
DI/EDI RIDE THE WAVE!

1998 DI USERS GROUP

Introduction to MQSeries Introduction to MQSeries

DI 1337

Patrick T. Verdugo
Certified MQSeries Engineer

MessageQuest, Inc.

DI/EDI RIDE THE WAVE!

CICS/MVS
CICS/400
SNA
MQSERIES
MQ

IBM Trademarks

IBM
AIX
OS/2
OS/400
VTAM
MVS/ESA
CICS/ESA

DI 1338

DI/EDI RIDE THE WAVE!

IBM AS/400

Token Ring

RISC/6000

IBM Compatible Mainframe

FEP

Frame Relay

Novell Server

IBM CompatibleWindows NT

Laptop computer

FDDI Ring

Today's Enterprise

DI 1339

DI/EDI RIDE THE WAVE!

Multiple Data Sources

A single request can involve multiple transactions on
different systems

Deferred Processing

Separation of Business Topology from Processing
Topology

Business Demands for Messaging and Queuing

DI 1340

DI/EDI RIDE THE WAVE!

Messaging and Queuing is not new to the Computer
Industry, it has been around since the 1960’s

IMS is an example of a Queuing System

CICS Transient Data and Temp Storage Queues

TCAM is an example of an early Messaging and
Queuing System

Messaging and Queuing facilities have not been
generally available to application programmers (Until
now …)

Beginning of Messaging

DI 1341

DI/EDI RIDE THE WAVE!

Synchronous Messaging (time-dependent) is a
communications technique (most prevalent in the
computer industry today)

Synchronous example: Telephone Call

Asynchronous Messaging (time-independent)
communications technique

Asynchronous example: E-mail

Messaging Concepts

DI 1342

DI/EDI RIDE THE WAVE!

Messaging Concepts
Program to Program Messaging

Synchronous Methods:

CPI-C Common Programming Interface for Communications

RPC Remote Procedure Call

Asynchronous Method:

MQI Message Queue Interface

DI 1343

DI/EDI RIDE THE WAVE!

Both CPI-C and APPC offer program to program
communications over a private logical connection

The connection is reserved exclusively for the
duration of the conversation

The connection can only be used by the two
programs communicating

It is Synchronous, monolithic in structure and
connection-dependent

Messaging Concepts - CPI-C

DI 1344

DI/EDI RIDE THE WAVE!

Supported by STUB calls in both the caller and the
callee

Using a call return mechanism over a synchronous
connection

A conversation is maintained

Client / Server message flow model

It is Synchronous, connection-dependent, but more
complex (Client / Server model)

Messaging Concepts - RPC

DI 1345

DI/EDI RIDE THE WAVE!

Asynchronous programs fill and empty queues to
exchange messages

Programs are never logically connected

Programs are indirectly associated by one or more
application queues

Simple in nature

Messaging Concepts - MQI

DI 1346

DI/EDI RIDE THE WAVE!

Messaging Summary

CPI-C, RPC and MQI are companion interfaces

They can coexist

They do not compete and are not substitutes for one
another

A single program could use all three interfaces

DI 1347

DI/EDI RIDE THE WAVE!

Queuing Concepts

Queuing is a no-connection communication choice

Queuing is a time adaption technique, used for
saving information until the intended recipient is
ready to accept the information

Entities are indirectly communicating, each operating
at its own preferred speed (buffering mechanism)

DI 1348

DI/EDI RIDE THE WAVE!

Queuing Concepts

A message queue is a storage area for saving
messages in an orderly manner for later retrieval

Queues eliminate timing dependencies

Advantages of queues

reduce the number of connections (network expense
reduction)

Concurrent processing, sharing of messages

Load balancing and load distribution

Queues and programs can be administered separately

DI 1349

DI/EDI RIDE THE WAVE!

Queuing Concepts

Asynchronous real-world examples

A telephone answering machine

A letter sent by Mail

An E-mail

Queues can be private or shared

Queues can be local or remote

Queues can be dynamic or static

DI 1350

DI/EDI RIDE THE WAVE!

Messaging and Queuing

Programs communicate
by putting messages in
message queues

“A building block for
distributed processing”

DI 1351

DI/EDI RIDE THE WAVE!

Messaging and Queuing

Communication
can be one way
or two way

DI 1352

DI/EDI RIDE THE WAVE!

Messaging and Queuing

Either program
can be busy or
unavailable

DI 1353

DI/EDI RIDE THE WAVE!

One to many . . .

Messaging and Queuing

DI 1354

DI/EDI RIDE THE WAVE!

Or many to one . . .

Messaging and Queuing

DI 1355

DI/EDI RIDE THE WAVE!

Messaging and Queuing

There are no constraints on application development

Which can
be

combined

DI 1356

DI/EDI RIDE THE WAVE!

What is MQSeries?

IBM Products that enable business
applications to exchange information,
across different platforms, by sending
and receiving data as messages . . .

DI 1357

DI/EDI RIDE THE WAVE!

The Unique Value of MQSeries

One interface across many platforms (allows
programs to be ported easily)
Shield developers from network protocols
Asynchronous API
Programming benefits

Allows for speed differences
Not dependent on availability
Queues can be shared for input and output

DI 1358

DI/EDI RIDE THE WAVE!

The Unique Value of MQSeries

MESH NETWORK STAR NETWORK

Less networking by application

DI 1359

DI/EDI RIDE THE WAVE!

MVS/ESA
Tandem NSK
OS/400
DEC Open VMS VAX
DEC Open VMS AXP
DYNIX/ptx
SINIX +DC/Osx

MQSeries Server Platforms

AIX
AT&T GIS (NCR)
HP-UX
SunOS
Sun Solaris
OS/2
Windows
Windows NT

DI 1360

DI/EDI RIDE THE WAVE!

MQSeries Hosts and Clients
HOSTS

VSE/ESA
SCO UNIX
UnixWare
Windows

Clients
Dec Open VMS VAX
Dec Open VMS AXP
DYNIX/ptx
SINIX + DC/Osx
AIX
AT&T GIS (NCR)
HP-UX
SunOS
Sun Solaris
SCO Unix
OS/2
Windows
Windows NT
MAC
JAVA

DI 1361

DI/EDI RIDE THE WAVE!

Protocol Support depends on the MQSeries
Implementation

TCP/IP

NETBIOS

LU6.2

IPX (Novell Networking)

DECNet

MQSeries Client Connections

DI 1362

DI/EDI RIDE THE WAVE!

Message Driven Processing

Application design style

The Application is divided into separate discrete
functional blocks

Inputs and outputs being interchanged by messages,
which are put on queues

Programs can start executing as a result of one or
more messages arriving on a queue

Leads to quicker development as compared to other
design styles

DI 1363

DI/EDI RIDE THE WAVE!

Message Type
Datagram - no reply is required
Request - used when the sender of the message requires a
reply from the receiver
Reply - used when the receiver of a request message sends a
reply to that message
Report - used to inform an application about events that relate
to another message

COA - confirmation on arrival
COD - confirmation on delivery
Expiration
Exception

“What is a Message”

DI 1364

DI/EDI RIDE THE WAVE!

“Attributes of a Message”

LengthLength
4 MB on Version 2 Queue Managers4 MB on Version 2 Queue Managers
100 MB on Version 5 Queue Managers100 MB on Version 5 Queue Managers

HeaderHeader
Defined by MQSeriesDefined by MQSeries

User may elect to use Message Id, Correlation Id, PriorityUser may elect to use Message Id, Correlation Id, Priority
and Persistenceand Persistence

DataData
User defined, may contain any type of data (characterUser defined, may contain any type of data (character
data, image files, attachments, binary data, etc.)data, image files, attachments, binary data, etc.)

MQ Header User Data

4 Megabytes (V2)
100 Megabytes (V5)
4 Megabytes (V2)

100 Megabytes (V5)

DI 1365

DI/EDI RIDE THE WAVE!

MQSeries Objects

Queue managers

Queues

Namelists

Process definitions

Channels

DI 1366

DI/EDI RIDE THE WAVE!

Queue Manager

A Queue Manager provides the messaging and
queuing services to application programs

DI 1367

Some environments only support one Queue
Manager (example: AS/400)

In MVS/ESA applications are connected to a queue
manager through the Batch adapter, CICS adapter, or
IMS adapter

DI/EDI RIDE THE WAVE!

Queues
A place to store messages
Each Queue has attributes

get enabled
put enabled
exclusive or shared
maximum number of messages (depth capacity)
maximum message size that can be put on the queue

Physical implementation is not visible to the
application program:

Main Storage Buffers
File(s) on Disk or other permanent storage
Both

DI 1369

DI/EDI RIDE THE WAVE!

Queues
Queues are owned by a Queue Manager, not by
Application Programs
Queue Definitions are held by Queue Managers
Types:

Local
Remote
Alias
Reply-to
Model

DI 1370

DI/EDI RIDE THE WAVE!

Local Queue

Resides on the same queue manager as the
connected process

May be opened as input, output or both

May be used for one of the following uses:

Normal

Transmission

Initiation

Optionally supports Trigger Processing

DI 1371

DI/EDI RIDE THE WAVE!

Is not a “real” queue, is a definition only

Represents a local queue on another Queue Manager

Messages for it will be staged on a Transmission
queue

Can only be opened for output

Remote Queue

DI 1372

DI/EDI RIDE THE WAVE!

Transmission Queue

A local queue with a special usage

Minimum of one for each remote queue manager

Default name of the remote queue manager

Not intended to be accessed directly by application
programs

Supported by Message Channel Agent for transport

DI 1373

DI/EDI RIDE THE WAVE!

Local queue

Enables automatic initiation of a program to process
messages

Messages are placed on it by the Queue Manager

Initiation Queue

DI 1374

DI/EDI RIDE THE WAVE!

Alias Queue

Points to another queue

Multiple aliases can exist for the same queue

Maintained by the Queue Manager, it allows the user
to use queues for different purposes or in different
ways:

different default attributes

different security

different usage (input / output)

DI 1375

DI/EDI RIDE THE WAVE!

Reply-to Queue

Used to collect replies from requests or report
messages

Identified by ReplyToQ field in the message
descriptor (MQMD)

The name has two parts (may be resolved by the
Queue Manager)

local queue name

queue manager name

DI 1376

DI/EDI RIDE THE WAVE!

Model or Dynamic Queue

A model queue when opened, becomes a dynamic
queue

Two kinds of dynamic queues are possible:

Temporary - deleted when closed

Permanent - lasts until specifically deleted

Names of dynamic queues are generated according
to a requested pattern

DI 1377

DI/EDI RIDE THE WAVE!

Dead Letter Queue

A repository for all non deliverable messages

Always a local queue

The Queue Manager adds a prefix (MQDLH) to explain
who / why

Design considerations:
Persistence

User is responsible for the procedure to clean up the Dead
Letter Queue

Some implementations include a Dead Letter Handler

DI 1378

DI/EDI RIDE THE WAVE!

The target queue is full

The target queue does not exist

The queue is PUT inhibited

The sender is not authorized

The logs are full (cannot log)

Messages arrive in the DLQ ...

DI 1379

DI/EDI RIDE THE WAVE!

Process Definition

A process definition object defines an application to
be started by a trigger monitor

It includes the application ID, the application type,
and application specific data

DI 1380

DI/EDI RIDE THE WAVE!

MQSeries Framework
Application

MQI

Data
Conversion

Interface

Name
Service

Interface

Security
Enabling
Interface

Messaging
and

Queuing
Kernel

Message
Channel
Interface

Trigger
Monitor
Interface

DCE
Security

DCE
Directory

Other MQ Systems

Other
SNA

TCP/IP

TMI

MCI

DCI

NSI

DI 1381

SEI

DI/EDI RIDE THE WAVE!

Planning
What do I have to plan for?

Naming Convention
MQSeries Topology
Use of Name Resolution
Dynamic Routing
High Availability
Fail-over
Performance
Backup and Recovery
Installation
Administration

DI 1382

DI/EDI RIDE THE WAVE!

For system administrators, messages have two
important attributes

Persistence: Survives an MQSeries restart

Priority: impacts the order in which a message is retrieved
from a queue

Priority can also impact the way that trigger events
are generated

Planning

DI 1383

DI/EDI RIDE THE WAVE!

Planning

Network Topology Review

MQSeries Routing and Name Resolution Strategy

MQSeries Enterprise Naming Strategy

Queue Naming Convention

Message Channels

Client / Server

DI 1384

DI/EDI RIDE THE WAVE!

Planning
Trigger Processing

The ability to start a process based on the arrival of a
message

Three Types

FIRST

EVERY

DEPTH

Trigger Monitors

Special programs that monitor Initiation Queues

DI 1385

DI/EDI RIDE THE WAVE!

MQSeries Benefits

Messages are sent once, and only once

Messages can survive a Network Failure

Messages can survive an O/S Failure

Data flow is automatically resumed after a Failure

Log Data preserves the messages

DI 1386

DI/EDI RIDE THE WAVE!

MQSeries Benefits

MQSeries uses asynchronous messaging which
eliminates the dependency on:

the receiving program

the network

the receiving system

The sending process always completes its unit of work

DI 1387

DI/EDI RIDE THE WAVE!

MQSeries Benefits

MQSeries abides by the restrictions imposed by the
local and target system security

MQSeries provides exit points to enhance security
(encryption, authentication, non-repudiation)

DI 1388

DI/EDI RIDE THE WAVE!

MQSeries provides exit points to use Data
Compression

MQSeries performs Data Conversion from one
platform to another

EBCDIC to ASCII, ASCII to EBCDIC

User defined conversion (foreign code pages)

MQSeries Benefits

DI 1389

DI/EDI RIDE THE WAVE!

Error Recovery

If a remote queuing error or session error occurs,
error messages are sent to the local system operator
or console

If any error occurs while sending or receiving a
message, the transaction is terminated, and error
messages are sent to both the local and remote
system consoles

DI 1390

DI/EDI RIDE THE WAVE!

If a message cannot be put on a remote queue, the
message is written to the dead-letter queue and a
report is sent back to the message sender only if
requested

 It is important to ensure that there is a dead-letter
queue defined for each queue manager

Recovering from Errors

DI 1391

DI/EDI RIDE THE WAVE!

How Triggers Work

When a message is put onto a message queue, a
trigger is generated and the Queue Manager is
notified

The Queue Manager then writes a trigger message
(containing some user defined data) to the initiation
queue

DC 1392

DI/EDI RIDE THE WAVE!

Trigger Monitors

Any process can be triggered

Functionally equivalent to the MVS triggers

Trigger Monitors operate the same

Initiation Queues must be defined

Process Definitions indicate what process to start

DI 1393

DI/EDI RIDE THE WAVE!

Trigger Types

There are three types of triggers:
First

The arrival of the first message satisfies the trigger
condition

Every
The arrival of each message causes a trigger

Depth
When a depth is reached it causes a trigger and resets the
trigger

DI 1394

DI/EDI RIDE THE WAVE!

The Trigger Process

A Queue Manager

MQA1.DATA

MQA1.INITQ

MQA1MQA1MQA1

TRIGGER
TRIGTYPE(FIRST)
PROCESS(B)
INITQ(MQA1.INITQ)

Trigger Monitor

B

DI 1395

DI/EDI RIDE THE WAVE!

Trigger Type First

As soon as the first message arrives on the
application queue, it satisfies the trigger condition,
and the corresponding process is started

The triggered application runs until there are no more
messages to process

Example: Airline Schedule Boards that receive
updates sporadically

DI 1396

DI/EDI RIDE THE WAVE!

Trigger Type Every

Every time a message arrives on the application
queue, it satisfies the trigger condition and the
process is started

The application runs until the single message is
processed

Example: a Server environment where requests come
from multiple locations on an unpredictable basis

DI 1397

DI/EDI RIDE THE WAVE!

Trigger Type Depth

Messages arrive on an application queue and
accumulate until they reach the depth threshold, this
satisfies the trigger, the process is started and the
trigger is reset

The application runs until the messages are all
processed (a logical unit of work) and sets the trigger
condition on again prior to ending

Example: Mortgage Application

DI 1398

DI/EDI RIDE THE WAVE!

Trigger Monitors

A Trigger Monitor is a program that monitors an
initiation queue

It retrieves messages and processes them according
to information in the trigger message

Triggered Channels: the corresponding Message
Channel Agent (MCA) is started to retrieve messages
from the transmission Queue

DI 1399

DI/EDI RIDE THE WAVE!
DI 1400

Why ChooseWhy Choose
MQSeriesMQSeries

DI/EDI RIDE THE WAVE!

Why choose MQSeries

Safe Investment - strategic to IBM

Multi-Platform - over 25 IBM and non-IBM platforms
supported

Risk Free - world class support from IBM

Customized - integrates with the Internet, Lotus
Notes, SAP, TXseries, CICS, etc.

De-Facto Leader and Standard - greater than 50% of
the Market share

DI 1401

DI/EDI RIDE THE WAVE!

Why choose MQSeries

Assured Delivery - messages are delivered once and
only once

CME $2 trillion of options in a single day

Running since 1995, have not lost a single message

Recognized - 4 Industry Awards

Dynamic and Modern - 200 developers adding new
features and function (JAVA, OO, etc.)

DI 1402

DI/EDI RIDE THE WAVE!

Why choose MQSeries

Scalable

US Customs 23M messages per day soon to be 100+M
messages per day

Endorsed - frequent and positive coverage by all
major IT Consultant Groups and IT Publishers

Tried & Tested - In production for 4+ years

DI 1403

DI/EDI RIDE THE WAVE!

Well Supported - an industry of valued partners have
invested in MQSeries providing:

Ports

Applications

Tools

Training

Consultancy

Why choose MQSeries

DI 1404

DI/EDI RIDE THE WAVE!

Why choose MQSeries

Cross Enterprise - the majority of MQSeries sales are
for distributed servers, demonstrating MQSeries is
not just a Mainframe product

Well Connected - over 3,000 customers to-date
including the majority of Fortune 100

Productive
“Anticipated development effort of seven months was actually
achieved in seven weeks after receiving MQSeries Software”

 - Barclay’s Bank

DDI 1405

DI/EDI RIDE THE WAVE!

Why choose MQSeries

Managed - supported by several System Management
vendors

BMC

Candle Corporation

Boole & Babbage

Technology Investments, Inc.

Pedigree - developed at Hursley Lab, home of
transaction systems for over a quarter of a century

DI 1406

