

the

customer

property

section.

Requires

a

valid

authentication

alias.

Requires

properties:

v

databaseName

The

name

of

the

database

and

the

list

of

Cloudscape

attributes.

Example:

c:\sample;create=true.

v

driverType

Only

the

Type

4

driver

is

allowed.

v

serverName

The

TCP/IP

address

or

the

host

name

for

the

Distributed

Relational

Database

Architecture

(DRDA)

server.

v

portNumber

The

TCP/IP

port

number

where

the

DRDA

server

resides.

The

default

value

is

port

1527.

v

retrieveMessagesfromServerOnGetMessage

This

property

is

required

by

WebSphere

Application

Server,

not

the

database.

The

default

value

is

false.

You

must

set

the

value

of

this

property

to

true,

to

enable

text

retrieval

using

the

SQLException.getMessage()

method.
See

the

Cloudscape

setup

instructions

for

more

information

on

configuring

the

Cloudscape

Network

Server.

For

more

information

on

IBM

Cloudscape,

visit

the

Cloudscape

Web

site

at:

http://www.ibm.com/software/data/cloudscape/

Informix

1.

Informix

JDBC

Driver

The

Informix

JDBC

Driver

is

a

Type

4

JDBC

driver

that

provides

JDBC

access

to

the

Informix

database.

Informix

JDBC

Driver

supports

one

phase

data

source:

com.informix.jdbcx.IfxConnectionPoolDataSource

Requires

JDBC

driver

files:

ifxjdbc.jar

ifxjdbcx.jar

Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.InformixDataStoreHelper

Requires

a

valid

authentication

alias.

Requires

properties:

v

serverName

The

name

of

the

Informix

instance

on

the

server.

Example:

ol_myserver.

v

portNumber

The

port

on

which

the

instances

listen.

Example:

1526.

v

ifxIFXHOST

The

physical

name

of

the

database

server.

Example:

myserver.mydomain.com.

Chapter

2.

Accessing

data

from

applications

181

http://www-3.ibm.com/software/data/cloudscape/

v

databaseName

The

name

of

the

database

from

which

the

data

source

obtains

connections.

Example:

Sample.

v

informixLockModeWait

Although

not

required,

this

property

enables

you

to

set

the

number

of

seconds

that

Informix

software

waits

for

a

lock.

By

default,

Informix

code

throws

an

exception

if

it

cannot

immediately

acquire

a

lock.

Example:

2.
2.

Informix

JDBC

Driver

(XA)

The

Informix

JDBC

Driver

(XA)

is

a

Type

4

JDBC

driver

that

provides

XA-compliant

JDBC

access

to

the

Informix

database.

Informix

JDBC

Driver

(XA)

supports

two

phase

data

source:

com.informix.jdbcx.IfxXADataSource

Requires

JDBC

driver

files:

ifxjdbc.jar

ifxjdbcx.jar

Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.InformixDataStoreHelper

Requires

a

valid

authentication

alias.

Requires

properties:

v

serverName

The

name

of

the

Informix

instance

on

the

server.

Example:

ol_myserver.

v

portNumber

The

port

on

which

the

instances

listen.

Example:

1526.

v

ifxIFXHOST

The

physical

name

of

the

database

server.

Example:

myserver.mydomain.com.

v

databaseName

The

name

of

the

database

from

which

the

data

source

obtains

connections.

Example:

Sample.

v

informixLockModeWait

Although

not

required,

this

property

enables

you

to

set

the

number

of

seconds

that

Informix

software

waits

for

a

lock.

By

default,

Informix

code

throws

an

exception

if

it

cannot

immediately

acquire

a

lock.

Example:

2.

For

more

information

on

Informix,

visit

the

Informix

Web

site

at:

http://www.ibm.com/software/data/informix/

Sybase

1.

Sybase

JDBC

Driver

The

Sybase

JDBC

Driver

is

a

Type

4

JDBC

driver

that

provides

JDBC

access

to

the

Sybase

database.

Sybase

JDBC

Driver

supports

one

phase

data

source:

com.sybase.jdbc2.jdbc.SybConnectionPoolDataSource

Requires

JDBC

driver

files:

jconn2.jar.

Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.SybaseDataStoreHelper

Requires

a

valid

authentication

alias.

Requires

properties:

v

serverName

The

name

of

the

database

server.

Example:

myserver.mydomain.com.

v

databaseName

The

name

of

the

database

from

which

the

data

source

obtains

connections.

Example:

Sample.

v

portNumber

The

TCP/IP

port

number

through

which

all

communications

to

the

server

take

place.

Example:

4100.
2.

Sybase

JDBC

Driver

(XA)

182

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

http://www-3.ibm.com/software/data/informix/

The

Sybase

JDBC

Driver

(XA)

is

a

Type

4

JDBC

driver

that

provides

XA-compliant

JDBC

access

to

the

Sybase

database.

Sybase

JDBC

Driver

(XA)

supports

two

phase

data

source:

com.sybase.jdbc2.jdbc.SybXADataSource

Requires

JDBC

driver

files:

jconn2.jar.

Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.SybaseDataStoreHelper

Requires

a

valid

authentication

alias.

Requires

properties:

v

serverName

The

name

of

the

database

server.

Example:

myserver.mydomain.com

v

databaseName

The

name

of

the

database

from

which

the

data

source

obtains

connections.

Example:

Sample.

v

portNumber

The

TCP/IP

port

number

through

which

all

communications

to

the

server

take

place.

Example:

4100.
3.

Sybase

12.0

JDBC

Driver

--

Deprecated

This

JDBC

Driver

provider

is

the

same

as

Sybase

JDBC

Driver.

This

JDBC

driver

is

deprecated.

Use

Sybase

JDBC

Driver

instead

of

this

one.

Sybase

12.0

JDBC

Driver

supports

one

phase

data

source:

com.sybase.jdbc2.jdbc.SybConnectionPoolDataSource

Requires

JDBC

driver

files:

jconn2.jar.

Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.SybaseDataStoreHelper

Requires

a

valid

authentication

alias.

Requires

properties:

v

serverName

The

name

of

the

database

server.

Example:

myserver.mydomain.com

v

databaseName

The

name

of

the

database

from

which

the

data

source

obtains

connections.

Example:

Sample.

v

portNumber

The

TCP/IP

port

number

through

which

all

communications

to

the

server

take

place.

Example:

4100.
4.

Sybase

12.0

JDBC

Driver

(XA)

--

Deprecated

This

JDBC

Driver

provider

is

the

same

as

Sybase

JDBC

Driver

(XA).

This

JDBC

driver

is

deprecated.

Use

the

Sybase

JDBC

Driver

(XA)

instead

of

this

one.

Sybase

12.0

JDBC

Driver

(XA)

supports

two

phase

data

source:

com.sybase.jdbc2.jdbc.SybXADataSource

Requires

JDBC

driver

files:

jconn2.jar.

Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.SybaseDataStoreHelper

Requires

a

valid

authentication

alias.

Requires

properties:

v

serverName

The

name

of

the

database

server.

Example:

myserver.mydomain.com

v

databaseName

The

name

of

the

database

from

which

the

data

source

obtains

connections.

Example:

Sample.

v

portNumber

The

TCP/IP

port

number

through

which

all

communications

to

the

server

take

place.

Example:

4100.

For

more

information

on

Sybase,

visit

the

Sybase

Web

site

at:

http://www.sybase.com/

Chapter

2.

Accessing

data

from

applications

183

http://www.sybase.com/

Oracle

1.

Oracle

JDBC

Driver

The

Oracle

JDBC

Driver

provides

JDBC

access

to

the

Oracle

database.

This

JDBC

driver

supports

both

Type

2

JDBC

access

and

Type

4

JDBC

access.

Oracle

JDBC

Driver

supports

one

phase

data

source:

oracle.jdbc.pool.OracleConnectionPoolDataSource

Requires

JDBC

driver

files:

ojdbc14.jar.

(Note:

If

you

require

Oracle

trace,

use

ojdbc14_g.jar.)

Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.OracleDataStoreHelper

Requires

a

valid

authentication

alias.

Requires

properties:

v

URL

The

URL

that

indicates

the

database

from

which

the

data

source

obtains

connections.

Example:

jdbc:oracle:thin:@myServer:1521:myDatabase,

where

myServer

is

the

server

name,

1521

is

the

port

it

is

using

for

communication,

and

myDatabase

is

the

database

name.
2.

Oracle

JDBC

Driver

(XA)

The

Oracle

JDBC

Driver

(XA)

provides

XA-compliant

JDBC

access

to

the

Oracle

database.

This

JDBC

driver

supports

both

Type

2

JDBC

access

and

Type

4

JDBC

access.

Oracle

JDBC

Driver

(XA)

supports

two

phase

data

source:

oracle.jdbc.xa.client.OracleXADataSource

Requires

JDBC

driver

files:

ojdbc14.jar.

(Note:

If

you

require

Oracle

trace,

use

ojdbc14_g.jar.)

Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.OracleDataStoreHelper

Requires

a

valid

authentication

alias.

Requires

properties:

v

URL

The

URL

that

indicates

the

database

from

which

the

data

source

obtains

connections.

Example:

jdbc:oracle:thin:@myServer:1521:myDatabase,

where

myServer

is

the

server

name,

1521

is

the

port

it

is

using

for

communication,

and

myDatabase

is

the

database

name.
3.

Oracle

JDBC

Thin

Driver

--

Deprecated

Both

the

Oracle

JDBC

Thin

Driver

and

the

Oracle

JDBC

oci8

Driver

are

deprecated.

Use

the

Oracle

JDBC

Driver

instead

of

these

two.

Oracle

JDBC

Thin

Driver

is

a

Type

4

JDBC

driver

that

provides

JDBC

access

to

the

Oracle

database.

Oracle

JDBC

Thin

Driver

is

deprecated.

Use

the

Oracle

JDBC

Driver

instead

of

this

one.

Oracle

JDBC

Thin

Driver

supports

one

phase

data

source:

oracle.jdbc.pool.OracleConnectionPoolDataSource

Requires

JDBC

driver

files:

ojdbc14.jar.

(Note:

If

you

require

Oracle

trace,

use

ojdbc14_g.jar.)

Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.OracleDataStoreHelper

Requires

a

valid

authentication

alias.

Requires

properties:

v

URL.

The

URL

that

indicates

the

database

from

which

the

data

source

obtains

connections.

Example:

jdbc:oracle:thin:@localhost:1521:sample

for

thin

184

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

driver

and

jdbc:oracle:oci8:@sample

for

thick

driver,

where

localhost

is

the

server

name,

1521

is

the

port

it

is

using

for

communication,

and

sample

is

the

database

name.
4.

Oracle

JDBC

Thin

Driver

(XA)

--

Deprecated

Both

the

Oracle

JDBC

Thin

Driver

(XA)

and

the

Oracle

JDBC

oci8

Driver

(XA)

are

deprecated.

Use

the

Oracle

JDBC

Driver

(XA)

instead

of

these

two.

Oracle

JDBC

Thin

Driver

(XA)

is

a

Type

4

JDBC

driver

that

provides

XA-compliant

JDBC

access

to

the

Oracle

database.

Oracle

JDBC

Thin

Driver

(XA)

is

deprecated.

Use

the

Oracle

JDBC

Driver

(XA)

instead

of

this

one.

Oracle

JDBC

Thin

Driver

(XA)

supports

two

phase

data

source:

oracle.jdbc.xa.client.OracleXADataSource

Requires

JDBC

driver

files:

ojdbc14.jar.

(Note:

If

you

require

Oracle

trace,

use

ojdbc14_g.jar.)

Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.OracleDataStoreHelper

Requires

a

valid

authentication

alias.

Requires

properties:

v

URL

The

URL

that

indicates

the

database

from

which

the

data

source

obtains

connections.

Example:

jdbc:oracle:thin:@localhost:1521:sample

for

thin

driver

and

jdbc:oracle:oci8:@sample

for

thick

driver,

where

localhost

is

the

server

name,

1521

is

the

port

it

is

using

for

communication,

and

sample

is

the

database

name.
5.

Oracle

JDBC

oci8

Driver

--

Deprecated

Both

the

Oracle

JDBC

Thin

Driver

and

the

Oracle

JDBC

oci8

Driver

are

deprecated.

Use

the

Oracle

JDBC

Driver

instead

of

these

two.

Oracle

JDBC

oci8

Driver

is

a

Type

2

JDBC

driver

that

provides

JDBC

access

to

the

Oracle

database.

Oracle

JDBC

oci8

Driver

is

deprecated.

Use

the

Oracle

JDBC

Driver

instead

of

this

one.

Oracle

JDBC

oci8

Driver

supports

one

phase

data

source:

oracle.jdbc.pool.OracleConnectionPoolDataSource

Requires

JDBC

driver

files:

ojdbc14.jar.

(Note:

If

you

require

Oracle

trace,

use

ojdbc14_g.jar.)

Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.OracleDataStoreHelper

Requires

a

valid

authentication

alias.

Requires

properties:

v

URL

The

URL

that

indicates

the

database

from

which

the

data

source

obtains

connections.

Example:

jdbc:oracle:thin:@localhost:1521:sample

for

thin

driver

and

jdbc:oracle:oci8:@sample

for

thick

driver,

where

localhost

is

the

server

name,

1521

is

the

port

it

is

using

for

communication,

and

sample

is

the

database

name.
6.

Oracle

JDBC

oci8

Driver

(XA)

--

Deprecated

Both

the

Oracle

JDBC

Thin

Driver

(XA)

and

the

Oracle

JDBC

oci8

Driver

(XA)

are

deprecated.

Use

the

Oracle

JDBC

Driver

(XA)

instead

of

these

two.

Oracle

JDBC

oci8

Driver

(XA)

is

a

Type

2

JDBC

driver

that

provides

XA-compliant

JDBC

access

to

the

Oracle

database.

Oracle

JDBC

oci8

Driver

(XA)

is

deprecated.

Use

the

Oracle

JDBC

Driver

(XA)

instead

of

this

one.

Oracle

JDBC

oci8

Driver

(XA)

supports

two

phase

data

source:

oracle.jdbc.xa.client.OracleXADataSource

Requires

JDBC

driver

files:

ojdbc14.jar.

(Note:

If

you

require

Oracle

trace,

use

ojdbc14_g.jar.)

Chapter

2.

Accessing

data

from

applications

185

Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.OracleDataStoreHelper

Requires

a

valid

authentication

alias.

Requires

properties:

v

URL

The

URL

that

indicates

the

database

from

which

the

data

source

obtains

connections.

Example:

jdbc:oracle:thin:@localhost:1521:sample

for

thin

driver

and

jdbc:oracle:oci8:@sample

for

thick

driver,

where

localhost

is

the

server

name,

1521

is

the

port

it

is

using

for

communication,

and

sample

is

the

database

name.

For

more

information

on

Oracle,

visit

the

Oracle

Web

site

at:

http://www.oracle.com/

MS

SQL

Server

1.

DataDirect

ConnectJDBC

type

4

driver

for

MS

SQL

Server

DataDirect

ConnectJDBC

type

4

driver

for

MS

SQL

Server

is

a

Type

4

JDBC

driver

that

provides

JDBC

access

to

the

MS

SQL

Server

database.

Only

use

this

provider

for

the

ConnectJDBC

driver

purchased

from

DataDirect

Technologies.

Do

not

use

it

with

the

Connect

JDBC

driver

embedded

in

WebSphere.

This

JDBC

provider

supports

this

data

source:

com.ddtek.jdbcx.sqlserver.SQLServerDataSource

Requires

JDBC

driver

files:

sqlserver.jar,

base.jar

and

util.jar

(The

spy.jar

file

is

optional.

You

need

this

file

to

enable

spy

logging.

The

spy.jar

file

is

not

in

the

same

directory

as

the

other

three

jar

files.

Instead,

it

is

located

in

the

../spy/

directory.)

Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.ConnectJDBCDataStoreHelper

Requires

a

valid

authentication

alias.

Requires

properties:

v

serverName

The

name

of

the

server

in

which

MS

SQL

Server

resides.

Example:

myserver.mydomain.com

v

portNumber

The

TCP/IP

port

that

MS

SQL

Server

uses

for

communication.

Port

1433

is

the

default.

v

databaseName

The

name

of

the

database

from

which

the

data

source

obtains

connections.

Example:

Sample.
2.

DataDirect

ConnectJDBC

type

4

driver

for

MS

SQL

Server

(XA)

DataDirect

ConnectJDBC

type

4

driver

for

MS

SQL

Server

(XA)

is

a

Type

4

JDBC

driver

which

provides

XA-compliant

JDBC

access

to

the

MS

SQL

Server

database.

Only

use

this

provider

for

the

ConnectJDBC

driver

purchased

from

DataDirect

Technologies.

Do

not

use

it

with

the

Connect

JDBC

driver

embedded

in

WebSphere.

This

JDBC

provider

supports

this

data

source:

com.ddtek.jdbcx.sqlserver.SQLServerDataSource.

Requires

JDBC

driver

files:

sqlserver.jar,

base.jar

and

util.jar.

(The

spy.jar

file

is

optional.

You

need

this

file

to

enable

spy

logging.

The

spy.jar

file

is

not

in

the

same

directory

as

the

other

three

jar

files.

Instead,

it

is

located

in

the

../spy/

directory.)

Requires

DataStoreHelper

class:

186

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

http://www.oracle.com/

com.ibm.websphere.rsadapter.ConnectJDBCDataStoreHelper

Requires

a

valid

authentication

alias.

Requires

properties:

v

serverName

The

name

of

the

server

in

which

MS

SQL

Server

resides.

Example:

myserver.mydomain.com

v

portNumber

The

TCP/IP

port

that

MS

SQL

Server

uses

for

communication.

Port

1433

is

the

default.

v

databaseName

The

name

of

the

database

from

which

the

data

source

obtains

connections.

Example:

Sample.
For

more

information

on

the

DataDirect

ConnectJDBC

driver,

visit

the

DataDirect

Web

site

at:

http://www.datadirect-technologies.com/

3.

WebSphere

embedded

ConnectJDBC

driver

for

MS

SQL

Server

WebSphere

embedded

ConnectJDBC

driver

for

MS

SQL

Server

is

a

Type

4

JDBC

driver

that

provides

JDBC

access

to

the

MS

SQL

Server

database.

This

JDBC

driver

ships

with

WebSphere

Application

Server.

Only

use

this

provider

with

the

Connect

JDBC

driver

embedded

in

WebSphere;

it

cannot

be

used

with

a

Connect

JDBC

driver

purchased

separately

from

DataDirect

Technologies.

This

JDBC

provider

supports

this

data

source:

com.ibm.websphere.jdbcx.sqlserver.SQLServerDataSource.

Requires

JDBC

driver

files:

sqlserver.jar

base.jar

and

util.jar.

(The

spy.jar

file

is

optional.

You

need

this

file

to

enable

spy

logging.

The

spy.jar

file

for

the

WebSphere

embedded

Connect

JDBC

driver

ships

with

WebSphere

Application

Server.

All

the

files

are

located

in

the

WAS_HOME/lib/

directory.)

Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.WSConnectJDBCDataStoreHelper

Requires

a

valid

authentication

alias.

Requires

properties:

v

serverName

The

name

of

the

server

in

which

MS

SQL

Server

resides.

Example:

myserver.mydomain.com

v

portNumber

The

TCP/IP

port

that

MS

SQL

Server

uses

for

communication.

Port

1433

is

the

default.

v

databaseName

The

name

of

the

database

from

which

the

data

source

obtains

connections.

Example:

Sample.
4.

WebSphere

embedded

ConnectJDBC

driver

for

MS

SQL

Server

(XA)

WebSphere

embedded

ConnectJDBC

driver

for

MS

SQL

Server

(XA)

is

a

Type

4

JDBC

driver

which

provides

XA-compaint

JDBC

access

to

the

MS

SQL

Server

database.

This

JDBC

driver

ships

with

WebSphere

Application

Server.

Use

this

provider

with

the

Connect

JDBC

driver

embedded

in

WebSphere.

Do

not

use

it

with

a

Connect

JDBC

driver

purchased

separately

from

DataDirect

Technologies.

This

JDBC

provider

supports

this

data

source:

com.ibm.websphere.jdbcx.sqlserver.SQLServerDataSource.

Requires

JDBC

driver

files:

sqlserver.jar

base.jar

and

util.jar.

Chapter

2.

Accessing

data

from

applications

187

http://www.datadirect-technologies.com/

(The

spy.jar

file

is

optional.

You

need

this

file

to

enable

spy

logging.

The

spy.jar

file

for

the

WebSphere

embedded

Connect

JDBC

driver

ships

with

WebSphere

Application

Server.

All

the

files

are

located

in

the

WAS_HOME/lib/

directory.)

Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.WSConnectJDBCDataStoreHelper

Requires

a

valid

authentication

alias.

Requires

properties:

v

serverName

The

name

of

the

server

in

which

MS

SQL

Server

resides.

Example:

myserver.mydomain.com

v

portNumber

The

TCP/IP

port

that

MS

SQL

Server

uses

for

communication.

Port

1433

is

the

default.

v

databaseName

The

name

of

the

database

from

which

the

data

source

obtains

connections.

Example:

Sample.
To

view

the

instructions

for

installing

Stored

Procedures

for

JTA

(required

when

enabling

two-phase

commit)

on

the

WebSphere

CD,

refer

to

the

following

FTP

site:

How

to

install

"Stored

Procedures

for

JTA"

from

the

WebSphere

CD

You

can

download

the

latest

patches

and

upgrades

to

the

WebSphere

embedded

ConnectJDBC

drivers

from

the

following

FTP

site:

ftp://ftp.software.ibm.com/software/websphere/info/tools/DataDirect/datadirect.htm

5.

DataDirect

SequeLink

type

3

JDBC

driver

for

MS

SQL

Server

DataDirect

SequeLink

type

3

JDBC

driver

for

MS

SQL

Server

is

a

Type

3

JDBC

driver

that

provides

JDBC

access

to

MS

SQL

Server

via

SequeLink

server.

This

JDBC

driver

provider

supports

both

the

SequeLink

type

3

JDBC

driver

shipped

with

WebSphere

Application

Server

and

the

SequeLink

type

3

JDBC

driver

purchased

from

DataDirect.

This

JDBC

provider

supports

this

data

source:

com.ddtek.jdbcx.sequelink.SequeLinkDataSource

Requires

JDBC

driver

files:

sljc.jar

and

spy-sl53.jar

(The

JDBC

driver

shipped

with

WebSphere

Application

Server

requires

the

sljc.jar

and

the

spy-sl53.jar

files.

The

JDBC

driver

purchased

from

DataDirect

requires

the

sljc.jar

and

the

spy.jar

files.

The

spy.jar

and

spy-sl35.jar

files

are

optional.

You

need

these

files

to

enable

spy

logging.)

Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.SequeLinkDataStoreHelper

Requires

a

valid

authentication

alias.

Requires

properties:

v

serverName

The

name

of

the

server

in

which

SequeLink

Server

resides.

Example:

myserver.mydomain.com

v

portNumber

The

TCP/IP

port

that

SequeLink

Server

uses

for

communication.

By

default,

SequeLink

Server

uses

port

19996.

v

databaseName

The

name

of

the

database

from

which

the

data

source

obtains

connections.

Example:

Sample.
6.

DataDirect

SequeLink

type

3

JDBC

driver

for

MS

SQL

Server

(XA)

DataDirect

SequeLink

type

3

JDBC

driver

for

MS

SQL

Server

(XA)

is

a

Type

3

JDBC

driver

which

provides

XA-compliant

JDBC

access

to

MS

SQL

Server

via

the

SequeLink

server.

This

JDBC

driver

provider

supports

both

the

SequeLink

type

3

JDBC

driver

shipped

with

WebSphere

Application

Server

and

the

SequeLink

type

3

JDBC

driver

purchased

from

DataDirect.

188

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

ftp://ftp.software.ibm.com/software/websphere/info/tools/DataDirect/install.html#JTA
ftp://ftp.software.ibm.com/software/websphere/info/tools/DataDirect/datadirect.htm

This

JDBC

provider

supports

this

data

source:

com.ddtek.jdbcx.sequelink.SequeLinkDataSource

Requires

JDBC

driver

files:

sljc.jar

and

spy-sl53.jar

(The

JDBC

driver

shipped

with

WebSphere

Application

Server

requires

the

sljc.jar

and

the

spy-sl53.jar

files.

The

JDBC

driver

purchased

from

DataDirect

requires

the

sljc.jar

and

the

spy.jar

files.

The

spy.jar

and

spy-sl35.jar

files

are

optional.

You

need

these

files

to

enable

spy

logging.)

Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.SequeLinkDataStoreHelper

Requires

a

valid

authentication

alias.

Requires

properties:

v

serverName

The

name

of

the

server

in

which

SequeLink

Server

resides.

Example:

myserver.mydomain.com

v

portNumber

The

TCP/IP

port

that

SequeLink

Server

uses

for

communication.

By

default,

SequeLink

Server

uses

port

19996.

v

databaseName

The

name

of

the

database

from

which

the

data

source

obtains

connections.

Example:

Sample.
To

view

instructions

for

installing

SequeLink

Server

from

the

WebSphere

CD,

refer

to

this

FTP

site:

How

to

install

SequeLink

Server

from

the

WebSphere

CD

Only

install

the

SequeLink

server

from

the

WebSphere

CD

if

you

are

using

the

SequeLink

JDBC

driver

embedded

in

WebSphere.

Otherwise,

install

the

SequeLink

server

purchased

from

DataDirect

Technologies.

You

can

download

the

latest

patches

and

upgrades

to

the

WebSphere

embedded

SequeLink

type

3

JDBC

drivers

from

the

following

FTP

site:

ftp://ftp.software.ibm.com/software/websphere/info/tools/DataDirect/datadirect.htm

For

more

information

on

the

DataDirect

SequeLink

type

3

JDBC

driver,

visit

the

DataDirect

Web

site

at:

http://www.datadirect-technologies.com/

7.

Microsoft

JDBC

driver

for

MSSQLServer

2000

Microsoft

JDBC

driver

for

MSSQLServer

2000

is

a

type

4

JDBC

driver

that

provides

JDBC

access

to

the

MS

SQL

Server

database.

This

JDBC

provider

supports

this

data

source:

com.microsoft.jdbcx.sqlserver.SQLServerDataSource

Requires

JDBC

driver

files:

mssqlserver.jar,

msbase.jar

and

msutil.jar

(The

spy.jar

file

is

optional.

You

need

it

to

enable

spy

logging.

However,

Microsoft

does

not

ship

the

spy.jar

file.

Contact

Microsoft

about

this

issue.)

Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.ConnectJDBCDataStoreHelper

Requires

a

valid

authentication

alias.

Requires

properties:

v

serverName

The

name

of

the

server

in

which

MS

SQL

Server

resides.

Example:

myserver.mydomain.com

v

portNumber

The

TCP/IP

port

that

MS

SQL

Server

uses

for

communication.

Port

1433

is

the

default.

v

databaseName

The

name

of

the

database

from

which

the

data

source

obtains

connections.

Example:

Sample.

Chapter

2.

Accessing

data

from

applications

189

ftp://ftp.software.ibm.com/software/websphere/info/tools/DataDirect/install.html#SLServer
ftp://ftp.software.ibm.com/software/websphere/info/tools/DataDirect/datadirect.htm
http://www.datadirect-technologies.com/

8.

Microsoft

JDBC

driver

for

MSSQLServer

2000

(XA)

Microsoft

JDBC

driver

for

MSSQLServer

2000

(XA)

is

a

type

4

JDBC

driver

that

provides

XA-compaint

JDBC

access

to

the

MS

SQL

Server

database.

This

JDBC

provider

supports

this

data

source:

com.microsoft.jdbcx.sqlserver.SQLServerDataSource

Requires

JDBC

driver

files:

mssqlserver.jar,

msbase.jar

and

msutil.jar

(The

spy.jar

file

is

optional.

You

need

it

to

enable

spy

logging.

However,

Microsoft

does

not

ship

the

spy.jar

file.

Contact

Microsoft

about

this

issue.)

Requires

DataStoreHelper

class:

com.ibm.websphere.rsadapter.ConnectJDBCDataStoreHelper

Requires

a

valid

authentication

alias.

Requires

properties:

v

serverName

The

name

of

the

server

in

which

MS

SQL

Server

resides.

Example:

myserver.mydomain.com

v

portNumber

The

TCP/IP

port

that

MS

SQL

Server

uses

for

communication.

Port

1433

is

the

default.

v

databaseName

The

name

of

the

database

from

which

the

data

source

obtains

connections.

Example:

Sample.

For

more

information

on

the

Microsoft

JDBC

driver,

visit

the

Microsoft

Web

site

at:

http://www.microsoft.com/sql

Connector

Modules

collection

Use

this

page

to

view

connector

module

settings.

An

instance

of

ConnectorModuleDeployment

is

created

for

every

connector

module

(RAR)

in

the

application.

To

view

this

administrative

console

page,

click

Applications

>Enterprise

Applications

>

application

>

Connector

Modules.

URI

Specifies

the

logical

path

to

the

resource

that

will

be

serviced

by

the

product.

Data

type

String

Name

Specifies

the

display

name

of

the

connector

module.

Data

type

String

Connector

module

settings

Use

this

page

to

view

connector

modules.

To

view

this

administrative

console

page,

click

Applications

>

Enterprise

Applications

>

application

>

Connector

Modules

>

connector_module.

Uri:

190

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

http://www.microsoft.com/sql

Specifies

the

logical

path

to

the

resource

that

is

serviced

by

WebSphere

Application

Server.

Data

type

String

Name:

Specifies

the

display

name

of

the

connector

module.

Data

type

String

altDD:

Specifies

the

alternate

DD

of

the

connector

module.

The

alternate

DD

URI

for

a

given

module.

Data

type

String

Starting

weight:

Specifies

the

startup

priority

of

the

connector

module

over

others.

When

your

application

contains

multiple

modules,

the

starting

weight

you

specify

determines

this

module’s

startup

priority

over

other

modules

during

server

startup.

Modules

with

lower

startup

order

are

started

first.

Data

type

String

Data

access

:

Resources

for

learning

Use

the

following

links

to

find

relevant

supplemental

information

about

data

access.

The

information

resides

on

IBM

and

non-IBM

Internet

sites,

whose

sponsors

control

the

technical

accuracy

of

the

information.

These

links

are

provided

for

convenience.

Often,

the

information

is

not

specific

to

this

product

but

is

useful

all

or

in

part

for

understanding

the

product.

When

possible,

links

are

provided

to

technical

papers

and

Redbooks

that

supplement

the

broad

coverage

of

the

release

documentation

with

in-depth

examinations

of

particular

product

areas.

Program

Specifications

v

What’s

new

in

the

Enterprise

JavaBeans

2.0

Specification?

You

can

also

download

the

specification

itself

from

this

URL.

v

JavaTM

2

Platform,

Enterprise

Edition

(J2EETM)

v

JavaTM

Management

Extensions

(JMX)

CMP

persistence

functions

v

Enterprise

JavaBeansTM

2.0

Container-Managed

Persistence

Example

Container

managed

relationships

v

Enterprise

JavaBeansTM

2.0

Container-Managed

Persistence

Example

Chapter

2.

Accessing

data

from

applications

191

http://java.sun.com/products/ejb/2.0.html
http://java.sun.com/j2ee/
http://java.sun.com/products/JavaManagement/
http://developer.java.sun.com/developer/technicalArticles/ebeans/EJB20CMP/
http://developer.java.sun.com/developer/technicalArticles/ebeans/EJB20CMP/

Local

interfaces

v

Enterprise

JavaBeanTM

2.0

Specification

Changes

Resource

references

v

Accessing

Databases

from

Web

Applications

WebSphere

Studio

Application

Developer

(WSAD)

v

WebSphere

Studio

Application

Developer

WebSphere

Studio

Application

Developer

Integration

Edition

(WSADIE)

v

WebSphere

Studio

Application

Developer

Integration

Edition

(WSADIE)

WebSphere

Version

4.0

Information

Center

v

IBM

WebSphereTM

Version

4.0

Information

Center

IBM

Cloudscape

v

IBM

Cloudscape

Oracle

v

Oracle

DB2

database

software

v

DB2

Supported

hardware,

software,

and

APIs

v

Supported

hardware,

software,

and

APIs

Tuning

databases

Tuning

parameters

vary

according

to

the

type

of

database

you

are

using.

DB2

tuning

tips

for

z/OS

are

provided

for

your

convenience.

Since

DB2

is

not

a

WebSphere

Application

Server

product

and

can

change,

consider

these

descriptions

as

suggestions.

192

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

http://developer.java.sun.com/developer/technicalArticles/ebeans/ejb20/
http://java.sun.com/webservices/docs/1.0/tutorial/doc/WebApp13.html
http://www-3.ibm.com/software/ad/studioappdev/
http://www-3.ibm.com/software/ad/studiointegration/
http://www-3.ibm.com/software/webservers/appserv/infocenter.html
http://www-3.ibm.com/software/data/cloudscape/pubs/collateral.html
http://technet.oracle.com/
http://www-3.ibm.com/software/data/db2/
http://www-3.ibm.com/software/webservers/appserv/doc/latest/prereq.html

Chapter

3.

Using

asynchronous

messaging

Use

these

topics

to

use

asynchronous

messaging

with

WebSphere

Application

Server,

to

enable

enterprise

applications

to

use

JMS

resources,

message-driven

beans,

and

extended

messaging.

WebSphere

Application

Server

supports

asynchronous

messaging

as

a

method

of

communication

based

on

the

Java

Message

Service

(JMS)

programming

interface.

The

base

JMS

support

enables

WebSphere

enterprise

applications

to

exchange

messages

asynchronously

with

other

JMS

clients

by

using

JMS

destinations

(queues

or

topics).

An

enterprise

application

can

explicitly

poll

for

messages

on

a

destination.

WebSphere

Application

Server

also

provides

a

message

listener

service

that

enterprise

applications

can

use

to

automatically

retrieve

messages

from

JMS

destinations

for

processing

by

message-driven

beans,

without

the

application

having

to

explicitly

poll

JMS

destinations.

5.1 +

With

WBI

Server

Foundation,

enterprise

applications

can

use

another

level

of

functionality

for

asynchronous

messaging,

called

extended

messaging.

The

application

server

manages

the

messaging

infrastructure,

and

extra

standard

types

of

messaging

beans

are

provided

to

add

functionality

to

that

provided

by

message-driven

beans.

This

level

of

functionality

enables

application

developers

to

concentrate

on

the

business

logic

to

be

implemented

by

the

enterprise

beans

and

to

leave

the

messaging

usage

to

standard

messaging

objects

and

configuration

of

the

extended

messaging

service.

You

can

use

the

WebSphere

administrative

console

to

administer

the

WebSphere

Application

Server

support

for

asynchronous

messaging.

For

example,

you

can

configure

JMS

providers

and

their

resources,

and

can

control

the

activity

of

the

JMS

server

and

the

messaging

services.

For

more

information

about

implementing

WebSphere

enterprise

applications

that

use

asynchronous

messaging,

see

the

following

topics:

v

An

overview

of

WebSphere

asynchronous

messaging

v

Implementing

WebSphere

enterprise

applications

that

use

JMS

v

Implementing

WebSphere

enterprise

applications

that

use

message-driven

beans

For

more

information

about

JMS,

see

the

JMS

documentation

at

http://java.sun.com/products/jms/docs.html.

Asynchronous

messaging

with

WebSphere

-

an

overview

WebSphere

Application

Server

supports

asynchronous

messaging

as

a

method

of

communication

based

on

the

Java

Message

Service

(JMS)

programming

interface.

The

base

JMS

support

enables

WebSphere

J2EE

applications

to

exchange

messages

asynchronously

with

other

JMS

clients

by

using

JMS

destinations

(queues

or

topics).

A

J2EE

application

can

explicitly

poll

for

messages

on

a

destination.

©

Copyright

IBM

Corp.

2004

193

http://java.sun.com/products/jms/docs.html

WebSphere

Application

Server

also

provides

a

message

listener

service

that

J2EE

applications

can

use

to

automatically

retrieve

messages

from

JMS

destinations

for

processing

by

message-driven

beans,

without

the

application

having

to

explicitly

poll

JMS

destinations.

5.1 +

With

WBI

Server

Foundation,

J2EE

applications

can

use

another

level

of

functionality

for

asynchronous

messaging,

called

extended

messaging.

The

application

server

manages

the

messaging

infrastructure,

and

extra

standard

types

of

messaging

beans

are

provided

to

add

functionality

to

that

provided

by

message-driven

beans.

This

level

of

functionality

enables

application

developers

to

concentrate

on

the

business

logic

to

be

implemented

by

the

enterprise

beans

and

to

leave

the

messaging

usage

to

standard

messaging

objects

and

configuration

of

the

extended

messaging

service.

You

can

use

the

WebSphere

administrative

console

to

administer

the

WebSphere

Application

Server

support

for

asynchronous

messaging.

For

example,

you

can

configure

JMS

providers

and

their

resources,

and

can

control

the

activity

of

the

JMS

server

and

the

messaging

services.

Styles

of

messaging

in

applications

Applications

can

use

the

following

styles

of

asynchronous

messaging:

Point-to-Point

Point-to-point

applications

use

queues

to

pass

messages

between

each

other.

The

applications

are

called

point-to-point,

because

a

client

sends

a

message

to

a

specific

queue

and

the

message

is

picked

up

and

processed

by

a

server

listening

to

that

queue.

It

is

common

for

a

client

to

have

all

its

messages

delivered

to

one

queue.

Like

any

generic

mailbox,

a

queue

can

contain

a

mixture

of

messages

of

different

types.

Publish/subscribe

Publish/subscribe

systems

provide

named

collection

points

for

messages,

called

topics.

To

send

messages,

applications

publish

messages

to

topics.

To

receive

messages,

applications

subscribe

to

topics;

when

a

message

is

published

to

a

topic,

it

is

automatically

sent

to

all

the

applications

that

are

subscribers

of

that

topic.

By

using

a

topic

as

an

intermediary,

message

publishers

are

kept

independent

of

subscribers.

Both

styles

of

messaging

can

be

used

in

the

same

application.

Applications

can

use

asynchronous

messaging

in

the

following

ways:

One-way

An

application

sends

a

message,

and

does

not

want

a

response.

This

pattern

of

use

is

often

referred

to

as

a

datagram.

Request

/

response

An

application

sends

a

request

to

another

application

and

expects

to

receive

a

response

in

return.

One-way

and

forward

An

application

sends

a

request

to

another

application,

which

sends

a

message

to

yet

another

application.

These

messaging

techniques

can

be

combined

to

produce

a

variety

of

asynchronous

messaging

scenarios.

For

more

information

about

how

such

messaging

scenarios

are

used

by

WebSphere

enterprise

applications,

see

the

following

topics:

v

An

overview

of

asynchronous

messaging

with

JMS

194

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

v

An

overview

of

asynchronous

messaging

with

message-driven

beans

For

more

information

about

these

messaging

techniques

and

the

Java

Messaging

Service

(JMS),

see

Sun’s

Java

Message

Service

(JMS)

specification

documentation.

WebSphere

Application

Server

cloning

and

WebSphere

MQ

clustering

This

topic

provides

a

summary

of

information

about

using

WebSphere

Application

Server

horizontal

cloning

with

WebSphere

MQ

server

clustering

support.

It

describes

a

scenario

that

shows

how

the

message

listener

service

can

be

configured

to

take

advantage

of

WebSphere

MQ

server

clustering

and

provides

some

information

about

how

to

resolve

potential

runtime

failures

in

the

clustering

scenario.

The

information

in

this

topic

is

based

on

the

scenario

shown

in

the

following

figure

labeled

″WebSphere

Application

Server

horizontal

cloning

with

WebSphere

MQ

clustered

queues.″

Note:

WebSphere

MQ

server

clustering

is

only

available

with

the

full

WebSphere

MQ

product

installed

as

the

JMS

provider.

For

a

WebSphere

application

server

configured

to

use

the

extended

messaging

service,

each

JMS

listener

is

used

to

retrieve

messages

from

destinations

defined

to

the

server.

In

the

following

information

the

listener

configurations

are

the

same

for

each

WebSphere

application

server.

Each

application

server

host

contains

a

WebSphere

application

server

and

an

WebSphere

MQ

server.

If

a

host

is

only

used

to

distribute

messages,

it

only

contains

an

WebSphere

MQ

server.

There

can

be

many

servers

defined

in

the

configuration,

although

for

simplicity

the

information

in

this

topic

is

based

on

a

scenario

containing

only

three

servers

(as

shown

in

the

figure).

Chapter

3.

Using

asynchronous

messaging

195

http://developer.java.sun.com/developer/technicalArticles/Networking/messaging/

The

scenario

shown

in

the

figure

comprises

the

following

three

hosts:

v

Server

host

S1

contains

the

following

servers:

WebSphere

MQ

server.

The

server

is

defined

to

have

a

queue

manager,

QM1,

and

a

local

queue,

Q1.

The

queue

manager

belongs

to

a

cluster.

The

queue

is

populated

by

the

WebSphere

MQ

server

located

on

host

M3.

Applications

can

add

messages

directly

to

the

queue,

Q1,

but

would

not

be

subjected

to

the

control

of

the

WebSphere

MQ

cluster.

WebSphere

Application

Server

This

contains

a

cloned

application

server,

WAS1,

which

is

configured

with

a

JMS

listener.

The

listener

is

configured

to

retrieve

messages

from

JMS

destination

Q1.
v

Server

host

S2

contains

the

following

servers:

WebSphere

MQ

server.

The

server

is

defined

to

have

a

queue

manager,

QM2,

and

a

local

queue,

Q1.

The

queue

manager

belongs

to

the

same

cluster

as

QM1

on

host

S1.

As

with

QM1,

the

queue

is

populated

by

the

WebSphere

MQ

server

located

on

host

M3.

Applications

can

add

messages

directly

to

the

queue,

Q1,

but

would

not

be

subjected

to

the

control

of

the

MQ

cluster.

WebSphere

Application

Server

This

contains

a

cloned

application

server,

WAS2

(identical

to

WAS1

on

host

S1),

which

is

configured

with

a

JMS

listener.

The

listener

is

configured

to

retrieve

messages

from

JMS

destination

Q1.
v

Messaging

host

M3

contains

the

following

servers:

WebSphere

MQ

server.

The

server

is

defined

to

have

a

queue

manager,

QM3,

which

also

belongs

to

the

same

cluster

as

QM1

and

QM2.

Applications

add

JMS
listener

WAS1

Queue
Q1

QM1

Server host S1

JMS
listener

WAS2

Queue
Q1

QM2

Server host S2

QM3

Messaging host M3 Application
Put to

queue Q1

Application
Put to

queue Q1

Figure

1.

WebSphere

Application

Server

horizontal

cloning

with

WebSphere

MQ

clustered

queues.

This

figure

shows

two

WebSphere

Application

Server

hosts,

with

horizontal

clustering,

and

a

messaging

host

used

to

distribute

messages

for

WebSphere

MQ

server

clustering.

196

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

messages

to

the

queue

manager

and

queue

Q1.

The

cluster

to

which

this

queue

manager

belongs

causes

messages

to

be

distributed

to

all

other

queue

managers

in

the

cluster

which

have

queue

Q1

defined.

Note:

Queue

Q1

is

not

defined

as

a

local

queue

on

this

host.

If

the

queue

was

defined

locally,

then

messages

would

remain

on

the

server

for

local

processing;

messages

would

not

be

distributed

by

the

queue

manager

cluster

control

to

the

other

queue

managers

in

the

cluster

that

do

have

the

queue

defined.
This

host

does

not

have

a

WebSphere

application

server

defined.

All

message

retrieval

processing

is

performed

by

the

other

two

application

servers

on

hosts

S1

and

S2.

Recovery

scenarios

There

are

several

failure

scenarios

that

could

occur

with

the

clustering

configuration;

for

example:

v

WAS

server

failures.

In

this

scenario

the

failure

of

any

single

WebSphere

application

server

results

in

the

messages

for

the

specified

destination

remaining

on

the

queue,

until

the

server

is

restarted.

v

WebSphere

MQ

Queue

Manager

failures.

There

are

two

different

failures

to

consider:

1.

Failure

of

a

queue

manager

on

the

same

host

as

a

WebSphere

application

server

(for

example,

failure

of

QM2

on

host

S2).

In

this

case

messages

are

delivered

to

the

other

available

application

servers,

until

the

WebSphere

MQ

server

is

back

online,

when

messages

are

processed

as

expected.

2.

Failure

of

the

messaging

host

M3

and

its

queue

manager,

QM3.

In

this

case,

the

result

of

an

outage

is

more

significant

because

no

messages

are

delivered

to

the

other

queue

managers

in

the

cluster.

In

a

fully-deployed

and

scaled

production

system,

host

M3

would

not

be

designed

to

be

a

single

point

of

failure,

and

additional

messaging

servers

would

be

added

to

the

cluster

configuration.

Using

JMS

and

messaging

in

applications

Use

these

tasks

to

implement

WebSphere

J2EE

applications

that

use

JMS.

WebSphere

Application

Server

supports

asynchronous

messaging

as

a

method

of

communication

based

on

the

Java

Message

Service

(JMS)

programming

interface.

The

base

JMS

support

enables

WebSphere

enterprise

applications

to

exchange

messages

asynchronously

with

other

JMS

clients

by

using

JMS

destinations

(queues

or

topics).

An

enterprise

application

can

explicitly

poll

for

messages

on

a

destination.

Using

the

base

support

for

JMS,

you

can

build

enterprise

beans

that

use

the

JMS

API

directly

to

provide

messaging

services

along

with

methods

that

implement

business

logic.

You

can

use

the

WebSphere

administrative

console

to

administer

the

JMS

support

of

WebSphere

Application

Server.

For

example,

you

can

configure

JMS

providers

and

their

resources,

and

can

control

the

activity

of

the

JMS

server.

Chapter

3.

Using

asynchronous

messaging

197

For

more

information

about

implementing

WebSphere

enterprise

applications

that

use

JMS,

see

the

following

topics:

v

An

overview

of

WebSphere

asynchronous

messaging

using

JMS

v

Administering

WebSphere

messaging

v

Developing

a

J2EE

application

to

use

JMS

v

Developing

a

JMS

client

v

Deploying

a

J2EE

application

to

use

JMS

v

Tuning

Java

messaging

service

v

Troubleshooting

WebSphere

messaging

For

more

information

about

JMS,

see

the

JMS

documentation

at

http://java.sun.com/products/jms/docs.html.

WebSphere

MQ

and

IBM

WebSphere

Application

Server

Applications

written

in

the

Java

programming

language

running

under

IBM

WebSphere

Application

Server

can

use

the

Java

Messaging

Service

(JMS)

specification

to

perform

messaging.

Point-to-point

messaging

in

this

environment

is

provided

by

a

WebSphere

MQ

for

z/OS

queue

manager.

Two

classes

of

configuration

are

available:

v

A

reduced

function

form

of

WebSphere

MQ

for

z/OS,

which

is

also

known

as

the

integral

JMS

provider,

or

IJP.

Here,

the

queue

manager

providing

the

point-to-point

messaging

runs

the

WebSphere

MQ

for

z/OS

base

function

code

provided

with

IBM

WebSphere

Application

Server.

This

environment

is

suited

to

simple

messaging

between

JMS

applications

running

in

the

IBM

WebSphere

Application

Server

environment.

v

Full

function

WebSphere

MQ

for

z/OS.

Here,

the

queue

manager

providing

the

point-to-point

messaging

runs

WebSphere

MQ

for

z/OS

full

function

code

installed

as

a

separate

product

from

IBM

WebSphere

Application

Server

for

z/OS.

In

this

environment,

JMS

applications

running

in

the

IBM

WebSphere

Application

Server

can

participate

fully

in

the

functionality

of

a

WebSphere

MQ

for

z/OS

network.

For

example,

they

can

make

use

of

the

IMS

Bridge,

or

exchange

messages

with

WebSphere

MQ

for

z/OS

queue

managers

running

on

other

platforms.

The

information

for

WebSphere

MQ

for

z/OS

is

supplied

as

a

number

of

books,

in

PDF

format.

These

books

describe

the

full

function

form

of

WebSphere

MQ

for

z/OS,

but

also

identify

the

features,

commands,

API

verbs,

and

so

on,

that

are

unavailable

or

restricted

in

the

reduced

function

form.

The

WebSphere

MQ

for

z/OS

Library

Web

site

describes

the

documentation

available.

Connection

between

IBM

WebSphere

Application

Server

and

a

queue

manager

If

the

queue

manager

providing

point-to-point

messaging

is

a

reduced

function

queue

manager,

connection

must

be

through

either

TCP

client/server

channel.

In

JMS

terms,

this

means

choosing

client

transport

for

the

queue

connection

factory

object.

The

integral

JMS

provier

(IJP)

supports

direct

IP

transport

or

MQ

transport.

If

the

queue

manager

providing

point-to-point

messaging

is

a

full

function

queue

manager,

you

can

choose

either

client

transport

or

bindings

transport

for

the

queue

connection

factory

object.

If

you

choose

bindings

transport,

the

WebSphere

Application

Server

and

the

queue

manager

must

both

exist

on

the

same

z/OS

image.

If

you

choose

client

transport,

you

must

install

the

Client

Attachment

feature

of

WebSphere

MQ

for

z/OS.

198

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

http://java.sun.com/products/jms/docs.html
http://www.ibm.com/software/ts/mqseries/library/books/
http://www.ibm.com/software/ts/mqseries/library/books/

Both

types

of

connection

support

transactional

applications:

the

client

transport

by

using

XA

protocols;

the

bindings

transport

by

using

a

WebSphere

Application

Server

stub,

CSQBWSTB,

which

uses

RRS

services.

Integral

JMS

provider

(IJP)

The

WebSphere

MQ

for

z/OS

information

tells

you

what

reduced

function

means

by

identifying

those

functions

not

available

in

the

reduced

function

form

of

WebSphere

MQ

for

z/OS

supplied

with

WebSphere

Application

Server,

both

in

general

terms,

and

at

the

command

level.

The

list

below

summarizes

the

restrictions

in

the

reduced

function

form

of

WebSphere

MQ

for

z/OS:

Queue

sharing

groups

Queue

sharing

groups

are

not

available:

v

If

you

set

the

QSGDATA

system

parameter

to

anything

other

than

blank,

the

queue

manager

does

not

start.

v

CSQ5PQSG

does

not

run.
Clusters

Clusters

are

not

available.

You

cannot:

v

Define

SYSTEM.CLUSTER

queues

v

Define,

alter,

or

delete

CLUSSDR

or

CLUSRCVR

channels

v

Set

queue

CLUSTER

or

CLUSNL

attributes

to

anything

other

than

blank

v

Set

queue

manager

REPOS

or

REPOSNL

attributes

to

anything

other

than

blank

The

following

commands

have

no

effect:

v

RESET

or

REFRESH

CLUSTER

v

SUSPEND

or

RESUME

QMGR

CLUSTER

or

CLUSNL

v

DISPLAY

CLUSQMGR

The

following

functions

do

not

run:

v

Mover

repository

manager

v

CLUSSDR

or

CLUSRCVR

channels
Distributed

queuing

The

reduced

function

form

of

WebSphere

MQ

for

z/OS

supplied

with

WebSphere

Application

Server

does

not

support

channels

other

than

server-connection

channels.

This

means

that:

v

MCA

channels

are

not

available:

–

You

cannot

define,

alter,

or

delete

SDR,

SVR,

RCVR,

or

RQSTR

channels

–

SDR,

SVR,

RCVR,

or

RQSTR

channels

do

not

run
v

Only

SVRCONN

channels

are

available;

you

cannot

define

or

alter

CLNTCONN

channels
TCP

types

other

than

OESOCKET

If

you

set

the

TCPTYPE

system

parameter

to

anything

other

than

OESOCKET,

the

mover

does

not

start.

LU62

communications

You

cannot

use

LU6.2

channels

and

listeners.

Specifically,

you

must

not

set

the

LU62CHL

system

parameter

to

anything

other

than

0

or

the

mover

does

not

start.

Events

Events

are

not

available;

you

cannot:

v

Define

SYSTEM.ADMIN

queues

v

Enable

queue

manager

event

attributes
CICS

connection

There

is

no

support

for

the

WebSphere

MQ

for

z/OS

CICS

connection.

As

a

result,

an

MQCONN

or

MQCONNX

from

a

CICS

transaction

fails

with

an

MQRC_CONNECTION

ERROR.

Chapter

3.

Using

asynchronous

messaging

199

IMS

connection

There

is

no

support

for

the

WebSphere

MQ

for

z/OS

IMS

connection.

As

a

result,

an

MQCONN

or

MQCONNX

from

an

IMS

application

fails

with

an

MQRC_CONNECTION

ERROR.

RRS

connection

There

is

no

support

for

the

WebSphere

MQ

for

z/OS

RRS

connection.

As

a

result,

an

MQCONN

or

MQCONNX

from

an

RRS

application

fails

with

an

MQRC_CONNECTION

ERROR.

IMS

Bridge

There

is

no

support

for

the

WebSphere

MQ

for

z/OS

IMS

Bridge;

the

resource

manager

does

not

start.

Measured

usage

license

charge

(MULC)

This

function

is

bypassed.

An

overview

of

WebSphere

asynchronous

messaging

using

JMS

WebSphere

Application

Server

supports

asynchronous

messaging

as

a

method

of

communication

based

on

the

Java

Message

Service

(JMS)

programming

interface.

JMS

provides

a

common

way

for

Java

programs

(clients

and

J2EE

applications)

to

create,

send,

receive,

and

read

asynchronous

requests,

as

JMS

messages.

This

topic

provides

an

overview

of

asynchronous

messaging

using

JMS

support

provided

by

WebSphere

Application

Server.

For

more

details

about

JMS,

see

Sun’s

Java

Message

Service

(JMS)

specification

documentation.

The

base

support

for

asynchronous

messaging

using

JMS,

shown

in

the

following

figure,

provides

the

common

set

of

JMS

interfaces

and

associated

semantics

that

define

how

a

JMS

client

can

access

the

facilities

of

a

JMS

provider.

This

enables

WebSphere

J2EE

applications,

as

JMS

clients,

to

exchange

messages

asynchronously

with

other

JMS

clients

by

using

JMS

destinations

(queues

or

topics).

A

J2EE

application

can

use

JMS

queue

destinations

for

point-to-point

messaging

and

JMS

topic

destinations

for

publish/subscribe

messaging.

A

J2EE

application

can

explicitly

poll

for

messages

on

a

destination

then

retrieve

messages

for

processing

by

business

logic

beans

(enterprise

beans).

200

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

http://developer.java.sun.com/developer/technicalArticles/Networking/messaging/
http://developer.java.sun.com/developer/technicalArticles/Networking/messaging/

With

the

base

JMS/XA

support,

the

J2EE

application

uses

standard

JMS

calls

to

process

messages,

including

any

responses

or

outbound

messaging.

Responses

can

be

handled

by

an

enterprise

bean

acting

as

a

sender

bean,

or

handled

in

the

enterprise

bean

that

receives

the

incoming

messages.

Optionally,

this

process

can

use

two-phase

commit

within

the

scope

of

a

transaction.

This

level

of

functionality

for

asynchronous

messaging

is

called

bean-managed

messaging,

and

gives

an

enterprise

bean

complete

control

over

the

messaging

infrastructure;

for

example,

for

connection

and

session

pool

management.

The

application

server

has

no

role

in

bean-managed

messaging.

WebSphere

Application

Server

also

supports

automatic

asynchronous

messaging

using

message-driven

beans

(a

type

of

enterprise

bean

defined

in

the

EJB

2.0

specification)

and

JMS

listeners

(part

of

the

JMS

application

server

facilities).

Messages

are

automatically

retrieved

from

JMS

destinations,

optionally

within

a

transaction,

then

sent

to

the

message-driven

bean

in

a

J2EE

application,

without

the

application

having

to

explicitly

poll

JMS

destinations.

For

more

information

about

asynchronous

messaging

with

message-driven

beans,

see

An

overview

of

asynchronous

messaging

with

message-driven

beans

5.1 +

With

WBI

Server

Foundation,

J2EE

applications

can

use

another

level

of

functionality

for

asynchronous

messaging,

called

extended

messaging.

The

application

server

manages

the

messaging

infrastructure,

and

extra

standard

types

of

messaging

beans

are

provided

to

add

functionality

to

that

provided

by

message-driven

beans.

This

level

of

functionality

enables

application

developers

to

concentrate

on

the

business

logic

to

be

implemented

by

the

enterprise

beans

and

to

leave

the

messaging

usage

to

standard

messaging

objects

and

configuration

of

the

extended

messaging

service.

JMS destination

Business logic
bean

EJB
client

JDBC

JMS destination

Enterprise
application

MessageJMS
client

Figure

2.

Asynchronous

messaging

using

JMS.

This

figure

shows

an

enteprise

application

polling

a

JMS

destination

to

retrieve

an

incoming

message,

which

it

processes

with

a

business

logic

bean.

The

business

logic

bean

uses

standard

JMS

calls

to

process

the

message;

for

example,

to

extract

data

or

to

send

the

message

on

to

another

JMS

destination.

For

more

information,

see

the

text

that

accompanies

this

figure.

Chapter

3.

Using

asynchronous

messaging

201

WebSphere

JMS

support

-

components

The

main

components

of

WebSphere

JMS

support

are

shown

in

the

following

figure

and

described

after

the

figure:

WebSphere

Application

Server

supports

asynchronous

messaging

based

on

the

Java

Messaging

Service

(JMS)

of

a

JMS

provider

that

conforms

to

the

JMS

specification

version

1.0.2

and

supports

the

Application

Server

Facility

(ASF)

function

defined

within

that

specification.

WebSphere

Application

Server

provides

an

embedded

JMS

provider

and

administration

objects

for

WebSphere

MQ

as

the

JMS

provider.

You

can

use

the

embedded

JMS

provider,

install

WebSphere

MQ

JMS

on

top

of

the

embedded

WebSphere

JMS,

or

install

and

configure

another

JMS

provider.

JMS

functions

(of

JMS

providers)

within

the

WebSphere

Application

Server

administration

domain

are

served

by

one

or

more

JMS

servers.

There

can

be

at

most

one

JMS

server

on

each

node

in

the

administration

domain,

and

any

application

server

within

the

domain

can

access

JMS

resources

served

by

any

JMS

server

on

any

node

in

the

domain.

A

connection

factory

is

used

to

create

connections

with

the

JMS

provider

for

a

specific

JMS

queue

or

topic

destination.

Each

connection

factory

encapsulates

the

configuration

parameters

needed

to

create

a

connection

to

a

JMS

destination.

A

WebSphere

J2EE

application

can

explicitly

poll

for

messages

on

a

destination

then

retrieve

messages

for

processing

by

business

logic

beans

(enterprise

beans).

The

WebSphere

Application

Server

support

for

message-driven

beans

and

extended

messaging

builds

on

this

base

JMS

support.

For

more

information,

see

the

related

topics.

WebSphere

MQ

JMS

connection

pooling

To

improve

the

overall

performance

of

JMS

within

the

system,

the

message

listener

service

enables

the

connection

pooling

facility

provided

by

the

WebSphere

MQ

JMS

M1

Message

JMS destinations

M2
Business logic beans (Enterprise JavaBeans)

M3 M4

D1 D2 D3

CF1 CF2

JMS Provider

Connection
factories

Connections

Destinations

Your_application_server

JMS server

Figure

3.

The

main

components

of

WebSphere

JMS

support.

This

figure

shows

the

main

components

of

WebSphere

JMS

support,

from

JMS

provider

through

a

connection

to

a

destination,

then

to

a

WebSphere

enterprise

application

(acting

as

a

JMS

client)

that

processes

the

message

retrieved

from

the

destination.

For

more

information,

see

the

text

that

accompanies

this

figure.

202

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

implementation.

This

support

does

not

affect

the

performance

of

a

message

listener,

because

it

retains

its

connections

while

listening

on

a

destination,

but

does

affect

the

overall

JMS

system

performance.

When

a

connection

is

no

longer

required,

WebSphere

MQ

can

pool

the

connection

then

reuse

it

later

instead

of

destroying

it.

Note:

This

support

is

only

available

if

WebSphere

MQ

is

configured

as

the

JMS

provider.

To

enable

WebSphere

MQ

connection

pooling

and

configure

the

characteristics

of

the

WebSphere

MQ

connection

pool,

see

Enabling

WebSphere

MQ

JMS

connection

pooling.

Administering

WebSphere

JMS

support

Use

these

tasks

with

the

WebSphere

administrative

console

to

manage

JMS

providers

and

their

resources,

and

other

runtime

components

of

WebSphere

JMS

support.

You

can

use

the

WebSphere

administrative

console

to

configure

the

embedded

WebSphere

JMS

provider

or

an

WebSphere

MQ

JMS

provider.

If

you

install

another

JMS

provider,

you

need

to

configure

that

JMS

provider

by

using

the

tools

and

information

provided

with

the

JMS

provider.

For

each

JMS

provider,

you

can

configure

the

properties

of

JMS

resources.

You

can

also

use

the

WebSphere

administrative

console

to

configure

and

control

other

runtime

components

of

WebSphere

JMS

support,

including

the

following:

v

The

WebSphere

JMS

server

v

The

message

listener

service,

listener

ports,

and

the

listener

for

each

message-driven

bean

v

Input

and

output

ports

for

extended

messaging.

You

can

update

the

configuration

data

at

any

time,

but

if

it

is

updated,

the

updates

only

take

effect

when

the

appropriate

server

is

next

started.

For

information

about

the

specific

tasks

used

to

administer

WebSphere

JMS

support,

see

the

following

topics:

v

Installing

and

configuring

a

JMS

provider

v

Moving

from

the

internal

JMS

provider

to

WebSphere

MQ

v

Enabling

security

for

the

embedded

WebSphere

JMS

provider

v

Displaying

administrative

lists

of

JMS

resources

v

Managing

JMS

servers

on

Application

Server

v

Managing

JMS

servers

in

a

deployment

manager

cell

v

Configuring

JMS

provider

resources

For

more

information

about

JMS

resources,

see

the

JMS

documentation

at

http://java.sun.com/products/jms/docs.html.

Installing

and

configuring

a

JMS

provider

This

topic

describes

the

different

ways

that

you

can

implement

a

JMS

provider

for

use

with

WebSphere

Application

Server.

For

IBM

WebSphere

Application

Server

to

support

bean-managed

messaging,

you

need

to

install

and

configure

one

or

more

JMS

providers

that

conform

to

the

JMS

specification

version

1.0.2.

To

use

message-driven

beans

the

JMS

provider

must

support

the

Application

Server

Facility

(ASF)

function

defined

within

that

specification.

Chapter

3.

Using

asynchronous

messaging

203

http://java.sun.com/products/jms/docs.html

You

can

install

and

use

the

Embedded

Messaging

Server

option

of

WebSphere

Application

Server,

install

WebSphere

MQ

as

the

JMS

provider,

or

install

another

“generic”

JMS

provider.

If

you

install

both

embedded

messaging

and

WebSphere

MQ

as

JMS

providers,

for

example,

WebSphere

applications

can

use

JMS

resources

provided

by

both

the

embedded

WebSphere

JMS

provider

and

the

WebSphere

MQ

JMS

provider.

WebSphere

Application

Server

provides

default

JMS

support

with

its

Embedded

Messaging

Server

component.

This

function

is

installed

with

WebSphere

Application

Server,

administered

through

the

administrative

console

and

managed

as

part

of

the

WebSphere

Application

Server

runtime.

This

function

is

only

accessible

from

WebSphere

Application

Server

Web,

EJB

and

client

containers,

and

is

not

interoperable

with

WebSphere

MQ.

If

access

is

required

to

heterogeneous

non-JMS

applications,

WebSphere

MQ

clustering,

or

other

WebSphere

MQ

functions,

you

should

install

WebSphere

Application

Server

without

the

Embedded

Messaging

Server

component,

and

should

install

WebSphere

MQ

instead

as

the

JMS

provider.

The

WebSphere

Application

Server

Embedded

Messaging

Client

is

the

same

Java

Client

feature

that

ships

with

WebSphere

MQ

5.3.1.

v

The

Java

Client

is

installed

automatically

by

default

with

a

standalone

WebSphere

Application

Server

for

z/OS

during

ISPF

dialog

customization,

regardless

of

whether

you

configure

an

embedded

JMS

provider.

v

The

Java

Client

remains

installed

in

a

standalone

WebSphere

Application

Server

for

z/OS

when

that

node

is

federated

into

a

deployment

manager

cell.

v

An

application

server

can

use

the

Java

Client

for

point-to-point

JMS

messaging

to

full-function

5.2.0

and

5.3.0

WebSphere

MQ

queue

managers

in

bindings

mode.

The

support

for

these

levels

of

queue

managers

does

not

offer

res-auth=application

security.

v

An

application

server

can

use

the

Java

Client

for

point-to-point

JMS

messaging

to

full-function

5.3.1

queue

managers

in

both

client

or

bindings

mode.

Applications

deployed

with

res-auth=application

specifications

have

that

security

property

honored.

v

The

Java

Client

feature

has

been

certified

by

IBM

with

WebSphere

Application

Server

for

z/OS

to

be

J2EE

1.3

compliant

when

using

a

configured

embedded

JMS

provider

only.

Although

a

full-function

5.3.1

queue

manager

can

provide

J2EE

1.3

compliant

point-to-point

messaging

for

WebSphere

Application

Server

for

z/OS,

IBM

has

not

certified

the

Java

Client

feature

with

this

configuration.

v

The

Java

Client

feature

can

be

configured

to

use

the

install

root

(SMP/E

target)

hfs

files,

by

setting

the

appropriate

environment

variables

as

defined

in

the

WebSphere

MQ.

For

more

information

about

configuring

WebSphere

MQ

environment

variables,

see

the

Using

Java

publication

that

is

delivered

with

WebSphere

Application

Server

for

z/OS.

To

provide

the

supported

levels

of

messaging,

you

should

apply

the

latest

service

for

WebSphere

Application

Server

and

WebSphere

MQ

while

a

production

application

is

in

Quality-Assurance

or

Product-Validation

Test.

For

more

information

about

WebSphere

Application

Server

messaging

scenarios,

and

the

relationship

between

embedded

messaging

and

WebSphere

MQ,

see

the

following

articles:

v

WebSphere

Application

Server

solutions

White

paper:

Selecting

the

most

appropriate

JMS

provider

for

your

applications

(ftp://ftp.software.ibm.com/software/websphere/resourcefinder/2318-00.pdf).

204

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

ftp://ftp.software.ibm.com/software/websphere/resourcefinder/2318-00.pdf
ftp://ftp.software.ibm.com/software/websphere/resourcefinder/2318-00.pdf

This

white

paper

describes

the

different

Java

Message

Service

(JMS)

options

that

are

available

from

IBM

for

WebSphere

Application

Server

applications.

It

compares

the

messaging

technology

built

into

WebSphere

Application

Server,

Version

5

with

IBM

WebSphere

MQ,

IBM

WebSphere

Business

Integration

Event

Broker

and

IBM

WebSphere

Business

Integration

Message

Broker.

v

JMS

Topologies

and

Configurations

with

WebSphere

Application

Server

and

WebSphere

Studio

Version

5

(http://www7b.boulder.ibm.com/wsdd/library/techarticles/0310_barcia/barcia.html).

This

technical

article

helps

you

understand

configuration

options

within

WebSphere

Application

Server

for

Java

Message

Service

(JMS)

applications,

including

using

embedded

messaging

and

WebSphere

MQ

(formerly

MQSeries).

It

covers

setting

up

your

development

environment

to

support

various

JMS

scenarios,

development

and

runtime

topologies,

and

scripting

and

security.

You

can

install

and

configure

a

JMS

provider

in

one

or

more

of

the

following

ways:

v

Installing

WebSphere

embedded

messaging

as

the

JMS

provider.

Note:

–

WebSphere

embedded

messaging

as

the

JMS

provider

supports

both

queues

(for

point-to-point

messaging)

and

topics

(for

publish/subscribe

messaging).

–

You

can

install

IBM

WebSphere

Application

Server

with

embedded

messaging

on

the

same

host

as

an

existing

WebSphere

MQ

installation,

which

must

be

at

a

supported

level

of

WebSphere

MQ

features.

–

You

can

install

IBM

WebSphere

Application

Server

with

embedded

messaging

then

later

install

WebSphere

MQ

for

use

as

a

JMS

provider.

–

After

installing

WebSphere

MQ

and

WebSphere

Application

Server

on

the

same

host,

you

should

only

service

WebSphere

MQ

with

its

CSD

updates,

and

separately

service

WebSphere

Application

Server

with

its

fix

packs.

This

approach

helps

to

avoid

potential

failures

if

you

later

decide

to

uninstall

WebSphere

Application

Server

fix

packs.
v

Installing

WebSphere

MQ

as

the

JMS

provider.

Note:

–

You

can

install

WebSphere

MQ

before

IBM

WebSphere

Application

Server.

If

you

then

want

to

install

embedded

messaging,

you

must

ensure

that

the

WebSphere

MQ

installation

is

at

a

supported

level

of

MQ

features.

–

If

you

do

not

want

to

use

the

embedded

WebSphere

JMS

provider,

you

can

install

IBM

WebSphere

Application

Server

without

the

Embedded

Messaging

options.

–

You

can

install

WebSphere

MQ

for

use

as

a

JMS

provider

on

top

of

WebSphere

Application

Server

embedded

messaging;

this

automatically

uninstalls

the

installed

WebSphere

Embedded

Messaging

Server

component,

and

results

in

a

single

WebSphere

MQ

Server

installation

that

is

used

to

provide

JMS

resources

for

both

embedded

messaging

and

WebSphere

MQ.

-

For

point-to-point

messaging

WebSphere

applications

can

continue

to

use

WebSphere

queue

resources

(through

the

embedded

messaging

JMS

provider)

or

WebSphere

MQ

queue

resources

that

you

define

to

IBM

WebSphere

Application

Server.

-

For

publish/subscribe

messaging,

WebSphere

applications

can

continue

to

use

WebSphere

topic

resources

(through

the

embedded

messaging

JMS

provider)

or

WebSphere

MQ

topic

resources

that

you

Chapter

3.

Using

asynchronous

messaging

205

http://www7b.boulder.ibm.com/wsdd/library/techarticles/0310_barcia/barcia.html
http://www7b.boulder.ibm.com/wsdd/library/techarticles/0310_barcia/barcia.html

define

to

IBM

WebSphere

Application

Server,

and

which

are

provided

by

a

Publish/Subscribe

broker

installed

in

addition

to

the

base

WebSphere

MQ.

The

preferred

solution

for

publish/subscribe

messaging

with

WebSphere

MQ

as

the

JMS

provider

is

a

full

broker

such

as

WebSphere

MQ

Event

Broker.

Failing

this,

you

can

install

the

MA0C

SupportPac

with

WebSphere

MQ.
–

If

you

install

WebSphere

MQ

as

the

JMS

provider,

you

can

use

the

WebSphere

administrative

console

to

administer

the

WebSphere

MQ

JMS

provider

resources,

such

as

queue

connection

factories.

However,

you

cannot

administer

MQ

security,

which

is

administered

through

WebSphere

MQ.

–

You

can

change

from

using

WebSphere

embedded

messaging

to

WebSphere

MQ

as

the

JMS

provider

for

WebSphere

enterprise

applications,

as

described

in

Moving

from

the

embedded

WebSphere

JMS

provider

to

WebSphere

MQ.
For

more

information

about

scenarios

and

considerations

for

using

WebSphere

MQ

with

IBM

WebSphere

Application

Server,

see

the

White

Papers

and

Red

books

provided

by

WebSphere

MQ;

for

example,

through

the

WebSphere

MQ

library

Web

page

at

http://www-3.ibm.com/software/ts/mqseries/library/

v

Installing

another

JMS

provider,

which

must

conform

to

the

JMS

specification

and,

to

use

message-driven

beans,

support

the

ASF

function.

If

you

want

to

use

a

JMS

provider

other

than

the

embedded

WebSphere

JMS

provider

or

a

WebSphere

MQ

JMS

provider,

you

should

complete

the

following

steps:

1.

Installing

and

configuring

the

JMS

provider

and

its

resources

by

using

the

tools

and

information

provided

with

the

JMS

provider.

2.

Defining

the

JMS

provider

to

WebSphere

Application

Server

as

a

generic

JMS

provider.

Note:

You

cannot

use

the

WebSphere

administrative

console

to

administer

the

JMS

provider

or

its

resources.

To

install

a

JMS

provider

for

IBM

WebSphere

Application

Server,

consider

the

following

scenarios:

A

new

IBM

WebSphere

Application

Server

server

machine,

hostA.

This

scenario

starts

with

adding

embedded

messaging

as

the

JMS

provider,

then

optionally

adding

WebSphere

MQ

as

an

alternative

JMS

provider.

Each

stage

summarizes

the

messaging

functions

that

can

be

added.

1.

Installing

embedded

messaging

as

the

only

JMS

provider.

You

want

to

be

able

to

run

WebSphere

applications

that

use

the

WebSphere

JMS

resources

for

both

point-to-point

and

publish/subscribe

messaging.

a.

Install

and

customize

WebSphere

Application

Server

with

the

Embedded

Messaging

Server

and

Embedded

Messaging

Client

options.

b.

Use

the

administrative

console

to

configure

WebSphere

JMS

resources;

for

example,

WebSphere

Queue

Connection

Factories

and

WebSphere

Topic

Connection

Factories.

c.

On

any

client

machines

that

are

to

use

the

WebSphere

JMS

resources,

install

and

customize

WebSphere

Application

Server

with

the

Embedded

Messaging

Client

option.
2.

Adding

WebSphere

MQ

as

an

alternative

JMS

provider

for

point-to-point

messaging.

206

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

http://www-3.ibm.com/software/ts/mqseries/library/

Besides

the

point-to-point

and

publish/subscribe

messaging

that

uses

the

embedded

WebSphere

JMS

resources

(from

the

preceding

step),

you

want

to

use

WebSphere

MQ

Queue

resources

for

point-to-point

messaging.

a.

Install

WebSphere

MQ

5.3

with

the

required

features.

For

more

information

about

installing

WebSphere

MQ,

see

the

WebSphere

MQ

Quick

Beginnings

book

for

your

machine’s

platform.

When

installing

WebSphere

MQ,

perform

the

following

actions:

1)

When

asked

if

you

want

to

remove

or

modify

the

version

of

WebSphere

MQ

currently

installed,

choose

to

remove

the

Server.

(The

WebSphere

MQ

install

program

recognizes

the

installed

WebSphere

embedded

messaging

as

an

installed

version

of

WebSphere

MQ.)

2)

Select

the

option

to

keep

existing

queue

managers.

3)

Proceed

with

the

installation

of

the

full

WebSphere

MQ

Server

by

running

the

install

program

again,

after

the

old

WebSphere

MQ

server

(the

Embedded

Messaging

Server)

has

been

removed.
b.

Use

the

administrative

console

to

configure

WebSphere

MQ

Queue

Connection

Factories

and

WebSphere

MQ

Queue

Destinations.
3.

Adding

WebSphere

MQ

Event

Broker

for

alternative

publish/subscribe

messaging.

For

publish/subscribe

messaging,

you

want

to

be

able

to

run

WebSphere

applications

that

use

the

WebSphere

MQ

Topic

resources

or

the

embedded

WebSphere

Topic

resources

(such

as

those

configured

in

preceding

steps).

a.

Install

WebSphere

MQ

Event

Broker.

For

more

information

about

installing

WebSphere

MQ

Event

Broker,

see

the

WebSphere

MQ

Event

Broker

Installation

Guide

for

your

machine’s

platform.

b.

Use

the

administrative

console

to

configure

WebSphere

MQ

Topic

Connection

Factories

and

WebSphere

MQ

Topic

Destinations.
An

existing

WebSphere

MQ

5.2

server

and

broker

machine,

hostA,

where

you

want

to

install

embedded

messaging

as

the

JMS

provider.

1.

Upgrade

to

WebSphere

MQ

5.3

with

the

required

features.

For

more

information

about

upgrading

to

WebSphere

MQ

5.3,

see

“Migrating

from

an

earlier

version”

in

the

WebSphere

MQ

Quick

Beginnings

book

for

your

machine’s

platform.

2.

To

continue

using

publish/subscribe

messaging,

upgrade

to

a

supported

broker

such

as

WebSphere

MQ

Event

Broker.

3.

Install

and

customize

WebSphere

Application

Server

with

the

Embedded

Messaging

Server.

You

do

not

need

to

install

the

Embedded

Messaging

Client,

which

is

the

same

as

installed

with

WebSphere

MQ.

4.

Use

the

administrative

console

to

configure

WebSphere

JMS

resources;

for

example,

WebSphere

Queue

Connection

Factories

and

WebSphere

Topic

Connection

Factories.

5.

If

you

want

WebSphere

applications

to

use

the

WebSphere

MQ

resources,

use

the

administrative

console

to

configure

WebSphere

MQ

JMS

resources;

for

example,

WebSphere

MQ

Queue

Connection

Factories

and

WebSphere

MQ

Destinations.

6.

On

any

client

machines

that

are

to

use

the

WebSphere

JMS

resources,

install

and

customize

WebSphere

Application

Server.

If

the

WebSphere

MQ

client

is

not

installed,

install

Embedded

Messaging

Client

option.

You

can

run

WebSphere

applications

that

use

both

the

WebSphere

JMS

resources

and

WebSphere

MQ

JMS

resources

for

messaging.

Chapter

3.

Using

asynchronous

messaging

207

http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/platspecific.html
http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/platspecific.html
http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/wsmqebv21.html
http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/wsmqebv21.html
http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/platspecific.html
http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/platspecific.html

An

existing

WebSphere

MQ

server

machine,

hostA,

where

you

want

to

use

WebSphere

MQ

as

the

only

JMS

provider.

1.

For

point-to-point

messaging,

ensure

that

you

have

installed

WebSphere

MQ

5.3

with

required

features.

For

publish/subscribe

messaging,

ensure

that

you

have

also

installed

a

supported

broker

such

as

WebSphere

MQ

Event

Broker.

For

more

information

about

installing

WebSphere

MQ

5.3

and

Event

Broker,

see

the

WebSphere

MQ

Quick

Beginnings

book

and

WebSphere

MQ

Event

Broker

Installation

Guide

for

your

machine’s

platform.

2.

Install

and

customize

WebSphere

Application

Server

without

any

of

the

Embedded

Messaging

Server

and

Embedded

Messaging

Client

options.

3.

Use

the

administrative

console

to

configure

WebSphere

MQ

JMS

resources;

for

example,

WebSphere

MQ

Queue

Connection

Factories

and

WebSphere

MQ

Topic

Connection

Factories.

4.

On

any

client

machines

that

are

to

use

the

WebSphere

JMS

resources,

install

and

customize

WebSphere

Application

Server.

If

the

WebSphere

MQ

client

is

not

installed,

install

the

Embedded

Messaging

Client

option.

You

can

run

WebSphere

applications

that

use

the

WebSphere

MQ

JMS

resources

for

point-to-point

or

(with

a

supported

broker

installed)

publish/subscribe

messaging.

Installing

WebSphere

MQ

as

the

JMS

provider:

Use

this

task

to

install

and

configure

WebSphere

MQ

with

support

for

the

Java

Message

Service

(JMS)

for

use

with

the

WebSphere

Application

Server.

To

install

and

configure

WebSphere

MQ

(MQSeries)

for

use

as

a

JMS

provider

to

IBM

WebSphere

Application

Server,

complete

the

following

steps:

1.

Install

WebSphere

MQ

5.3,

with

the

required

MQ

features,

as

described

in

the

installation

instructions

provided

with

WebSphere

MQ.

If

you

are

installing

WebSphere

MQ

on

top

of

WebSphere

Application

Server

embedded

messaging,

perform

the

following

actions

when

installing

WebSphere

MQ:

a.

When

asked

if

you

want

to

remove

or

modify

the

version

of

WebSphere

MQ

currently

installed,

choose

to

remove

the

Server.

(The

WebSphere

MQ

install

program

recognizes

the

installed

WebSphere

embedded

messaging

as

an

installed

version

of

WebSphere

MQ.)

b.

Select

the

option

to

keep

existing

queue

managers.

c.

Proceed

with

the

installation

of

the

full

WebSphere

MQ

Server

by

running

the

install

program

again,

after

the

old

WebSphere

MQ

server

(the

Embedded

Messaging

Server)

has

been

removed.

If

you

want

to

use

the

original

WebSphere

MQ

5.3

release,

ensure

that

you

install

the

CSD04

update.

If

you

want

to

use

WebSphere

MQ

5.3

on

the

same

machine

as

WebSphere

Application

Server

embedded

messaging,

ensure

that

you

install

the

following

WebSphere

MQ

features:

v

For

a

WebSphere

Application

Server

Embedded

Messaging

Server

installation,

the

required

MQ

features

are

“Server”

and

“Java

Messaging”.

v

For

a

WebSphere

Application

Server

Embedded

Messaging

Client

installation,

the

only

required

MQ

feature

is

“Java

Messaging”.

208

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/platspecific.html
http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/platspecific.html
http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/wsmqebv21.html

For

information

about

installing

WebSphere

MQ

5.3,

or

migrating

to

WebSphere

MQ

5.3

from

an

earlier

release,

see

the

appropriate

WebSphere

MQ

Quick

Beginnings

book,

as

listed

above.

2.

If

you

want

to

use

WebSphere

MQ

-

Publish/Subscribe

support,

you

need

to

provide

a

Publish/Subscribe

broker.

For

example,

you

can

do

this

by

using

either

WebSphere

MQ

Event

Broker

or

WebSphere

MQ

Integrator

(formerly

MQSeries

Integrator).

For

more

information

about

these

products,

see

the

following

Web

sites:

v

WebSphere

MQ

Event

Broker

Web

site

at

http://www-
4.ibm.com/software/ts/mqseries/platforms/#eventb

v

WebSphere

MQ

Integrator

Web

site

at

http://www-
4.ibm.com/software/ts/mqseries/platforms/#integrator

3.

Follow

the

WebSphere

MQ

5.3

instructions

for

verifying

your

installation

setup.

4.

For

AIX,

see

the

WebSphere

MQ

5.3

readme.txt

for

additional

steps.

5.

If

you

want

to

install

IBM

WebSphere

Application

Server

on

the

same

host

as

WebSphere

MQ,

and

have

not

yet

done

so,

install

and

customize

WebSphere

Application

Server.

If

you

do

not

want

to

use

the

embedded

WebSphere

JMS

provider,

you

can

install

WebSphere

MQ

then

install

WebSphere

Application

Server

without

the

Embedded

Messaging

options.

6.

Set

the

MQJMS_LIB_ROOT

environment

variable

to

the

directory

where

WebSphereMQ\Java\lib

is

installed.

IBM

WebSphere

Application

Server

uses

the

MQJMS_LIB_ROOT

to

locate

the

WebSphere

MQ

libraries

for

the

WebSphere

MQ

JMS

Provider.

This

task

has

installed

WebSphere

MQ

for

use

as

the

JMS

provider

with

WebSphere

Application

Server.

You

can

configure

JMS

resources

to

be

provided

by

WebSphere

MQ,

by

using

the

WebSphere

administrative

console

to

define

WebSphere

MQ

resources.

After

installing

WebSphere

MQ

and

WebSphere

Application

Server

on

the

same

host,

you

should

only

service

WebSphere

MQ

with

its

CSD

updates,

and

separately

service

WebSphere

Application

Server

with

its

fix

packs.

This

approach

helps

to

avoid

potential

failures

if

you

later

decide

to

uninstall

WebSphere

Application

Server

fix

packs.

Also,

if

you

apply

a

fix

pack

to

WebSphere

Application

Server,

specify

not

to

update

the

Embedded

Messaging

feature.

Defining

a

generic

JMS

provider:

Use

this

task

to

define

a

new

JMS

provider

to

WebSphere

Application

Server,

for

use

instead

of

the

embedded

WebSphere

JMS

provider

or

a

WebSphere

MQ

JMS

provider.

Before

starting

this

task,

you

should

have

installed

and

configured

the

JMS

provider

and

its

resources

by

using

the

tools

and

information

provided

with

the

JMS

provider.

To

define

a

new

generic

JMS

provider

to

WebSphere

Application

Server,

use

the

administrative

console

to

complete

the

following

steps:

1.

In

the

navigation

pane,

expand

Resources->

Generic

JMS

Providers

This

displays

the

existing

generic

JMS

providers

in

the

content

pane.

Chapter

3.

Using

asynchronous

messaging

209

http://www-4.ibm.com/software/ts/mqseries/platforms/#eventb
http://www-4.ibm.com/software/ts/mqseries/platforms/#eventb
http://www-4.ibm.com/software/ts/mqseries/platforms/#integrator
http://www-4.ibm.com/software/ts/mqseries/platforms/#integrator

2.

To

define

a

new

generic

JMS

provider,

click

New

in

the

content

pane.

Otherwise,

to

change

the

definition

of

an

existing

JMS

provider,

click

the

JMS

provider.

This

displays

the

properties

used

to

define

the

JMS

provider

in

the

content

pane.

3.

Specify

appropriate

properties

for

the

JMS

provider.

4.

Click

OK.

5.

To

save

your

configuration,

click

Save

on

the

task

bar

of

the

Administrative

console

window.

6.

To

have

the

changed

configuration

take

effect,

stop

then

restart

the

application

server.

Installing

WebSphere

embedded

messaging

as

the

JMS

provider:

Use

this

task

to

install

the

Embedded

Messaging

options

of

IBM

WebSphere

Application

Server

for

use

as

the

JMS

provider.

Installing

the

WebSphere

embedded

messaging

feature

for

WebSphere

Application

Server

for

z/OS

V5

is

done

in

two

parts:

v

The

first

part

consists

of

the

SMP/E

install

process

and

as

such

is

documented

in

detail

in

the

IBM

WebSphere

Application

Server

for

z/OS

V5

Program

Directory.

v

The

second

part

consists

of

the

customization

process

which

is

completed

using

the

Customization

Dialog.

This

process

is

documented

in

detail

in

the

IBM

WebSphere

Application

Server

for

z/OS

V5

Installation

and

Customization

Guide.

Both

of

these

publications

are

readily

available

on

the

WebSphere

Application

Server

for

z/OS

library

page.

If

you

have

installed

the

Embedded

Messaging

Server

option

on

top

of

WebSphere

MQ,

the

MQ

command

setmqcap

is

set

to

use

parameter

0

instead

of

-1,

which

results

in:

v

Issuing

a

license-unit

message

to

the

MQ

console

window

whenever

a

queue

manager

starts

v

Writing

a

message

to

the

MQ

error

log

To

prevent

this,

after

you

have

completed

the

installation

of

IBM

WebSphere

Application

Server,

issue

the

setmqcap

-1

command

from

a

command

line.

After

installing

WebSphere

MQ

and

WebSphere

Application

Server

on

the

same

host,

you

should

service

WebSphere

MQ

independently

of

the

WebSphere

Application

Server

fix

packs.

This

approach

helps

to

avoid

potential

failures

if

you

later

decide

to

uninstall

WebSphere

Application

Server

fix

packs.

Moving

from

the

embedded

WebSphere

JMS

provider

to

WebSphere

MQ

Use

this

task

to

move

from

the

embedded

WebSphere

JMS

provider

to

WebSphere

MQ

as

the

provider

of

messaging

services

and

resources

for

WebSphere

enterprise

applications.

To

move

from

the

embedded

WebSphere

JMS

provider

to

WebSphere

MQ

as

the

provider

of

messaging

services

and

resources

for

WebSphere

enterprise

applications,

you

need

to

install

and

configure

a

supported

level

of

WebSphere

MQ

with

the

required

MQ

features.

210

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

http://www-3.ibm.com/software/webservers/appserv/library_390.html
http://www-3.ibm.com/software/webservers/appserv/library_390.html

Existing

JMS

resource

definitions

for

the

embedded

WebSphere

JMS

provider

continue

to

work

with

WebSphere

MQ

as

the

JMS

provider,

so

you

do

not

need

to

redefine

those

JMS

resources.

However,

to

take

advantage

of

the

extra

configuration

options

for

WebSphere

MQ,

you

can

use

the

administrative

console

to

define

new

JMS

resources

as

WebSphere

MQ

resources;

for

example,

to

define

MQ

Queue

Connection

Factories.

1.

For

WebSphere

MQ

point-to-point

messaging,

install

the

base

WebSphere

MQ

product.

2.

Configure

WebSphere

MQ

queue

resources

to

IBM

WebSphere

Application

Server.

v

For

point-to-point

messaging

WebSphere

applications

can

continue

to

use

WebSphere

queue

resources

(through

the

embedded

messaging

JMS

provider)

or

WebSphere

MQ

queue

resources.

v

For

publish/subscribe

messaging,

WebSphere

applications

can

continue

to

use

WebSphere

topic

resources

(through

the

embedded

messaging

JMS

provider).
3.

For

WebSphere

MQ

publish/subscribe

messaging,

install

a

Publish/Subscribe

broker,

such

as

WebSphere

MQ

Event

Broker.

For

more

information

about

installing

WebSphere

MQ

Event

Broker

or

WebSphere

MQ

Integrator

(formerly

MQSeries

Integrator),

see

the

following

Web

sites:

v

WebSphere

MQ

Event

Broker

Web

site

at

http://www-
4.ibm.com/software/ts/mqseries/platforms/#eventb

v

WebSphere

MQ

Integrator

Web

site

at

http://www-
4.ibm.com/software/ts/mqseries/platforms/#integrator

4.

Configure

WebSphere

MQ

topic

resources

to

IBM

WebSphere

Application

Server.

For

publish/subscribe

messaging,

WebSphere

applications

can

continue

to

use

WebSphere

topic

resources

(through

the

embedded

messaging

JMS

provider)

or

WebSphere

MQ

topics.

Managing

JMS

servers

on

an

Application

Server

node

Use

this

task

to

manage

JMS

servers

on

an

Application

Server

node

that

is

not

part

of

a

deployment

manager

cell.

On

an

Application

Server

node

that

is

not

part

of

a

deployment

manager

cell,

each

application

server

has

an

internal

JMS

server

that

runs

as

part

of

the

application

server

process

and

is

administered

as

additional

properties

of

the

application

server.

A

JMS

server

enables

the

application

server

to

access

JMS

resources.

If

you

want

to

start

a

JMS

server

that

is

not

part

of

a

deployment

manager

cell,

you

start

the

associated

application

server.

A

JMS

server

makes

use

of

separate

WebSphere

MQ

processes.

If

a

WebSphere

MQ

process

fails

and

restarts

while

the

JMS

server

is

running,

you

must

restart

the

application

server.

This

shutdown

also

can

affect

other

installed

applications.

Before

starting

the

application

server,

ensure

that

the

required

WebSphere

MQ

messages

are

not

being

suppressed

by

the

message

processing

facility

(MPF).

For

more

information

about

starting

application

servers,

see

the

Information

Center

topic

Starting

servers.

You

can

use

the

WebSphere

administrative

console

to

configure

a

general

set

of

JMS

server

properties,

which

add

to

the

default

values

of

properties

configured

automatically

for

the

embedded

WebSphere

JMS

provider.

Chapter

3.

Using

asynchronous

messaging

211

http://www-4.ibm.com/software/ts/mqseries/platforms/#eventb
http://www-4.ibm.com/software/ts/mqseries/platforms/#eventb
http://www-4.ibm.com/software/ts/mqseries/platforms/#integrator
http://www-4.ibm.com/software/ts/mqseries/platforms/#integrator

To

configure

JMS

server

properties,

use

the

administrative

console

to

complete

the

following

steps:

1.

In

the

navigation

pane,

select

Servers->

Application

Servers

This

displays

a

table

of

the

application

servers

in

the

administrative

domain.

2.

In

the

content

pane,

click

the

name

of

the

application

server.

This

displays

the

properties

of

the

application

server

in

the

content

pane.

3.

In

the

content

pane,

under

Additional

Properties,

select

Server

components->

JMS

Server

This

displays

the

JMS

server

properties

in

the

content

pane.

4.

Specify

appropriate

properties

for

the

JMS

server.

If

you

want

the

JMS

server

to

be

started

automatically

when

the

application

server

is

next

started,

set

the

Initial

state

property

to

started.

If

you

want

to

add

a

new

queue

to

be

hosted

by

the

JMS

server,

add

the

administrative

name

of

the

queue

to

the

Queue

Names

field.

(The

name

must

match

the

name

of

a

WebSphere

Queue

administrative

object,

including

the

use

of

upper-

and

lowercase.)

Similarly,

if

you

want

to

remove

a

queue

from

the

JMS

server,

remove

its

name

from

that

field.

5.

Click

OK.

6.

To

save

your

configuration,

click

Save

on

the

task

bar

of

the

administrative

console

window.

7.

To

have

the

changed

configuration

take

effect,

stop

then

restart

the

application

server.

Managing

JMS

servers

in

a

deployment

manager

cell

Use

this

task

to

manage

JMS

servers

on

nodes

in

a

WebSphere

Application

Server

deployment

manager

cell.

Before

starting

a

JMS

server,

ensure

that

the

following

WebSphere

MQ

messages

are

not

being

suppressed

by

the

message

processing

facility

(MPF):

CSQV086E

CSQY022I

CSQY003I

CSQX022I

CSQM132I

CSQ9022I

CSQX017I

CSQ3104I

CSQ3106E

In

a

WebSphere

Application

Server

deployment

manager

cell,

each

node

can

have

at

most

one

JMS

server,

and

any

application

server

within

the

cell

can

access

JMS

resources

served

by

any

of

those

JMS

servers.

You

can

use

the

WebSphere

administrative

console

to

display

a

list

of

all

JMS

servers,

to

show

and

control

their

runtime

status.

You

can

also

configure

a

general

set

of

JMS

server

properties,

which

add

to

the

default

values

of

WebSphere

MQ

properties

configured

automatically

for

the

embedded

WebSphere

JMS

provider.

Note:

In

general,

the

default

values

of

WebSphere

MQ

properties

are

adequate

for

WebSphere

internal

JMS

servers.

However,

if

you

are

running

high

messaging

loads,

you

may

need

to

change

some

WebSphere

MQ

properties;

for

example,

WebSphere

MQ

properties

for

log

file

locations,

file

pages,

and

buffer

pages.

For

more

information

about

configuring

WebSphere

MQ

properties,

see

the

WebSphere

MQ

System

Administration

book,

SC33-1873,

which

is

available

from

the

IBM

Publications

Center

or

from

the

WebSphere

MQ

collection

kit,

SK2T-0730.

To

manage

a

WebSphere

internal

JMS

server,

use

the

administrative

console

to

complete

the

following

steps:

1.

In

the

navigation

pane,

select

Servers->

JMS

Servers

This

displays

a

table

of

the

JMS

servers,

showing

their

runtime

status.

212

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

2.

If

you

want

to

change

the

runtime

status

of

a

JMS

server,

complete

the

following

steps:

a.

In

the

table

of

JMS

servers,

select

the

JMS

servers

that

you

want

to

act

on.

v

To

act

on

one

or

more

specific

JMS

servers,

select

the

checkbox

next

to

the

JMS

server

name.

v

To

act

on

all

JMS

servers,

select

the

checkbox

next

to

the

JMS

servers

title

of

the

table.
b.

Click

one

of

the

actions

displayed

to

change

the

status

of

the

JMS

servers;

for

example,

click

Stop

to

stop

a

JMS

server.

The

status

of

the

JMS

servers

that

you

have

acted

on

is

updated

to

show

the

result

of

your

actions.

3.

If

you

want

to

change

the

properties

of

a

JMS

server,

click

the

name

of

the

JMS

server.

This

displays

the

properties

of

the

JMS

server

in

the

content

pane.

4.

Specify

appropriate

properties

for

the

JMS

server.

If

you

want

to

add

a

new

queue

to

be

hosted

by

the

JMS

server,

add

the

administrative

name

of

the

queue

to

the

Queue

Names

field.

(The

name

must

match

the

name

of

a

WebSphere

Queue

administrative

object,

including

the

use

of

upper-

and

lowercase.)

Similarly,

if

you

want

to

remove

a

queue

from

the

JMS

server,

remove

its

name

from

that

field.

5.

Click

OK.

6.

To

save

your

configuration,

click

Save

on

the

task

bar

of

the

Administrative

console

window.

7.

To

have

the

changed

configuration

take

effect,

stop

then

restart

the

JMS

Server.

Configuring

JMS

provider

resources

Use

the

following

tasks

to

configure

JMS

provider

resources

needed

to

support

enterprise

beans

that

exploit

JMS

services.

v

Configuring

resources

for

the

embedded

WebSphere

JMS

provider

–

Configuring

a

queue

connection

factory

–

Configuring

a

topic

connection

factory

–

Configuring

a

queue

destination

–

Configuring

a

topic

destination
v

Configuring

resources

for

the

WebSphere

MQ

JMS

provider

–

Configuring

a

queue

connection

factory

–

Configuring

a

topic

connection

factory

–

Configuring

a

queue

destination

–

Configuring

a

topic

destination
v

Configuring

resources

for

a

generic

JMS

provider

–

Configuring

a

JMS

connection

factory

–

Configuring

a

JMS

destination

Configuring

resources

for

the

embedded

WebSphere

JMS

provider:

Use

the

following

tasks

to

configure

the

connection

factories

and

destinations

for

the

embedded

WebSphere

JMS

provider.

You

only

need

to

complete

these

tasks

if

your

WebSphere

Application

Server

environment

uses

the

embedded

WebSphere

JMS

provider

to

support

enterprise

applications

that

use

JMS.

v

Configuring

a

queue

connection

factory

v

Configuring

a

topic

connection

factory

v

Configuring

a

queue

destination

v

Configuring

a

topic

destination

Chapter

3.

Using

asynchronous

messaging

213

Configuring

a

queue

connection

factory,

embedded

WebSphere

JMS

provider:

Use

this

task

to

configure

the

properties

of

a

queue

connection

factory

for

use

with

the

embedded

WebSphere

JMS

provider.

This

task

contains

an

optional

step

for

you

to

create

a

new

queue

connection

factory.

To

configure

the

properties

of

a

queue

connection

factory

for

use

with

the

embedded

WebSphere

JMS

provider,

use

the

administrative

console

to

complete

the

following

steps:

1.

In

the

navigation

pane,

click

Resources->

WebSphere

JMS

Provider

This

displays

in

the

content

pane

a

table

of

properties

for

the

WebSphere

JMS

provider,

including

links

to

the

types

of

JMS

resources

supported

by

the

JMS

provider.

2.

Optional:

Change

the

Scope

check

box

to

Cell,

Node,

or

Server,

according

to

your

needs.

3.

In

the

content

pane,

under

Additional

Properties,

click

WebSphere

Queue

Connection

Factories

This

displays

any

existing

queue

connection

factories

for

the

WebSphere

JMS

provider

in

the

content

pane.

4.

To

create

a

new

queue

connection

factory,

click

New

in

the

content

pane.

Otherwise,

to

change

the

properties

of

an

existing

queue

connection

factory,

click

one

of

the

connection

factories

displayed.

This

displays

the

properties

for

the

queue

connection

factory

in

the

content

pane.

5.

Specify

appropriate

properties

for

the

queue

connection

factory.

6.

Click

OK.

7.

To

save

your

configuration,

click

Save

on

the

task

bar

of

the

Administrative

console

window.

8.

To

have

the

changed

configuration

take

effect,

stop

then

restart

the

application

server.

Configuring

a

topic

connection

factory,

embedded

WebSphere

JMS

provider:

Use

this

task

to

configure

the

properties

of

a

topic

connection

factory

for

use

with

the

embedded

WebSphere

JMS

provider.

This

task

contains

an

optional

step

for

you

to

create

a

new

topic

connection

factory.

To

configure

the

properties

of

a

topic

connection

factory

for

use

with

the

embedded

WebSphere

JMS

provider,

use

the

administrative

console

to

complete

the

following

steps:

1.

In

the

navigation

pane,

click

Resources->

WebSphere

JMS

Provider

This

displays

in

the

content

pane

a

table

of

properties

for

the

WebSphere

JMS

provider,

including

links

to

the

types

of

JMS

resources

supported

by

the

JMS

provider.

2.

Optional:

Change

the

Scope

check

box

to

Cell,

Node,

or

Server,

according

to

your

needs.

3.

In

the

content

pane,

under

Additional

Properties,

click

WebSphere

Topic

Connection

Factories

This

displays

any

existing

topic

connection

factories

for

the

WebSphere

JMS

provider

in

the

content

pane.

4.

To

create

a

new

topic

connection

factory,

click

New

in

the

content

pane.

Otherwise,

to

change

the

properties

of

an

existing

topic

connection

factory,

click

one

of

the

connection

factories

displayed.

This

displays

the

properties

for

the

topic

connection

factory

in

the

content

pane.

5.

Specify

appropriate

properties

for

the

topic

connection

factory.

6.

Click

OK.

214

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

7.

To

save

your

configuration,

click

Save

on

the

task

bar

of

the

Administrative

console

window.

8.

To

have

the

changed

configuration

take

effect,

stop

then

restart

the

application

server.

Configuring

a

queue

destination,

embedded

WebSphere

JMS

provider:

Use

this

task

to

configure

the

properties

of

a

queue

destination

for

use

with

the

embedded

WebSphere

JMS

provider.

This

task

contains

an

optional

step

for

you

to

create

a

new

queue

destination.

To

optimize

performance,

configure

the

queue

destination

properties

to

best

fit

your

applications.

You

should

also

consider

queue

attributes

of

the

internal

JMS

server

that

are

associated

with

the

queue

name.

For

more

information,

see

the

Information

Center

topic

″Performance

considerations

for

WebSphere

queue

destinations.″

To

configure

the

properties

of

a

queue

destination

for

use

with

the

embedded

WebSphere

JMS

provider,

use

the

administrative

console

to

complete

the

following

steps:

1.

In

the

navigation

pane,

expand

Resources->

WebSphere

JMS

Provider

This

displays

in

the

content

pane

a

table

of

properties

for

the

WebSphere

JMS

provider,

including

links

to

the

types

of

JMS

resources

supported

by

the

JMS

provider.

2.

In

the

content

pane,

under

Additional

Properties,

click

WebSphere

Queue

Destinations

This

displays

any

existing

queue

destinations

for

the

WebSphere

JMS

provider

in

the

content

pane.

3.

To

create

a

new

queue

destination,

click

New

in

the

content

pane.

Otherwise,

to

change

the

properties

of

an

existing

queue

destination,

click

one

of

the

destinations

displayed.

This

displays

the

properties

for

the

queue

destination

in

the

content

pane.

4.

Specify

appropriate

properties

for

the

queue

destination.

5.

Click

OK.

6.

To

save

your

configuration,

click

Save

on

the

task

bar

of

the

Administrative

console

window.

7.

To

make

a

queue

destination

available

to

applications,

you

need

to

host

the

queue

on

a

JMS

server.

To

add

a

new

queue

to

a

JMS

server

or

to

change

an

existing

queue

on

a

JMS

server,

you

define

the

administrative

name

of

the

queue

to

the

JMS

server,

as

described

in

Managing

JMS

servers

in

a

deployment

manager

cell.

8.

To

have

the

changed

configuration

take

effect,

stop

then

restart

the

application

server.

Performance

considerations

for

WebSphere

queue

destinations:

To

optimize

performance,

configure

the

queue

destination

properties

to

best

fit

your

applications.

For

example,

setting

the

Expiry

property

to

SPECIFIED

and

the

Specified

Expiry

property

to

30000

milliseconds

for

the

expiry

timeout,

reduces

the

number

of

messages

that

can

be

queued.

To

ensure

that

there

are

enough

underlying

WebSphere

MQ

resources

available

for

the

queue,

you

must

ensure

that

you

configure

the

queue

destination

properties

adequately

for

your

application

usage.

Chapter

3.

Using

asynchronous

messaging

215

You

should

also

consider

queue

attributes

of

the

internal

JMS

server

that

are

associated

with

the

queue

name.

Inappropriate

queue

attributes

can

reduce

the

performance

of

WebSphere

operations.

BOQNAME

The

excessive

backout

requeue

name.

This

can

be

set

to

a

local

queue

name

that

can

hold

the

messages

which

were

rolled

back

by

the

WebSphere

applications.

This

queue

name

can

be

a

system

dead

letter

queue.

BOTHRESH

The

backout

threshold

and

can

be

set

to

a

number

once

the

threshold

is

reached,

the

message

will

be

moved

to

the

queue

name

specified

in

BOQNAME.

For

more

information

about

using

these

properties,

see:

v

“Handling

poison

messages”

in

the

WebSphere

MQ

Using

Java

book

v

The

WebSphere

MQ

Script

(MQSC)

Command

Reference

book

Configuring

a

topic

destination,

embedded

WebSphere

JMS

provider:

Use

this

task

to

configure

the

properties

of

a

topic

destination

for

use

with

the

embedded

WebSphere

JMS

provider.

This

task

contains

an

optional

step

for

you

to

create

a

new

topic

destination.

To

optimize

performance,

configure

the

topic

destination

properties

to

best

fit

your

applications.

For

more

information,

see

the

topic

″Performance

considerations

for

WebSphere

topic

destinations.″

To

configure

the

properties

of

a

topic

destination

for

use

with

the

embedded

WebSphere

JMS

provider,

use

the

administrative

console

to

complete

the

following

steps:

1.

In

the

navigation

pane,

click

Resources->

WebSphere

JMS

Provider

This

displays

in

the

content

pane

a

table

of

properties

for

the

WebSphere

JMS

provider,

including

links

to

the

types

of

JMS

resources

supported

by

the

JMS

provider.

2.

Optional:

Change

the

Scope

check

box

to

Cell,

Node,

or

Server,

according

to

your

needs.

3.

In

the

content

pane,

under

Additional

Properties,

click

WebSphere

Topic

Destinations

This

displays

any

existing

topic

destinations

for

the

WebSphere

JMS

provider

in

the

content

pane.

4.

To

create

a

new

topic

destination,

click

New

in

the

content

pane.

Otherwise,

to

change

the

properties

of

an

existing

topic

destination,

click

one

of

the

destinations

displayed.

This

displays

the

properties

for

the

topic

destination

in

the

content

pane.

5.

Specify

appropriate

properties

for

the

topic

destination.

6.

Click

OK.

7.

To

save

your

configuration,

click

Save

on

the

task

bar

of

the

Administrative

console

window.

8.

To

have

the

changed

configuration

take

effect,

stop

then

restart

the

application

server.

Performance

considerations

for

WebSphere

topic

destinations:

To

optimize

performance,

configure

the

queue

destination

properties

to

best

fit

your

applications.

For

example,

setting

the

Expiry

property

to

SPECIFIED

and

the

Specified

Expiry

property

to

30000

milliseconds

for

the

expiry

timeout,

reduces

the

number

of

216

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

messages

that

can

be

queued.

To

ensure

that

there

are

enough

underlying

WebSphere

MQ

resources

available

for

the

queue,

you

must

ensure

that

you

configure

the

queue

destination

properties

adequately

for

your

application

usage.

v

Ensure

the

queue

attribute,

INDXTYPE

is

set

to

MSGID

for

the

following

system

queues:

–

SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE

–

SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE
v

Ensure

the

queue

attribute,

INDXTYPE

is

set

to

CORRELID

for

the

following

system

queues:

–

SYSTEM.JMS.ND.SUBSCRIBER.QUEUE

–

SYSTEM.JMS.D.SUBSCRIBER.QUEUE

For

more

information

about

using

these

properties,

see:

v

The

WebSphere

MQ

Using

Java

book

v

The

WebSphere

MQ

Script

(MQSC)

Command

Reference

book

Configuring

resources

for

the

WebSphere

MQ

JMS

provider:

Use

the

following

tasks

to

configure

the

connection

factories

and

destinations

for

the

WebSphere

MQ

JMS

provider.

You

only

need

to

complete

these

tasks

if

your

WebSphere

Application

Server

environment

uses

the

WebSphere

MQ

JMS

provider

to

support

enterprise

applications

that

use

JMS.

To

enable

use

of

the

WebSphere

MQ

JMS

provider,

you

must

have

installed

and

configured

WebSphere

MQ

JMS

support,

as

described

in

Installing

and

configuring

WebSphere

MQ

as

the

JMS

provider.

v

Configuring

a

queue

connection

factory

v

Configuring

a

topic

connection

factory

v

Configuring

a

queue

destination

v

Configuring

a

topic

destination

v

Enabling

WebSphere

MQ

JMS

connection

pooling

Configuring

a

queue

connection

factory,

WebSphere

MQ

JMS

provider:

Use

this

task

to

configure

the

properties

of

a

queue

connection

factory

for

use

with

the

WebSphere

MQ

JMS

provider.

This

task

contains

an

optional

step

for

you

to

create

a

new

queue

connection

factory.

To

configure

the

properties

of

a

queue

connection

factory

for

use

with

the

WebSphere

MQ

JMS

provider,

use

the

administrative

console

to

complete

the

following

steps:

1.

In

the

navigation

pane,

click

Resources->

WebSphere

MQ

JMS

Provider

This

displays

in

the

content

pane

a

table

of

properties

for

the

WebSphere

JMS

provider,

including

links

to

the

types

of

JMS

resources

supported

by

the

JMS

provider.

2.

Optional:

Change

the

Scope

check

box

to

Cell,

Node,

or

Server,

according

to

your

needs.

3.

In

the

contents

pane,

under

Additional

Properties,

click

WebSphere

MQ

Queue

Connection

Factories

This

displays

a

table

listing

any

existing

queue

connection

factories,

with

a

summary

of

their

properties.

4.

To

create

a

new

queue

connection

factory,

click

New

in

the

content

pane.

Otherwise,

to

change

the

properties

of

an

existing

queue

connection

factory,

Chapter

3.

Using

asynchronous

messaging

217

click

one

of

the

connection

factories

displayed.

This

displays

the

properties

for

the

queue

connection

factory

in

the

content

pane.

5.

Specify

appropriate

properties

for

the

queue

connection

factory.

6.

5.1 +

Optional:

Specify

any

of

the

following

WebSphere

MQ

Secure

Sockets

Layer

(SSL)

properties

that

you

need,

as

Custom

properties

of

the

connection

factory:

SSLPEERNAME,

SSLCRL,

and

SSLCIPHERSUITE.

For

more

information

about

these

custom

properties,

see

Custom

properties.

7.

Click

OK.

8.

To

save

your

configuration,

click

Save

on

the

taskbar

of

the

Administrative

console

window.

9.

To

have

the

changed

configuration

take

effect,

stop

then

restart

the

application

server.

Configuring

a

topic

connection

factory,

WebSphere

MQ

JMS

provider:

Use

this

task

to

configure

the

properties

of

a

topic

connection

factory

for

use

with

the

WebSphere

MQ

JMS

provider.

This

task

contains

an

optional

step

for

you

to

create

a

new

topic

connection

factory.

To

configure

the

properties

of

a

topic

connection

factory

for

use

with

the

WebSphere

MQ

JMS

provider,

use

the

administrative

console

to

complete

the

following

steps:

1.

In

the

navigation

pane,

click

Resources->

WebSphere

MQ

JMS

Provider

This

displays

in

the

content

pane

a

table

of

properties

for

the

WebSphere

JMS

provider,

including

links

to

the

types

of

JMS

resources

supported

by

the

JMS

provider.

2.

Optional:

Change

the

Scope

check

box

to

Cell,

Node,

or

Server,

according

to

your

needs.

3.

In

the

contents

pane,

under

Additional

Properties,

click

WebSphere

MQ

Topic

Connection

Factories

This

displays

a

table

listing

any

existing

topic

connection

factories,

with

a

summary

of

their

properties.

4.

To

create

a

new

topic

connection

factory,

click

New

in

the

content

pane.

Otherwise,

to

change

the

properties

of

an

existing

topic

connection

factory,

click

one

of

the

connection

factories

displayed.

This

displays

the

properties

for

the

topic

connection

factory

in

the

content

pane.

5.

Specify

appropriate

properties

for

the

topic

connection

factory.

6.

5.1 +

Optional:

Specify

any

of

the

following

WebSphere

MQ

properties

that

you

need,

as

Custom

properties

of

the

connection

factory:

SSLPEERNAME,

SSLCRL,

SSLCIPHERSUITE,

MSGSELECTION,

and

SUBSTORE.

For

more

information

about

these

custom

properties,

see

Custom

properties.

7.

Click

OK.

8.

To

save

your

configuration,

click

Save

on

the

taskbar

of

the

Administrative

console

window.

9.

To

have

the

changed

configuration

take

effect,

stop

then

restart

the

application

server.

Configuring

a

queue

destination,

WebSphere

MQ

JMS

provider:

Use

this

task

to

configure

the

properties

of

a

queue

destination

for

use

with

the

WebSphere

MQ

JMS

provider.

This

task

contains

an

optional

step

for

you

to

create

a

new

queue

destination.

218

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

To

optimize

performance,

configure

the

queue

destination

properties

to

best

fit

your

applications.

You

should

also

consider

queue

attributes

of

the

internal

JMS

server

that

are

associated

with

the

queue

name.

For

more

information,

see

″Performance

considerations

for

WebSphere

MQ

queue

destinations.″

To

configure

the

properties

of

a

queue

destination

for

use

with

the

WebSphere

MQ

JMS

provider,

use

the

administrative

console

to

complete

the

following

steps:

1.

In

the

navigation

pane,

click

Resources->

WebSphere

MQ

JMS

Provider

This

displays

in

the

content

pane

a

table

of

properties

for

the

WebSphere

JMS

provider,

including

links

to

the

types

of

JMS

resources

supported

by

the

JMS

provider.

2.

Optional:

Change

the

Scope

check

box

to

Cell,

Node,

or

Server,

according

to

your

needs.

3.

In

the

contents

pane,

under

Additional

Properties,

click

WebSphere

MQ

Queue

Destinations

This

displays

a

table

listing

any

existing

queue

destinations,

with

a

summary

of

their

properties.

4.

To

define

a

new

queue

destination,

click

New

in

the

content

pane.

Otherwise,

to

change

the

properties

of

an

existing

queue

destination,

click

one

of

the

destinations

displayed.

This

displays

the

properties

for

the

queue

destination

in

the

content

pane.

5.

Configure

appropriate

properties

for

the

queue

destination.

6.

Optional:

If

you

want

WebSphere

Application

Server

to

try

to

use

the

WebSphere

MQ

queue

manager’s

remote

administration

utilities

to

create

the

queue,

configure

the

WebSphere

MQ

Queue

Connection

properties.

If

you

have

already

created

your

underlying

queue

in

WebSphere

MQ

using

its

administration

tools

(such

as

runmqsc

or

MQ

Explorer),

you

do

not

need

to

configure

any

of

the

WebSphere

MQ

Queue

Connection

properties.

You

only

need

to

configure

these

properties

if

you

want

WebSphere

Application

Server

to

try

to

use

the

WebSphere

MQ

queue

manager’s

remote

administration

utilities

to

create

the

queue.

Note:

For

any

changes

to

these

properties

to

take

effect

on

the

queue

manager,

the

WebSphere

MQ

Queue

Manager

on

which

the

queue

resides

(or

will

reside)

must

be

configured

for

remote

administration

and

be

running.

For

more

details

about

these

properties,

see

the

Information

Center

topic

″WebSphere

MQ

config

properties

for

the

queue

destination.″

7.

Click

Apply.

8.

To

save

your

configuration,

click

Save

on

the

task

bar

of

the

Administrative

console

window.

9.

To

have

the

changed

configuration

take

effect,

stop

then

restart

the

application

server.

Performance

considerations

for

WebSphere

MQ

queue

destinations:

To

optimize

performance,

configure

the

queue

destination

properties

to

best

fit

your

applications.

For

example,

setting

the

Expiry

property

to

SPECIFIED

and

the

Specified

Expiry

property

to

30000

milliseconds

for

the

expiry

timeout,

reduces

the

number

of

messages

that

can

be

queued.

To

ensure

that

there

are

enough

underlying

WebSphere

MQ

resources

available

for

the

queue,

you

must

ensure

that

you

configure

the

queue

destination

properties

adequately

for

your

application

usage.

Chapter

3.

Using

asynchronous

messaging

219

You

should

also

consider

queue

attributes

of

the

internal

JMS

server

that

are

associated

with

the

queue

name.

Inappropriate

queue

attributes

can

reduce

the

performance

of

WebSphere

operations.

You

should

also

consider

the

queue

attributes

associated

with

the

queue

name

you

created

with

WebSphere

MQ.

Inappropriate

queue

attributes

can

reduce

the

performance

of

WebSphere

operations.

You

can

use

WebSphere

MQ

commands

to

change

queue

attributes

for

the

queue

name.

BOQNAME

The

excessive

backout

requeue

name.

This

can

be

set

to

a

local

queue

name

that

can

hold

the

messages

which

were

rolled

back

by

the

WebSphere

applications.

This

queue

name

can

be

a

system

dead

letter

queue.

BOTHRESH

The

backout

threshold

and

can

be

set

to

a

number

once

the

threshold

is

reached,

the

message

will

be

moved

to

the

queue

name

specified

in

BOQNAME.

INDXTYPE

Set

this

to

MSGID.

This

causes

an

index

of

message

identifiers

to

be

maintained,

which

can

improve

WebSphere

MQ

retrieval

of

messages.

DEFSOPT

Set

this

to

SHARED

(for

shared

input

from

the

queue).

SHARE

This

must

be

specified

(so

that

multiple

applications

can

get

messages

from

this

queue).

For

more

information

about

using

these

properties,

see:

v

For

BOQNAME

and

BOTHRESH,

see

“Handling

poison

messages”

in

the

WebSphere

MQ

Using

Java

book

v

The

WebSphere

MQ

Script

(MQSC)

Command

Reference

book

Configuring

a

topic

destination,

WebSphere

MQ

JMS

provider:

Use

this

task

to

configure

the

properties

of

a

topic

destination

for

use

with

the

WebSphere

MQ

JMS

provider.

This

task

contains

an

optional

step

for

you

to

create

a

new

topic

destination.

To

optimize

performance,

configure

the

topic

destination

properties

to

best

fit

your

applications.

For

more

information,

see

“Performance

considerations

for

WebSphere

MQ

topic

destinations”

on

page

221.

To

configure

the

properties

of

a

topic

destination

for

use

with

the

WebSphere

MQ

JMS

provider,

use

the

administrative

console

to

complete

the

following

steps:

1.

In

the

navigation

pane,

click

Resources->

WebSphere

MQ

JMS

Provider

This

displays

in

the

content

pane

a

table

of

properties

for

the

WebSphere

JMS

provider,

including

links

to

the

types

of

JMS

resources

supported

by

the

JMS

provider.

2.

Optional:

Change

the

Scope

check

box

to

Cell,

Node,

or

Server,

according

to

your

needs.

3.

In

the

content

pane,

under

Additional

Properties,

click

WebSphere

MQ

Topic

Destinations

This

displays

a

table

listing

any

existing

topic

destinations,

with

a

summary

of

their

properties.

220

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

4.

To

create

a

new

topic

destination,

click

New

in

the

content

pane.

Otherwise,

to

change

the

properties

of

an

existing

topic

destination,

click

one

of

the

destinations

displayed.

This

displays

the

properties

for

the

topic

destination

in

the

content

pane.

5.

Specify

appropriate

properties

for

the

topic

destination.

6.

Click

OK.

7.

To

save

your

configuration,

click

Save

on

the

task

bar

of

the

Administrative

console

window.

8.

To

have

the

changed

configuration

take

effect,

stop

then

restart

the

application

server.

Performance

considerations

for

WebSphere

MQ

topic

destinations:

To

optimize

performance,

configure

the

topic

destination

properties

to

best

fit

your

applications.

For

example,

setting

the

Expiry

property

to

SPECIFIED

and

the

Specified

Expiry

property

to

30000

milliseconds

for

the

expiry

timeout,

reduces

the

number

of

messages

that

can

be

queued.

To

ensure

that

there

are

enough

underlying

WebSphere

MQ

resources

available

for

the

queue,

you

must

ensure

that

you

configure

the

queue

destination

properties

adequately

for

your

application

usage.

v

Ensure

the

queue

attribute,

INDXTYPE

is

set

to

MSGID

for

the

following

system

queues:

–

SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE

–

SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE
v

Ensure

the

queue

attribute,

INDXTYPE

is

set

to

CORRELID

for

the

following

system

queues:

–

SYSTEM.JMS.ND.SUBSCRIBER.QUEUE

–

SYSTEM.JMS.D.SUBSCRIBER.QUEUE

For

more

information

about

using

these

properties,

see:

v

The

WebSphere

MQ

Using

Java

book

v

The

WebSphere

MQ

Script

(MQSC)

Command

Reference

book

Configuring

WebSphere

MQ

JMS

connection

pooling:

Use

this

task

to

configure

properties

of

WebSphere

MQ

JMS

connection

pooling.

To

enable

WebSphere

MQ

JMS

connection

pooling,

complete

the

following

steps:

1.

Start

the

WebSphere

Administrative

console.

2.

In

the

navigation

pane,

select

Servers->

Application

Servers->

your_app_server

This

displays

the

properties

of

the

application

server,

your_app_server,

in

the

content

pane.

3.

In

the

Additional

Properties

table,

select

Message

Listener

Service

properties

This

displays

the

Message

Listener

Service

properties

in

the

content

pane.

4.

Select

Custom

Properties,

then

add

the

following

properties:

mqjms.pooling.threshold

The

maximum

number

of

unused

connections

in

the

pool.

mqjms.pooling.timeout

The

timeout

in

milliseconds

for

unused

connections

in

the

pool.
5.

Click

OK.

6.

To

save

your

configuration,

click

Save

on

the

task

bar

of

the

administrative

console

window.

Chapter

3.

Using

asynchronous

messaging

221

7.

To

have

the

changed

configuration

take

effect,

stop

then

restart

the

application

server.

Configuring

resources

for

a

generic

JMS

provider:

Use

the

following

tasks

to

configure

the

connection

factories

and

destinations

for

a

generic

JMS

provider

(not

the

embedded

WebSphere

JMS

provider

or

the

WebSphere

MQ

JMS

provider).

You

only

need

to

complete

these

tasks

if

your

WebSphere

Application

Server

environment

uses

another

JMS

provider

to

support

enterprise

applications

that

use

JMS.

To

enable

use

of

another

JMS

provider,

you

must

have

installed

and

configured

the

JMS

provider,

as

described

in

Defining

a

new

JMS

provider

to

WebSphere

Application

Server.

v

Configuring

a

JMS

connection

factory

v

Configuring

a

JMS

destination

Configuring

a

JMS

connection

factory,

generic

JMS

provider:

Use

this

task

to

configure

the

properties

of

a

JMS

connection

factory

for

use

with

a

generic

JMS

provider

other

than

the

embedded

WebSphere

JMS

provider

or

WebSphere

MQ.

To

configure

the

properties

of

a

JMS

connection

factory

for

use

with

a

generic

JMS

provider,

use

the

administrative

console

to

complete

the

following

steps:

1.

In

the

navigation

pane,

click

Resources->

Generic

JMS

Provider

This

displays

in

the

content

pane

a

table

of

properties

for

the

WebSphere

JMS

provider,

including

links

to

the

types

of

JMS

resources

supported

by

the

JMS

provider.

2.

Optional:

Change

the

Scope

check

box

to

Cell,

Node,

or

Server,

according

to

your

needs.

3.

In

the

Additional

Properties

list

in

the

contents

pane,

select

JMS

Connection

Factories

This

displays

a

table

listing

any

existing

JMS

connection

factories,

with

a

summary

of

their

properties.

4.

To

create

a

new

JMS

connection

factory,

click

New

in

the

content

pane.

Otherwise,

to

change

the

properties

of

an

existing

JMS

connection

factory,

click

one

of

the

connection

factories

displayed.

This

displays

the

properties

for

the

JMS

connection

factory

in

the

content

pane.

5.

Specify

appropriate

properties

for

the

JMS

connection

factory.

6.

Click

OK.

7.

To

save

your

configuration,

click

Save

on

the

task

bar

of

the

Administrative

console

window.

8.

To

have

the

changed

configuration

take

effect,

stop

then

restart

the

application

server.

Configuring

a

JMS

destination,

a

generic

JMS

provider:

Use

this

task

to

configure

the

properties

of

a

JMS

destination

for

use

with

a

generic

JMS

provider

(other

than

the

embedded

WebSphere

JMS

provider

or

the

WebSphere

MQ

JMS

provider).

To

configure

the

properties

of

a

JMS

destination

for

use

with

a

generic

JMS

provider,

use

the

administrative

console

to

complete

the

following

steps:

1.

In

the

navigation

pane,

click

Resources->

Generic

JMS

Providers

This

displays

in

the

content

pane

a

list

of

any

existing

generic

JMS

providers.

222

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

2.

Optional:

Change

the

Scope

check

box

to

Cell,

Node,

or

Server,

according

to

your

needs.

3.

In

the

content

pane,

click

the

JMS

provider

that

you

want

to

support

the

JMS

destination.

This

displays

in

the

content

pane

a

table

of

properties

for

the

JMS

provider,

including

links

to

the

types

of

JMS

resources

supported

by

the

JMS

provider.

4.

In

the

Additional

Properties

list

in

the

contents

pane,

select

JMS

Destinations

This

displays

a

table

listing

any

existing

JMS

destinations,

with

a

summary

of

their

properties.

5.

To

create

a

new

JMS

destination,

click

New

in

the

content

pane.

Otherwise,

to

change

the

properties

of

an

existing

queue

destination,

click

one

of

the

destinations

displayed.

This

displays

the

properties

for

the

JMS

destination

in

the

content

pane.

6.

Specify

appropriate

properties

for

the

JMS

destination.

7.

Click

OK.

8.

To

save

your

configuration,

click

Save

on

the

task

bar

of

the

Administrative

console

window.

9.

To

have

the

changed

configuration

take

effect,

stop

then

restart

the

application

server.

Configuring

authorization

security

for

the

embedded

WebSphere

JMS

provider

Use

this

task

to

configure

authorization

security

for

the

embedded

WebSphere

JMS

provider.

To

configure

authorization

security

for

the

embedded

WebSphere

JMS

provider

complete

the

following

steps.

Note:

Security

for

the

embedded

WebSphere

JMS

provider

is

enabled

when

you

enable

global

security

for

WebSphere

Application

Server.

For

more

information

about

enabling

global

security,

see

the

Information

Center

topic

Managing

secured

applications.

1.

Configure

authorization

settings

to

access

JMS

resources

owned

by

the

embedded

WebSphere

JMS

provider.

Authorization

to

access

JMS

resources

owned

by

the

embedded

WebSphere

JMS

provider

is

controlled

by

settings

in

the

WAS_PUBSUB_ROOT/WMQX/config/integral-jms-authorizations.xml

file.

Where

WAS_PUBSUB_ROOT

is

the

directory

where

the

WebSphere

Embedded

Publish

and

Subscribe

broker

(WEMPS)

is

installed.

The

settings

grant

or

deny

authenticated

userids

access

to

internal

JMS

provider

resources

(queues

or

topics).

As

supplied,

the

integral-jms-
authorisations.xml

file

grants

the

following

permissions:

v

Read

and

write

permissions

to

all

queues.

v

Publish,

subscribe,

and

persist

to

all

topics.

To

configure

authorization

settings,

edit

the

integral-jms-authorisations.xml

file

according

to

the

information

in

this

topic

and

in

that

file.

2.

Edit

the

queue-admin-userids

element

to

create

a

list

of

userids

with

administrative

access

to

all

queues.

Administrative

access

is

needed

to

create

queues

and

perform

other

administrative

activities

on

queues.

For

example,

consider

the

following

queue-admin-userids

section:

<queue-admin-userids>

<userid>adminid1</userid>

<userid>adminid2</userid>

</queue-admin-userids>

Chapter

3.

Using

asynchronous

messaging

223

In

this

example

the

userids

adminid1

and

adminid2

are

defined

to

have

administrative

access

to

all

queues.

3.

Edit

the

queue-default-permissions

element

to

define

the

default

queue

access

permissions.

These

permissions

are

used

for

queues

for

which

you

do

not

define

specific

permissions

(in

queue

sections).

If

this

section

is

not

specified,

then

access

permissions

exist

only

for

those

queues

for

which

you

have

specifically

created

queue

elements.

For

example,

consider

the

following

queue-default-permissions

element:

<queue-default-permissions>

<permission>write</permission>

</queue-default-permissions>

In

this

example

the

default

access

permission

for

all

queues

is

write.

This

can

be

overridden

for

a

specific

queue

by

creating

a

queue

element

that

sets

its

access

permission

to

read.

4.

If

you

want

to

define

specific

access

permissions

for

a

queue,

create

a

queue

element,

then

define

the

following

elements:

For

example,

consider

the

following

queue

element:

<queue>

<name>q1</name>

<public>

</public>

<authorize>

<userid>useridr</userid>

<permission>read</permission>

</authorize>

<authorize>

<userid>useridw</userid>

<permission>write</permission>

</authorize>

<authorize>

<userid>useridrw</userid>

<permission>read</permission>

<permission>write</permission>

</authorize>

</queue>

In

this

example

for

the

queue

q1,

the

userid

useridr

has

read

permission,

the

userid

useridw

has

write

permission,

the

userid

useridrw

has

both

read

and

write

permissions,

and

all

other

userids

have

no

access

permissions

(<public></public>).

5.

Edit

topic

elements

to

define

the

access

permissions

for

publish/subscribe

topic

destinations.

For

topics,

you

can

grant

and

deny

access

permissions.

Full

permission

inheritance

is

supported

on

topics.

If

you

do

not

define

specific

access

permissions

for

a

userid

on

a

specific

topic

then

permissions

are

inherited

first

from

the

public

permissions

on

that

topic

then

from

the

parent

topic.

The

inheritance

of

access

permissions

continues

until

the

root

topic

from

which

the

root

permissions

are

assumed.

a.

If

you

want

to

define

default

access

permissions

for

the

root

topic,

edit

a

topic

element

with

an

empty

name

element.

If

you

omit

such

a

topic

section,

topics

have

no

default

topic

permissions

other

than

those

defined

by

specific

topic

elements.

For

example,

consider

the

following

topic

element

for

the

root

topic:

224

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

<topic>

<name></name>

<public>

<permission>+pub</permission>

</public>

</topic>

In

this

example,

the

default

access

permission

for

all

topics

is

set

to

publish.

This

can

be

overridden

by

other

topic

elements

for

specific

topic

names.

b.

If

you

want

to

define

access

permissions

for

a

specific

topic,

create

a

topic

element

with

the

name

for

the

topic

then

define

the

access

permissions

in

the

public

and

authorize

elements

of

the

topic

element.

For

example,

consider

the

following

topic

section:

<topic>

<name>a/b/c</name>

<public>

<permission>+sub</permission>

</public>

<authorize>

<userid>useridpub</userid>

<permission>+pub</permission>

</authorize>

</topic>

In

this

example,

the

subscribe

permission

is

granted

to

anyone

accessing

any

topic

whose

name

starts

with

a/b/c.

Also,

the

userid

useridpub

is

granted

publish

permission

for

any

topic

whose

name

starts

with

a/b/c.
6.

Save

the

integral-jms-authorizations.xml

file.

If

the

dynamic

update

setting

is

selected,

changes

to

the

integral-jms-
authorizations.xml

file

become

active

when

the

changed

file

is

saved,

so

there

is

no

need

to

stop

and

restarted

the

JMS

server.

If

the

dynamic

update

setting

is

not

selected,

you

need

to

stop

and

restart

the

JMS

server

to

make

changes

active.

Dynamic

updating

is

available,

by

ensuring

proper

tagging

in

the

integral-jms-authorizations.xml

file

<dyanmic-update>true</dynamic-update>.

Authorization

settings

for

embedded

WebSphere

JMS

provider

resources:

Use

the

integral-jms-authorisations.xml

file

to

view

or

change

the

authorization

settings

for

JMS

resources

owned

by

the

embedded

WebSphere

JMS

provider.

Authorization

to

access

JMS

resources

owned

by

the

embedded

WebSphere

JMS

provider

is

controlled

by

the

following

settings

in

the

wempspath/wempsname/config/integral-jms-authorizations.xml

file.

This

structure

of

the

settings

in

integral-jms-authorisations.xml

is

shown

in

the

following

example.

Descriptions

of

these

settings

are

provided

after

the

example.

To

configure

authorization

settings,

follow

the

instructions

provided

in

Configuring

authorization

security

for

the

embedded

WebSphere

JMS

provider

<integral-jms-authorizations>

<dynamic-update>true</dynamic-update>

<queue-admin-userids>

<userid>adminid1</userid>

<userid>adminid2</userid>

</queue-admin-userids>

<queue-default-permissions>

<permission>write</permission>

Chapter

3.

Using

asynchronous

messaging

225

</queue-default-permissions>

<queue>

<name>q1</name>

<public>

</public>

<authorize>

<userid>useridr</userid>

<permission>read</permission>

</authorize>

<authorize>

<userid>useridw</userid>

<permission>write</permission>

</authorize>

</queue>

<queue>

<name>q2</name>

<public>

<permission>write</permission>

</public>

<authorize>

<userid>useridr</userid>

<permission>read</permission>

</authorize>

</queue>

<topic>

<name></name>

<public>

<permission>+pub</permission>

</public>

</topic>

<topic>

<name>a/b/c</name>

<public>

<permission>+sub</permission>

</public>

<authorize>

<userid>useridpub</userid>

<permission>+pub</permission>

</authorize>

</topic>

</integral-jms-authorizations>

dynamic-update:

Controls

whether

or

not

the

JMS

Server

checks

dynamically

for

updates

to

this

file.

true

(Default)

Enables

dynamic

update

support.

false

Disables

dynamic

update

checking

and

improves

authorization

performance.

queue-admin-userids:

This

element

lists

those

userids

with

administrative

access

to

all

WebSphere

queue

destinations.

Administrative

access

is

needed

to

create

queues

and

perform

other

administrative

activities

on

queues.

You

define

each

userid

within

a

separate

userid

sub

element:

<userid>adminid</userid>

Where

adminid

is

a

user

ID

that

can

be

authenticated

by

IBM

WebSphere

Application

Server.

queue-default-permissions:

This

element

defines

the

default

queue

access

permissions

that

are

assumed

if

no

permissions

are

specified

for

a

specific

queue

name.

These

permissions

are

used

for

queues

for

which

you

do

not

define

specific

226

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

permissions

(in

queue

elements).

If

this

element

is

not

specified,

then

no

access

permissions

exist

unless

explicitly

authorized

for

individual

queues.

You

define

the

default

permission

within

a

separate

permission

sub

element:

<permission>read-write</permission>

Where

read-write

is

one

of

the

following

keywords:

read

By

default,

userids

have

read

access

to

WebSphere

queue

destinations.

write

By

default,

userids

have

write

access

to

WebSphere

queue

destinations.

queue:

This

element

contains

the

following

authorization

settings

for

a

single

queue

destination:

name

The

name

of

the

queue.

public

The

default

public

access

permissions

for

the

queue.

This

is

used

only

for

those

userids

that

have

no

specific

authorize

element.

If

you

leave

this

element

empty,

or

do

not

define

it

at

all,

only

those

userids

with

authorize

elements

can

access

the

queue.

You

define

each

default

permission

within

a

separate

permission

element.

authorize

The

access

permissions

for

a

specific

userid.

Within

each

authorize

element,

you

define

the

following

elements:

userid

The

userid

that

you

want

to

assign

a

specific

access

permission.

permission

An

access

permission

for

the

associated

userid.

You

define

each

permission

within

a

separate

permission

element.

Each

permission

element

can

contain

the

keyword

read

or

write

to

define

the

access

permission.

For

example,

consider

the

following

queue

element:

<queue>

<name>q1</name>

<public>

</public>

<authorize>

<userid>useridr</userid>

<permission>read</permission>

</authorize>

<authorize>

<userid>useridw</userid>

<permission>write</permission>

</authorize>

<authorize>

<userid>useridrw</userid>

<permission>read</permission>

<permission>write</permission>

</authorize>

</queue>

topic:

This

element

contains

the

following

authorization

settings

for

a

single

topic

destination:

Each

topic

element

has

the

following

sub

elements:

name

The

name

of

the

topic,

without

wildcards

or

other

substitution

characters.

public

The

default

public

access

permissions

for

the

topic.

This

is

used

only

for

those

userids

that

have

no

specific

authorize

element.

If

you

leave

this

element

empty,

or

do

not

define

it

at

all,

only

those

userids

with

authorize

elements

can

access

the

topic.

Chapter

3.

Using

asynchronous

messaging

227

You

define

each

default

permission

within

a

separate

permission

element.

authorize

The

access

permissions

for

a

specific

userid.

Within

each

authorize

element,

you

define

the

following

elements:

userid

The

userid

that

you

want

to

assign

a

specific

access

permission.

permission

An

access

permission

for

the

associated

userid.

You

define

each

permission

within

a

separate

permission

element.

Each

permission

element

can

contain

one

of

the

following

keywords

to

define

the

access

permission:

+pub

Grant

publish

permission

+sub

Grant

subscribe

permission

+persist

Grant

persist

permission

-pub

Deny

publish

permission

-sub

Deny

subscribe

permission

-persist

Deny

persist

permission

Displaying

administrative

lists

of

JMS

resources

Use

this

task

with

the

WebSphere

administrative

console

to

display

administrative

lists

of

JMS

resources.

You

can

use

the

WebSphere

administrative

console

to

display

lists

of

the

following

types

of

JMS

resources.

You

can

use

the

panels

displayed

to

select

JMS

resources

to

administer,

or

to

create

or

delete

JMS

resources

(where

appropriate).

To

display

administrative

lists

of

JMS

resources,

complete

the

following

general

steps:

1.

Start

the

WebSphere

administrative

console.

2.

In

the

navigation

pane,

expand

the

appropriate

path

to

select

the

type

of

JMS

provider

(as

shown

in

the

following

table).

3.

If

appropriate,

in

the

content

pane,

select

a

specific

JMS

provider.

This

displays

the

properties

for

the

JMS

provider,

and

an

Additional

Properties

list

of

links

to

the

types

of

JMS

resources

provided.

4.

In

the

content

pane,

under

Additional

Resources,

select

the

link

for

the

type

of

JMS

resource.

This

displays

a

list

of

the

selected

JMS

resource

type

in

the

content

pane.

Table

4.

Network

Deployment

-

Administrative

panels

for

JMS

resources

Path

Panel

Description

Servers->

JMS

servers

JMS

servers

List

all

JMS

servers

within

the

administration

domain

Servers->

JMS

servers->

server_name

JMS

servers

List

properties

of

the

selected

JMS

server

server_name

Embedded

WebSphere

JMS

providers

Resources->

WebSphere

JMS

Provider

WebSphere

JMS

providers

List

all

WebSphere

JMS

providers

within

the

administration

domain

228

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Table

4.

Network

Deployment

-

Administrative

panels

for

JMS

resources

(continued)

Path

Panel

Description

Resources->

WebSphere

JMS

Provider

WebSphere

JMS

providers

List

properties

and

resources

at

the

selected

scope

Resources->

WebSphere

JMS

Provider->

(In

content

pane,

under

Additional

Properties)

WebSphere

Queue

Connection

Factories

WebSphere

queue

connection

factories

List

all

queue

connection

factories

at

the

selected

scope

Resources->

WebSphere

JMS

Provider->

(In

content

pane,

under

Additional

Properties)

WebSphere

Topic

Connection

Factories

WebSphere

topic

connection

factories

List

all

topic

connection

factories

at

the

selected

scope

Resources->

WebSphere

JMS

Provider->

(In

content

pane,

under

Additional

Properties)

WebSphere

Queue

Destinations

WebSphere

queue

destinations

List

all

queue

destinations

at

the

selected

scope

Resources->

WebSphere

JMS

Provider->

(In

content

pane,

under

Additional

Properties)

WebSphere

Topic

Destinations

WebSphere

topic

destinations

List

all

topic

destinations

at

the

selected

scope

WebSphere

MQ

JMS

provider

Resources->

WebSphere

MQ

JMS

Provider

WebSphere

MQ

JMS

Provider

List

properties

and

resource

types

for

the

WebSphere

MQ

JMS

provider

at

the

selected

scope

Resources->

WebSphere

MQ

JMS

Provider

WebSphere

MQ

JMS

provider

List

properties

and

resources

of

the

selected

WebSphere

MQ

JMS

provider

at

the

selected

scope

Resources->

WebSphere

MQ

JMS

Provider->

(In

content

pane,

under

Additional

Properties)

WebSphere

MQ

Queue

Connection

Factories

WebSphere

MQ

queue

connection

factories

List

all

queue

connection

factories

of

the

selected

WebSphere

MQ

JMS

provider

at

the

selected

scope

Resources->

WebSphere

MQ

JMS

Provider->

(In

content

pane,

under

Additional

Properties)

WebSphere

MQ

Topic

Connection

Factories

WebSphere

MQ

topic

connection

factories

List

all

topic

connection

factories

of

the

selected

WebSphere

MQ

JMS

provider

at

the

selected

scope

Resources->

WebSphere

MQ

JMS

Provider->

(In

content

pane,

under

Additional

Properties)

WebSphere

MQ

Queue

Destinations

WebSphere

MQ

queue

destinations

List

all

queue

destinations

of

the

selected

WebSphere

MQ

JMS

provider

at

the

selected

scope

Resources->

WebSphere

MQ

JMS

Provider->

(In

content

pane,

under

Additional

Properties)

WebSphere

MQ

Topic

Destinations

WebSphere

MQ

topic

destinations

List

all

topic

destinations

of

the

selected

WebSphere

MQ

JMS

provider

at

the

selected

scope

Chapter

3.

Using

asynchronous

messaging

229

Table

4.

Network

Deployment

-

Administrative

panels

for

JMS

resources

(continued)

Path

Panel

Description

Generic

JMS

providers

A

JMS

provider

other

than

the

embedded

WebSphere

JMS

provider

or

the

WebSphere

MQ

JMS

provider

Resources->

Generic

JMS

Providers

Generic

JMS

providers

List

all

generic

JMS

providers

within

the

administration

domain

Resources->

Generic

JMS

Providers->

(In

content

pane)

provider_name

Generic

JMS

provider

provider_name

List

properties

and

resources

of

the

selected

generic

JMS

provider

provider_name

at

the

selected

scope

Resources->

Generic

JMS

Providers->

(In

content

pane)

provider_name->(Under

Additional

Properties)

JMS

Connection

Factories

Generic

JMS

connection

factories

List

all

JMS

connection

factories

of

the

selected

generic

JMS

provider

provider_name

at

the

selected

scope

Resources->

Generic

JMS

Providers->

(In

content

pane)

provider_name->

(Under

Additional

Properties)

JMS

Destinations

Generic

JMS

destinations

List

all

JMS

destinations

(queues

and

topics)

of

the

selected

generic

JMS

provider

provider_name

JMS

server

collection:

Each

JMS

server

provides

the

functions

of

the

JMS

provider

for

a

node

in

your

administrative

domain.

Use

this

panel

to

list

the

JMS

servers

within

the

administration

domain,

or

to

select

a

JMS

server

to

view

or

change

its

configuration

properties.

There

can

be

at

most

one

JMS

server

on

each

node

in

the

administration

domain,

and

any

application

server

within

the

domain

can

access

JMS

resources

served

by

any

JMS

server

on

any

node

in

the

domain.

To

view

this

administrative

console

page,

use

the

administrative

console

to

complete

the

following

steps:

1.

In

the

navigation

pane,

select

Servers->

JMS

Servers.

To

view

or

change

the

properties

of

a

JMS

server,

select

its

name

in

the

list

displayed.

To

act

on

one

or

more

of

the

JMS

servers

listed,

click

the

check

boxes

next

to

the

names

of

the

objects

that

you

want

to

act

on,

then

use

the

buttons

provided.

JMS

provider

collection:

Use

this

panel

to

list

JMS

providers,

or

to

select

a

JMS

provider

to

view

or

change

its

configuration

properties.

To

view

this

administrative

console

page,

use

the

administrative

console

to

complete

the

following

steps:

1.

In

the

navigation

pane,

expand

one

of

the

following

paths:

v

Resources->

WebSphere

JMS

Provider

230

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

v

Resources->

WebSphere

MQ

JMS

Provider

v

Resources->

Generic

JMS

Providers

To

view

or

change

the

properties

of

a

JMS

provider

or

its

resources,

select

its

name

in

the

list

displayed.

To

define

a

new

generic

JMS

provider,

on

the

Resources->

Generic

JMS

Providers

page

click

New.

To

act

on

one

or

more

of

the

JMS

providers

listed,

click

the

check

boxes

next

to

the

names

of

the

objects

that

you

want

to

act

on,

then

use

the

buttons

provided.

Name

The

name

by

which

this

JMS

provider

is

known

for

administrative

purposes.

Description

A

description

of

this

JMS

provider

for

administrative

purposes.

WebSphere

JMS

provider

settings:

Use

this

panel

to

view

the

configuration

properties

of

the

embedded

WebSphere

JMS

provider

that

is

installed

with

WebSphere

Application

Server.

You

cannot

change

these

properties.

To

view

this

administrative

console

page,

click

Resources->

WebSphere

JMS

Provider

Name:

The

name

by

which

the

JMS

provider

is

known

for

administrative

purposes.

Data

type

String

Default

WebSphereJMSProvider

Description:

A

description

of

the

JMS

provider,

for

administrative

purposes

within

IBM

WebSphere

Application

Server.

Data

type

String

Default

Built-in

WebSphere

JMS

Provider

WebSphere

MQ

JMS

provider

settings:

Use

this

panel

to

view

the

configuration

properties

of

the

WebSphere

MQ

JMS

provider.

These

properties

apply

only

if

you

have

installed

WebSphere

MQ

as

the

JMS

provider

over

the

internal

JMS

provider

installed

with

WebSphere

Application

Server.

You

cannot

change

these

properties.

To

view

this

administrative

console

page,

click

Resources->

WebSphere

MQ

JMS

Provider

Name:

The

name

by

which

the

WebSphere

MQ

JMS

provider

is

known

for

administrative

purposes.

Chapter

3.

Using

asynchronous

messaging

231

Data

type

String

Default

WebSphereMQJMSProvider

Description:

A

description

of

the

JMS

provider,

for

administrative

purposes

within

IBM

WebSphere

Application

Server.

Data

type

String

Default

WebSphere

MQ

JMS

provider

Classpath:

The

Java

classpath

for

the

JMS

provider.

The

list

of

paths

or

JAR

file

names

that

together

form

the

location

for

the

JMS

provider

classes.

Data

type

String

Default

$MQJMS_LIB_ROOT

Native

Library

Path:

The

native

library

path

for

the

JMS

provider.

An

optional

path

to

any

native

libraries

needed

by

the

JMS

provider.

Data

type

String

Default

$MQJMS_LIB_ROOT

The

Native

Library

Path

property

is

set

to

the

directory

where

the

WebSphere

MQ

Java

feature

is

installed.

JMS

provider

settings:

If

you

want

to

use

a

JMS

provider

other

than

the

embedded

WebSphere

JMS

provider

or

the

WebSphere

MQ

JMS

provider,

use

this

panel

to

configure

properties

of

the

JMS

provider.

To

view

this

administrative

console

page,

click

Resources->

Generic

JMS

Providers->

provider_name

Name:

The

name

by

which

the

JMS

provider

is

known

for

administrative

purposes.

Data

type

String

Default

Null

Description:

A

description

of

the

JMS

provider,

for

administrative

purposes

Data

type

String

Default

Null

232

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Classpath:

The

Java

classpath

for

the

JMS

provider.

The

list

of

paths

or

JAR

file

names

that

together

form

the

location

for

the

JMS

provider

classes.

Data

type

String

Default

Null

Native

Library

Path:

The

native

library

path

for

the

JMS

provider.

An

optional

path

to

any

native

libraries

needed

by

the

JMS

provider.

Data

type

String

Default

Null

External

initial

context

factory:

The

Java

classname

of

the

initial

context

factory

for

the

JMS

provider.

For

example,

for

an

LDAP

service

provider

the

value

has

the

form:

com.sun.jndi.ldap.LdapCtxFactory.

Data

type

String

Default

Null

External

provider

URL:

The

JMS

provider

URL

for

external

JNDI

lookups.

For

example,

an

LDAP

URL

for

a

JMS

provider

has

the

form:

ldap://hostname.company.com/contextName.

Data

type

String

Default

Null

WebSphere

Queue

connection

factory

collection:

The

queue

connection

factories

configured

in

the

embedded

WebSphere

JMS

provider

for

point-to-point

messaging

with

JMS

queues.

This

panel

shows

a

list

of

the

WebSphere

queue

connection

factories

with

a

summary

of

their

configuration

properties.

To

view

this

administrative

console

page,

use

the

administrative

console

to

complete

the

following

steps:

1.

In

the

navigation

pane,

expand

Resources->

WebSphere

JMS

Provider.

2.

Change

the

Scope

check

box

to

Cell,

Node

(for

a

JMS

provider

on

a

specific

node),

or

Server,

according

to

your

needs.

3.

In

the

Additional

Properties

list

in

the

contents

pane,

select

WebSphere

Queue

Connection

Factory.

To

view

or

change

the

properties

of

a

connection

factory,

select

its

name

in

the

list

displayed.

Chapter

3.

Using

asynchronous

messaging

233

To

act

on

one

or

more

of

the

connection

factories

listed,

click

the

check

boxes

next

to

the

names

of

the

objects

that

you

want

to

act

on,

then

use

the

buttons

provided.

WebSphere

queue

connection

factory

settings:

Use

this

panel

to

view

or

change

the

configuration

properties

of

the

selected

queue

connection

factory

for

use

with

the

embedded

WebSphere

JMS

provider

that

is

installed

with

WebSphere

Application

Server.

These

configuration

properties

control

how

connections

are

created

to

the

associated

JMS

queue

destination.

A

queue

connection

factory

is

used

to

create

JMS

connections

to

queue

destinations.

The

queue

connection

factory

is

created

by

the

embedded

WebSphere

JMS

provider.

A

queue

connection

factory

for

the

embedded

WebSphere

JMS

provider

has

the

following

properties:

To

view

this

administrative

console

page,

click

Resources->

WebSphere

JMS

Provider->

(In

content

pane,

under

Additional

Properties)

WebSphere

Queue

Connection

Factories->

connection_factory

Scope:

Specifies

the

level

to

which

this

resource

definition

is

visible

--

the

cell,

node,

or

server

level.

Resources

such

as

JMS

Providers,

Namespace

bindings,

or

shared

libraries

can

be

defined

at

multiple

scopes,

with

resources

defined

at

more

specific

scopes

overriding

duplicates

which

are

defined

at

more

general

scopes.

Note

that

no

matter

what

the

scope

of

a

defined

resource,

the

resource’s

properties

only

apply

at

an

individual

server

level.

For

example,

if

you

define

the

scope

of

a

data

source

at

the

Cell

level,

all

users

in

that

Cell

can

look

up

and

use

that

data

source,

which

is

unique

within

that

Cell.

However,

resource

property

settings

are

local

to

each

server

in

the

Cell.

For

example,

if

you

set

Max

Connections

to

10,

then

each

server

in

that

Cell

can

have

10

connections.

Cell

The

most

general

scope.

Resources

defined

at

the

Cell

scope

are

visible

from

all

Nodes

and

servers,

unless

they

are

overridden.

To

view

resources

defined

in

the

cell

scope,

do

not

specify

a

server

or

a

node

name

in

the

scope

selection

form.

Node

The

default

scope

for

most

resource

types.

Resources

defined

at

the

Node

scope

override

any

duplicates

defined

at

the

Cell

scope

and

are

visible

to

all

servers

on

the

same

node,

unless

they

are

overridden

at

a

server

scope

on

that

node.

To

view

resources

defined

in

a

node

scope,

do

not

specify

a

server,

but

select

a

node

name

in

the

scope

selection

form.

Server

The

most

specific

scope

for

defining

resources.

Resources

defined

at

the

Server

scope

override

any

duplicate

resource

definitions

defined

at

the

Cell

scope

or

parent

Node

scope

and

are

visible

only

to

a

specific

server.

To

view

resources

defined

in

a

server

scope,

specify

a

server

name

as

well

as

a

node

name

in

the

scope

selection

form.

When

resources

are

created,

they

are

always

created

into

the

current

scope

selected

in

the

panel.

To

view

resources

in

other

scopes,

specify

a

different

node

or

server

in

the

scope

selection

form.

Data

type

String

Name:

234

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

The

name

by

which

this

queue

connection

factory

is

known

for

administrative

purposes

within

IBM

WebSphere

Application

Server.

The

name

must

be

unique

within

the

JMS

connection

factories

across

the

WebSphere

administrative

domain.

Data

type

String

Default

Null

JNDI

name:

The

JNDI

name

that

is

used

to

bind

the

connection

factory

into

the

application

server’s

name

space.

As

a

convention,

use

the

fully

qualified

JNDI

name;

for

example,

in

the

form

jms/Name,

where

Name

is

the

logical

name

of

the

resource.

This

name

is

used

to

link

the

platform

binding

information.

The

binding

associates

the

resources

defined

by

the

deployment

descriptor

of

the

module

to

the

actual

(physical)

resources

bound

into

JNDI

by

the

platform.

Data

type

String

Description:

A

description

of

this

connection

factory

for

administrative

purposes

within

IBM

WebSphere

Application

Server.

Data

type

String

Default

Null

Category:

A

category

used

to

classify

or

group

this

connection

factory,

for

your

IBM

WebSphere

Application

Server

administrative

records.

Data

type

String

Component-managed

Authentication

Alias:

This

alias

specifies

a

user

ID

and

password

to

be

used

to

authenticate

connection

to

a

JMS

provider

for

application-managed

authentication.

This

property

provides

a

list

of

the

J2C

authentication

data

entry

aliases

that

have

been

defined

to

WebSphere

Application

Server.

You

can

select

a

data

entry

alias

to

be

used

to

authenticate

the

creation

of

a

new

connection

to

the

JMS

provider.

If

you

have

enabled

global

security

for

WebSphere

Application

Server,

select

the

alias

that

specifies

the

user

ID

and

password

used

to

authenticate

the

creation

of

a

new

connection

to

the

JMS

provider.

The

use

of

this

alias

depends

on

the

resource

authentication

(res-auth)

setting

declared

in

the

connection

factory

resource

reference

of

an

application

component’s

deployment

descriptors.

Note:

User

IDs

longer

than

12

characters

cannot

be

used

for

authentication

with

the

embedded

WebSphere

JMS

provider.

For

example,

the

default

Windows

NT

user

ID,

Administrator,

is

not

valid

for

use

with

embedded

WebSphere

Chapter

3.

Using

asynchronous

messaging

235

messaging,

because

it

contains

13

characters.

Therefore,

an

authentication

alias

for

a

WebSphere

JMS

provider

connection

factory

must

specify

a

user

ID

no

longer

than

12

characters.

Data

type

Pick-list

Container-managed

Authentication

Alias:

This

alias

specifies

a

user

ID

and

password

to

be

used

to

authenticate

connection

to

a

JMS

provider

for

container-managed

authentication.

This

property

provides

a

list

of

the

J2C

authentication

data

entry

aliases

that

have

been

defined

to

WebSphere

Application

Server.

You

can

select

a

data

entry

alias

to

be

used

to

authenticate

the

creation

of

a

new

connection

to

the

JMS

provider.

If

you

have

enabled

global

security

for

WebSphere

Application

Server,

select

the

alias

that

specifies

the

user

ID

and

password

used

to

authenticate

the

creation

of

a

new

connection

to

the

JMS

provider.

The

use

of

this

alias

depends

on

the

resource

authentication

(res-auth)

setting

declared

in

the

connection

factory

resource

reference

of

an

application

component’s

deployment

descriptors.

Note:

User

IDs

longer

than

12

characters

cannot

be

used

for

authentication

with

the

embedded

WebSphere

JMS

provider.

For

example,

the

default

Windows

NT

user

ID,

Administrator,

is

not

valid

for

use

with

embedded

WebSphere

messaging,

because

it

contains

13

characters.

Therefore,

an

authentication

alias

for

a

WebSphere

JMS

provider

connection

factory

must

specify

a

user

ID

no

longer

than

12

characters.

Data

type

Pick-list

Mapping-Configuration

Alias:

Allows

users

to

select

from

the

Security

>

JAAS

Configuration

>

Application

Logins

Configuration

list.

The

DefaultPrincipalMapping

JAAS

configuration

maps

the

authentication

alias

to

the

userid

and

password.

You

may

define

and

use

other

mapping

configurations.

For

more

information

about

the

mapping

configurations,

see

the

Information

Center

topic

″Java

Authentication

and

Authorization

service

configuration

entry

settings.″

Data

type

Pick-list

Node:

The

WebSphere

node

name

of

the

administrative

node

where

the

JMS

server

runs

for

this

connection

factory.

Connections

created

by

this

factory

connect

to

that

JMS

server.

Data

type

String

Units

Enum

Default

Null

Range

Pull-down

list

of

nodes

in

the

WebSphere

administrative

domain.

236

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

XA

Enabled:

Specifies

whether

the

connection

factory

is

for

XA

or

non-XA

coordination

of

messages

and

controls

if

the

application

server

uses

XA

QCF/TCF.

Enable

XA

if

multiple

resources

are

not

used

in

the

same

transaction.

If

you

clear

this

checkbox

property

(for

non-XA

coordination),

the

JMS

session

is

still

enlisted

in

a

transaction,

but

uses

the

resource

manager

local

transaction

calls

(session.commit

and

session.rollback)

instead

of

XA

calls.

This

can

lead

to

an

improvement

in

performance.

However,

this

means

that

only

a

single

resource

can

be

enlisted

in

a

transaction

in

WebSphere

Application

Server.

5.1 +

In

WBI

Server

Foundation

the

last

participant

support

enables

you

to

enlist

one

non-XA

resource

with

other

XA-capable

resources.

For

a

WebSphere

Topic

Connection

Factory

with

the

Port

property

set

to

DIRECT

this

property

does

not

apply,

and

always

adopts

non-XA

coordination.

Data

type

Checkbox

Default

Selected

(enabled

for

XA

coordination)

Range

Selected

The

connection

factory

is

enabled

for

XA-coordination

of

messages

Cleared

The

connection

factory

is

not

enabled

for

XA

coordination

of

messages

Recommended

Do

not

enable

XA

coordination

when

the

message

queue

or

topic

received

is

the

only

resource

in

the

transaction.

Enable

XA

coordination

when

other

resources,

including

other

queues

or

topics,

are

involved.

Connection

pool:

Specifies

an

optional

set

of

connection

pool

settings.

Connection

pool

properties

are

common

to

all

J2C

connectors.

The

application

server

pools

connections

and

sessions

with

the

JMS

provider

to

improve

performance.

You

need

to

configure

the

connection

and

session

pool

properties

appropriately

for

your

applications,

otherwise

you

may

not

get

the

connection

and

session

behavior

that

you

want.

Change

the

size

of

the

connection

pool

if

concurrent

server-side

access

to

the

JMS

resource

exceeds

the

default

value.The

size

of

the

connection

pool

is

set

on

a

per

queue

or

topic

basis.

See

the

following

table

for

details.

Session

pool:

An

optional

set

of

session

pool

settings.

This

link

provides

a

panel

of

optional

connection

pool

properties,

common

to

all

J2C

connectors.

Chapter

3.

Using

asynchronous

messaging

237

The

application

server

pools

connections

and

sessions

with

the

JMS

provider

to

improve

performance.

You

need

to

configure

the

connection

and

session

pool

properties

appropriately

for

your

applications,

otherwise

you

may

not

get

the

connection

and

session

behavior

that

you

want.

Session

pool

settings:

Use

this

page

to

configure

session

pool

settings.

This

administrative

console

page

is

common

to

a

range

of

resource

types;

for

example,

JMS

queue

connection

factories.

To

view

this

page,

the

path

depends

on

the

type

of

resource,

but

generally

you

select

an

instance

of

the

resource

provider,

then

an

instance

of

the

resource

type,

then

click

Session

Pool.

For

example:

click

Resources

>

WebSphere

JMS

Provider

>

WebSphere

Queue

Connection

Factories

>

connection_factory

>

Session

Pool.

Scope:

Specifies

the

level

to

which

this

resource

definition

is

visible

--

the

cell,

node,

or

server

level.

Resources

such

as

JDBC

Providers,

Namespace

bindings,

or

shared

libraries

can

be

defined

at

multiple

scopes,

with

resources

defined

at

more

specific

scopes

overriding

duplicates

which

are

defined

at

more

general

scopes.

Note

that

no

matter

what

the

scope

of

a

defined

resource,

the

resource’s

properties

only

apply

at

an

individual

server

level.

For

example,

if

you

define

the

scope

of

a

data

source

at

the

Cell

level,

all

users

in

that

Cell

can

look

up

and

use

that

data

source,

which

is

unique

within

that

Cell.

However,

resource

property

settings

are

local

to

each

server

in

the

Cell.

For

example,

if

you

set

Max

Connections

to

10,

then

each

server

in

that

Cell

can

have

10

connections.

Cell

The

most

general

scope.

Resources

defined

at

the

Cell

scope

are

visible

from

all

Nodes

and

servers,

unless

they

are

overridden.

To

view

resources

defined

in

the

cell

scope,

do

not

specify

a

server

or

a

node

name

in

the

scope

selection

form.

Node

The

default

scope

for

most

resource

types.

Resources

defined

at

the

Node

scope

override

any

duplicates

defined

at

the

Cell

scope

and

are

visible

to

all

servers

on

the

same

node,

unless

they

are

overridden

at

a

server

scope

on

that

node.

To

view

resources

defined

in

a

node

scope,

do

not

specify

a

server,

but

select

a

node

name

in

the

scope

selection

form.

Server

The

most

specific

scope

for

defining

resources.

Resources

defined

at

the

Server

scope

override

any

duplicate

resource

definitions

defined

at

the

Cell

scope

or

parent

Node

scope

and

are

visible

only

to

a

specific

server.

To

view

resources

defined

in

a

server

scope,

specify

a

server

name

as

well

as

a

node

name

in

the

scope

selection

form.

When

resources

are

created,

they

are

always

created

into

the

current

scope

selected

in

the

panel.

To

view

resources

in

other

scopes,

specify

a

different

node

or

server

in

the

scope

selection

form.

Data

type

String

Connection

Timeout:

Specifies

the

interval,

in

seconds,

after

which

a

connection

request

times

out

and

a

ConnectionWaitTimeoutException

is

thrown.

238

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

The

wait

is

necessary

when

the

maximum

value

of

connections

(Max

Connections)

to

a

particular

connection

pool

is

reached

.

For

example,

if

Connection

Timeout

is

set

to

300

and

the

maximum

number

of

connections

is

reached,

the

Pool

Manager

waits

for

300

seconds

for

an

available

physical

connection.

If

a

physical

connection

is

not

available

within

this

time,

the

Pool

Manager

throws

a

ConnectionWaitTimeoutException.

It

usually

does

not

make

sense

to

retry

the

getConnection()

method,

because

if

a

longer

wait

time

is

required,

you

should

set

the

Connection

Timeout

setting

to

a

higher

value.

Therefore,

if

this

exception

is

caught

by

the

application,

the

administrator

should

review

the

expected

usage

of

the

application

and

tune

the

connection

pool

and

the

database

accordingly.

If

Connection

Timeout

is

set

to

0,

the

Pool

Manager

waits

as

long

as

necessary

until

a

connection

is

allocated

(which

happens

when

the

number

of

connections

falls

below

the

value

of

Max

Connections).

If

Max

Connections

is

set

to

0,

which

enables

an

infinite

number

of

physical

connections,

then

the

Connection

Timeout

value

is

ignored.

Data

type

Integer

Units

Seconds

Default

180

Range

0

to

max

int

Max

Connections:

Specifies

the

maximum

number

of

physical

connections

that

you

can

create

in

this

pool.

These

are

the

physical

connections

to

the

backend

resource.

Once

this

number

is

reached,

no

new

physical

connections

are

created

and

the

requester

waits

until

a

physical

connection

that

is

currently

in

use

returns

to

the

pool,

or

a

ConnectionWaitTimeoutException

is

thrown.

For

example,

if

the

Max

Connections

value

is

set

to

5,

and

there

are

five

physical

connections

in

use,

the

pool

manager

waits

for

the

amount

of

time

specified

in

Connection

Timeout

for

a

physical

connection

to

become

free.

If

Max

Connections

is

set

to

0,

the

Connection

Timeout

value

is

ignored.

For

better

performance,

set

the

value

for

the

connection

pool

lower

than

the

value

for

the

MaxKeepAliveConnections

option

in

the

Web

container.

Lower

settings,

such

as

10-30

connections,

perform

better

than

higher

settings,

such

as

100.

If

clones

are

used,

one

data

pool

exists

for

each

clone.

Knowing

the

number

of

data

pools

is

important

when

configuring

the

database

maximum

connections.

Min

Connections:

Specifies

the

minimum

number

of

physical

connections

to

maintain.

Until

this

number

is

reached,

the

pool

maintenance

thread

does

not

discard

physical

connections.

However,

no

attempt

is

made

to

bring

the

number

of

connections

up

to

this

number.

If

you

set

a

value

for

Aged

Timeout,

the

minimum

is

not

maintained.

All

connections

with

an

expired

age

are

discarded.

Chapter

3.

Using

asynchronous

messaging

239

For

example

if

the

Min

Connections

value

is

set

to

3,

and

one

physical

connection

is

created,

the

Unused

Timeout

thread

does

not

discard

that

connection.

By

the

same

token,

the

thread

does

not

automatically

create

two

additional

physical

connections

to

reach

the

Min

Connections

setting.

Data

type

Integer

Default

1

Range

0

to

max

int

Reap

Time:

Specifies

the

interval,

in

seconds,

between

runs

of

the

pool

maintenance

thread.

For

example,

if

Reap

Time

is

set

to

60,

the

pool

maintenance

thread

runs

every

60

seconds.

The

Reap

Time

interval

affects

the

accuracy

of

the

Unused

Timeout

and

Aged

Timeout

settings.

The

smaller

the

interval,

the

greater

the

accuracy.

If

the

pool

maintenance

thread

is

enabled,

set

the

Reap

Time

value

less

than

the

values

of

Unused

Timeout

and

Aged

Timeout.

When

the

pool

maintenance

thread

runs,

it

discards

any

connections

remaining

unused

for

longer

than

the

time

value

specified

in

Unused

Timeout,

until

it

reaches

the

number

of

connections

specified

in

Min

Connections.

The

pool

maintenance

thread

also

discards

any

connections

that

remain

active

longer

than

the

time

value

specified

in

Aged

Timeout.

The

Reap

Time

interval

also

affects

performance.

Smaller

intervals

mean

that

the

pool

maintenance

thread

runs

more

often

and

degrades

performance.

To

disable

the

pool

maintenance

thread

set

Reap

Time

to

0,

or

set

both

Unused

Timeout

and

Aged

Timeout

to

0.

The

recommended

way

to

disable

the

pool

maintenance

thread

is

to

set

Reap

Time

to

0,

in

which

case

Unused

Timeout

and

Aged

Timeout

are

ignored.

However,

if

Unused

Timeout

and

Aged

Timeout

are

set

to

0,

the

pool

maintenance

thread

runs,

but

only

physical

connections

which

timeout

due

to

non-zero

timeout

values

are

discarded.

Data

type

Integer

Units

Seconds

Default

180

Range

0

to

max

int

Unused

Timeout:

Specifies

the

interval

in

seconds

after

which

an

unused

or

idle

connection

is

discarded.

Set

the

Unused

Timeout

value

higher

than

the

Reap

Timeout

value

for

optimal

performance.

Unused

physical

connections

are

only

discarded

if

the

current

number

of

connections

not

in

use

exceeds

the

Min

Connections

setting.

For

example,

if

the

unused

timeout

value

is

set

to

120,

and

the

pool

maintenance

thread

is

enabled

(Reap

Time

is

not

0),

any

physical

connection

that

remains

unused

for

two

minutes

is

discarded.

Note

that

accuracy

of

this

timeout,

as

well

as

performance,

is

affected

by

the

Reap

Time

value.

For

more

information,

see

the

topic

″Reap

Time.″

Data

type

Integer

Units

Seconds

Default

1800

240

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Range

0

to

max

int

Aged

Timeout:

Specifies

the

interval

in

seconds

before

a

physical

connection

is

discarded.

Setting

Aged

Timeout

to

0

supports

active

physical

connections

remaining

in

the

pool

indefinitely.

Set

the

Aged

Timeout

value

higher

than

the

Reap

Timeout

value

for

optimal

performance.

For

example,

if

the

Aged

Timeout

value

is

set

to

1200,

and

the

Reap

Time

value

is

not

0,

any

physical

connection

that

remains

in

existence

for

1200

seconds

(20

minutes)

is

discarded

from

the

pool.

Note

that

accuracy

of

this

timeout,

as

well

as

performance,

are

affected

by

the

Reap

Time

value.

For

more

information,

see

Reap

Time.

Data

type

Integer

Units

Seconds

Default

0

Range

0

to

max

int

Purge

Policy:

Specifies

how

to

purge

connections

when

a

stale

connection

or

fatal

connection

error

is

detected.

Valid

values

are

EntirePool

and

FailingConnectionOnly.

JCA

data

sources

can

have

either

option.

WebSphere

Version

4.0

data

sources

always

have

a

purge

policy

of

EntirePool.

Data

type

String

Default

FailingConnectionOnly

Chapter

3.

Using

asynchronous

messaging

241

Range

EntirePool

All

connections

in

the

pool

are

marked

stale.

Any

connection

not

in

use

is

immediately

closed.

A

connection

in

use

is

closed

and

throws

a

StaleConnectionException

during

the

next

operation

on

that

connection.

Subsequent

getConnection

requests

from

the

application

result

in

new

connections

to

the

database

opening.

When

using

this

purge

policy,

there

is

a

slight

possibility

that

some

connections

in

the

pool

are

closed

unnecessarily

when

they

are

not

stale.

However,

this

is

a

rare

occurrence.

In

most

cases,

a

purge

policy

of

EntirePool

is

the

best

choice.

FailingConnectionOnly

Only

the

connection

that

caused

the

StaleConnectionException

is

closed.

Although

this

setting

eliminates

the

possibility

that

valid

connections

are

closed

unnecessarily,

it

makes

recovery

from

an

application

perspective

more

complicated.

Because

only

the

currently

failing

connection

is

closed,

there

is

a

good

possibility

that

the

next

getConnection

request

from

the

application

can

return

a

connection

from

the

pool

that

is

also

stale,

resulting

in

more

stale

connection

exceptions.

WebSphere

topic

connection

factory

collection:

The

topic

connection

factories

configured

in

the

embedded

WebSphere

JMS

provider

for

publish/subscribe

messaging

with

JMS

topics.

This

panel

shows

a

list

of

the

WebSphere

topic

connection

factories

with

a

summary

of

their

configuration

properties.

To

view

this

administrative

console

page,

use

the

administrative

console

to

complete

the

following

steps:

1.

In

the

navigation

pane,

expand

Resources->

WebSphere

JMS

Provider.

2.

Change

the

Scope

check

box

to

Cell,

Node

(for

a

JMS

provider

on

a

specific

node),

or

Server,

according

to

your

needs.

3.

In

the

Additional

Properties

list

in

the

contents

pane,

select

WebSphere

Topic

Connection

Factory.

To

view

or

change

the

properties

of

a

connection

factory,

select

its

name

in

the

list

displayed.

To

act

on

one

or

more

of

the

connection

factories

listed,

click

the

check

boxes

next

to

the

names

of

the

objects

that

you

want

to

act

on,

then

use

the

buttons

provided.

242

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

WebSphere

topic

connection

factory

settings:

Use

this

panel

to

view

or

change

the

configuration

properties

of

the

selected

topic

connection

factory

for

use

with

the

embedded

WebSphere

JMS

provider.

These

configuration

properties

control

how

connections

are

created

to

the

associated

JMS

topic

destination.

A

topic

connection

factory

is

used

to

create

JMS

connections

to

topic

destinations.

The

topic

connection

factory

is

created

by

the

associated

JMS

provider.

A

topic

connection

factory

for

the

embedded

WebSphere

JMS

provider

has

the

following

properties.

To

view

this

administrative

console

page,

click

Resources->

WebSphere

JMS

Provider->

(In

content

pane,

under

Additional

Properties)

WebSphere

Topic

Connection

Factories->

connection_factory

Scope:

Specifies

the

level

to

which

this

resource

definition

is

visible

--

the

cell,

node,

or

server

level.

Resources

such

as

JMS

Providers,

Namespace

bindings,

or

shared

libraries

can

be

defined

at

multiple

scopes,

with

resources

defined

at

more

specific

scopes

overriding

duplicates

which

are

defined

at

more

general

scopes.

Note

that

no

matter

what

the

scope

of

a

defined

resource,

the

resource’s

properties

only

apply

at

an

individual

server

level.

For

example,

if

you

define

the

scope

of

a

data

source

at

the

Cell

level,

all

users

in

that

Cell

can

look

up

and

use

that

data

source,

which

is

unique

within

that

Cell.

However,

resource

property

settings

are

local

to

each

server

in

the

Cell.

For

example,

if

you

set

Max

Connections

to

10,

then

each

server

in

that

Cell

can

have

10

connections.

Cell

The

most

general

scope.

Resources

defined

at

the

Cell

scope

are

visible

from

all

Nodes

and

servers,

unless

they

are

overridden.

To

view

resources

defined

in

the

cell

scope,

do

not

specify

a

server

or

a

node

name

in

the

scope

selection

form.

Node

The

default

scope

for

most

resource

types.

Resources

defined

at

the

Node

scope

override

any

duplicates

defined

at

the

Cell

scope

and

are

visible

to

all

servers

on

the

same

node,

unless

they

are

overridden

at

a

server

scope

on

that

node.

To

view

resources

defined

in

a

node

scope,

do

not

specify

a

server,

but

select

a

node

name

in

the

scope

selection

form.

Server

The

most

specific

scope

for

defining

resources.

Resources

defined

at

the

Server

scope

override

any

duplicate

resource

definitions

defined

at

the

Cell

scope

or

parent

Node

scope

and

are

visible

only

to

a

specific

server.

To

view

resources

defined

in

a

server

scope,

specify

a

server

name

as

well

as

a

node

name

in

the

scope

selection

form.

When

resources

are

created,

they

are

always

created

into

the

current

scope

selected

in

the

panel.

To

view

resources

in

other

scopes,

specify

a

different

node

or

server

in

the

scope

selection

form.

Data

type

String

Name:

Chapter

3.

Using

asynchronous

messaging

243

The

name

by

which

this

queue

connection

factory

is

known

for

administrative

purposes

within

IBM

WebSphere

Application

Server.

The

name

must

be

unique

within

the

JMS

connection

factories

across

the

WebSphere

administrative

domain.

Data

type

String

Default

Null

JNDI

name:

The

JNDI

name

that

is

used

to

bind

the

topic

connection

factory

into

the

application

server’s

name

space.

As

a

convention,

use

the

fully

qualified

JNDI

name;

for

example,

in

the

form

jms/Name,

where

Name

is

the

logical

name

of

the

resource.

This

name

is

used

to

link

the

platform

binding

information.

The

binding

associates

the

resources

defined

by

the

deployment

descriptor

of

the

module

to

the

actual

(physical)

resources

bound

into

JNDI

by

the

platform.

Data

type

String

Description:

A

description

of

this

topic

connection

factory

for

administrative

purposes

within

IBM

WebSphere

Application

Server.

Data

type

String

Default

Null

Category:

A

category

used

to

classify

or

group

this

topic

connection

factory,

for

your

IBM

WebSphere

Application

Server

administrative

records.

Data

type

String

Node:

The

WebSphere

node

name

of

the

administrative

node

where

the

JMS

server

runs

for

this

connection

factory.

Connections

created

by

this

factory

connect

to

that

JMS

server.

Data

type

Enum

Default

Null

Range

Pull-down

list

of

nodes

in

the

WebSphere

administrative

domain.

Port:

Which

of

the

two

ports

that

connections

use

to

connect

to

the

JMS

Server.

The

QUEUED

port

is

for

full-function

JMS

publish/subscribe

support,

the

DIRECT

port

is

for

non-persistent,

non-transactional,

non-durable

subscriptions

only.

244

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Note:

Message-driven

beans

cannot

use

the

direct

listener

port

for

publish/subscribe

support.

Therefore,

any

topic

connection

factory

configured

with

Port

set

to

Direct

cannot

be

used

with

message-driven

beans.

Data

type

Enum

Units

Not

applicable

Default

QUEUED

Range

QUEUED

The

listener

port

used

for

full-function

JMS-compliant,

publish/subscribe

support.

DIRECT

The

listener

port

used

for

direct

TCP/IP

connection

(non-transactional,

non-persistent,

and

non-durable

subscriptions

only)

for

publish/subscribe

support.

The

TCP/IP

port

numbers

for

these

ports

are

defined

on

the

WebSphere

Internal

JMS

Server.

Component-managed

Authentication

Alias:

This

alias

specifies

a

user

ID

and

password

to

be

used

to

authenticate

connection

to

a

JMS

provider

for

application-managed

authentication.

This

property

provides

a

list

of

the

J2C

authentication

data

entry

aliases

that

have

been

defined

to

WebSphere

Application

Server.

You

can

select

a

data

entry

alias

to

be

used

to

authenticate

the

creation

of

a

new

connection

to

the

JMS

provider.

If

you

have

enabled

global

security

for

WebSphere

Application

Server,

select

the

alias

that

specifies

the

user

ID

and

password

used

to

authenticate

the

creation

of

a

new

connection

to

the

JMS

provider.

The

use

of

this

alias

depends

on

the

resource

authentication

(res-auth)

setting

declared

in

the

connection

factory

resource

reference

of

an

application

component’s

deployment

descriptors.

Note:

User

IDs

longer

than

12

characters

cannot

be

used

for

authentication

with

the

embedded

WebSphere

JMS

provider.

For

example,

the

default

Windows

NT

user

ID,

Administrator,

is

not

valid

for

use

with

embedded

WebSphere

messaging,

because

it

contains

13

characters.

Therefore,

an

authentication

alias

for

a

WebSphere

JMS

provider

connection

factory

must

specify

a

user

ID

no

longer

than

12

characters.

Container-managed

Authentication

Alias:

This

alias

specifies

a

user

ID

and

password

to

be

used

to

authenticate

connection

to

a

JMS

provider

for

container-managed

authentication.

This

property

provides

a

list

of

the

J2C

authentication

data

entry

aliases

that

have

been

defined

to

WebSphere

Application

Server.

You

can

select

a

data

entry

alias

to

be

used

to

authenticate

the

creation

of

a

new

connection

to

the

JMS

provider.

If

you

have

enabled

global

security

for

WebSphere

Application

Server,

select

the

alias

that

specifies

the

user

ID

and

password

used

to

authenticate

the

creation

of

a

new

connection

to

the

JMS

provider.

The

use

of

this

alias

depends

on

the

resource

Chapter

3.

Using

asynchronous

messaging

245

authentication

(res-auth)

setting

declared

in

the

connection

factory

resource

reference

of

an

application

component’s

deployment

descriptors.

Note:

User

IDs

longer

than

12

characters

cannot

be

used

for

authentication

with

the

embedded

WebSphere

JMS

provider.

For

example,

the

default

Windows

NT

user

ID,

Administrator,

is

not

valid

for

use

with

embedded

WebSphere

messaging,

because

it

contains

13

characters.

Therefore,

an

authentication

alias

for

a

WebSphere

JMS

provider

connection

factory

must

specify

a

user

ID

no

longer

than

12

characters.

Mapping-Configuration

Alias:

Allows

users

to

select

from

the

Security

>

JAAS

Configuration

>

Application

Logins

Configuration

list.

The

DefaultPrincipalMapping

JAAS

configuration

maps

the

authentication

alias

to

the

userid

and

password.

You

may

define

and

use

other

mapping

configurations.

For

more

information

about

the

mapping

configurations,

see

the

Information

Center

topic

″Java

Authentication

and

Authorization

service

configuration

entry

settings.″

Data

type

Pick-list

Clone

Support:

Select

this

checkbox

to

enable

clone

support

to

allow

the

same

durable

subscription

across

topic

clones.

Data

type

Enum

Default

Cleared

Range

Selected

Clone

support

is

enabled.

Cleared

Clone

support

is

disabled.

If

you

select

this

property,

you

must

also

specify

a

value

for

the

Client

ID

property.

Client

ID:

The

JMS

client

identifier

used

for

connections

to

the

queue

manager.

Data

type

String

Range

A

valid

JMS

client

ID

XA

Enabled:

Specifies

whether

the

connection

factory

is

for

XA

or

non-XA

coordination

of

messages

and

controls

if

the

application

server

uses

XA

QCF/TCF.

Enable

XA

if

multiple

resources

are

not

used

in

the

same

transaction.

If

you

clear

this

checkbox

property

(for

non-XA

coordination),

the

JMS

session

is

still

enlisted

in

a

transaction,

but

uses

the

resource

manager

local

transaction

calls

(session.commit

and

session.rollback)

instead

of

XA

calls.

This

can

lead

to

an

246

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

improvement

in

performance.

However,

this

means

that

only

a

single

resource

can

be

enlisted

in

a

transaction

in

WebSphere

Application

Server.

5.1 +

In

WBI

Server

Foundation

the

last

participant

support

enables

you

to

enlist

one

non-XA

resource

with

other

XA-capable

resources.

For

a

WebSphere

Topic

Connection

Factory

with

the

Port

property

set

to

DIRECT

this

property

does

not

apply,

and

always

adopts

non-XA

coordination.

Data

type

Checkbox

Default

Selected

(enabled

for

XA

coordination)

Range

Selected

The

connection

factory

is

enabled

for

XA-coordination

of

messages

Cleared

The

connection

factory

is

not

enabled

for

XA

coordination

of

messages

Recommended

Do

not

enable

XA

coordination

when

the

message

queue

or

topic

received

is

the

only

resource

in

the

transaction.

Enable

XA

coordination

when

other

resources,

including

other

queues

or

topics,

are

involved.

Connection

pool:

Specifies

an

optional

set

of

connection

pool

settings.

Connection

pool

properties

are

common

to

all

J2C

connectors.

The

application

server

pools

connections

and

sessions

with

the

JMS

provider

to

improve

performance.

You

need

to

configure

the

connection

and

session

pool

properties

appropriately

for

your

applications,

otherwise

you

may

not

get

the

connection

and

session

behavior

that

you

want.

Change

the

size

of

the

connection

pool

if

concurrent

server-side

access

to

the

JMS

resource

exceeds

the

default

value.The

size

of

the

connection

pool

is

set

on

a

per

queue

or

topic

basis.

See

the

following

table

for

details.

Session

pool:

An

optional

set

of

session

pool

settings.

This

link

provides

a

panel

of

optional

connection

pool

properties,

common

to

all

J2C

connectors.

The

application

server

pools

connections

and

sessions

with

the

JMS

provider

to

improve

performance.

You

need

to

configure

the

connection

and

session

pool

properties

appropriately

for

your

applications,

otherwise

you

may

not

get

the

connection

and

session

behavior

that

you

want.

WebSphere

Queue

destination

collection:

The

queue

destinations

configured

in

the

embedded

WebSphere

JMS

provider

for

point-to-point

messaging

with

JMS

queues.

Chapter

3.

Using

asynchronous

messaging

247

This

panel

shows

a

list

of

the

WebSphere

queue

destinations

with

a

summary

of

their

configuration

properties.

To

view

this

administrative

console

page,

use

the

administrative

console

to

complete

the

following

steps:

1.

In

the

navigation

pane,

expand

Resources->

WebSphere

JMS

Provider.

2.

Change

the

Scope

check

box

to

Cell,

Node

(for

a

JMS

provider

on

a

specific

node),

or

Server,

according

to

your

needs.

3.

In

the

Additional

Properties

list

in

the

contents

pane,

select

WebSphere

Queue

Destination.

To

view

or

change

the

properties

of

a

queue

destination,

select

its

name

in

the

list

displayed.

To

act

on

one

or

more

of

the

queue

destinations

listed,

click

the

check

boxes

next

to

the

names

of

the

objects

that

you

want

to

act

on,

then

use

the

buttons

provided.

WebSphere

queue

settings:

Use

this

panel

to

view

or

change

the

configuration

properties

of

the

selected

queue

destination

for

use

with

the

WebSphere

JMS

provider.

A

queue

destination

is

used

to

configure

the

properties

of

a

JMS

queue.

Connections

to

the

queue

are

created

by

the

associated

queue

connection

factory

for

the

embedded

WebSphere

JMS

provider.

A

queue

for

use

with

the

internal

WebSphere

JMS

provider

has

the

following

properties.

To

view

this

administrative

console

page,

click

Resources->

WebSphere

JMS

Provider->

(In

content

pane,

under

Additional

Properties)

WebSphere

Queue

Destinations->

destination_name

Scope:

Specifies

the

level

to

which

this

resource

definition

is

visible

--

the

cell,

node,

or

server

level.

Resources

such

as

JMS

Providers,

Namespace

bindings,

or

shared

libraries

can

be

defined

at

multiple

scopes,

with

resources

defined

at

more

specific

scopes

overriding

duplicates

which

are

defined

at

more

general

scopes.

Note

that

no

matter

what

the

scope

of

a

defined

resource,

the

resource’s

properties

only

apply

at

an

individual

server

level.

For

example,

if

you

define

the

scope

of

a

data

source

at

the

Cell

level,

all

users

in

that

Cell

can

look

up

and

use

that

data

source,

which

is

unique

within

that

Cell.

However,

resource

property

settings

are

local

to

each

server

in

the

Cell.

For

example,

if

you

set

Max

Connections

to

10,

then

each

server

in

that

Cell

can

have

10

connections.

Cell

The

most

general

scope.

Resources

defined

at

the

Cell

scope

are

visible

from

all

Nodes

and

servers,

unless

they

are

overridden.

To

view

resources

defined

in

the

cell

scope,

do

not

specify

a

server

or

a

node

name

in

the

scope

selection

form.

Node

The

default

scope

for

most

resource

types.

Resources

defined

at

the

Node

scope

override

any

duplicates

defined

at

the

Cell

scope

and

are

visible

to

all

servers

on

the

same

node,

unless

they

are

overridden

at

a

server

scope

on

that

node.

To

view

resources

defined

in

a

node

scope,

do

not

specify

a

server,

but

select

a

node

name

in

the

scope

selection

form.

Server

The

most

specific

scope

for

defining

resources.

Resources

defined

at

the

248

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Server

scope

override

any

duplicate

resource

definitions

defined

at

the

Cell

scope

or

parent

Node

scope

and

are

visible

only

to

a

specific

server.

To

view

resources

defined

in

a

server

scope,

specify

a

server

name

as

well

as

a

node

name

in

the

scope

selection

form.

When

resources

are

created,

they

are

always

created

into

the

current

scope

selected

in

the

panel.

To

view

resources

in

other

scopes,

specify

a

different

node

or

server

in

the

scope

selection

form.

Data

type

String

Name:

The

name

by

which

the

queue

is

known

for

administrative

purposes

within

IBM

WebSphere

Application

Server.

To

enable

applications

to

use

this

queue,

you

must

add

the

queue

name

to

the

list

of

queue

names

in

the

configuration

of

the

JMS

servers

that

host

the

queue.

Data

type

String

JNDI

name:

The

JNDI

name

that

is

used

to

bind

the

queue

into

the

application

server’s

name

space.

As

a

convention,

use

the

fully

qualified

JNDI

name;

for

example,

in

the

form

jms/Name,

where

Name

is

the

logical

name

of

the

resource.

This

name

is

used

to

link

the

platform

binding

information.

The

binding

associates

the

resources

defined

by

the

deployment

descriptor

of

the

module

to

the

actual

(physical)

resources

bound

into

JNDI

by

the

platform.

Data

type

String

Description:

A

description

of

the

queue,

for

administrative

purposes

Data

type

String

Default

Null

Category:

A

category

used

to

classify

or

group

this

queue,

for

your

IBM

WebSphere

Application

Server

administrative

records.

Data

type

String

Persistence:

Whether

all

messages

sent

to

the

destination

are

persistent,

non-persistent,

or

have

their

persistence

defined

by

the

application

Chapter

3.

Using

asynchronous

messaging

249

Data

type

Enum

Default

APPLICATION

DEFINED

Range

APPLICATION

DEFINED

Messages

on

the

destination

have

their

persistence

defined

by

the

application

that

put

them

onto

the

queue.

NON-PERSISTENT

Messages

on

the

destination

are

not

persistent.

PERSISTENT

Messages

on

the

destination

are

persistent.

When

a

persistent

message

is

put

to

a

queue,

all

of

the

message

data

is

written

to

the

messaging

log

(under

the

embedded_messaging_install\log

directory)

to

make

recovery

of

the

message

possible.

Priority:

Whether

the

message

priority

for

this

destination

is

defined

by

the

application

or

the

Specified

priority

property

Data

type

Enum

Units

Not

applicable

Default

APPLICATION

DEFINED

Range

APPLICATION

DEFINED

The

priority

of

messages

on

this

destination

is

defined

by

the

application

that

put

them

onto

the

destination.

QUEUE

DEFINED

[WebSphere

MQ

destination

only]

Messages

on

the

destination

have

their

persistence

defined

by

the

WebSphere

MQ

queue

definition

properties.

SPECIFIED

The

priority

of

messages

on

this

destination

is

defined

by

the

Specified

priority

property.If

you

select

this

option,

you

must

define

a

priority

on

the

Specified

priority

property.

Specified

priority:

If

the

Priority

property

is

set

to

Specified,

type

here

the

message

priority

for

this

queue,

in

the

range

0

(lowest)

through

9

(highest)

If

the

Priority

property

is

set

to

Specified,

messages

sent

to

this

queue

have

the

priority

value

specified

by

this

property.

Data

type

Integer

Units

Message

priority

level

250

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Default

0

Range

0

(lowest

priority)

through

9

(highest

priority)

Expiry:

Whether

the

expiry

timeout

for

this

queue

is

defined

by

the

application

or

the

Specified

expiry

property,

or

messages

on

the

queue

never

expire

(have

an

unlimited

expiry

timeout)

Data

type

Enum

Units

Not

applicable

Default

APPLICATION

DEFINED

Range

APPLICATION

DEFINED

The

expiry

timeout

for

messages

on

this

queue

is

defined

by

the

application

that

put

them

onto

the

queue.

UNLIMITED

Messages

on

this

queue

have

no

expiry

timeout,

so

those

messages

never

expire.

SPECIFIED

The

expiry

timeout

for

messages

on

this

queue

is

defined

by

the

Specified

expiry

property.If

you

select

this

option,

you

must

define

a

timeout

on

the

Specified

expiry

property.

Specified

expiry:

If

the

Expiry

timeout

property

is

set

to

Specified,

type

here

the

number

of

milliseconds

(greater

than

0)

after

which

messages

on

this

queue

expire

Data

type

Integer

Units

Milliseconds

Default

0

Range

Greater

than

or

equal

to

0

v

0

indicates

that

messages

never

timeout

v

Other

values

are

an

integer

number

of

milliseconds

WebSphere

topic

destination

collection:

The

topic

destinations

configured

in

the

embedded

WebSphere

JMS

provider

for

publish/subscribe

messaging

with

JMS

topics.

Use

this

panel

to

create

or

delete

topic

destinations,

or

to

select

a

topic

destination

to

view

or

change

its

configuration

properties.

This

panel

shows

a

list

of

the

WebSphere

topic

destinations

with

a

summary

of

their

configuration

properties.

To

view

this

administrative

console

page,

use

the

administrative

console

to

complete

the

following

steps:

1.

In

the

navigation

pane,

expand

Resources->

WebSphere

JMS

Provider.

Chapter

3.

Using

asynchronous

messaging

251

2.

Change

the

Scope

check

box

to

Cell,

Node

(for

a

JMS

provider

on

a

specific

node),

or

Server,

according

to

your

needs.

3.

In

the

Additional

Properties

list

in

the

contents

pane,

select

WebSphere

Topic

Destination.

To

view

or

change

the

properties

of

a

topic

destination,

select

its

name

in

the

list

displayed.

To

act

on

one

or

more

of

the

topic

destinations

listed,

click

the

check

boxes

next

to

the

names

of

the

objects

that

you

want

to

act

on,

then

use

the

buttons

provided.

WebSphere

topic

settings:

Use

this

panel

to

view

or

change

the

configuration

properties

of

the

selected

topic

destination

for

use

with

the

embedded

WebSphere

JMS

provider.

A

topic

destination

is

used

to

configure

the

properties

of

a

JMS

topic

for

the

associated

JMS

provider.

Connections

to

the

topic

are

created

by

the

associated

topic

connection

factory.

A

topic

for

use

with

the

embedded

WebSphere

JMS

provider

has

the

following

properties.

To

view

this

administrative

console

page,

click

Resources->

WebSphere

JMS

Provider->

(In

content

pane,

under

Additional

Properties)

WebSphere

Topic

destinations->

destination_name

Scope:

Specifies

the

level

to

which

this

resource

definition

is

visible

--

the

cell,

node,

or

server

level.

Resources

such

as

JMS

Providers,

Namespace

bindings,

or

shared

libraries

can

be

defined

at

multiple

scopes,

with

resources

defined

at

more

specific

scopes

overriding

duplicates

which

are

defined

at

more

general

scopes.

Note

that

no

matter

what

the

scope

of

a

defined

resource,

the

resource’s

properties

only

apply

at

an

individual

server

level.

For

example,

if

you

define

the

scope

of

a

data

source

at

the

Cell

level,

all

users

in

that

Cell

can

look

up

and

use

that

data

source,

which

is

unique

within

that

Cell.

However,

resource

property

settings

are

local

to

each

server

in

the

Cell.

For

example,

if

you

set

Max

Connections

to

10,

then

each

server

in

that

Cell

can

have

10

connections.

Cell

The

most

general

scope.

Resources

defined

at

the

Cell

scope

are

visible

from

all

Nodes

and

servers,

unless

they

are

overridden.

To

view

resources

defined

in

the

cell

scope,

do

not

specify

a

server

or

a

node

name

in

the

scope

selection

form.

Node

The

default

scope

for

most

resource

types.

Resources

defined

at

the

Node

scope

override

any

duplicates

defined

at

the

Cell

scope

and

are

visible

to

all

servers

on

the

same

node,

unless

they

are

overridden

at

a

server

scope

on

that

node.

To

view

resources

defined

in

a

node

scope,

do

not

specify

a

server,

but

select

a

node

name

in

the

scope

selection

form.

Server

The

most

specific

scope

for

defining

resources.

Resources

defined

at

the

Server

scope

override

any

duplicate

resource

definitions

defined

at

the

Cell

scope

or

parent

Node

scope

and

are

visible

only

to

a

specific

server.

To

view

resources

defined

in

a

server

scope,

specify

a

server

name

as

well

as

a

node

name

in

the

scope

selection

form.

252

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

When

resources

are

created,

they

are

always

created

into

the

current

scope

selected

in

the

panel.

To

view

resources

in

other

scopes,

specify

a

different

node

or

server

in

the

scope

selection

form.

Data

type

String

Name:

The

name

by

which

the

topic

is

known

for

administrative

purposes

within

IBM

WebSphere

Application

Server.

Data

type

String

JNDI

name:

The

JNDI

name

that

is

used

to

bind

the

topic

into

the

application

server’s

name

space.

As

a

convention,

use

the

fully

qualified

JNDI

name;

for

example,

in

the

form

jms/Name,

where

Name

is

the

logical

name

of

the

resource.

This

name

is

used

to

link

the

platform

binding

information.

The

binding

associates

the

resources

defined

by

the

deployment

descriptor

of

the

module

to

the

actual

(physical)

resources

bound

into

JNDI

by

the

platform.

Data

type

String

Description:

A

description

of

the

topic,

for

administrative

purposes

within

IBM

WebSphere

Application

Server.

Data

type

String

Default

Null

Category:

A

category

used

to

classify

or

group

this

topic,

for

your

IBM

WebSphere

Application

Server

administrative

records.

Data

type

String

Topic:

The

name

of

the

topic

as

defined

to

the

JMS

provider.

Data

type

String

Default

Null

Range

The

topic

value

can

be

dot

notation

and

include

wildcard

characters.

Persistence:

Chapter

3.

Using

asynchronous

messaging

253

Whether

all

messages

sent

to

the

destination

are

persistent,

non-persistent,

or

have

their

persistence

defined

by

the

application

Data

type

Enum

Default

APPLICATION

DEFINED

Range

APPLICATION

DEFINED

Messages

on

the

destination

have

their

persistence

defined

by

the

application

that

put

them

onto

the

queue.

NON-PERSISTENT

Messages

on

the

destination

are

not

persistent.

PERSISTENT

Messages

on

the

destination

are

persistent.

QUEUE

DEFINED

[WebSphere

MQ

destination

only]

Messages

on

the

destination

have

their

persistence

defined

by

the

WebSphere

MQ

queue

definition

properties.

Priority:

Whether

the

message

priority

for

this

destination

is

defined

by

the

application

or

the

Specified

priority

property

Data

type

Enum

Units

Not

applicable

Default

APPLICATION

DEFINED

Range

APPLICATION

DEFINED

The

priority

of

messages

on

this

destination

is

defined

by

the

application

that

put

them

onto

the

destination.

QUEUE

DEFINED

[WebSphere

MQ

destination

only]

Messages

on

the

destination

have

their

persistence

defined

by

the

WebSphere

MQ

queue

definition

properties.

SPECIFIED

The

priority

of

messages

on

this

destination

is

defined

by

the

Specified

priority

property.If

you

select

this

option,

you

must

define

a

priority

on

the

Specified

priority

property.

Specified

priority:

If

the

Priority

property

is

set

to

Specified,

type

here

the

message

priority

for

this

queue,

in

the

range

0

(lowest)

through

9

(highest)

If

the

Priority

property

is

set

to

Specified,

messages

sent

to

this

queue

have

the

priority

value

specified

by

this

property.

254

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Data

type

Integer

Units

Message

priority

level

Default

0

Range

0

(lowest

priority)

through

9

(highest

priority)

Expiry:

Whether

the

expiry

timeout

for

this

queue

is

defined

by

the

application

or

the

Specified

expiry

property,

or

messages

on

the

queue

never

expire

(have

an

unlimited

expiry

timeout)

Data

type

Enum

Units

Not

applicable

Default

APPLICATION

DEFINED

Range

APPLICATION

DEFINED

The

expiry

timeout

for

messages

on

this

queue

is

defined

by

the

application

that

put

them

onto

the

queue.

UNLIMITED

Messages

on

this

queue

have

no

expiry

timeout,

so

those

messages

never

expire.

SPECIFIED

The

expiry

timeout

for

messages

on

this

queue

is

defined

by

the

Specified

expiry

property.If

you

select

this

option,

you

must

define

a

timeout

on

the

Specified

expiry

property.

Specified

expiry:

If

the

Expiry

timeout

property

is

set

to

Specified,

type

here

the

number

of

milliseconds

(greater

than

0)

after

which

messages

on

this

queue

expire

Data

type

Integer

Units

Milliseconds

Default

0

Range

Greater

than

or

equal

to

0

v

0

indicates

that

messages

never

timeout

v

Other

values

are

an

integer

number

of

milliseconds

WebSphere

MQ

queue

connection

factory

collection:

The

queue

connection

factories

configured

in

the

WebSphere

MQ

JMS

provider

for

point-to-point

messaging

with

JMS

queues.

This

panel

shows

a

list

of

the

WebSphere

MQ

queue

connection

factories

with

a

summary

of

their

configuration

properties.

To

view

this

administrative

console

page,

use

the

administrative

console

to

complete

the

following

steps:

1.

In

the

navigation

pane,

expand

Resources->

WebSphere

MQ

JMS

Provider.

Chapter

3.

Using

asynchronous

messaging

255

2.

Change

the

Scope

check

box

to

Cell,

Node

(for

a

JMS

provider

on

a

specific

node),

or

Server,

according

to

your

needs.

3.

In

the

Additional

Properties

list

in

the

contents

pane,

select

WebSphere

MQ

Queue

Connection

Factory.

To

view

or

change

the

properties

of

a

connection

factory,

select

its

name

in

the

list

displayed.

To

act

on

one

or

more

of

the

connection

factories

listed,

click

the

check

boxes

next

to

the

names

of

the

objects

that

you

want

to

act

on,

then

use

the

buttons

provided.

WebSphere

MQ

queue

connection

factory

settings:

Use

this

panel

to

view

or

change

the

configuration

properties

of

the

selected

queue

connection

factory

for

use

with

the

WebSphere

MQ

JMS

provider.

These

configuration

properties

control

how

connections

are

created

to

the

associated

JMS

queue

destination.

A

queue

connection

factory

is

used

to

create

JMS

connections

to

queue

destinations.

The

queue

connection

factory

is

created

by

the

WebSphere

MQ

JMS

provider.

A

queue

connection

factory

for

the

WebSphere

MQ

JMS

provider

has

the

following

properties.

Note:

v

The

property

values

that

you

specify

must

match

the

values

that

you

specified

when

configuring

WebSphere

MQ

for

JMS

resources.

For

more

information

about

configuring

WebSphere

MQ

JMS

resources,

see

the

WebSphere

MQ

Using

Java

book.

and

the

WebSphere

MQ

System

Administration

book,

SC33-1873,

which

are

available

from

the

WebSphere

MQ

messaging

platform-specific

books

Web

page

at

http://www-
3.ibm.com/software/ts/mqseries/library/manualsa/manuals/platspecific.html,

the

IBM

Publications

Center,

or

from

the

WebSphere

MQ

collection

kit,

SK2T-0730.

v

In

WebSphere

MQ,

names

can

have

a

maximum

of

48

characters,

with

the

exception

of

channels

which

have

a

maximum

of

20

characters.

v

5.1 +

You

can

use

the

Custom

properties

page

to

define

WebSphere

MQ

Secure

Sockets

Layer

(SSL)

properties.

For

more

information

about

setting

those

properties,

see

Custom

properties.

To

view

this

administrative

console

page,

click

Resources->

WebSphere

MQ

JMS

Provider->

(In

content

pane,

under

Additional

Properties)

WebSphere

MQ

Queue

Connection

Factories->

connection_factory

Scope:

Specifies

the

level

to

which

this

resource

definition

is

visible

--

the

cell,

node,

or

server

level.

Resources

such

as

JMS

Providers,

Namespace

bindings,

or

shared

libraries

can

be

defined

at

multiple

scopes,

with

resources

defined

at

more

specific

scopes

overriding

duplicates

which

are

defined

at

more

general

scopes.

Note

that

no

matter

what

the

scope

of

a

defined

resource,

the

resource’s

properties

only

apply

at

an

individual

server

level.

For

example,

if

you

define

the

scope

of

a

data

source

at

the

Cell

level,

all

users

in

that

Cell

can

look

up

and

use

that

data

source,

which

is

unique

within

that

Cell.

However,

resource

property

settings

are

256

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/platspecific.html
http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/platspecific.html
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

local

to

each

server

in

the

Cell.

For

example,

if

you

set

Max

Connections

to

10,

then

each

server

in

that

Cell

can

have

10

connections.

Cell

The

most

general

scope.

Resources

defined

at

the

Cell

scope

are

visible

from

all

Nodes

and

servers,

unless

they

are

overridden.

To

view

resources

defined

in

the

cell

scope,

do

not

specify

a

server

or

a

node

name

in

the

scope

selection

form.

Node

The

default

scope

for

most

resource

types.

Resources

defined

at

the

Node

scope

override

any

duplicates

defined

at

the

Cell

scope

and

are

visible

to

all

servers

on

the

same

node,

unless

they

are

overridden

at

a

server

scope

on

that

node.

To

view

resources

defined

in

a

node

scope,

do

not

specify

a

server,

but

select

a

node

name

in

the

scope

selection

form.

Server

The

most

specific

scope

for

defining

resources.

Resources

defined

at

the

Server

scope

override

any

duplicate

resource

definitions

defined

at

the

Cell

scope

or

parent

Node

scope

and

are

visible

only

to

a

specific

server.

To

view

resources

defined

in

a

server

scope,

specify

a

server

name

as

well

as

a

node

name

in

the

scope

selection

form.

When

resources

are

created,

they

are

always

created

into

the

current

scope

selected

in

the

panel.

To

view

resources

in

other

scopes,

specify

a

different

node

or

server

in

the

scope

selection

form.

Data

type

String

Name:

The

name

by

which

this

queue

connection

factory

is

known

for

administrative

purposes

within

IBM

WebSphere

Application

Server.

The

name

must

be

unique

within

the

JMS

connection

factories

across

the

WebSphere

administrative

domain.

Data

type

String

JNDI

name:

The

JNDI

name

that

is

used

to

bind

the

connection

factory

into

the

application

server’s

name

space.

As

a

convention,

use

the

fully

qualified

JNDI

name;

for

example,

in

the

form

jms/Name,

where

Name

is

the

logical

name

of

the

resource.

This

name

is

used

to

link

the

platform

binding

information.

The

binding

associates

the

resources

defined

by

the

deployment

descriptor

of

the

module

to

the

actual

(physical)

resources

bound

into

JNDI

by

the

platform.

Data

type

String

Description:

A

description

of

this

connection

factory

for

administrative

purposes

within

IBM

WebSphere

Application

Server.

Data

type

String

Default

Null

Category:

Chapter

3.

Using

asynchronous

messaging

257

A

category

used

to

classify

or

group

this

connection

factory,

for

your

IBM

WebSphere

Application

Server

administrative

records.

Data

type

String

Component-managed

Authentication

Alias:

This

alias

specifies

a

user

ID

and

password

to

be

used

to

authenticate

connection

to

a

JMS

provider

for

application-managed

authentication.

This

property

provides

a

list

of

the

J2C

authentication

data

entry

aliases

that

have

been

defined

to

WebSphere

Application

Server.

You

can

select

a

data

entry

alias

to

be

used

to

authenticate

the

creation

of

a

new

connection

to

the

JMS

provider.

If

you

have

enabled

global

security

for

WebSphere

Application

Server,

select

the

alias

that

specifies

the

user

ID

and

password

used

to

authenticate

the

creation

of

a

new

connection

to

the

JMS

provider.

The

use

of

this

alias

depends

on

the

resource

authentication

(res-auth)

setting

declared

in

the

connection

factory

resource

reference

of

an

application

component’s

deployment

descriptors.

Restriction:

1.

User

IDs

longer

than

12

characters

cannot

be

used

for

authentication

with

the

embedded

WebSphere

JMS

provider.

For

example,

the

default

Windows

NT

user

ID,

Administrator,

is

not

valid

for

use

with

embedded

WebSphere

messaging,

because

it

contains

13

characters.

Therefore,

an

authentication

alias

for

a

WebSphere

JMS

provider

connection

factory

must

specify

a

user

ID

no

longer

than

12

characters.

2.

If

you

want

to

use

a

WebSphere

MQ

JMS

Provider

JMS

connection

when

using

Bindings

transport

mode,

you

set

the

property

Transport

type=BINDINGS

on

the

WebSphere

MQ

Queue

Connection

Factory.

You

must

also

choose

one

of

the

following

options:

v

To

use

security

credentials,

ensure

that

the

user

specified

is

the

currently

logged

on

user

for

the

WebSphere

Application

Server

process.

If

the

user

specified

is

not

the

current

logged

on

user

for

the

WebSphere

Application

Server

process,

then

the

WebSphere

MQ

JMS

Bindings

authentication

throws

the

error

MQJMS2013

invalid

security

authentication

supplied

for

MQQueueManager.

v

Do

not

specify

security

credentials.

On

the

WebSphere

MQ

Connection

Factory,

ensure

that

both

the

Component-managed

Authentication

Alias

and

the

Container-managed

Authentication

Alias

properties

are

not

set.

Container-managed

Authentication

Alias:

This

alias

specifies

a

user

ID

and

password

to

be

used

to

authenticate

connection

to

a

JMS

provider

for

container-managed

authentication.

This

property

provides

a

list

of

the

J2C

authentication

data

entry

aliases

that

have

been

defined

to

WebSphere

Application

Server.

You

can

select

a

data

entry

alias

to

be

used

to

authenticate

the

creation

of

a

new

connection

to

the

JMS

provider.

258

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

If

you

have

enabled

global

security

for

WebSphere

Application

Server,

select

the

alias

that

specifies

the

user

ID

and

password

used

to

authenticate

the

creation

of

a

new

connection

to

the

JMS

provider.

The

use

of

this

alias

depends

on

the

resource

authentication

(res-auth)

setting

declared

in

the

connection

factory

resource

reference

of

an

application

component’s

deployment

descriptors.

Restriction:

1.

User

IDs

longer

than

12

characters

cannot

be

used

for

authentication

with

the

embedded

WebSphere

JMS

provider.

For

example,

the

default

Windows

NT

user

ID,

Administrator,

is

not

valid

for

use

with

embedded

WebSphere

messaging,

because

it

contains

13

characters.

Therefore,

an

authentication

alias

for

a

WebSphere

JMS

provider

connection

factory

must

specify

a

user

ID

no

longer

than

12

characters.

2.

If

you

want

to

use

a

WebSphere

MQ

JMS

Provider

JMS

connection

when

using

Bindings

transport

mode,

you

set

the

property

Transport

type=BINDINGS

on

the

WebSphere

MQ

Queue

Connection

Factory.

You

must

also

choose

one

of

the

following

options:

v

To

use

security

credentials,

ensure

that

the

user

specified

is

the

currently

logged

on

user

for

the

WebSphere

Application

Server

process.

If

the

user

specified

is

not

the

current

logged

on

user

for

the

WebSphere

Application

Server

process,

then

the

WebSphere

MQ

JMS

Bindings

authentication

throws

the

error

MQJMS2013

invalid

security

authentication

supplied

for

MQQueueManager.

v

Do

not

specify

security

credentials.

On

the

WebSphere

MQ

Connection

Factory,

ensure

that

both

the

Component-managed

Authentication

Alias

and

the

Container-managed

Authentication

Alias

properties

are

not

set.

Queue

manager:

The

name

of

the

WebSphere

MQ

queue

manager

for

this

connection

factory.

Connections

created

by

this

factory

connect

to

that

queue

manager.

Data

type

String

Default

Null

Range

A

valid

WebSphere

MQ

queue

manager

name,

as

1

through

48

ASCII

characters

Host:

The

name

of

the

host

on

which

the

WebSphere

MQ

queue

manager

runs,

for

client

connection

only.

Data

type

String

Default

Null

Range

A

valid

TCP/IP

hostname

Port:

The

TCP/IP

port

number

used

for

connection

to

the

WebSphere

MQ

queue

manager,

for

client

connection

only.

Chapter

3.

Using

asynchronous

messaging

259

This

port

must

be

configured

on

the

WebSphere

MQ

queue

manager.

Data

type

Integer

Default

Null

Range

A

valid

TCP/IP

port

number,

configured

on

the

WebSphere

MQ

queue

manager.

Channel:

The

name

of

the

channel

used

for

connection

to

the

WebSphere

MQ

queue

manager,

for

client

connection

only.

Data

type

String

Default

Null

Range

1

through

20

ASCII

characters

Transport

type:

Specifies

whether

the

WebSphere

MQ

client

connection

or

JNI

bindings

are

used

for

connection

to

the

WebSphere

MQ

queue

manager.

The

external

JMS

provider

controls

the

communication

protocols

between

JMS

clients

and

JMS

servers.

Tune

the

transport

type

when

you

are

using

non-ASF

non-persistent,

non-durable,

non-transactional

messaging

or

when

you

want

to

satisfy

security

issues

and

the

client

is

local

to

the

queue

manager

node.

Data

type

Enum

Units

Not

applicable

Default

BINDINGS

Range

BINDINGS

JNI

bindings

are

used

to

connect

to

the

queue

manager.

BINDINGS

is

a

shared

memory

protocol

and

can

only

be

used

when

the

queue

manager

is

on

the

same

node

as

the

JMS

client

and

comes

at

some

security

risks

that

should

be

addressed

through

the

use

of

EJB

roles.

CLIENT

WebSphere

MQ

client

connection

is

used

to

connect

to

the

queue

manager.

CLIENT

is

a

typical

TCP-based

protocol.

Recommended

BINDINGS

is

faster

by

30%

or

more,

but

it

lacks

security.

When

you

have

security

concerns,

BINDINGS

is

more

desirable

than

CLIENT.

Model

queue

definition:

The

name

of

the

model

queue

definition

that

can

be

used

by

the

queue

manager

to

create

temporary

queues

if

a

queue

requested

does

not

already

exist.

Data

type

String

Default

Null

Range

1

through

48

ASCII

characters

260

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Client

ID:

The

JMS

client

identifier

used

for

connections

to

the

WebSphere

MQ

queue

manager.

Data

type

String

Default

Null

CCSID:

The

coded

character

set

identifier

for

use

with

the

WebSphere

MQ

queue

manager.

This

coded

character

set

identifier

(CCSID)

must

be

one

of

the

CCSIDs

supported

by

WebSphere

MQ.

Data

type

String

Units

Integer

Default

Null

Range

1

through

65535

For

more

information

about

supported

CCSIDs,

and

about

converting

between

message

data

from

one

coded

character

set

to

another,

see

the

WebSphere

MQ

System

Administration

and

the

WebSphere

MQ

Application

Programming

Reference

books.

These

are

available

from

the

WebSphere

MQ

messaging

multiplatform

and

platform-specific

books

Web

pages;

for

example,

at

http://www-
3.ibm.com/software/ts/mqseries/library/manualsa/manuals/platspecific.html,

the

IBM

Publications

Center,

or

from

the

WebSphere

MQ

collection

kit,

SK2T-0730.

Message

retention:

Select

this

check

box

to

specify

that

unwanted

messages

are

to

be

left

on

the

queue.

Otherwise,

unwanted

messages

are

dealt

with

according

to

their

disposition

options.

Data

type

Enum

Units

Not

applicable

Default

Cleared

Range

Selected

Unwanted

messages

are

left

on

the

queue.

Cleared

Unwanted

messages

are

dealt

with

according

to

their

disposition

options.

XA

Enabled:

Specifies

whether

the

connection

factory

is

for

XA

or

non-XA

coordination

of

messages

and

controls

if

the

application

server

uses

XA

QCF/TCF.

Enable

XA

if

multiple

resources

are

not

used

in

the

same

transaction.

If

you

set

this

property

to

NON_XA,

the

JMS

session

is

still

enlisted

in

a

transaction,

but

uses

the

resource

manager

local

transaction

calls

(session.commit

and

Chapter

3.

Using

asynchronous

messaging

261

http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/crosslatest.html.html
http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/crosslatest.html.html
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

session.rollback)

instead

of

XA

calls.

This

can

lead

to

an

improvement

in

performance.

However,

this

means

that

only

a

single

resource

can

be

enlisted

in

a

transaction

in

WebSphere

Application

Server.

5.1 +

In

WBI

Server

Foundation

the

last

participant

support

enables

you

to

enlist

one

non-XA

resource

with

other

XA-capable

resources.

Data

type

Enum

Units

Not

applicable

Default

XA

enabled

Range

XA

The

connection

factory

is

for

XA-coordination

of

messages

NON_XA

The

connection

factory

is

for

non-XA

coordination

of

messages

Recommended

Do

not

enable

XA

when

the

message

queue

received

is

the

only

resource

in

the

transaction.

Enable

XA

when

other

resources,

including

other

queues

or

topics,

are

involved.

Connection

pool:

Specifies

an

optional

set

of

connection

pool

settings.

Connection

pool

properties

are

common

to

all

J2C

connectors.

The

application

server

pools

connections

and

sessions

with

the

JMS

provider

to

improve

performance.

This

is

independent

from

any

WebSphere

MQ

connection

pooling.

You

need

to

configure

the

connection

and

session

pool

properties

appropriately

for

your

applications,

otherwise

you

may

not

get

the

connection

and

session

behavior

that

you

want.

Change

the

size

of

the

connection

pool

if

concurrent

server-side

access

to

the

JMS

resource

exceeds

the

default

value.

The

size

of

the

connection

pool

is

set

on

a

per

queue

or

topic

basis.

Session

pool:

An

optional

set

of

session

pool

settings.

This

link

provides

a

panel

of

optional

connection

pool

properties,

common

to

all

J2C

connectors.

The

application

server

pools

connections

and

sessions

with

the

JMS

provider

to

improve

performance.

This

is

independent

from

any

WebSphere

MQ

connection

pooling.

You

need

to

configure

the

connection

and

session

pool

properties

appropriately

for

your

applications,

otherwise

you

may

not

get

the

connection

and

session

behavior

that

you

want.

Custom

properties:

An

optional

set

of

name

and

value

pairs

for

custom

properties

passed

to

WebSphere

MQ.

262

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

You

can

use

the

Custom

properties

page

to

define

the

following

WebSphere

MQ

Secure

Sockets

Layer

(SSL)

properties.

These

properties

apply

only

if

you

set

the

property

Transport

type=CLIENT.

v

SSLCIPHERSUITE

v

SSLCRL

v

SSLPEERNAME

For

more

information

about

setting

these

properties,

see

the

section

SSL

properties

in

the

WebSphere

MQ

Using

Java

book.

WebSphere

MQ

queue

connection

factory

custom

properties:

Use

this

panel

to

view

or

change

an

optional

set

of

name

and

value

pairs

for

custom

properties

of

the

selected

queue

connection

factory

for

use

with

the

WebSphere

MQ

JMS

provider.

These

custom

properties

are

passed

to

WebSphere

MQ.

To

view

this

administrative

console

page,

click

Resources->

WebSphere

MQ

JMS

Provider->

(In

content

pane,

under

Additional

Properties)

WebSphere

MQ

Queue

Connection

Factories->

connection_factory->

Custom

Properties

You

can

use

the

Custom

properties

page

to

define

the

following

WebSphere

MQ

Secure

Sockets

Layer

(SSL)

properties.

These

properties

apply

only

if

you

set

the

property

Transport

type=CLIENT

on

the

connection

factory.

v

SSLCIPHERSUITE

v

SSLCRL

v

SSLPEERNAME

For

more

information

about

setting

these

properties

for

WebSphere

MQ,

see

the

section

SSL

properties

in

the

WebSphere

MQ

Using

Java

book.

SSLCIPHERSUITE:

The

cipher

suite

to

use

for

SSL

connection.

Set

this

property

to

a

valid

cipher

suite

provided

by

your

JSSE

provider;

it

must

match

the

CipherSpec

named

on

the

SVRCONN

channel

named

by

the

Channel

property.

You

must

set

this

property

if

the

SSLPEERNAME

is

to

be

set.

SSLCRL:

A

list

of

zero

or

more

CRL

(Certificate

Revocation

List)

servers

used

to

check

for

SSL

certificate

revocation.

(Use

of

this

property

requires

a

WebSphere

MQ

JVM

at

Java

2

version

1.4.)

The

value

is

a

space-delimited

list

of

entries

of

the

form:

ldap://hostname:[port]

optionally

followed

by

a

single

/

(forward

slash).

If

port

is

omitted,

the

default

LDAP

port

of

389

is

assumed.

At

connect-time,

the

SSL

certificate

presented

by

the

server

is

checked

against

the

specified

CRL

servers.

For

more

information

about

CRL

security,

see

the

section

“Working

with

Certificate

Revocation

Lists”

in

the

Chapter

3.

Using

asynchronous

messaging

263

http://publibfp.boulder.ibm.com/epubs/html/csqzaw11/csqzaw1116.htm#HDRJSSLPR
http://publibfp.boulder.ibm.com/epubs/html/csqzaw11/csqzaw1116.htm#HDRJSSLPR

WebSphere

MQ

Security

book;

for

example

at:

http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas012w.htm#IDX2254.

SSLPEERNAME:

For

SSL,

a

distinguished

name

skeleton

that

must

match

the

name

provided

by

the

WebSphere

MQ

queue

manager.

The

distinguished

name

is

used

to

check

the

identifying

certificate

presented

by

the

server

at

connect-time.

If

SSLPEERNAME

is

not

set,

such

checking

is

performed.

SSLPEERNAME

is

ignored

if

SSLCIPHERSUITE

is

not

specified.

The

SSLPEERNAME

property

is

a

list

of

attribute

name

and

value

pairs

separated

by

commas

or

semicolons.

For

example:

SSLPEERNAME(CN=QMGR.*,

OU=IBM,

OU=WEBSPHERE)

The

example

given

checks

the

identifying

certificate

presented

by

the

server

at

connect-time.

For

the

connection

to

succeed,

the

certificate

must

have

a

Common

Name

beginning

QMGR.,

and

must

have

at

least

two

Organizational

Unit

names,

the

first

of

which

is

IBM

and

the

second

WEBSPHERE.

Checking

is

not

case-sensitive.

For

more

details

about

distinguished

names

and

their

use

with

WebSphere

MQ,

see

the

WebSphere

MQ

Security

book;

for

example,

the

section

“Distinguished

Names”

at

http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas010p.htm#HDRDCDN.

WebSphere

MQ

topic

connection

factory

collection:

The

topic

connection

factories

configured

in

the

WebSphere

MQ

JMS

provider

for

publish/subscribe

messaging

with

JMS

topics.

This

panel

shows

a

list

of

the

WebSphere

MQ

topic

connection

factories

with

a

summary

of

their

configuration

properties.

To

view

this

administrative

console

page,

use

the

administrative

console

to

complete

the

following

steps:

1.

In

the

navigation

pane,

expand

Resources->

WebSphere

MQ

JMS

Provider.

2.

Change

the

Scope

check

box

to

Cell,

Node

(for

a

JMS

provider

on

a

specific

node),

or

Server,

according

to

your

needs.

3.

In

the

Additional

Properties

list

in

the

contents

pane,

select

WebSphere

MQ

Topic

Connection

Factory.

To

view

or

change

the

properties

of

a

connection

factory,

select

its

name

in

the

list

displayed.

To

act

on

one

or

more

of

the

connection

factories

listed,

click

the

check

boxes

next

to

the

names

of

the

objects

that

you

want

to

act

on,

then

use

the

buttons

provided.

WebSphere

MQ

topic

connection

factory

settings:

Use

this

panel

to

view

or

change

the

configuration

properties

of

the

selected

topic

connection

factory

for

use

with

the

WebSphere

MQ

JMS

provider.

These

configuration

properties

control

how

connections

are

created

to

the

associated

JMS

topic

destination.

264

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas012w.htm#IDX2254
http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas010p.htm#HDRDCDN

A

topic

connection

factory

is

used

to

create

JMS

connections

to

topic

destinations.

The

topic

connection

factory

is

created

by

the

WebSphere

MQ

JMS

provider.

A

topic

connection

factory

for

the

WebSphere

MQ

JMS

provider

has

the

following

properties.

Note:

v

The

property

values

that

you

specify

must

match

the

values

that

you

specified

when

configuring

WebSphere

MQ

JMS

resources.

For

more

information

about

configuring

WebSphere

MQ

JMS

resources,

see

the

WebSphere

MQ

Using

Java

book.

v

In

WebSphere

MQ,

names

can

have

a

maximum

of

48

characters,

with

the

exception

of

channels

which

have

a

maximum

of

20

characters.

v

5.1 +

You

can

use

the

Custom

properties

page

to

define

a

subset

of

WebSphere

MQ

properties.

For

more

information

about

setting

those

properties,

see

Custom

properties.

To

view

this

administrative

console

page,

click

Resources->

WebSphere

MQ

JMS

Provider->

(In

content

pane,

under

Additional

Properties)

WebSphere

MQ

Topic

Connection

Factories->

connection_factory

Scope:

Specifies

the

level

to

which

this

resource

definition

is

visible

--

the

cell,

node,

or

server

level.

Resources

such

as

JMS

Providers,

Namespace

bindings,

or

shared

libraries

can

be

defined

at

multiple

scopes,

with

resources

defined

at

more

specific

scopes

overriding

duplicates

which

are

defined

at

more

general

scopes.

Note

that

no

matter

what

the

scope

of

a

defined

resource,

the

resource’s

properties

only

apply

at

an

individual

server

level.

For

example,

if

you

define

the

scope

of

a

data

source

at

the

Cell

level,

all

users

in

that

Cell

can

look

up

and

use

that

data

source,

which

is

unique

within

that

Cell.

However,

resource

property

settings

are

local

to

each

server

in

the

Cell.

For

example,

if

you

set

Max

Connections

to

10,

then

each

server

in

that

Cell

can

have

10

connections.

Cell

The

most

general

scope.

Resources

defined

at

the

Cell

scope

are

visible

from

all

Nodes

and

servers,

unless

they

are

overridden.

To

view

resources

defined

in

the

cell

scope,

do

not

specify

a

server

or

a

node

name

in

the

scope

selection

form.

Node

The

default

scope

for

most

resource

types.

Resources

defined

at

the

Node

scope

override

any

duplicates

defined

at

the

Cell

scope

and

are

visible

to

all

servers

on

the

same

node,

unless

they

are

overridden

at

a

server

scope

on

that

node.

To

view

resources

defined

in

a

node

scope,

do

not

specify

a

server,

but

select

a

node

name

in

the

scope

selection

form.

Server

The

most

specific

scope

for

defining

resources.

Resources

defined

at

the

Server

scope

override

any

duplicate

resource

definitions

defined

at

the

Cell

scope

or

parent

Node

scope

and

are

visible

only

to

a

specific

server.

To

view

resources

defined

in

a

server

scope,

specify

a

server

name

as

well

as

a

node

name

in

the

scope

selection

form.

When

resources

are

created,

they

are

always

created

into

the

current

scope

selected

in

the

panel.

To

view

resources

in

other

scopes,

specify

a

different

node

or

server

in

the

scope

selection

form.

Data

type

String

Chapter

3.

Using

asynchronous

messaging

265

Name:

The

name

by

which

this

topic

connection

factory

is

known

for

administrative

purposes

within

IBM

WebSphere

Application

Server.

The

name

must

be

unique

within

the

JMS

provider.

Data

type

String

JNDI

name:

The

JNDI

name

that

is

used

to

bind

the

topic

connection

factory

into

the

application

server’s

name

space.

As

a

convention,

use

the

fully

qualified

JNDI

name;

for

example,

in

the

form

jms/Name,

where

Name

is

the

logical

name

of

the

resource.

This

name

is

used

to

link

the

platform

binding

information.

The

binding

associates

the

resources

defined

by

the

deployment

descriptor

of

the

module

to

the

actual

(physical)

resources

bound

into

JNDI

by

the

platform.

Data

type

String

Description:

A

description

of

this

topic

connection

factory

for

administrative

purposes

within

IBM

WebSphere

Application

Server.

Data

type

String

Default

Null

Category:

A

category

used

to

classify

or

group

this

topic

connection

factory,

for

your

IBM

WebSphere

Application

Server

administrative

records.

Data

type

String

Component-managed

Authentication

Alias:

This

alias

specifies

a

user

ID

and

password

to

be

used

to

authenticate

connection

to

a

JMS

provider

for

application-managed

authentication.

This

property

provides

a

list

of

the

J2C

authentication

data

entry

aliases

that

have

been

defined

to

WebSphere

Application

Server.

You

can

select

a

data

entry

alias

to

be

used

to

authenticate

the

creation

of

a

new

connection

to

the

JMS

provider.

If

you

have

enabled

global

security

for

WebSphere

Application

Server,

select

the

alias

that

specifies

the

user

ID

and

password

used

to

authenticate

the

creation

of

a

new

connection

to

the

JMS

provider.

The

use

of

this

alias

depends

on

the

resource

authentication

(res-auth)

setting

declared

in

the

connection

factory

resource

reference

of

an

application

component’s

deployment

descriptors.

Note:

User

IDs

longer

than

12

characters

cannot

be

used

for

authentication

with

the

embedded

WebSphere

JMS

provider.

For

example,

the

default

Windows

266

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

NT

user

ID,

Administrator,

is

not

valid

for

use

with

embedded

WebSphere

messaging,

because

it

contains

13

characters.

Therefore,

an

authentication

alias

for

a

WebSphere

JMS

provider

connection

factory

must

specify

a

user

ID

no

longer

than

12

characters.

Container-managed

Authentication

Alias:

This

alias

specifies

a

user

ID

and

password

to

be

used

to

authenticate

connection

to

a

JMS

provider

for

container-managed

authentication.

This

property

provides

a

list

of

the

J2C

authentication

data

entry

aliases

that

have

been

defined

to

WebSphere

Application

Server.

You

can

select

a

data

entry

alias

to

be

used

to

authenticate

the

creation

of

a

new

connection

to

the

JMS

provider.

If

you

have

enabled

global

security

for

WebSphere

Application

Server,

select

the

alias

that

specifies

the

user

ID

and

password

used

to

authenticate

the

creation

of

a

new

connection

to

the

JMS

provider.

The

use

of

this

alias

depends

on

the

resource

authentication

(res-auth)

setting

declared

in

the

connection

factory

resource

reference

of

an

application

component’s

deployment

descriptors.

Note:

User

IDs

longer

than

12

characters

cannot

be

used

for

authentication

with

the

embedded

WebSphere

JMS

provider.

For

example,

the

default

Windows

NT

user

ID,

Administrator,

is

not

valid

for

use

with

embedded

WebSphere

messaging,

because

it

contains

13

characters.

Therefore,

an

authentication

alias

for

a

WebSphere

JMS

provider

connection

factory

must

specify

a

user

ID

no

longer

than

12

characters.

Queue

manager:

The

name

of

the

WebSphere

MQ

queue

manager

for

this

connection

factory.

Connections

created

by

this

factory

connect

to

that

queue

manager.

Data

type

String

Default

Null

Range

A

valid

WebSphere

MQ

queue

manager

name,

as

1

through

48

ASCII

characters

Host:

The

name

of

the

host

on

which

the

WebSphere

MQ

queue

manager

runs,

for

client

connection

only.

Data

type

String

Default

Null

Range

A

valid

TCP/IP

hostname

Port:

The

TCP/IP

port

number

used

for

connection

to

the

WebSphere

MQ

queue

manager,

for

client

connection

only.

This

port

must

be

configured

on

the

WebSphere

MQ

queue

manager.

Data

type

Integer

Default

Null

Chapter

3.

Using

asynchronous

messaging

267

Range

A

valid

TCP/IP

port

number,

configured

on

the

WebSphere

MQ

queue

manager.

Channel:

The

name

of

the

channel

used

for

connection

to

the

WebSphere

MQ

queue

manager,

for

client

connection

only.

Data

type

String

Default

Null

Range

1

through

20

ASCII

characters

Transport

type:

Specifies

whether

the

WebSphere

MQ

client

connection

or

JNI

bindings

are

used

for

connection

to

the

WebSphere

MQ

queue

manager.

The

external

JMS

provider

controls

the

communication

protocols

between

JMS

clients

and

JMS

servers.

Tune

the

transport

type

when

you

are

using

non-ASF

nonpersistent,

non-durable,

non-transactional

messaging

or

when

you

want

to

satisfy

security

issues

and

the

client

is

local

to

the

queue

manager

node.

Data

type

Enum

Units

Not

applicable

Default

BINDINGS

Range

BINDINGS

JNI

bindings

are

used

to

connect

to

the

queue

manager.

BINDINGS

is

a

shared

memory

protocol

and

can

only

be

used

when

the

queue

manager

is

on

the

same

node

as

the

JMS

client

and

comes

at

some

security

risks

that

should

be

addressed

through

the

use

of

EJB

roles.

CLIENT

WebSphere

MQ

client

connection

is

used

to

connect

to

the

queue

manager.

CLIENT

is

a

typical

TCP-based

protocol.

DIRECT

For

WebSphere

MQ

Event

Broker

using

DIRECT

mode.

DIRECT

is

a

lightweight

sockets

protocol

used

in

non-transactional,

non-durable

and

non-persistent

Publish/Subscribe

messaging.

DIRECT

works

only

for

clients

and

message-driven

beans

using

the

non-ASF

protocol.

268

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Recommended

DIRECT

is

the

fastest

transport

type

and

should

be

used

where

possible.

Use

BINDINGS

when

you

want

to

satisfy

additional

security

tasks

and

the

queue

manager

is

local

to

the

JMS

client.

QUEUED

is

fallback

for

all

other

cases.

Note:

WebSphere

MQ

5.3

before

CSD2

with

the

DIRECT

setting

can

lose

messages

when

used

with

message-driven

beans

and

under

load.

This

also

happens

with

client-side

based

applications

unless

the

broker’s

maxClientQueueSize

is

set

to

0.

You

can

set

this

to

0

with

the

command

#wempschangeproperties

WAS_nodeName_server1

-e

default

-o

DynamicSubscriptionEngine

-n

maxClientQueueSize

-v

0

-x

executionGroupUUID,

where

executionGroupUUID

can

be

found

by

starting

the

broker

and

looking

in

the

Event

Log/Applications

for

event

2201.

This

value

is

usually

ffffffff-0000-0000-000000000000.

Broker

control

queue:

The

name

of

the

broker’s

control

queue,

to

which

all

command

messages

(except

publications

and

requests

to

delete

publications)

are

sent

The

name

of

the

broker’s

control

queue.

Publisher

and

subscriber

applications,

and

other

brokers,

send

all

command

messages

(except

publications

and

requests

to

delete

publications)

to

this

queue.

Data

type

String

Units

En_US

ASCII

characters

Default

Null

Range

1

through

48

ASCII

characters

Broker

queue

manager:

The

name

of

the

WebSphere

MQ

queue

manager

that

provides

the

publish/subscribe

message

broker.

Data

type

String

Units

En_US

ASCII

characters

Default

Null

Range

1

through

48

ASCII

characters

Broker

publication

queue:

The

name

of

the

broker’s

input

queue

that

receives

all

publication

messages

for

the

default

stream

The

name

of

the

broker’s

input

queue

(stream

queue)

that

receives

all

publication

messages

for

the

default

stream.

Applications

can

also

send

requests

to

delete

publications

on

the

default

stream

to

this

queue.

Chapter

3.

Using

asynchronous

messaging

269

Data

type

String

Units

En_US

ASCII

characters

Default

Null

Range

1

through

48

ASCII

characters

Broker

subscription

queue:

The

name

of

the

broker’s

queue

from

which

non-durable

subscription

messages

are

retrieved

The

name

of

the

broker’s

queue

from

which

non-durable

subscription

messages

are

retrieved.

The

subscriber

specifies

the

name

of

the

queue

when

it

registers

a

subscription.

Data

type

String

Units

En_US

ASCII

characters

Default

Null

Range

1

through

48

ASCII

characters

Broker

CC

subscription

queue:

The

name

of

the

broker’s

queue

from

which

non-durable

subscription

messages

are

retrieved

for

a

ConnectionConsumer.

This

property

applies

only

for

use

of

the

Web

container.

The

name

of

the

broker’s

queue

from

which

non-durable

subscription

messages

are

retrieved

for

a

ConnectionConsumer.

This

property

applies

only

for

use

of

the

Web

container.

Data

type

String

Units

En_US

ASCII

characters

Default

Null

Range

1

through

48

ASCII

characters

Broker

version:

Whether

the

message

broker

is

provided

by

the

WebSphere

MQ

MA0C

Supportpac

or

newer

versions

of

WebSphere

message

broker

products

Data

type

Enum

Units

Not

applicable

Default

Advanced

Range

Advanced

The

message

broker

is

provided

by

newer

versions

of

WebSphere

message

broker

products,

such

as

WebsSphere

MQ

Integrator

and

EventBroker.

Basic

The

message

broker

is

provided

by

the

WebSphere

MQ

MA0C

SupportPac

(MQSeries

-

Publish/Subscribe)

or

MQSI

working

in

MA0C

compatibility

mode.

270

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Model

queue

definition:

The

name

of

the

model

queue

definition

that

the

broker

can

use

to

create

dynamic

queues

for

non-default

streams

if

the

stream

queue

does

not

already

exist

The

name

of

the

model

queue

definition

that

the

broker

can

use

to

create

dynamic

queues

to

receive

publications

for

streams

other

than

the

default

stream.

This

is

only

used

if

the

stream

queue

does

not

already

exist.

If

this

model

queue

definition

does

not

exist,

all

stream

queues

must

be

defined

by

the

administrator.

Data

type

String

Units

En_US

ASCII

characters

Default

Null

Range

1

through

48

ASCII

characters

CCSID:

The

coded

character

set

identifier

for

use

with

the

WebSphere

MQ

queue

manager.

This

coded

character

set

identifier

(CCSID)

must

be

one

of

the

CCSIDs

supported

by

WebSphere

MQ.

Data

type

String

Units

Integer

Default

Null

Range

1

through

65535

For

more

information

about

supported

CCSIDs,

and

about

converting

between

message

data

from

one

coded

character

set

to

another,

see

the

WebSphere

MQ

System

Administration

and

the

WebSphere

MQ

Application

Programming

Reference

books.

These

are

available

from

the

WebSphere

MQ

messaging

multiplatform

and

platform-specific

books

Web

pages;

for

example,

at

the

IBM

Publications

Center,

or

from

the

WebSphere

MQ

collection

kit,

SK2T-0730.

Clone

Support:

Select

this

checkbox

to

enable

clone

support

to

allow

the

same

durable

subscription

across

topic

clones.

Data

type

Enum

Units

Not

applicable

Default

Cleared

Range

Selected

Clone

support

is

enabled.

Cleared

Clone

support

is

disabled.

If

you

select

this

property,

you

must

also

specify

a

value

for

the

Client

ID

property.

Client

ID:

The

JMS

client

identifier

used

for

connections

to

the

queue

manager.

Data

type

String

Chapter

3.

Using

asynchronous

messaging

271

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

Range

A

valid

JMS

client

ID,

as

ASCII

characters

XA

Enabled:

Specifies

whether

the

connection

factory

is

for

XA

or

non-XA

coordination

of

messages

and

controls

if

the

application

server

uses

XA

QCF/TCF.

Enable

XA

if

multiple

resources

are

not

used

in

the

same

transaction.

If

you

set

this

property

to

NON_XA,

the

JMS

session

is

still

enlisted

in

a

transaction,

but

uses

the

resource

manager

local

transaction

calls

(session.commit

and

session.rollback)

instead

of

XA

calls.

This

can

lead

to

an

improvement

in

performance.

However,

this

means

that

only

a

single

resource

can

be

enlisted

in

a

transaction

in

WebSphere

Application

Server.

5.1 +

In

WBI

Server

Foundation

the

last

participant

support

enables

you

to

enlist

one

non-XA

resource

with

other

XA-capable

resources.

For

a

WebSphere

Topic

Connection

Factory

with

the

Port

property

set

to

DIRECT

this

property

does

not

apply,

and

always

takes

the

value

NON_XA.

Data

type

Enum

Units

Not

applicable

Default

XA

enabled

Range

XA

The

connection

factory

is

for

XA-coordination

of

messages

NON_XA

The

connection

factory

is

for

non-XA

coordination

of

messages

Recommended

Do

not

enable

XA

when

the

message

queue

or

topic

received

is

the

only

resource

in

the

transaction.

Enable

XA

when

other

resources,

including

other

queues

or

topics,

are

involved.

Connection

pool:

Specifies

an

optional

set

of

connection

pool

settings.

Connection

pool

properties

are

common

to

all

J2C

connectors.

The

application

server

pools

connections

and

sessions

with

the

JMS

provider

to

improve

performance.

This

is

independent

from

any

WebSphere

MQ

connection

pooling.

You

need

to

configure

the

connection

and

session

pool

properties

appropriately

for

your

applications,

otherwise

you

may

not

get

the

connection

and

session

behavior

that

you

want.

Change

the

size

of

the

connection

pool

if

concurrent

server-side

access

to

the

JMS

resource

exceeds

the

default

value.The

size

of

the

connection

pool

is

set

on

a

per

queue

or

topic

basis.

See

the

following

table

for

details.

Session

pool:

An

optional

set

of

session

pool

settings.

272

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

This

link

provides

a

panel

of

optional

connection

pool

properties,

common

to

all

J2C

connectors.

The

application

server

pools

connections

and

sessions

with

the

JMS

provider

to

improve

performance.

This

is

independent

from

any

WebSphere

MQ

connection

pooling.

You

need

to

configure

the

connection

and

session

pool

properties

appropriately

for

your

applications,

otherwise

you

may

not

get

the

connection

and

session

behavior

that

you

want.

Custom

properties:

An

optional

set

of

name

and

value

pairs

for

custom

properties

passed

to

WebSphere

MQ.

You

can

use

the

Custom

properties

page

to

define

the

following

WebSphere

MQ

properties.

These

properties

apply

only

if

you

set

the

property

Transport

type=CLIENT.

v

SSLCIPHERSUITE

v

SSLCRL

v

SSLPEERNAME

v

MSGSELECTION

v

SUBSTORE

WebSphere

MQ

topic

connection

factory

custom

properties:

Use

this

panel

to

view

or

change

an

optional

set

of

name

and

value

pairs

for

custom

properties

of

the

selected

topic

connection

factory

for

use

with

the

WebSphere

MQ

JMS

provider.

These

custom

properties

are

passed

to

WebSphere

MQ.

To

view

this

administrative

console

page,

click

Resources->

WebSphere

MQ

JMS

Provider->

(In

content

pane,

under

Additional

Properties)

WebSphere

MQ

Topic

Connection

Factories->

connection_factory->

Custom

Properties

You

can

use

the

Custom

properties

page

to

define

the

following

WebSphere

MQ

properties.

These

properties

apply

only

if

you

set

the

property

Transport

type=CLIENT.

v

SSLCIPHERSUITE

v

SSLCRL

v

SSLPEERNAME

v

MSGSELECTION

v

SUBSTORE

For

more

information

about

setting

the

SSL

properties

for

WebSphere

MQ,

see

the

section

SSL

properties

in

the

WebSphere

MQ

Using

Java

book.

SSLCIPHERSUITE:

The

cipher

suite

to

use

for

SSL

connection.

Set

this

property

to

a

valid

cipher

suite

provided

by

your

JSSE

provider;

it

must

match

the

CipherSpec

named

on

the

SVRCONN

channel

named

by

the

Channel

property.

Chapter

3.

Using

asynchronous

messaging

273

http://publibfp.boulder.ibm.com/epubs/html/csqzaw11/csqzaw1116.htm#HDRJSSLPR

You

must

set

this

property

if

the

SSLPEERNAME

is

to

be

set.

SSLCRL:

A

list

of

zero

or

more

CRL

(Certificate

Revocation

List)

servers

used

to

check

for

SSL

certificate

revocation.

(Use

of

this

property

requires

a

WebSphere

MQ

JVM

at

Java

2

version

1.4.)

The

value

is

a

space-delimited

list

of

entries

of

the

form:

ldap://hostname:[port]

optionally

followed

by

a

single

/

(forward

slash).

If

port

is

omitted,

the

default

LDAP

port

of

389

is

assumed.

At

connect-time,

the

SSL

certificate

presented

by

the

server

is

checked

against

the

specified

CRL

servers.

For

more

information

about

CRL

security,

see

the

section

“Working

with

Certificate

Revocation

Lists”

in

the

WebSphere

MQ

Security

book;

for

example

at:

http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas012w.htm#IDX2254.

SSLPEERNAME:

For

SSL,

a

distinguished

name

skeleton

that

must

match

the

name

provided

by

the

WebSphere

MQ

queue

manager.

The

distinguished

name

is

used

to

check

the

identifying

certificate

presented

by

the

server

at

connect-time.

If

SSLPEERNAME

is

not

set,

such

checking

is

performed.

SSLPEERNAME

is

ignored

if

SSLCIPHERSUITE

is

not

specified.

The

SSLPEERNAME

property

is

a

list

of

attribute

name

and

value

pairs

separated

by

commas

or

semicolons.

For

example:

SSLPEERNAME(CN=QMGR.*,

OU=IBM,

OU=WEBSPHERE)

The

example

given

checks

the

identifying

certificate

presented

by

the

server

at

connect-time.

For

the

connection

to

succeed,

the

certificate

must

have

a

Common

Name

beginning

QMGR.,

and

must

have

at

least

two

Organizational

Unit

names,

the

first

of

which

is

IBM

and

the

second

WEBSPHERE.

Checking

is

not

case-sensitive.

For

more

details

about

distinguished

names

and

their

use

with

WebSphere

MQ,

see

the

WebSphere

MQ

Security

book;

for

example,

the

section

“Distinguished

Names”

at

http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas010p.htm#HDRDCDN.

MSGSELECTION:

Determines

whether

message

selection

is

done

by

the

JMS

Client

or

by

the

Broker.

If

you

set

the

property

Transport

type=BINDINGS,

message

selection

is

always

done

by

the

Broker

and

the

setting

of

this

property

is

ignored.

Data

type

String

Default

CLIENT

274

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas012w.htm#IDX2254
http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas010p.htm#HDRDCDN

Range

CLIENT

Message

selection

is

done

by

the

JMS

Client.

BROKER

Message

selection

is

done

by

the

Broker.

SUBSTORE:

Where

WebSphere

MQ

JMS

should

store

persistent

data

relating

to

active

subscriptions.

Data

type

String

Default

MIGRATE

Chapter

3.

Using

asynchronous

messaging

275

Range

BROKER

Subscription

information

is

stored

by

the

publish/subscribe

broker

used

by

the

application.

If

a

non-durable

subscriber

fails,

the

subscription

is

deregistered

from

the

broker

as

soon

as

possible.

The

broker

adds

a

response

to

this

deregistration

onto

the

SYSTEM.JMS.REPORT.QUEUE,

which

is

used

to

clean

up

after

the

failed

subscriber.

With

SUBSTORE(BROKER),

a

separate

cleanup

thread

is

run

regularly

in

the

background

of

each

JMS

publish/subscribe

application.

MIGRATE

This

option

dynamically

selects

the

queue-based

or

broker-based

subscription

store

based

on

the

levels

of

queue

manager

and

publish/subscribe

broker

installed.

If

both

queue

manager

and

broker

are

capable

of

supporting

SUBSTORE(BROKER),

this

behaves

as

SUBSTORE(BROKER);

otherwise

it

behaves

as

SUBSTORE(QUEUE).

Additionally,

SUBSTORE(MIGRATE)

transfers

durable

subscription

information

from

the

queue-based

subscription

store

to

the

broker-based

store.

This

provides

an

easy

migration

path

from

older

versions

of

WebSphere

MQ

JMS,

WebSphere

MQ,

and

publish/subscribe

broker.

QUEUE

Subscription

information

is

stored

on

SYSTEM.JMS.ADMIN.QUEUE

and

SYSTEM.JMS.PS.STATUS.QUEUE

on

the

local

queue

manager.

SUBSTORE(QUEUE)

is

provided

for

compatibility

with

versions

of

MQSeries

JMS.

For

more

information

about

the

use

of

this

property

in

WebSphere

MQ,

see

the

section

Subscription

stores

in

the

WebSphere

MQ

Using

Java

book.

WebSphere

MQ

queue

destination

collection:

The

queue

destinations

configured

in

the

WebSphere

MQ

JMS

provider

for

point-to-point

messaging

with

JMS

queues.

This

panel

shows

a

list

of

the

WebSphere

MQ

queue

destinations

with

a

summary

of

their

configuration

properties.

276

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

http://publibfp.boulder.ibm.com/epubs/html/csqzaw11/csqzaw1134.htm#HDRJMSPSSS

To

view

this

administrative

console

page,

use

the

administrative

console

to

complete

the

following

steps:

1.

In

the

navigation

pane,

expand

Resources->

WebSphere

MQ

JMS

provider.

2.

Change

the

Scope

check

box

to

Cell,

Node

(for

a

JMS

provider

on

a

specific

node),

or

Server,

according

to

your

needs.

3.

In

the

Additional

Properties

list

in

the

contents

pane,

select

WebSphere

MQ

Queue

Destination.

To

view

or

change

the

properties

of

a

queue

destination,

select

its

name

in

the

list

displayed.

To

act

on

one

or

more

of

the

queue

destinations

listed,

click

the

check

boxes

next

to

the

names

of

the

objects

that

you

want

to

act

on,

then

use

the

buttons

provided.

WebSphere

MQ

queue

settings:

Use

this

panel

to

view

or

change

the

configuration

properties

of

the

selected

queue

destination

for

use

with

the

WebSphere

MQ

JMS

provider.

A

queue

destination

is

used

to

configure

the

properties

of

a

JMS

queue.

Connections

to

the

queue

are

created

by

the

associated

queue

connection

factory

for

the

WebSphere

MQ

JMS

provider.

A

queue

for

use

with

the

WebSphere

MQ

JMS

provider

has

the

following

properties.

Note:

v

The

property

values

that

you

specify

must

match

the

values

that

you

specified

when

configuring

WebSphere

MQ

JMS

resources.

For

more

information

about

configuring

WebSphere

MQ

JMS

resources,

see

the

WebSphere

MQ

Using

Java

book.

v

In

WebSphere

MQ,

names

can

have

a

maximum

of

48

characters,

with

the

exception

of

channels

which

have

a

maximum

of

20

characters.

To

view

this

administrative

console

page,

click

Resources->

WebSphere

MQ

JMS

Provider->

(In

content

pane,

under

Additional

Properties)

WebSphere

MQ

Queue

Destinations->

destination_name

Scope:

Specifies

the

level

to

which

this

resource

definition

is

visible

--

the

cell,

node,

or

server

level.

Resources

such

as

JMS

Providers,

Namespace

bindings,

or

shared

libraries

can

be

defined

at

multiple

scopes,

with

resources

defined

at

more

specific

scopes

overriding

duplicates

which

are

defined

at

more

general

scopes.

Note

that

no

matter

what

the

scope

of

a

defined

resource,

the

resource’s

properties

only

apply

at

an

individual

server

level.

For

example,

if

you

define

the

scope

of

a

data

source

at

the

Cell

level,

all

users

in

that

Cell

can

look

up

and

use

that

data

source,

which

is

unique

within

that

Cell.

However,

resource

property

settings

are

local

to

each

server

in

the

Cell.

For

example,

if

you

set

Max

Connections

to

10,

then

each

server

in

that

Cell

can

have

10

connections.

Cell

The

most

general

scope.

Resources

defined

at

the

Cell

scope

are

visible

from

all

Nodes

and

servers,

unless

they

are

overridden.

To

view

resources

defined

in

the

cell

scope,

do

not

specify

a

server

or

a

node

name

in

the

scope

selection

form.

Node

The

default

scope

for

most

resource

types.

Resources

defined

at

the

Node

Chapter

3.

Using

asynchronous

messaging

277

scope

override

any

duplicates

defined

at

the

Cell

scope

and

are

visible

to

all

servers

on

the

same

node,

unless

they

are

overridden

at

a

server

scope

on

that

node.

To

view

resources

defined

in

a

node

scope,

do

not

specify

a

server,

but

select

a

node

name

in

the

scope

selection

form.

Server

The

most

specific

scope

for

defining

resources.

Resources

defined

at

the

Server

scope

override

any

duplicate

resource

definitions

defined

at

the

Cell

scope

or

parent

Node

scope

and

are

visible

only

to

a

specific

server.

To

view

resources

defined

in

a

server

scope,

specify

a

server

name

as

well

as

a

node

name

in

the

scope

selection

form.

When

resources

are

created,

they

are

always

created

into

the

current

scope

selected

in

the

panel.

To

view

resources

in

other

scopes,

specify

a

different

node

or

server

in

the

scope

selection

form.

Data

type

String

Name:

The

name

by

which

the

queue

is

known

for

administrative

purposes

within

IBM

WebSphere

Application

Server.

Data

type

String

JNDI

name:

The

JNDI

name

that

is

used

to

bind

the

queue

into

the

application

server’s

name

space.

As

a

convention,

use

the

fully

qualified

JNDI

name;

for

example,

in

the

form

jms/Name,

where

Name

is

the

logical

name

of

the

resource.

This

name

is

used

to

link

the

platform

binding

information.

The

binding

associates

the

resources

defined

by

the

deployment

descriptor

of

the

module

to

the

actual

(physical)

resources

bound

into

JNDI

by

the

platform.

Data

type

String

Description:

A

description

of

the

queue,

for

administrative

purposes

Data

type

String

Default

Null

Category:

A

category

used

to

classify

or

group

this

queue,

for

your

IBM

WebSphere

Application

Server

administrative

records.

Data

type

String

Persistence:

278

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Whether

all

messages

sent

to

the

destination

are

persistent,

non-persistent,

or

have

their

persistence

defined

by

the

application

Data

type

Enum

Units

Not

applicable

Default

APPLICATION_DEFINED

Range

Application

defined

Messages

on

the

destination

have

their

persistence

defined

by

the

application

that

put

them

onto

the

queue.

Queue

defined

[WebSphere

MQ

destination

only]

Messages

on

the

destination

have

their

persistence

defined

by

the

WebSphere

MQ

queue

definition

properties.

Persistent

Messages

on

the

destination

are

persistent.

Non

persistent

Messages

on

the

destination

are

not

persistent.

Priority:

Whether

the

message

priority

for

this

destination

is

defined

by

the

application

or

the

Specified

priority

property

Data

type

Enum

Units

Not

applicable

Default

APPLICATION_DEFINED

Range

Application

defined

The

priority

of

messages

on

this

destination

is

defined

by

the

application

that

put

them

onto

the

destination.

Queue

defined

[WebSphere

MQ

destination

only]

Messages

on

the

destination

have

their

persistence

defined

by

the

WebSphere

MQ

queue

definition

properties.

Specified

The

priority

of

messages

on

this

destination

is

defined

by

the

Specified

priority

property.If

you

select

this

option,

you

must

define

a

priority

on

the

Specified

priority

property.

Specified

priority:

If

the

Priority

property

is

set

to

Specified,

type

here

the

message

priority

for

this

queue,

in

the

range

0

(lowest)

through

9

(highest)

If

the

Priority

property

is

set

to

Specified,

messages

sent

to

this

queue

have

the

priority

value

specified

by

this

property.

Chapter

3.

Using

asynchronous

messaging

279

Data

type

Integer

Units

Message

priority

level

Default

Null

Range

0

(lowest

priority)

through

9

(highest

priority)

Expiry:

Whether

the

expiry

timeout

for

this

queue

is

defined

by

the

application

or

the

Specified

expiry

property,

or

messages

on

the

queue

never

expire

(have

an

unlimited

expiry

timeout)

Data

type

Enum

Units

Not

applicable

Default

APPLICATION_DEFINED

Range

Application

defined

The

expiry

timeout

for

messages

on

this

queue

is

defined

by

the

application

that

put

them

onto

the

queue.

Specified

The

expiry

timeout

for

messages

on

this

queue

is

defined

by

the

Specified

expiry

property.If

you

select

this

option,

you

must

define

a

timeout

on

the

Specified

expiry

property.

Unlimited

Messages

on

this

queue

have

no

expiry

timeout,

so

those

messages

never

expire.

Specified

expiry:

If

the

Expiry

timeout

property

is

set

to

Specified,

type

here

the

number

of

milliseconds

(greater

than

0)

after

which

messages

on

this

queue

expire

Data

type

Integer

Units

Milliseconds

Default

Null

Range

Greater

than

or

equal

to

0

v

0

indicates

that

messages

never

timeout

v

Other

values

are

an

integer

number

of

milliseconds

Base

queue

name:

The

name

of

the

queue

to

which

messages

are

sent,

on

the

queue

manager

specified

by

the

Base

queue

manager

name

property

Data

type

String

Default

Null

Range

1

through

48

ASCII

characters

Base

queue

manager

name:

280

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

The

name

of

the

WebSphere

MQ

queue

manager

to

which

messages

are

sent

This

queue

manager

provides

the

queue

specified

by

the

Base

queue

name

property.

Data

type

String

Units

En_US

ASCII

characters

Default

Null

Range

A

valid

WebSphere

MQ

Queue

Manager

name,

as

1

through

48

ASCII

characters

CCSID:

The

coded

character

set

identifier

for

use

with

the

WebSphere

MQ

queue

manager.

This

coded

character

set

identifier

(CCSID)

must

be

one

of

the

CCSIDs

supported

by

WebSphere

MQ.

Data

type

String

Units

Integer

Default

Null

Range

1

through

65535

For

more

information

about

supported

CCSIDs,

and

about

converting

between

message

data

from

one

coded

character

set

to

another,

see

the

WebSphere

MQ

System

Administration

and

the

WebSphere

MQ

Application

Programming

Reference

books.

These

are

available

from

the

WebSphere

MQ

messaging

multiplatform

and

platform-specific

books

Web

pages;

for

example,

at

http://www-
3.ibm.com/software/ts/mqseries/library/manualsa/manuals/platspecific.html,

the

IBM

Publications

Center,

or

from

the

WebSphere

MQ

collection

kit,

SK2T-0730.

Use

native

encoding:

Select

this

checkbox

to

indicate

that

the

queue

destination

should

use

native

encoding

(appropriate

encoding

values

for

the

Java

platform).

Data

type

Enum

Units

Not

applicable

Default

Cleared

Range

Cleared

Native

encoding

is

not

used,

so

specify

the

properties

below

for

integer,

decimal,

and

floating

point

encoding.

Selected

Native

encoding

is

used

(to

provide

appropriate

encoding

values

for

the

Java

platform).

For

more

information

about

encoding

properties,

see

the

WebSphere

MQ

Using

Java

document.

Integer

encoding:

Chapter

3.

Using

asynchronous

messaging

281

http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/crosslatest.html.html
http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/crosslatest.html.html
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

If

native

encoding

is

not

enabled,

select

whether

integer

encoding

is

normal

or

reversed.

Data

type

Enum

Units

Not

applicable

Default

NORMAL

Range

NORMAL

Normal

integer

encoding

is

used.

REVERSED

Reversed

integer

encoding

is

used.

For

more

information

about

encoding

properties,

see

the

WebSphere

MQ

Using

Java

document.

Decimal

encoding:

If

native

encoding

is

not

enabled,

select

whether

decimal

encoding

is

normal

or

reversed.

Data

type

Enum

Units

Not

applicable

Default

NORMAL

Range

NORMAL

Normal

decimal

encoding

is

used.

REVERSED

Reversed

decimal

encoding

is

used.

For

more

information

about

encoding

properties,

see

the

WebSphere

MQ

Using

Java

document.

Floating

point

encoding:

If

native

encoding

is

not

enabled,

select

the

type

of

floating

point

encoding.

Data

type

Enum

Units

Not

applicable

Default

IEEENORMAL

Range

IEEENORMAL

IEEE

normal

floating

point

encoding

is

used.

IEEEREVERSED

IEEE

reversed

floating

point

encoding

is

used.

S390

S390

floating

point

encoding

is

used.

For

more

information

about

encoding

properties,

see

the

WebSphere

MQ

Using

Java

document.

Target

client:

Whether

the

receiving

application

is

JMS-compliant

or

is

a

traditional

WebSphere

MQ

application

Data

type

Enum

282

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Units

Not

applicable

Default

MQSeries

Range

MQSeries

The

target

is

a

non-JMS,

traditional

WebSphere

MQ

application.

JMS

The

target

is

a

JMS-compliant

application.

Queue

manager

host:

The

name

of

host

for

the

queue

manager

on

which

the

queue

destination

is

created.

Data

type

String

Default

Null

Range

A

valid

TCP/IP

hostname

Queue

manager

port:

The

number

of

the

port

used

by

the

queue

manager

on

which

this

queue

is

defined.

Data

type

String

Units

A

valid

TCP/IP

port

number.

Default

Null

Range

A

valid

TCP/IP

port

number.

This

port

must

be

configured

on

the

WebSphere

MQ

queue

manager.

Server

connection

channel

name:

The

name

of

the

channel

used

for

connection

to

the

WebSphere

MQ

queue

manager.

Data

type

String

Default

Null

Range

1

through

20

ASCII

characters

User

name:

The

user

ID

used,

with

the

Password

property,

for

authentication

when

connecting

to

the

queue

manager

to

define

the

queue

destination.

If

you

specify

a

value

for

the

User

name

property,

you

must

also

specify

a

value

for

the

Password

property.

Data

type

String

Default

Null

Password:

The

password,

used

with

the

User

name

property,

for

authentication

when

connecting

to

the

queue

manager

to

define

the

queue

destination.

Chapter

3.

Using

asynchronous

messaging

283

If

you

specify

a

value

for

the

User

name

property,

you

must

also

specify

a

value

for

the

Password

property.

Data

type

String

Default

Null

WebSphere

MQ

queue

settings

(MQ

Config):

Use

this

panel

to

view

or

change

the

configuration

properties

defined

to

WebSphere

MQ

for

the

selected

queue

destination.

A

queue

destination

is

used

to

configure

the

properties

of

a

JMS

queue.

A

queue

for

use

with

the

WebSphere

MQ

JMS

provider

has

the

following

extra

properties

defined

to

WebSphere

MQ.

Notes

Note:

v

Some

properties

displayed

are

read-only

and

cannot

be

changed.

v

These

MQ

Config

properties

can

be

used

only

to

view

or

change

the

properties

of

local

queues.

You

cannot

use

MQ

Config

to

administer

alias

or

remote

queues.

v

To

be

able

to

view

or

change

properties,

the

WebSphere

MQ

Queue

Manager

on

which

the

queue

resides

must

be

configured

for

remote

administration

and

be

running.

v

The

property

values

that

you

specify

must

match

the

values

that

you

specified

when

configuring

WebSphere

MQ

JMS

resources.

For

more

information

about

configuring

WebSphere

MQ

JMS

resources,

see

the

WebSphere

MQ:

Using

Java

book;

for

example

from

the

WebSphere

MQ

multiplatform

library

Web

page

at

http://www.ibm.com/software/ts/mqseries/library/manualsa/manuals/crosslatest.html.

v

In

WebSphere

MQ,

names

can

have

a

maximum

of

48

characters,

with

the

exception

of

channels

which

have

a

maximum

of

20

characters.

To

view

this

administrative

console

page,

click

Resources->

WebSphere

MQ

JMS

Provider->

(In

content

pane,

under

Additional

Properties)

WebSphere

MQ

Queue

Destinations->

destination_name->

(In

content

pane,

under

Additional

Properties)

MQ

Config

Base

queue

name:

The

name

of

the

local

queue

to

which

messages

are

sent,

on

the

queue

manager

specified

by

the

Base

queue

manager

name

property.

Data

type

String

Base

queue

manager

name:

The

name

of

the

WebSphere

MQ

queue

manager

to

which

messages

are

sent.

This

queue

manager

provides

the

queue

specified

by

the

Base

queue

name

property.

Data

type

String

284

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

http://www.ibm.com/software/ts/mqseries/library/manualsa/manuals/crosslatest.html

Queue

manager

host:

The

name

of

host

for

the

queue

manager

on

which

the

queue

destination

is

created.

Data

type

String

Queue

manager

port:

The

number

of

the

port

used

by

the

queue

manager

on

which

this

queue

is

defined.

Data

type

Integer

Range

A

valid

TCP/IP

port

number.

This

port

must

be

configured

on

the

WebSphere

MQ

queue

manager.

Server

connection

channel

name:

The

name

of

the

channel

used

for

connection

to

the

WebSphere

MQ

queue

manager.

Data

type

String

Range

1

through

20

ASCII

characters

User

ID:

The

user

ID

used,

with

the

Password

property,

for

authentication

when

connecting

to

the

queue

manager

to

define

the

queue

destination.

If

you

specify

a

value

for

the

User

name

property,

you

must

also

specify

a

value

for

the

Password

property.

Data

type

String

Password:

The

password,

used

with

the

User

name

property,

for

authentication

when

connecting

to

the

queue

manager

to

define

the

queue

destination.

If

you

specify

a

value

for

the

User

name

property,

you

must

also

specify

a

value

for

the

Password

property.

Data

type

String

Name:

The

name

of

the

queue

defined

to

the

WebSphere

MQ

queue

manager.

Data

type

String

Range

1

through

48

ASCII

characters.

Description:

Chapter

3.

Using

asynchronous

messaging

285

The

WebSphere

MQ

queue

description,

for

administrative

purposes

within

WebSphere

MQ.

Data

type

String

Default

Null

Range

1

through

64

ASCII

characters.

Inhibit

Put:

Whether

or

not

put

operations

are

allowed

for

this

queue.

Data

type

Enum

Units

Not

applicable

Default

Cleared

Range

Allowed

Put

operations

are

allowed

for

this

queue.

Not

allowed

Put

operations

are

not

allowed

for

this

queue.

Persistence:

Whether

all

messages

sent

to

the

destination

are

persistent,

non-persistent,

or

have

their

persistence

defined

by

the

application

Data

type

Enum

Units

Not

applicable

Default

APPLICATION_DEFINED

Range

Application

defined

Messages

on

the

destination

have

their

persistence

defined

by

the

application

that

put

them

onto

the

queue.

Queue

defined

[WebSphere

MQ

destination

only]

Messages

on

the

destination

have

their

persistence

defined

by

the

WebSphere

MQ

queue

definition

properties.

Persistent

Messages

on

the

destination

are

persistent.

Non

persistent

Messages

on

the

destination

are

not

persistent.

Cluster

name:

The

name

of

the

cluster

to

which

the

WebSphere

MQ

queue

manager

belongs.

If

you

specify

a

value

for

Cluster

name,

you

cannot

specify

a

value

for

Cluster

name

list.

Cluster

names

must

conform

to

the

rules

described

in

the

WebSphere

MQ

MQSC

Command

Reference

book.

Data

type

String

286

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Default

Null

Range

A

valid

WebSphere

MQ

name

for

a

queue

manager

cluster,

as

1

through

48

ASCII

characters

Cluster

name

list:

The

name

of

the

cluster

namelist

to

which

the

WebSphere

MQ

queue

manager

belongs.

If

you

specify

a

value

for

Cluster

name,

you

cannot

specify

a

value

for

Cluster

name

list.

Data

type

String

Default

Null

Range

A

valid

WebSphere

MQ

name

for

a

list

of

queue

manager

clusters,

as

1

through

48

ASCII

characters

Default

Binding:

The

default

binding

to

be

used

when

the

queue

is

defined

as

a

cluster

queue.

Data

type

Enum

Default

Null

Range

A

On

open

The

queue

handle

is

bound

to

a

specific

instance

of

the

cluster

queue

when

the

queue

is

opened.

Not

fixed

The

queue

handle

is

not

bound

to

any

particular

instance

of

the

cluster

queue.

This

allows

the

queue

manager

to

select

a

specific

queue

instance

when

the

message

is

put,

and

to

change

that

selection

subsequently

should

the

need

arise.

Inhibit

Get:

Whether

or

not

get

operations

are

allowed

for

this

queue.

Data

type

Enum

Units

Not

applicable

Default

Cleared

Range

Allowed

Get

operations

are

allowed

for

this

queue.

Not

allowed

Get

operations

are

not

allowed

for

this

queue.

Maximum

queue

depth:

Chapter

3.

Using

asynchronous

messaging

287

The

maximum

number

of

messages

allowed

on

the

queue.

Data

type

Integer

Units

Messages

Default

Range

A

value

greater

than

or

equal

to

zero,

and

less

than

or

equal

to:

v

On

AIX,

Compaq

OpenVMS,

HP-UX,

Linux,

OS/400,

Solaris,

Windows,

and

z/OS,

specify

a

value

in

the

range

zero

through

999

999

999.

v

On

any

other

WebSphere

MQ

platform,

specify

a

value

in

the

range

zero

through

640

000.

For

more

information

about

the

maximum

value

allowed,

see

the

WebSphere

MQ

MQSC

Command

Reference.

If

this

value

is

reduced,

any

message

that

is

already

on

the

queue

are

not

affected,

even

if

the

number

of

messages

exceeds

the

new

maximum.

Maximum

Message

Length:

The

maximum

length,

in

bytes,

of

messages

on

this

queue.

Data

type

Integer

Units

Bytes

Default

Range

A

value

greater

than

or

equal

to

zero,

and

less

than

or

equal

to

the

maximum

message

length

for

the

queue

manager

and

WebSphere

MQ

platform.

For

more

information

about

the

maximum

value

allowed,

see

the

WebSphere

MQ

MQSC

Command

Reference.

If

this

value

is

reduced,

any

message

that

is

already

on

the

queue

are

not

affected,

even

if

the

message

length

exceeds

the

new

maximum.

Shareability:

Whether

multiple

applications

can

get

messages

from

this

queue.

Data

type

Enum

Units

Not

applicable

Default

Not

shareable

Range

Not

shareable

Only

one

application

instance

can

get

messages

from

the

queue.

Shareable

More

than

one

application

instance

can

get

messages

from

the

queue.

288

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Input

Open

Option:

The

default

share

option

for

applications

opening

this

queue

for

input

Data

type

Enum

Units

Not

applicable

Default

Cleared

Range

Exclusive

The

open

request

is

for

exclusive

input

from

the

queue.

Shared

The

open

request

is

for

shared

input

from

the

queue.

Message

Delivery

Sequence:

The

order

in

which

messages

are

delivered

from

the

queue

in

response

to

get

requests.

Data

type

Enum

Units

Not

applicable

Default

Priority

Range

Priority

Messages

are

delivered

in

first-in-first-out

(FIFO)

order

within

priority.

This

is

the

default

supplied

with

WebSphere

MQ,

but

your

installation

might

have

changed

it.

FIFO

Messages

are

delivered

in

FIFO

order.

Priority

is

ignored

for

messages

on

this

queue.

Backout

threshold:

The

maximum

number

of

times

that

a

message

can

be

backed

out.

If

this

threshold

is

reached,

the

message

is

requeued

on

the

backout

queue

specified

by

the

Backout

Requeue

name

property.

The

WebSphere

MQ

queue

manager

keeps

a

record

of

the

number

of

times

that

each

message

has

been

backed

out.

When

this

number

reaches

a

configurable

threshold,

the

connection

consumer

requeues

the

message

on

a

named

backout

queue.

If

this

requeue

fails

for

any

reason,

the

message

is

removed

from

the

queue

and

either

requeued

to

the

dead-letter

queue,

or

discarded.

Data

type

Integer

Default

0

Range

0

Never

requeue

messages

1

or

more

The

number

of

times

that

a

message

has

been

backed,

at

which

the

message

is

requeued

on

a

named

backout

queue.

Backout

Requeue

name:

The

name

of

the

backout

queue

to

which

messages

are

requeued

if

they

have

been

backed

out

more

than

the

backout

threshold.

Chapter

3.

Using

asynchronous

messaging

289

The

WebSphere

MQ

queue

manager

keeps

a

record

of

the

number

of

times

that

each

message

has

been

backed

out.

When

this

number

reaches

a

configurable

threshold,

the

connection

consumer

requeues

the

message

on

a

named

backout

queue.

If

this

requeue

fails

for

any

reason,

the

message

is

removed

from

the

queue

and

either

requeued

to

the

dead-letter

queue,

or

discarded.

Data

type

String

Default

Null

Range

1

through

48

characters.

Harden

Get

Backout:

Whether

hardening

should

be

used

to

ensure

that

the

count

of

the

number

of

times

that

a

message

has

been

backed

out

is

accurate.

Data

type

Enum

Units

Not

applicable

Default

Cleared

Range

Not

hardened

The

count

is

not

hardened.

This

is

the

default

supplied

with

WebSphere

MQ,

but

your

installation

might

have

changed

it.

Hardened

The

count

is

hardened.

WebSphere

MQ

topic

destination

collection:

The

topic

destinations

configured

in

the

WebSphere

MQ

JMS

provider

for

publish/subscribe

messaging

with

JMS

topics.

Use

this

panel

to

create

or

delete

topic

destinations,

or

to

select

a

topic

destination

to

view

or

change

its

configuration

properties.

This

panel

shows

a

list

of

the

WebSphere

MQ

topic

destinations

with

a

summary

of

their

configuration

properties.

To

view

this

administrative

console

page,

use

the

administrative

console

to

complete

the

following

steps:

1.

In

the

navigation

pane,

select

Resources->

WebSphere

MQ

JMS

Provider.

2.

Change

the

Scope

check

box

to

Cell,

Node

(for

a

JMS

provider

on

a

specific

node),

or

Server,

according

to

your

needs.

3.

In

the

Additional

Properties

list

in

the

contents

pane,

select

WebSphere

MQ

Topic

Destination.

To

view

or

change

the

properties

of

a

topic

destination,

select

its

name

in

the

list

displayed.

To

act

on

one

or

more

of

the

topic

destinations

listed,

click

the

check

boxes

next

to

the

names

of

the

objects

that

you

want

to

act

on,

then

use

the

buttons

provided.

WebSphere

MQ

topic

settings:

Use

this

panel

to

view

or

change

the

configuration

properties

of

the

selected

topic

destination

for

use

with

the

WebSphere

MQ

JMS

provider.

290

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

A

topic

destination

is

used

to

configure

the

properties

of

a

JMS

topic

for

the

associated

JMS

provider.

Connections

to

the

topic

are

created

by

the

associated

topic

connection

factory.

A

topic

for

use

with

the

WebSphere

MQ

JMS

provider

has

the

following

properties.

Note:

v

The

property

values

that

you

specify

must

match

the

values

that

you

specified

when

configuring

WebSphere

MQ

JMS

resources.

For

more

information

about

configuring

WebSphere

MQ

JMS

resources,

see

the

WebSphere

MQ

Using

Java

book.

v

In

WebSphere

MQ,

names

can

have

a

maximum

of

48

characters,

with

the

exception

of

channels

which

have

a

maximum

of

20

characters.

To

view

this

administrative

console

page,

click

Resources->

WebSphere

MQ

JMS

Provider->

(In

content

pane,

under

Additional

Properties)

WebSphere

MQ

Topic

Destinations->

destination_name

Name:

The

name

by

which

the

topic

is

known

for

administrative

purposes

within

IBM

WebSphere

Application

Server.

Data

type

String

JNDI

name:

The

JNDI

name

that

is

used

to

bind

the

topic

into

the

application

server’s

name

space.

As

a

convention,

use

the

fully

qualified

JNDI

name;

for

example,

in

the

form

jms/Name,

where

Name

is

the

logical

name

of

the

resource.

This

name

is

used

to

link

the

platform

binding

information.

The

binding

associates

the

resources

defined

by

the

deployment

descriptor

of

the

module

to

the

actual

(physical)

resources

bound

into

JNDI

by

the

platform.

Data

type

String

Description:

A

description

of

the

topic,

for

administrative

purposes

within

IBM

WebSphere

Application

Server.

Data

type

String

Default

Null

Category:

A

category

used

to

classify

or

group

this

topic,

for

your

IBM

WebSphere

Application

Server

administrative

records.

Data

type

String

Persistence:

Chapter

3.

Using

asynchronous

messaging

291

Whether

all

messages

sent

to

the

destination

are

persistent,

non-persistent,

or

have

their

persistence

defined

by

the

application

Data

type

Enum

Units

Not

applicable

Default

APPLICATION_DEFINED

Range

Application

defined

Messages

on

the

destination

have

their

persistence

defined

by

the

application

that

put

them

onto

the

queue.

Queue

defined

[WebSphere

MQ

destination

only]

Messages

on

the

destination

have

their

persistence

defined

by

the

WebSphere

MQ

queue

definition

properties.

Persistent

Messages

on

the

destination

are

persistent.

Non

persistent

Messages

on

the

destination

are

not

persistent.

Priority:

Whether

the

message

priority

for

this

destination

is

defined

by

the

application

or

the

Specified

priority

property

Data

type

Enum

Units

Not

applicable

Default

APPLICATION_DEFINED

Range

Application

defined

The

priority

of

messages

on

this

destination

is

defined

by

the

application

that

put

them

onto

the

destination.

Queue

defined

[WebSphere

MQ

destination

only]

Messages

on

the

destination

have

their

persistence

defined

by

the

WebSphere

MQ

queue

definition

properties.

Specified

The

priority

of

messages

on

this

destination

is

defined

by

the

Specified

priority

property.If

you

select

this

option,

you

must

define

a

priority

on

the

Specified

priority

property.

Specified

priority:

If

the

Priority

property

is

set

to

Specified,

type

here

the

message

priority

for

this

queue,

in

the

range

0

(lowest)

through

9

(highest)

If

the

Priority

property

is

set

to

Specified,

messages

sent

to

this

queue

have

the

priority

value

specified

by

this

property.

292

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Data

type

Integer

Units

Message

priority

level

Default

Null

Range

0

(lowest

priority)

through

9

(highest

priority)

Expiry:

Whether

the

expiry

timeout

for

this

queue

is

defined

by

the

application

or

the

Specified

expiry

property,

or

messages

on

the

queue

never

expire

(have

an

unlimited

expiry

timeout)

Data

type

Enum

Units

Not

applicable

Default

APPLICATION_DEFINED

Range

Application

defined

The

expiry

timeout

for

messages

on

this

queue

is

defined

by

the

application

that

put

them

onto

the

queue.

Specified

The

expiry

timeout

for

messages

on

this

queue

is

defined

by

the

Specified

expiry

property.If

you

select

this

option,

you

must

define

a

timeout

on

the

Specified

expiry

property.

Unlimited

Messages

on

this

queue

have

no

expiry

timeout,

so

those

messages

never

expire.

Specified

expiry:

If

the

Expiry

timeout

property

is

set

to

Specified,

type

here

the

number

of

milliseconds

(greater

than

0)

after

which

messages

on

this

queue

expire

Data

type

Integer

Units

Milliseconds

Default

Null

Range

Greater

than

or

equal

to

0

v

0

indicates

that

messages

never

timeout

v

Other

values

are

an

integer

number

of

milliseconds

Base

topic

name:

The

name

of

the

topic

to

which

messages

are

sent

Data

type

String

Range

Depends

on

the

broker

used.

For

details,

see

the

documentation

for

your

broker;

for

example

the

WebSphere

MQ

Event

Broker

library

at

http://www-
3.ibm.com/software/ts/mqseries/library/manualsa/manuals

Chapter

3.

Using

asynchronous

messaging

293

http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/wsmqebv21.html
http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/wsmqebv21.html

CCSID:

The

coded

character

set

identifier

for

use

with

the

WebSphere

MQ

queue

manager.

This

coded

character

set

identifier

(CCSID)

must

be

one

of

the

CCSIDs

supported

by

WebSphere

MQ.

Data

type

String

Units

Integer

Default

Null

Range

1

through

65535

For

more

information

about

supported

CCSIDs,

and

about

converting

between

message

data

from

one

coded

character

set

to

another,

see

the

WebSphere

MQ

System

Administration

and

the

WebSphere

MQ

Application

Programming

Reference

books.

These

are

available

from

the

WebSphere

MQ

messaging

multiplatform

and

platform-specific

books

Web

pages;

for

example,

at

the

IBM

Publications

Center,

or

from

the

WebSphere

MQ

collection

kit,

SK2T-0730.

Use

native

encoding:

Select

this

checkbox

to

indicate

that

the

queue

destination

should

use

native

encoding

(appropriate

encoding

values

for

the

Java

platform).

Data

type

Enum

Units

Not

applicable

Default

Cleared

Range

Cleared

Native

encoding

is

not

used,

so

specify

the

properties

below

for

integer,

decimal,

and

floating

point

encoding.

Selected

Native

encoding

is

used

(to

provide

appropriate

encoding

values

for

the

Java

platform).

For

more

information

about

encoding

properties,

see

the

WebSphere

MQ

Using

Java

document.

Integer

encoding:

If

native

encoding

is

not

enabled,

select

whether

integer

encoding

is

normal

or

reversed.

Data

type

Enum

Units

Not

applicable

Default

NORMAL

Range

NORMAL

Normal

integer

encoding

is

used.

REVERSED

Reversed

integer

encoding

is

used.

For

more

information

about

encoding

properties,

see

the

WebSphere

MQ

Using

Java

document.

294

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

Decimal

encoding:

If

native

encoding

is

not

enabled,

select

whether

decimal

encoding

is

normal

or

reversed.

Data

type

Enum

Units

Not

applicable

Default

NORMAL

Range

NORMAL

Normal

decimal

encoding

is

used.

REVERSED

Reversed

decimal

encoding

is

used.

For

more

information

about

encoding

properties,

see

the

WebSphere

MQ

Using

Java

document.

Floating

point

encoding:

If

native

encoding

is

not

enabled,

select

the

type

of

floating

point

encoding.

Data

type

Enum

Units

Not

applicable

Default

IEEENORMAL

Range

IEEENORMAL

IEEE

normal

floating

point

encoding

is

used.

IEEEREVERSED

IEEE

reversed

floating

point

encoding

is

used.

S390

S390

floating

point

encoding

is

used.

For

more

information

about

encoding

properties,

see

the

WebSphere

MQ

Using

Java

document.

Target

client

type:

Whether

the

receiving

application

is

JMS-compliant

or

is

a

traditional

WebSphere

MQ

application

Data

type

Enum

Units

Not

applicable

Default

MQ

Range

MQ

The

target

is

a

non-JMS,

traditional

WebSphere

MQ

application.

JMS

The

target

is

a

JMS-compliant

application.

Broker

Dur

Sub

Queue:

The

name

of

the

broker’s

queue

from

which

durable

subscription

messages

are

retrieved

Chapter

3.

Using

asynchronous

messaging

295

The

name

of

the

broker’s

queue

from

which

durable

subscription

messages

are

retrieved.

The

subscriber

specifies

the

name

of

the

queue

when

it

registers

a

subscription.

Data

type

String

Units

En_US

ASCII

characters

Default

Null

Range

1

through

48

ASCII

characters

Broker

CC

Dur

Sub

Queue:

The

name

of

the

broker’s

queue

from

which

durable

subscription

messages

are

retrieved

for

a

ConnectionConsumer.

This

property

applies

only

for

use

of

the

Web

container.

The

name

of

the

broker’s

queue

from

which

durable

subscription

messages

are

retrieved

for

a

ConnectionConsumer.

This

property

applies

only

for

use

of

the

Web

container.

Data

type

String

Units

En_US

ASCII

characters

Default

Null

Range

1

through

48

ASCII

characters

JMS

connection

factory

collection:

The

JMS

connection

factories

configured

in

the

associated

JMS

provider

for

both

point-to-point

and

publish/subscribe

messaging.

Use

this

panel

to

create

or

delete

JMS

connection

factories,

or

to

select

a

connection

factory

to

view

or

change

its

configuration

properties.

This

panel

shows

a

list

of

the

generic

JMS

connection

factories

with

a

summary

of

their

configuration

properties.

To

view

this

administrative

console

page,

use

the

administrative

console

to

complete

the

following

steps:

1.

In

the

navigation

pane,

expand

Resources->

Generic

JMS

Providers.

2.

Change

the

Scope

check

box

to

Cell,

Node

(for

a

JMS

provider

on

a

specific

node),

or

Server,

according

to

your

needs.

3.

In

the

Additional

Properties

list

in

the

contents

pane,

select

Generic

JMS

Connection

Factory.

To

view

or

change

the

properties

of

a

JMS

connection

factory,

select

its

name

in

the

list

displayed.

To

act

on

one

or

more

of

the

JMS

connection

factories

listed,

click

the

check

boxes

next

to

the

names

of

the

objects

that

you

want

to

act

on,

then

use

the

buttons

provided.

Generic

JMS

connection

factory

settings:

Use

this

panel

to

view

or

change

the

configuration

properties

of

the

selected

JMS

connection

factory

for

use

with

the

associated

JMS

provider.

These

configuration

properties

control

how

connections

are

created

to

the

associated

JMS

destination.

296

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

A

JMS

connection

factory

is

used

to

create

connections

to

JMS

destinations.

The

JMS

connection

factory

is

created

by

the

associated

JMS

provider.

A

JMS

connection

factory

for

a

generic

JMS

provider

(other

than

the

embedded

WebSphere

JMS

provider

or

the

WebSphere

MQ

JMS

provider)

has

the

following

properties:

To

view

this

administrative

console

page,

click

Resources->

Generic

JMS

Providers->

provider_name->

JMS

Connection

Factories->

connection_factory

Scope:

Specifies

the

level

to

which

this

resource

definition

is

visible

--

the

cell,

node,

or

server

level.

Resources

such

as

JMS

Providers,

Namespace

bindings,

or

shared

libraries

can

be

defined

at

multiple

scopes,

with

resources

defined

at

more

specific

scopes

overriding

duplicates

which

are

defined

at

more

general

scopes.

Note

that

no

matter

what

the

scope

of

a

defined

resource,

the

resource’s

properties

only

apply

at

an

individual

server

level.

For

example,

if

you

define

the

scope

of

a

data

source

at

the

Cell

level,

all

users

in

that

Cell

can

look

up

and

use

that

data

source,

which

is

unique

within

that

Cell.

However,

resource

property

settings

are

local

to

each

server

in

the

Cell.

For

example,

if

you

set

Max

Connections

to

10,

then

each

server

in

that

Cell

can

have

10

connections.

Cell

The

most

general

scope.

Resources

defined

at

the

Cell

scope

are

visible

from

all

Nodes

and

servers,

unless

they

are

overridden.

To

view

resources

defined

in

the

cell

scope,

do

not

specify

a

server

or

a

node

name

in

the

scope

selection

form.

Node

The

default

scope

for

most

resource

types.

Resources

defined

at

the

Node

scope

override

any

duplicates

defined

at

the

Cell

scope

and

are

visible

to

all

servers

on

the

same

node,

unless

they

are

overridden

at

a

server

scope

on

that

node.

To

view

resources

defined

in

a

node

scope,

do

not

specify

a

server,

but

select

a

node

name

in

the

scope

selection

form.

Server

The

most

specific

scope

for

defining

resources.

Resources

defined

at

the

Server

scope

override

any

duplicate

resource

definitions

defined

at

the

Cell

scope

or

parent

Node

scope

and

are

visible

only

to

a

specific

server.

To

view

resources

defined

in

a

server

scope,

specify

a

server

name

as

well

as

a

node

name

in

the

scope

selection

form.

When

resources

are

created,

they

are

always

created

into

the

current

scope

selected

in

the

panel.

To

view

resources

in

other

scopes,

specify

a

different

node

or

server

in

the

scope

selection

form.

Data

type

String

Name:

The

name

by

which

this

JMS

connection

factory

is

known

for

administrative

purposes

within

IBM

WebSphere

Application

Server.

The

name

must

be

unique

within

the

associated

JMS

provider.

Data

type

String

Type:

Chapter

3.

Using

asynchronous

messaging

297

Whether

this

connection

factory

is

for

creating

JMS

queue

destinations

or

JMS

topic

destinations.

Select

one

of

the

following

options:

Queue

A

JMS

queue

connection

factory

for

point-to-point

messaging.

Topic

A

JMS

topic

connection

factory

for

publish/subscribe

messaging.

JNDI

name:

The

JNDI

name

that

is

used

to

bind

the

connection

factory

into

the

application

server’s

name

space.

As

a

convention,

use

the

fully

qualified

JNDI

name;

for

example,

in

the

form

jms/Name,

where

Name

is

the

logical

name

of

the

resource.

This

name

is

used

to

link

the

platform

binding

information.

The

binding

associates

the

resources

defined

by

the

deployment

descriptor

of

the

module

to

the

actual

(physical)

resources

bound

into

JNDI

by

the

platform.

Data

type

String

Description:

A

description

of

this

connection

factory

for

administrative

purposes

within

IBM

WebSphere

Application

Server.

Data

type

String

Default

Null

Category:

A

category

used

to

classify

or

group

this

connection

factory,

for

your

IBM

WebSphere

Application

Server

administrative

records.

Data

type

String

Component-managed

Authentication

Alias:

This

alias

specifies

a

user

ID

and

password

to

be

used

to

authenticate

connection

to

a

JMS

provider

for

application-managed

authentication.

This

property

provides

a

list

of

the

J2C

authentication

data

entry

aliases

that

have

been

defined

to

WebSphere

Application

Server.

You

can

select

a

data

entry

alias

to

be

used

to

authenticate

the

creation

of

a

new

connection

to

the

JMS

provider.

If

you

have

enabled

global

security

for

WebSphere

Application

Server,

select

the

alias

that

specifies

the

user

ID

and

password

used

to

authenticate

the

creation

of

a

new

connection

to

the

JMS

provider.

The

use

of

this

alias

depends

on

the

resource

authentication

(res-auth)

setting

declared

in

the

connection

factory

resource

reference

of

an

application

component’s

deployment

descriptors.

Note:

User

IDs

longer

than

12

characters

cannot

be

used

for

authentication

with

the

embedded

WebSphere

JMS

provider.

For

example,

the

default

Windows

NT

user

ID,

Administrator,

is

not

valid

for

use

with

embedded

WebSphere

298

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

messaging,

because

it

contains

13

characters.

Therefore,

an

authentication

alias

for

a

WebSphere

JMS

provider

connection

factory

must

specify

a

user

ID

no

longer

than

12

characters.

Container-managed

Authentication

Alias:

This

alias

specifies

a

user

ID

and

password

to

be

used

to

authenticate

connection

to

a

JMS

provider

for

container-managed

authentication.

This

property

provides

a

list

of

the

J2C

authentication

data

entry

aliases

that

have

been

defined

to

WebSphere

Application

Server.

You

can

select

a

data

entry

alias

to

be

used

to

authenticate

the

creation

of

a

new

connection

to

the

JMS

provider.

If

you

have

enabled

global

security

for

WebSphere

Application

Server,

select

the

alias

that

specifies

the

user

ID

and

password

used

to

authenticate

the

creation

of

a

new

connection

to

the

JMS

provider.

The

use

of

this

alias

depends

on

the

resource

authentication

(res-auth)

setting

declared

in

the

connection

factory

resource

reference

of

an

application

component’s

deployment

descriptors.

Note:

User

IDs

longer

than

12

characters

cannot

be

used

for

authentication

with

the

embedded

WebSphere

JMS

provider.

For

example,

the

default

Windows

NT

user

ID,

Administrator,

is

not

valid

for

use

with

embedded

WebSphere

messaging,

because

it

contains

13

characters.

Therefore,

an

authentication

alias

for

a

WebSphere

JMS

provider

connection

factory

must

specify

a

user

ID

no

longer

than

12

characters.

Mapping-Configuration

Alias:

Allows

users

to

select

from

the

Security

>

JAAS

Configuration

>

Application

Logins

Configuration

list.

The

DefaultPrincipalMapping

JAAS

configuration

maps

the

authentication

alias

to

the

userid

and

password.

You

may

define

and

use

other

mapping

configurations.

For

more

information

about

the

mapping

configurations,

see

the

Information

Center

topic

″Java

Authentication

and

Authorization

service

configuration

entry

settings.″

Data

type

Pick-list

Connection

pool:

Specifies

an

optional

set

of

connection

pool

settings.

Connection

pool

properties

are

common

to

all

J2C

connectors.

The

application

server

pools

connections

and

sessions

with

the

JMS

provider

to

improve

performance.

This

is

independent

from

any

WebSphere

MQ

connection

pooling.

You

need

to

configure

the

connection

and

session

pool

properties

appropriately

for

your

applications,

otherwise

you

may

not

get

the

connection

and

session

behavior

that

you

want.

Change

the

size

of

the

connection

pool

if

concurrent

server-side

access

to

the

JMS

resource

exceeds

the

default

value.The

size

of

the

connection

pool

is

set

on

a

per

queue

or

topic

basis.

See

the

following

table

for

details.

Session

pool:

Chapter

3.

Using

asynchronous

messaging

299

An

optional

set

of

session

pool

settings.

This

link

provides

a

panel

of

optional

connection

pool

properties,

common

to

all

J2C

connectors.

The

application

server

pools

connections

and

sessions

with

the

JMS

provider

to

improve

performance.

This

is

independent

from

any

WebSphere

MQ

connection

pooling.

You

need

to

configure

the

connection

and

session

pool

properties

appropriately

for

your

applications,

otherwise

you

may

not

get

the

connection

and

session

behavior

that

you

want.

Custom

properties:

An

optional

set

of

name

and

value

pairs

for

custom

properties

passed

to

the

JMS

provider.

Generic

JMS

destination

collection:

The

JMS

destinations

configured

in

the

associated

JMS

provider

for

point-to-point

and

publish/subscribe

messaging.

Use

this

panel

to

create

or

delete

JMS

destinations,

or

to

select

a

JMS

destination

to

view

or

change

its

configuration

properties.

To

view

this

administrative

console

page,

use

the

administrative

console

to

complete

the

following

steps:

1.

In

the

navigation

pane,

expand

Resources->

Generic

JMS

Providers.

2.

Change

the

Scope

check

box

to

Cell,

Node

(for

a

JMS

provider

on

a

specific

node),

or

Server,

according

to

your

needs.

3.

In

the

Additional

Properties

list

in

the

contents

pane,

select

Generic

JMS

Destination.

To

view

or

change

the

properties

of

a

JMS

destination,

select

its

name

in

the

list

displayed.

To

act

on

one

or

more

of

the

JMS

destinations

listed,

click

the

check

boxes

next

to

the

names

of

the

objects

that

you

want

to

act

on,

then

use

the

buttons

provided.

Generic

JMS

destination

settings:

Use

this

panel

to

view

or

change

the

configuration

properties

of

the

selected

JMS

destination

for

use

with

the

associated

JMS

provider.

A

JMS

destination

is

used

to

configure

the

properties

of

a

JMS

destination

for

the

associated

generic

JMS

provider.

Connections

to

the

JMS

destination

are

created

by

the

associated

JMS

connection

factory.

A

JMS

destination

for

use

with

a

generic

JMS

provider

(not

the

embedded

WebSphere

JMS

provider

or

WebSphere

MQ

JMS

provider)

has

the

following

properties.

To

view

this

administrative

console

page,

click

Resources->

Generic

JMS

Providers->

provider_name->

JMS

Destinations->

destination

Name:

The

name

by

which

the

queue

is

known

for

administrative

purposes

within

IBM

WebSphere

Application

Server.

300

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Data

type

String

Type:

Whether

this

JMS

destination

is

a

queue

(for

point-to-point)

or

topic

(for

publish/subscribe).

Select

one

of

the

following

options:

Queue

A

JMS

queue

destination

for

point-to-point

messaging.

Topic

A

JMS

topic

destination

for

publish/subscribe

messaging.

JNDI

name:

The

JNDI

name

that

is

used

to

bind

the

queue

into

the

application

server’s

name

space.

As

a

convention,

use

the

fully

qualified

JNDI

name;

for

example,

in

the

form

jms/Name,

where

Name

is

the

logical

name

of

the

resource.

This

name

is

used

to

link

the

platform

binding

information.

The

binding

associates

the

resources

defined

by

the

deployment

descriptor

of

the

module

to

the

actual

(physical)

resources

bound

into

JNDI

by

the

platform.

Data

type

String

Description:

A

description

of

the

queue,

for

administrative

purposes

Category:

A

category

used

to

classify

or

group

this

queue,

for

your

IBM

WebSphere

Application

Server

administrative

records.

Data

type

String

External

JNDI

name:

The

JNDI

name

that

is

used

to

bind

the

queue

into

the

application

server’s

name

space.

As

a

convention,

use

the

fully

qualified

JNDI

name;

for

example,

in

the

form

jms/Name,

where

Name

is

the

logical

name

of

the

resource.

This

name

is

used

to

link

the

platform

binding

information.

The

binding

associates

the

resources

defined

by

the

deployment

descriptor

of

the

module

to

the

actual

(physical)

resources

bound

into

JNDI

by

the

platform.

Data

type

String

Asynchronous

messaging

-

security

considerations

This

topic

describes

considerations

that

you

should

be

aware

of

if

you

want

to

use

security

for

asynchronous

messaging

with

WebSphere

Application

Server.

Chapter

3.

Using

asynchronous

messaging

301

Security

for

messaging

operates

as

a

part

of

the

WebSphere

Application

Server

global

security,

and

is

enabled

only

when

global

security

is

enabled.

When

global

security

is

enabled,

JMS

connections

made

to

the

JMS

provider

are

authenticated,

and

access

to

JMS

resources

owned

by

the

JMS

provider

are

controlled

by

access

authorizations.

Also,

all

requests

to

create

new

connections

to

the

JMS

provider

must

provide

a

user

ID

and

password

for

authentication.

The

user

ID

and

password

do

not

need

to

be

provided

by

the

application.

If

authentication

is

successful,

then

the

JMS

connection

is

created;

if

the

authentication

fails

then

the

connection

request

is

ended.

Standard

J2C

authentication

is

used

for

a

request

to

create

a

new

connection

to

the

JMS

provider.

You

can

specify

a

Component-managed

Authentication

Alias

and

a

Container-managed

Authentication

Alias

for

each

JMS

connection

factory.

The

use

of

the

associated

J2C

authentication

data

entries

depends

on

the

resource

authentication

(res-auth)

setting,

as

follows:

v

If

your

resource

authentication

(res-auth)

is

set

to

Application,

set

the

alias

in

the

Component-managed

Authentication

Alias.

If

the

application

that

tries

to

create

a

connection

to

the

JMS

provider

specifies

a

user

ID

and

password,

those

values

are

used

to

authenticate

the

creation

request.

If

the

application

does

not

specify

a

user

ID

and

password,

the

values

defined

by

the

Component-managed

Authentication

Alias

are

used.

If

the

connection

factory

is

not

configured

with

a

Component-managed

Authentication

Alias,

then

you

receive

a

runtime

JMS

exception

when

an

attempt

is

made

to

connect

to

the

JMS

provider.

v

If

your

res-auth

is

set

to

Container,

set

the

Container-managed

Authentication

Alias.

The

values

defined

by

the

Container-managed

Authentication

Alias

are

used

to

authenticate

the

creation

request.

If

you

do

not

specify

an

alias,

then

you

receive

a

runtime

JMS

exception

when

an

attempt

is

made

to

connect

to

the

JMS

provider.

Restriction:

1.

User

IDs

longer

than

12

characters

cannot

be

used

for

authentication

with

the

embedded

WebSphere

JMS

provider.

For

example,

the

default

Windows

NT

user

ID,

Administrator,

is

not

valid

for

use

with

embedded

WebSphere

messaging,

because

it

contains

13

characters.

Therefore,

an

authentication

alias

for

a

WebSphere

JMS

provider

connection

factory

must

specify

a

user

ID

no

longer

than

12

characters.

2.

If

you

want

to

use

a

WebSphere

MQ

JMS

Provider

JMS

connection

when

using

Bindings

transport

mode,

you

set

the

property

Transport

type=BINDINGS

on

the

WebSphere

MQ

Queue

Connection

Factory.

You

must

also

choose

one

of

the

following

options:

v

To

use

security

credentials,

ensure

that

the

user

specified

is

the

currently

logged

on

user

for

the

WebSphere

Application

Server

process.

If

the

user

specified

is

not

the

current

logged

on

user

for

the

WebSphere

Application

Server

process,

then

the

WebSphere

MQ

JMS

Bindings

authentication

throws

the

error

MQJMS2013

invalid

security

authentication

supplied

for

MQQueueManager

error.

v

Do

not

specify

security

credentials.

On

the

WebSphere

MQ

Connection

Factory,

ensure

that

both

the

Component-managed

Authentication

Alias

and

the

Container-managed

Authentication

Alias

properties

are

not

set.

302

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Authorization

to

access

JMS

resources

owned

by

the

embedded

WebSphere

JMS

provider

is

controlled

by

authorization

data

in

the

config\integral-jms-
authorisations.xml

file.

For

information

about

editing

this

file,

see

Configuring

security

for

the

embedded

WebSphere

JMS

provider.

Using

WebSphere

MQ

functions

from

JMS

applications

By

default,

JMS

messages

held

on

WebSphere

MQ

queues

use

an

MQRFH2

header

to

hold

some

of

the

JMS

message

header

information.

Many

legacy

WebSphere

MQ

applications

cannot

process

messages

with

these

headers,

and

require

their

own

characteristic

headers,

for

example

the

MQCIH

for

CICS

Bridge,

or

MQWIH

for

WebSphere

MQ

Workflow

applications.

The

section

″Mapping

JMS

to

a

native

WebSphere

MQ

application″

in

the

chapter

″JMS

Messages″

of

covers

these

special

considerations.

Designing

an

enterprise

application

to

use

JMS

This

topic

describes

things

to

consider

when

designing

an

enterprise

application

to

use

the

JMS

API

directly

for

asynchronous

messaging.

This

topic

describes

things

to

consider

when

designing

an

enterprise

application

to

use

the

JMS

API

directly

for

asynchronous

messaging.

1.

The

application

refers

to

JMS

resources

that

are

predefined,

as

administered

objects,

to

WebSphere

Application

Server.

Details

of

JMS

resources

that

are

used

by

enterprise

applications

are

defined

to

WebSphere

Application

Server

and

bound

into

the

JNDI

namespace

by

the

WebSphere

administrative

support.

An

enterprise

application

can

retrieve

these

objects

from

the

JNDI

namespace

and

use

them

without

needing

to

know

anything

about

their

implementation.

This

enables

the

underlying

messaging

architecture

defined

by

the

JMS

resources

to

be

changed

without

requiring

changes

to

the

enterprise

application.

When

designing

an

enterprise

application,

you

need

to

identify

the

details

of

the

following

types

of

JMS

resources:

Point-to-Point

Publish/Subscribe

QueueConnectionFactory

Queue

TopicConnectionFactory

Topic

A

connection

factory

is

used

to

create

connections

with

the

JMS

provider

for

a

specific

JMS

queue

or

topic

destination.

Each

connection

factory

encapsulates

the

configuration

parameters

needed

to

create

a

connection

to

a

JMS

destination.

For

more

information

about

the

properties

of

these

JMS

resources,

see

Configuring

JMS

provider

resources.

2.

The

application

server

pools

connections

and

sessions

with

the

JMS

provider

to

improve

performance.

This

is

independent

from

any

WebSphere

MQ

connection

pooling.

You

need

to

configure

the

connection

and

session

pool

properties

appropriately

for

your

applications,

otherwise

you

may

not

get

the

connection

and

session

behavior

that

you

want.

3.

Applications

can

cache

JMS

connections,

sessions,

and

producers

or

consumers.

Due

to

the

pooling

mentioned

above

this

may

not

give

as

much

of

a

performance

improvement

as

you

might

expect.

You

must

not

cache

session

handles

in

stateless

session

beans

that

operate

in

transactions

started

by

a

client

of

the

bean.

Caching

handles

in

this

way

Chapter

3.

Using

asynchronous

messaging

303

causes

the

bean

to

be

returned

to

the

pool

while

the

session

is

still

involved

in

the

transaction.

Also,

you

should

not

cache

non-durable

subscribers

due

to

the

restriction

mentioned

above.

4.

A

non-durable

subscriber

can

only

be

used

in

the

same

transactional

context

(for

example,

a

global

transaction

or

an

unspecified

transaction

context)

that

existed

when

the

subscriber

was

created.

For

more

information

about

this

context

restriction,

see

The

effect

of

transaction

context

on

non-durable

subscribers.

5.

If

you

want

to

use

authentication

with

embedded

WebSphere

messaging,

you

cannot

have

user

IDs

longer

than

12

characters.

For

example,

the

default

Windows

NT

user

ID,

administrator,

is

not

valid

for

use

with

WebSphere

internal

messaging,

because

it

contains

13

characters.

6.

For

messaging

operations,

you

should

write

application

programs

that

use

only

references

to

the

interfaces

defined

in

Sun’s

javax.jms

package.

JMS

defines

a

generic

view

of

a

messaging

that

maps

onto

the

underlying

transport.

An

enterprise

application

that

uses

JMS,

makes

use

of

the

following

interfaces

that

are

defined

in

Sun’s

javax.jms

package:

Connection

Provides

access

to

the

underlying

transport,

and

is

used

to

create

Sessions.

Session

Provides

a

context

for

producing

and

consuming

messages,

including

the

methods

used

to

create

MessageProducers

and

MessageConsumers.

MessageProducer

Used

to

send

messages.

MessageConsumer

Used

to

receive

messages.
The

generic

JMS

interfaces

are

subclassed

into

the

following

more

specific

versions

for

Point-to-Point

and

Publish/Subscribe

behavior:

Point-to-Point

Publish/Subscribe

QueueConnection

QueueSession,

QueueSender

QueueReceiver

TopicConnection

TopicSession,

TopicSender

TopicReceiver

The

section

“J2EE.6.7

Java

Message

Service

(JMS)

1.0

Requirements”

of

the

J2EE

specification

gives

a

list

of

methods

that

must

not

be

called

in

Web

and

EJB

containers:

javax.jms.Session

method

setMessageListener

javax.jms.Session

method

getMessageListener

javax.jms.Session

method

run

javax.jms.QueueConnection

method

createConnectionConsumer

javax.jms.TopicConnection

method

createConnectionConsumer

javax.jms.TopicConnection

method

createDurableConnectionConsumer

javax.jms.MessageConsumer

method

getMessageListener

javax.jms.MessageConsumer

method

setMessageListener

javax.jms.Connection

setExceptionListener

javax.jms.Connection

stop

javax.jms.Connection

setClientID

This

method

restriction

is

enforced

in

IBM

WebSphere

Application

Server

by

throwing

a

javax.jms.IllegalStateException.

7.

The

following

points,

as

defined

in

the

EJB

specification,

apply

to

the

use

of

flags

on

createxxxSession

calls:

v

The

transacted

flag

passed

on

createxxxSession

is

ignored

inside

a

global

transaction

and

all

work

is

performed

as

part

of

the

transaction.

Outside

of

304

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

http://java.sun.com/j2ee/j2ee-1_3-fr-spec.pdf

a

transaction

the

transacted

flag

is

not

used

and,

if

set

to

true,

the

application

should

use

session.commit()

and

session.rollback()

to

control

the

completion

of

the

work.

In

an

EJB2.0

module,

if

the

transacted

flag

is

set

to

true

and

outside

of

an

XA

transaction,

then

the

session

is

involved

in

the

WebSphere

local

transaction

and

the

unresolved

action

attribute

of

the

method

applies

to

the

JMS

work.

v

Clients

cannot

use

using

Message.acknowledge()

to

acknowledge

messages.

If

a

value

of

CLIENT_ACKNOWLEDGE

is

passed

on

the

createxxxSession

call,

then

messages

are

automatically

acknowledged

by

the

application

server

and

Message.acknowledge()

is

not

used.

8.

Decide

what

message

selectors

are

needed.

You

can

use

the

JMS

message

selector

mechanism

to

select

a

subset

of

the

messages

on

a

queue

so

that

this

subset

is

returned

by

a

receive

call.

The

selector

can

refer

to

fields

in

the

JMS

message

header

and

fields

in

the

message

properties.

9.

Acting

on

messages

received.

When

a

message

is

received,

you

can

act

on

it

as

needed

by

the

business

logic

of

the

application.

Some

general

JMS

actions

are

to

check

that

the

message

is

of

the

correct

type

and

extract

the

content

of

the

message.

To

extract

the

content

from

the

body

of

the

message,

you

need

to

cast

from

the

generic

Message

class

(which

is

the

declared

return

type

of

the

receive

methods)

to

the

more

specific

subclass,

such

as

TextMessage.

It

is

good

practice

always

to

test

the

message

class

before

casting,

so

that

unexpected

errors

can

be

handled

gracefully.

In

this

example,

the

instanceof

operator

is

used

to

check

that

the

message

received

is

of

the

TextMessage

type.

The

message

content

is

then

extracted

by

casting

to

the

TextMessage

subclass.

if

(

inMessage

instanceof

TextMessage

)

...

String

replyString

=

((TextMessage)

inMessage).getText();

10.

Using

a

listener

to

receive

messages

asynchronously.

An

alternative

to

making

calls

to

QueueReceiver.receive()

is

to

register

a

method

that

is

called

automatically

when

a

suitable

message

is

available;

for

example:

...

MyClass

listener

=new

MyClass();

queueReceiver.setMessageListener(listener);

//application

continues

with

other

application-specific

behavior.

...

When

a

message

is

available,

it

is

retrieved

by

the

onMessage()

method

on

the

listener

object.

import

javax.jms.*;

public

class

MyClass

implements

MessageListener

{

public

void

onMessage(Message

message)

{

System.out.println("message

is

"+message);

//application

specific

processing

here

...

}

}

Note:

A

MessageListener

can

only

be

used

in

the

client

container.

(The

J2EE

specification

forbids

the

use

of

the

JMS

MessageListener

mechanism

for

the

asynchronous

receipt

of

messages

in

the

EJB

and

Web

containers.)

Chapter

3.

Using

asynchronous

messaging

305

For

asynchronous

message

delivery,

the

application

code

cannot

catch

exceptions

raised

by

failures

to

receive

messages.

This

is

because

the

application

code

does

not

make

explicit

calls

to

receive()

methods.

To

cope

with

this

situation,

you

can

register

an

ExceptionListener,

which

is

an

instance

of

a

class

that

implements

the

onException()method.

When

an

error

occurs,

this

method

is

called

with

the

JMSException

passed

as

its

only

parameter.

For

more

details

about

using

listeners

to

receive

messages

asynchronously,

see

the

Java

Message

Service

Documentation.

Note:

An

alternative

to

developing

your

own

JMS

listener

class,

you

can

use

a

message-driven

bean,

as

described

in

Implementing

WebSphere

enterprise

applications

that

use

message-driven

beans.

11.

Warning

when

receiving

messages

within

a

server-side

application

component.

Take

care

when

performing

a

JMS

receive()

from

a

server-side

application

component

if

that

receive()

invocation

is

waiting

on

a

message

produced

by

another

application

component

that

is

deployed

in

the

same

server.

Such

a

JMS

receive()

is

synchronous,

so

blocks

until

the

response

message

is

received.

This

type

of

application

design

can

lead

to

the

consumer/producer

problem

where

the

entire

set

of

work

threads

can

be

exhausted

by

the

receiving

component,

which

has

been

blocked

waiting

for

responses,

leaving

no

available

worker

thread

for

which

to

dispatch

the

application

component

that

would

generate

the

response

JMS

message.

To

illustrate

this

problem,

picture

a

servlet

and

a

message-driven

bean

deployed

in

the

same

server.

When

this

servlet

dispatches

a

request

it

sends

a

message

to

a

queue

which

is

serviced

by

the

message-driven

bean

(that

is,

messages

produced

by

the

servlet

are

consumed

by

the

message-driven

bean’s

onMessage()

method).

The

servlet

subsequently

issues

a

receive(),

waiting

for

a

reply

on

a

temporary

ReplyTo

queue.

The

message-driven

bean’s

onMessage()

method

performs

a

database

query

and

sends

back

a

reply

to

the

servlet

on

the

temporary

queue.

If

a

large

number

of

servlet

requests

occur

at

once

(relative

to

the

number

of

server

worker

threads),

then

it

is

likely

that

all

available

server

worker

threads

will

be

used

to

dispatch

a

servlet

request,

send

a

message,

and

wait

for

a

reply.

The

application

server

enters

a

deadly-embrace

condition

whereby

no

threads

remain

to

process

any

of

the

message-driven

beans

that

are

now

pending.

Since

the

servlets

are

waiting

in

blocking

recieves,

the

server

hangs,

likely

leading

to

application

failure.

Possible

solutions

are:

a.

Ensure

that

the

number

of

worker

threads

(#

of

threads

per

server

region

*

#

of

server

regions

per

server)

exceeds

the

number

of

concurrent

dispatches

of

the

application

component

doing

the

receive()

so

that

there

is

always

a

worker

thread

available

to

dispatch

the

message

producing

component.

b.

Use

an

application

topology

that

places

the

receiver

application

component

in

a

separate

server

than

the

producer

application

component.

While

worker

thread

usage

can

still

need

to

be

carefully

considered

under

such

a

deployment

scenario,

this

separation

ensures

that

there

are

always

be

threads

that

cannot

be

blocked

by

the

message

receiving

component.

There

can

be

other

interactions

to

consider,

such

as

an

application

server

that

has

multiple

applications

installed.

c.

Refactor

your

application

to

do

the

message

receives

from

a

client

component,

which

will

not

compete

with

the

producer

component

for

worker

threads.

Furthermore,

the

client

component

can

do

asynchronous

(non-blocking)

receives,

which

are

prohibited

from

J2EE

servers.

So,

for

306

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

http://java.sun.com/products/jms/docs.html

example,

the

example

application

above

could

be

refactored

to

have

a

client

sending

messages

to

a

queue

and

then

waiting

for

a

response

from

the

MDB.

The

effect

of

transaction

context

on

non-durable

subscribers

A

non-durable

subscriber

can

only

be

used

in

the

same

transactional

context

(for

example,

a

global

transaction

or

an

unspecified

transaction

context)

that

existed

when

the

subscriber

was

created.

A

non-durable

subscriber

is

invalidated

whenever

a

sharing

boundary

(in

general,

a

local

or

global

transaction

boundary)

is

crossed,

resulting

in

a

javax.jms.IllegalStateException

with

message

text

Non-durable

subscriber

invalidated

on

transaction

boundary.

For

example,

in

the

following

scenario

the

non-durable

subscriber

is

invalidated

at

the

begin

user

transaction.

This

is

because

the

local

transaction

context

in

which

the

subscriber

was

created

ends

when

the

user

transaction

begins:

...

create

subscriber

...

begin

user

transaction

-

...

complete

user

transaction

-

...

use

subscriber

...

If

you

want

to

cache

a

subscriber

(to

wait

to

receive

messages

that

arrived

since

it

was

created),

then

use

a

durable

subscriber

(for

which

this

restriction

does

not

apply).

Do

not

cache

non-durable

subscribers.

Developing

a

J2EE

application

to

use

JMS

Use

this

task

to

develop

a

J2EE

application

to

use

the

JMS

API

directly

for

asynchronous

messaging.

This

topic

gives

an

overview

of

the

steps

needed

to

develop

a

J2EE

application

(servlet

or

enterprise

bean)

to

use

the

JMS

API

directly

for

asynchronous

messaging.

This

topic

only

describes

the

JMS-related

considerations;

it

does

not

describe

general

J2EE

application

programming,

which

you

should

already

be

familiar

with.

For

detailed

information

about

these

steps,

and

for

examples

of

developing

a

J2EE

application

to

use

JMS,

see

the

Java

Message

Service

Documentation

and

the

WebSphere

MQ

Using

Java

book,

SC34-5456.

Details

of

JMS

resources

that

are

used

by

J2EE

applications

are

defined

to

WebSphere

Application

Server

and

bound

into

the

JNDI

namespace

by

the

WebSphere

administrative

support.

To

use

JMS,

a

J2EE

application

completes

the

following

general

steps:

1.

Import

JMS

packages.

A

J2EE

application

that

uses

JMS

starts

with

a

number

of

import

statements

for

JMS,

which

should

include

at

least

the

following:

import

javax.jms.*;

//JMS

interfaces

import

javax.naming.*;

//Used

for

JNDI

lookup

of

administered

objects

2.

Get

an

initial

context.

try

{

ctx

=

new

InitialContext(env);

...

Chapter

3.

Using

asynchronous

messaging

307

http://java.sun.com/products/jms/docs.html

3.

Retrieve

administered

objects

from

the

JNDI

namespace.

The

InitialContext.lookup()

method

is

used

to

retrieve

administered

objects

(a

queue

connection

factory

and

the

queue

destinations);

for

example,

to

receive

a

message

from

a

queue

qcf

=

(QueueConnectionFactory)ctx.lookup(

qcfName

);

...

inQueue

=

(Queue)ctx.lookup(

qnameIn

);

...

4.

Create

a

connection

to

the

messaging

service

provider.

The

connection

provides

access

to

the

underlying

transport,

and

is

used

to

create

sessions.

The

createQueueConnection()

method

on

the

factory

object

is

used

to

create

the

connection.

connection

=

qcf.createQueueConnection();

The

JMS

specification

defines

that

connections

should

be

created

in

the

stopped

state.

Until

the

connection

starts,

MessageConsumers

that

are

associated

with

the

connection

cannot

receive

any

messages.

To

start

the

connection,

issue

the

following

command:

connection.start();

5.

Create

a

session,

for

sending

or

receiving

messages.

The

session

provides

a

context

for

producing

and

consuming

messages,

including

the

methods

used

to

create

MessageProducers

and

MessageConsumers.

The

createQueueSession

method

is

used

on

the

connection

to

obtain

a

session.

The

method

takes

two

parameters:

v

A

boolean

that

determines

whether

or

not

the

session

is

transacted.

v

A

parameter

that

determines

the

acknowledge

mode.

boolean

transacted

=

false;

session

=

connection.createQueueSession(

transacted,

Session.AUTO_ACKNOWLEDGE);

In

this

example,

the

session

is

not

transacted,

and

it

should

automatically

acknowledge

received

messages.

With

these

settings,

a

message

is

backed

out

only

after

a

system

error

or

if

the

application

terminates

unexpectedly.

The

following

points,

as

defined

in

the

EJB

specification,

apply

to

these

flags:

v

The

transacted

flag

passed

on

createQueueSession

is

ignored

inside

a

global

transaction

and

all

work

is

performed

as

part

of

the

transaction.

Outside

of

a

transaction

the

transacted

flag

is

not

used

and,

if

set

to

true,

the

application

should

use

session.commit()

and

session.rollback()

to

control

the

completion

of

the

work.

In

an

EJB2.0

module,

if

the

transacted

flag

is

set

to

true

and

outside

of

an

XA

transaction,

then

the

session

is

involved

in

the

WebSphere

local

transaction

and

the

unresolved

action

attribute

of

the

method

applies

to

the

JMS

work.

v

Clients

cannot

use

using

Message.acknowledge()

to

acknowledge

messages.

If

a

value

of

CLIENT_ACKNOWLEDGE

is

passed

on

the

createxxxSession

call,

then

messages

are

automatically

acknowledged

by

the

application

server

and

Message.acknowledge()

is

not

used.

6.

Send

a

message.

a.

Create

MessageProducers

to

create

messages.

For

point-to-point

messaging

the

MessageProducer

is

a

QueueSender

that

is

created

by

passing

an

output

queue

object

(retrieved

earlier)

into

the

createSender

method

on

the

session.

A

QueueSender

is

normally

created

for

a

specific

queue,

so

that

all

messages

sent

using

that

sender

are

sent

to

the

same

destination.

QueueSender

queueSender

=

session.createSender(inQueue);

b.

Create

the

message.

Use

the

session

to

create

an

empty

message

and

add

the

data

passed.

308

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

JMS

provides

several

message

types,

each

of

which

embodies

some

knowledge

of

its

content.

To

avoid

referencing

the

vendor-specific

class

names

for

the

message

types,

methods

are

provided

on

the

Session

object

for

message

creation.

In

this

example,

a

text

message

is

created

from

the

outString

property:

TextMessage

outMessage

=

session.createTextMessage(outString);

c.

Send

the

message.

To

send

the

message,

the

message

is

passed

to

the

send

method

on

the

QueueSender:

queueSender.send(outMessage);

7.

Receive

replies.

a.

Create

a

correlation

ID

to

link

the

message

sent

with

any

replies.

In

this

example,

the

client

receives

reply

messages

that

are

related

to

the

message

that

it

has

sent,

by

using

a

provider-specific

message

ID

in

a

JMSCorrelationID.

messageID

=

outMessage.getJMSMessageID();

The

correlation

ID

is

then

used

in

a

message

selector,

to

select

only

messages

that

have

that

ID:

String

selector

=

"JMSCorrelationID

=

’"+messageID+"’";

b.

Create

a

MessageReceiver

to

receive

messages.

For

point-to-point

the

MessageReceiver

is

a

QueueReceiver

that

is

created

by

passing

an

input

queue

object

(retrieved

earlier)

and

the

message

selector

into

the

createReceiver

method

on

the

session.

QueueReceiver

queueReceiver

=

session.createReceiver(outQueue,

selector);

c.

Retrieve

the

reply

message.

To

retrieve

a

reply

message,

the

receive

method

on

the

QueueReceiver

is

used:

Message

inMessage

=

queueReceiver.receive(2000);

The

parameter

in

the

receive

call

is

a

timeout

in

milliseconds.

This

parameter

defines

how

long

the

method

should

wait

if

there

is

no

message

available

immediately.

If

you

omit

this

parameter,

the

call

blocks

indefinitely.

If

you

do

not

want

any

delay,

use

the

receiveNoWait()method.

In

this

example,

the

receive

call

returns

when

the

message

arrives,

or

after

2000ms,

whichever

is

sooner.

d.

Act

on

the

message

received.

When

a

message

is

received,

you

can

act

on

it

as

needed

by

the

business

logic

of

the

client.

Some

general

JMS

actions

are

to

check

that

the

message

is

of

the

correct

type

and

extract

the

content

of

the

message.

To

extract

the

content

from

the

body

of

the

message,

it

is

necessary

to

cast

from

the

generic

Message

class

(which

is

the

declared

return

type

of

the

receive

methods)

to

the

more

specific

subclass,

such

as

TextMessage.

It

is

good

practice

always

to

test

the

message

class

before

casting,

so

that

unexpected

errors

can

be

handled

gracefully.

In

this

example,

the

instanceof

operator

is

used

to

check

that

the

message

received

is

of

the

TextMessage

type.

The

message

content

is

then

extracted

by

casting

ti

the

TextMessage

subclass.

if

(

inMessage

instanceof

TextMessage

)

...

String

replyString

=

((TextMessage)

inMessage).getText();

8.

Closing

down.

If

the

application

needs

to

create

many

short-lived

JMS

objects

at

the

Session

level

or

lower,

it

is

important

to

close

all

the

JMS

resources

Chapter

3.

Using

asynchronous

messaging

309

used.

To

do

this,

you

call

the

close()

method

on

the

various

classes

(QueueConnection,

QueueSession,

QueueSender,

and

QueueReceiver)

when

the

resources

are

no

longer

required.

queueReceiver.close();

...

queueSender.close();

...

session.close();

session

=

null;

...

connection.close();

connection

=

null;

9.

Publishing

and

subscribing

messages.

To

use

JMS

Publish/Subscribe

support

instead

of

point-to-point

messaging,

the

general

actions

are

the

same;

for

example,

to

create

a

session

and

connection.

The

exceptions

are

that

topic

resources

are

used

instead

of

queue

resources

(such

as

TopicPublisher

instead

of

QueueSender),

as

shown

in

the

following

example

to

publish

a

message:

//

Creating

a

TopicPublisher

TopicPublisher

pub

=

session.createPublisher(topic);

...

pub.publish(outMessage);

...

//

Closing

TopicPublisher

pub.close();

10.

Handling

errors

Any

JMS

runtime

errors

are

reported

by

exceptions.

The

majority

of

methods

in

JMS

throw

JMSExceptions

to

indicate

errors.

It

is

good

programming

practice

to

catch

these

exceptions

and

display

them

on

a

suitable

output.

Unlike

normal

Java

exceptions,

a

JMSException

can

contain

another

exception

embedded

in

it.

The

implementation

of

JMSException

does

not

include

the

embedded

exception

in

the

output

of

its

toString()method.

Therefore,

you

need

to

check

explicitly

for

an

embedded

exception

and

print

it

out,

as

shown

in

the

following

example:

catch

(JMSException

je)

{

System.out.println("JMS

failed

with

"+je);

Exception

le

=

je.getLinkedException();

if

(le

!=

null)

{

System.out.println("linked

exception

"+le);

}

}

After

you

have

packaged

your

application,

you

can

next

deploy

the

application

into

WebSphere

Application

Server,

as

described

in

Deploying

a

J2EE

application

to

use

JMS.

Developing

a

JMS

client

Use

this

task

to

develop

a

JMS

client

application

to

use

messages

to

communicate

with

enterprise

applications.

This

topic

gives

an

overview

of

the

steps

needed

to

develop

a

JMS

client

application,

based

on

a

sample

client

provided

with

WebSphere

Application

Server.

This

topic

only

describes

the

JMS-related

considerations;

it

does

not

describe

general

client

programming,

which

you

should

already

be

familiar

with.

For

detailed

information

about

these

steps,

and

for

examples

of

developing

JMS

clients,

see

the

Java

Message

Service

Documentation

and

the

WebSphere

MQ

Using

Java

book,

SC34-5456.

310

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

http://java.sun.com/products/jms/docs.html

A

JMS

client

assumes

that

the

JMS

resources

(such

as

a

queue

connection

factory

and

queue

destination)

already

exist.

A

client

application

can

use

JMS

resources

administered

by

the

application

server

or

administered

by

the

client

container

regardless

of

whether

the

client

application

is

running

on

the

same

machine

as

the

server

or

remotely.

v

If

you

want

your

client

application

to

use

server-administered

JMS

objects,

configure

the

client

application

to

use

those

resources

as

Resource

Environment

References.

v

If

you

want

your

client

application

to

use

client

container-administered

JMS

resources,

then

configure

those

resources

as

Resource

References.

For

more

information

about

developing

client

applications

and

configuring

JMS

resources

for

them,

see

the

Information

Center

topic

″Developing

J2EE

application

client

code″

and

related

tasks.

To

use

JMS,

a

typical

JMS

client

program

completes

the

following

general

steps:

1.

Import

JMS

packages.

An

enterprise

application

that

uses

JMS

starts

with

a

number

of

import

statements

for

JMS;

for

example:

import

javax.naming.Context;

import

javax.naming.InitialContext;

import

javax.rmi.PortableRemoteObject;

import

javax.jms.*;

2.

Get

an

initial

context.

try

{

ctx

=

new

InitialContext(env);

...

3.

Define

the

parameters

that

the

client

wants

to

use;

for

example,

to

identify

the

queue

connection

factory

and

to

assemble

a

message

to

be

sent.

public

class

JMSppSampleClient

{

public

static

void

main(String[]

args)

throws

JMSException,

Exception

{

String

messageID

=

null;

String

outString

=

null;

String

qcfName

=

"java:comp/env/jms/ConnectionFactory";

String

qnameIn

=

"java:comp/env/jms/Q1";

String

qnameOut

=

"java:comp/env/jms/Q2";

boolean

verbose

=

false;

QueueSession

session

=

null;

QueueConnection

connection

=

null;

Context

ctx

=

null;

QueueConnectionFactory

qcf

=

null;

Queue

inQueue

=

null;

Queue

outQueue

=

null;

...

4.

Retrieve

administered

objects

from

the

JNDI

namespace.

The

InitialContext.lookup()

method

is

used

to

retrieve

administered

objects

(a

queue

connection

factory

and

the

queue

destinations):

qcf

=

(QueueConnectionFactory)ctx.lookup(

qcfName

);

...

inQueue

=

(Queue)ctx.lookup(

qnameIn

);

outQueue

=

(Queue)ctx.lookup(

qnameOut

);

...

Chapter

3.

Using

asynchronous

messaging

311

5.

Create

a

connection

to

the

messaging

service

provider.

The

connection

provides

access

to

the

underlying

transport,

and

is

used

to

create

sessions.

The

createQueueConnection()

method

on

the

factory

object

is

used

to

create

the

connection.

connection

=

qcf.createQueueConnection();

The

JMS

specification

defines

that

connections

should

be

created

in

the

stopped

state.

Until

the

connection

starts,

MessageConsumers

that

are

associated

with

the

connection

cannot

receive

any

messages.

To

start

the

connection,

issue

the

following

command:

connection.start();

6.

Create

a

session,

for

sending

and

receiving

messages.

The

session

provides

a

context

for

producing

and

consuming

messages,

including

the

methods

used

to

create

MessageProducers

and

MessageConsumers.

The

createQueueSession

method

is

used

on

the

connection

to

obtain

a

session.

The

method

takes

two

parameters:

v

A

boolean

that

determines

whether

or

not

the

session

is

transacted.

v

A

parameter

that

determines

the

acknowledge

mode.

boolean

transacted

=

false;

session

=

connection.createQueueSession(

transacted,

Session.AUTO_ACKNOWLEDGE);

In

this

example,

the

session

is

not

transacted,

and

it

should

automatically

acknowledge

received

messages.

With

these

settings,

a

message

is

backed

out

only

after

a

system

error

or

if

the

client

application

terminates

unexpectedly.

7.

Send

the

message.

a.

Create

MessageProducers

to

create

messages.

For

point-to-point

the

MessageProducer

is

a

QueueSender

that

is

created

by

passing

an

output

queue

object

(retrieved

earlier)

into

the

createSender

method

on

the

session.

A

QueueSender

is

normally

created

for

a

specific

queue,

so

that

all

messages

sent

using

that

sender

are

sent

to

the

same

destination.

QueueSender

queueSender

=

session.createSender(inQueue);

b.

Create

the

message.

Use

the

session

to

create

an

empty

message

and

add

the

data

passed.

JMS

provides

several

message

types,

each

of

which

embodies

some

knowledge

of

its

content.

To

avoid

referencing

the

vendor-specific

class

names

for

the

message

types,

methods

are

provided

on

the

Session

object

for

message

creation.

In

this

example,

a

text

message

is

created

from

the

outString

property,

which

could

be

provided

as

an

input

parameter

on

invocation

of

the

client

program

or

constructed

in

some

other

way:

TextMessage

outMessage

=

session.createTextMessage(outString);

c.

Send

the

message.

To

send

the

message,

the

message

is

passed

to

the

send

method

on

the

QueueSender:

queueSender.send(outMessage);

8.

Receive

replies.

a.

Create

a

correlation

ID

to

link

the

message

sent

with

any

replies.

In

this

example,

the

client

receives

reply

messages

that

are

related

to

the

message

that

it

has

sent,

by

using

a

provider-specific

message

ID

in

a

JMSCorrelationID.

messageID

=

outMessage.getJMSMessageID();

The

correlation

ID

is

then

used

in

a

message

selector,

to

select

only

messages

that

have

that

ID:

312

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

String

selector

=

"JMSCorrelationID

=

’"+messageID+"’";

b.

Create

a

MessageReceiver

to

receive

messages.

For

point-to-point

the

MessageReceiver

is

a

QueueReceiver

that

is

created

by

passing

an

input

queue

object

(retrieved

earlier)

and

the

message

selector

into

the

createReceiver

method

on

the

session.

QueueReceiver

queueReceiver

=

session.createReceiver(outQueue,

selector);

c.

Retrieve

the

reply

message.

To

retrieve

a

reply

message,

the

receive

method

on

the

QueueReceiver

is

used:

Message

inMessage

=

queueReceiver.receive(2000);

The

parameter

in

the

receive

call

is

a

timeout

in

milliseconds.

This

parameter

defines

how

long

the

method

should

wait

if

there

is

no

message

available

immediately.

If

you

omit

this

parameter,

the

call

blocks

indefinitely.

If

you

do

not

want

any

delay,

use

the

receiveNoWait()method.

In

this

example,

the

receive

call

returns

when

the

message

arrives,

or

after

2000ms,

whichever

is

sooner.

d.

Act

on

the

message

received.

When

a

message

is

received,

you

can

act

on

it

as

needed

by

the

business

logic

of

the

client.

Some

general

JMS

actions

are

to

check

that

the

message

is

of

the

correct

type

and

extract

the

content

of

the

message.

To

extract

the

content

from

the

body

of

the

message,

you

need

to

cast

from

the

generic

Message

class

(which

is

the

declared

return

type

of

the

receive

methods)

to

the

more

specific

subclass,

such

as

TextMessage.

It

is

good

practice

always

to

test

the

message

class

before

casting,

so

that

unexpected

errors

can

be

handled

gracefully.

In

this

example,

the

instanceof

operator

is

used

to

check

that

the

message

received

is

of

the

TextMessage

type.

The

message

content

is

then

extracted

by

casting

to

the

TextMessage

subclass.

if

(

inMessage

instanceof

TextMessage

)

...

String

replyString

=

((TextMessage)

inMessage).getText();

9.

Closing

down.

If

the

application

needs

to

create

many

short-lived

JMS

objects

at

the

Session

level

or

lower,

it

is

important

to

close

all

the

JMS

resources

used.

To

do

this,

you

call

the

close()

method

on

the

various

classes

(QueueConnection,

QueueSession,

QueueSender,

and

QueueReceiver)

when

the

resources

are

no

longer

required.

queueReceiver.close();

...

queueSender.close();

...

session.close();

session

=

null;

...

connection.close();

connection

=

null;

10.

Publishing

and

subscribing

messages.

To

use

publish/subscribe

support

instead

of

point-to-point

messaging,

the

general

client

actions

are

the

same;

for

example,

to

create

a

session

and

connection.

The

exceptions

are

that

topic

resources

are

used

instead

of

queue

resources

(such

as

TopicPublisher

instead

of

QueueSender),

as

shown

in

the

following

example

to

publish

a

message:

//

Creating

a

TopicPublisher

TopicPublisher

pub

=

session.createPublisher(topic);

...

pub.publish(outMessage);

...

//

Closing

TopicPublisher

pub.close();

Chapter

3.

Using

asynchronous

messaging

313

11.

Handling

errors

Any

JMS

runtime

errors

are

reported

by

exceptions.

The

majority

of

methods

in

JMS

throw

JMSExceptions

to

indicate

errors.

It

is

good

programming

practice

to

catch

these

exceptions

and

display

them

on

a

suitable

output.

Unlike

normal

Java

exceptions,

a

JMSException

can

contain

another

exception

embedded

in

it.

The

implementation

of

JMSException

does

not

include

the

embedded

exception

in

the

output

of

its

toString()method.

Therefore,

you

need

to

check

explicitly

for

an

embedded

exception

and

print

it

out,

as

shown

in

the

following

example:

catch

(JMSException

je)

{

System.out.println("JMS

failed

with

"+je);

Exception

le

=

je.getLinkedException();

if

(le

!=

null)

{

System.out.println("linked

exception

"+le);

}

}

Deploying

a

J2EE

application

to

use

JMS

This

topic

describes

how

to

deploy

a

J2EE

application

to

use

JMS.

This

task

description

assumes

that

you

have

an

.EAR

file,

which

contains

an

application

enterprise

bean

with

code

for

JMS,

that

can

be

deployed

in

WebSphere

Application

Server.

To

deploy

a

J2EE

application

to

use

JMS,

complete

the

following

steps:

1.

5.1 +

Configure

the

deployment

attributes

for

the

application,

as

described

in

the

Information

Center

topic

″Assembling

applications

with

the

Assembly

Toolkit.″

2.

Use

the

WebSphere

administrative

console

to

install

the

application.

This

stage

is

a

standard

WebSphere

Application

Server

task,

as

described

in

the

Information

Center

topic

″Installing

applications.″

Tuning

Java

messaging

service

You

can

tune

Java

messaging

service

(JMS)

run-time

components,

resources,

and

the

embedded

messaging

server

through

the

administrative

console

with

the

following

parameters:

v

Configure

the

message

listening

service.

–

Thread

pool

–

Custom

properties

Application

Server

Facilities

and

Non-Application

Server

Facilities

–

Listener

port

Maximum

sessions

–

Listener

port

Maximum

messages
v

Configure

JMS

resources.

–

XA

enabled

–

Connection

pool

size

–

WebSphere

MQ

queue

connection

factory

Transport

type

–

WebSphere

MQ

topic

connection

factory

Transport

type

–

Transaction

log

directory

–

WebSphere

MQ

314

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

-

Description:

Includes

the

WebSphere

MQ

folder

where

WebSphere

MQ

is

installed

and

indirectly

where

its

data

files

reside

since

they

are

always

under

the

directory

WebSphereMQHome/data.

Use

this

parameter

during

installation

when

extra

disks

are

available.

-

How

to

view

or

set:

To

view,

search

your

system

for

a

folder

named

WebSphere

MQ.

Set

during

installation.

-

Default

value:

c:\Program

Files\IBM\WebSphere

MQ\

-

Recommended

value:

Locate

this

directory

away

from

any

other

disk

input

or

output,

on

the

fastest

disk

available.

Redundant

Array

of

Inexpensive

Disks

(RAID)

is

recommended.
–

WebSphere

MQ

-

Description:

Includes

the

WebSphere

MQ

folder

where

WebSphere

MQ

is

installed

and

indirectly

where

its

data

files

reside

since

they

are

always

under

the

directory

WebSphereMQHome/data.

Use

this

parameter

during

installation

when

extra

disks

are

available.

-

How

to

view

or

set:

To

view,

search

your

system

for

a

folder

named

WebSphere

MQ.

Set

during

installation.

-

Default

value:

c:\Program

Files\IBM\WebSphere

MQ\

-

Recommended

value:

Locate

this

directory

away

from

any

other

disk

input

or

output,

on

the

fastest

disk

available.

Redundant

Array

of

Inexpensive

Disks

(RAID)

is

recommended.
–

Log

buffer

pages

-

Description:

Controls

the

size

of

the

queue

manager

buffer

to

log

file

writes

in

number

of

pages.

Use

this

parameter

when

high

volumes

of

messages

are

being

sent

through

a

server.

-

How

to

view

or

set:

In

the

registry,

navigate

to

HKEY_LOCAL_MACHINE

>

SOFTWARE

>

IBM

>

MQSeries

>

CurrentVision

>

Configuration

>

QueueManager

>

QM_name

>

Log

>

LogBufferPages.

For

embedded

JMS,

edit

the

createmq.properties

setting

LogFilePages

in

the

install_root\properties

directory

to

the

desired

value.

Run

the

deletemq

and

createmq

commands

to

delete

or

recreate

the

queue

manager.

For

external

JMS,

set

LogFilePages

to

the

desired

value.

Do

this

before

creating

the

queue

manager

in

the

registry.

Run

the

amqmdain

regsec

command

to

secure

the

registry

value

and

create

the

queue

manager.

-

Default

value:

0

-

Recommended

value:

There

is

no

performance

penalty

for

setting

this

value

too

high.

Therefore,

set

the

value

to

its

maximum

of

512

pages.
–

Log

primary

files

-

Description:

Controls

the

number

of

primary

or

permanent

log

files

for

the

queue

manager.

Use

this

parameter

when

high

volumes

of

messages

are

being

sent

through

a

server.

-

How

to

view

or

set:

In

the

registry,

navigate

to

HKEY_LOCAL_MACHINE

>

SOFTWARE

>

IBM

>

MQSeries

>

CurrentVision

>

Configuration

>

QueueManager

>

QM_name

>

Log

>

LogPrimaryFiles.

For

embedded

JMS,

edit

the

createmq.properties

setting

LogFilePages

in

the

install_root\properties

directory

to

the

desired

value.

Run

the

deletemq

and

createmq

commands

to

delete

or

recreate

the

queue

manager.

For

external

JMS,

set

LogPrimaryFiles

to

the

desired

value.

Do

this

before

creating

the

queue

manager

in

the

registry.

Run

the

amqmdain

regsec

command

to

secure

the

registry

value

and

create

the

queue

manager.

-

Default

value:

External:

3,

embedded:

0

-

Recommended

value:

There

is

no

performance

penalty

for

setting

this

value

too

high.

Set

the

value

to

its

maximum

of

63

pages.
–

Log

secondary

files

Chapter

3.

Using

asynchronous

messaging

315

-

Description:

Controls

the

number

of

secondary

log

files

for

the

queue

manager.

Secondary

files

are

files

created

when

the

primary

files

are

not

enough

and

deleted

when

they

are

no

longer

needed.

-

How

to

view

or

set:

In

the

registry,

navigate

to

HKEY_LOCAL_MACHINE

>

SOFTWARE

>

IBM

>

MQSeries

>

CurrentVision

>

Configuration

>

QueueManager

>

QM_name

>

Log

>

LogSecondaryFiles.

For

embedded

JMS,

edit

the

createmq.properties

setting

LogSecondaryFiles

in

the

install_root\properties

directory

to

the

desired

value.

Run

the

deletemq

and

createmq

commands

to

delete

or

recreate

the

queue

manager.

For

external

JMS,

set

LogPrimaryFiles

to

the

desired

value.

Do

this

before

creating

the

queue

manager

in

the

registry.

Run

the

amqmdain

regsec

command

to

secure

the

registry

value

and

create

the

queue

manager.

-

Default

value:

External:

2,

embedded:

60

-

Recommended

value:

There

is

a

limit

of

63

total

files

from

the

primary

and

secondary

combined

and

because

secondary

logs

are

slower,

setting

this

0

is

ideal

for

performance.

-

Log

default

path

v

Description:

Controls

the

location

of

the

queue

manager

log

files.

Use

this

parameter

when

high

volumes

of

messages

are

sent

through

a

server.

v

How

to

view

or

set:

In

the

registry,

navigate

to

HKEY_LOCAL_MACHINE

>

SOFTWARE

>

IBM

>

MQSeries

>

CurrentVision

>

Configuration

>

QueueManager

>

QM_name

>

Log

>

LogDefaultPath.

For

embedded

JMS,

edit

the

createmq.properties

setting

LogPath

in

the

install_root\properties

directory

to

the

desired

value.

Run

the

deletemq

and

createmq

commands

to

delete

or

recreate

the

queue

manager.

For

external

JMS,

set

LogDefaultPath

to

the

desired

value.

Do

this

before

creating

the

queue

manager

in

the

registry.

Run

the

amqmdain

regsec

command

to

secure

the

registry

value

and

create

the

queue

manager.

v

Default

value:

WebSphereMQHome\log

v

Recommended

value:

It

is

ideal

to

have

a

disk

dedicated

to

this

task

because

WebSphere

MQ

tries

to

keep

the

head

of

the

disk

positioned

at

the

place

in

the

file

where

it

needs

to

write

next.

A

fast

RAID

volume

is

best.
-

Default

queue

buffer

size

v

Description:

Controls

the

size

in

bytes

of

an

in-memory

buffer

for

nonpersistent

queues.

Use

this

parameter

when

large

message

sizes

are

used,

or

large

bursts

of

messages

cause

the

queue

to

back

up.

If

the

queue

backs

up

past

this

buffer,

messages

are

flushed

out

to

the

disk.

v

How

to

view

or

set:

In

the

registry,

navigate

to

HKEY_LOCAL_MACHINE

>

SOFTWARE

>

IBM

>

MQSeries

>

CurrentVersion

>

Configuration

>

QueueManager

>

QM_name

>

TuningParameters

>

DefaultQBufferSize.

Embedded

JMS

is

not

currently

supported;

you

need

MQ5.3

CSD2

and

an

accompanying

Version

5.0

fix.

For

external

JMS,

set

DefaultQBufferSize

to

the

desired

value.

Do

this

before

creating

the

queue

manager.

Run

the

amqmdain

regsec

command

to

secure

the

registry

value

and

create

the

queue

manager.

v

Default

value:

64K

(registry

key

does

not

exist)

v

Recommended

value:

Set

this

parameter

to

accommodate

the

typical

number

of

messages

sitting

on

the

queue

at

any

given

time.

This

should

be

numberOfMessages*(500+messageSizeInBytes).

The

maximum

value

is

100MB,

but

typically

1MB

is

enough.
-

Default

persistent

queue

buffer

size

316

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

v

Description:

Controls

the

size

in

bytes

of

an

in-memory

buffer

for

nonpersistent

queues.

Use

this

parameter

whenever

memory

is

available.

v

How

to

view

or

set:

In

the

registry,

navigate

to

HKEY_LOCAL_MACHINE

>

SOFTWARE

>

IBM

>

MQSeries

>

CurrentVersion

>

Configuration

>

QueueManager

>

QM_name

>

TuningParameters

>

DefaultPQBufferSize.

Embedded

JMS

is

not

currently

supported;

you

need

MQ5.3

CSD2

and

an

accompanying

Version

5.0

fix.

For

external

JMS,

set

DefaultPQBufferSize

to

the

desired

value.

Create

the

queue

manager.

This

is

a

permanent

queue

setting.

To

make

a

change,

delete

and

recreate

the

queue.

v

Default

value:

0

(registry

key

does

not

exist)

v

Recommended

value:

Set

this

parameter

to

accommodate

the

number

of

typical

concurrently

processed

messages,

plus

a

little

more

for

read-ahead

capabilities.

Do

this

by

calculating

numOfCocurrentMessages*(msgSizeInBytes+500)*2.

Typically,

1MB

is

enough.
-

Maximum

channels

v

Description:

Controls

the

allowable

number

of

concurrent

CLIENT

transport

clients.

Use

this

parameter

when

large

numbers

of

clients

are

being

used.

v

How

to

view

or

set:

In

the

registry,

navigate

to

HKEY_LOCAL_MACHINE

>

SOFTWARE

>

IBM

>

MQSeries

>

CurrentVersion

>

Configuration

>

QueueManager

>

QM_name

>

Channels

>

MaxChannels.

Embedded

JMS

is

not

currently

supported;

you

need

MQ5.3

CSD2

and

an

accompanying

Version

5.0

fix.

For

external

JMS,

set

MaxChannels

to

the

desired

value.

Restart

the

queue

manager.

v

Default

value:

External:

100

(registry

key

does

not

exist),

embedded:

1000

v

Recommended

value:

Set

this

parameter

high

enough

to

contain

the

maximum

number

of

concurrent

JMS

clients.
-

Channel

application

bind

type

v

Description:

Controls

if

the

channel

application

is

an

MQ

FASTPATH

application.

Use

this

parameter

at

all

times.

v

How

to

view

or

set:

In

the

registry,

navigate

to

HKEY_LOCAL_MACHINE

>

SOFTWARE

>

IBM

>

MQSeries

>

CurrentVersion

>

Configuration

>

QueueManager

>

QM_name

>

Channels

>

MQIBindType.

Embedded

JMS

is

not

currently

supported;

you

need

MQ5.3

CSD2

and

an

accompanying

Version

5.0

fix.

For

external

JMS,

set

MQIBindType

to

the

desired

value.

Restart

the

queue

manager.

v

Default

value:

Not

FASTPATH

(registry

key

does

not

exist)

v

Recommended

value:

FASTPATH
v

Configure

resources

for

the

embedded

WebSphere

JMS

provider.

–

Number

of

threads

-

Description:

With

the

embedded

JMS

publications

and

subscriptions

broker,

this

value

is

the

number

of

threads

used

to

match

publications

to

subscribers.

Use

this

parameter

when

concurrent

publications

and

subscriptions

exist

that

would

exceed

the

capacity

of

the

default

value.

-

How

to

view

or

set:

1.

Open

the

administrative

console.

2.

Click

Servers

>

Application

Servers

>

server_name.

3.

Click

the

Server

Component

>

JMS

servers.

4.

Click

Apply

or

OK.

5.

Click

Save.

6.

Stop

and

restart

the

application

server.
-

Default

value:

1

Chapter

3.

Using

asynchronous

messaging

317

-

Recommended

value:

Set

this

value

a

little

higher

than

the

number

of

concurrent

message

publishers.

If

large

numbers

of

subscribers

exist,

increasing

this

value

can

also

provide

some

benefit.

Troubleshooting

WebSphere

Messaging

Use

this

overview

task

to

help

resolve

a

problem

that

you

think

is

related

to

the

WebSphere

Messaging.

To

identify

and

resolve

problems

that

you

think

are

related

to

WebSphere

Messaging,

you

can

use

the

standard

WebSphere

Application

Server

troubleshooting

facilities.

If

you

encounter

a

problem

that

you

think

might

be

related

to

WebSphere

Messaging,

complete

the

following

stages.

Some

problems

and

their

troubleshooting

are

specific

to

whether

you

are

using

the

embedded

WebSphere

Messaging

or

WebSphere

MQ

as

the

JMS

provider.

1.

Check

for

common

problems

related

to

WebSphere

Messaging.

For

example,

check

that

the

JMS

server

has

been

started,

that

you

have

added

queue

names

to

the

list

on

the

JMS

server

page

of

the

Administrative

Console,

and

that

you

have

successfully

installed

the

WebSphere

Messaging

function.

For

tips

about

solving

problems

related

to

the

WebSphere

Messaging,

see

Tips

for

troubleshooting

WebSphere

Messaging.

If

those

tips

do

not

help

you

fix

the

problem,

complete

the

following

general

stages.

2.

Check

the

Release

Notes

for

specific

problems

and

workarounds

The

section

Possible

Problems

and

Suggested

Fixes

of

the

Release

Notes,

available

from

the

WebSphere

Application

Server

library

web

site,

is

updated

regularly

to

contain

information

about

known

defects

and

their

workarounds.

Check

the

latest

version

of

the

Release

Notes

for

any

information

about

your

problem.

If

the

Release

Notes

do

not

contain

any

information

about

your

problem,

you

can

also

search

the

Technotes

database

on

the

WebSphere

Application

Server

web

site.

3.

Check

for

WebSphere

Messaging

error

messages.

Check

in

the

SYSPRINT

or

SYSOUT

log

for

error

messages

with

the

prefixes

MSGS

and

WMSG.

The

associated

message

reference

information

provides

an

explanation

and

any

user

actions

to

resolve

the

problem.

4.

Check

for

more

informational

and

error

messages

that

might

provide

a

clue

to

a

related

problem.

If

the

JMS

server

is

running,

but

you

have

problems

accessing

JMS

resources,

check

for

more

error

messages

and

extra

details

about

the

problem.

5.

Check

your

JMS

resource

configurations

If

the

WebSphere

Messaging

functions

seem

to

be

running

properly

(the

JMS

server

is

running

without

problems),

check

that

the

JMS

resources

have

been

configured

correctly.

For

example,

check

that

queue

destinations

and

their

connection

factories

have

corresponding

JNDI

names,

that

the

JNDI

names

match

those

configured

for

the

messaging

applications,

and

that

the

connection

factories

are

configured

onto

nodes

that

can

provide

the

JMS

resources.

6.

Get

a

detailed

exception

dump

for

WebSphere

Messaging.

If

the

information

obtained

in

the

preceding

steps

is

still

inconclusive,

you

can

enable

the

application

server

debug

trace

for

the

“Messaging”

group

to

provide

a

detailed

exception

dump.

Tips

for

troubleshooting

WebSphere

Messaging

This

topic

provides

a

set

of

tips

to

help

you

troubleshoot

problems

with

WebSphere

Messaging.

318

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

http://www-3.ibm.com/software/webservers/appserv/infocenter.html

v

The

JMS

server

does

not

start

by

default

when

WebSphere

Messaging

is

installed

v

The

JMS

server

tries

to

start,

but

fails

v

An

MDB

listener

fails

to

start

v

Failure

to

create

a

queue

connection

v

Embedded

WebSphere

Messaging

failed

to

install

on

top

of

an

existing

WebSphere

MQ

product

v

Problems

running

JMS

applications

with

security

enabled

v

Queue

manager

fails

to

stop

on

Redhat

Linux

v

Application

server

fails

to

start

in

zh_TW.EUC

locale

on

Solaris

The

JMS

server

does

not

start

when

starting

the

WebSphere

administrative

server

During

installation,

the

system

PATH

setting

is

updated

to

include

the

WebSphere

Messaging

directories.

If

you

try

to

start

the

WebSphere

administrative

server

from

a

session

that

does

not

use

the

updated

system

PATH,

the

JMS

Server

fails

to

start

properly.

To

resolve

this

after

installing

WebSphere

Application

Server,

stop

then

restart

your

host

or

open

a

new

session

that

uses

the

updated

system

PATH.

Check

that

the

JMS

server

has

started

before

trying

to

use

WebSphere

Messaging.

For

messages

that

indicate

the

JMS

server

has

started

successfully,

see

the

following

tip

The

JMS

server

tries

to

start,

but

fails.

For

more

information

about

managing

JMS

servers,

see

Administering

WebSphere

JMS

support.

The

JMS

server

tries

to

start,

but

fails

To

see

if

the

JMS

Server

has

started,

check

for

error

messages

in

the

SYSPRINT

or

SYSOUT

log.

If

the

JMS

server

started

successfully,

you

should

see

the

following

messages:

MSGS0050I:

Starting

the

Queue

Manager

MSGS0051I:

Queue

Manager

open

for

business

MSGS0052I:

Starting

the

Broker

MSGS0053I:

Broker

open

for

business

If

the

JMS

server

tries

to

start,

but

fails,

you

should

see

messages

indicating

that

the

queue

manager

could

not

start,

like

the

following:

MSGS0153E:

The

Queue

Manager

process

could

not

be

started

-

error:

com.ibm.ws.process.exception.InvalidExecutableException:

The

system

cannot

find

the

file

specified.

002:

No

such

file

or

directory

If

you

see

a

message

like

the

following,

check

to

see

that

required

WebSphere

MQ

messages

are

not

being

suppressed

by

the

message

processing

facility

(MPF):

BBOO0222I

WSVR0002I:

Server

CONTROL

PROCESS

xyzabc

open

for

e-business,

problems

occurred

during

startup

Before

starting

a

JMS

server,

ensure

that

the

following

WebSphere

MQ

messages

are

not

being

suppressed

by

the

message

processing

facility:

CSQV086E

CSQY022I

CSQY003I

CSQX022I

CSQM132I

CSQ9022I

CSQX017I

CSQ3104I

CSQ3106E

An

MDB

listener

fails

to

start

If

an

MDB

listener

fails

to

start,

you

should

see

the

following

message:

WMSG0019E:

Unable

to

start

MDB

Listener

{0},

JMSDestination

{1}

:

{2}

Chapter

3.

Using

asynchronous

messaging

319

To

troubleshoot

the

cause

of

an

MDB

listener

not

starting,

check

the

following

factors:

v

Check

that

the

administrative

resources

have

been

configured

correctly;

for

example,

use

the

administrative

console

to

check

the

listener

port

properties:

Destination

JNDI

name

and

Connection

factory

JNDI

name.

Check

that

other

properties

of

the

listener

port,

destination,

and

connection

factory

are

correct.

v

Check

that

the

queue

exists

and

has

been

added

to

the

JMS

server.

v

Check

that

the

queue

manager

and

JMS

server

have

started.

v

Check

that

the

Remote

Queue

Manager

Listener

has

started.

v

If

security

is

enabled,

check

that

a

component-managed

authetication

alias

has

been

specified

on

the

queue

connection

factory

or

topic

connection

factory

used

by

the

message-driven

bean.

This

is

not

required

if

security

is

not

enabled.

v

Check

that

the

user

ID

used

to

start

the

MDB

listener

has

12

characters

or

less.

Failure

to

create

a

queue

connection

If

WebSphere

Application

Server

fails

to

create

a

queue

connection,

the

SYSPRINT

and

SYSOUT

log

contains

error

messages

like

the

following:

J2CA0046E:

Method

addNewConnection

caught

javax.resource.spi.ResourceAdapterInternalException:

createQueueConnection

failed

Check

that

the

JMS

server

is

running

(including

that

the

Internal

WebSphere

Messaging

or

WebSphere

MQ

JMS

provider

was

installed

correctly)

as

described

in

preceding

tips.

Note:

In

a

Network

Deployment

or

Enterprise

multi-node

cell,

the

JMS

server

used

by

a

messaging

application

can

be

on

a

different

node

to

the

application.

Either

check

that

all

JMS

servers

in

the

cell

have

started,

or

use

the

Administrative

console

to

determine

which

JMS

server

the

application

is

trying

to

connect

to

(look

at

the

Node

property

of

the

appropriate

connection

factory),

then

check

that

the

JMS

server

has

started.

Embedded

WebSphere

Messaging

failed

to

install

on

top

of

an

existing

WebSphere

MQ

product

When

preparing

to

install

WebSphere

Application

Server

on

a

host

that

already

has

WebSphere

MQ

installed,

you

should

ensure

that

WebSphere

MQ

is

at

a

prerequisite

level,

as

described

in

the

Release

Notes

and

Supported

hardware,

software,

and

APIs

page

of

the

WebSphere

Application

Server

library

web

site.

You

can

also

check

the

WebSphere

MQ

Support

service

summary

Web

page

at

http://www-3.ibm.com/software/ts/mqseries/support/summary/.

If

you

have

a

problem

installing

the

embedded

WebSphere

Messaging

function,

first

check

the

mq_install.log.

Failures

during

the

WebSphere

Messaging

prereq

stage

usually

indicate

a

shortage

of

space.

Failures

after

this

stage

are

usually

due

to

a

conflict

between

messaging

components

already

installed

on

the

machine

and

the

levels

required

to

support

the

J2EE

1.3

specification.

If

the

embedded

WebSphere

Messaging

function

installed

successfully,

you

should

see

messages

like

the

following

in

mq_install.log:

...

date

time

MsiInstallProduct()

returning

ERROR_SUCCESS

(0)

date

time

=======================

Exiting

Publish

And

Subscribe

Install

======================

date

time

<<Function

Successful>>

return

code

WASM_ERROR_SUCCESS

(0)

date

time

=======================

End

of

WebSphere

Messaging

Install

Log

======================

320

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

http://www-3.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://www-3.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://www-3.ibm.com/software/webservers/appserv/library.html
http://www-3.ibm.com/software/ts/mqseries/support/summary/

You

can

also

check

the

createMQ.log

for

any

messages

that

indicate

a

configuration

problem

with

the

installation

of

WebSphere

Messaging.

Problems

running

JMS

applications

with

security

enabled

When

trying

to

run

a

JMS

application

with

security

enabled,

you

can

encounter

problems

indicated

by

one

of

the

error

messages:

MSGS0508E:

The

JMS

Server

security

service

was

unable

to

authenticate

userid:

This

indicates

that

the

JMS

connection

has

not

provided

the

WebSphere

JMS

server

with

any

security

credentials.

WMSG0019E:

Unable

to

start

MDB

Listener

PSSampleMDB,

JMSDestination

Sample/JMS/listen

:

javax.jms.JMSSecurityException:

This

indicates

that

the

security

credentials

supplied

are

not

valid.

In

both

cases

the

problem

can

be

removed

by

doing

one

of

the

following:

v

If

the

authentication

mechanism

is

set

to

Application,

then

the

application

needs

to

supply

valid

credentials.

v

If

the

authentication

mechanism

is

set

to

Container,

then

you

need

to

configure

the

JMS

ConnectionFactory

with

a

container-managed

Authentication

Alias

and

ensure

that

the

associated

username

and

password

are

valid.

MQJMS2013

invalid

security

authentication

supplied

for

MQQueueManager

If

using

a

WebSphere

MQ

JMS

Provider

JMS

connection

when

using

Bindings

transport

mode,

and

the

user

specified

is

not

the

current

logged

on

user

for

the

WebSphere

Application

Server

process,

then

the

WebSphere

MQ

JMS

Bindings

authentication

throws

the

error

MQJMS2013

invalid

security

authentication

supplied

for

MQQueueManager.

If

you

want

to

use

a

WebSphere

MQ

JMS

Provider

JMS

connection

when

using

Bindings

transport

mode,

you

set

the

property

Transport

type=BINDINGS

on

the

WebSphere

MQ

Queue

Connection

Factory.

You

must

also

choose

one

of

the

following

options:

v

To

use

security

credentials,

ensure

that

the

user

specified

is

the

currently

logged

on

user

for

the

WebSphere

Application

Server

process.

v

Do

not

specify

security

credentials.

On

the

WebSphere

MQ

Connection

Factory,

ensure

that

both

the

Component-managed

Authentication

Alias

and

the

Container-managed

Authentication

Alias

properties

are

not

set.

For

more

information

about

messaging

security,

see

Asynchronous

messaging

-

security

considerations.

Queue

manager

fails

to

stop

on

Redhat

Linux

When

trying

to

stop

an

application

server

on

Redhat

Linux,

the

queue

manager

can

hang

with

a

Java

core

dump,

and

the

last

message

in

the

SystemOut.log

file

is

Stopping

Queue

manager....

This

is

caused

by

a

known

RedHat

problem

(https://bugzilla.linux.ibm.com/show_bug.cgi?id=2336),

that

was

introduced

in

libstdc++-2.96-116.7.2

and

beyond.

The

workaround

is

to

go

back

to

the

libstdc++-2.96-108.1

level.

Chapter

3.

Using

asynchronous

messaging

321

Application

server

fails

to

start

in

zh_TW.EUC

locale

on

Solaris

If

you

have

set

the

locale

to

zh_TW.EUC

on

Solaris,

and

are

using

the

WebSphere

embedded

JMS

provider

or

WebSphere

MQ

as

the

JMS

provider,

you

can

encounter

problems

that

stop

application

servers

starting

up.

If

you

intend

using

the

WebSphere

embedded

JMS

provider

or

WebSphere

MQ

as

the

JMS

provider

on

Solaris,

do

not

set

the

LANG

and

LC_ALL

variables

to

zh_TW.EUC

(Traditional

Chinese

locale)

to

avoid

problems

when

starting

application

servers.

Set

the

LANG

and

LC_ALL

variables

to

zh_TW

instead

of

zh_TW.EUC.

Messaging:

Resources

for

learning

The

WebSphere

MQ

for

z/OS

library

includes

books

specific

to

the

z/OS

platform,

and

family

books

that

apply

to

all

WebSphere

MQ

products,

including

WebSphere

MQ

for

z/OS

.

WebSphere

MQ

for

z/OS

publications

Publications

specific

to

the

z/OS

platform

are

as

follows:

v

WebSphere

MQ

for

z/OS

Concepts

and

Planning

Guide

GC34-6051,

describes

the

concepts

of

WebSphere

MQ

for

z/OS

and

tells

you

how

to

plan

your

WebSphere

MQ

for

z/OS

systems.

v

WebSphere

MQ

for

z/OS

System

Setup

Guide

SC34-6052,

tells

you

how

to

customize

WebSphere

MQ

for

z/OS

after

you

have

installed

it.

It

also

tells

you

how

to

monitor

system

use

and

performance,

and

how

to

set

up

security.

v

WebSphere

MQ

for

z/OS

System

Administration

Guide

SC34-6053,

tells

you

how

to

operate

WebSphere

MQ

for

z/OS

using

commands,

panels,

and

utilities,

and

how

to

write

applications

to

administer

WebSphere

MQ

for

z/OS

.

The

latter

part

of

the

book

deals

with

termination,

recovery,

and

restart.

v

WebSphere

MQ

for

z/OS

Problem

Determination

Guide

GC34-6054,

will

help

you

to

determine

the

causes

of

WebSphere

MQ

for

z/OS

problems,

resolve

those

problems,

deal

with

the

IBM

support

center,

and

handle

APARs.

v

WebSphere

MQ

for

z/OS

Messages

and

Codes

GC34-6056,

lists

all

the

user

messages

and

abend

reason

codes

returned

by

WebSphere

MQ

for

z/OS

,

with

explanations

and

suggested

responses.

It

is

designed

for

use

as

a

quick

reference,

and

is

linked

with

the

WebSphere

MQ

for

z/OS

Problem

Determination

Guide,

which

you

should

also

consult

if

a

message

indicates

that

there

is

a

WebSphere

MQ

for

z/OS

problem.

WebSphere

MQ

family

publications

WebSphere

MQ

family

books

that

include

information

for

WebSphere

MQ

for

z/OS:

v

WebSphere

MQ

Script

(MQSC)

Command

Reference

SC34-6055,

describes

the

MQSC

commands,

used

by

system

operators

and

administrators

to

manage

queue

managers.

It

introduces

the

commands

and

tells

you

how

to

use

them,

before

describing

the

commands

in

detail,

in

alphabetic

order.

v

WebSphere

MQ

Intercommunication

322

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

http://publibfp.boulder.ibm.com/epubs/html/csqsat02/csqsat02tfrm.htm
http://publibfp.boulder.ibm.com/epubs/html/csqsav03/csqsav03tfrm.htm
http://publibfp.boulder.ibm.com/epubs/html/csqsaw02/csqsaw02tfrm.htm
http://publibfp.boulder.ibm.com/epubs/html/csqsaq02/csqsaq02tfrm.htm
http://publibfp.boulder.ibm.com/epubs/html/csqsao03/csqsao03tfrm.htm
http://publibfp.boulder.ibm.com/epubs/html/csqzaj09/csqzaj09tfrm.htm
http://publibfp.boulder.ibm.com/epubs/html/csqzae09/csqzae09tfrm.htm

SC34-6059,

describes

intercommunication

between

WebSphere

MQ

products.

It

introduces

the

concepts

of

intercommunication

(transmission

queues,

message

channel

agent

programs,

and

communication

links)

that

are

brought

together

to

form

message

channels.

It

describes

how

geographically-separated

queue

managers

are

linked

together

by

message

channels

to

form

a

network

of

queue

managers.

It

discusses

the

distributed-queuing

management

(DQM)

facility

of

WebSphere

MQ,

which

provides

the

services

that

enable

applications

to

communicate

using

queue

managers.

v

WebSphere

MQ

Application

Programming

Reference

SC34-6062,

introduces

the

concepts

of

messages

and

queues,

and

gives

a

full

description

of

the

WebSphere

MQ

programming

interface,

including

data

types,

function

calls,

attributes,

return

codes,

and

constants.

v

WebSphere

MQ

Application

Programming

Guide

SC34-6064,

introduces

the

concepts

of

messages

and

queues,

and

shows

you

how

to

design,

write,

and

build

applications

that

use

the

services

that

WebSphere

MQ

provides.

v

WebSphere

MQ

Using

Java

SC34-6066,

tells

you

how

to

install,

and

write

programs

with,

the

WebSphere

MQ

classes

for

Java

to

access

WebSphere

MQ

systems,

and

the

WebSphere

MQ

classes

for

Java

Message

Service

to

access

both

Java

Message

Service

(JMS)

and

WebSphere

MQ

applications.

v

WebSphere

MQ

Using

C++

SC34-6067,

describes

the

C++

programming-language

binding

to

the

WebSphere

MQ

Message

Queue

Interface

(MQI).

It

introduces

the

binding,

describes

considerations

associated

with

using

C++

with

WebSphere

MQ,

and

describes

the

WebSphere

MQ

C++

classes.

Using

message-driven

beans

in

applications

WebSphere

Application

Server

supports

asynchronous

messaging

as

a

method

of

communication

based

on

the

Java

Message

Service

(JMS)

programming

interface.

Message-driven

beans

(a

type

of

enterprise

bean

defined

in

the

EJB

2.0

specification)

extend

the

base

JMS

support

and

the

Enterprise

JavaBean

component

model

to

provide

automatic

asynchronous

messaging.

When

a

message

arrives

on

a

destination,

a

listener

passes

the

message

to

a

new

instance

of

a

user-developed

message-driven

bean

for

processing.

You

can

use

WebSphere

Studio

Application

Developer

to

develop

applications

that

use

message-driven

beans.

You

can

use

the

WebSphere

Application

Server

runtime

tools,

like

the

administrative

console,

to

deploy

and

administer

applications

that

use

message-driven

beans.

For

more

information

about

implementing

WebSphere

enterprise

applications

that

use

message-drive

beans,

see

the

following

topics:

v

An

overview

of

message-driven

beans

v

Designing

an

enterprise

application

to

use

a

message-driven

bean

v

Developing

an

enterprise

application

to

use

a

message-driven

bean

v

Deploying

an

enterprise

application

to

use

a

message-driven

bean

v

Configuring

message

listener

resources

for

message-driven

beans

v

Troubleshooting

problems

with

message-driven

beans

Chapter

3.

Using

asynchronous

messaging

323

http://publibfp.boulder.ibm.com/epubs/html/csqzak09/csqzak09tfrm.htm
http://publibfp.boulder.ibm.com/epubs/html/csqzal09/csqzal09tfrm.htm
http://publibfp.boulder.ibm.com/epubs/html/csqzaw11/csqzaw11tfrm.htm
http://publibfp.boulder.ibm.com/epubs/html/amqzan08/amqzan08tfrm.htm

Message-driven

beans

-

an

overview

WebSphere

Application

Server

supports

automatic

asynchronous

messaging

with

message-driven

beans

(a

type

of

enterprise

bean

defined

in

the

EJB

2.0

specification).

Messaging

with

message-driven

beans

is

shown

in

the

figure

“Message-driven

beans

-

an

overview.”

The

support

for

message-driven

beans

is

based

on

the

message

listener

service,

which

comprises

a

listener

manager

that

controls

and

monitors

one

or

more

listeners.

Each

listener

monitors

a

JMS

destination

for

incoming

messages.

When

a

message

arrives

on

the

destination,

the

listener

passes

the

message

to

a

new

instance

of

a

user-developed

message-driven

bean

(an

enterprise

bean)

for

processing.

The

listener

then

looks

for

the

next

message

without

waiting

for

the

bean

to

return.

Messages

arriving

at

a

destination

being

processed

by

a

listener

have

no

client

credentials

associated

with

them;

the

messages

are

anonymous.

Security

depends

on

the

role

specified

by

the

RunAs

Identity

for

the

message-driven

bean

as

an

EJB

component.

For

more

information

about

EJB

security,

see

the

Information

Center

topic

″EJB

component

security.″

You

are

recommended

to

develop

a

message-driven

bean

to

delegate

the

business

processing

of

incoming

messages

to

another

enterprise

bean,

to

provide

clear

separation

of

message

handling

and

business

processing.

This

also

enables

the

business

processing

to

be

invoked

by

either

the

arrival

of

incoming

messages

or,

for

example,

from

a

WebSphere

J2EE

client.

Message-driven

beans

-

components

The

WebSphere

Application

Server

support

for

message-driven

beans

is

based

on

JMS

message

listeners

and

the

message

listener

service,

and

builds

on

the

base

Message
Listener

JMS destination Message-driven
bean

Business logic
bean

EJB
client

JDBC

JMS destination

Enterprise
application

JMS
client

Figure

4.

Message-driven

beans

and

the

message

listener

service.

This

figure

shows

an

incoming

message

being

passed

by

a

JMS

listener

to

a

message-driven

bean,

which

passes

the

message

on

to

a

business

logic

bean

for

business

processing.

This

messaging

is

controlled

by

the

listener

manager.

For

more

information,

see

the

text

that

accompanies

this

figure.

324

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

support

for

JMS.

The

main

components

of

WebSphere

Application

Server

support

for

message-driven

beans

are

shown

in

the

following

figure

and

described

after

the

figure:

The

message

listener

service

is

an

extension

to

the

JMS

functions

of

the

JMS

provider

and

provides

a

listener

manager,

which

controls

and

monitors

one

or

more

JMS

listeners.

Each

listener

monitors

either

a

JMS

queue

destination

(for

point-to-point

messaging)

or

a

JMS

topic

destination

(for

publish/subscribe

messaging).

A

connection

factory

is

used

to

create

connections

with

the

JMS

provider

for

a

specific

JMS

queue

or

topic

destination.

Each

connection

factory

encapsulates

the

configuration

parameters

needed

to

create

a

connection

to

a

JMS

destination.

A

listener

port

defines

the

association

between

a

connection

factory,

a

destination,

and

a

deployed

message-driven

bean.

Listener

ports

are

used

to

simplify

the

administration

of

the

associations

between

these

resources.

MDB1

Message

Listeners

JMS destinations

MDB2Message-driven beans MDB3 MDB4

LP3

LP2

LP1

D1 D2 D3

Listener
manager

JMS server

CF1

CF2

JMS Provider

Connection
factories

Listener
ports

Connections

Destinations

WebSphere Application Server

Listener service

Figure

5.

The

main

components

for

message-driven

beans.

This

figure

shows

the

main

components

of

WebSphere

support

for

message-driven

beans,

from

JMS

provider

through

a

connection

to

a

destination,

listener

port,

then

deployed

message-driven

bean

that

processes

the

message

retrieved

from

the

destination.

Each

listener

port

defines

the

association

between

a

connection

factory,

destination,

and

a

deployed

message-driven

bean.

The

other

main

components

are

the

message

listener

service,

which

comprises

a

listener

for

each

listener

port,

all

controlled

by

the

same

listener

manager.

For

more

information,

see

the

text

that

accompanies

this

figure.

Chapter

3.

Using

asynchronous

messaging

325

When

a

deployed

message-driven

bean

is

installed,

it

is

associated

with

a

listener

port

and

the

listener

for

a

destination.

When

a

message

arrives

on

the

destination,

the

listener

passes

the

message

to

a

new

instance

of

a

message-driven

bean

for

processing.

When

an

application

server

is

started,

it

initializes

the

listener

manager

based

on

the

configuration

data.

The

listener

manager

creates

a

dynamic

session

thread

pool

for

use

by

listeners,

creates

and

starts

listeners,

and

during

server

termination

controls

the

cleanup

of

listener

message

service

resources.

Each

listener

completes

several

steps

for

the

JMS

destination

that

it

is

to

monitor,

including:

v

Creating

a

JMS

server

session

pool,

and

allocating

JMS

server

sessions

and

session

threads

for

incoming

messages.

v

Interfacing

with

JMS

ASF

to

create

JMS

connection

consumers

to

listen

for

incoming

messages.

v

If

specified,

starting

a

transaction

and

requesting

that

it

is

committed

(or

rolled

back)

when

the

EJB

method

has

completed.

v

Processing

incoming

messages

by

invoking

the

onMessage()

method

of

the

specified

enterprise

bean.

Message-driven

beans

-

transaction

support

Message-driven

beans

can

handle

messages

read

from

JMS

destinations

within

the

scope

of

a

transaction.

If

transaction

handling

is

specified

for

a

JMS

destination,

the

JMS

listener

starts

a

global

transaction

before

it

reads

any

incoming

message

from

that

destination.

When

the

message-driven

bean

processing

has

finished,

the

JMS

listener

commits

or

rolls

back

the

transaction

(using

JTA

transaction

control).

Note:

v

All

messages

retrieved

from

a

specific

destination

have

the

same

transactional

behavior.

If

messages

are

queued

to

be

sent

within

a

global

transaction

they

are

sent

when

the

transaction

is

committed.

If

the

processing

of

a

message

causes

the

transaction

to

be

rolled

back,

then

the

message

that

caused

the

bean

instance

to

be

invoked

is

left

on

the

JMS

destination.

You

can

configure

the

Maximum

retries

property

of

the

listener

port

to

define

the

maximum

number

of

times

the

listener

attempts

to

read

a

message

from

a

destination.

When

the

Max

retries

limit

is

reached,

the

listener

for

that

destination

is

stopped.

When

you

have

resolved

the

problem,

you

must

then

restart

the

listener.

Designing

an

enterprise

application

to

use

message-driven

beans

This

topic

describes

things

to

consider

when

designing

an

enterprise

application

to

use

message-driven

beans.

The

considerations

in

this

topic

are

based

on

a

generic

enterprise

application

that

uses

one

message-driven

bean

to

retrieve

messages

from

a

JMS

queue

destination

and

passes

the

messages

on

to

another

enterprise

bean

that

implements

the

business

logic.

To

design

an

enterprise

application

to

use

message-driven

beans,

complete

the

following

steps:

1.

Identify

the

JMS

resources

that

the

application

is

to

use.

This

helps

to

identify

the

properties

of

resources

that

need

to

be

used

within

the

application

and

326

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

configured

as

application

deployment

descriptors

or

within

WebSphere

Application

Server.

JMS

resource

type

Properties

Queue

connection

factory

Name:

SamplePtoPQueueConnectionFactory

JNDI

Name:

Sample/JMS/QCF

Queue

destination

Name:

Q1

JNDI

Name:

Sample/JMS/Q1

Listener

port

(for

the

destination)

Name:

SamplePtoPListenerPort

Connection

Factory

JNDI

Name:

Sample/JMS/QCF

Destination

JNDI

Name:

Sample/JMS/Q1

Maximum

Sessions:

5

Maximum

Retries:

10

Maximum

Messages:

1

Message-driven

bean

(deployment

properties)

Name:

JMSppSampleMDBBean

Transaction

type:

Container

Destination

type:

Queue

Listener

port

name:

SamplePtoPListenerPort

Business

logic

bean

Name:

MyLogicBean

Ensure

that

you

use

consistent

values

where

needed;

for

example,

the

JNDI

names

for

the

connection

factory

and

destination

must

be

the

same

for

both

those

resources

and

the

equivalent

properties

of

the

listener

port.

2.

Separation

of

business

logic.

You

are

recommended

to

develop

a

message-driven

bean

to

delegate

the

business

processing

of

incoming

messages

to

another

enterprise

bean.

This

provides

clear

separation

of

message

handling

and

business

processing.

This

also

enables

the

business

processing

to

be

invoked

by

either

the

arrival

of

incoming

messages

or,

for

example,

from

a

WebSphere

J2EE

client.

3.

Security

considerations.

Messages

arriving

at

a

destination

being

processed

by

a

listener

have

no

client

credentials

associated

with

them;

the

messages

are

anonymous.

Security

depends

on

the

role

specified

by

the

RunAs

Identity

for

the

message-driven

bean

as

an

EJB

component.

For

more

information

about

EJB

security,

see

the

Information

Center

topic

″EJB

component

security.″

4.

General

JMS

considerations

For

Publish/Subscribe

messaging,

choose

the

JMS

server

port

to

be

used

depending

on

your

needs

for

transactions

or

performance:

Queued

port

The

TCP/IP

port

number

of

the

listener

port

used

for

all

point-to-point

and

Publish/Subscribe

support.

Direct

port

The

TCP/IP

port

number

of

the

listener

port

used

for

direct

TCP/IP

connection

(non-transactional,

non-persistent,

and

non-durable

subscriptions

only)

for

Publish/Subscribe

support.

Note:

Message-driven

beans

cannot

use

the

direct

listener

port

for

Publish/Subscribe

support.

Therefore,

any

topic

connection

factory

configured

with

Portset

to

Direct

cannot

be

used

with

message-driven

beans.
A

non-durable

subscriber

can

only

be

used

in

the

same

transactional

context

(for

example,

a

global

transaction

or

an

unspecified

transaction

context)

that

existed

when

the

subscriber

was

created.

For

more

information

about

this

context

restriction,

see

The

effect

of

transaction

context

on

non-durable

subscribers.

Chapter

3.

Using

asynchronous

messaging

327

Developing

an

enterprise

application

to

use

message-driven

beans

Use

this

task

to

develop

an

enterprise

application

to

use

a

message-driven

bean.

The

message-driven

bean

is

invoked

by

a

JMS

listener

when

a

message

arrives

on

the

input

queue

that

the

listener

is

monitoring.

You

are

recommended

to

develop

the

message-driven

bean

to

delegate

the

business

processing

of

incoming

messages

to

another

enterprise

bean,

to

provide

clear

separation

of

message

handling

and

business

processing.

This

also

enables

the

business

processing

to

be

invoked

by

either

the

arrival

of

incoming

messages

or,

for

example,

from

a

WebSphere

J2EE

client.

Responses

can

be

handled

by

another

enterprise

bean

acting

as

a

sender

bean,

or

handled

in

the

message-driven

bean.

You

develop

an

enterprise

application

to

use

a

message-driven

bean

like

any

other

enterprise

bean,

except

that

a

message-driven

bean

does

not

have

a

home

interface

or

a

remote

interface.

This

topic

describes

how

to

develop

a

completely

new

message-driven

bean

class.

If

you

have

a

WAS

4.0

enterprise

application

that

uses

the

JMS

listener,

you

can

migrate

that

application

to

use

message-driven

beans.

For

more

information

about

writing

the

message-driven

bean

class,

see

Creating

a

message-driven

bean

in

the

WebSphere

Studio

help

bookshelf.

To

develop

an

enterprise

application

to

use

a

message-driven

bean,

complete

the

following

steps:

1.

Creating

the

Enterprise

Application

project,

as

described

in

the

WebSphere

Studio

article

.

2.

Creating

the

message-driven

bean

class.

You

can

use

the

New

Enterprise

Bean

wizard

of

WebSphere

Studio

Application

Developer

to

create

an

enterprise

bean

with

a

bean

type

of

Message-driven

bean.

The

wizard

creates

appropriate

methods

for

the

type

of

bean.

By

convention,

the

message

bean

class

is

named

nameBean,

where

name

is

the

name

you

assign

to

the

message

bean;

for

example:

public

class

MyJMSppMDBBean

implements

MessageDrivenBean,

MessageListener

The

message-driven

bean

class

must

define

and

implement

the

following

methods:

v

onMessage(message),

which

must

meet

the

following

requirements:

–

The

method

must

have

a

single

argument

of

type

javax.jms.Message.

–

The

throws

clause

must

not

define

any

application

exceptions.

–

If

the

message-driven

bean

is

configured

to

use

bean-managed

transactions,

it

must

call

the

javax.transaction.UserTransaction

interface

to

scope

the

transactions.

Because

these

calls

occur

inside

the

onMessage()

method,

the

transaction

scope

does

not

include

the

initial

message

receipt.

This

means

the

application

server

is

given

one

attempt

to

process

the

message.

To

handle

the

message

within

the

onMessage()

method

(for

example,

to

pass

the

message

on

to

another

enterprise

bean),

you

use

standard

JMS.

(This

is

known

as

bean-managed

messaging.)

v

ejbCreate()

You

must

define

and

implement

an

ejbCreate

method

for

each

way

in

which

you

want

a

new

instance

of

an

enterprise

bean

to

be

created.

328

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

v

ejbRemove().

This

method

is

invoked

by

the

container

when

a

client

invokes

the

remove

method

inherited

by

the

enterprise

bean’s

home

interface

from

the

javax.ejb.EJBHome

interface.

This

method

must

contain

any

code

that

you

want

to

execute

before

an

enterprise

bean

instance

is

removed

from

the

container

(and

the

associated

data

is

removed

from

the

data

source).

For

example,

the

following

code

extract

shows

how

to

access

the

text

and

the

JMS

MessageID,

from

a

JMS

message

of

type

TextMessage:

The

result

of

this

step

is

a

message-driven

bean

that

can

be

assembled

into

an

.EAR

file

for

deployment.

3.

Assembling

and

packaging

the

application

for

deployment.

You

can

use

WebSphere

Studio

to

assemble

and

package

the

application

for

deployment.

The

result

of

this

task

is

an

.EAR

file,

containing

an

application

message-driven

bean,

that

can

be

deployed

in

WebSphere

Application

Server.

After

you

have

developed

an

enterprise

application

to

use

message-driven

beans,

configure

and

deploy

the

application;

for

example,

define

the

listener

ports

for

the

message-driven

beans

and,

optionally,

change

the

deployment

descriptor

attributes

for

the

application.

For

more

information

about

configuring

and

deploying

an

application

that

uses

message-driven

beans,

see

Deploying

an

enterprise

application

to

use

message-driven

beans

Deploying

an

enterprise

application

to

use

message-driven

beans

Use

this

task

to

deploy

an

enterprise

application

to

use

message-driven

beans.

public

void

onMessage(javax.jms.Message

msg)

{

String

text

=

null;

String

messageID

=

null;

try

{

text

=

((TextMessage)msg).getText();

System.out.println("senderBean.onMessage(),

msg

text2:

"+text);

//

//

store

the

message

id

to

use

as

the

Correlator

value

//

messageID

=

msg.getJMSMessageID();

//

Call

a

private

method

to

put

the

message

onto

another

queue

putMessage(messageID,

text);

}

catch

(Exception

err)

{

err.printStackTrace();

}

return;

}

Figure

6.

Code

example:

The

onMessage()

method

of

a

message

bean.

This

figure

shows

a

code

extract

for

a

basic

onMessage()

method

of

a

sample

message-driven

bean.

The

method

unpacks

the

incoming

text

message

to

extract

the

text

and

message

identifier

and

calls

a

private

putMessage

method

(defined

within

the

same

message

bean

class)

to

put

the

message

onto

another

queue.

Chapter

3.

Using

asynchronous

messaging

329

This

task

description

assumes

that

you

have

an

.EAR

file,

which

contains

an

application

enterprise

bean

with

code

for

message-driven

beans,

that

can

be

deployed

in

WebSphere

Application

Server.

To

deploy

an

enterprise

application

to

use

message-driven

beans,

complete

the

following

steps:

1.

Use

the

WebSphere

administrative

console

to

define

the

listener

ports

for

the

application,

as

described

in

Adding

a

new

listener

port.

2.

5.1 +

For

each

message-driven

bean

in

the

application,

configure

the

deployment

attributes

to

match

the

listener

port

definitions,

as

described

in

the

Information

Center

topic

″Configuring

deployment

attributes

using

the

Assembly

Toolkit.″

3.

Use

the

WebSphere

administrative

console

to

install

the

application.

This

stage

is

a

standard

WebSphere

Application

Server

task,

as

described

in

the

Information

Center

topic

″Installing

a

new

application″.

When

you

install

the

application,

you

are

prompted

to

specify

the

name

of

the

listener

port

that

the

application

is

to

use

for

late

responses.

Select

the

listener

port,

then

click

OK.

Configuring

deployment

attributes

using

the

Assembly

Toolkit

Use

this

task

to

configure

the

message-driven

beans

deployment

attributes

for

an

enterprise

bean,

to

override

the

deployment

attributes

defined

within

the

application

EAR

file.

You

can

configure

the

deployment

attributes

of

an

application

by

using

the

Deployment

Descriptor

Editor

of

WebSphere

Studio

Application

Developer

or

the

Assembly

Toolkit.

This

topic

describes

the

use

of

the

Assembly

Toolkit

to

configure

the

deployment

attributes

of

an

application.

This

task

description

assumes

that

you

have

an

EAR

file,

which

contains

an

application

enterprise

bean

developed

as

a

message-driven

bean,

that

can

be

deployed

in

WebSphere

Application

Server.

For

more

details

about

using

the

Assembly

Toolkit,

see

the

Information

Center

topic

″Assembling

applications

with

the

Assembly

Toolkit.″

To

configure

the

message-driven

beans

deployment

attributes

for

an

enterprise

bean,

use

the

Assembly

Toolkit

to

configure

the

deployment

attributes

of

the

application

to

match

the

listener

port

definitions:

1.

Start

the

Assembly

Toolkit.

2.

Create

or

edit

the

application

EAR

file.

For

example,

to

change

attributes

of

an

existing

application,

use

the

import

wizard

to

import

the

EAR

file

into

the

Assembly

Toolkit.

To

start

the

import

wizard:

a.

Click

File->

Import->

EAR

file

b.

Click

Next,

then

select

the

EAR

file.

c.

Click

Finish

3.

In

the

J2EE

Hierarchy

view,

right-click

the

EJB

module

for

the

message-driven

bean

,

then

click

Open

With

>

Deployment

Descriptor

Editor.

A

property

dialog

notebook

for

the

message-driven

bean

is

displayed

in

the

property

pane.

4.

Specify

general

deployment

properties.

a.

In

the

property

pane,

select

the

Beans

tab.

b.

Specify

the

following

properties:

330

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Transaction

type

Whether

the

message

bean

manages

its

own

transactions

or

the

container

manages

transactions

on

behalf

of

the

bean.

All

messages

retrieved

from

a

specific

destination

have

the

same

transactional

behavior.

To

enable

the

transactional

behavior

that

you

want,

you

must

configure

the

JMS

destination

with

the

same

transactional

behavior

as

you

configure

for

the

message

bean.

Bean

The

message

bean

manages

its

own

transactions

Container

The

container

manages

transactions

on

behalf

of

the

bean

5.

Specify

advanced

deployment

properties.

a.

Specify

the

following

properties:

Message

selector

The

JMS

message

selector

to

be

used

to

determine

which

messages

the

message

bean

receives;

for

example:

JMSType=’car’

AND

color=’blue’

AND

weight>2500

The

selector

string

can

refer

to

fields

in

the

JMS

message

header

and

fields

in

the

message

properties.

Message

selectors

cannot

reference

message

body

values.

Acknowledge

mode

How

the

session

acknowledges

any

messages

it

receives.

This

property

applies

only

to

message-driven

beans

that

uses

bean-managed

transaction

demarcation

(Transaction

type

is

set

to

Bean).

Auto

Acknowledge

The

session

automatically

acknowledges

a

message

when

it

has

either

successfully

returned

from

a

call

to

receive,

or

the

message

listener

it

has

called

to

process

the

message

successfully

returns.

Dups

OK

Acknowledge

The

session

lazily

acknowledges

the

delivery

of

messages.

This

is

likely

to

result

in

the

delivery

of

some

duplicate

messages

if

JMS

fails,

so

it

should

be

used

only

by

consumers

that

are

tolerant

of

duplicate

messages.

As

defined

in

the

EJB

specification,

clients

cannot

use

using

Message.acknowledge()

to

acknowledge

messages.

If

a

value

of

CLIENT_ACKNOWLEDGE

is

passed

on

the

createxxxSession

call,

then

messages

are

automatically

acknowledged

by

the

application

server

and

Message.acknowledge()

is

not

used.

Destination

type

Whether

the

message

bean

uses

a

queue

or

topic

destination.

Queue

The

message

bean

uses

a

queue

destination.

Topic

The

message

bean

uses

a

topic

destination.
Subscription

durability

Whether

a

JMS

topic

subscription

is

durable

or

non-durable.

Durable

A

subscriber

registers

a

durable

subscription

with

a

unique

identity

that

is

retained

by

JMS.

Subsequent

subscriber

objects

with

the

same

identity

resume

the

subscription

in

the

state

it

was

left

in

by

the

earlier

subscriber.

If

there

is

no

active

subscriber

for

a

durable

subscription,

JMS

retains

Chapter

3.

Using

asynchronous

messaging

331

the

subscription’s

messages

until

they

are

received

by

the

subscription

or

until

they

expire.

Nondurable

Non-durable

subscriptions

last

for

the

lifetime

of

their

subscriber

object.

This

means

that

a

client

sees

the

messages

published

on

a

topic

only

while

its

subscriber

is

active.

If

the

subscriber

is

not

active,

the

client

is

missing

messages

published

on

its

topic.

A

non-durable

subscriber

can

only

be

used

in

the

same

transactional

context

(for

example,

a

global

transaction

or

an

unspecified

transaction

context)

that

existed

when

the

subscriber

was

created.

For

more

information

about

this

context

restriction,

see

The

effect

of

transaction

context

on

non-durable

subscribers.

6.

Specify

bindings

deployment

properties.

a.

Specify

the

following

property:

Listener

port

name

Type

the

name

of

the

listener

port

for

this

message-driven

bean.

7.

Save

your

changes

to

the

deployment

descriptor.

a.

Close

the

deployment

descriptor

editor.

b.

When

prompted,

click

Yes

to

indicate

that

you

want

to

save

changes

to

the

deployment

descriptor.

8.

Verify

the

archive

files.

9.

Generate

code

for

deployment

for

EJB

modules

or

for

enterprise

applications

that

use

EJB

modules.

10.

Optional:

Test

your

completed

module

on

a

WebSphere

Application

Server

installation.

Right-click

a

module,

click

Run

on

Server,

and

follow

the

instructions

in

the

displayed

wizard.

Note

that

Run

on

Server

works

on

the

Windows,

Linux/Intel,

and

AIX

operating

systems

only;

you

cannot

deploy

remotely

from

the

Assembly

Toolkit

to

a

WebSphere

Application

Server

installation

on

a

UNIX

operating

system

such

as

Solaris.

Important

Important:

Use

Run

On

Server

for

unit

testing

only.

Assembly

Server

Toolkit

controls

the

WebSphere

Application

Server

installation

and,

when

an

application

is

published

remotely,

the

Toolkit

overwrites

the

server

configuration

file

for

that

server.

Do

not

use

on

production

servers.

For

instructions

on

remote

testing,

see

the

article

“Setting

Up

a

Remote

WebSphere

Application

Server

in

WebSphere

Studio

V5”

at

http://www7b.boulder.ibm.com/wsdd/techjournal/0303_yuen/yuen.html.

After

assembling

your

application,

use

a

systems

management

tool

to

deploy

the

EAR

file

onto

the

application

server

that

is

to

run

the

application;

for

example,

using

the

administrative

console

as

described

in

the

Information

Center

topic

″Deploying

and

managing

applications″.

Configuring

message

listener

resources

for

message-driven

beans

Use

the

following

tasks

to

configure

resources

needed

by

the

message

listener

service

to

support

message-driven

beans.

v

Configuring

the

message

listener

service

332

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

http://www7b.boulder.ibm.com/wsdd/techjournal/0303_yuen/yuen.html

v

Adding

a

new

listener

port

v

Configuring

a

listener

port

v

Configuring

security

for

message-driven

beans

Configuring

the

message

listener

service

Use

this

task

to

configure

the

properties

of

the

message

listener

service

for

an

application

server.

To

configure

the

properties

of

the

message

listener

service

for

an

application

server,

use

the

administrative

console

to

complete

the

following

steps:

1.

In

the

navigation

pane,

select

Servers->

Application

Servers

This

displays

a

table

of

the

application

servers

in

the

administrative

domain.

2.

In

the

content

pane,

click

the

name

of

the

application

server.

This

displays

the

properties

of

the

application

server

in

the

content

pane.

3.

In

the

Additional

Properties

table,

select

Message

Listener

Service

This

displays

the

Message

Listener

Service

properties

in

the

content

pane.

4.

Specify

appropriate

properties

of

the

message

listener

service.

5.

Optional:

Specify

any

of

the

following

optional

properties

that

you

need,

as

Custom

properties

of

the

message

listener

service:

NON.ASF.RECEIVE.TIMEOUT,

MQJMS.POOLING.TIMEOUT,

MQJMS.POOLING.THRESHOLD,

MAX.RECOVERY.RETRIES,

and

RECOVERY.RETRY.INTERVAL.

For

more

information

about

these

custom

properties,

see

Custom

Properties.

6.

Click

OK.

7.

Save

your

configuration.

8.

To

have

the

changed

configuration

take

effect,

stop

then

restart

the

Application

Server.

Message

listener

service:

The

message

listener

service

is

an

extension

to

the

JMS

functions

of

the

JMS

provider.

It

provides

a

listener

manager

that

controls

and

monitors

one

or

more

JMS

listeners,

which

each

monitor

a

JMS

destination

on

behalf

of

a

deployed

message-driven

bean.

This

panel

displays

links

to

the

Additional

Properties

pages

for

Listener

Ports

and

Custom

Properties

for

the

message

listener

service.

To

view

this

administrative

console

page,

click

Servers->

Application

Servers->

application_server->

Message

Listener

Service

Thread

pool:

Controls

the

maximum

number

of

threads

the

Message

Listener

Service

is

allowed

to

run.

Select

this

link

to

display

the

service

thread

pool

properties.

Adjust

this

parameter

when

multiple

message-driven

beans

are

deployed

in

the

same

application

server

and

the

sum

of

their

maximum

session

values

exceeds

the

default

value

of

10.

The

thread

pool

is

shared

out

based

on

demand,

so

if

the

thread

pool

size

is

equal

to

the

number

of

listener

ports,

then

there

is

no

guarantee

that

one

thread

is

available

for

each

listener

port.

However,

a

listener

port

should

not

get

blocked

by

busy

threads

because

scheduling

should

be

based

on

FIFO

requests.

Chapter

3.

Using

asynchronous

messaging

333

Data

type

Integer

Units

Not

applicable

Default

Minimum:

10,

maximum

50

Range

Not

applicable

Recommended

Set

the

minimum

thread

pool

size

to

the

expected

low-load

total

message-driven

beans

sessions.

Set

the

maximum

thread

pool

size

to

the

expected

high-load

total

message-driven

beans

sessions.

If

the

total

number

of

sessions

for

all

listener

ports

exceeds

this

maximum

thread

pool

size,

adjust

the

minimum

and

maximum

to

the

appropriate

size

for

JVM

resource

reuse,

parallel

processing

of

messages,

and

speed

of

delivery;

for

example:

v

Scenario

1.

If

JVM

resource

reuse=none,

parallel

processing=always,

speed

of

delivery=quick,

then

minThreadPool=maxTotalSession

and

maxThreadPool

does

not

matter

(that

is,

maxThreadPool=maxTotalSession

).

v

Scenario

2.

If

JVM

resource

resuse=whenPossible,

parallel

processing=whenPossible,

speed

of

delivery=quick,

then

minThreadPool=(a

tested

number)

<

maxTotalSession

and

maxThreadPool=maxTotalSession.

Custom

Properties:

An

optional

set

of

name

and

value

pairs

for

custom

properties

of

the

message

listener

service.

You

can

use

the

Custom

properties

page

to

define

the

following

properties

for

use

by

the

message

listener

service.

v

NON.ASF.RECEIVE.TIMEOUT

v

MQJMS.POOLING.TIMEOUT

v

MQJMS.POOLING.THRESHOLD

v

MAX.RECOVERY.RETRIES

v

RECOVERY.RETRY.INTERVAL

Message

listener

service

custom

properties:

Use

this

panel

to

view

or

change

an

optional

set

of

name

and

value

pairs

for

custom

properties

of

the

message

listener

service.

To

view

this

administrative

console

page,

click

Servers->

application_server->

Message

Listener

Service->

(In

content

pane,

under

Additional

Properties)

Custom

Properties

You

can

use

the

Custom

properties

page

to

define

the

following

properties

for

use

by

the

message

listener

service.

v

NON.ASF.RECEIVE.TIMEOUT

v

MQJMS.POOLING.TIMEOUT

334

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

v

MQJMS.POOLING.THRESHOLD

v

MAX.RECOVERY.RETRIES

v

RECOVERY.RETRY.INTERVAL

NON.ASF.RECEIVE.TIMEOUT:

The

timeout

in

milliseconds

for

synchronous

message

receives

performed

by

message-driven

bean

listener

sessions

in

the

non-ASF

mode

of

operation.

You

should

set

this

property

to

a

non-zero

value

only

if

you

want

to

enable

the

non-ASF

mode

of

operation

for

all

message-driven

bean

listeners

on

the

application

server.

The

message

listener

service

has

two

modes

of

operation,

Application

Server

Facilities

(ASF)

and

non-Application

Server

Facilities

(non-ASF).

v

The

ASF

mode

is

meant

to

provide

concurrency

and

transactional

support

for

applications.

For

publish/subscribe

message-drive

beans,

the

ASF

mode

provides

better

throughput

and

concurrency,

because

in

the

non-ASF

mode

the

listener

is

single-threaded.

v

The

non-ASF

mode

is

mainly

for

use

with

generic

JMS

providers

that

do

not

support

JMS

ASF,

which

is

an

optional

extension

to

the

JMS

specification.

The

non-ASF

mode

is

also

transactional

but,

because

the

path

length

is

shorter

than

the

ASF

mode,

usually

provides

improved

performance.

Use

non-ASF

if:

–

Your

generic

JMS

provider

does

not

provide

JMS

ASF

support

–

You

are

using

message-driven

beans

with

WebSphere

topic

connections

with

the

DIRECT

port,

because

the

embedded

publish/subscribe

broker

using

that

port

does

not

support

XA

transactions

or

JMS

ASF.

–

Message

order

is

a

strict

requirement

Data

type

Integer

Units

Milliseconds

Default

ASF

mode

(custom

property

not

created)

Range

0

or

greater

milliseconds

0

non-ASF

mode

is

disabled

1

or

more

The

timeout

in

milliseconds

for

non-ASF

message-driven

bean

listener

synchronous

session

receives

Recommended

If

a

transaction

timeout

occurs,

the

message

must

recycle

causing

extra

work.

If

you

want

to

use

the

non-ASF

mode,

set

this

property

to

lower

than

the

transaction

timeout,

but

leave

spare

at

least

the

maximum

duration

of

your

message-driven

bean’s

onMessage()

method.

For

example,

if

your

message-driven

bean’s

onMessage()

method

typically

takes

a

maximum

of

10

seconds,

and

the

transaction

timeout

is

set

to

120

seconds,

you

might

set

the

NON.ASF.RECEIVE.TIMEOUT

property

to

no

more

than

110000

(110000

milliseconds,

that

is

110

seconds).

MQJMS.POOLING.TIMEOUT:

Chapter

3.

Using

asynchronous

messaging

335

The

number

of

milliseconds

after

which

a

connection

in

the

pool

is

destroyed

if

it

has

not

been

used.

An

MQSimpleConnectionManager

allocates

connections

on

a

most-recently-used

basis,

and

destroys

connections

on

a

least-recently-used

basis.

By

default,

a

connection

is

destroyed

if

it

has

not

been

used

for

five

minutes.

Data

type

Integer

Units

Milliseconds

Default

5

minutes

Range

MQJMS.POOLING.THRESHOLD:

The

maximum

number

of

unused

connections

in

the

pool.

An

MQSimpleConnectionManager

allocates

connections

on

a

most-recently-used

basis,

and

destroys

connections

on

a

least-recently-used

basis.

By

default,

a

connection

is

destroyed

if

there

are

more

than

ten

unused

connections

in

the

pool.

Data

type

Integer

Units

Number

of

connections

Default

10

Range

MAX.RECOVERY.RETRIES:

The

maximum

number

of

times

that

the

listener

service

tries

to

get

a

message

from

a

listener

port

before

the

associated

listener

is

stopped,

in

the

range

0

through

2147483647.

Data

type

Integer

Units

Retry

attempts

Default

0

(no

retries)

Range

0

(no

retries)

through

2147483647

RECOVERY.RETRY.INTERVAL:

The

time

in

seconds

between

retry

attempts

by

the

listener

service

to

get

a

message

from

a

listener

port.

Data

type

Integer

Units

Seconds

Default

10

Range

1

through

2147483647

Message

listener

port

collection:

The

message

listener

ports

configured

in

the

administrative

domain

This

panel

displays

a

list

of

the

message

listener

ports

configured

in

the

administrative

domain.

Each

listener

port

is

used

with

a

message-driven

bean

to

automatically

receive

messages

from

an

associated

JMS

destination.

You

can

use

336

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

this

panel

to

add

new

listener

ports

or

to

change

the

properties

of

existing

listener

ports.

For

more

information

about

the

property

fields

for

listener

ports,

see

Listener

port

properties.

To

view

this

administrative

console

page,

click

Servers->

application_server->

Message

Listener

Service->

Listener

Ports

Listener

port

settings:

A

listener

port

is

used

to

simplify

administration

of

the

association

between

a

connection

factory,

destination,

and

deployed

message-driven

bean.

Use

this

panel

to

view

or

change

the

configuration

properties

of

the

selected

listener

port.

To

view

this

administrative

console

page,

click

Servers->

Application

Servers->

application_server->

Message

Listener

Service->

Listener

Ports->

listener_port

Name:

The

name

by

which

the

listener

port

is

known

for

administrative

purposes.

Data

type

String

Default

Null

Initial

state:

The

state

that

you

want

the

listener

port

to

have

when

the

application

server

is

next

restarted

Data

type

Enum

Units

Not

applicable

Default

Started

Range

Started

When

the

application

server

is

next

started,

the

listener

port

is

started

automatically.

Stopped

When

the

application

server

is

next

started,

the

listener

port

is

not

started

automatically.

If

message-driven

beans

are

to

use

this

listener

port

on

the

application

server,

the

system

administrator

must

start

the

port

manually

or

select

the

Started

value

of

this

property

then

restart

the

application

server.

Description:

A

description

of

the

listener

port,

for

administrative

purposes

within

IBM

WebSphere

Application

Server.

Data

type

String

Default

Null

Chapter

3.

Using

asynchronous

messaging

337

Connection

factory

JNDI

name:

The

JNDI

name

for

the

JMS

connection

factory

to

be

used

by

the

listener

port;

for

example,

jms/connFactory1.

Data

type

String

Default

Null

Destination

JNDI

name:

The

JNDI

name

for

the

destination

to

be

used

by

the

listener

port;

for

example,

jms/destn1.

If

the

extended

messaging

service

is

to

use

this

listener

port

to

handle

late

responses,

the

value

of

this

property

must

match

the

JMS

response

destination

on

the

output

port

used

by

the

sender

bean.

You

cannot

use

a

temporary

destination

for

late

responses.

Data

type

String

Default

Null

Maximum

sessions:

Specifies

the

maximum

number

of

concurrent

sessions

that

a

listener

can

have

with

the

JMS

server

to

process

messages.

Each

session

corresponds

to

a

separate

listener

thread

and

therefore

controls

the

number

of

concurrently

processed

messages.

Adjust

this

parameter

when

the

JMS

server

does

not

fully

use

the

available

capacity

of

the

machine

and

if

you

do

not

need

to

process

messages

in

a

specific

message

order.

Data

type

Integer

Units

Sessions

Default

1

Range

1

through

2147483647

Recommended

v

If

you

want

to

process

messages

in

a

strict

message

order,

set

the

value

to

1,

so

only

one

thread

is

ever

processing

messages.

v

If

you

want

to

process

multiple

messages

simultaneously

(known

as

“message

concurrency”),

set

this

property

to

a

value

greater

than

1.

Keep

this

value

as

low

as

possible

to

prevent

overloading

client

applications.

A

good

starting

point

for

a

100%

JMS

workload

with

short

transaction

times

is

2

to

4

sessions

per

processor.

If

longer

running

transactions

exist,

you

may

need

more

sessions,

which

should

be

determined

by

experimentation.

v

If

you

are

using

XA

transactions,

this

property

should

always

be

set

to

1.

If

it

this

property

is

set

to

a

higher

value,

multiple

messages

are

delivered

in

the

same

transaction,

which

is

usually

not

the

desired

behavior.

338

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Maximum

retries:

The

maximum

number

of

times

that

the

listener

tries

to

deliver

a

message

before

the

listener

is

stopped,

in

the

range

0

through

2147483647.

The

maximum

number

of

times

that

the

listener

tries

to

deliver

a

message

to

a

message-driven

bean

instance

before

the

listener

is

stopped.

Data

type

Integer

Units

Retry

attempts

Default

0

(no

retries)

Range

0

(no

retries)

through

2147483647

Maximum

messages:

The

maximum

number

of

messages

that

the

listener

can

process

in

one

session

with

the

JMS

server.

For

WebSphere

embedded

messaging

or

WebSphere

MQ

as

the

JMS

provider,

the

listener

processes

all

messages

in

the

session

as

one

batch

within

the

same

transaction.

For

a

generic

JMS

provider,

the

listener

processes

each

message

in

the

session

within

a

separate

transaction.

Data

type

Integer

Units

Number

of

messages

Default

1

Range

1

through

2147483647

Recommended

For

WebSphere

embedded

messaging

or

WebSphere

MQ

as

the

JMS

provider,

if

you

want

to

process

multiple

messages

in

a

single

transaction,

then

set

this

value

to

more

than

1.

This

enables

multiple

messages

to

be

batch-processed

into

a

single

transaction,

and

eliminates

much

of

the

overhead

of

transactions

on

JMS

messages.

CAUTION:

v

If

one

message

in

the

batch

fails

processing

with

an

exception,

the

entire

batch

of

messages

is

put

back

on

the

queue

for

processing.

v

Any

resource

lock

held

by

any

of

the

interactions

for

the

individual

messages

are

held

for

the

duration

of

the

entire

batch.

v

Depending

on

the

amount

of

processing

that

messages

need,

and

if

XA

transactions

are

being

used,

setting

a

value

greater

than

1

can

cause

the

transaction

to

time

out.

If

an

XA

transaction

does

time

out

routinely

because

processing

multiple

messages

exceeds

the

transaction

timeout,

reduce

this

property

to

1

(to

limit

processing

to

one

message

per

transaction)

or

increase

your

transaction

timeout.

Chapter

3.

Using

asynchronous

messaging

339

Adding

a

new

listener

port

Use

this

task

to

add

a

new

listener

port

to

the

message

listener

service,

so

that

message-driven

beans

can

be

associated

with

the

port

to

retrieve

messages.

To

add

a

new

listener

port,

use

the

administrative

console

to

complete

the

following

steps:

1.

In

the

navigation

pane,

select

Servers->

Application

Servers

This

displays

a

table

of

the

application

servers

in

the

administrative

domain.

2.

In

the

content

pane,

click

the

name

of

the

application

server.

This

displays

the

properties

of

the

application

server

in

the

content

pane.

3.

In

the

Additional

Properties

table,

select

Message

Listener

Service

This

displays

the

Message

Listener

Service

properties

in

the

content

pane.

4.

In

the

content

pane,

select

Listener

Ports.

This

displays

a

list

of

the

listener

ports.

5.

In

the

content

pane,

click

New.

6.

Specify

appropriate

properties

for

the

listener

port.

7.

Click

OK.

8.

To

save

your

configuration,

click

Save

on

the

task

bar

of

the

Administrative

console

window.

9.

To

have

the

changed

configuration

take

effect,

stop

then

restart

the

application

server.

If

enabled,

the

listener

port

is

started

automatically

when

a

message-driven

bean

associated

with

that

port

is

installed.

Configuring

a

listener

port

Use

this

task

to

change

the

properties

of

an

existing

listener

port,

used

by

message-driven

beans

associated

with

the

port

to

retrieve

messages.

To

configure

the

properties

of

a

listener

port,

use

the

administrative

console

to

complete

the

following

steps:

1.

In

the

navigation

pane,

select

Servers->

Application

Servers

This

displays

a

table

of

the

application

servers

in

the

administrative

domain.

2.

In

the

content

pane,

click

the

name

of

the

application

server.

This

displays

the

properties

of

the

application

server

in

the

content

pane.

3.

In

the

Additional

Properties

table,

select

Message

Listener

Service

This

displays

the

Message

Listener

Service

properties

in

the

content

pane.

4.

In

the

content

pane,

click

Listener

Ports.

This

displays

a

list

of

the

listener

ports.

5.

Click

the

listener

port

that

you

want

to

modify.

This

displays

the

properties

of

the

listener

port

in

the

content

pane.

6.

Specify

appropriate

properties

for

the

listener

port.

7.

Click

OK.

8.

To

save

your

configuration,

click

Save

on

the

task

bar

of

the

Administrative

console

window.

9.

To

have

the

changed

configuration

take

effect,

stop

then

restart

the

application

server.

Deleting

a

listener

port

Use

this

task

to

delete

a

listener

port

from

the

message

listener

service,

to

prevent

message-driven

beans

associated

with

the

port

from

retrieving

messages.

340

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

To

delete

a

listener

port,

use

the

administrative

console

to

complete

the

following

steps:

1.

In

the

navigation

pane,

select

Servers->

Application

Servers

This

displays

a

table

of

the

application

servers

in

the

administrative

domain.

2.

In

the

content

pane,

click

the

name

of

the

application

server.

This

displays

the

properties

of

the

application

server

in

the

content

pane.

3.

In

the

Additional

Properties

table,

select

Message

Listener

Service

This

displays

the

Message

Listener

Service

properties

in

the

content

pane.

4.

In

the

content

pane,

select

Listener

Ports.

This

displays

a

list

of

the

listener

ports.

5.

In

the

content

pane,

select

the

checkbox

for

the

listener

port

that

you

want

to

delete.

6.

Click

Delete.

This

action

stops

the

port

(needed

to

allow

the

port

to

be

deleted)

then

deletes

the

port.

7.

To

save

your

configuration,

click

Save

on

the

task

bar

of

the

Administrative

console

window.

8.

To

have

the

changed

configuration

take

effect,

stop

then

restart

the

application

server.

Configuring

security

for

message-driven

beans

Use

this

task

to

configure

resource

security

and

security

permissions

for

message-driven

beans.

Messages

arriving

at

a

listener

port

have

no

client

credentials

associated

with

them.

The

messages

are

anonymous.

To

call

secure

enterprise

beans

from

a

message-driven

bean,

the

message-driven

bean

needs

to

be

configured

with

a

RunAs

Identity

deployment

descriptor.

Security

depends

on

the

role

specified

by

the

RunAs

Identity

for

the

message-driven

bean

as

an

EJB

component.

For

more

information

about

EJB

security,

see

the

Information

Center

topic

″EJB

component

security.″

For

more

information

about

configuring

security

for

your

application,

see

the

Information

Center

topic

″Assembling

secured

applications.″

JMS

connections

used

by

message-driven

beans

can

benefit

from

the

added

security

of

using

J2C

container-managed

authentication.

To

enable

the

use

of

J2C

container

authentication

aliases

and

mapping,

define

a

J2C

container-managed

alias

on

the

JMS

connection

factory

definition

that

the

MDB

is

using

to

listen

upon

(defined

by

the

Connection

factory

JNDI

name

property

of

the

listener

port).

If

defined,

the

listener

uses

the

container-managed

authentication

alias

for

its

JMSConnection

security

credentials

instead

of

any

application-managed

alias.

To

set

the

container-managed

alias,

use

the

administrative

console

to

complete

the

following

steps:

1.

To

display

the

listener

port

settings,

click

Servers->

application_server->

Message

Listener

Service->

Listener

Ports->

listener_port

2.

To

get

the

name

of

the

JMS

connection

factory,

look

at

the

Connection

factory

JNDI

name

property.

3.

Display

the

JMS

connection

factory

properties.

For

example,

to

display

the

properties

of

a

queue

connection

factory

provided

by

the

embedded

WebSphere

JMS

provider,

click

Resources->

WebSphere

JMS

Provider->

(In

content

pane,

under

Additional

Properties)

WebSphere

Queue

Connection

Factories->

connection_factory

Chapter

3.

Using

asynchronous

messaging

341

4.

Set

the

Container-managed

Authentication

Alias

property.

5.

Click

OK

Administering

listener

ports

Use

the

following

tasks

to

administer

listener

ports,

which

each

define

the

association

between

a

connection

factory,

a

destination,

and

a

message-driven

bean.

You

can

use

the

WebSphere

administrative

console

to

administer

listener

ports,

as

described

in

the

following

tasks.

v

Adding

a

new

listener

port

Use

this

task

to

create

a

new

listener

port,

to

specify

a

new

association

between

a

connection

factory,

a

destination,

and

a

message-driven

bean.

This

enables

deployed

message-driven

beans

associated

with

the

port

to

retrieve

messages

from

the

destination.

v

Configuring

a

listener

port

Use

this

task

to

view

or

change

the

configuration

properties

of

a

listener

port.

v

Starting

a

listener

port

Use

this

task

to

start

a

listener

port

manually.

v

Stopping

a

listener

port

Use

this

task

to

stop

a

listener

port

manually.

Note:

If

configured

as

enabled,

a

listener

port

is

started

automatically

when

a

message-driven

bean

associated

with

that

port

is

installed.

You

do

not

normally

need

to

start

or

stop

a

listener

port

manually.

Starting

a

listener

port:

Use

this

task

to

start

a

listener

port

on

an

application

server,

to

enable

the

listeners

for

message-driven

beans

associated

with

the

port

to

retrieve

messages.

A

listener

is

active,

that

is

able

to

receive

messages

from

a

destination,

if

the

deployed

message-driven

bean,

listener

port,

and

message

listener

service

are

all

started.

Although

you

can

start

these

components

in

any

order,

they

must

all

be

in

a

started

state

before

the

listener

can

retrieve

messages.

If

configured

as

enabled,

a

listener

port

is

started

automatically

when

a

message-driven

bean

associated

with

that

port

is

installed.

However,

you

can

start

a

listener

port

manually,

as

described

in

this

topic.

When

a

listener

port

is

started,

the

listener

manager

tries

to

start

the

listeners

for

each

message-driven

bean

associated

with

the

port.

If

a

message-driven

bean

is

stopped,

the

port

is

started

but

the

listener

is

not

started,

and

remains

stopped.

If

you

start

a

message-driven

bean,

the

related

listener

is

started.

To

start

a

listener

port

on

an

application

server,

use

the

administrative

console

to

complete

the

following

steps:

1.

If

you

want

the

listener

for

a

deployed

message-driven

bean

to

be

able

to

receive

messages

at

the

port,

check

that

the

message-driven

bean

has

been

started.

2.

In

the

navigation

pane,

select

Servers->

Application

Servers

This

displays

a

table

of

the

application

servers

in

the

administrative

domain.

3.

In

the

content

pane,

click

the

name

of

the

application

server.

This

displays

the

properties

of

the

application

server

in

the

content

pane.

342

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

4.

In

the

Additional

Properties

table,

select

Message

Listener

Service

This

displays

the

Message

Listener

Service

properties

in

the

content

pane.

5.

In

the

content

pane,

select

Listener

Ports.

This

displays

a

list

of

the

listener

ports.

6.

Select

the

checkbox

for

the

listener

port

that

you

want

to

start.

7.

Click

Start.

8.

To

save

your

configuration,

click

Save

on

the

task

bar

of

the

Administrative

console

window.

Stopping

a

listener

port:

Use

this

task

to

stop

a

listener

port

on

an

application

server,

to

prevent

the

listeners

for

message-driven

beans

associated

with

the

port

from

retrieving

messages.

When

you

stop

a

listener

port

as

described

in

this

topic,

the

listener

manager

stops

the

listeners

for

all

message-driven

beans

associated

with

the

port.

To

stop

a

listener

port

on

an

application

server,

use

the

administrative

console

to

complete

the

following

steps:

1.

In

the

navigation

pane,

select

Servers->

Application

Servers

This

displays

a

table

of

the

application

servers

in

the

administrative

domain.

2.

In

the

content

pane,

click

the

name

of

the

application

server.

This

displays

the

properties

of

the

application

server

in

the

content

pane.

3.

In

the

Additional

Properties

table,

select

Message

Listener

Service

This

displays

the

Message

Listener

Service

properties

in

the

content

pane.

4.

In

the

content

pane,

select

Listener

Ports.

This

displays

a

list

of

the

listener

ports.

5.

In

the

content

pane,

select

the

listener

port

that

you

want

to

stop.

6.

Click

Stop.

7.

To

save

your

configuration,

click

Save

on

the

task

bar

of

the

Administrative

console

window.

8.

To

have

the

changed

configuration

take

effect,

stop

then

restart

the

application

server.

Important

files

for

message-driven

beans

and

extended

messaging

The

following

files

in

the

WAS_HOME/temp

directory

are

important

for

the

operation

of

the

WebSphere

Application

Server

messaging

service,

so

should

not

be

deleted.

If

you

do

need

to

delete

the

WAS_HOME/temp

directory

or

other

files

in

it,

ensure

that

you

preserve

the

following

files.

server_name-durableSubscriptions.ser

You

should

not

delete

this

file,

because

the

messaging

service

uses

it

to

keep

track

of

durable

subscriptions

for

message-driven

beans.

If

you

uninstall

an

application

that

contains

a

message-driven

bean,

this

file

is

used

to

unsubscribe

the

durable

subscription.

server_name-AsyncMessageRequestLog.ser

You

should

not

delete

this

file,

because

the

messaging

service

uses

it

to

keep

track

of

late

responses

that

need

to

be

delivered

to

the

late

response

message

handler

for

the

extended

messaging

provider.

Chapter

3.

Using

asynchronous

messaging

343

Troubleshooting

message-driven

beans

Use

this

overview

task

to

help

resolve

a

problem

that

you

think

is

related

to

message-driven

beans.

Message-driven

beans

support

uses

the

standard

WebSphere

Application

Server

troubleshooting

facilities.

If

you

encounter

a

problem

that

you

think

might

be

related

to

the

message-driven

beans,

complete

the

following

stages:

1.

Check

for

more

informational

and

error

messages

that

might

provide

a

clue

to

a

related

problem.

If

the

JMS

server

is

running,

but

you

have

problems

accessing

JMS

resources,

check

for

more

error

messages

and

extra

details

about

the

problem.

For

messages

related

to

WebSphere

Messaging,

look

for

the

prefixes:

MSGS

and

WMSG.

2.

Check

the

Release

Notes

for

specific

problems

and

workarounds

The

section

Possible

Problems

and

Suggested

Fixes

of

the

Release

Notes,

available

from

the

WebSphere

Application

Server

library

web

site,

is

updated

regularly

to

contain

information

about

known

defects

and

their

workarounds.

Check

the

latest

version

of

the

Release

Notes

for

any

information

about

your

problem.

If

the

Release

Notes

does

not

contain

any

information

about

your

problem,

you

can

also

search

the

Technotes

database

on

the

WebSphere

Application

Server

web

site.

3.

Check

that

message

listener

service

has

started.

The

message

listener

service

is

an

extension

to

the

JMS

functions

of

the

JMS

provider.

It

provides

a

listener

manager

that

controls

and

monitors

one

or

more

JMS

listeners,

which

each

monitor

a

JMS

destination

on

behalf

of

a

deployed

message-driven

bean.

4.

Check

your

JMS

resource

configurations

If

the

WebSphere

Messaging

functions

seem

to

be

running

properly

(the

JMS

server

is

running

without

problems),

check

that

the

JMS

resources

have

been

configured

correctly.

For

example,

check

that

the

listener

ports

have

been

configured

correctly

and

have

been

started.

5.

Check

for

problems

with

the

WebSphere

Messaging

functions

For

more

information

about

troubleshooting

WebSphere

Messaging,

see

the

related

topics.

6.

Get

a

detailed

exception

dump

for

messaging.

If

the

information

obtained

in

the

preceding

steps

is

still

inconclusive,

you

can

enable

the

application

server

debug

trace

for

the

″Messaging″

group

to

provide

a

detailed

exception

dump.

Message-driven

beans

samples

The

following

examples

are

provided,

as

part

of

the

WebSphere

Samples

Gallery,

to

illustrate

use

of

the

message-driven

beans

support.

When

the

Samples

are

installed

on

your

local

machine,

they

are

available

to

try

out.

Locate

them

at

http://localhost:9080/WSsamples/.

(The

default

port

is

9080.)

For

more

information

about

where

to

find

the

Samples

Gallery,

see

the

Information

Center

topic

″Samples

Gallery.″

v

Point-to-point

samples:

–

″Tutorial:

Creating

JMS

message

sample″

This

tutorial

is

designed

to

help

you

develop

and

deploy

a

JMS

message

sample

application

that

tests

the

WebSphere

Application

Server

message-driven

beans

support

in

a

point-to-point

scenario.

This

sample

illustrates

how

to

develop

and

deploy

an

application

that

comprises

the

following

components:

-

A

Java/JMS

program

that

writes

a

message

to

a

queue.

-

A

message-driven

bean

that

is

invoked

by

a

JMS

listener

when

a

message

arrives

on

a

defined

queue.

344

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

http://www-3.ibm.com/software/webservers/appserv/infocenter.html

For

more

information

about

this

sample,

see

the

samples

article

″Tutorial:

Creating

JMS

message

sample″

that

is

installed

with

the

Samples

option.

–

″Sample:

Message

Listener

(point-to-point)″

This

sample

is

designed

to

demonstrate

the

use

and

behavior

of

message-driven

beans

for

a

simple

point-to-point

scenario.

This

sample

uses

the

JMS

message

sample

deployed

in

the

sample

above.

For

more

information

about

this

sample,

see

the

samples

article

″Sample:

Message

Listener

(Point-to-Point)″

that

is

installed

with

the

Samples

option.
v

Publish/subscribe

samples

–

″Tutorial:

Creating

JMS

message

publish/subscribe

sample″

This

tutorial

is

designed

to

help

you

develop

and

deploy

a

JMS

message

sample

application

that

tests

the

WebSphere

Application

Server

message-driven

beans

support

in

a

publish/subscribe

scenario.

This

sample

illustrates

how

to

develop

and

deploy

an

application

that

comprises

the

following

components:

-

A

client

program

that

starts

the

message

sequence

by

publishing

a

message

to

a

selected

topic.

-

A

message-driven

bean

that

is

invoked

by

a

JMS

listener

when

the

broker

passes

a

message

to

the

listener

from

a

topic

to

which

it

has

subscribed.

For

more

information

about

this

sample,

see

the

samples

article

″Tutorial:

Creating

JMS

message

publish/subscribe

sample″

that

is

installed

with

the

Samples

option.

–

″Sample:

Message

Listener

(publish/subscribe)″

This

sample

is

designed

to

demonstrate

the

use

and

behavior

of

message-driven

beans

for

a

simple

publish/subscribe

scenario.

This

sample

uses

the

JMS

message

sample

deployed

in

the

publish/subscribe

sample

above.

For

more

information

about

this

sample,

see

the

samples

article

″Sample:

Message

Listener

(publish/subscribe)″

that

is

installed

with

the

Samples

option.

Chapter

3.

Using

asynchronous

messaging

345

346

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Chapter

4.

Using

mail

Using

JavaMail

API,

a

code

segment

can

be

embedded

in

any

Java

2

Enterprise

Edition

(J2EE)

application

component,

such

as

an

EJB

or

a

servlet,

allowing

the

application

to

send

a

message

and

save

a

copy

of

the

mail

to

the

Sent

folder.

The

following

is

a

code

sample

that

you

would

embed

in

a

J2EE

application:

javax.naming.InitialContext

ctx

=

new

javax.naming.InitialContext();

javax.mail.Session

mail_session

=

(javax.mail.Session)

ctx.lookup("java:comp/env/mail/MailSession3");

Note:

The

previous

line

of

code

should

be

entered

on

one

line;

it

is

split

here

for

formatting

purposes.

MimeMessage

msg

=

new

MimeMessage(mail_session);

msg.setRecipients(Message.RecipientType.TO,

InternetAddress.parse("bob@coldmail.net"));

msg.setFrom(new

InternetAddress("alice@mail.eedge.com"));

msg.setSubject("Important

message

from

eEdge.com");

msg.setText(msg_text);

Transport.send(msg);

Store

store

=

mail_session.getStore();

store.connect();

Folder

f

=

store.getFolder("Sent");

if

(!f.exists())

f.create(Folder.HOLDS_MESSAGES);

f.appendMessages(new

Message[]

{msg});

J2EE

applications

can

use

JavaMail

APIs

by

looking

up

references

to

logically

named

mail

connection

factories

through

the

java:comp/env/mail

subcontext

declared

in

the

application

deployment

descriptor

and

mapped

to

installation

specific

mail

session

resources.

As

in

the

case

of

other

J2EE

resources,

this

can

be

done

in

order

to

eliminate

the

need

for

the

application

to

hard

code

references

to

external

resources.

1.

Locate

a

resource

through

Java

Naming

and

Directory

Interface

(JNDI).

The

J2EE

specification

considers

a

mail

session

instance

as

a

resource,

or

a

factory

from

which

mail

transport

and

store

connections

can

be

obtained.

You

should

never

hardcode

mail

sessions,

namely

fill

up

a

Properties

object,

then

use

it

to

new

up

a

javax.mai.Session

object.

Instead,

you

must

follow

the

J2EE

programming

model

of

configuring

resources

through

the

system

facilities

and

then

locating

them

through

JNDI

lookups.

In

the

sample

code

above,

the

line

javax.mail.Session

mail_session

=

(javax.mail.Session)

ctx.lookup(″java:comp/env/mail/MailSession3″);

is

an

example

of

not

hard

coding

a

mail

session

and

using

a

resource

name

located

through

JNDI.

You

can

consider

the

lookup

name

mail/MailSession3,

as

a

soft

link

to

the

real

resource.

©

Copyright

IBM

Corp.

2004

347

2.

Define

resource

references

while

assembling

your

application.

You

must

define

a

resource

reference

for

the

mail

resource

in

the

deployment

descriptor

of

the

component,

because

a

mail

session

is

referenced

in

the

JNDI

lookup.

Typically,

you

can

use

the

Assembly

Toolkit

(ATK)

shipped

with

WebSphere

Application

Server.

To

learn

more

about

using

the

ATK

see

the

article

Starting

the

Assembly

Toolkit.

When

you

create

this

reference,

be

sure

that

the

name

of

the

reference

matches

the

name

used

in

the

code.

For

example,

the

code

above

uses

java:comp/env/mail/MailSession3

in

its

lookup,

therefore

the

name

of

this

reference

must

be

mail/Session3

and

the

type

of

the

resource

must

bejavax.mail.Session.

After

being

defined,

the

deployment

descriptor

contains

the

following

entry

for

the

mail

resource

reference:

<resource-reference>

<description>description</description>

<res-ref-name>mail/MailSession3</res-ref-name>

<res-type>javax.mail.Session</res-type>

<res-auth>Container</res-auth>

3.

Configure

mail

providers

and

sessions.

The

sample

code

references

a

mail

resource,

the

deployment

descriptor

declares

the

reference,

but

the

resource

itself

does

not

exist

yet.

Now

you

need

to

configure

the

mail

resource

that

is

referenced

by

your

application

component.

Notice

that

the

mail

session

you

configure

must

have

both

its

transport

and

mail

access

portions

defined;

the

former

required

because

the

code

is

sending

a

message,

the

latter

because

it

also

saves

a

copy

to

the

local

mail

store.

When

you

configure

the

mail

session,

you

will

be

asked

to

specify

a

JNDI

name.

This

is

an

important

name

which

you

will

require

when

you

install

your

application

and

link

up

the

resource

references

in

your

application

with

the

real

resources

that

you

have

configured.

4.

Install

your

application.

You

can

install

your

application

using

either

the

administrative

console

or

the

scripting

tool.

One

important

step

in

the

install

process

is

that

the

system

will

go

through

all

resource

references,

among

other

things,

and

expect

you

to

supply

a

JNDI

name

for

each

of

them.

This

is

not

an

arbitrary

JNDI

name

but

the

JNDI

name

given

to

a

particular,

configured

resource

which

is

the

target

of

the

reference.

5.

Manage

existing

mail

providers

and

sessions.

You

can

update

and

remove

mail

providers

and

sessions.

To

update

mail

providers

and

sessions:

a.

Open

the

administrative

console.

b.

Click

Resources

>

Mail

Providers

in

the

console

navigation

tree.

Then,

click

Mail

Provider

>

mail_provider

>

Mail

Session.

c.

Click

the

mail_provider

or

mail_session

that

you

want

to

modify.

To

remove

a

mail

provider

or

mail

session,

click

Remove

after

making

your

selection.

d.

Click

Apply

or

OK.

e.

Save

the

configuration.

If

your

application

has

a

client,

you

can

update

mail

providers

and

mail

sessions

using

the

Application

Client

Resource

Configuration

Tool

(ACRCT).

Configuring

mail

providers

and

sessions

WebSphere

Application

Server

includes

a

default

mail

provider

called

built-in

provider.

If

you

use

the

default

mail

provider

you

only

have

to

configure

the

mail

session,

which

is

the

last

step

in

this

task.

To

use

the

customized

mail

provider

you

must

first

create

the

mail

provider

and

session:

348

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

1.

Open

the

administrative

console.

2.

Click

Resources

>

Mail

Providers.

3.

Create

the

mail

provider.

a.

Click

New.

b.

Type

the

name

of

the

mail

provider

in

the

Name

field.

c.

Click

Apply

or

OK.
4.

Define

the

protocol

provider

for

the

mail

provider.

a.

Click

mail_provider.

b.

Click

Protocol

Providers.

c.

Click

New.

d.

Type

the

protocol

name

in

the

Protocol

field.

e.

Type

the

classname

in

the

Classname

field.

f.

Click

Apply

or

OK.
Ensure

that

every

mail

session

is

defined

under

a

parent

mail

provider.

Select

a

mail

provider

first

and

then

create

your

new

mail

session.

5.

Create

the

mail

session.

a.

Click

mail_provider.

b.

Click

Mail

Sessions.

c.

Click

New.

d.

Type

the

mail

session

name

in

the

Name

field.

e.

Type

the

JNDI

name

in

the

JNDI

Name

field.

f.

Click

Apply

or

OK.
6.

Configure

the

mail

session.

a.

Click

mail_provider.

b.

Click

Mail

Sessions.

c.

Click

mail_session.

d.

Make

changes

to

appropriate

fields.

e.

Click

Apply

or

OK.

If

your

application

has

a

client

you

can

configure

JavaMail

providers

and

sessions

using

the

Application

Client

Resource

Configuration

Tool

(ACRCT).

Mail

provider

collection

Use

this

page

to

implement

JavaMail

and

create

mail

sessions,

which

are

a

collection

of

protocol

providers

such

as

the

WebSphere

Application

Server

built-in

mail

provider

that

encompasses

three

protocol

providers:

Simple

Mail

Transfer

Protocol

(SMTP),

Internet

Message

Access

Protocol

(IMAP)

and

Post

Office

Protocol

(POP3).

To

view

this

administrative

console

page,

click

Resources

>

Mail

Providers.

Name

Specifies

the

name

of

the

JavaMail

resource

provider.

Description

Specifies

the

resource

provider

description.

Chapter

4.

Using

mail

349

Mail

provider

settings

Use

this

page

to

implement

JavaMail

and

create

mail

sessions,

which

are

a

collection

of

protocol

providers

such

as

the

WebSphere

Application

Server

built-in

mail

provider

that

encompasses

three

protocol

providers:

Simple

Mail

Transfer

Protocol

(SMTP),

Internet

Message

Access

Protocol

(IMAP)

and

Post

Office

Protocol

(POP3).

To

view

this

administrative

console

page,

click

Resources

>

Mail

Providers

>

mail_provider.

Scope

Specifies

the

scope

of

the

configured

resource.

This

value

indicates

the

configuration

location

for

the

configuration

file.

Name

Specifies

the

name

of

the

JavaMail

resource

provider.

Description

Specifies

the

mail

provider

description.

Protocol

providers

collection

Use

this

page

to

select

or

add

a

new

protocol

provider

to

interact

with

JavaMail

APIs

and

mail

servers

that

run

on

pertaining

protocols.

An

example

is

Simple

Mail

Transfer

Protocol

(SMTP),

which

is

a

popular

transport

protocol

for

sending

mail.

JavaMail

applications

can

connect

to

an

SMTP

server

and

send

mail

through

it

by

using

the

protocol

provider.

To

view

this

administrative

console

page,

click

Resources

>

Mail

Providers

>

mail_provider

>

Protocol

Providers.

Protocol

Specifies

the

configuration

of

the

protocol

provider

for

a

given

protocol.

Classname

Specifies

the

implementation

class

for

the

specific

protocol

provider

(also

known

as

JavaMail

service

provider).

Classpath

Specifies

the

path

to

the

implementation

class

for

the

specific

protocol

provider

(also

known

as

JavaMail

service

provider).

Type

Specifies

the

type

of

protocol

provider.

Valid

options

are

STORE

or

TRANSPORT.

Protocol

providers

settings

Use

this

page

to

configure

protocol

provider

settings.

To

view

this

administrative

console

page,

click

Resources

>

Mail

Providers

>

mail_provider

>

Protocol

Providers

>

protocol_provider.

Protocol

Specifies

the

configuration

of

the

protocol

provider

for

a

given

protocol.

350

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Classname

Specifies

the

implementation

class

for

the

specific

protocol

provider

(also

known

as

JavaMail

service

provider).

Classpath

Specifies

the

path

to

the

implementation

class

for

the

specific

protocol

provider

(also

known

as

JavaMail

service

provider).

Type

Specifies

the

type

of

protocol

provider.

Valid

options

are

STORE

or

TRANSPORT.

Mail

session

collection

Use

this

page

to

configure

mail

session

properties

defined

under

the

parent

mail

provider.

To

view

this

administrative

console

page,

click

Resources

>

Mail

Providers

>

mail_provider

>

Mail

Sessions.

Name

Specifies

the

administrative

name

of

the

JavaMail

session

object.

JNDI

Name

Specifies

the

Java

Naming

and

Directory

Interface

(JNDI)

name

for

the

resource,

including

any

naming

subcontexts.

This

name

provides

the

link

between

the

platform

binding

information

for

resources

defined

in

the

client

application

deployment

descriptor

and

the

actual

resources

bound

into

JNDI

by

the

platform.

Description

Specifies

an

optional

description

for

your

administrative

records.

Category

Specifies

an

optional

collection

for

classifying

or

grouping

sessions.

Mail

session

settings

Use

this

page

to

configure

specific

mail

providers.

To

view

this

administrative

console

page,

click

Resources>

Mail

Providers

>

mail_provider

>

Mail

Sessions

>

mail_session.

Name

Specifies

the

administrative

name

of

the

JavaMail

session

object.

JNDI

Name

Specifies

the

Java

Naming

and

Directory

Interface

(JNDI)

name

for

the

resource,

including

any

naming

subcontexts.

This

name

provides

the

link

between

the

platform

binding

information

for

resources

defined

in

the

client

application

deployment

descriptor

and

the

actual

resources

bound

into

JNDI

by

the

platform.

Description

Specifies

an

optional

description

for

your

administrative

records.

Chapter

4.

Using

mail

351

Category

Specifies

an

optional

collection

for

classifying

or

grouping

sessions.

Mail

Transport

Host

Specifies

the

server

accessed

when

sending

mail.

Mail

Transport

Protocol

Specifies

the

transport

protocol

used

when

sending

mail.

Mail

Transport

User

Specifies

the

user

ID

when

the

mail

transport

host

requires

authentication.

This

setting

is

not

generally

used

for

most

mail

servers.

Leave

this

field

blank

unless

you

use

a

mail

server

that

requires

a

user

ID

and

password.

Mail

Transport

Password

Specifies

the

password

when

the

mail

transport

host

requires

authentication.

This

setting

is

not

generally

used

for

most

mail

servers.

Leave

this

field

blank

unless

you

use

a

mail

server

that

requires

a

user

ID

and

password.

Mail

from

Specifies

the

mail

originator.

This

value

represents

the

Internet

e-mail

address

that,

by

default,

displays

in

the

received

message,

as

either

the

From

or

the

Reply-To

address.

The

recipient’s

reply

comes

to

this

address.

Mail

Store

Host

Specifies

the

server

accessed

when

receiving

the

mail.

This

setting,

combined

with

the

mail

store

user

ID

and

password,

represents

a

valid

mail

account.

For

example,

if

the

mail

account

is

john_william@my.company.com

then

the

mail

store

host

is

my.company.com.

Mail

Store

Protocol

Specifies

the

protocol

used

when

receiving

mail;

it

could

be

IMAP,

POP3

or

any

store

protocol

for

which

the

user

has

installed

a

provider.

Mail

Store

User

Specifies

the

user

ID

for

the

given

mail

account.

For

example,

if

the

mail

account

is

john_william@my.company.com

then

the

user

is

john_william.

Mail

Store

Password

Specifies

the

password

for

the

given

mail

account

.

For

example,

if

the

mail

account

is

john_william@my.company.com

then

enter

the

password

for

ID

john_william.

Debug

Toggles

debug

mode

on

and

off

for

this

mail

session.

352

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

JavaMail

API

The

JavaMail

APIs

provide

a

platform

and

protocol-independent

framework

for

building

Java-based

mail

client

applications.

WebSphere

Application

Server

supports

JavaMail,

Version

1.2

and

the

JavaBeans

Activation

Framework

(JAF)

Version

1.0.

In

WebSphere

Application

Server,

the

JavaMail

API

is

supported

in

all

Web

application

components,

namely:

v

Servlets

v

Java

Server

Pages

(JSP)

files

v

Enterprise

beans

v

Application

clients

The

JavaMail

APIs

are

generic

for

sending

and

reading

mail.

They

require

service

providers,

known

in

WebSphere

Application

Server

as

protocol

providers,

to

interact

with

mail

servers

that

run

on

pertaining

protocols.

For

example,

Simple

Mail

Transfer

Protocol

(SMTP)

is

a

popular

transport

protocol

for

sending

mail.

JavaMail

applications

can

connect

to

an

SMTP

server

and

send

mail

through

it

by

using

this

SMTP

protocol

provider.

In

addition

to

service

providers,

the

JavaMail

API

requires

the

Java

Application

Framework

(JAF)

to

handle

mail

content

that

is

not

plain

text,

including

Multipurpose

Internet

Mail

Extensions

(MIME),

URL

pages,

and

file

attachments.

The

JavaMail

APIs,

the

JAF,

the

service

providers

and

the

protocols

are

shipped

as

part

of

WebSphere

Application

Server

using

the

following

Sun

licensed

packages:

v

mail.jar

-

Contains

the

JavaMail

APIs,

and

the

SMTP,

IMAP,

and

POP3

service

providers.

v

activation.jar

-

Contains

the

JavaBeans

Activation

Framework.

Mail

providers

and

mail

sessions

A

JavaMail

service

provider

is

a

driver

that

supports

JavaMail

interaction

with

mail

servers

using

a

particular

mail

protocol.

WebSphere

Application

Server

includes

service

providers,

also

known

as

protocol

providers,

for

mail

protocols

including

Simple

Mail

Transfer

Protocol

(SMTP),

Internet

Message

Access

Protocol

(IMAP),

and

Post

Office

Protocol

3

(POP3).

Mail

provider

encapsulates

a

collection

of

protocol

providers.

For

example,

WebSphere

Application

Server

has

a

built-in

mail

provider

that

encompasses

the

three

protocol

providers:

SMTP,

IMAP

and

POP3.

These

protocol

providers

are

installed

as

the

default

and

suffice

for

most

applications.

If

you

have

a

particular

application

that

requires

custom

protocol

providers,

you

must

first

follow

the

steps

outlined

in

the

″JavaMail

API

Design

Specification,

V1.2,

Chapter

5

-

The

Mail

Session″

to

install

your

own

protocol

providers.

See

the

article,

Mail:

Resources

for

learning,

for

a

link

to

this

documentation.

Mail

sessions

are

represented

by

the

javax.mail.Session

class.

A

mail

Session

object

authenticates

users,

and

controls

users’

access

to

messaging

systems.

To

create

platform-independent

applications,

use

a

resource

factory

reference

to

create

a

JavaMail

session.

A

resource

factory

is

an

object

that

provides

access

to

resources

in

the

deployed

environment

of

a

program

using

the

naming

conventions

defined

by

the

Java

Naming

and

Directory

Interface

(JNDI).

Chapter

4.

Using

mail

353

Ensure

that

every

mail

session

is

defined

under

a

parent

mail

provider.

Select

a

mail

provider

first

and

then

create

your

new

mail

session.

Mail

migration

tip

Specifications

for

Java

Server

Page(JSP)

1.2

changes

the

way

the

EmailBean

class

works

with

Email.jsp.

The

specifications

state

that

the

JSP

container

creates

a

JSP

page

implementation

class

for

each

JSP

page.

The

name

of

the

JSP

page

implementation

class

is

implementation

dependent.

The

JSP

page

implementation

object

belongs

to

an

implementation-dependent

named

package

which

can

vary

between

one

JSP

and

another,

therefore

minimal

assumptions

should

be

made.

The

unnamed

package

should

not

be

used

without

explicit

import

of

the

class.

Following

these

specifications,

you

should

place

EmailBean.class

in

a

package

referred

to

it

by

the

fully

qualified

packageName

in

Email.jsp.

Otherwise,

Email.jsp

is

unable

to

find

EmailBean.class.

JavaMail

security

permissions

best

practices

In

many

of

its

activities,

the

JavaMail

API

needs

to

access

certain

configuration

files.

The

JavaMail

and

JavaBeans

Activation

Framework

binary

packages

themselves

already

contain

the

necessary

configuration

files.

However,

JavaMail

allows

the

user

to

define

user-specific

and

installation-specific

configuration

files

to

meet

special

requirements.

The

two

locations

where

such

configuration

files

can

exist

are

<user.home>and

<java.home>/lib.

For

example,

if

the

JavaMail

API

needs

to

access

a

file

named

mailcap

when

sending

a

message,

it

first

tries

to

access

<user.home>/.mailcap.

If

that

attempt

fails,

either

due

to

lack

of

security

permission

or

a

nonexistent

file,

the

API

continues

to

try<java.home>

/lib/mailcap.

If

that

attempts

also

fails,

it

will

continue

and

try

META-INF/mailcap

in

the

classpath,

which

actually

leads

to

the

configuration

files

contained

in

the

mail.jarand

activation.jar

files.

WebSphere

Application

Server

uses

the

general-purpose

JavaMail

configuration

files

contained

in

the

mail.jar

and

activation.jar

files

and

does

not

put

any

mail

configuration

files

in

<user.home>and

<java.home>/lib.

File

read

permission

for

both

the

mail.jar

and

activation.jar

files

is

granted

to

all

applications

to

ensure

proper

functioning

of

the

JavaMail

API,

as

shown

in

the

following

segment

of

the

app.policy

file:

grant

codeBase

"file:${application}"

{

//

The

following

are

required

by

Java

mail

permission

java.io.FilePermission

"${was.install.root}${/}java${/}jre${/}lib${/}ext${/}mail.jar",

"read";

permission

java.io.FilePermission

"${was.install.root}${/}java${/}jre${/}lib${/}ext${/}activation.jar",

"read";

Note:

The

previous

two

lines

of

code

(both

beginning

permission

java.io.FilePermission)

must

be

entered

on

one

line

each;

they

are

split

here

for

formatting

purposes.

};

JavaMail

code

attempts

to

access

configuration

files

at

<user.home>and

<java.home>/lib

causing

AccessControlExceptions

to

be

thrown,

since

there

is

no

file

read

permission

granted

for

those

two

locations

by

default.

This

activity

does

not

affect

the

proper

functioning

of

the

JavaMail

API,

but

you

might

see

a

large

354

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

amount

of

JavaMail-related

security

exceptions

reported

in

the

system

log,

which

might

swamp

harmful

errors

that

you

are

looking

for.

If

this

situation

is

a

problem,

consider

adding

two

more

permission

lines

to

the

permission

block

above.

This

should

eliminate

most,

if

not

all,

JavaMail-related

harmless

security

exceptions

from

the

log

file.

The

application

permission

block

in

the

app.policy

file

now

looks

like:

grant

codeBase

"file:${application}"

{

//

The

following

are

required

by

Java

mail

permission

java.io.FilePermission

"${was.install.root}${/}java${/}jre${/}lib${/}ext${/}mail.jar",

"read";

permission

java.io.FilePermission

"${was.install.root}${/}java${/}jre${/}lib${/}ext${/}activation.jar",

"read";

Note:

The

previous

two

lines

of

code

(both

beginning

permission

java.io.FilePermission)

must

be

entered

on

one

line

each;

they

are

split

here

for

formatting

purposes.
permission

java.io.FilePermission

"${user.home}${/}.mailcap",

"read";

permission

java.io.FilePermission

"${java.home}${/}lib${/}mailcap",

"read";

};

Mail:

Resources

for

learning

Use

the

following

links

to

find

relevant

supplemental

information

about

the

JavaMail

API.

The

information

resides

on

IBM

and

non-IBM

Internet

sites,

whose

sponsors

control

the

technical

accuracy

of

the

information.

These

links

are

provided

for

convenience.

Often,

the

information

is

not

specific

to

the

IBM

WebSphere

Application

Server

product,

but

is

useful

all

or

in

part

for

understanding

the

product.

When

possible,

links

are

provided

to

technical

papers

and

Redbooks

that

supplement

the

broad

coverage

of

the

release

documentation

with

in-depth

examinations

of

particular

product

areas.

Programming

model

and

decisions

v

JavaMail

documentation

Programming

specifications

v

JavaMail

1.2

API

documentation

(Sun’s

javadoc)

Chapter

4.

Using

mail

355

http://java.sun.com/products/javamail/index.html
http://www.javasoft.com/products/javamail/1.2/docs/javadocs/overview-summary.html

356

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Chapter

5.

Using

URL

resources

within

an

application

Java

2

Enterprise

Edition

(J2EE)

applications

can

use

Uniform

Resource

Locators

(URLs)

by

looking

up

references

to

logically

named

URL

connection

factories

through

the

java:comp/env/url

subcontext

declared

in

the

application

deployment

descriptor

and

mapped

to

installation

specific

URL

resources.

As

in

the

case

of

other

J2EE

resources,

this

can

be

done

in

order

to

eliminate

the

need

for

the

application

to

hard

code

references

to

external

resources.

The

process

is

the

same

used

with

other

J2EE

resources,

such

as

JDBC

and

JavaMail.

1.

Develop

an

application

that

relies

on

naming

features.

2.

Define

resource

references

while

assembling

your

application.

A

URL

resource

that

uses

a

built-in

protocol,

such

as

http,

ftp

or

file,

can

use

the

default

URL

provider.

URL

resources

that

use

other

protocols

need

to

use

a

custom

URL

provider.

3.

Configure

your

URL

resources

within

an

application.

a.

Open

the

administrative

console.

b.

Click

Resources>URL

Providers

in

the

console

navigation

tree.

c.

Click

URL_provider>URLs.
4.

Optional:

Configure

URL

providers

and

URLs

within

an

application

client

using

the

Application

Client

Resource

Configuration

Tool

(ACRCT).

5.

Manage

URL

providers

and

URLs

used

by

the

deployed

application.

To

update

or

remove

existing

URL

configurations:

a.

Open

the

administrative

console.

b.

Click

Resources

>

URL

Providers

in

the

console

navigation

tree.

c.

Click

URL

Provider

>

URLs.

d.

Select

the

URL

to

modify.

e.

Modify

the

URL

properties.

f.

Click

Apply

or

OK.

To

remove

URL

providers

and

URLs,

after

step

2,

Click

URL_provider

>

URLs.

Select

the

URL

you

want

to

remove

and

click

Delete.

Then,

click

Apply

or

OK.

URLs

A

Uniform

Resource

Locator

(URL)

is

an

identifier

that

points

to

an

electronically

accessible

resource,

such

as

a

directory

file

on

a

machine

in

a

network,

or

a

document

stored

in

a

database.

URLs

appear

in

the

format

scheme:scheme_information.

You

can

represent

a

scheme

as

http,

ftp,

file,

or

another

term

that

identifies

the

type

of

resource

and

the

mechanism

by

which

you

can

access

the

resource.

In

a

World

Wide

Web

browser

location

or

address

box,

a

URL

for

a

file

available

using

HyperText

Transfer

Protocol

(HTTP)

starts

with

http:.

An

example

is

http://www.ibm.com.

Files

available

using

File

Transfer

Protocol

(FTP)

start

with

ftp:.

Files

available

locally

start

with

file:.

The

scheme_information

commonly

identifies

the

Internet

machine

making

a

resource

available,

the

path

to

that

resource,

and

the

resource

name.

The

©

Copyright

IBM

Corp.

2004

357

scheme_information

for

HTTP,

FTP

and

File

generally

starts

with

two

slashes

(//),

then

provides

the

Internet

address

separated

from

the

resource

path

name

with

one

slash

(/).

For

example,

http://www-4.ibm.com/software/webservers/appserv/library.html.

For

HTTP

and

FTP,

the

path

name

ends

in

a

slash

when

the

URL

points

to

a

directory.

In

such

cases,

the

server

generally

returns

the

default

index

for

the

directory.

URL

provider

collection

Use

this

page

to

create

new

URL

providers

to

handle

URL

protocols

that

are

not

handled

by

the

Java

Developer

Kit

(JDK),

for

example

protocols

other

than

http,

ftp

and

file.

A

URL

provider

implements

the

functionality

for

a

particular

URL

protocol.

This

provider

is

comprised

of

two

classes

that

extend

java.net.URLStreamHandler

and

java.net.URLConnection.

A

default

URL

provider

is

included

in

the

initial

product

configuration.

This

provider

utilizes

the

URL

support

provided

by

the

JDK.

Any

URL

resource

with

protocols

based

on

Java

2

Standard

Edition

1.3.1,

such

as

HTTP

or

FTP,

can

use

the

default

URL

provider.

To

view

this

administrative

console

page,

click

Resources

>

URL

Providers.

Name

Specifies

the

administrative

name

for

the

URL

provider.

Description

Describes

the

URL

provider

for

your

administrative

records.

URL

provider

settings

Use

this

page

create

new

URL

providers.

To

view

this

administrative

console

page,

click

Resources

>

URL

Providers

>

URL_provider.

Name

Specifies

the

administrative

name

for

the

URL

provider.

Description

Describes

the

URL

provider,

for

your

administrative

records.

Classpath

Specifies

paths

or

JAR

file

names

which

together

form

the

location

for

the

resource

provider

classes.

Stream

Handler

Class

Name

Specifies

fully

qualified

name

of

a

user-defined

Java

class

that

extends

java.net.URLStreamHandler

for

a

particular

URL

protocol,

such

as

FTP.

358

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Protocol

Specifies

the

protocol

supported

by

this

stream

handler.

For

example,

″nntp″,

″smtp″,

″ftp″.

URL

configuration

collection

Use

this

page

to

configure

Uniform

Resource

Locators

(URLs)

that

point

to

electronically

accessible

resources,

such

as

directory

files

on

a

machine

in

a

network,

or

a

document

stored

in

a

database.

To

view

this

administrative

console

page,

click

Resources

>

URL

Providers

>

URL_provider

>

URLs.

Name

Specifies

the

display

name

for

the

resource.

JNDI

Name

Specifies

the

JNDI

name.

Description

Specifies

the

description

of

the

resource.

Category

Specifies

the

category

string,

which

you

can

use

to

classify

or

group

the

resource.

URL

configuration

settings

Use

this

page

to

configure

Uniform

Resource

Locators

(URLs)

that

point

to

electronically

accessible

resources,

such

as

a

directory

file

on

a

machine

in

a

network,

or

a

document

stored

in

a

database.

To

view

this

administrative

console

page,

click

Resources

>

URL

Providers

>

URL_provider

>

URLs

>

URL.

Name

Specifies

the

display

name

for

the

resource.

JNDI

Name

Specifies

the

JNDI

name.

Description

Specifies

the

description

of

the

resource.

Category

Specifies

the

category

string,

which

you

can

use

to

classify

or

group

the

resource.

Spec

Specifies

the

string

from

which

to

form

a

URL.

Chapter

5.

Using

URL

resources

within

an

application

359

URLs:

Resources

for

learning

Use

the

following

links

to

find

relevant

supplemental

information

about

URLs.

The

information

resides

on

IBM

and

non-IBM

Internet

sites,

whose

sponsors

control

the

technical

accuracy

of

the

information.

These

links

are

provided

for

convenience.

Often,

the

information

is

not

specific

to

the

IBM

WebSphere

Application

Server

product,

but

is

useful

all

or

in

part

for

understanding

the

product.

When

possible,

links

are

provided

to

technical

papers

and

Redbooks

that

supplement

the

broad

coverage

of

the

release

documentation

with

in-depth

examinations

of

particular

product

areas.

Programming

specifications

v

W3C

Architecture

-

Naming

and

Addressing:

URIs,

URLs

v

URL

API

documentation

360

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

http://www.w3.org/addressing/
http://java.sun.com/products/jdk/1.2/docs/api/java/net/URL.html

Chapter

6.

Resource

environment

entries

1.

Resource

Environment

Provider

collection

2.

Resource

Env

Entries

collection

3.

Referenceables

collection

Resource

environment

providers

and

resource

environment

entries

A

resource

environment

reference

maps

a

logical

name

used

by

the

client

application

to

the

physical

name

of

an

object.

Not

all

objects

bound

into

the

server

JNDI

namespace

are

intended

for

use

by

an

application

client.

For

example,

the

WebSphere

Application

Server

client

run

time

does

not

support

the

use

of

Java

2

Connector

(J2C)

objects

on

the

client.

The

object

needs

to

be

remotable,

and

the

client-side

implementations

must

be

made

available

on

the

application

client

run-time

classpath.

Resource

environment

references

are

different

than

resource

references.

Resource

environment

references

allow

your

application

client

to

use

a

logical

name

to

look

up

a

resource

bound

into

the

server

JNDI

namespace.

A

resource

reference

allows

your

application

to

use

a

logical

name

to

look

up

a

local

J2EE

resource.

The

J2EE

specification

does

not

specify

a

particular

implementation

of

a

resource.

Resource

Environment

Provider

collection

Use

this

page

to

view

the

resource

environment

providers.

To

view

this

administrative

console

page,

click

Resources

>Resource

Environment

Providers

Name

Specifies

a

text

identifier

for

the

resource

environment

provider.

Data

type

String

Description

Specifies

a

text

string

describing

the

resource

environment

provider.

Data

type

String

Resource

environment

provider

settings

Use

this

page

to

create

settings

for

a

resource

environment

provider.

To

view

this

administrative

console

page,

click

Resources

>Resource

Environment

Providers

>

resource

environment

provider

Scope

Specifies

the

level

to

which

this

resource

definition

is

visible

--

the

cell,

node,

or

server

level.

©

Copyright

IBM

Corp.

2004

361

Resources

such

as

JDBC

Providers,

Namespace

bindings,

or

shared

libraries

can

be

defined

at

multiple

scopes,

with

resources

defined

at

more

specific

scopes

overriding

duplicates

which

are

defined

at

more

general

scopes.

Note

that

no

matter

what

the

scope

of

a

defined

resource,

the

resource’s

properties

only

apply

at

an

individual

server

level.

For

example,

if

you

define

the

scope

of

a

data

source

at

the

Cell

level,

all

users

in

that

Cell

can

look

up

and

use

that

data

source,

which

is

unique

within

that

Cell.

However,

resource

property

settings

are

local

to

each

server

in

the

Cell.

For

example,

if

you

define

max

connections

to

10,

then

each

server

in

that

Cell

can

have

10

connections.

Cell

The

most

general

scope.

Resources

defined

at

the

Cell

scope

are

visible

from

all

Nodes

and

servers,

unless

they

are

overridden.

To

view

resources

defined

in

the

cell

scope,

do

not

specify

a

server

or

a

node

name

in

the

scope

selection

form.

Node

The

default

scope

for

most

resource

types.

Resources

defined

at

the

Node

scope

override

any

duplicates

defined

at

the

Cell

scope

and

are

visible

to

all

servers

on

the

same

node,

unless

they

are

overridden

at

a

server

scope

on

that

node.

To

view

resources

defined

in

a

node

scope,

do

not

specify

a

server,

but

select

a

node

name

in

the

scope

selection

form.

Server

The

most

specific

scope

for

defining

resources.

Resources

defined

at

the

Server

scope

override

any

duplicate

resource

definitions

defined

at

the

Cell

scope

or

parent

Node

scope

and

are

visible

only

to

a

specific

server.

To

view

resources

defined

in

a

server

scope,

specify

a

server

name

as

well

as

a

node

name

in

the

scope

selection

form.

When

resources

are

created,

they

are

always

created

into

the

current

scope

selected

in

the

panel.

To

view

resources

in

other

scopes,

specify

a

different

node

or

server

in

the

scope

selection

form.

Data

type

String

Name

Specifies

the

name

of

the

resource

provider.

Data

type

String

Description

Specifies

a

text

description

for

the

resource

provider.

Data

type

String

New

Resource

Environment

Provider

Use

this

page

to

define

the

configuration

for

a

library

that

provides

the

implementation

for

some

environment

resource

factory.

To

view

this

administrative

console

page,

click

Resources

>Resource

Environment

Providers

>

New.

Scope

Specifies

the

level

to

which

this

resource

definition

is

visible

--

the

cell,

node,

or

server

level.

362

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Resources

such

as

JDBC

Providers,

Namespace

bindings,

or

shared

libraries

can

be

defined

at

multiple

scopes,

with

resources

defined

at

more

specific

scopes

overriding

duplicates

which

are

defined

at

more

general

scopes.

Note

that

no

matter

what

the

scope

of

a

defined

resource,

the

resource’s

properties

only

apply

at

an

individual

server

level.

For

example,

if

you

define

the

scope

of

a

data

source

at

the

Cell

level,

all

users

in

that

Cell

can

look

up

and

use

that

data

source,

which

is

unique

within

that

Cell.

However,

resource

property

settings

are

local

to

each

server

in

the

Cell.

For

example,

if

you

define

max

connections

to

10,

then

each

server

in

that

Cell

can

have

10

connections.

Cell

The

most

general

scope.

Resources

defined

at

the

Cell

scope

are

visible

from

all

Nodes

and

servers,

unless

they

are

overridden.

To

view

resources

defined

in

the

cell

scope,

do

not

specify

a

server

or

a

node

name

in

the

scope

selection

form.

Node

The

default

scope

for

most

resource

types.

Resources

defined

at

the

Node

scope

override

any

duplicates

defined

at

the

Cell

scope

and

are

visible

to

all

servers

on

the

same

node,

unless

they

are

overridden

at

a

server

scope

on

that

node.

To

view

resources

defined

in

a

node

scope,

do

not

specify

a

server,

but

select

a

node

name

in

the

scope

selection

form.

Server

The

most

specific

scope

for

defining

resources.

Resources

defined

at

the

Server

scope

override

any

duplicate

resource

definitions

defined

at

the

Cell

scope

or

parent

Node

scope

and

are

visible

only

to

a

specific

server.

To

view

resources

defined

in

a

server

scope,

specify

a

server

name

as

well

as

a

node

name

in

the

scope

selection

form.

When

resources

are

created,

they

are

always

created

into

the

current

scope

selected

in

the

panel.

To

view

resources

in

other

scopes,

specify

a

different

node

or

server

in

the

scope

selection

form.

Data

type

String

Name

Specifies

a

text

identifier

for

the

resource

environment

provider.

Data

type

String

Description

Specifies

a

text

string

describing

the

resource

environment

provider.

Data

type

String

Resource

Env

Entries

collection

Use

this

page

to

view

Resource

Environment

Entries.

An

environment

resource

can

be

of

any

arbitrary

type.

See

the

EJB

2.0

specification

for

more

information

about

resource-env-refs

and

environment

resources.

To

view

this

administrative

console

page,

click

Resources

>Resource

Environment

Providers

>

resource_environment_provider

>

Resource

Env

Entries.

Name

Specifies

a

text

identifier

that

helps

distinguish

this

resource-env

entry

from

others.

Chapter

6.

Resource

environment

entries

363

For

example,

you

can

use

My

Resource

for

the

name.

Data

type

String

JNDI

Name

Specifies

the

string

to

be

used

when

looking

up

this

environment

resource

using

JNDI.

This

is

the

string

to

which

you

bind

resource-env-ref

deployment

descriptors.

Data

type

String

Description

Specifies

text

for

information

to

help

further

identify

and

distinguish

this

resource

Data

type

String

Category

Specifies

a

category

you

can

use

to

group

environment

resources

according

to

some

common

feature.

It

is

strictly

an

organizational

property

and

has

no

effect

on

the

function

of

the

environment

resource.

Data

type

String

Resource

env

entry

settings

Use

this

page

to

set

resource

environment

entries,

which

define

configuration

for

an

environment

resource

that

is

the

binding

target

for

a

resource-environment-
reference

in

some

application’s

deployment

descriptor.

To

view

this

administrative

console

page,

click

Resources

>Resource

Environment

Providers

>

resource_environment_provider

>

Resource

Env

Entries

>

resource_environment_entry.

Scope

Specifies

the

level

to

which

this

resource

definition

is

visible

--

the

cell,

node,

or

server

level.

Resources

such

as

JDBC

Providers,

Namespace

bindings,

or

shared

libraries

can

be

defined

at

multiple

scopes,

with

resources

defined

at

more

specific

scopes

overriding

duplicates

which

are

defined

at

more

general

scopes.

Note

that

no

matter

what

the

scope

of

a

defined

resource,

the

resource’s

properties

only

apply

at

an

individual

server

level.

For

example,

if

you

define

the

scope

of

a

data

source

at

the

Cell

level,

all

users

in

that

Cell

can

look

up

and

use

that

data

source,

which

is

unique

within

that

Cell.

However,

resource

property

settings

are

local

to

each

server

in

the

Cell.

For

example,

if

you

define

max

connections

to

10,

then

each

server

in

that

Cell

can

have

10

connections.

Cell

The

most

general

scope.

Resources

defined

at

the

Cell

scope

are

visible

364

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

from

all

Nodes

and

servers,

unless

they

are

overridden.

To

view

resources

defined

in

the

cell

scope,

do

not

specify

a

server

or

a

node

name

in

the

scope

selection

form.

Node

The

default

scope

for

most

resource

types.

Resources

defined

at

the

Node

scope

override

any

duplicates

defined

at

the

Cell

scope

and

are

visible

to

all

servers

on

the

same

node,

unless

they

are

overridden

at

a

server

scope

on

that

node.

To

view

resources

defined

in

a

node

scope,

do

not

specify

a

server,

but

select

a

node

name

in

the

scope

selection

form.

Server

The

most

specific

scope

for

defining

resources.

Resources

defined

at

the

Server

scope

override

any

duplicate

resource

definitions

defined

at

the

Cell

scope

or

parent

Node

scope

and

are

visible

only

to

a

specific

server.

To

view

resources

defined

in

a

server

scope,

specify

a

server

name

as

well

as

a

node

name

in

the

scope

selection

form.

When

resources

are

created,

they

are

always

created

into

the

current

scope

selected

in

the

panel.

To

view

resources

in

other

scopes,

specify

a

different

node

or

server

in

the

scope

selection

form.

Data

type

String

Name

Specifies

a

display

name

for

the

resource.

Data

type

String

JNDI

name

Specifies

the

JNDI

name

for

the

resource,

including

any

naming

subcontexts.

This

name

is

used

as

the

linkage

between

the

platform’s

binding

information

for

resources

defined

by

a

module’s

deployment

descriptor

and

actual

resources

bound

into

JNDI

by

the

platform.

Data

type

String

Description

Specifies

a

text

description

for

the

resource.

Data

type

String

Category

Specifies

a

category

string

that

you

can

use

to

classify

or

group

the

resource.

Data

type

String

Referenceables

Specifies

the

referenceable

that

holds

the

factoryClassname

of

the

factory

that

converts

information

in

the

name

space

into

a

class

instance

for

the

type

of

resource

desired,

and

for

the

classname

of

the

type

to

be

returned.

Data

type

Dropdown

menu

Chapter

6.

Resource

environment

entries

365

Referenceables

collection

Use

this

page

to

specify

the

factoryClassname

of

the

factory

that

will

convert

information

in

the

name

space

into

a

class

instance

for

the

type

of

resource

desired.

To

view

this

administrative

console

page,

click

Resources

>Resource

Environment

Providers

>

resource_environment_provider

>

Referenceables.

Factory

Classname

Specifies

a

javax.naming.ObjectFactory

implementation

class

name

Data

type

String

Classname

Specifies

the

Java

type

that

a

Referenceable

provides

access

to,

for

binding

validation

and

to

create

the

reference

Data

type

String

Referenceables

settings

Use

this

page

to

set

the

factoryClassname

of

the

factory

that

converts

information

in

the

name

space

into

a

class

instance

for

the

type

of

resource

desired

To

view

this

administrative

console

page,

click

Resources

>Resource

Environment

Providers

>

resource_environment_provider

>

Referenceables

>

referenceable.

Scope

Specifies

the

level

to

which

this

resource

definition

is

visible

--

the

cell,

node,

or

server

level.

Resources

such

as

JDBC

Providers,

Namespace

bindings,

or

shared

libraries

can

be

defined

at

multiple

scopes,

with

resources

defined

at

more

specific

scopes

overriding

duplicates

which

are

defined

at

more

general

scopes.

Note

that

no

matter

what

the

scope

of

a

defined

resource,

the

resource’s

properties

only

apply

at

an

individual

server

level.

For

example,

if

you

define

the

scope

of

a

data

source

at

the

Cell

level,

all

users

in

that

Cell

can

look

up

and

use

that

data

source,

which

is

unique

within

that

Cell.

However,

resource

property

settings

are

local

to

each

server

in

the

Cell.

For

example,

if

you

define

max

connections

to

10,

then

each

server

in

that

Cell

can

have

10

connections.

Cell

The

most

general

scope.

Resources

defined

at

the

Cell

scope

are

visible

from

all

Nodes

and

servers,

unless

they

are

overridden.

To

view

resources

defined

in

the

cell

scope,

do

not

specify

a

server

or

a

node

name

in

the

scope

selection

form.

Node

The

default

scope

for

most

resource

types.

Resources

defined

at

the

Node

scope

override

any

duplicates

defined

at

the

Cell

scope

and

are

visible

to

all

servers

on

the

same

node,

unless

they

are

overridden

at

a

server

scope

on

that

node.

To

view

resources

defined

in

a

node

scope,

do

not

specify

a

server,

but

select

a

node

name

in

the

scope

selection

form.

Server

The

most

specific

scope

for

defining

resources.

Resources

defined

at

the

Server

scope

override

any

duplicate

resource

definitions

defined

at

the

Cell

scope

or

parent

Node

scope

and

are

visible

only

to

a

specific

server.

To

366

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

view

resources

defined

in

a

server

scope,

specify

a

server

name

as

well

as

a

node

name

in

the

scope

selection

form.

When

resources

are

created,

they

are

always

created

into

the

current

scope

selected

in

the

panel.

To

view

resources

in

other

scopes,

specify

a

different

node

or

server

in

the

scope

selection

form.

Data

type

String

Factory

Classname

Specifies

a

javax.naming.ObjectFactory

implementation

class

name

Data

type

String

Classname

Specifies

the

Java

type

that

a

Referenceable

provides

access

to,

for

binding

validation

and

to

create

the

reference

Data

type

String

Chapter

6.

Resource

environment

entries

367

368

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Notices

References

in

this

publication

to

IBM

products,

programs,

or

services

do

not

imply

that

IBM

intends

to

make

these

available

in

all

countries

in

which

IBM

operates.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

IBM’s

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

of

IBM’s

intellectual

property

rights

may

be

used

instead

of

the

IBM

product,

program,

or

service.

Evaluation

and

verification

of

operation

in

conjunction

with

other

products,

except

those

expressly

designated

by

IBM,

is

the

user’s

responsibility.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

500

Columbus

Avenue

Thornwood,

New

York

10594

USA

©

Copyright

IBM

Corp.

2004

369

370

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

Trademarks

and

service

marks

The

following

terms

are

trademarks

of

IBM

Corporation

in

the

United

States,

other

countries,

or

both:

v

AIX

v

AS/400

v

CICS

v

Cloudscape

v

DB2

v

DFSMS

v

Domino

v

Everyplace

v

iSeries

v

IBM

v

IMS

v

Informix

v

iSeries

v

Language

Environment

v

Lotus

v

MQSeries

v

MVS

v

OS/390

v

RACF

v

Redbooks

v

RMF

v

SecureWay

v

SupportPac

v

Tivoli

v

ViaVoice

v

VisualAge

v

VTAM

v

WebSphere

v

z/OS

v

zSeries

Java

and

all

Java-based

trademarks

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

©

Copyright

IBM

Corp.

2004

371

Other

company,

product,

and

service

names

may

be

trademarks

or

service

marks

of

others.

372

IBM

WebSphere

Business

Integration

Server

Foundation

for

z/OS

V5.1:

Resources

	Contents
	How to send your comments
	Chapter 1. Welcome to Resources
	Chapter 2. Accessing data from applications
	Resource adapter
	J2EE Connector Architecture resource adapters
	Resource Recovery Services (RRS)

	WebSphere relational resource adapter settings
	Scope
	Name
	Description
	Archive path
	Classpath
	Native path

	Data access portability features
	Example: Developing your own DataStoreHelper class

	Connection factory
	CMP Connection Factories collection
	Name
	JNDI Name
	Description
	Category
	CMP connection factory settings

	JDBC providers
	DB2 Universal JDBC Driver Support
	WebSphere Application Server for z/OS DB2 JDBC Providers
	Provider coexistence considerations
	Using a DB2 Universal JDBC Driver Provider with WebSphere Application Server for z/OS

	Data sources
	Data access beans
	Connection management architecture
	Connection pooling
	Benefits of connection pooling
	When to use connection pooling
	How connections are pooled together

	Connection life cycle
	Getting connections
	Returning connections

	Unshareable and shareable connections
	Factors that determine sharing
	Sharing a connection with a CMP bean

	Connection handles
	Unshareable connections
	Shareable connections

	Connections and transactions
	One-phase commit and two-phase commit resources

	Developing data access applications
	Data access application programming interface support
	Example: Accessing data using IBM extended APIs for connections
	Example: Accessing data using IBM extended APIs to share connections between container-managed and bean-managed persistence beans

	Container-managed persistence features
	Container-managed persistence restrictions and exceptions

	Looking up data sources with resource references for relational access
	Isolation level and resource reference

	Data access from J2EE Connector Architecture applications
	Accessing data using J2EE Connector Architecture connectors
	Example: Connection factory lookup
	J2EE Connector Architecture migration tips

	Data access from an enterprise entity bean
	Data access bean types
	Example: Using data access beans in Version 4.0
	Example: Using data access beans in Version 5.0

	Accessing data from application clients
	Connection thread identity
	Using thread identity support
	Security states with thread identity support

	Exceptions pertaining to data access
	Connection wait timeout
	Stale connections
	Example: Handling data access exception - error mapping in DataStoreHelper

	Using embedded Structured Query Language in Java (SQLJ) support

	Assembling data access applications
	Resource adapter archive file
	Assembling resource adapter (connector) modules

	Deploying data access applications
	Installing Java 2 Connector resource adapters
	Installing resource adapters within applications
	Resource Adapters collection

	Ensuring applications obtain valid connections
	j2c.properties file
	Database connection settings that can be added to the administrative console

	Creating and configuring a JDBC provider and data source
	Verifying a connection
	Creating and configuring a JDBC provider using the administrative console
	Configuring the Application Server for use with the DB2 Universal JDBC Driver
	Creating and configuring a data source using the administrative console
	Creating a JDBC provider on multiple nodes
	Creating and configuring a JDBC provider and data source using the Java Management Extensions API
	Test connection

	Configuring Java 2 Connector connection factories in the administrative console
	Connection pool settings
	Connection pool (Version 4) settings
	Configuring connection factories for resource adapters within applications
	J2C Connection Factories collection
	Connection factory JNDI name tips

	Recreating database tables from the exported table data definition language
	Security of lookups with component managed authentication
	Disabling lookup security

	Configuring data access for application clients
	Client configuration with the ACRCT

	Configuring Cloudscape Version 5.1
	Choosing which Cloudscape version to use
	Cloudscape Version 5.1 post installation instructions

	Vendor-specific data sources minimum required settings
	Connector Modules collection
	URI
	Name
	Connector module settings

	Data access : Resources for learning
	Tuning databases

	Chapter 3. Using asynchronous messaging
	Asynchronous messaging with WebSphere - an overview
	Styles of messaging in applications
	WebSphere Application Server cloning and WebSphere MQ clustering

	Using JMS and messaging in applications
	WebSphere MQ and IBM WebSphere Application Server
	Connection between IBM WebSphere Application Server and a queue manager
	Integral JMS provider (IJP)

	An overview of WebSphere asynchronous messaging using JMS
	WebSphere JMS support - components
	WebSphere MQ JMS connection pooling

	Administering WebSphere JMS support
	Installing and configuring a JMS provider
	Moving from the embedded WebSphere JMS provider to WebSphere MQ
	Managing JMS servers on an Application Server node
	Managing JMS servers in a deployment manager cell
	Configuring JMS provider resources
	Configuring authorization security for the embedded WebSphere JMS provider
	Displaying administrative lists of JMS resources
	Asynchronous messaging - security considerations

	Using WebSphere MQ functions from JMS applications
	Designing an enterprise application to use JMS
	The effect of transaction context on non-durable subscribers

	Developing a J2EE application to use JMS
	Developing a JMS client
	Deploying a J2EE application to use JMS
	Tuning Java messaging service
	Troubleshooting WebSphere Messaging
	Tips for troubleshooting WebSphere Messaging

	Messaging: Resources for learning

	Using message-driven beans in applications
	Message-driven beans - an overview
	Message-driven beans - components
	Message-driven beans - transaction support

	Designing an enterprise application to use message-driven beans
	Developing an enterprise application to use message-driven beans
	Deploying an enterprise application to use message-driven beans
	Configuring deployment attributes using the Assembly Toolkit

	Configuring message listener resources for message-driven beans
	Configuring the message listener service
	Adding a new listener port
	Configuring a listener port
	Deleting a listener port
	Configuring security for message-driven beans
	Administering listener ports

	Important files for message-driven beans and extended messaging
	Troubleshooting message-driven beans
	Message-driven beans samples

	Chapter 4. Using mail
	Configuring mail providers and sessions
	Mail provider collection
	Name
	Description

	Mail provider settings
	Scope
	Name
	Description

	Protocol providers collection
	Protocol
	Classname
	Classpath
	Type

	Protocol providers settings
	Protocol
	Classname
	Classpath
	Type

	Mail session collection
	Name
	JNDI Name
	Description
	Category

	Mail session settings
	Name
	JNDI Name
	Description
	Category
	Mail Transport Host
	Mail Transport Protocol
	Mail Transport User
	Mail Transport Password
	Mail from
	Mail Store Host
	Mail Store Protocol
	Mail Store User
	Mail Store Password
	Debug

	JavaMail API
	Mail providers and mail sessions
	Mail migration tip
	JavaMail security permissions best practices
	Mail: Resources for learning

	Chapter 5. Using URL resources within an application
	URLs
	URL provider collection
	Name
	Description

	URL provider settings
	Name
	Description
	Classpath
	Stream Handler Class Name
	Protocol

	URL configuration collection
	Name
	JNDI Name
	Description
	Category

	URL configuration settings
	Name
	JNDI Name
	Description
	Category
	Spec

	URLs: Resources for learning

	Chapter 6. Resource environment entries
	Resource environment providers and resource environment entries
	Resource Environment Provider collection
	Name
	Description
	Resource environment provider settings
	Scope
	Name
	Description

	New Resource Environment Provider
	Scope
	Name
	Description

	Resource Env Entries collection
	Name
	JNDI Name
	Description
	Category
	Resource env entry settings
	Scope
	Name
	JNDI name
	Description
	Category
	Referenceables

	Referenceables collection
	Factory Classname
	Classname
	Referenceables settings
	Scope
	Factory Classname
	Classname

	Notices
	Trademarks and service marks

