WebSphereO Data Interchange for
Multiplatforms

<||Ii

User’s Guide

Version 3.1

GC34-6143-00

WebSphereO Data Interchange for
Multiplatforms

User’s Guide

Version 3.1

..'li

GC34-6143-00

Note: Before using this information and the products it supports, read the information in
“Notices” on page 59.

First Edition (April 2002)

This edition applies to Version 3.1 of IBM WebSphere Data Interchange for Multiplatforms (product
number 5724-C50) and to all subsequent releases and modifications until otherwise indicated in new
editions.

[] Copyright International Business Machines Corporation 1998, 2002. All rights reserved.

US Government Users Restricted Rights — Use, duplication, or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Contents

About this book v
Who this bookisfor.................... v
What youneedtoknow v
Related books v
Glossary...........ccooiiiiii... vi
How to send your comments........... vi
Introduction 1
WebSphere Data Interchange. 1
Flexible setup and administration 1
Superior translation capability 2
Versatile communications............ 2
Extensive reporting and auditing. 2
EDI standards support. 3
Additional features. 3
Installation 5
WebSphere Data Interchange Server 5
Installing WebSphere Data Interchange
Serverc.oiiiiiiiiiiii 6
WebSphere Data Interchange Client. 11
Installing WebSphere Data Interchange
Clientt 11
Setting up connections to server
databases 14

Running the WebSphere Data

Interchange Server 19
Running from the command line 19

© Copyright IBM Corp. 1998, 2002

Triggering from an MQSeries Queue. 21

Adapter userexits 23
Calling from a C++ program............ 25
Elements of the C++ API 25
WebSphere Data Interchange API
example............ol 33

Message Content Descriptor

profiles 39
Setupoverview L 39
Creating MCD profiles................. 41
Service profiles............. 43
Substitution keywords................. 43
Setupoverview 44
Creating Service profiles 45

C++ and Java API return codes 51

Mapping the MQRFH2 header to

the JIMSAPI................ 57
Notices 59
Trademarks 61
Index 63

iii

Contents

iv User’s Guide

About this book

This guide contains information and instructions for installing
and using IBMDO WebSpherell Data Interchange for
Multiplatforms Version 3.1.

Note: The WebSphere Data Interchange for Multiplatforms
Version 3.1 component is based on the Datalnterchange
Version 3.1 product.

Who this book is for

This document is intended for the developer designing a
solution and for the system administrator responsible for
installing and managing WebSphere Data Interchange.

What you need to know

Developers and those who run solutions should have an
understanding of data transformation and mapping.

Related books

The Datalnterchange Version 3.1 library includes the books
listed below. These books may be used for reference.

All the Datalnterchange books are available at
http:/ /www.ibm.com/websphere/datainterchange.

* Datalnterchange Client User’s Guide (SB34-2010)

This guide describes how to use, interface, create, and
maintain Datalnterchange profiles, maps, data formats,
and EDI standards.

* Datalnterchange Administrator’s Guide (SB34-2002)

This guide describes the administrator activities for the
product, including defining profiles, defining networks,
and authorizing users. The audience for the book is the
application programmer or data processing analyst.

© Copyright IBM Corp. 1998, 2002 v

http://www.ibm.com/websphere/datainterchange

About this book

Glossary

Datalnterchange Messages and Codes (SB34-2000)

This book provides all logged and displayed messages, as
well as information to aid users and support personnel in
identifying problems. This reference guide is for the EDI
administrator, the system programmer, and the database
administrator.

Datalnterchange Programmer’s Reference (SB34-2001)

This book provides information for the Datalnterchange
application programmer. It describes general-use
programming and provides reference information for
developing application programs that use
Datalnterchange.

Other related documents include:

Datalnterchange V3.1 XML Technical Implementation Guide -
available at

http://www.ibm.com/websphere/datainterchange.

For glossary definition terms and abbreviations used in
WebSphere Data Interchange, refer to the glossary in the
Datalnterchange Client User’s Guide (SB34-2010).

How to send your comments

vi User's Guide

IBM welcomes your comments. You can send your comments
electronically to the network ID listed below. Be sure to
include your entire network address if you wish a reply.

Mail to: emd19@us.ibm.com

http://www.ibm.com/websphere/datainterchange

Chapter 1. Introduction

IBM WebSpherell Data Interchange for Multiplatforms
Version 3.1 is a robust data translation and transaction
management solution that can scale with Electronic Data
Interchange (EDI) to provide improved back-office reporting.

Before you can use WebSphere Data Interchange for
Multiplatforms to translate data, or to send or receive
transactions, messages, or files, you must define certain
information. This information describes how your system
sends and receives data, how data is formatted in your
application files and mapped to a standard, to whom you send
data and from whom you receive data, and other pertinent
information.

This product is provided on two CD-ROMs, one for the Server
and one for the Client.

WebSphere Data Interchange

The WebSphere Data Interchange licensed product is a single
application that reformats data for electronic transmission, and
includes the following features:

* Flexible setup and administration
* Superior translation capability

* Versatile communications

* Extensive reporting and auditing
* EDI standards support

¢ Additional features
Flexible setup and administration

* Online customization of EDI standards, maps, and trading
partner relationships

* Mapping designed to support:
e Literals/constants
* Accumulators, arithmetic and logical operations

* Qualified loop and element mapping

© Copyright IBM Corp. 1998, 2002 1

Introduction

* Hierarchical loop mapping

* Envelope field mapping

* User exits at the field level

* User-defined translation and validation tables

* Boolean logic

Maps that can be used by one or more trading partners

Export/import functions to move data between test and
production systems

Superior translation capability

Syntax checking

Test and production support

Ability to translate and envelope separately

Flexible command language interface

Interactive, batch, event-driven, and real-time processing

Automatic generation of functional acknowledgments

Versatile communications

Support for networks and direct connections to trading
partners

Ability to resend individual transactions or entire
envelopes

Support for MQSeriesl] message queues as a means of
sending and receiving messages

Extensive reporting and auditing

2 User’s Guide

Reporting of trading partner relationships, including what
transaction sets are being used, and when the last
communication occurred with a trading partner, and
others

Reporting of envelope and transaction status for both
online and batch processing

Providing exception reporting

Setting acceptable error levels for the trading
partner/map combination

Introduction

* Reporting of SAP status for online and batch processing

* Providing optional audit log with archive recovery
capability

EDI standards support

* Multiple EDI standards, including EDIFACT, X12, UCS,
VICS, and Rail

* Multiple versions and releases of EDI standards

* Electronic distribution to speed delivery of new EDI
standards

* Ability to migrate a map from one version or release of a
standard to another, or from one transaction to another

¢ Online creation and customization of EDI standards

* Full EDI standards compliance checking (user option)
Additional features

* High throughput and performance
* Support for concurrent users and applications

* Support for shared trading partner profiles (minimal
trading partners)

* Ability to process in multiple environments
* Support for encryption and authentication

* Application program interface (API) to integrate directly
with your application

* Java program interface to integrate with MQSeries
Adapter Offering (MQAO) -based applications

* Graphical User Interface (GUI) to simplify the
management of profiles, EDI standards, data formats, and
maps

Chapter 1. Introduction 3

Introduction

4 User’s Guide

Chapter 2. Installation

This chapter provides instructions for the installation of
WebSphere Data Interchange for Multiplatforms Version 3.1
Server and Client.

WebSphere Data Interchange Server

Before you install WebSphere Data Interchange for
Multiplatforms Server, ensure that you have the required
hardware and software.

Hardware requirements

Your hardware must meet the following minimum standards:

* Server capable of running the AIXO or Microsoft[]
Windows 2000 operating system

* CD-ROM drive for installing the distributed material

* Required network hardware and communication
connection

Additional hardware requirements for Microsoft Windows
2000:

* Intel Pentium III processor at 933 Mhz or faster
* 1024 MB of memory

* Storage device with a minimum of 8 GB free space
Software requirements

Your software must meet the following minimum standards:
* One of the following operating systems for the Server:

e AIXV433

* Microsoft Windows 2000
* The following server databases and tools:

* Administrative database supplied with the product

* DB2 Universal Database Workgroup Edition V7.2 with
open database connectivity (ODBC) (provided with
the product)

© Copyright IBM Corp. 1998, 2002 5

Installation

* Optional operating products:
e MQSeries] V5.2
* Expedite for AIX V4.5 or Expedite for Windows V4.6

Installing WebSphere Data Interchange Server

6 User's Guide

WebSphere Data Interchange Server has an InstallShield
Wizard that guides you through the installation process for
AIX or Microsoft Windows 2000 installations.

AIX

To use the InstallShield Wizard, you must be logged in as the
root user. If you are running from a remote terminal, you must
be using X-Windows and your DISPLAY environment
variable must be set to your X-Server IP address.

By default, WebSphere Data Interchange Server is installed to
the fust/wdi/DIv3.1 directory. You must have at least 50 MB of
free space on this file system.

1. If you are installing from a CD-ROM, insert the
WebSphere Data Interchange Server CD and mount the
CD-ROM drive.

a. Change to the directory containing the wdi.aix
executable.

b. Run the wdi.aix executable to start the InstallShield
Wizard.

The Welcome screen opens as the InstallShield Wizard
prepares to install WebSphere Data Interchange Server.

2. Click Next.
The license agreement opens.

3. Click the appropriate button to accept the terms of the
license agreement and to indicate you have read the notice
and agree to its terms.

4. Click Next.

The Installer dialog box displays a listing of the
installation directory and the total size requirement.

5. Click Next.

The InstallShield Wizard begins copying program files. To
stop this process at any point, click Cancel.

The screen displays the successful installation message.

Installation
Click Finish.
The installation of the files is complete.

The following directories are created within the
installation directory.

bin runtime/ edi
bind runtime/ eex
ddl runtime/fak
deinstl runtime/ prt
hlp runtime/qry
include runtime/rcv
ixf runtime/rpt
runtime runtime/ trk
runtime/adf runtime/wrk
runtime/aex runtime/ xex
runtime/dicmd runtime/xml
runtime/ dicts samples
runtime/dtds _uninst

Microsoft Windows 2000

To use the InstallShield Wizard, you must be logged in as an
administrator.

By default, WebSphere Data Interchange Server is installed to
the C:\Program Files\IBM\WDIServer V3.1 directory. You
must have at least 70 MB of free space on this file system.

1.

Insert the WebSphere Data Interchange Server CD into the
CD-ROM drive.

a. On the menu bar, click Start > Run.
b. Find the directory containing the wdi.exe executable.

c. Run the wdi.exe executable to start the InstallShield
Wizard.

The Welcome screen opens as the InstallShield Wizard
prepares to install WebSphere Data Interchange Server.

Click Next.
The license agreement opens.

Click the appropriate button to accept the terms of the
license agreement and to indicate you have read the notice
and agree to its terms.

Chapter 2. Installation 7

Installation

8 User's Guide

4. Click Next.

The Installer dialog box displays a listing of the
installation directory and the total size requirement.

5. Click Next.

The InstallShield Wizard begins copying program files. To
stop this process at any point, click Cancel.

The screen displays the successful installation message.

6. Click Finish.

The installation of the files is complete.

The following directories are created within the
installation directory.

bin runtime) eex
bind runtime) fak
ddl runtime\ prt
hlp runtime\ qry
include runtime\ rcv
ixf runtime\ rpt
runtime runtime\ trk
runtime) adf runtime\ wrk
runtime) aex runtime) xex
runtime\ dicmmd runtime\ xml
runtime)\ dicts samples
runtime)\ dtds _uninst
runtime) edi

Setting up the WebSphere Data Interchange
databases

Perform the following steps as a user with DB2 administrator
authority.

1. If you are installing on Windows, using your DB2
administrator user ID, select Start > Programs > IBM DB2
> Command Window to open the DB2 Command
window. If you are installing on AIX, log in as a user with
administrator authority.

The remaining database setup steps use this command
window or login session.

Installation

Change the directory to the ddl directory under the
installation directory.

a.

Issue these commands:
db2 create db ediec31e
db2 create db edict31le
This process creates the databases. When this process

has successfully completed, the databases have been
built.

After the databases have been built, issue these
commands:

altrec31

altrct31

This process alters some of the default parameters

related to log file size and to the number of primary
and secondary logs.

Change to the DB2 directory which contains the bind
files for the DB2 utilities. If you are installing on
Windows, this directory typically has a name similar
to C:\Program Files\SQLLIB\bnd. If you are
installing on AIX, this directory typically has a name
similar to /u/<db2 instance>/sqllib/bnd, where <db2
instance> is the ID of the instance owner.

Note: For AIX installations, you may need to specify a
different file for the messages (for example
/tmp/bind.msg) if you do not have write authority to
the current directory.

Issue these commands:

db2 connect to ediec31e

db2 bind @db2ubind.lst messages bind.msg grant public
db2 bind @db2cli.Ist messages clibind.msg grant public
db2 connect reset

db2 connect to edict31e

db2 bind @db2ubind.lst messages bind.msg grant public
db2 bind @db2cli.Ist messages clibind.msg grant public
db2 connect reset

Change the directory to the ddl directory under the
installation directory.

Chapter 2. Installation 9

Installation

10 User's Guide

3. Issue these commands:
db2 -tf ediec31.ddl -1 ec31.log
db2 -tf edict31.ddl -1 ct31.log

This process creates the WebSphere Data Interchange for
Multiplatforms tables, indexes, views, and so on.

4. Issue these commands:
db2 -tf grntec31.ddl -1 grntec31.1og
db2 -tf grntct31.ddl -1 grntct31.log

The GRANT statements necessary for WebSphere Data
Interchange Client access to the newly created tables are
issued. The default is to issue GRANTS to public. You may
wish to change public to specific user IDs or a group of
authorized users.

5. Change the directory to the ixf directory under the
installation directory.

6. Issue the following commands in sequence:
a. loadec31
b. loadct31

This process loads initial data into the DB2 tables. The
loading may generate warnings, which can be ignored.

7. Change the directory to the bind directory under the
installation directory.

8. Issue this command:
db2 -tf bindgrnt.fil -1 bind.log
This process BINDs the WebSphere Data Interchange DB2
packages and GRANTSs execute authority to public.

The set up of the WebSphere Data Interchange databases is
complete.

Installation

WebSphere Data Interchange Client

WebSphere Data Interchange for Multiplatforms Client has an
Install Wizard that guides you through installation. As with
any installation, you should begin by closing any applications
you have running. Make sure you have enough space on the
hard drive on which you are installing the application, EDI
standards, and data files. The minimum recommended space
is 128 MB.

Note: If you want to run the Client from a local area network
(LAN), see the readme file included with the product.

Before you install WebSphere Data Interchange Client, ensure
that you have the required hardware and software.

Hardware requirements

* Intel Pentium PC
* CD-ROM drive for installing the distributed material
* 128 MB RAM

Software requirements

* One of the following operating systems:
* Microsoft Windows[J 95
* Microsoft Windows[J 98
* Microsoft Windows[2000
* DB2 Connect Personal Edition V7.2 (provided with the
product)
Other requirement

* WebSphere Data Interchange Server
Installing WebSphere Data Interchange Client

1. Insert the WebSphere Data Interchange Client Installation
CD ROM. The installation process should start
automatically. If it does not, go to step a.

a. On the menu, click Start > Run.

The Run dialog box opens with the cursor in the Open
field.

Chapter 2. Installation 11

Installation

12 User's Guide

b. Inthe Open field, type x:\client\WDIClient V3.1.exe,
and click OK. x indicates your CD ROM drive.

The Welcome Screen opens as the Install Wizard
prepares to install WebSphere Data Interchange
Client.

2. Click Next.

The screen displays the copyright notice.

Click the appropriate button to accept the terms of the
license agreement and to indicate you have read the notice
and agree to its terms.

If this is the first time you are installing WebSphere Data
Interchange Client, the Choose Destination Location
dialog box opens. Select your installation location by
clicking Browse and choosing the appropriate drive and
directory. The drive can be selected from the drop-down
list at the bottom of the dialog box. The default destination
directory is C:\Program Files\IBM\WDIClient V3.1.

Note: Install WebSphere Data Interchange Client in a
different directory than previous WebSphere Data
Interchange Client versions.

Click Next.

The Setup Type dialog box opens. Choose the type of
setup you want from the following choices:

e Typical

Select this option the first time you install WebSphere
Data Interchange Client. This option installs all the
common options and creates the databases for the
software.

Attention: If you are reinstalling WebSphere Data
Interchange Client and you select this option, you
receive a warning that Install will overwrite your
databases. Install will only overwrite the default 3.1
database files installed through a previous 3.1 install.
This option will not overwrite databases installed on a
user’s database system, such as DB2.

10.

Installation

e Custom

Select this option when you want to choose the
options to install. This option is recommended for
advanced users. If you are reinstalling the WebSphere
Data Interchange Client, you should use the Custom
setup to avoid overwriting your databases and drivers
with the defaults.

Choose a Setup Type by clicking the appropriate option
button. The default Setup type is Typical.

Click Next.
If you chose a Typical setup, go to the next step.

If you chose a Custom setup, the Select Components
dialog box opens. You can choose whether to install:

* Program Files
* Crystal Report Files
e Database Files

To select a component, click the check box next to it.
Click Next.

The Installer dialog box displays a listing of the selected
features and the total size required to install them.

Click Next.

The Install Wizard begins copying program files. To stop
this process at any point, click Cancel.

The screen displays the successful installation message.
Click Next.

The readme file displays.

Click Finish.

Select WDI Client from the program folder specified
during installation to start WebSphere Data Interchange
Client.

Note: If you are upgrading WebSphere Data Interchange
Client from a previous release, see the Datalnterchange
Client User’s Guide for more information.

Chapter 2. Installation 13

Installation

Setting up connections to server databases

14 User's Guide

The following instructions assume that CustTime and
RunTime databases for WebSphere Data Interchange Server
have been installed successfully and that you are authorized to
access those databases. Do the following tasks in the order
they are given.

1. Install DB2 Connect Personal Edition V7.2

a.

C.

Insert the DB2 Connect Personal Edition CD that is
included in the package.

The setup program should autostart; however, if it
does not start, invoke setup.exe from the DB2 Connect
Personal Edition CD.

On the Installation dialog box, click Install and follow
the prompts.

1)

2)

7)

On the Select Products dialog box, select DB2
Connect Personal Edition. The other products are
not needed.

On the Select Installation Type dialog box, select
Typical.

On the Choose Destination Location dialog box,
accept the default directory or choose an alternate
installation destination.

On the Configure NetBIOS dialog box, accept the
default.

On the Enter Username and Password for Control
Center Server dialog box, type your username and
password. If an error occurs due to authority, you
can usually ignore it and continue the installation.

On the Start Copying Files dialog box, click Next.

At this time, DB2 Connect begins to install on
your system.

When the installation is complete, the Setup
Complete dialog box opens.

Click Finish.
The Steps dialog box opens.

Click Exit.
d. Reboot your system.

Installation

2. Configure your database connections

Note: This step is performed twice: once for the RunTime
database and again for the CustTime database.

a.

b.

Open the Client Configuration Assistant in the IBM
DB2 program folder.

If the Welcome dialog box opens, click Add Database .
If the Welcome dialog box does not open, on the
Client Configuration Assistant dialog box, click Add.

The Client Configuration Assistant dialog box opens.
On the Add Database Wizard dialog box, select
Manually configure a connection on the Source tab
page.

1)

2)

Click Next.

The Protocol tab page opens.
Select TCP/IP.

The TCP/IP tab page opens.

Specify the name of the system or the IP address
of the system that contains the databases, and
specify the port number of the database.

This information must be obtained from your
system administrator.

On the Database tab, specify the name of the
database.

The name is obtained from your system
administrator. The default value for the RunTime
database is EDIEC31E. The default value for the
CustTime database is EDICT31E.

Click Finish.

A Confirmation dialog box opens. Use this dialog
to test your connection. If you are not able to
connect successfully and can not resolve the issue,
contact your system administrator.

3. Install WebSphere Data Interchange Client

Install WebSphere Data Interchange Client if it is not already
installed.

Chapter 2. Installation 15

Installation

4. Identify your system to WebSphere Data
Interchange Client

a. Start WebSphere Data Interchange Client.

From the menu, click View > EDI Systems.

c. Create a new EDI System that utilizes your databases.

1) From the menu, click File > New, or click Create
New Document.

An EDI System dialog box opens.

a.
b.

Specify a name for the new system.

Select the Data Source Name for the CustTime
database.

Specify the database qualifier for the
CustTime database.

The qualifier is sometimes referred to as the
schema. The default value for the CustTime
database is CustTime. Confirm this value with
your system administrator.

Select the Data Source Name for the RunTime
database.

Specify the database qualifier for the RunTime
database.

The qualifier is sometimes referred to as the
schema. The default value for the RunTime
database is EDIENU31. Confirm this value
with your system administrator.

Identify the platform that the WebSphere
Data Interchange Server runs on.

Select a color to be associated with this EDI
System.

Associating unique colors with each EDI
System helps the user to easily identify which
system they are working with in a multi-
system environment.

Click OK.

The new system is saved.

d. Exit and restart WebSphere Data Interchange Client.
e. Click Setup.

16 User's Guide

Installation

Enter the user ID and password for each of the
CustTime and RunTime databases, if requested.

If the Setup Functional Area window opens, the
connection to your databases is complete. If there is an
error, ensure your EDI System is set up correctly. An
incorrect database qualifier is a common problem.

Chapter 2. Installation 17

Installation

18 User's Guide

Chapter 3. Running the WebSphere Data
Interchange Server

The chapter provides instructions for running WebSphere
Data Interchange Server.

Running from the command line

WebSphere Data Interchange Server always reads commands
from STDIN and writes the results to STDOUTU these are
treated as STREAMs. When invoked from the command line,
the command line processor automatically opens STDIN and
STDOUT, piping them wherever the user requests. You
typically prepare a file of PERFORM commands for input and
redirect the input from that file. You would probably redirect
the STDOUT to a file.

An example of this usage is shown below:

ediservr < commands.txt > results.txt

Where commands.txt is the input file and has PERFORM
commands, and results.txt contains the output from
ediservr.exe.

The commands files consist of a set of WebSphere Data
Interchange commands separated by semicolons. Every
command is terminated with a semicolon.

The first command is always a SET, and the second command
is always INIT. These are followed by a series of Set file
commands that specify the input and output files for the
following PERFORM command(s). The SET FILE PERFORM
sequence can be repeated as many times as required.

A typical command file is as follows:

SET plan(EDIEC31E) userid(xxxxxx) password (xxxxx);

INIT;

SET FILE(APPFILE,c:\ ne62\ test\ receive\ input\ appfile.txt);
SET FILE(EDIFILE,c:\ ne62\ test\ receive\ input\ edifile.txt);
SET FILE(PRTFILE,c:\ ne62\ test\ receive\ output\ prtfile.txt);
SET FILE(EXPFILE,c:\ ne62\ test\ receive\ output\ expfile.txt);
SET FILE(TRKFILE,c:\ ne62\ test\ receive\ output\ trkfile.txt);

© Copyright IBM Corp. 1998, 2002 19

Running the WebSphere Data Interchange Server

SET FILE(ENVEXCP,c:\ ne62\ test\ receive\ output\ excpfile.txt);
SET FILE(RPTFILE,c:\ ne62\ test\ receive\ output\ rptfile.txt);
SET FILE(FAKFILE,c:\ ne62\ test\ receive\ output\ fakfile.txt);
SET FILE(QRYFILE,c:\ ne62\ test\ receive\ output\ qryfile.txt);

PERFORM DEENVELOPE AND TRANSLATE WHERE
FILEID(EDIFILE) APPFILE(APPFILE) RAWDATA(Y);

TERM;

Description: commands.txt

SET command:
Sets up the environment

plan(EDIEC31E): To point to the WebSphere Data
Interchange database

userid (XXXXX): User ID for the database
password (XXXX): Password for the user ID account

INIT command:
Loads the startup information and connect to the database
using parameters defined above.

SET FILE (LogicalFileName, RealFileName):
Defines various INPUT and OUTPUT files needed for
translation. The LogicalFileName of each file is assigned
with a RealFileName that includes the complete path.
Depending on the type of PERFORM command used,
some files are mandatory, while others are optional.

PERFORM:
Issues standard perform commands. This command uses
LogicalFileNames for various files used.

TERM:

Disconnects from the database and frees all allocated
memory.

Description: results.txt (STDOUT)

If translation is successful, then contents of the file will be as
follows:

DI Translator Started, build date: Feb 19 2002

DI Translator processed your request.

DI Translator shutdown

If translation fails, the contents of the file will be as follows:
DI Translator Started, build date: Feb 19 2002

20 User's Guide

Running the WebSphere Data Interchange Server

DI Translator Error. RC="errorcode" , ERC="extended
return code"

DI Translator shutdown

Triggering from an MQSeries Queue

The WebSphere Data Interchange adapter program is installed
as part of WebSphere Data Interchange for Multiplatforms
Version 3.1. The configuration scripts provided set up the
necessary queues and definition objects. The adapter uses
MQSeries Triggering to know when messages need
processing. When a message is put to an application queue, a
trigger message is created. The MQSeries trigger monitor
receives the message and executes the adapter. The adapter
then passes the information needed to process the application
message to the WebSphere Data Interchange
server/translator. Application messages are committed,
rollbacked, or moved to the Queue Manager’s Dead Letter
queue, conditioned by the return codes from the WebSphere
Data Interchange Server. The adapter will wait the user-
configured time interval for any successive messages, and
then terminate. The trigger monitor then restarts WebSphere
Data Interchange adapter upon receipt of another trigger
message.

Base MQSeries support architecture uses six MQSeries queues,
three input and three output.

Input queues Output queues
EDI_IN EDI_OUT
ADF_IN ADF_OUT
XML_IN XML_OUT

The wdi.mgcommands file in the samples directory contains
all MQ Service Command (MQSC) instructions for creating
the needed queues.

Note: Necessary queues and definition objects are created in
the default queue manager.

To create these six queues and configure the input queues for
triggering, run the wdicommand script. The specific
configuration scripts for integrating with other products, such
as WebSphere MQSeries Integrator, are available at

http:/ /www.ibm.com/websphere/datainterchange.

Chapter 3. Running the WebSphere Data Interchange Server 21

http://www.ibm.com/websphere/datainterchange

Running the WebSphere Data Interchange Server

Each step of the trigger program is coordinated with a
message exits dll called msgExits.dll that must reside
somewhere in the binaries path at runtime.

The message exits dll can instruct the trigger program to skip
messages, terminate, take or skip a syncpoint, and so on. It can
be used to customize the behavior of the adapter to route
failed messages to a special queue, or to notify someone if a
failure in translation occurs. The interface to the message exits
dll is documented in Adapter user exits on page 23.

When triggered, the adapter:
Reads the wdi.properties file for runtime directories.

2. Calls the trigger startup exit msgTrigger() if present and
proceeds based on the return code from the exit.

3. Initializes WebSphere Data Interchange. If WebSphere
Data Interchange cannot be initialized, the adapter turns
triggering off for the queue and terminates.

4. Sets the name of the file that the message will be received
into, which is datadirectory(from property
files)/ rcvdirectory(from property files)/ MQSeries message
ID(from MQMD).rcv.

5. For each message on the queue:

a. Browses the data queue to get the information on the
next available message.

b. Calls the message tracking exit if present, and passes it
the browse data. The message exit can return the batch
ID to be used and an indicator of whether to proceed
or to skip this message.

c. If OK to proceed, calls WebSphere Data Interchange
with a PERFORM RECEIVE AND PROCESS
ONEMESG(Y) WHERE REQID(mq_queue_name[1-
16]) BATCHSET (batchid).

d. Upon returning from WebSphere Data Interchange,
calls the msgTransform() exit with the return codes. If
the return code from the exit instructs the trigger
program not to proceed normally, then do what the
return code is documented to mean in the adapter
user exits on page 23, otherwise do the following;:

* If translation is acceptable (rc = 0), then execute a
syncpoint.

22 User's Guide

Running the WebSphere Data Interchange Server

e If translation is not acceptable (r <> 0), the adapter
posts the message to the dead letter queue defined
within MQSeries. Then execute a syncpoint.

e. Moves on to the next message (restarts the process at
step a).

When no more messages arrive within the specified
interval (see Adapter user exits below), call the
msgTerminate user exit (if one exists). If it indicates so,
proceed with termination, then terminate WebSphere
Data Interchange, and then the adapter itself.

Adapter user exits

To modify or monitor the behavior of the adapter, you can
implement the adapter user exits. The WebSphere Data
Interchange adapter loads the library, if found in the bin
directory, and calls the exit functions. The shared library must
be named msgExits.dll (msgExits.so on UNIX0O) and should be
compiled using the native compiler for the target platform (for
example, Microsoft Visual C++ for Windows).

msgExits.dll interface:

bool msgTrigger(const char* pszIriggerMessage , void *
pvExitContext); - Called when the trigger program is
started. Passes the trigger message TQTMC2. Accepts a
context that will be passed into all subsequent calls. The
return value indicates whether to continue or terminate.

bool bSkip msgArrival(void* pvExitContext,
char*pszSessionID) - Message tracking exit that will be
called just before attempting to get the next message. It
can browse the queue for any information required and
then pass back a session ID for WebSphere Data
Interchange to use as the Batch ID. The return value
indicates whether to process the message or skip it.

bool bProceed msgTransform(void* pvExitContext, long
rc, long ccbrc, long ccberc) - Results of the transformation.

Return values:

* SYNC_CONTINUE - syncpoint and then continue
processing.

* SYNC_TERM - syncpoint and then terminate.

* CONTINUE - do not syncpoint, but continue
processing.

* TERMINATE - terminate without taking a syncpoint.

Chapter 3. Running the WebSphere Data Interchange Server 23

Running the WebSphere Data Interchange Server

24

User’s Guide

* bool bOK msgTerminate(void* pvExitContext) - OK to
terminate?

Return values from msgTerminate:
* #define SYNC_CONTINUE 0x0000

e #define SYNC_TERM 0x0001
e #define CONTINUE 0x0002
¢ #define TERMINATE 0x0003

A configuration file is installed in the wdi/bin directory:

wdi.properties

The WebSphere Data Interchange Server runtime information
is stored in a properties file located in the WDI bin directory.
The installation default values for Windows are listed below.
The default values for AIX are similar.

runtimedirectory=C:\ Program Files\ IBM\ wdi\ bin
datadirectory=C:\Program Files\ IBM\ wdi\ RunTime
dtddirectory=DTD

prtdirectory=PRT

appdirectory=APP

edidirectory=EDI

xmldirectory=XML

aexdirectory=AEX

rptdirectory=RPT

fakdirectory=FAK

grydirectory=QRY

xexdirectory=XEX

wrkdirectory=WRK

rcvdirectory=RCV

plan=EDIEC31E

*userid=user

*userpassword=password

Languagecode=ENU

waitinterval=10000

* Only required if you want to connect to the database using a
different authorization ID than the one the adapter process is
running under.

All files created and used during run time are created under
the data directory. If you want WebSphere Data Interchange to

Running the WebSphere Data Interchange Server

create files in a different directory, then change the data
directory value in wdi.properties to be the new directory you
created. This directory can be another drive on Windows or
file system on AIX.

The waitinterval value specifies the number of milliseconds
the adapter waits for messages on the Application queue
before terminating. Once the adapter terminates, another
trigger message restarts the adapter.

Calling from a C++ program

This section provides an example of how to use the
WebSphere Data Interchange C++ AP This example includes
all the source code necessary to build a C++ program, using
the WebSphere Data Interchange C++ API, to send several
PERFORM commands to the WebSphere Data Interchange
product.

Elements of the C++ API

The C++ APl is made up of several classes that are all defined
in the diapi.h header file shipped with the WebSphere Data
Interchange product. The classes that make up the API are:

* CSyncTranslator

* CASyncTranslator
e CRemoteTranslator
* CDIEnvironment

¢ CDIRequest

Once a program includes the diapi.h header file, it can use
these objects to interact with the WebSphere Data Interchange
translator by passing in PERFORM commands to either a
CSyncTranslator, CASyncTranslator, or CRemoteTranslator
object. The three different types of translator objects that can
be created are as follows:

* CSyncTranslator

The CSyncTranslator provides access to the translator in a
synchronous manner. The process waits for each
command to complete before allowing the next command
to be performed.

Chapter 3. Running the WebSphere Data Interchange Server 25

Running the WebSphere Data Interchange Server

26

User’s Guide

Methods:
CSyncTranslator(void) (Constructor)

Instantiates a new CSyncTranslator object. This method
takes no arguments.

enum eResult Initialize(CDIEnvironment& env)

Causes the translator to be initialized. This method must
be called before any transactions can be processed. This
method takes a CDIEnvironment object that contains
information about the system, such as database
information (plan, user ID, password) and system
information (language). This method returns an
enumerated type that contains success or failure
information about the method invocation.

enum eResult Terminate()

Terminates the translator and causes it to free any memory
that was allocated during the translation process. This
method takes no arguments and returns an enumerated
type with information about the success or failure of the
method invocation.

virtual enum eResult ProcessRequest(CDIRequest& req)
Initializes a PERFORM command to be processed by the
translator. This method takes a CDIRequest object that has
been initialized with a perform command. The
enumerated type returned by the function can be used to
determine the success or failure of the PERFORM
command.

virtual long GetRetCode(void)

Gets the return code from the last translator action
performed. This method takes no arguments.

virtual long GetExtRetCode(void)

Accesses the extended return code from the last translator
action performed. This method takes no arguments.

CASyncTranslator

The CASyncTranslator provides asynchronous access to
the translator. This method allows your program to begin
processing on several transactions at once without waiting
for the previous PERFORM command to complete.

Running the WebSphere Data Interchange Server

Methods:

CAsyncTranslator(short sMaxReqs=10, short nNice=0)
Takes two arguments: sMaxReqs and nNice. sMaxReqs
specifies the maximum number of requests that can be
made. nNice specifies a nice value any process created by
the translator during this session.

enum eResult Initialize(CDIEnvironment& env)
Initializes the translator using the CDIEnvironment
argument. The CDIEnvironment object contains the
system environment information, such as the database
plan, user ID, and password, as well as the system
language setting.

enum eResult Terminate()

Initializes the translator using the CDIEnvironment
argument. The CDIEnvironment object contains the
system environment information, such as the database
plan, user ID, and password, as well as the system
language setting.

enum eResult ProcessRequest(CDIRequest& req.)

Passes the perform command contained in the
CDIRequest object to the translator to be executed.

short GetMaxRequests()

Returns the maximum number of requests that can be
executed at one time. This value limits the number of
translators that can be started by this object.

short GetCurrentRequests()
Returns the number of requests being processed.

enum eResult UpdateCurReqCnt(void)
Causes the current request count to be updated.

CRemoteTranslator

The CRemoteTranslator provides access to a WebSphere
Data Interchange translator running on a remote system.
The CRemoteTranslator is like the CAsyncTranslator,
except its constructor takes the hostname of the remote
system as an additional argument to its constructor.

Chapter 3. Running the WebSphere Data Interchange Server 27

Running the WebSphere Data Interchange Server

Methods:
CRemoteTranslator(char* pszHost,short sMaxRegqs=10)
Creates a new instance of the CRemoteTranslator class

that can communicate with a remote server using TCP/IP
sockets.

enum eResult Initialize(CDIEnvironment& env)
Initializes the translator using the CDIEnvironment
argument. The CDIEnvironment object contains the
system environment information, such as the database
plan, user ID, and password, as well as the system
language setting.

enum eResult Terminate()

Initializes the translator using the CDIEnvironment
argument. The CDIEnvironment object contains the
system environment information, such as the database
plan, user ID, and password, as well as the system
language setting.

enum eResult ProcessRequest(CDIRequest& req.)

Passes the PERFORM command contained in the
CDIRequest object to the translator to be executed.

short GetMaxRequests()

Returns the maximum number of requests that can be
executed at one time. This value limits the number of
translators that can be started by this object.

short GetCurrentRequests()
Returns the number of requests being processed.

enum eResult UpdateCurReqCnt(void)
Causes the current request count to be updated.

e CDIEnvironment

The CDIEnvironment class encapsulates all the system
settings needed by the CSyncTranslator,
CAsyncTranslator, and CRemoteTranslator during their
initilization. The CDIEnvironment class must be
instansiated and then passed to the initialize method of
one of the translator objects.

28 User's Guide

Running the WebSphere Data Interchange Server

Methods:
void SetSys(char* pszVal)

Identifies the installation-defined Datalnterchange for
MVS systems used to run the EDIUTILV utility. The
default is DIENU.

void SetAppl(char* pszVal)

Identifies the Application ID to run the Datalnterchange
utility. This keyword also identifies the logfile specified by
the ACTLOGS profile. If you specify this parameter, the
activity log profile must contain a matching entry to
define which log file is used for recording errors and
events pertaining to the application. The two APPLID
values shipped with Datalnterchange are:

* EDIFFS (default)
e Associated with the LOGFFS ddname
* The default APPLID and log when using the
utilities
e EDIMP
e Associated with the LOGEDI ddname

* The APPLID and log used during online
Datalnterchange processing

void SetLang(char* pszVal)

Identifies the language profile to use as specified in the
LANGPROF profile. The value you specify with the
SetLang method must match one of the values in the
LANGPROF profile. The LANGPROF that ships with
WebSphere Data Interchange is ENU.

void SetPlan(char* pszVal)

Identifies the DB2 plan that WebSphere Data Interchange
is to use to access its database tables.

void SetEdiDataQueueName(char* pszVal)

Identifies the routing queue for completion message from
the translator. When the CAsyncTranslator completes the
processing of its EDI data it will send a completion
message to this queue.

void SetAppDataQueueName(char* pszVal)

Identifies the routing queue for completion message for
ADF data coming from the translator. When the

Chapter 3. Running the WebSphere Data Interchange Server 29

Running the WebSphere Data Interchange Server

30

User’s Guide

CAsyncTranslator completes the processing of an ADF, it
will send a completion message to this queue.

void SetEdiErrorQueueName(char* pszVal)

Identifies a queue where errors identified during the
processing of EDI data can be sent. When the
CAsyncTranslator encounters errors, an EDI data message
will be sent to this queue.

void SetAppErrorQueueName(char* pszVal)

Identifies a queue where errors identified during the
processing of ADF data can be sent. When the
CAsyncTranslator encounters errors, an ADF data
message will be sent to this queue.

void SetHostName(char* pszVal)

Sets the hostname of a remote WebSphere Data
Interchange translator. The value set in this method is only
used with the CRemoteTranslator.

void SetHostPort(int nVal)

Identifies the port number used by a remote WebSphere
Data Interchange translator for network communication.
The value set by this method is only used by the
CRemoteTranslator class.

void SetUser(char* pszVal)

Sets the database user ID needed to access the DB2
database. This only needs to be set if the user ID of the
person running the program does not have the necessary
authority to access the database.

void SetPassword(char* pszVal)

Sets the password to be used by the translator to access the
WebSphere Data Interchange database. This is only
required if the user ID of the person running the program
does not have the authority to access the database.

void SetRouterType(enum CDIMsgQueue::qtype enVal)

Sets the type of routers (queue) for the completion
messages. This method can accept the following values:

file / /File

pipe //Named pipe
socket //TCP/IP socket
email //Email address

Running the WebSphere Data Interchange Server

void SetUnitOfWork(enum eUnitOfWork enVal)

Defines a unit of work to the translator. This method
allows the application programmer to define the point at
which Commits should be done. Possible values for this
function are:

eTransaction =~ Commits should be done after every
transaction

eEnvelope Commits should be done after every
envelope is encountered

eNoCommit No commits are performed
void SetInterfaceType(enum elnterfaceType enVal)
Possible values for the function are:

elTCmdLine //Invoked by command line

elTApi / /Invoked by API
elTWeb / /Invoked by Web server (not
supported)
CDIRequest

The CDIRequest represents a request for translation that
can be submitted to a translator to be processed. The
CDIRequest object names the files necessary to perform a
translation as well as the perform statement to be
executed. This is a list of the files that can be associated
with a CDIRequest object:

* Application File

e EDIFile

* Tracking File

* Exception File

* EDI Except File

* PrintFile

* Report File

* Query File

* Work File

* Functional Acknowledgment File

Methods:
CDIRequest(void)

The constructor for CDIRequest builds an instance of the
CDIRequest object. This method does not take any
arguments.

Chapter 3. Running the WebSphere Data Interchange Server 31

Running the WebSphere Data Interchange Server

void ClearOutput(void)
Clears all the output fields of the request object.

void SetAppFile(char* pszFile)
Sets the name of the application file for this request.

void SetEdiFile(char* pszFile)
Sets the name of the EDI file for this request.

void SetTrackingFile(char* pszFile)
Sets the name of the tracking file for this request.

void SetExceptionFile(char* pszFile)

Sets the name of the exception file where ADF data can be
written if a fatal error is encountered during the
processing of the PERFORM command.

void SetEdiExceptFile(char* pszFile)

Sets the name of the exception file where EDI data can be
written if a fatal error is encountered during the
processing of the PERFORM command.

void SetPrintFile(char* pszFile)

Sets the name of the print file where status information
about a completed translation can be written.

void SetReportFile(char* pszFile)

Sets the name of the report file where reports and
printouts that you have requested can be stored.

void SetQueryFile(char* pszFile);
Sets the name of the file where results from a QUERY or
DATA EXTRACT can be stored.

void SetWorkFile(char* pszFile)

Sets the name of a file that can be used as a temporary
workspace during the translation.

void SetFunAckFile(char* pszFile)
Sets the name of the file that you want to use for returning

functional acknowledgments for the deenveloped
transactions.

API return codes

Refer to Appendix A, “C++ and Java API return codes” on
page 51 for a list of the return codes.

32 User’s Guide

Running the WebSphere Data Interchange Server

WebSphere Data Interchange APl example

This section outlines an example program that uses the C++
API for WebSphere Data Interchange. This example is made
up of one source file that initializes two CDIRequest objects
with two PERFORM statements. The sample script starting on
page 34 contains a listing of the main items for this example.

This program begins by creating CSyncTranslator,
CDIEnvironment, and two CDIRequest objects
(EDI2ADFRequest and ADF2EDIRequest) to handle the two
different requests. Next, the two requests were initialized with
the filenames needed to process the requests, and the
setPerformCommand method was used to set the desired
PERFORM commands to execute.

Once the PERFORM commands were created and the
translator was initialized, the ProcessRequest method was
called to execute the PERFORM commands. When that was
done, the return codes were checked and the translator was
terminated and the program was exited.

Building the Example

This example can be built on the different platforms supported
by WebSphere Data Interchange.

AIX

1. Copy the files apiexamp.cpp and apiexamp.mk from
[ust/wdi/DIv3.1/samples to your home directory or any
other work directory where you have permissions to write
files.

2. Issue the command make -f apiexamp.mk.
This will build an executable named apiexample.

3. Import the demo maps from demo850clrecvsuw.eif and
demo850clsendsuw.eif using the WebSphere Data
Interchange Client.

Chapter 3. Running the WebSphere Data Interchange Server 33

Running the WebSphere Data Interchange Server

Windows

On the Microsoft Windows platform, you have several choices
of compilers. In this example, the Microsoft VisualC++
compiler is used to build the API example:

1. Create an empty win32 console project within Microsoft
Visual C++.

2. Add apiexamp.cpp to the project.
3. Build the project you created.

4. Execute the newly built apiexamp executable.

Sample script

#i ncl ude <i ostream h>
#i ncl ude "diapi.h"

/* ___ */
/* Main program */
o */
voi d pause(void);
int main ()
{

CDI Envi r onment aCDI Envi ronment ;

CDl Request anADF2EDI Request ;

CDl Request anEDI 2ADFRequest ;

CSyncTransl ator aCSyncTransl at or;

enum eResul t rc;

/1 Define the Data |Interchange Environnment
aCDl Envi ronment . Set Pl an(" EDI EC31E") ;
aCDl Envi ronment . Set Lang(" ENU ")

/1 Initialize the translator:

rc = aCSyncTransl ator.Initialize(aCDl Environnment);

cout << endl << endl << "Testlnitialize: rc=" <<rc
<< ", zccbrc=" << aCSyncTransl at or. Get Ret Code()
<< ", zccberc=" << aCSyncTransl at or. Get Ext Ret Code()
<< endl;

pause();

/1 Name the input and output files for an EDI to ADF request
anEDI 2ADFRequest . Set AppFi | e(" denp850. app");

anEDI 2ADFRequest . Set Edi Fi | e(" denp850. edi ") ;

anEDI 2ADFRequest . Set Tr acki ngFi | e(" denp850. trk");

anEDI 2ADFRequest . Set Excepti onFi | e(" denp850. aex") ;

34 User’s Guide

anEDI 2ADFRequest .
anEDI 2ADFRequest .
anEDl 2ADFRequest .
anEDl 2ADFRequest .
anEDI 2ADFRequest .

/1 Name the input and output files for an ADF to EDI
anADF2EDI Request .
anADF2EDI Request .
anADF2EDI Request .
anADF2EDI Request .
anADF2EDI Request .
anADF2EDI Request .
anADF2EDI Request .
anADF2EDI Request .

Running the WebSphere Data Interchange Server

SetPrintFil e("denn850.prt");
Set FunAckFi | e("denvtr.fak");
Set WorkFi | e("denvtr.wk");
Set ReportFile("denvtr.rpt");
Set QueryFil e("denvtr.qry");

request
Set AppFi |l e("denvtr. app");

Set Edi Fil e("denvtr.edi");

Set Tracki ngFi | e("denvtr.edi");

Set Excepti onFil e("denvtr. aex");
SetPrintFile("denvtr.prt");

Set FunAckFi | e("denvtr. fak");

Set WorkFi | e("denvtr.wk");

Set ReportFile("denvtr.rpt");

/1 Set the perform conmands to be executed:
I ADF- TO- EDI
R R R R R EEEEEEEREEEEEEEEEEEEEEEEEEEEEEEREEEEEEE]
anADF2EDI Request . Set Per f or mCnd
(" PERFORM TRANSLATE AND ENVELOPE WHERE APPFI LE(APPFI LE) "
"FI LEI D(EDI FI LE) RAWIEST(Y) RAWMII D(MMTHL7) PURG NT(-1)");

TEST CASE:

I EDI - TO- ADF TEST CASES:

R R R R R EEEEEEEREEREEEEEEEEEEEEEEEEEEEEEREEEEEEE]
anEDI 2ADFRequest . Set Per f or mCnd
(" PERFORM DEENVELOPE AND TRANSLATE WHERE FI LEI D(EDI FI LE) "
" APPFI LE(APPFI LE) RAVWDATA(Y) PURG NT(-1)");

/1 Ask the synchronous translator to process the EDI to ADF Request:
cout << "EDI to ADF translation" << endl;
rc = aCSyncTransl at or. ProcessRequest (anED 2ADFRequest) ;

/1 Confirmthe input and output nanes and print the return codes:
cout << endl << endl <<"App File o

<< anEDI 2ADFRequest . Cet AppFi | e() << "

<< anEDI 2ADFRequest . Get AppFi | eLen() << endl;
<< "EDI File " << anEDI 2ADFRequest . GetEdi File() << ", "
<< anEDI 2ADFRequest . Cet Edi Fi | eLen() << endl;

cout << "Report File "
<< anEDI 2ADFRequest . Cet ReportFile() << ", "

<< anEDI 2ADFRequest . Cet Report Fi | eLen() << endl;

cout << "Exception File "
<< anEDl 2ADFRequest . Get ExceptionFile() << ",
<< anEDI 2ADFRequest . Get Excepti onFi | eLen() << endl;
<< "Print File D
<< anEDl 2ADFRequest . GetPrintFile() << ", "
<< anEDI 2ADFRequest . Get Print Fi |l eLen() << endl;

cout

cout

Chapter 3. Running the WebSphere Data Interchange Server 35

Running the WebSphere Data Interchange Server

cout

cout

<< "Tracking File

<< anEDl 2ADFRequest .
<< anEDl 2ADFRequest .

<< "Query File

<< anEDl 2ADFRequest .

Get TrackingFile() << ", "
Get Tracki ngFi | eLen() << endl;

Get QueryFile() << ", "

<< anEDl 2ADFRequest .
cout << "Work File
<< anEDl 2ADFRequest . Get Wr kFi | eLen() << endl;
<< "FunAck File o
<< anEDl 2ADFRequest .
<< anEDl 2ADFRequest .

Get QueryFil eLen() << endl;

cout :
Get FunAckFile() << ", "
Get FunAckFi | eLen() << endl;

cout << endl << endl << "ProcessRequest: rc=" << rc
<< ", zccbrc=" << aCSyncTransl at or. Get Ret Code()
<< ", zccberc=" << aCSyncTransl at or. Get Ext Ret Code() ;

cout << "EDI
pause();

to ADF request conplete" << endl;

/1 Ask the synchronous translator
Request :
cout << "ADF to EDI translation" << endl;
rc = aCSyncTransl at or. ProcessRequest (anEDI 2ADFRequest) ;

" << anEDI 2ADFRequest . Get WrkFil e() << ",

to process the ADF to EDI

36

/1 Confirmthe input and out put
<<"App File D
<< anADF2EDI Request .
<< anADF2EDI Request .

cout

cout

cout

<< endl << endl

<< "EDI File

<< anADF2EDI Request .
<< anADF2EDI Request .

<< "Report File
<< anADF2EDI Request

.CGetReportFile() <<, ™

names and print the return codes:

Get AppFile() << ", "
Get AppFi | eLen() << endl;

GetEdi File() << ", "
CGet Edi Fi | eLen() << endl;

<< anADF2EDI Request . Get Report Fi |l eLen() << endl;
cout << "Exception File : "

<< anADF2EDI Request . Get ExceptionFile() << ", "

<< anADF2EDI Request . Get ExceptionFi |l eLen() << endl;
cout << "Print File "

cout

cout

cout

<< anADF2EDI Request .
.CetPrintFilelLen() << endl;

<< anADF2EDI Request
<< "Tracking File

<< anADF2EDI Request .
<< anADF2EDI Request .

<< "Query File

<< anADF2EDI Request .
<< anADF2EDI Request .

<< "Work File

<< anADF2EDI Request .
<< anADF2EDI Request .

User’s Guide

GetPrintFile() << ", "

Get TrackingFile() << ", "
Get Tracki ngFi | eLen() << endl;

Get QueryFile() << ", "
CGet QueryFil eLen() << endl;

GetWorkFile() << ", "
Get Wr kFi | eLen() << endl;

voi

Running the WebSphere Data Interchange Server

cout << "FunAck File S
<< anADF2EDI Request. Get FunAckFile() << ", "
<< anADF2EDI Request . Get FunAckFi | eLen() << endl;
cout << endl << endl << "ProcessRequest: rc=" << rc
<< ", zcchbrc=" << aCSyncTransl at or. Get Ret Code()
<< ", zccherc=" << aCSyncTransl at or. Get Ext Ret Code()
<< endl ;

/1 Terminate the translator:

cout << "Now terminating the translator to free up any resources”
<< endl;

rc = aCSyncTransl ator. Term nate();

cout << endl << endl << "Terminate: rc=" << rc
<< ", zccbrc=" << aCSyncTransl at or. Get Ret Code()
<< ", zccherc=" << aCSyncTransl at or. Get Ext Ret Code() ;

/1 Term nate and go hone:
cout << endl << endl;
return(0);

d pause()

char achar;

cout << "Hit enter to continue" << endl;
cin.get(achar);

Chapter 3. Running the WebSphere Data Interchange Server 37

Running the WebSphere Data Interchange Server

38 User’s Guide

Chapter 4. Message Content Descriptor profiles

With the Message Content Descriptor (MCD) profile, you can
map the names of message definitions in other products, such
as WebSphere Message Repository Manager (MRM) and
Crossworlds, to the names of message definitions within
WebSphere Data Interchange when communicating using the
MQSeries Rule and Formatting Header 2 (MQRFH2). The
MCD profile is also used when communicating with Java
Message Service (JMS) clients. For more information about
how the fields in the MCD map to the JMS API see “Mapping
the MQRFH?2 header to the JMS AP1” on page 57.

Setup overview

To set up and maintain MCD profiles through the MCD
Profiles List window, click Setup on the WebSphere Data
Interchange Client Navigator bar. The Setup window, which
contains tabs for WebSphere Data Interchange Client’s
profiles, opens. Click the MCD Profiles tab to open the MCD
Profiles List window.

EDevelopmenl (Setup] - Query: All alﬂlﬂ

Dlw] 2| /=] -| 20 8f

E Envelope Profiles | Envelope Profiles T Envelope Profiles U Envelope Profiles # Ervelope Profiles
Continuous Receive | Application Defaults | User Exits I CICS Performance | Aclivity Log I Language Piofiles
tailboxes I Metwork Profiles I MNetwork Commands | Metwork 5 ecurity I S eries Queues I Service Profles MCD Profiles

Description Domain Set Type Format Syntax Dictionary Hame Dc
ADF to ADF test cas \mrm 123456 | Account |InsuranceC! |adf ADFE5040MA_DICTIONAR| ADFE
ADF to EDItest case mrm 123456 |DEMOES |DEMOBSOCL | adt DEMOBS0CL_DICTIOMARY | DERC
ADF to XML testcas \mrm 123456 |SAP40-0SAP40RD | adf SAP40-ORDERSI _DICTIO |SAP:
WCMCDO0E WWCMCDOOT (WWCMCDOWCMCDOM |edi K12vaR1 830
WWCKCDO01 WNCRMCDOOT WS WWCRCDOWWICMCDO0 |ac FUNCACHCTLAPP_DICTION FLIRG

i

This window displays a list of existing MCD profiles. Each row
contains information about an MCD profile and each column
contains data stored in the profile. Information in the columns
displays in fields, drop-down lists, and check boxes in the
MCD Profiles Editor window. The profile list window,
however, also contains the date, time, and user ID of the last
update.

© Copyright IBM Corp. 1998, 2002 39

Message Content Descriptor profiles

40 User's Guide

To display additional columns, click the scroll bar on the
bottom of the screen to scroll to the right or left. To alter the
columns that display on the screen, or to change which query
is executed to produce the list, click Modify Window
Properties. To create new queries, refer to the Datalnterchange
Client User’s Guide.

To view a profile or to add or change the information in these
fields, double-click the row of the profile you wish to work
with. The MCD Profiles Editor window opens, with the
General tab in front.

EDevelopmenl - MCD Profile - WCMCDOD1Domain WCHCDODTT (=]

0 I e = =

General | Comments

Descripion [wCMCDOOG

—MCD Folder Y alues in the MORFHZ Header
Domain [WCMCDOM Domain

Set I

Type [#CMEDO0 Type

Format [+ D00 Format

— Equivalent WebSphere Data Interchange Document Definition

* Syntax IEDI Standard

* Dictionary Mame |><1 24R4

* Trarsaction 100 -

The MCD Profiles Editor window contains two tabs: General
and Comments. Use the General tab to add or change
information contained in the MCD profile. Use the Comments
tab to add any comments you wish about the selected MCD
profile.

Following are detailed procedures for creating new MCD
profiles. For information on viewing, editing, and deleting
profiles, see the Datalnterchange Client User’s Guide.

Message Content Descriptor profiles

Creating MCD profiles

Create a new MCD profile when exchanging documents using
MQSeries message queues or JMS, and the message containing
the document is prefixed with an MQRFH?2 header. The
MQRFH2 header contains an MCD folder. The name of a
WebSphere Data Interchange document definition occurs in
an MCD profile, along with the corresponding values from the
MCD of the MQRFH2 header.

1.

On the WebSphere Data Interchange Client Navigator bar,
click Setup.

The Setup window opens.

Click the MCD Profiles tab.

A list of the existing MCD profiles displays.

On the tool bar, click New.

The MCD Profiles Editor window opens with the General
tab in front and all fields blank.

Complete the fields on the General tab. Required fields are
preceded by a red dot.

Click |2 for field descriptions.

Click the Comments tab and type any comments you have
about the MCD profile into the Comments field.

From the File menu, click Save to save the profile.

WebSphere Data Interchange saves the new MCD profile
to the database.

Close the editor.

Chapter 4. Message Content Descriptor profiles 41

Message Content Descriptor profiles

42 User’s Guide

Chapter 5. Service profiles

The purpose of the Service profile is to allow the customer to
enter a utility command and all the files that will be used
during execution of that command. There are specific fields for
fixed names, such as the print file (PRTFILE), and short
name/long name pairs for times when both the short and long
names are user defined, such as input and output files.

Though this feature is designed to work in a general manner
and has many possible applications, it was primarily designed
for situations where an input source contains both documents
that require single translation and documents that require
double translation. With command chaining, you can set up a
double translation by routing the output from the first
translation to a file with the same name as a Service profile.

The name you give the Service profile is its logical name. If
another command writes information to the file associated
with this logical name, the PERFORM command is executed
after that command completes, chaining the commands
together.

Substitution keywords

Several keywords that can be used in PERFORM commands
are available to assist in creating command chains.

&MSD
&SET
&TYPE

&FORMAT - Comes straight from the MCD profile. They
match the header in the MQ Integrator RFH2 header. If there is
no RFH2 header on the message, or it does not match to
something within the MCD profile, the &FORMAT is the
Format field in the MQSeries MQMD header.

&SYNTAX
&DICTIONARY

&DOCUMENT - Corresponds to the WebSphere Data
Interchange elements within the MCD profile. &DOCUMENT
is the RAWEMTID in the case of ADF syntax.

© Copyright IBM Corp. 1998, 2002 43

Service profiles

Setup overview

44 User’s Guide

To set up and maintain Service profiles through the Service
Profiles List window, click Setup on the WebSphere Data
Interchange Client Navigator bar. The Setup window, which
contains tabs for WebSphere Data Interchange Client’s setup
profiles, opens. Click the Service Profiles tab, and the Service
Profiles List window opens.

EDevelopment [Setup) - Querny: All -e x|

Oiw| 2| B2 L.| Zb)|

E Envelope Profiles | Envelope Profiles T Envelope Profiles U Envelope Profiles * Envelope Profiles
Continuous R eceive I Application Defaults I Uszer Exits | CICS Performance I Activity Log I Language Profiles
Mailboxes: I Metwark, Profiles | Metwork Commands I MNetwork, Security | MASeries Queues Service Profiles | MCD Profiles

Service Hame Description Lock Updated User ID Updated Date/Time
ADF M Command for input A Mo acdmin 0372452002 10:40:52 AM
ADF_oUT Command for output | Ko admin 03/24/2002 10:40:53 Ahi
ADFLEE Command for input A Mo acdmin 0372452002 10:41:03 AM
EDI_IM Command for input E | ko admin 03/24/2002 10:41:08 A
EQI_OUT Command for output (Mo acdmin 0372452002 10:41:13 AM
EDIIN Command for input E | ko admin 03422/2002 12:00:58 P
XML _IM Command for input X Mo acdmin 0372452002 10:41:18 AM

|Awmmhwma

This window displays a list of Service profiles. Each row
contains information about a Service profile and each column
contains data stored in the profile. Information in the columns
displays in fields, drop-down lists, and check boxes in the
Service Profiles Editor window. The profile list window,
however, also contains the date, time, and user ID of the last
update.

To display additional columns, click the scroll bar on the
bottom of the screen to scroll to the right or left. To alter the
columns that display on the screen, or to change which query
is executed to produce the list, click Modify Window
Properties. To create new queries, refer to the Datalnterchange
Client User’s Guide.

To view a profile or to add or change the information in these
fields, double-click the row of the profile you wish to work
with. The Service Profiles Editor window opens, with the
General tab in front.

Service profiles

EDevelopmenl - Service Profile - ADF_IN =ol x|
=1 BN IR R N = W=

General | Common Files | Input Files | Dutput Files | Metwork Files | Export/Import Files | Comments:

Service Name (filename] IADF_IN ¥

Desciiption

Pre-execution Command I

Post-execution Command I

FERFORM Command

PERFORM TRANSLATE AND ENVELOPE WHERE APPFILE[ADF_IN] R&WFMTIDEDOCUMENT] -
HMLVALIDATE(D] #MLDTDSRUNTIMESDTDS] XMLDICT[RUNTIMEADICTS] FIXEDFILEIDADF_OUT)

The Service Profiles Editor window contains seven tabs:
General, Common Files, Input Files, Output Files, Network
Files, Export/Import Files, and Comments. Use the General
tab to enter and change information contained in the Service
profile. Use the other tabs to add other pertinent information
about the Service profile. Whether you are running on a
Windows or AIX server, be sure to follow the rules for names
and path names for that server. You can use the relative or the
absolute path name. The relative path name is to the current
directory that the task was started from, or where the trigger
started the task.

Following are detailed procedures for creating new Service
profiles. For information on viewing, copying, editing,
renaming, deleting, and printing profiles, see the
Datalnterchange Client User’s Guide.

Creating Service profiles

Create a new Service profile when you need to set up a
WebSphere Data Interchange PERFORM command to be
invoked when an output file is closed at the end of other
WebSphere Data Interchange command processing.

Within WebSphere Data Interchange, files have logical and
physical names. At runtime, the logical names are mapped to
the physical names.

Chapter 5. Service profiles 45

Service profiles

46 User's Guide

Plan the chain of command, and then create the Service profile
for each of the steps in your chain.

1. Onthe WebSphere Data Interchange Client Navigator bar,
click Setup.

The Setup window opens.
2. Click the Service Profiles tab.

A list of the existing Service profiles displays.
3. On the tool bar, click New.

The Service Profiles Editor window opens with the
General tab in front and all fields blank.

4. Complete the fields on the General tab. Required fields are
preceded by a red dot.

Click i for field descriptions.
5. Click the Common Files tab.

The fields on the Common Files tab display.

ﬂDevElupmenl - Service Profile - ADF_IN _ Dlﬂ

=]] == &2
General Common Fileg | Input Files | Output Files | Metwark Files | Export/lmpart Files | Comments

Print File |

Tracking File | “untimestrkhadr_in. bk

Exception File | iuntimehaehadf_in. exc

Wiork File | Stuntimetwark hadr_in.wik,

Report File | Stuntimetrpthadr_inrpt

Buery File I Stuntimesgretad_in.gry

Note: If a file is not specified here, then the file from the
previous command is used.

Tip: It is usually best not to specify the print file, so that
all the messages for all the commands in the chain will go
to the same file.

Service profiles

6. Fill in the fields as needed. The Common Files tab contains
only fixed names.

7. Click the Input Files tab.

The fields on the Input Files tab display.

Eﬁ‘Develnpmenl - Service Profile - ADF_IN -0 x|
=1 R N =] =3
General | Commen Files Input Files | Cutput Files | Metwark Files | Export/import Files | Comments
Mame in Command System File Mame
|] |
|] |
4| 121

Note: This tab is only used if the input to the command is
different than the file that triggered the command. The
input file is usually the name of the file that invoked this
command. That file is automatically available.

8. Fill in the fields as needed. The Input Files tab contains
logical and physical names.

Click ? for field descriptions.

9. Click the Output Files tab.

The fields on the Output Files tab display.

'I'.‘__.|4|:Development - Service Profile - ADF_IN -3 x|
=1 S I I M = =

General | Comman Files | Input Files Output Files | Metwork Files | Export/Import Files | Comments

Mame in Command System File Mame

ADF LT | [Snuntimetadfadi_out
IEDI_\N j I..\runtlme\edl\adl_m

IEDI_DUT j I..\runtlme\edl\adl_out

|><ML_|N 7| [Suntimebsmboam]_in

JXMLEFF 7| [Snuntimetmbam]_out

JHMLWORK 7| |- Sruntimebraml_rk

ﬂ I Sruntimehprtueml_ert
=] |
=] |

4| iy

Chapter 5. Service profiles 47

Service profiles

Note: You must specify all possible output files for the
command.

10. Fill in the fields as needed. The Output Files tab contains
logical and physical names.
Click |2 for field descriptions.

11. Click the Network Files tab.

The fields on the Network Files tab display.

=101 x|

&] v ElE| 2D

General | Common Files | Input Files | Output Files Metwork Files | Export/lmpart Files | Camments

~ Irangport Related Fil

INMSG

OUTMSG

INPRO

INB1STAT

ERRORMSG

I
|
|
OUTPRO |
|
|
I

ERRORTHT

i~ Other Commurications Related Fil
Mame in Cammand Spstem File Mame

12. Fill in the fields as needed. The Network Files tab contains
fixed names.

Click ? for field descriptions.

13. Click the Export/Import Files tab.

The fields on the Export/Input Files tab display.

48 User's Guide

EDevelopmenl - Service Profile - <untitled> =0l =|

=1 W O A M = =4 |

General | Common Files | Input Files | Output Files | Metwork Files Export/lmpart Files | Comments:

LCantral File I

i~ Object Fil

Service profiles

D ata Formats

EDI Standards:

taps

Control Strings

Profilzs

Tables

|+ .2

14.

15.

16.

17.

Note: You can specify all the object files to be the same
file.

Fill in the fields as needed. The Export/Import Files tab
contains fixed names.

Click ? for field descriptions.

Click the Comments tab and add any comments you have
about the Service profile into the Comments field.

From the file menu, click Save to save the profile.

WebSphere Data Interchange saves the new MCD profile
to the database.

Close the editor.

Chapter 5. Service profiles 49

Service profiles

50 User's Guide

Appendix A. C++ and Java API return codes

When a message is processed, return codes are generated by
WebSphere Data Interchange. Return codes are written to an
event log that can be queried using a PRINT EVENT LOG
command. You can review a single transaction by specifying
the Transaction ID or review a batch of transactions by
specifying the Batch ID. You can also query the Transaction
Store for specific transactions by using a PRINT
TRANSACTION DETAILS command and specifying the
Transaction ID.

Although all successful processing codes are written to the
event log, only exception codes for serious errors are written to
the event log. Sufficient information is provided to allow you
to find further information in the Datalnterchange Version 3.1
publications.

The return codes generated as follows:

Code Definition
0-1 Processing was successful.
5 A terminal error occurred and the Solution

Manager was shut down. Check the error log
to see which error occurred. For more
information on error codes, see Appendix B or
refer to the Datalnterchange Programmer’s
Reference.

6 or higher | A terminal error occurred and the Solution
Manager was shut down. Check the error log
to see which error occurred. For more
information on error codes, see Appendix B or
refer to the Datalnterchange Programmer’s
Reference.

The exception codes consist of three separate codes:

* The API Return Code (documented below) usually
indicates a programming error

* The Utility Return Code

* The Utility Extended Return Code (documented in
Datalnterchange Messages and Codes)

© Copyright IBM Corp. 1998, 2002 51

C++ and Java API return codes

Code Definition

0 Good return.

1 Not used.

2 The request has been queued to a
translation server.

3 Not used.

4 There was a problem with the service

director. Check the event log. Then call
GetRetCode() and GetExtRetCode() to find
more information.

5 There was a problem executing the request.
Check the event log. Then call
GetRetCode() and GetExtRetCode() to find
more information.

6 CDIMsgQueue::Open - Invalid router
queue type. Valid types are file and pipe.

7 Check errno for more information.

8 CDIMsgQueue::Open - Queue name is
NULL.

9 CDIMsgQueue::Open - Queue already
open.

10 CDIMsgQueue::Open - Open on queue
failed. Check errno for more information.

11 CDIMsgQueue::Write - The file descriptor
is invalid.

12 CDIMsgQueue::Write - Attempted write to
router queue failed. Check errno for more
information.

13 CDIEnvironment::Parse - argc/arbv
parameters are invalid.

14 CDIEnvironment::Parse - Command line
parameters to the ediservr program are
invalid.

15 CSyncTranslator::Initialize - Translator

already initialized. Initialize only once.

52 User's Guide

C++ and Java API return codes

Code

Definition

16

CSyncTranslator::Initialize - An attempt
was made to initialize the translator
without specifying a DB2 plan. Set the plan
before initializing.

17

CSyncTranslator::Initialize - Failed to
initialize on call to service director. Check
the return code and extended return code
by calling the GetRetCode() and
GetExtRetCode() methods.

18

CSyncTranslator::ProcessRequest - A call
was made to process a request, but the
translator has not been initialized yet.

19

CSyncTranslator::Initialize - A call was
made to process a request, but there is no
request to process.

20

CSyncTranslator::Initialize - The unit of
work specified for this request is invalid.

21

CSyncTranslator::SetFileName - The
mandatory parameter logical filename is
NULL.

22

CSyncTranslator::SetFileName - The
mandatory parameter logical filename is an
empty string.

23

CSyncTranslator::SetFileName - The
mandatory parameter logical filename is >8
characters long.

24

CSyncTranslator::SetFileName - Error
calling the service director to set the fully
qualified name of one of the files used in a
request. One of the directories specified is
probably invalid.

25

CSyncTranslator::GetFileName - The
mandatory parameter logical filename is
NULL.

26

CSyncTranslator::GetFileName - The
mandatory parameter logical filename is an
empty string.

Appendix A. C++ and Java API return codes 53

C++ and Java API return codes

54 User's Guide

Code

Definition

27

CSyncTranslator::GetFileName - The
mandatory parameter logical filename is >8
characters long.

28

CSyncTranslator::GetFileName - The
service director was not able to get the fully
qualified name of one of the files used in a
request.

29

CSyncTranslator::GetFileName - Error
calling the service director to get the fully
qualified name of one of the files used in a
request.

30

CSyncTranslator::-Terminate - A call was
made to terminate the translator, but the
translator has not been initialized yet.

31

CAsyncTranslator::Initialize - An attempt
was made to initialize an asynchronous
translator in a WIN32 environment. This is
not supported at this time. Use CRemote
Translator instead.

32

CAsyncTranslator::Initialize - An attempt
was made to initialize an asynchronous
translator that has already been initialized.

33

CAsyncTranslator::Initialize - The
asynchronous translation server is already
running.

34

CAsyncTranslator::Initialize - Error
creating the command pipes to
communicate with the asynchronous
translation server. Check errno for more
information.

35

CAsyncTranslator:Initialize - Error
attempting to fork() to create the
asynchronous translation server. Check
errno for more information.

36

CAsyncTranslator::Initialize - Failed to
load the program ediservr. Make sure it is
in the PATH for executables. Check errno
for more information in the child process
only.

C++ and Java API return codes

Code

Definition

37

CAsyncTranslator::ProcessRequest - The
translator has not been initialized yet and a
call was made to ProcessRequest(). Before
processing any requests, the translator
must be initialized.

38

CAsyncTranslator::ProcessRequest - A call
was made to process a request, but there is
no request to process. Check the request
type and PERFORM command.

39

CAsyncTranslator::ProcessRequest - The
request has NOT been queued. The
maximum number of requests have already
been queued to this translation server.
Select (or start) another translation server,
wait for this server to finish its current
request, or increase the max_requests
parameter to allow more requests to be
queued.

40

CAsyncTranslator::Write - An error
occurred attempting to send a command to
the translation server. Verify that the
translation server is running. Check errno
for more information.

41

CAsyncTranslator:UpdateCurReqCnt - An
error occurred attempting to determine if
there is any data in the response queue.
Verify that the translation server is
running. Check errno for more
information.

42

CAsyncTranslator:UpdateCurReqCnt - An
error occurred attempting to determine if
there is any data in the response queue.
Select returned an invalid code.

43

CAsyncTranslator:UpdateCurReqCnt - An
error occurred attempting to read a
response from the response queue. Verify
that the translation server is running.
Check errno for more information.

44

CAsyncTranslator::SetFileName - A call
was made to send a SET command to the
translation server, but this is the server.

Appendix A. C++ and Java API return codes 55

C++ and Java API return codes

Code Definition

45 CAsyncTranslator::StartTranslator - A call
was made to send start commands to the
translation server, but this is the translation
server.

46 CAsyncTranslator::StartTranslator - The
router type specified in the CDIRequest is
invalid. Valid types are file, pipe, socket,
and email.

47 CAsyncTranslator::StartTranslator - The
unit of work specified in the CDIRequest is
invalid. Valid types are envelope,
transaction, and no commit.

48 CAsyncTranslator::Terminate - A call was
made to send a terminate message to the
translation server, but this is the translation
server.

49 CAsyncTranslator::Terminate - A call was
made to terminate the translator, but the
translator has not been initialized yet.

50 CRemoteTranslator::Initialize - An attempt
was made to initialize a remote translator
that has already been initialized.

51 CRemoteTranslator::Initialize - An attempt
was made to resolve the host name and an
error occurred. Most likely, the host was
not found. Verify the host name is correct
and accessible from the translation system.
Check errno for more information.

52 CRemoteTranslator::Initialize - Failed to
create the socket to communicate with the
translation server. Check errno for more
information.

53 CRemoteTranslator::Initialize - Failed to
connect to the remote translator. Verify that
the remote translator daemon is running
and that the host name is correct. Check
errno for more information.

56 User's Guide

Appendix B. Mapping the MQRFH2 header to the

JMS API

This appendix explains how the MQRFH2 mapping to the Java
Message Service (JMS) API works when you are
communicating with a JMS Client.

The MQSeries Java Message Service (JMS) implementation
uses the Message Content Descriptor (MCD) folder of the
MQRFH?2 to carry information about the message, as described
in the MQRFH2 header. By default, the Message Domain
(MSD) property is used to identify whether the message is a
text, bytes, stream, map, or object message. This value is set
depending on the type of the JMS messages.

If the application calls setfMSType, it can set the MCD type
field to a value of its choosing. This type field can be read by
the MQSeries Integrator message flow, and a receiving J]MS
application can use the get)MSType method to retrieve its
value. This applies to all kinds of JMS messages.

When a JMS application creates a text or bytes message, the
application can set MCD folder fields explicitly by calling the
set]MSType method and passing in a string argument in a
special Universal Resource Identifier (URI) format as follows:

mcd://domain/ [set]/ [type][?format=fmt]

This URI form allows an application to set the MCD to a
domain that is not one of the standard jms_xxxx values; for
example, to domain mrm. It also allows the application to set
any or all of the MCD set, type, and format fields if desired.

The string argument to set]MSType is interpreted as follows:

1. If the string does not appear to be in the special URI format
(for example, it does not start with med:/ /), then the
string is added to the MCD folder as the type field.

2. If the string does start with mcd://, conforms to the URI
format, and the message is a Text or Bytes message, then
the URI string is split into its constituent parts. The
domain part overrides the jms_text or jms_bytes value that
would otherwise have been generated, and the remaining
parts (if present) are used to set the set, type, and format
fields in the MCD. Note that set, type, and format are all
optional.

© Copyright IBM Corp. 1998, 2002 57

Mapping the MQRFH2 header to the JMS API

58 User's Guide

3. If the string starts with mcd:// and the message is a Map,
Stream or Object message, then the set)MSType call
throws an exception. You cannot override the domain, or
provide a set or format for these classes of messages, but
you can provide a type if you wish.

When an MQ message is received with an MSD other than one
of the standard jms_xxxx values, it is instantiated as a JMS text
or bytes message and a URI-style JMSType is assigned to it.
The receiving application can read this using the getfMSType
method.

Notices

This information was developed for products and services
offered in the United States. IBM may not offer the products,
services, or features discussed in this information in other
countries. Consult your local IBM representative for
information on the products and services currently available in
your area. Any reference to an IBM product, program, or
service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead.
However, it is the user’s responsibility to evaluate and verify
the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications
covering subject matter described in this information. The
furnishing of this information does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

US.A.

For license inquiries regarding double-byte (DBCS)
information, contact the IBM Intellectual Property Department
in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United
Kingdom or any other country where such provisions are
inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or

© Copyright IBM Corp. 1998, 2002 59

Notices

60 User's Guide

implied warranties in certain transactions, therefore this
statement may not apply to you.

This information could include technical inaccuracies or
typographical errors. Changes are periodically made to the
information herein; these changes will be incorporated in new
editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s)
described in this information at any time without notice.

Any references in this information to non-IBM Web sites are
provided for convenience only and do not in any manner
serve as an endorsement of those Web sites. The materials at
those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply
in any way it believes appropriate without incurring any
obligation to you.

Licensees of this program who wish to have information about
it for the purpose of enabling: (i) the exchange of information
between independently created programs and other programs
(including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM United Kingdom Laboratories,

Mail Point 151,

Hursley Park,

Winchester,

Hampshire,

England

SO21 2JN.

Such information may be available, subject to appropriate
terms and conditions, including in some cases, payment of a
fee.

The licensed program described in this information and all
licensed material available for it are provided by IBM under
terms of the IBM Customer Agreement, IBM International
Programming License Agreement, or any equivalent
agreement between us.

Information concerning non-IBM products was obtained from
the suppliers of those products, their published
announcements or other publicly available sources. IBM has
not tested those products and cannot confirm the accuracy of

Notices

performance, compatibility or any other claims related to non-
IBM products.

Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

Trademarks

The following terms are trademarks of the International
Business Machines Corporation in the United States or other
countries, or both:

AIX

DB2
ExpEDIte
IBM
MQSeries
MVS
WebSphere

Java and all Java-related trademarks are trademarks of Sun

Microsystems, Inc. in the United States, or other countries, or
both.

Microsoft, Windows, and Windows NT are registered
trademarks of Microsoft Corporation in the United States
and/or other countries.

UNIX is a registered trademark of The Open Group in the
United States and other countries.

Other company product and service names may be
trademarks or services marks of others.

61

Notices

62 User's Guide

Index

A
Adapter user exits 23
API
example 33
return codes 32
auditing 2

C

C++ and Java API return codes 51
calling from a C++ program 25
command chaining 43

comments 6

configure database connections 15
connections to server databases 14

E
EDI standards support 3
elements of the C++ API 25

F

features 1

G
glossary 6

I
IBM WebSphere Data Interchange for
Multiplatforms 1
installing
Client 11
DB2 Connect 14
Server 6

© Copyright IBM Corp. 1998, 2002

J
JMS implementation 57

M
MCD 39
MCD profiles
creating 41
Message Content Descriptor 39
MQRFH2 57
MQRFH2 header 41

R
related books 5
reporting 2
requirements
Client hardware 11
Client software 11
Server hardware 5
Server software 5
return codes 51
running from the command line 19
running WebSphere Data Interchange
Server
from the command line 19
triggering from an MQSeries Queue

S

Service profile
creating 45
name 43

setting up databases 8

T
triggering from an MQSeries Queue 21

63

64 User's Guide

Product Number: 5724-C50

	Title
	Contents
	About this book
	Who this book is for
	What you need to know
	Related books
	Glossary
	How to send your comments

	Chapter 1. Introduction
	WebSphere Data Interchange
	Flexible setup and administration
	Superior translation capability
	Versatile communications
	Extensive reporting and auditing
	EDI standards support
	Additional features

	Chapter 2. Installation
	WebSphere Data Interchange Server
	Installing WebSphere Data Interchange Server

	WebSphere Data Interchange Client
	Installing WebSphere Data Interchange Client
	Setting up connections to server databases

	Chapter 3. Running the WebSphere Data Interchange Server
	Running from the command line
	Triggering from an MQSeries Queue
	Adapter user exits

	Calling from a C++ program
	Elements of the C++ API
	WebSphere Data Interchange API example

	Chapter 4. Message Content Descriptor profiles
	Setup overview
	Creating MCD profiles

	Chapter 5. Service profiles
	Substitution keywords
	Setup overview
	Creating Service profiles

	Appendix A. C++ and Java API return codes
	Appendix B. Mapping the MQRFH2 header to the JMS API
	Notices
	Trademarks

	Index

