
WebSphere® WebSphere Data Interchange for MultiPlatforms

Mapping Guide

Version 3.3

SC23-5874-00

���

WebSphere® WebSphere Data Interchange for MultiPlatforms

Mapping Guide

Version 3.3

SC23-5874-00

���

Note!

Before using this information and the product it supports, read the information in “Notices” on page 345.

March 2007

This edition applies to IBM WebSphere Data Interchange for MultiPlatforms, V3.3. and to all subsequent releases and

modifications until otherwise indicated in new editions.

To send us your comments about this documentation, email doc-comments@us.ibm.com. We look forward to hearing

from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way

it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures . xi

Tables . xiii

About this book . xv

Who should read this book . xv

How this book is organized . xv

Related books . xv

Part 1. Introduction . 1

Chapter 1. Introducing WebSphere Data Interchange Mapping 3

Prerequisites . 3

Chapter 2. Understanding Mapping 5

Mapping process overview . 6

How mapping works . 6

Map types . 7

Data Transformation maps 9

Validation maps . 10

Functional acknowledgement maps 10

Send maps . 11

Receive maps . 11

Object types . 12

Code lists . 12

Translation tables . 12

Global variables . 13

Control strings . 14

Queries . 15

Chapter 3. The WebSphere Data Interchange mapping interface 17

Main application window . 17

Mapping functional area . 18

XML functional area . 20

EDI functional area . 21

Chapter 4. Data formats . 25

Creating a data format . 26

Understanding how your application data is structured 26

Filling out a data format worksheet 31

Using the WebSphere Data Interchange data format editors 33

Accessing data format editors 34

Creating a data format dictionary 35

Creating the data format record ID information 38

Creating a data format . 40

Creating loops . 43

© Copyright IBM Corp. 2007 iii

Creating a data format record 45

Creating a data format structure 47

Creating a data format field 49

Navigating between data format editors 50

Data format dictionary editor paths 50

Data format editor paths . 51

Data format loop editor paths 52

Data format record editor paths 52

Data format structure editor paths 53

Data format field editor paths 53

Reusing data format components 53

Understanding data types . 54

Chapter 5. Extensible Markup Language 61

Accessing XML editor . 62

Creating the XML dictionary 62

Importing and defining a DTD or schema file 63

Creating an XML Namespace 65

XML Document processing . 66

Example 1 . 67

Example 2 . 68

Example 3 . 69

Chapter 6. EDI standards . 71

Envelopes . 71

Transactions . 72

Using the EDI standard editors 73

Creating the EDI standard dictionary 74

Creating a transaction . 76

Creating a segment . 79

Creating a data element . 81

Creating a code list . 84

Editing an envelope standard 84

Envelope control strings . 87

Chapter 7. Creating map objects 89

Creating code lists . 89

Creating translation tables . 90

Creating global variables . 90

Chapter 8. Creating a map 93

Using the map editor . 93

Starting the map editor . 95

General editing procedures 95

Advanced mapping techniques 100

Mapping task list . 100

Choosing the right map . 102

Specifying qualification . 103

Qualifying a Data Transformation map 104

Qualifying a send or Receive map 110

iv Mapping Guide

Qualifying data elements 114

Compiling control strings . 116

Recompiling control strings 116

Migrating a map . 117

Part 2. Data Transformation Maps 119

Chapter 9. Data Transformation mapping 121

Using the Data Transformation Map editor 121

Creating a new Data Transformation map 122

Mapping hierarchical loops 123

XML mapping considerations 123

Namespaces . 124

Target Namespace . 124

Namespace Processing for Input XML documents 124

Namespace Processing for Output XML Documents 125

XML schema restrictions 125

Applying map rules . 125

Applying the minimal trading partners concept 125

Viewing map rules . 126

Mapping MQMD and MQRFH2 values 126

Getting and setting properties in the MQMD and MQRFH2 headers 126

Other notes . 129

Chapter 10. Validation mapping 131

Starting the validation map editor 131

Creating a validation map . 132

Using validation maps . 132

Chapter 11. Functional Acknowledgement mapping 135

Functional Acknowledgement maps provided with WebSphere Data Interchange 135

Starting the Functional Acknowledgement map editor 136

Using the Functional Acknowledgement map editor 137

Creating a Functional Acknowledgement map 137

Source document definition record layout 138

Using Functional Acknowledgement Maps 140

Chapter 12. Data Transformation mapping commands and functions 141

Map variables . 141

Naming variables . 142

Literals . 142

Comments . 143

Keywords . 143

Specifying a path . 143

Forward and reverse references 144

Data types supported by mapping commands and functions 144

Expressions . 145

Logical operators . 145

Comparison operators . 146

Contents v

Arithmetic operators . 146

Unary operators . 147

Order of precedence . 147

Assignment . 147

Conditional commands . 147

If / ElseIf / Else / Endif . 147

Commands . 149

CloseOccurrence . 149

Create . 150

Error . 150

ErrorContext . 151

FAError . 151

FAErrorPath . 155

ForEach . 155

HLLevel . 158

MapCall . 158

MapChain . 159

MapFrom . 159

MapSwitch . 160

MapTo . 161

Qualify and Default . 162

SetElementAttribute . 163

SetNamespace . 172

SetNoNSSchemaLocation 173

SetSchemaLocation . 173

SetProperty . 174

Functions . 175

Char . 175

Concat . 176

Created . 176

Date . 177

DateCnv . 177

Exit . 177

Find . 178

Found . 178

GetProperty . 179

HexEncode . 179

HexDecode . 180

IsEmpty . 180

Left . 181

Length . 181

Lower . 182

Number . 182

NumFormat . 182

Occurrence . 183

Overlay . 184

Right . 185

Round . 185

StrComp . 186

StrCompI . 186

vi Mapping Guide

StrCompN . 187

StrCompNI . 187

SubString . 188

Time . 189

Translate . 189

TrimLeft . 190

TrimRight . 191

Truncate . 191

Upper . 192

Validate . 192

Message properties . 193

Source document properties 193

Target document properties 194

EDI envelope standard generic properties 195

EDI envelope standard specific properties 196

Part 3. Send and Receive Maps . 199

Chapter 13. Send and Receive mapping 201

Creating a send or Receive map 201

Using the mapping data element editor 202

Applying advanced mapping capabilities to a field or data element 203

Using the special handling button 203

Using the Repeat Button 209

Setting an application control key 209

Using literals and mapping commands 211

Adding a literal or mapping command to a map 211

Literals and data types . 211

Translation tables . 212

Forward translation tables 213

Reverse translation tables 213

Creating a new translation table 214

Specifying send and receive usages 215

Applying the minimal trading partners concept 215

Viewing usages . 216

Creating a Send map usage 216

Creating a receive usage 225

Editing send and receive usages 238

Copying send or receive usages 238

Defining generic send usages 238

Defining generic receive usages 239

Creating fixed-to-fixed maps 240

Chapter 14. Advanced send and Receive mapping 241

Using accumulators . 241

Accumulator types . 242

Accumulator actions . 242

Adding an accumulator to a map 242

Using literals . 243

Contents vii

Using literals for Send mapping 243

Segment creation for Send mapping 244

Using literals for Receive mapping 244

Format of literal data . 245

Accumulator literals . 245

Conditional processing of literals 245

Literal keywords . 246

Named variables . 256

Expressions . 258

Boolean operators . 259

Comparison operators . 259

Arithmetic operators . 259

Unary operator . 261

Special operators . 261

Date conversion special operators 263

Order of precedence . 265

Special variables . 266

Mapping techniques for literal keywords 268

Examples of using literal keywords and named variables 270

Example 1 . 270

Example 2 . 270

Example 3 . 270

Example 4 . 271

Example 5a . 271

Example 5b . 272

Example 6 . 272

Notes on examples 5 and 6 273

Example 7 . 273

Example 8 . 274

Example 9 . 275

Example 10 . 276

Control data literals . 277

Using service segment fields 277

Mapping service segment fields (send only) 278

Mapping specific service segment fields (receive only) 279

Mapping generic service segment fields (receive only) 280

Validation during mapping . 282

Appendix A. Mapping Binary Data 285

The BIN segment ID . 285

Length of the BIN segment 285

Data Transformation for Binary Data 285

Mapping a BIN segment 286

The BIN and BDS segments 286

The EFI segment . 287

Send processing for the binary segment 288

Mapping data from a file to a binary segment 288

Format specifications . 289

Examples . 290

Mapping an application field to a binary segment 291

viii Mapping Guide

Receive processing for the binary segment 293

Mapping data from a binary segment to a file 293

Mapping data from a binary segment to an application field 296

Appendix B. Hierarchical loops 297

Specifying HL levels . 297

The HL segment . 298

Preparing hierarchical loops 299

Data Transformation Mapping for HL Loops 300

Creating a Data Transformation Map 300

Defining HL loop levels . 300

Qualifying HL loop levels in an EDI source message 301

Qualifying HL loop levels in an EDI target message 301

Handling special HL mapping for Data Transformation maps 302

Mapping the HL segment in a send or Receive map 310

HL segment literal keywords for Send and Receive Maps 311

Appendix C. Handling international characters 313

Processing and automatic detection for UNICODE 314

Encoding used for incoming Application data 314

Encoding used for outgoing Application data 314

Encoding used for incoming EDI data 314

Encoding used for outgoing EDI data 315

Encoding used for incoming XML data 315

Encoding used for outgoing XML data 315

Import and export considerations 316

MQ profile fields . 316

PERFORM keywords for international data 316

SOURCEENCODE and ENCODETARGET 316

IGNOREBOM . 317

Byte-order mark support . 317

Examples . 319

Scenario 1: WebSphere Data Interchange in a worldwide data center 319

Scenario 2: Exporting data from one database and importing it into another 319

Scenario 3: Migrating from a previous version of WebSphere Data Interchange 320

Appendix D. DTD Conversion Utility 321

Converting a DTD . 321

DTD Conversion Utility output 325

XML Dictionary File . 326

Resolving the XML dictionary file name 326

Updating a previously converted DTD 327

Processing external DTDs . 327

Resolving DTD file names 328

Example of DTD file resolution 328

Using a DTD alias file . 329

Inbound Translation Process (XML to Data Format) 329

Receiving XML data using VAN (inbound) 330

Outbound Translation Process (Data Format to XML) 331

Sending XML data using VAN (outbound) 332

Contents ix

Specifying Sender and Receiver Information 332

Identifying trading partners 334

PERFORM Commands and Keywords 334

Encoding considerations . 336

Overriding the Default XML Prolog 337

Mapping considerations for XML data 337

EDI Standard Representation of XML Data 338

Sequences . 339

Choices . 339

Special Sequences and Choices 340

Mapping example . 340

Control String Generation 341

Diagnosing Errors . 341

Understanding DTD parsing 341

Parser messages . 341

Warning messages . 342

Utility JCL . 343

XML Processor Messages and Codes 344

Notices . 345

Programming interface information 347

Trademarks and service marks 347

Glossary of terms and abbreviations 349

Bibliography . 357

WebSphere Data Interchange publications 357

Softcopy books . 357

Portable Document Format (PDF) 357

WebSphere Data Interchange information available on the Internet 357

Index . 359

x Mapping Guide

Figures

 1. Mapping process flow . 6

 2. Mapping functional area . 20

 3. XML functional area . 21

 4. EDI functional area . 22

 5. Data formats functional area . 26

 6. Application data with record identifier . 27

 7. Sample Working Storage Record Definition of a Purchase Order 31

 8. Data Transformation Map editor, Details tab 96

 9. Example of a Data Transformation Map . 97

10. Cascading menus in the Map Command window pane 99

11. Data Element Special Handling window 204

12. Send Map Usage editor . 216

13. Receive Map Usage editor . 225

14. HL example 1 . 297

15. HL example 2 . 297

16. The HL segment . 298

17. Preparing Hierarchical Loops . 300

18. Example of EDI no hierarchy (no parent id HL02) 302

19. XML DTD with nesting . 303

20. XML DTD without nesting . 304

21. Loop menu . 305

22. HL Qualification window . 305

23. HLLevel command . 306

24. A child HL qualification . 307

25. A peer (sibling) HL qualification . 307

26. No qualification under HLLEVEL data example 308

27. CloseOccurence command with no qualification example 309

28. CloseOccurence command with no qualification incorrect data example 309

29. Multi-occurence qualification example . 310

30. Multi-occurence qualification data example 310

31. DTD Conversion Utility . 321

© Copyright IBM Corp. 2007 xi

xii Mapping Guide

Tables

 1. Map types supported by WebSphere Data Interchange 8

 2. Object types . 12

 3. Mapping functional area components . 19

 4. Sample Application Records with C and D Records 28

 5. Sample Record . 30

 6. Data Format Component Relationship Worksheet Example 31

 7. Data Format Component Relationship Worksheet 33

 8. Data format symbols . 51

 9. Data types for data formats . 54

10. Add EDI Standard Transaction Detail editor fields 77

11. Add EDI Standard Transaction Segment editor fields 80

12. Add EDI Standard Transaction Segment editor fields 82

13. Data types for EDI standard data elements 83

14. Add EDI Standard Transaction Segment editor fields 85

15. Symbols used in maps . 98

16. Control string list window field descriptions 116

17. MQMD properties (ROOT.MQMD.xxx) . 127

18. MQMD properties for Windows and AIX 128

19. MQRFH2 properties (ROOT.MQRFH2.xxx) 128

20. Standard Functional Acknowledgement maps 135

21. Functional acknowledgement dictionaries 136

22. Supported special variables . 142

23. Comparison operators . 146

24. Format examples for SuppressZeroValues 171

25. Format examples for SuppressZeroValues 172

26. Special Handling Options . 204

27. Translation table, differences in data . 212

28. Translation table, conflicts with standards 212

29. Sample forward translation, table values 213

30. Sample reverse translation, table values 213

31. Send map usages Exit Routines tab fields descriptions 219

32. Send map usages Envelope Attributes tab field descriptions 220

33. Send map usages WDI options tab field descriptions 222

34. Application Routing field descriptions . 228

35. Receive map usages Attributes tab field descriptions 232

36. Receive map usages WDI Options tab field descriptions 234

37. WebSphere Data Interchange accumulator types 242

38. Accumulator actions . 242

39. Literal keywords . 246

40. Sample translation table UOMDIV . 275

41. Literals to identify fields in service segments 279

42. Keywords for mapping envelope data (receive only) 280

43. Validation used during mapping for different data types 282

44. Type of validation during Translate to Standard 282

45. Type of validation during Translate to Application 283

46. The HL segment . 299

47. HL segment literal keywords . 311

© Copyright IBM Corp. 2007 xiii

48. WebSphere Data Interchange supported BOMs 318

49. DTD Conversion Utility field descriptions 322

xiv Mapping Guide

About this book

This document explains how to use WebSphere® Data Interchange Client V3.3 to

develop Data Transformation, validation, functional acknowledgement, and send and

Receive maps to use when processing EDI documents, XML documents, and data

formats.

Who should read this book

This document is intended for the person responsible for creating Data Transformation

maps, validation maps, functional acknowledgement, and send and Receive maps

using WebSphere Data Interchange.

How this book is organized

This book has the following three parts:

v Part 1. Introduction

This part contains information about the WebSphere Data Interchange mapping

functional area. It includes information about how to create data formats, EDI

standards, XML dictionaries, map objects.

v Part 2. Data Transformation maps

This part covers the information you need to create Data Transformation, validation

and Functional Acknowledgement maps.

v Part 3. Send and Receive maps

This part covers the information you need to create send and Receive maps.

Related books

The following books complete the WebSphere Data Interchange library and contain

information related to the topics covered in this book. You can view these documents,

and download them, from the library page of the WebSphere Data Interchange Web

site:

http://www.ibm.com/websphere/datainterchange

v WebSphere Data Interchange for MultiPlatforms Quick Start Guide, CF0YREN

This document provides a brief overview of how to use WebSphere Data

Interchange.

v WebSphere Data Interchange for MultiPlatforms Administration and Security Guide,

SC34-6214-01

This document provides information on administrative tasks you will use in

WebSphere Data Interchange.

v WebSphere Data Interchange for MultiPlatforms Messages and Codes Guide ,

SC34-6216-01

This book provides information to assist you in diagnosing errors.

v WebSphere Data Interchange for MultiPlatforms User's Guide, SC34-6215-01

© Copyright IBM Corp. 2007 xv

This book provides information on the WebSphere Data Interchange Client/Server

user interface.

v WebSphere Data Interchange for MultiPlatforms Programmer's Reference Guide,

SC34-6217-01

This document provides detailed technical information about WebSphere Data

Interchange.

v WebSphere Data Interchange for MultiPlatforms Mapping Guide, SC23-5874-00

This document provides instructions for your WebSphere Data Interchange mapper.

v WebSphere Data Interchange for MultiPlatforms Utility Commands and File Formats

Reference Guide, SC23-5873-00

This document provides the commands and file formats necessary to use

WebSphere Data Interchange.

v WebSphere Data Interchange for z/OS V3.3 Installation Guide, SC34-6269-01

This book provides information for the electronic data interchange (EDI) administrator

about entering, sending, and receiving EDI transactions and other documents

interactively.

About this book

xvi Mapping Guide

Part 1. Introduction

© Copyright IBM Corp. 2007 1

2 Mapping Guide

Chapter 1. Introducing WebSphere Data Interchange Mapping

Before you can use WebSphere Data Interchange to translate data, or to send or

receive transactions, messages, or files, you must define certain information. This

information describes how your system sends and receives data, how data is formatted

in your application files and to a standard, to whom you send data and from whom you

receive data, and other pertinent information.

This document explains how to use WebSphere Data Interchange to develop Data

Transformation, validation, functional acknowledgement, and send and Receive maps to

use when processing Electronic data interchange (EDI) documents, Extensible Markup

Language (XML) documents, or proprietary documents (data format).

This document outlines the following items required for mapping:

v Proprietary documents (data formats)

v XML

v EDI Standards

You will also find information about creating maps and specific instructions for creating:

v Data Transformation maps

v Send maps

v Receive maps

Prerequisites

This document is intended for the person responsible for creating Data Transformation

maps, validation maps, Functional Acknowledgement maps, send and Receive maps

using the WebSphere Data Interchange Client.

Before using this document, familiarize yourself with the WebSphere Data Interchange

Client and concepts of use in the WebSphere Data Interchange for MultiPlatforms

User's Guide, SC34-6215-01.

© Copyright IBM Corp. 2007 3

4 Mapping Guide

Chapter 2. Understanding Mapping

A WebSphere Data Interchange map relates a source document to a target document.

In WebSphere Data Interchange, there are three types of documents:

v EDI

An EDI document can be a transaction such as a purchase order or an invoice in a

format defined by a standards body such as X12 or EDIFACT.

v XML

An XML document can be any type of information encoded using Extensible Markup

Language tags according to an XML schema or DTD.

v Proprietary documents (data formats)

A proprietary document (data format) can be one of many types of formats used by

data processing applications.

© Copyright IBM Corp. 2007 5

Mapping process overview

How mapping works

In WebSphere Data Interchange you can create or import document definitions for the

source and target documents, and then create a map which relates the elements in the

source document to elements in the target document.

Any combination of source and target document types can be specified in a map. For

example, you can create a map which transforms an EDI document into an XML

document, or proprietary documents (data formats) into an EDI document. Similarly,

EDI-to-EDI and XML-to-XML maps are possible, along with the other combinations.

A map contains the commands necessary to transform a source document into a target

document. WebSphere Data Interchange provides a graphic user interface (GUI) which

simplifies creation of the mapping commands. In the simplest cases, you can

drag-and-drop mapping between source and target elements. This type of mapping

handles cases where there is a one-to-one correspondence between source and target

Determine target
document type
(EDI, XML, ROD)

Determine source
document type
(EDI, XML, ROD)

Create source
document
definition

Create target
document
definition

Create data
transformation map

Compile data
transformation map

Compile validation
Map

Create validation
map (if needed)

Create functional
Acknowledgement
map (if needed)

Compile functional
acknowledgement
Map

(Optional)

Create send
map (if needed)

Compile send map

Create map
objects (translation
tables, code lists,
etc.)

Create receive
map (if needed)

Compile receive map

(Optional) (Optional) (Optional)

Figure 1. Mapping process flow

Understanding mapping

6 Mapping Guide

elements. You can also drag elements when creating more complex mapping

commands. After completing the map, you compile it into a control string using

WebSphere Data Interchange Client. In addition to the Data Transformation maps

described, there are four types of specialized maps:

v Validation maps

A validation map provides the instructions needed to perform additional validation

beyond what is specified in the EDI Standard. In a validation map, there is no target

document. A special command (FAError()) is provided to report any errors in an EDI

functional acknowledgement. You can create your own validation maps. Special

service segment validation maps are provided with the product. The service segment

validation maps validate the envelope segments such as the X12 ISA or the

EDIFACT UNB. (These are called control segments in X12 and service segments in

EDIFACT.) Both service segment validation and a user-specified validation map can

be applied to a given EDI document.

v Functional acknowledgement maps

A Functional Acknowledgement map is a special Data Transformation map used in

creating EDI acknowledgements. EDI acknowledgements include the X12 TA1

interchange acknowledgement and the X12 997 and EDIFACT CONTRL functional

acknowledgements. WebSphere Data Interchange creates all EDI acknowledgements

using a single data format definition. A Functional Acknowledgement map is used to

convert this document into an EDI document such as an X12 997 transaction set or

an EDIFACT CONTRL message. Several standard Functional Acknowledgement

maps are provided with the product.

v Send maps

A Send map specifies how a field in a Data Format is used to create a Data Element

in a Transaction. In Send Maps, the source document is always a data format. The

target document is always an EDI Standard Transaction. Send Maps are target

based. This means that commands are executed in an order based on the target

document definition (the EDI Standard Transaction).

v Receive maps

A Receive map specifies how a field in a Data Format is created from a Data

Element in a Transaction. In Receive Maps, the target document is always a data

format. The source document is always an EDI Standard Transaction. Receive Maps

are source based. This means that commands are executed in an order based on

the source document definition (the EDI Standard Transaction).

Map types

WebSphere Data Interchange supports five types of maps that you can use to

transform data that you exchange with other business and trading partners: Data

Transformation maps, validation maps, Functional Acknowledgement maps, and send

and Receive maps.

The following table describes each type of map supported by WebSphere Data

Interchange.

Understanding mapping

Chapter 2. Understanding Mapping 7

Table 1. Map types supported by WebSphere Data Interchange

Map type Description

Data Transformation Data Transformation maps are the primary type of map used to convert a

document from one format to another. They provide the information

needed to gather data from a source document and create a target

document using the source data. These maps provide a powerful method

of mapping data from one document format to another.

Validation Validation maps provide the instructions needed to perform additional

validation beyond what is specified in the EDI Standard. Validation maps

contain mapping commands that are instructions used to provide

additional validation of an EDI document.

Functional

acknowledgement

Functional acknowledgement maps provide the instructions to the

WebSphere Data Interchange on how to produce a functional

acknowledgement. A Functional Acknowledgement map is a special Data

Transformation map used in creating EDI acknowledgements.

Send Send maps convert a Data Format source document to an EDI Standard

Transaction target document.

Receive Receive maps convert an EDI Standard Transaction source document to

a Data Format target document.

All five map types provide the ability to perform the following tasks:

v Directly relate two elements (Data Transformation maps only)

v Generate custom functional acknowledgements (Functional Acknowledgement maps

only)

v Generate extended validation (validation maps only)

v Manipulate data

v Set fixed values into elements

v Validate data

v Change values of data based on equivalent value specified in a translation table

v Specify conditional translation processing

v Save data or set flags for use in other translations

v Handle repeating compound or simple elements in similar or different ways (send

and Receive maps do not support repeating elements in EDI)

v Handle hierarchical loops (HL‘s)

Data Transformation, functional acknowledgement, and validation maps provide the

ability to perform the following tasks:

v Directly relate two elements (Data Transformation maps only)

v Generate custom functional acknowledgements (Functional Acknowledgement maps

only)

v Generate extended validation (validation maps only)

v Provide comments anywhere in the map

v Group commands and comments together

v Copy or move mapping commands and comments

Understanding mapping

8 Mapping Guide

v Switch to a different map or execute another map after the current one is finished

Send and Receive maps provide the ability to perform the following tasks:

v Comments at the mapping level only

v Move mapping commands within an element (no copy is available for send and

Receive maps)

v For Receive maps only, switch to a different map or execute another map after the

current one is finished

Data Transformation maps

Data Transformation maps consist of commands specifying how to transform a source

document into a target document. In each Data Transformation map, a source

document definition and a target document definition is specified. The source document

definition describes the layout of the source document (the document to be translated).

The target document definition describes the layout of the target document (the output

document). Source and target document definitions are specified when the map is first

created. You can change the source and target document definitions after a map is

created, but you cannot change the source syntax type or target syntax type. For

instance, if you are using an EDI document definition as your source document

definition, you can change which version of the EDI Standard you are using, but you

cannot indicate that you want the source document syntax type to be a data format

instead of EDI.

You can indicate whether a Data Transformation map is source or target-based when

you create it. This cannot be changed after the map is initially created.

v Source-based

A Data Transformation map can be source-based. In a source-based Data

Transformation map, the map is constructed based on the order elements are

defined in the source document definition. This provides an efficient and predictable

method of processing the data and the mapping commands. In a source-based map,

the source document definition is the base document definition. If the source

document contains hierarchical loops and you need to use the special hierarchical

loop mapping command (HLLevel()) in a Data Transformation map to construct the

target document, the map must be source-based.

v Target-based

There are cases where it is easier to produce the target document if the mapping

commands are executed based on the order elements are defined in the target

document definition. Data Transformation maps support target-based processing. If

the target document contains hierarchical loops and you need to use the special

hierarchical loop mapping command (HLLevel()) in a Data Transformation map to

construct the target document, the map must be target-based. Generally,

source-based maps are used whenever convenient because translation based on the

source document is usually more efficient than translation based on the target

document. In a target-based map, the target document definition is called the base

document definition.

Understanding mapping

Chapter 2. Understanding Mapping 9

Validation maps

Validation maps provide the instructions needed by WebSphere Data Interchange to

perform additional validation beyond what is specified in the EDI Standard.

A validation map is similar to a source-based Data Transformation map. Unlike a Data

Transformation map, however, a validation map has no target. Certain specific

commands such as MapTo() are not available in a validation map. The FAError()

command is available in a validation map for reporting errors in an EDI

acknowledgement.

Each validation map has an associated source document definition. The source

document definition describes the layout of the document to be validated. It is specified

when the map is first created. The source document definition is always an EDI

document definition. You can change the source document definition after a map is

created, but you cannot change the source syntax type. For instance, you can change

which version of the EDI Standard you are using, but you cannot indicate that you want

the source document type to be a data format instead of an EDI Standard.

Functional acknowledgement maps

Functional acknowledgement maps provide the instructions to the WebSphere Data

Interchange on how to produce a functional acknowledgement.

WebSphere Data Interchange can automatically generate EDI Standard functional

acknowledgements for EDI documents received from a trading partner. To produce a

functional acknowledgement, a Functional Acknowledgement map must be in the Map

Rule associated with the source document that is being translated. The source

document must be an EDI Standard Transaction. When a document is going to be

translated, it is first validated as specified in the Map Rule associated with the

translation. WebSphere Data Interchange will provide a standard level of validation on

the EDI Standard Transaction document. If a functional acknowledgement is going to be

generated, results from validation of an EDI Standard Transaction are written to an

internal format. Validation Maps are created to provide additional validation on an EDI

Standard Transaction document. Results are also written to the internal format. The

generation of a functional acknowledgement uses the Functional Acknowledgement

Map specified in the Map Rule and this internal format as its source document. The

Functional Acknowledgement Map contains mapping commands that indicate how to

use the validation results contained in this internal format to create a specific functional

acknowledgement. If a document is accepted for translation by the validation process,

then the appropriate Data Transformation Map is used to translate the source

document. All of this is controlled by the Map Rule associated with the source

document and the Data Transformation Map.

The source document definition for all Functional Acknowledgement Maps is a Data

Format with the name &FUNC_ACK_META contained in the dictionary

&FUNC_ACK_METADATA_DICTIONARY. It describes the layout of the internal format

generated by the validation process. The name of the source document definition

cannot be changed. You cannot create a Functional Acknowledgement Map without this

Data Format in your System.

Understanding mapping

10 Mapping Guide

The target document definition in a Functional Acknowledgement Map describes the

layout of the functional acknowledgement. It must be an EDI Standard Transaction with

a name of 997, 999 or CONTRL. Normally, you do not need to create or modify a

Functional Acknowledgement map. WebSphere Data Interchange provides several

maps to produce the most common functional acknowledgements. Create a Functional

Acknowledgement map only when a custom functional acknowledgement is required.

For a list of the Functional Acknowledgement maps provided by WebSphere Data

Interchange, see Table 20 on page 135.

Send maps

Send maps provide instructions to WebSphere Data Interchange for translating a

document from a proprietary format into an EDI Standard Transaction. Send maps also

provide the information needed by WebSphere Data Interchange to gather data from a

document in a proprietary format and create a Transaction using the source data. Send

maps offer a powerful method of mapping data from a proprietary format to an EDI

Standard Transaction.

In addition to having instructions that specify how to convert a document from one

format to another, WebSphere Data Interchange must also know the layout, or format,

of the source and target document. In WebSphere Data Interchange, the layout of a

document is a document definition. Send Maps use an EDI Standard Transaction as the

target document definition. The source document definition, the layout of the proprietary

format, is called a Data Format. Maintenance of document definitions is not performed

in maps or even in the Mapping Functional Area. Instead, each of the document syntax

types is maintained in their respective Functional Areas. In maps, you are always

working with document definitions; never on the documents themselves.

Send maps are used to show how a field in a Data Format is used to create a Data

Element in a Transaction. In Send Maps, the source document is always a data format.

The target document is always an EDI Standard Transaction. Send Maps are target

based. This means that commands are executed in an order based on the target

document definition (the EDI Standard Transaction). Through mapping, you specify the

relationships between the fields in a Data Format and Data Elements in a Transaction.

Receive maps

Receive maps provide instructions to WebSphere Data Interchange for translating a

document from an EDI Standard Transaction into a proprietary format. Receive maps

also provide the information needed by WebSphere Data Interchange to gather data

from a Transaction and create a document in a proprietary format using the source

data. Receive maps offer a powerful method of mapping data from an EDI Standard

Transaction to a proprietary format.

In addition to having instructions that explain how to convert a document from one

format to another, WebSphere Data Interchange must also know the layout, or format,

of the source and target document. In WebSphere Data Interchange, the layout of a

document is a document definition. Receive Maps use an EDI Standard Transaction as

the source document definition. The target document definition, the layout of the

proprietary format, is called a Data Formats. Maintenance of document definitions is not

performed in maps or even in the Mapping Functional Area. Instead, each of the

Understanding mapping

Chapter 2. Understanding Mapping 11

document syntax types is maintained in their respective Functional Areas. In maps, you

are always working with document definitions; never on the documents themselves.

A Receive Map is used to show how a field in a Data Format is created from a Data

Element in a Transaction. In Receive Maps, the target document is always a data

format. The source document is always an EDI Standard Transaction. Receive Maps

are source based. This means that commands are executed in an order based on the

source document definition (the EDI Standard Transaction). Through mapping, you

specify the relationships between the fields in a Data Format and Data Elements in a

Transaction.

Object types

WebSphere Data Interchange provides the following types of objects that you can use

when creating or editing maps: code lists, transformation tables, and global variables.

The following table describes each available object type.

 Table 2. Object types

Object type Description

Code list A code list defines a list of acceptable values

that are used in maps to validate any source

simple element or variable.

Translation table A translation table is used to change one value

into another corresponding value during

translation of a document.

Global Variable Global variables are used with Data

Transformation maps, validation maps, and

Functional Acknowledgement maps. During

translation, you can put data into a global

variable. The data contained in a global

variable is available to other translations.

Code lists

A code list is a list of acceptable values that is used in maps to validate any source

simple element or variable. Code lists are provided by EDI Standards. They indicate

which values are valid for a specific EDI data element. A code list can also be created

to specify any list of valid values. When WebSphere Data Interchange validates or

translates a document, and the use of a code list is specified to validate a piece of

data, the specified code list is searched to see if it contains the value.

Translation tables

A translation table is used to translate a value into a corresponding value. Translation

tables are used in Data Transformation maps, validation maps, and Functional

Acknowledgement maps. Translation tables contain a list of unique values called source

values. Each unique source value has a corresponding target value assigned to it. The

target values do not need be unique. Always define all possible values in the translation

table.

Understanding mapping

12 Mapping Guide

Use a translation table in a map to indicate that an alternate value is to be used instead

of the value contained in a simple element or variable. An example of where a

translation table might be useful is when a simple element contains an internal part

number that must be converted to a trading partner‘s corresponding part number. When

the instruction to use a translation table is encountered during translation, the value in

the source simple element is looked up in the specified translation table. If it is found in

the table, the corresponding value is then substituted for the original source value. If it

is not found, there is an option to specify a default value.

In Data Transformation maps, validation maps, and Functional Acknowledgement maps,

the lookup of a value is normally done against the source values in a translation table.

When a matching source value is found, the corresponding target value is substituted

for the original value. There is an option to perform a lookup using the target value.

With this option, you can use the same table to translate a value to a trading partner‘s

equivalent value and also to translate a trading partner‘s value to your equivalent value.

Using the target value for a lookup is useful only when target values are unique. When

the option to perform a lookup using the target value is used, the lookup attempts to

locate a target value in the translation table that matches the value in the simple

element or variable. When found, the corresponding source value is substituted for the

original value.

Global variables

A global variable defines a variable that can be used across mapping translations.

These variables are used much like variables in most programming languages. Global

variables can hold and manipulate data in Data Transformation maps, validation maps,

and Functional Acknowledgement maps. While a document is being translated, data

can be put into a global variable. After the translation of the document ends, the data

remains in the global variable. The data in the variable might be available in the next

translation, depending on the scope of the variable, regardless of the map that is used

to perform the translation. During subsequent translations within the scope of the

variable, the data in the global variable can be obtained, manipulated and changed.

One attribute of a global variable is scope. The scope of a global variable can be

session, group, or interchange. Global variables that have a scope of interchange are

created and initialized when an interchange is encountered. They are reset at the start

of the next interchange. Variables with a scope of group are created and initialized

when a group is encountered. They are reset at the start of the next group. Not all

syntax types support the concept of groups or interchanges. When the source

document type does not support groups, the scope of group is treated the same as

interchange. If the document type does not support interchanges, the variable is reset

at the start of each input document. For example, if the input file contains multiple

documents and is split into separate documents by the Splitter or XMLSplitter, the

global variables are reset for each input or XML document in the file.

Other attributes of global variables include data type, maximum length, and initial value.

Maximum length dictates how long the data within a global variable can be. The

maximum length is only available for certain data types. Global variables can also have

an initial value. When a global variable is created or reset automatically (goes out of

Understanding mapping

Chapter 2. Understanding Mapping 13

scope), the initial value will automatically be put into the global variable. The default

initial value for a numeric data type is zero. An empty string is the default initial value

for character string and binary data types.

Data Transformation maps, validation maps, and Functional Acknowledgement maps

use global variables in map commands. Every global variable is available to every map.

A global variable must be defined before it can be used in a map command. They can

be defined from the Global Variables list window of the Mapping Functional Area, the

Data Transformation Map editor, the Validation Map editor, or the Functional

Acknowledgment Map editor.

A Global Variable must reside on the WebSphere Data Interchange Server before a

map using the Global Variable can successfully translate a document. Ensure that the

Global Variable exists on the server by defining the Global Variable on the server using

WebSphere Data Interchange Client or use export functions to copy the Global Variable

to the server. Global Variables can be exported by themselves or with maps or Map

Control Strings.

Note: Certain changes to a global variable affect all maps that utilize the global

variable. All maps that use a global variable that have had certain changes must

be recompiled using WebSphere Data Interchange Client. A map must be

recompiled when the name, scope, or data type of a global variable has been

changed.

Control strings

Control strings help improve the performance of the WebSphere Data Interchange

Server when translating a document. Control strings are the compiled representation of

a map. On the server, the original maps are never used. Instead, a map must be

compiled into a control string before the WebSphere Data Interchange Server can

translate the source document referenced by the map. Map Control Strings are required

for all map types.

When you compile a map using WebSphere Data Interchange Client, control strings are

generated for the map and often for the source and target document definitions

referenced by the map. The map control strings associated with compiled maps can be

listed on the Control Strings list window in the Mapping Functional Area. Control strings

associated with document definitions cannot be viewed. These are managed with the

map control strings. Document definition control strings are exported with the map

control strings that need them.

Map control strings are recompiled any time the corresponding map is changed or any

time the related source or target document definition is changed. Changes will not be

available to WebSphere Data Interchange until the recompile has been successfully

completed.

Understanding mapping

14 Mapping Guide

Queries

A query is a request for specific information from the database. By using queries, you

can determine what information you want to see and the order in which you want to see

it. Queries are used to display most objects on a list window. You can also decide what

columns of data display on the list window, and how it will be sorted. Queries also have

the ability to provide selection criteria. Selection criteria can be used to limit the records

that display in a list window. Queries can also be used to improve performance by

limiting the number of documents and columns that appear on a list window.

The query function in WebSphere Data Interchange Client enables you extensive

control over the information that appears in any list window. Queries control both the

number of documents that are listed and the number of fields that display. They are

particularly useful after you have been using WebSphere Data Interchange for a while

and the number of items on your list window is large.

A query is executed each time any list window is opened in WebSphere Data

Interchange Client. You see the results of that query display on the list window of each

tab. For example, when you open the Data Transformation Maps list window in the

Mapping Functional Area, the default All query is often run. This query locates all Data

Transformation maps and opens the results on the list window. The list window opened

with this query lists all Data Transformation maps and sorts them by name.

You can change which query is executed to display the result on the list window. It can

be changed to any available query that exists on the database. The available queries

can include default queries provided by WebSphere Data Interchange and other queries

that you or other persons have created. Click Properties on the list window toolbar to

change which query is executed on an open list window.

A query can be created that is public, protected, or private. This function is only useful

in installations where the WebSphere Data Interchange database is shared by several

users. A public query is available to all users of the shared database. Any user can

access the query and can alter or even delete the query. Protected queries are

available to all users of the shared database; however, only the creator of the query can

alter or delete it. Only the user that created the query can access private queries.

Understanding mapping

Chapter 2. Understanding Mapping 15

16 Mapping Guide

Chapter 3. The WebSphere Data Interchange mapping interface

WebSphere Data Interchange Client is designed to make setup, maintenance, and

management of WebSphere Data Interchange Client components easier by using the

Microsoft Windows graphical environment. Through the WebSphere Data Interchange

Client interface you can perform the following tasks:

v Create, update, and manage the following WebSphere Data Interchange Client

components:

– Maps

– XML document definitions

– EDI Standards

– Profiles, tables, and other supporting objects

– Proprietary document definitions (data formats)

v Import Extensible Markup Language (XML) schemas and Document Type Definitions

(DTDs) into WebSphere Data Interchange

v Set up and maintain database definitions

v Set preferences

v Work with the message log

This document focuses on the components of the WebSphere Data Interchange Client

that are applicable to mapping. For all other components, see the WebSphere Data

Interchange for MultiPlatforms User's Guide, SC34-6215-01 for more information.

Main application window

The WebSphere Data Interchange Client main application window is used to manage all

functions that can be performed in WebSphere Data Interchange Client. It contains a

navigation bar and a menu. The navigator bar consists of a series of buttons that open

the functional areas of WebSphere Data Interchange. A button is provided to open the

help for WebSphere Data Interchange Client. A database selector is also provided. You

select the database you want to work with before opening any functional area.

Use the menus to access all functions of the WebSphere Data Interchange Client. The

menus that appear are dynamic, in other words the contents of each menu varies

depending on whether a list window or editor is active.

Most mapping work is done in list windows and editors. A list window opens members

of a single component. List windows can display by themselves or in a functional area

window. A functional area window contains several list windows, each listing members

from related components. The members selected for display in a list window are

governed by the current query for that component. Most components in a functional

area use a default query that results in all members of the component being selected

and displayed in the list window. The default query opens only the most commonly

referenced columns in the list window to improve performance.

© Copyright IBM Corp. 2007 17

List windows can be opened individually without the involvement of a functional area.

This occurs by selecting the Open Query List function on the File menu or by clicking

buttons within various dialog or editors within the application. The Open Query List

function opens the Query list window. Within this list window, you can select the

component you want to work with along with the query to use to select members of the

component to be displayed.

You can select alternate queries once the list window is opens. One or two other

queries are provided for each component type by default. With these default queries,

you can specify selection criteria while the other, if provided, lists most columns for

each item within a component. You can create and use your own queries. Use of

selection criteria is a useful way to create queries that list only a subset of the members

of a component. It is recommended that you include only the columns that are really

needed in a query. This improves performance, especially when listing a large number

of members, or the database is not local, or if network performance is not optimal when

accessing the database.

Use list windows by themselves or within a functional area to maintain the individual

items of an object type. Items can be added, edited, renamed, deleted, and so on,

using the list window.

You can have several functional area windows opened simultaneously. Also, the same

functional area list window can be opened more than one time thus opening several list

windows for the same component.

WebSphere Data Interchange Client can view multiple databases at the same time. You

can work with development, test, and production database simultaneously. When

opening a functional area, it opens using the database selected on the navigator bar.

editors are used to view and update items in components. In most cases, they are also

used to create the items in a component. Another way of creating items in a component

is to import them into a database. There are a few item types that use a wizard dialog

to collect the needed information and then create the item.

For more information of the navigation bar, menus, list windows and editors see the

WebSphere Data Interchange for MultiPlatforms User's Guide, SC34-6215-01 for more

information.

Mapping functional area

The Mapping functional area is used to view and maintain maps and related items. You

access the Mapping functional area by clicking Mapping on the WebSphere Data

Interchange Client navigator bar. This opens a functional area window that contains

several list windows. The following table describes the mapping components

represented in each list window of the Mapping functional area. Figure 2 on page 20

shows the Mapping functional area.

Main application window

18 Mapping Guide

Table 3. Mapping functional area components

Component Description

Data Transformation maps Data Transformation maps are used to transform a document in

any format into a document in any format.

Validation maps Validation maps provide additional validation for EDI documents.

Functional acknowledgement

maps

Functional acknowledgement maps are used to create EDI

functional acknowledgements. WebSphere Data Interchange Client

provides a basic set of Functional Acknowledgement maps to

produce common functional acknowledgements. You need to

create your own or modify these only if you have special

requirements.

Send maps Send Maps are one of the two original WebSphere Data

Interchange map types. This map converts a Data Format source

document to an EDI Standard Transaction target document.

Receive maps Receive Maps are one of the two original WebSphere Data

Interchange map types. This map converts an EDI Standard

Transaction source document to a Data Format target document.

Control strings WebSphere Data Interchange does not use maps directly to

translate or validate documents. Instead, map controls strings are

used. Using WebSphere Data Interchange Client, maps are

compiled into map control strings for use in translation and

validation.

Global variables Global variables are used with Data Transformation maps,

validation maps, and Functional Acknowledgement maps. During

translation, you can put data into a global variable. The data

contained in a global variable is available to other translations.

Forward translation table

Reverse translation table

Translation tables are used to change one value into another

corresponding value during translation of a document.

Code lists Code lists define a list of acceptable values that are used in maps

to validate any source simple element or variable.

Mapping functional area

Chapter 3. The WebSphere Data Interchange mapping interface 19

XML functional area

The XML functional area provides access to XML dictionaries, schema document

definitions, DTD document definitions, and Namespace objects. You can access the

XML functional area by clicking XML on the WebSphere Data Interchange Client

navigator bar. This opens a functional area window that contains one list window for

each XML related object type. Figure 3 on page 21 shows the XML functional area.

The XML functional area contains one list window for each of the following components:

v XML dictionaries v Schema document definitions

v DTD document definitions

v Namespace objects

Figure 2. Mapping functional area

XML functional area

20 Mapping Guide

XML provides a readable, easy to use data format that trading partners use to

exchange data between their computer applications. In essence, XML provides the

building blocks for electronic versions of common business documents.

WebSphere Data Interchange can translate data from one document format into an

XML document for transmission to a trading partner. Conversely, WebSphere Data

Interchange can translate data in an XML document into another format.

In order to begin exchanging XML documents with a trading partner, you must select an

XML schema or DTD that defines the layout of the document you want to send or

receive. The schema or DTD must be imported into WebSphere Data Interchange

Client.

EDI functional area

The EDI functional area is used to view and maintain EDI Standards. You can access

the EDI functional area by clicking EDI on the WebSphere Data Interchange Client

navigator bar. This opens a functional area window that contains several list windows.

Each of these list windows opens a component that is part of the EDI functional area.

Figure 4 on page 22 shows the EDI functional area.

The EDI functional area contains one list window for each of the following components:

v EDI dictionary

v EDI document definitions

Figure 3. XML functional area

XML functional area

Chapter 3. The WebSphere Data Interchange mapping interface 21

v EDI segments

v EDI data elements

v Code lists

v Envelope Standards

v Envelope Control Strings

Note: Envelope Standards and Envelope Control Strings are used for send and

Receive maps only. These do not apply to Data Transformation maps.

 EDI Standards provide a common data format that trading partners use to exchange

data between their computer applications. In essence, EDI Standards provide the

building blocks for electronic versions of common business documents.

WebSphere Data Interchange can translate data from one document format into an EDI

document. Conversely, WebSphere Data Interchange can translate data in an EDI

document into another format. When you install WebSphere Data Interchange, you

receive copies of EDI Standards currently approved by the primary standards

organizations.

In order to begin exchanging EDI documents with a trading partner, you must select an

EDI document definition that corresponds to the information you want to send or

receive. Ideally, you and your trading partner can agree on an EDI document definition

that requires no customization to meet your needs, but this is not always possible. If

Figure 4. EDI functional area

EDI functional area

22 Mapping Guide

you and your trading partner need to exchange specific information that is not included

in existing EDI Standards, you can customize currently approved EDI Standards to fit

your needs.

Note: When altering EDI Standards, you work in close partnership with your trading

partners. If you customize EDI Standards without informing your trading partners

of the changes, they might not be able to process the EDI documents you send.

If you need to alter a component of an EDI Standard, it is recommended that

you copy the EDI Standard and then alter the copy.

EDI functional area

Chapter 3. The WebSphere Data Interchange mapping interface 23

EDI functional area

24 Mapping Guide

Chapter 4. Data formats

The term data format defines the layout of your application data. It is a document

definition. The word data refers to the information itself. The word format refers to the

physical layout of information in the file, such as field names and lengths.

WebSphere Data Interchange requires a description of the data format for each

business application that generates data for translation, or uses translated data.

Application data must be described to WebSphere Data Interchange so that it can be

used as either a source or target for translation.

You can use the Data Format editor to describe the application’s data to WebSphere

Data Interchange. After you created a data format, you then create a map between the

application’s data format and the source or target document. Creating a data format is

the first step in the mapping process if your map uses or creates data to be used by

your application.

You usually need to create a data format for every unique business document that is

used or created by WebSphere Data Interchange. A single data format can be mapped

to multiple documents.

For example, If you use EDI or XML to exchange invoices, you need to create a data

format for your invoicing system. This enables WebSphere Data Interchange to

understand how your invoicing system structures an invoice. From that data format, you

create a map to translate the application’s data to either the 810 transaction in the X12

standard or the XML format that your trading partner uses. For details on mapping,

Chapter 8, “Creating a map,” on page 93.

This chapter assumes that you know the layout of the application data you are using.

© Copyright IBM Corp. 2007 25

Creating a data format

This section provides the basic steps you follow to create a data format for an

application. The basic steps are:

1. Understand how your application data is structured.

Get a copy of your application’s record layout and study the format. For more

information about application data see 26

2. Fill out a data format work sheet.

This form helps you enter information about your data format into the data format

editors. See the sample on page 31 and the worksheet example on page 31.

3. Use the data format editors to create the data format.

WebSphere Data Interchange has data format editors for Data Format Dictionaries,

Record ID Info, Data Formats, Loops, Records, Structures, and Fields. See “Using

the WebSphere Data Interchange data format editors” on page 33.

Each step is detailed in the sections that follow.

Understanding how your application data is structured

Understanding how application data is structured requires three steps:

1. Obtain a useful copy of your application data layout.

2. Optionally, structure that data so that WebSphere Data Interchange can use it.

3. Determine the data components used by your application.

Figure 5. Data formats functional area

Creating a data format

26 Mapping Guide

Obtaining application data layout

First, you need to obtain a copy of each application’s record layout. The record layout

can come directly from the program code listings or any other documentation that

shows the beginning and ending position of each field in the record. For each record,

the information shows:

v Physical attributes of each field

v Content of each field

v Position of each field in the record

v Length of each field

v Data type of each field

v Relationship between the records

Structuring application data

The next step in understanding your application data is structuring application data in a

format that WebSphere Data Interchange accepts. WebSphere Data Interchange can

accept two types of data record formats: raw data records and control and data records.

Raw data: Each record in raw data format identifies itself by containing a unique

record identifier (a record ID). Raw data can be either comma-separated or

fixed-position.

v In fixed-position data, the identifier starts in the same position and extends for the

same length in each record for send and Receive maps. For Data Transformation

maps the record id can consist of several fields and vary by record.

v In comma-separated data, each value is separated by a comma. Comma-separated

data is used only with Data Transformation maps. Raw data that is fixed-position can

be used in Data Transformation maps, Send maps and Receive maps. The Record

ID is actually a field in the record. As long as records contain identifiable record IDs,

you can use application data without modification.

Figure 6 is an example of fixed-position data, several records of application data contain

the record ID in the first three positions. In this example, HDR is the record ID of the

header record, NAM is the name, and so on.

HDR0123456 092091C321

NAMSmithson, Patricia Jeanne

SSN5555555555

PRVCity Regional Clinic

PID05050505-X505

ADR555 Cedar Road

ADRAny City IL

ADR61001-1101

TOT1555.00

Figure 6. Application data with record identifier

Creating a data format

Chapter 4. Data formats 27

When your data has no record identifier for WebSphere Data Interchange to associate

with each record, you have two choices. You can modify your application data to

contain a record identifier or you can modify it to use control (C) and data (D) records.

Control and Data (C and D) Format: If no record ID clearly specifies the type of

information contained in a record, that record structure can be indicated by using

control and data records. Also use C and D records when you need to use multiple data

formats in a single file or you need to use overrides offered in the C record that are not

offered in raw data. You also can use this type of format to override fields within service

segments (such as ISA, GS, UNB, and UNH).

There are a number of ways to structure C and D records. Table 4, for example, shows

an example of a C and D record in which:

v A C or D is in the first column (byte)

v Record name is in the next 16 columns

v Application data starts in column 18

This example also shows the use of a Z record to indicate the end of the document. For

more about Z records, see the WebSphere Data Interchange for MultiPlatforms

Programmer's Reference Guide, SC34-6217-01.

 Table 4. Sample Application Records with C and D Records

 1 2 3 4 5 6

123456789012345678901234567890123456789012345678901234567890

CSPSTT16 AFTSU09 IL

DPOHDR P0123456 092091C321

DP0NOTE INCOMPLETE INVOICE INFORMATION SLOWS REIMBURSEMENT

DP0NOTE PATIENTS WITH MULTIPLE CLAIMS NEED COMPLETE HISTORY

DINVITEM 005500550055

DITEMDESC SURGICAL PROCEDURE

DITEMDIAGN CARPAL TUNNEL PAIN

DINVITEM 005500550055

DITEMDESC SURGICAL PROCEDURE

DITEMDIAGN LIGAMENT INFLAMMATION

DNAME SMITHSON, PATRICIA JEANNE

Z

CSPSTT16 AFTSU09 IL

Determining data components

You must determine the data components used by your application so that WebSphere

Data Interchange can identify and process the data accurately. A data component is a

grouping of related data fields, such as the field names that make up line items of a

health-care claim or the ship-to address of a purchase order. WebSphere Data

Interchange needs information about:

v Which fields in your application data form the various components WebSphere Data

Interchange uses

v The order in which components occur

v The number of times each component occurs

Creating a data format

28 Mapping Guide

That information identifies the data from your application. When you use the data format

editors to create a data format for an application’s data, you show relationships

between the various components and show the number of times each component can

occur in a transaction.

WebSphere Data Interchange uses four components to express the characteristics of

the application’s data for mapping:

v Fields

v Structures

v Records

v Loops

Fields: Fields are fundamental pieces of data, such as prices or item numbers or first

names. Raw data that is fixed position can be used in Data Transformation maps, Send

maps and Receive maps. In COBOL records, they are stored in a single variable.

Structures: A structure is a group of related data fields, which is probably unique to

your company. When multiple fields always display together, you can designate the

group as a structure and give it a structure name. Structures not only contain fields, but

can also contain other structures.

For example, a purchase order line item contains price, quantity, and product ID fields.

Those three fields always display together. Further, they are used not only on purchase

orders but also on invoices. So you can create a structure called a line-item structure

that consists of price, quantity, and product ID fields. A purchase order line item, then,

can consist of a line item structure plus a requested ship date field, while an invoice line

item can consist of a line item structure plus a requested payment date field. You can

even repeat that structure within a purchase order line item record.

Note: Structures cannot be used for comma-separated data.

Records: A record is a set of related fields as they are defined in an application’s

data. Every record in your application must be defined in your data format, assuming

you want to map all records. Records contain fields and structures. An example of a

record that identifies a patient in a hospital’s claims-management system is described in

the following example.

You are a health care provider and you want to send your claim information in a single

health-care claims EDI standard transaction to the insurer or payer of the claim. You

submit claims each day for all patients with the same insurer or payer. You would look

at your application’s data and determine which records are required to send the data for

a patient claim, say a patient record followed by claim line-item records. The patient is

identified as R20, and the claim information is identified as R42 and R73, as shown in

Table 5.

Creating a data format

Chapter 4. Data formats 29

Table 5. Sample Record

R20 01623792001 ALBERT MICKEY

XF07261925S31PO BOX 11

R42 0101623792001 CO19200002510{0005{21000000150{0001{155000002500000A

R42 0201623792001 PR1 00006100{0000{ 00000000{0000{

 000000000000

R73 01623792001 48521PATIENT IS RECOVERING

FROM SURGERY AS NEEDED

R20 01623792001 LOUISE MOONIE

XF07261925S31PO BOX 11

R42 0302623792001 OA1 00006100{0002{8900000100{0206{115000005000000E

R73 01623792001 48521PATIENT SHOULD RETURN

IN 2 MONTHS FOR LAB RESULT

In this example, there are multiple patient records and each patient record contains that

patient’s claim information. Because this group of records is related and repeats, you

would create a loop consisting of the patient record and the repeating claim line-item

records. Because loops can repeat, and the health care claims EDI standard

transaction defines a repeating patient claim loop, you can send claims for multiple

patients in a single health care claims EDI standard transaction to a single insurer or

payer.

Loops: A loop is a group of records that repeat. Loops can occur within other loops;

this is referred to as a nested loop. Loops are used for repeating such things as line

items, as in the following example:

You want to include claims for multiple patients in a single health-care claims

transaction. You would look at your application’s data and determine which records are

required to send the data for a patient claim, say a patient record followed by claim

line-item records.

To pay multiple patients in the same transaction you would create a loop consisting of a

patient record and a repeating claim line-item record. Because loops can repeat, you

can send claims for multiple patients by repeating the patient claim loop for every

patient.

When deciding how best to structure your application’s data into data components,

keep the following component hierarchy in mind:

v Loops can contain other loops or records.

v Records can contain structures or fields.

v Structures can contain other structures or fields.

v Fields are fundamental units of data.

The data format worksheet example in the following section helps you to determine

how to structure your application data into data format components.

Data formats: records

30 Mapping Guide

Filling out a data format worksheet

A data format worksheet can make it easier to decide how to structure application data.

This example shows a purchase order record definition and how its data format

worksheet looks.

 Table 6. Data Format Component Relationship Worksheet Example

Parent

Type

Parent Name Child

Type

Child Name Max Use

or Occurs

Record ID

(REC

Only)

Field Data

Type

(FIELD

Only)

Field

Length

(FIELD

Only)

data

format

SAMPLE-PO REC SHIP-TO 1 SH

LOOP DETAIL-LOOP 1000

REC TOTAL 1 TT

01 SHIPTO

 05 RECORD-IDENTIFIER

 10 PURCHASE-ORDER-NUMBER PIC X(08).

 10 RECORD-ID PIC X(02).

 05 COMPANY-NAME PIC X(30).

 05 COMPANY-DUNS PIC X(10).

 05 COMPANY-ADDRESS

 10 STREET PIC X(30).

 10 CITY PIC X(15).

 10 STATE PIC X(02).

 10 ZIPCODE PIC 9(09).

 05 COMPANY-PHONE PIC 9(10).

01 DETAIL

 05 RECORD-IDENTIFIER

 10 PURCHASE-ORDER-NUMBER PIC X(08).

 10 RECORD-ID PIC X(02).

 05 ITEM-NUMBER PIC X(10).

 05 ORDER-QUANTITY PIC 9(09).

 05 ORDER-UNITS PIC X(01).

 05 UNIT-PRICE PIC 9(09)V99.

 05 UNIT-DISCOUNT PIC 9(09)V99.

 05 EXTENSION PIC 9(09)V99.

*THERE ARE UP TO 3 DETAIL DESCRIPTION RECORDS PER DETAIL RECORD.

01 DETAIL-DESCRIPTION.

 05 RECORD-IDENTIFIER

 10 PURCHASE-ORDER-NUMBER PIC X(08).

 10 RECORD-ID PIC X(02).

 10 DESCRIPTION

PIC X(30).

01 TOTAL

 05 RECORD-IDENTIFIER

 10 PURCHASE-ORDER-NUMBER PIC X(08).

 10 RECORD-ID PIC X(02).

 05 TOTAL-AMOUNT PIC 9(09)V99.

Figure 7. Sample Working Storage Record Definition of a Purchase Order

Data format worksheet

Chapter 4. Data formats 31

Table 6. Data Format Component Relationship Worksheet Example (continued)

Parent

Type

Parent Name Child

Type

Child Name Max Use

or Occurs

Record ID

(REC

Only)

Field Data

Type

(FIELD

Only)

Field

Length

(FIELD

Only)

REC SHIP-TO STRUCT RECORD-
IDENTIFIER

1

FIELD COMPANY-NAME CH 30

FIELD COMPANY-DUNS CH 10

STRUCT COMPANY-
ADDRESS

1

FIELD COMPANY-
PHONE

NO 10

STRUCT RECORD-
IDENTIFIER

FIELD PURCHASE-
ORDER-NUMBER

CH 8

FIELD RECORD-ID CH 2

COMPANY-
ADDRESS

FIELD STREET CH 30

FIELD CITY CH 15

FIELD STATE CH 2

FIELD ZIPCODE NO 9

LOOP DETAIL-LOOP REC DETAIL 1 DE

REC DETAIL-DESCRIP.. 3 DD

REC DETAIL STRUCT RECORD-
IDENTIFIER

1

FIELD ITEM-NUMBER CH 10

FIELD ORDER-
QUANTITY

NO 9

FIELD ORDER-UNITS CH 1

FIELD UNIT-PRICE N2 11

FIELD UNIT-DISCOUNT N2 11

FIELD EXTENTION N2 11

DETAIL-
DESCRIP..

STRUCT RECORD-
IDENTIFIER

1

FIELD DESCRIP.. CH 30

TOTAL STRUCT RECORD-
IDENTIFIER

1

FIELD TOTAL-AMOUNT N2 11

Data format worksheet

32 Mapping Guide

Table 7. Data Format Component Relationship Worksheet

Parent

Type

Parent Name Child

Type

Child Name Max Use

or Occurs

Record ID

(REC

Only)

Field Data

Type

(FIELD

Only)

Field

Length

(FIELD

Only)

Using the WebSphere Data Interchange data format editors

When you have filled out the data format worksheet, you are ready to create the data

format on WebSphere Data Interchange Client. To create the data format and its

components, use the data format editors, as described in this and following sections.

You use the data format editors to create the various components that make up a data

format. In using the editors to create a data format, first decide whether to work from

Data format worksheet

Chapter 4. Data formats 33

the top down or from the bottom up. If you work from the top down, after you create a

data format dictionary, you create the larger components first, then work down to the

smaller. If you work from the bottom up, after you create a data format dictionary, you

create smaller components first, and then work up to larger.

Whichever way you choose to work, you must create a data format dictionary as your

first step. You cannot create components for a nonexistent dictionary and store them

elsewhere until the dictionary is created. When you have created the dictionary, you can

create the smaller components such as structures and fields before creating the larger

components. In practice, it is easier to create the larger components, such as loops and

records first, and then work down to the smaller components until your data format is

complete.

This section:

v Provides a generic description of the procedures for using the data format editors.

v Steps through the process of using the editors to create a new data format.

Accessing data format editors

You use the data format list window to gain access to the data format component

editors. Each tab contains a list of components. Click the tab corresponding to the

component you wish to work with. From that list, you can select the specific component

you wish to work with and open its editor by clicking the component and then clicking

Open.

To access a data format editor:

1. Click Data Format on the WebSphere Data Interchange Navigator bar.

The data format list window opens.

2. Click the tab of the data format component you wish to work with.

The list window for that component opens.

This list window is opens a list of existing components of the type you selected.

Each row contains a single component; each column contains data stored in the

component. Information in the columns displays in fields in the respective editor.

The list window, however, also contains the date, time, and user ID of the last

update.

To display additional columns, click the scroll bar on the bottom of the page to scroll

to the right or left. To alter the columns that display on the page, or to change which

query is executed to produce the list, click Modify Window Properties (...). To create

new queries, see WebSphere Data Interchange for MultiPlatforms User's Guide,

SC34-6215-01

3. To view an existing component or to add or change its information, double-click the

first column of the item.

The editor opens, with the General tab or Details tab in front, depending on which

component type you opened. You add information or make changes to the data

format component through its tabs, as described in the following sections.

Note: All of the component editors have a General tab and a Comments tab. The

Data Formats, Loops, Records, and Structures editors also contain a Details

Data format editors

34 Mapping Guide

tab for setting up the specifications for those components. The Data Formats

editor has two additional tabs, an Overview tab and a Raw Data tab. The

Overview tab provides a visual representation of the entire data format. The

Raw Data tab indicates which fields contain important information that can

be used in a translation by the WebSphere Data Interchange Server. The

information is used only when the Data Format is Raw Data format.

The following sections contain detailed procedures for creating data format components.

For information about viewing, copying, editing, renaming, deleting, and printing data

format components, see WebSphere Data Interchange for MultiPlatforms User's Guide,

SC34-6215-01. For information about exporting data format components, see

WebSphere Data Interchange for MultiPlatforms User's Guide, SC34-6215-01.

The data format component editors are described in the following sections in the order

in which you use them when creating a data format from scratch following a top-down

approach.

Creating a data format dictionary

A data format dictionary is a name for a group of other components. The following

instructions detail creating a new data format dictionary. For information about viewing,

copying, editing, renaming, deleting, and printing data format dictionaries, see

WebSphere Data Interchange for MultiPlatforms User's Guide, SC34-6215-01. For

information about exporting data format dictionaries, see WebSphere Data Interchange

for MultiPlatforms User's Guide, SC34-6215-01.

Create a new data format dictionary when you set up your first data format for a

particular application. You can then reuse data format components for that application

when you create subsequent data formats if they are created within that dictionary. You

can also import COBOL copybooks using the data format dictionary editor.

1. Select the Data Format Dictionary tab, click New on the list window tool bar.

The data format dictionary editor opens with the General tab in front and the fields

blank.

2. Type a name in the Dictionary Name field.

Notes:

a. The name is displayed in uppercase letters.

b. You cannot type spaces within the name.

c. The name can be up to 30 characters long and can contain alphanumeric

characters and any of the special characters “!@#$%&*()_-+=’:;<,>.?”.

3. Enter a description of the data format dictionary in the Description field. This field is

optional.

4. Click Save on the tool bar to save the dictionary.

After you have saved your dictionary, the Dictionary Name becomes read-only.

Note: When you save the dictionary, the Data Formats, Loops, Records,

Structures, and Fields buttons become available in the List Of group box at

Data format editors

Chapter 4. Data formats 35

the bottom of the editor. Click those buttons to open list windows that contain

the components associated with this dictionary. When you first create a

dictionary, the lists are empty.

Importing a COBOL copybook

Importing uses a COBOL source file to create WebSphere Data Interchange fields,

structures, and records, and then save them in this data format dictionary. The data

format records can be assigned to an existing data format or to a new data format.

1. Use the procedure described in “Creating a data format dictionary” on page 35 to

create a dictionary to store the new records and fields. The dictionary must be

saved before you proceed. After you save your dictionary, the Dictionary Name

becomes read-only and the Import COBOL Copybook button is enabled.

2. Click Import COBOL Copybook.

The Select COBOL Copybook File window opens.

3. Locate and select the appropriate file. Click Open.

Import of the COBOL copybook begins. The Status window opens. Messages

relating to the import of the copybook are shown in this window. The following

occurs during import of the COBOL copybook:

v A Data Format Record is created or updated for each COBOL record description

(01 level).

v A Data Format Structure is created or updated for each COBOL group Item.

v A Data Format Field is created or updated for each COBOL elementary item.

v A Code List is created or updated for each COBOL elementary item condition

name entry (88 level).

Note: The components created or updated by the import of the copybook have not

been saved to the System. Saving the created or updated components

comes later in this process. The Import COBOL Copybook button is disabled

until a save is performed. Additional COBOL copybooks can be imported

once a save is performed.

4. Click Close when the status window indicates the import is complete.

The path and file name of the copybook file display in the Copybook File field. The

Data Format Name and Record ID Information lists as well as the corresponding

New buttons are enabled.

Note: If errors occurred during the import of the copybook, evaluate and correct the

errors and then try to import the copybook again.

5. Select an existing data format in this dictionary from the list, or click New. If this is a

new dictionary, there are no data formats in the drop down list.

v If a valid data format is selected, the Record ID Info and its New button are

disabled. Go to step 7 on page 37.

v If you click New, the Data Formats editor opens. See “Creating a data format” on

page 40. Be sure you save the new data format before returning to the data

format dictionary editor. Go to step 6 on page 37.

Data format dictionary editor

36 Mapping Guide

6. Select the existing Record ID information object from the list, or click New. This is a

mandatory field. The record ID information object provides information about how

the record is identified to WebSphere Data Interchange.

If you click New, the data format record ID information editor opens. See “Creating

the data format record ID information” on page 38. Be sure you save the new

record ID information before returning to the data format dictionary editor.

7. Check the Convert 88s to Codelists box, if you want to convert 88 entries to code

lists. One code list is created for each set of 88-level statements that are associated

with the COBOL data name. The names assigned to the code lists are determined

by values in the Prefix and Starting Number fields. Checking this box enables the

Prefix and Starting Number fields.

Prefix The prefix is a value up to five characters in length that is used as the first

part of the name for all created Code Lists. The default is the first five

characters of the name of the Data Format dictionary.

Starting Number

This field is a one to three digit number. The first Code List created by

importing the COBOL copybook has this value appended to the specified

prefix to form the name of the Code List. WebSphere Data Interchange

increments this value for each subsequent Code List created and uses the

increased value and the prefix as the name of the Code List. This value

default is 1 and has a range of 0 to 999.

8. Click Save on the tool bar to save the COBOL objects in the dictionary.

After the import process is complete, you must update any Data Format created as part

of the import of the copybook. In addition, any existing Data Format that is changed by

the import of the COBOL copybook can also require updating. To update the Data

Format:

1. Open the Data Formats list window by selecting the Data Formats tab in the Data

Formats Functional Area.

2. Select the Data Format involved in the import of the COBOL copybook and click

Open on the list window toolbar.

3. Select the General tab on the Data Format editor and complete the fields. For more

information about the Data Format editor fields see “Creating a data format” on

page 40.

4. If the copybook is using Raw Data format, select the Raw Data tab on the Data

Format editor and complete the fields. For more information about the Data Format

editor fields see “Creating a data format” on page 40.

5. Click Save to save your changes. WebSphere Data Interchange saves the changes

to the System.

6. Close the Data Format editor and the Data Formats list window.

If you are using Raw Data format, you must do the following before using the Data

Format:

1. Open the Data Format Records list window by selecting the Records tab in the

Data Formats Functional Area.

Data format dictionary editor

Chapter 4. Data formats 37

2. Select all of the new Records and click Open on the list window toolbar. This opens

the Data Format Record editor displaying the first selected Record.

3. Change the record ID to the required value.

4. Click Save on the editor toolbar to save the change. WebSphere Data Interchange

saves the change to the System.

5. Click Next on the editor toolbar to navigate to the next record.

6. Repeat steps 3 through 5 to change the record ID on each Record created during

the import of the COBOL copybook process.

Note: When using a Raw Data format, each Record in a document must have a

unique record ID to determine what the record is. WebSphere Data

Interchange is not able to determine the proper record ID value from the

COBOL copybook.

7. Close the Data Format Record editor and the Data Format Records list window.

Understanding COBOL copybook REDEFINES and SYNC clauses

When a REDEFINES clause is encountered in a COBOL record description at a level

other than the 01 level, the Data Format Structures or Data Format Fields created are

included in the Data Format Dictionary but not in the current Data Format Record.

These Data Format Structures or Data Format Fields are attached to a Record that

WebSphere Data Interchange creates called DATAINTERCHANGE-REDEFINES. After

the Data Format Dictionary is saved, you can use these Data Format Structures or Data

Format Fields in your Data Format.

When a SYNC clause is encountered in a COBOL record description, WebSphere Data

Interchange inserts filler entries in the Data Format Structure or Record before the item

with the SYNC clause to ensure it lands on the appropriate boundary. Use caution

when reusing these Data Format Structures. Use of the SYNC clause in combination

with the OCCURS clause or on group items is not supported.

Creating the data format record ID information

The data format record ID information defines records in application data. The definition

indicates whether the data format uses raw data format records or C and D format

records. When your records are structured using raw data format, the data format

record ID information definition also specifies the location and length of the Record ID.

Unlike data format dictionaries and other components, record ID information definitions

are global for a system; they are not tied to a specific data format dictionary but can be

used in any data format dictionary in the system. If your company structures all

application record ID information in the same way or always uses C and D records,

then you only need to create one record ID information definition for use with any data

format.

Create a new data format record ID information definition when you set up your first

data format or when you set up a data format whose record IDs are structured

differently than your existing data formats. You can use the same data format record ID

information definition for any data format whose record IDs have the same structure or

that are set up as C and D records.

Data format dictionary editor

38 Mapping Guide

The following procedure consists of instructions for creating a new data format record

ID information definition. For information about viewing, copying, editing, renaming,

deleting, and printing data format record ID info profiles, see WebSphere Data

Interchange for MultiPlatforms User's Guide, SC34-6215-01.

1. Select the Record ID Information tab and click New on the list window tool bar.

The data format record ID Information editor opens with the General tab in front.

2. Type a name in the Name field.

Notes:

a. The name is displayed in uppercase letters.

b. You cannot type spaces within the name.

c. The name can be up to 30 characters long.

3. Enter a description of the data format record ID information definition in the

Description field. This field is optional.

4. Select the record format, raw data or C and D format records.

v If your application uses raw data format select Raw Data and go to step 5.

v If your application uses C and D format select C and D Records and go to step

9.

Note: When you select C and D Records the Record ID Information section of the

page automatically fills in and cannot be edited.

5. Type the position of the first character of the Record ID in the Position field.

6. Select the Position Type. The Position Type specifies whether the number specified

for the position of the record identifier is based on character, byte, or field.

v Character

The character position type specifies that the location of the record identifier is

based on the number of characters from the beginning of the record. The position

and length of a field are multiplied by the character size specified in the Data

Format to determine the byte offset and length of the field.

v Byte

The byte position type specifies that the location of the record identifier in a

record is based on the number of bytes from the beginning of the Record.

v Field

The field position type specifies that the location of the record identifier in a

record is based on the number of fields from the beginning of the record. For

example, if Position were set to 3, this specifies that the record identifier is the

third field of the delimited field Record, regardless of the byte or character offset.

This is only useful if the record identifier is used for a delimited field Data Format.

7. Type the length of the Record ID in the Length field. The default is 1 and the

maximum is 64.

8. Select the Data Type from the list. Data Types are listed in Table 9 on page 54.

9. Click Save on the tool bar to save the profile.

After you have saved your record ID information, the Record ID Info and field

becomes read-only.

Data format record ID information editor

Chapter 4. Data formats 39

To find other data format components that use the current data format record ID

information definition:

1. Select the General tab pag and click Where Used.

A list window opens containing Data Formats, Loops, and Records tabs.

2. Click the tab of each data format component to view a list of components containing

the current record ID information definition.

You can open any component by double-clicking it.

An empty list window means that the data format record ID information definition is

not used in any data format component of the list window’s type.

Creating a data format

The data format editor defines and structures the components that make up a data

format. A data format is a document definition. It defines the layout of your application's

data. From the data format editor, you name the data format, identify properties related

to the data format, and create and edit the associations to loops and records. It also

gives you a visual of the data format from which you can directly navigate to each of its

component editors.

The data format editor contains five tabs:

v The General tab contains fields for you to set the name of the data format, select a

dictionary and properties of the data format.

v The Details tab contains fields for you to add or change loops and records

associated with the selected data format and edit information about the association.

v The Overview tab displays a representation of the entire data format.

v The Raw Data tab contains fields for you to enter and change information specific to

raw data format translation.

v The Comments tab contains a field for you to type comments about the selected

data format.

The editor also contains a Where Used button, which lists all send and Receive maps

that use the current data format.

Create a new data format when you need to define the new layout of application data

that is used in translation.

The following instructions are for creating a new data format. For information about

viewing, copying, editing, renaming, deleting, and printing data formats, see WebSphere

Data Interchange for MultiPlatforms User's Guide, SC34-6215-01. For information about

exporting data formats, see WebSphere Data Interchange for MultiPlatforms User's

Guide, SC34-6215-01.

 1. Select the Data Formats tab and click New from list window tool bar. The Data

Formats editor opens with the General tab showing.

 2. Enter the name of the Data Format.

Data format record ID information editor

40 Mapping Guide

Notes:

a. The name is displayed in uppercase letters.

b. You cannot type spaces within the name.

c. The name can be up to 16 characters long and can contain alphanumeric

characters and any of the special characters “!@#$%&*()_-+=’:;<,>.?”. It is

suggested that the name not start with an ampersand (“&”) or dollar sign (“$”).

Data Formats provided by WebSphere Data Interchange begin with either of

these two characters. If you use generic Send Map Usages, this name is

limited to 8 characters.

 3. Select the name of the Data Format Dictionary. This association enables the data

format to utilizes all Loops, Records, Structures, and Fields in the dictionary.

 4. Enter a description for the data format. This field is optional.

 5. Select the Record ID Information object. The Record ID Information object

indicates whether the Data Format is in the C and D records format or the Raw

Data format. It also indicates the position and length of the field that contains the

record identifier.

 6. Select the Record delimiter.

v If you select an option other than No delimiter, the Field Format section of the

tab becomes available. Proceed with step 8.

v If you select No Delimiter, proceed with step 10.

 7. Select whether the data is text only.

The Text only check box indicates that the source or target data contains only text

characters (no binary data). Using this flag reduces processing time with the Data

Transformation logical message adapter (LMA) and WebSphere Data Interchange

MB message broker processors.

 8. Select the Field format.

v For Data Transformation Map data formats, the records can contain either fixed

length fields or delimited fields.

v For Send and Receive Maps the records can contain only fixed length fields.

 9. If you select Delimited, then you must specify the Delimiter Information. This

information specifies either a special character or text string that specifies columns

within a data record.

10. If you are using a code page other than the system default code page when

reading or writing to a file using this Data Format, select the alternate code page.

This field is ignored when the Data Format is used in Send Maps or Receive

Maps.

11. Specify the size of the characters in the document defined by this data format.

Characters are one or two bytes in length, depending on the code page used.

12. Specify the default output destination for documents created using the Data

Format in the Document Destination Type and Document Destination Name fields.

This information is optional.

13. Click Save.

14. Select the Details tab. Use this tab to identify the first level of Loops and Records

that are contained in the Data Format. See the help topic on that tab for additional

information.

Creating a data format

Chapter 4. Data formats 41

There are two ways to approach providing information for the Details tab:

v One method is to create the Loops and Records that are part of the first level of

the Data Format by typing the new Loops and Records into the Details tab. After

the Data Format has been saved, you need to open the Data Format Loop

editor and Data Format Record editor for each Loop and Record created. In the

editor complete the definition for each Loop and Record. This in turn requires

you to create Structures and Fields that are a part of your Data Format.

v Another method for creating a Data Format is to first create all of the Fields that

are part of the Data Format. Then create all of the Structures that are part of the

Data Format. Follow this up by creating all of the Records that are part of the

Data Format. Create the Loops that are a part of the Data Format. Finally,

create the Data Format. In this scenario, you use the Details tab of the Data

Format editor to select the existing Loops and Records that are a part of the

first level of the Data Format.

15. Select the Overview tab. This tab displays a graphical representation of your Data

Format. The information about this tab is refreshed each time the Data Format is

saved.

If you are using Raw Data format, you can right click Records and Fields on this

tab and use functions on the popup menu to set certain fields in the Raw Data tab.

16. If you are using Raw Data format (as opposed to C and D records format), set

values on the Raw Data tab. You can set the values using a right click popup

menu on the Overview tab or you can click the Raw Data tab.

17. On the Raw Data tab:

a. Identify either the first or last record within the Data Format. Records you have

defined in a Data Format do not have be in the order they are defined to the

Data Format, so one of these fields must be filled in when using Raw Data

format so WebSphere Data Interchange can determine where each document

begins and ends.

b. Identify the Field that contains the internal trading partner ID if the Data Format

contains such a field. The internal trading partner ID is a value you use to

identify your trading partner.

c. Identify the Fields that contains the interchange qualifier and interchange ID

for the sending trading partner if the Data Format contains these fields. These

fields you use to identify your trading partner.

d. Identify the Fields that contains the interchange qualifier and interchange ID

for the receiving trading partner if the Data Format contains these fields. These

fields you use to identify your trading partner.

e. Complete any other of the fields on the Raw Data tab as needed.

18. Select the Comments tab and add any comments you have about the Data

Format.

19. Click Save the editor toolbar. WebSphere Data Interchange Client saves the new

Data Format to the System.

20. Close the editor when you are done.

Notes:

1. Complete the General tab before working on the Details tab. This ensures that all

information is available when filling in the Details tab. Changing the name of the

Creating a data format

42 Mapping Guide

Data Format, the Dictionary the Data Format belongs to, or the Record ID

Information object used by the Data Format on the General tab causes all

information about the Details tab to be reset. This is not an issue with existing Data

Formats.

2. The General tab contains a Where Used button which lists the maps that reference

the Data Format. Click the button and a list window opens containing tabs for each

map. Select the specific tab to see the list of maps of that type that reference the

current Data Format.

3. The name of a Data Format must be unique regardless of the Data Format

Dictionary.

To see which maps use the current data format :

1. Select the General tab pag and click Where Used.

A list window opens containing Data Transformation Maps, Functional

Acknowledgement Maps, Send Maps, and Receive Maps tabs.

2. Click the tab of each map to view a list of maps using the current data format.

You can open any component by double-clicking it.

An empty list window means that the data format is not used in any map of the list

window’s type.

Creating loops

Use the data format loop editor to enter new loops into a data format dictionary or to

edit existing loops. Loops are entered into a data format using the data format editor

when you create or edit a data format. From the data format loop editor, you can create

and edit the loop’s associations with loops and records, as loops can contain loops and

records.

The data format loop editor contains three tabs:

v The General tab contains fields for you to name the loop, select its dictionary and

set loop properties.

v The Details tab contains fields for you to add or change loops and records

associated with the selected loop and to edit the information about the association.

v Comments tab contain a field for you to enter any comments about the selected

loop.

The General tab has a Where Used button. This button locates other data format

components that use the currently selected loop.

The following instructions are for creating a new loop. For information about viewing,

copying, editing, renaming, deleting, and printing loops, see WebSphere Data

Interchange for MultiPlatforms User's Guide, SC34-6215-01.

Create a new loop when your application data has two or more records that are

grouped together and each group can occur more than once.

 1. Select the Loops tab and click New on the list window tool bar. The data format

loop editor opens with the General tab in front.

Creating a data format

Chapter 4. Data formats 43

2. Type a name in the Loop Name field.

Notes:

a. The name is displayed in uppercase letters.

b. You cannot type spaces within the name.

c. The name of a Data Format Loop must be unique only within the Data Format

Dictionary in which the Loop belongs. However, it must be unique against all

Data Format Loops, Data Format Records, Data Format Structures, and Data

Format Fields within that same dictionary.

d. The name can be up to 30 characters long and can contain alphanumeric

characters and any of the special characters “!@#$%&*()_-+=’:;<,>.?”.

 3. Select the data format dictionary in which you want the loop to occur using the

Dictionary Name list. The Data Format Loop utilizes all Loops and Data Format

Records defined within the same dictionary.

 4. Enter a complete description of the loop in the Description field. This field is

optional.

 5. Select the Details tab to enter information about the loops and records contained

in this loop.

 6. Click New to begin defining records and loops.

 7. Enter the position in the Position field. This field default is 1 and must be unique

for each record and loop defined.

 8. Select the Type list. If this is the first entry in the loop, it must be a record.

Note: Loops can contain both loops and records, but must begin with a record.

The value of Maximum Repeat for the first record must be 1.

 9. Either select the name of the loop or record name from the Name list or type in a

name to create a new loop or record. The list contains loops and records that are

in the same dictionary and use the same record ID information definition as this

loop.

v If you type in a new name for the record or loop and click Insert, the Object

Information section of the page becomes available. Go to step 10.

v If you select an existing loop or record, the object information is filled in with that

objects specific information. Go to step 12.

10. Enter a detailed description of the record or loop in the Description field.

11. If this is a record, enter a Record Identifier. The record identifier must be unique to

the record within the Data Format.

Note: If you are using C and D records format, you do not need to specify a

record identifier. Records are identified by the record name in C and D

records format.

12. Specify the number of times to repeat the record or loop by either:

v Entering a number between 1 and 32766 in the Maximum Repeat field.

v Selecting the Unlimited Repeat check box.

13. At this point you have two options:

Data format loop editor

44 Mapping Guide

v To add the record or loop and continue adding records, click Insert and return to

step 7 on page 44.

v To add the record or loop and close the Data Format Loop Detail editor, click

OK. The record or loop is added to the list window and the Data Format Loop

Detail editor closes.

14. Click save on the editor tool bar.

To find other data format components that use the current data format loop:

1. Select the General tab and click Where Used.

A list window containing Data Formats and Loops tabs opens.

2. Click the tab of each data format component to view a list of components containing

the current loop.

You can open any item in the list by double-clicking it.

An empty list window means that the loop is not used in any other data format

component of the list window’s type.

Creating a data format record

Use the data format record editor to enter new records into a data format dictionary or

to edit existing records. From the data format record editor, you create and edit the

record’s associations with fields and structures, as records can contain fields and

structures.

The data formats record editor contains three tabs:

v The General tab contains fields for you to name the record, select its dictionary, and

set properties.

v The Details tab contains fields for you to add or change fields and structures

associated with the selected record and to edit the information about the association.

v The Comments tab contain a field for you to type any comments about the selected

record.

The editor also contains a Where Used button, which lists other data format

components that use the currently selected record.

The following instructions are for creating a new record. For information about viewing

and printing records, see WebSphere Data Interchange for MultiPlatforms User's Guide,

SC34-6215-01.

Create a new record when your application data layout requires one. Records can

contain fields and structures.

 1. Select the Records tab and click New on the list window tool bar. The Data

Format Record editor opens with the General tab in front.

 2. Type a name in the Record Name field.

Notes:

a. The name is displayed in uppercase letters.

b. You cannot type spaces within the name.

Data format loop editor

Chapter 4. Data formats 45

c. The name can be up to thirty characters long.

 3. Select the data format dictionary in which you want the record to occur using the

Dictionary Name list. Once you select a dictionary, the Record Identification section

of the tab becomes available.

 4. Enter a description of the record. This field is optional.

 5. Select the appropriate radios button for how you want to identify the record.

v Select Default to use the record ID specified in the Data Format and go to step

6.

v Select Use a Specific Record ID Information Object if you wish to use an object

other than the default and go to 6.

v Select the Indicate the Record ID Using Fields field to select fields to use for the

record ID and go to 8.

 6. Type the value of the Record ID in the Record Identifier field. This is a required

field.

v If you selected Default in step 5 go to step 20 on page 47.

v If you selected Use a Specific Record ID Information Object in step 5 go to step

7.

 7. Select the Record ID Information Object to use from the list.

The area at the bottom of the pages updates to reflect the definition of the record

selected. Verify this is the correct record and go to step 20 on page 47.

 8. Click the Details tab to enter information about the fields and structures contained

in this record.

 9. Click New to open the Data Format Record Detail editor.

10. Enter the position in the Position field. This field default is 1 and must be unique

for each field and structure defined.

11. Select Field in the Type list.

12. Select the name of the field from the Name list or type in a name to create a new

field. The list contains fields that are in the same dictionary and use the same

record ID information definition as this fields.

13. If the field contains the record ID, select the Field Contains the Record ID check

box. The Record Identifier field becomes available. Specify the record identifier.

14. Continue defining the field.

v If you specified a new name for the field and click Insert, the Object Information

section of the page becomes available. Go to step 15.

v If you select an existing loop or record, the object information is filled in with that

objects specific information. Go to step 18.

15. Enter a detailed description of the record or loop in the Description field. This field

is optional.

16. Select the data type from the Data Type list. For definitions of WebSphere Data

Interchange data types, see Table 9 on page 54.

17. Enter the length of the field in the Field Length field. The field length value is a

number between 1 and 32767.

18. At this point you have two options:

Data format record editor

46 Mapping Guide

v To add the field to the list and continue adding fields, click Insert and return to

step 10 on page 46.

v To field and close the Data Format Record Detail editor, click OK. The field is

added to the list window and the Data Format Record Detail editor closes.

19. Select the fields you wish to use for the record ID.

Note: Although records can contain both fields and structure, you can only select

fields on the Details tab for the record ID.

20. Click Save on the editor tool bar to save the record.

To find other data format components that use the current data format record:

1. Select the General tab and click Where Used.

A list window containing Data Formats and Loops tabs opens.

2. Click the tab of each data format component to view a list of components containing

the current data format record.

You can open any item in the list by double-clicking it.

An empty list window means that the data format record is not used in any other

data format component of the list window’s type.

Creating a data format structure

Use the data format structure editor to enter new structures into a data format dictionary

or to edit existing structures. From the data format structure editor, you create and edit

the structure’s associations with fields and structures, as structures can contain fields

and structures.

The data formats structure editor contains three tabs:

v The General tab contains fields for you to name the structure, select its dictionary,

and set properties.

v The Details tab to contains fields for you add or change fields and structures

associated with the selected structure and to edit the information about the

association.

v The Comments tab to contains a field for you to type any comments.

The editor also contains a Where Used button, which lists other data format

components that use the currently selected structure.

The following instructions are for creating a new structure. For information about

viewing, copying, editing, renaming, deleting, and printing structures, see WebSphere

Data Interchange for MultiPlatforms User's Guide, SC34-6215-01.

Create a new structure when your application data has two or more contiguous fields

that logically occur together. For example, a structure describing a date can contain

fields for the year, month and day. In another example, Name, Address, City, State, and

Zip occur three times in a single record in the same order. You can define those fields

as a structure one time and say that it repeats three times in the record.

 1. Select the Structures tab and click New on the tool bar.

Data format record editor

Chapter 4. Data formats 47

The Data Format Structure editor opens with the General tab in front.

 2. Type a name in the Structure Name field.

Notes:

a. The name is displayed in uppercase letters.

b. You cannot type spaces within the name.

c. The name can be up to thirty characters long.

 3. Select the data format dictionary in which you want the structure to occur using the

Dictionary Name list.

 4. Enter a description of the structure in the Description field. This field is optional.

 5. Click the Details tab to enter information about the fields and structures contained

in this structure.

 6. Click New. The Data Format Structure Detail editor opens with the General tab in

front.

 7. Enter the position in the Position field. This field default is 1 and must be unique

for each field or structure defined.

 8. Select the Type list.

 9. Either select the name of the field or structure from the list or type in a name to

create a new field or structure. The list contains fields and structures that are in

the same dictionary and use the same record ID information definition as this

structure.

v If this is a field and you type in a new name for the field, click Insert and the

Object Information section of the page becomes available. Go to step 10.

v If this is a structure and you type in a new name for the field, click Insert and

the Occurrence Information section and the Description field of the Object

Information section of the page become available. Go to step 13.

If you select an existing field or structure, the occurrence information or object

information is filled in with that field or structures specific information. Go to step

16.

10. Enter a detailed description of the file in the Description field. This field is optional.

11. Select a data type from the Data Type list. See Table 9 on page 54 for more

information about data types.

12. Specify the field length. The length of the field must be between 1 and 32767. Go

to step 16.

13. Enter the number of time the structure repeats in the Occurs field.

14. Select the name of an existing Data Format Field within the Structure from the

Occurs Depending On list. This field is used to indicate which value within the

document determines how often a Structure represented by the row repeats.

15. Enter a detailed description of the file in the Description field. This field is optional.

Go to step 16.

16. At this point you have two options:

v To add the field or structure and continue adding records, click Insert and return

to step 7.

Data format structure editor

48 Mapping Guide

v To add the field or structure and close the Data Format Structure Detail editor,

click OK. The field or structure is added to the list window and the Data Format

Structure Detail editor closes.

To find other data format components that use the current structure:

1. Select the General tab and click Where Used.

A list window containing Records and Structures tabs opens.

2. Click the tab of each data format component to view a list of components containing

the current structure.

You can open any item in that component by double-clicking it.

An empty list window means that the structure is not used in any other data format

component of the list window’s type.

Creating a data format field

Use the data format field editor to enter new fields into a data format dictionary or to

edit existing fields. From the data format field editor, you can set up and maintain

properties of a data format field.

The data formats field editor contains two tabs:

v The General tab contains fields for you to enter the field name, select its dictionary,

and set properties of the field.

v The Comments tab contains a field for you to type any comments.

The editor also contains a Where Used button, which lists other data format

components that use the currently selected field.

The following instructions are for creating a new field. For information about viewing,

copying, editing, renaming, deleting, and printing fields, see WebSphere Data

Interchange for MultiPlatforms User's Guide, SC34-6215-01.

Create a new field when your application data requires one.

1. Select the Fields tab and click New on the list window tool bar.

The Data Format Field editor opens with the General tab in front.

2. Type a name in the Field Name field. This is a required field, as indicated by the

blue asterisk.

Notes:

a. The name is displayed in uppercase letters.

b. You cannot type spaces within the name.

c. The name can be up to thirty characters long.

3. Select the data format dictionary in which you want the field to occur using the

Dictionary Name list.

4. Enter a description of the field in the Description field. This field is optional.

5. Select the data type from the Data Type list. For definitions of WebSphere Data

Interchange data types, see Table 9 on page 54.

Data format structure editor

Chapter 4. Data formats 49

6. Type the length of the field in the Field Length field.

7. If this Field is for Data Formats that are part of a Send Map or a Receive Map, then

you might need to complete the following fields:

a. Type the name of the literal you wish to use in the Literal field. For a list of

WebSphere Data Interchange literals or mapping commands, search in

WebSphere Data Interchange Client Help on the keyword “literals”.

b. Literals and mapping commands are validated differently depending on whether

they are used by Send maps or Receive maps. If you want this value validated,

click either or both the Send Map Validation check box or the Receive Map

Validation check box, depending which map types the literal or mapping

command is used.

c. Enter a value into the Code List field to automatically add a Code List to a

mapping in a Send Map or Receive Map when you map the Data Format Field.

For information about creating User Code Lists, see “Creating a code list” on

page 84.

8. When you have completed entering information, click Save on the tool bar to save

the field.

After you have saved your field, the Field Name and Dictionary Name fields become

read-only.

To find other data format components that use the current field:

1. Select the General tab and click Where Used.

A list window containing Records and Structures tabs opens.

2. Click the tab of each data format component to view a list of components containing

the current field.

You can open any item in the list by double-clicking it.

An empty list window means that the field is not used in any other data format

component of the list window’s type.

Navigating between data format editors

WebSphere Data Interchange Client’s data format editor are designed to provide

maximum flexibility. You can move from editor to editor with ease so that you can tailor

your navigation to the requirements of your work.

This section provides information about the various paths from one editor to the next.

Data format dictionary editor paths

The buttons at the bottom of the data format dictionary General tab generate list

windows for each data format component that occurs in the current dictionary. From

those list windows, you can open the editor for components in the list, where you can

edit the current component or create a new one of that type.

Data Formats

The data formats associated with this dictionary.

Loops The loops associated with this dictionary.

Data format field editor

50 Mapping Guide

Records

The records associated with this dictionary.

Structures

The structures associated with this dictionary.

Fields The fields associated with this dictionary.

Data format editor paths

From the data format editor, you can move to any other component of a data format.

The most powerful navigational tool in the data format editor is its Overview tab, which

displays a visual representation of your data format:

Table 8 defines the symbols on the data format editor Overview tab.

 Table 8. Data format symbols

This symbol. . . Represents:

A loop

A record

A structure

A field

Click the + sign to expand a section of the data format.

Click the - sign to collapse that section of the data format.

Navigating between editors

Chapter 4. Data formats 51

The Expand button expands the node which is currently selected. To expand the entire

tree, select the root node and click Expand.

The Overview tab navigates through the data format as follows:

v Double-clicking a loop starts the data format loop editor for the loop on which you

clicked.

v Double-clicking a record starts the data format record editor for the record on which

you clicked.

v Double-clicking a structure starts the data format structure editor for the structure on

which you clicked.

v Double-clicking a field starts the data format field editor for the field on which you

clicked.

From the data format editor Details tab, you can start the data format loop editor and

the data format record editor.

v To start the data format loop editor, double-click the number of the row containing the

loop you wish to edit. You can also select the row and then click Edit.

v To start the data format record editor, double-click the number of the row containing

the record you wish to edit. You can also select the row and then click Edit.

Data format loop editor paths

Within the data format loop editor, you can navigate to data formats, loops, and records,

as follows:

From the data format loop editor General tab, you can view a list of data formats and

loops in which the current loop is used.

Click Where Used to open a list window containing Data Format and Data Format

Loop tabs. Double-clicking entries in those lists starts the respective editors.

From the data format loop editor Details tab, you can start the data format loop and

data format record editors.

To start the data format loop editor, double-click the number of the row containing the

loop you wish to edit. You can also select the row and then click Edit.

To start the data format record editor, double-click the number of the row containing the

record you wish to edit. You can also select the row and then click Edit.

Data format record editor paths

Within the data format record editor, you can navigate to data formats, loops, structures,

and fields, as follows:

From the data format record editor General tab, you can view a list of data formats and

loops in which the current record is used.

Navigating between editors

52 Mapping Guide

Click Where Used to open a list window containing Data Format and Data Format

Loop tabs. Double-clicking entries in those lists starts the respective editors.

From the data format record editor Details tab, you can start the data format structure

and data format field editors.

To start the data format structure editor, double-click the number of the row containing

the structure you wish to edit. You can also select the row and then click Edit.

To start the data format field editor, double-click the number of the row containing the

field you wish to edit. You can also select the row and then click Edit.

Data format structure editor paths

Within the data format structure editor, you can navigate to records, structures, and

fields, as follows:

From the data format structure editor General tab, you can view a list of records and

structures in which the current structure is used.

Click Where Used to open a list window containing Data Format Record and Data

Format Structure tabs. Double-clicking entries in those lists starts the respective

editors.

From the data format structure editor Details tab, you can start the data format

structure and data format field editors.

To start the data format structure editor, double-click the number of the row containing

the structure you wish to edit. You can also select the row and then click Edit.

To start the data format field editor, double-click the number of the row containing the

field you wish to edit. You can also select the row and then click Edit.

Data format field editor paths

Within the data format field editor, you can navigate to records and structures, as

follows:

From the data format field editor General tab, you can view a list of records and

structures in which the current field is used.

Click Where Used to open a list window containing Data Format Record and Data

Format Structure tabs. Double-clicking entries in those lists starts the respective

editors.

Reusing data format components

In the WebSphere Data Interchange Client, you can reuse data format components

using the data format dictionary.

Navigating between editors

Chapter 4. Data formats 53

v When you create a component in a data format dictionary, you can use that

component in any other data format associated with that dictionary, but you cannot

reuse that component in the same component.

v You cannot use a loop or structure within itself, directly, or indirectly. That causes a

circular reference.

v Names of all components within a dictionary must be unique.

v All data format names must be unique, regardless of dictionary.

 Attention: Because you can reuse components, it is important that you check

where each component is used when you change it. Your changes might propagate

through several data formats. Use the Where Used button on the general tabs to see

which data format components are affected by any change you make.

Understanding data types

The following table lists the valid data types permitted in data format fields. These data

types describe the contents of the fields in your application’s data. It also shows the

valid mapping data type associated with the data format data type. The EDI standard

data types column shows equivalent EDI standard data types.

Most data format data types use the same format for storing, displaying, and printing

data. However, sometimes the storage format is different from the format used to

display or print data. These differences are noted in Table 9.

Note: Data types that contain binary data are not used for comma-separated data

formats. This can result in unpredictable behavior because the binary data can

be interpreted as record or field delimiters.

 Table 9. Data types for data formats

Data

format

EDI

standard

data types Data Format description

A A

AN

ID

Alphabetic

Any combination of characters from the ALHPANUM table, except the

digits 0–9.

AC A

AN

ID

Nn

Rn

DT

TM

Application control

A field that contains a control number by which the application identifies

the transaction. A purchase order number is an example. The data itself

is alphanumeric. A data format can contain only one field of this type.

During transaction mapping, you can specify the application control as

a concatenation of up to eight fields. The concatenated application

control overrides the AC data type.

This data type does not apply to record IDs.

An AC data type is assumed to be the same as AN during the value

validation at translate time.

Reusing data format components

54 Mapping Guide

Table 9. Data types for data formats (continued)

Data

format

EDI

standard

data types Data Format description

AN A

AN

ID

Nn

Rn

DT

TM

Alphanumeric

You can use any combination of characters up to the length of the field.

Bn AN

ID

Nn

Rn

DT

TM

Binary (unsigned)

Storage format: Data with a binary format with n implied decimal

places. A value of 2.3 defined as a 2-byte B2 field would be stored as

1110 0110 (X'E6' or decimal 230). This is the same format as IT or In

data, but binary data is not signed and, therefore, all values are

considered positive.

BN AN

ID

Nn

Rn

DT

TM

Binary (unsigned)

Any combination of 0–9 without a sign (+ or -).

Storage format: The binary equivalent of a numeric value in either two

or four bytes, depending on the length of the field.

Example: The value 23 is stored as 0000 0000 0001 0111 (X’0017’).

CH A

AN

ID

Nn

Rn

DT

TM

Character

Any combination of characters up to the length of the field.

Data types for data formats

Chapter 4. Data formats 55

Table 9. Data types for data formats (continued)

Data

format

EDI

standard

data types Data Format description

DT DT Date; does not apply to record IDs

A string of 5 to 8 digits, depending on the date format that is used. The

acceptable date formats are:

 ddmmyy, ddmmyyyy, ddyymm, ddyyyymm, ddyy, ddyyyy

 mmddyy, mmddyyyy, mmyydd, mmyyyydd

 yymmdd, yyyymmdd, yyddmm, yyyyddmm, yydd, yyyydd

FN File name.

A field with data type FN is treated as if the data type were AN.

In send and Receive maps, specifies a field that contains the name of a

file whose entire contents are mapped to a binary segment.

Hn AN

ID

Nn

Rn

DT

TM

Hexadecimal

Hexadecimal data with n implied decimal places.

This format is treated as a Bn field when mapped to a numeric data

element and as an HX field when mapped to an alpha data element.

HX AN

ID

Nn

Rn

DT

TM

Hexadecimal

Any combination of 0–9 and A–F up to twice the length of the field.

Storage format: Hexadecimal, where the length of the field determines

the number of bytes used to hold the value.

ID Identifier

The ID data type is equivalent to an AN data type.

Data types for data formats

56 Mapping Guide

Table 9. Data types for data formats (continued)

Data

format

EDI

standard

data types Data Format description

In AN

ID

Nn

Rn

DT

TM

Integer (signed)

Storage format: Data with a binary format with n implied decimal

places. A value of 2.3 defined as a 4-byte I2 field would be stored as

0000 0000 1110 0110 (X'E6' or decimal 230).

IT AN

ID

Nn

Rn

DT

TM

Integer (signed)

Storage format: The binary equivalent for a positive number or the two’s

complement binary equivalent for a negative number, in two or four

bytes, depending on the length of the field.

Example: The value +23 is stored as 0000 0000 0001 0111 (X'0017').

The value −23 is stored as 1111 1111 1110 1001 (X'FFE9').

IV Incrementing Value

An EDI Standard Data Element, such as a message reference number,

that starts at 1 and increases by 1 for each occurrence.

This data type does not apply to record identifiers.

Note: This format is used in send and Receive maps only.

Ln AN

ID

Nn

Rn

DT

TM

Decimal (leading sign)

Zoned decimal data with n implied decimal places and a leading sign.

Data types for data formats

Chapter 4. Data formats 57

Table 9. Data types for data formats (continued)

Data

format

EDI

standard

data types Data Format description

N AN

ID

Nn

Rn

DT

TM

Numeric

Any combination of 0–9 and an optional sign (+ or −). The length

includes the sign.

When mapping data elements defined as data type N in UN/EDIFACT

standards, use data type R.

Nn AN

ID

Nn

Rn

DT

TM

Numeric

Any combination of 0–9, an implied decimal point with n places to the

right of the decimal, and an optional sign (+ or −). Using N alone is the

same as using N0 (N zero). The length includes the sign.

Example: N2 for a value of 23949 is interpreted as 239.49.

PD AN

ID

Nn

Rn

DT

TM

Packed decimal

Any combination of 0–9 with a sign (+ or −). The length defines the

number of bytes used to hold the value in external format (minus the

sign position).

Storage format: The packed decimal equivalent, followed by the sign in

the low-order 4 bits of the last byte. The sign is either 1111, 1100, or

1010 for a positive value; or, 1101 or 1011 for a negative value.

Example: The value +123 is stored as 0001 0010 0011 1111 (X'123F').

The value −123 is stored as 0001 0010 0011 1101 (X'123D').

Pn AN

ID

Nn

Rn

DT

TM

Packed decimal

Packed decimal data with n implied decimal places.

Data types for data formats

58 Mapping Guide

Table 9. Data types for data formats (continued)

Data

format

EDI

standard

data types Data Format description

PW Password

A password used in the interchange or functional group header. This

data type does not apply to record identifiers.

This data type does not apply to record identifiers.

R AN

ID

Nn

Rn

Real

Numeric data that requires a decimal point for fractional values. The

decimal point is optional for integers. A sign (+ or −) is optional for

positive numbers. Positive is assumed if a sign is not present. The

length includes the decimal point and sign if they are present.

Scientific notation with exponent and mantissa formatting is used.

Use this data when mapping data elements defined as data type N in

UN/EDIFACT standards.

Examples: 23.949, +23.949, −23949, −39846.7, 50E+4.

Rn AN

ID

Nn

Rn

Real

Signed or unsigned numeric data with a minimum for n significant

decimal places. The length includes the decimal point and sign. Any

combination of 0–9 with a sign (+ or −).

TM Time

A string of four digits in the form hhmm or six digits in the form hhmmss,

expressed in the 24-hour clock format, where the hour is specified as

00 to 23 for X12 and 00 to 24 for EDIFACT.

This data type does not apply to record IDs.

ZD AN

ID

Nn

Rn

DT

TM

Zoned decimal

Any combination of 0–9 with a sign (+ or −). The length defines the

number of characters used to represent the value in the external

format. The external length requires an extra position for the sign.

Storage format: The zoned decimal equivalent in the low-order 4 bits of

a byte and 1111 in the high-order 4 bits. The sign displays in the

high-order 4 bits of the low-order byte and is either 1100 for a positive

value or 1101 for a negative value. The length of the field determines

the number of bytes used to store the value.

Example: The value +123 is stored as 1111 0001 1111 0010 1100 0011

(X'F1F2F3'). The value −123 is stored as 1111 0001 1111 0010 1101

0011 (X'F1F2D3').

Data types for data formats

Chapter 4. Data formats 59

Table 9. Data types for data formats (continued)

Data

format

EDI

standard

data types Data Format description

Zn AN

ID

Nn

Rn

DT

TM

Zoned decimal

Zoned decimal data with n implied decimal places and a trailing sign.

Any combination of 0–9 with a sign (+ or −).

Data types for data formats

60 Mapping Guide

Chapter 5. Extensible Markup Language

Extensible Markup Language (XML) is a popular way to represent structured documents

and data. XML defines the syntax used to represent the data, including information

such as how to tell an element name from an element value. However, it does not

define the semantics or structure of the data. For example, it does not specify where a

purchase order number appears, or even whether it is part of any particular document.

Note: XML is handled natively in WebSphere Data Interchange Version 3.3. It is not

necessary to use the DTD Conversion Utility with WebSphere Data Interchange

Version 3.2 and later unless you are updating a DTD that was converted in

Version 3.1. When using XML in WebSphere Data Interchange Version 3.2 and

later, the DTD is imported directly into the WebSphere Data Interchange Client.

The structure of an XML document is defined by a Document Type Definition (DTD) or

schema. The syntax of the DTD is defined as part of the XML language or schema. The

DTD or schema provides a list of all components included in the XML document and

their relationship to each other. For example, a DTD or schema can state that the

Header element of the document contains a PONum element. The meaning of the

PONum element can be described either in the comments within the DTD or schema, a

separate document, or both.

Unlike EDI standards where there are a small number of dominant EDI standard

formats that define the document structure, there are numerous different XML DTDs

and schemas. Also, because XML is extensible, users are free to create their own

DTDs and schemas if they choose. Instead of restricting users to a fixed subset of

DTDs and schemas, WebSphere Data Interchange imports the DTDs and schemas you

use. You can obtain your DTDs and schemas from various sources, such as industry

groups, standards bodies, vendors, trading partners, or you can create them yourself.

When the DTDs and schemas are imported into WebSphere Data Interchange, you can

map the documents described by those DTDs and schemas.

Note: Imported DTDs and schemas are used only for Data Transformation maps. They

cannot be used for send and Receive maps.

WebSphere Data Interchange uses XML Dictionaries as way to logically group a set of

related DTDs and schemas. A DTD or schema name must be unique within its XML

dictionary, but does not need be unique across all XML dictionaries. A DTD or schema

can use external references to refer to other DTDs and schemas within the same

dictionary. A dictionary cannot contain both a schema and a DTD with the same name.

Use the XML dictionary editor to create and maintain an XML dictionary.

The XML list window provides access to the XML dictionaries, DTDs, schemas, and

namespaces. The window opens when you click XML on the navigator bar contains four

tabs, as follows:

v The XML Dictionary tab provides access to the XML dictionary list window and XML

dictionary editor.

v The DTDs tab provides access to the DTDs list window and the DTDs editor.

© Copyright IBM Corp. 2007 61

v The Schemas tab provides access to the schemas list window and the schema

editor.

v The Namespaces tab provides access to the namespaces list window and the

namespaces editor.

Accessing XML editor

You access the component editors in essentially the same way. The editors display on

tabs in the XML list window, as follows.

Note: You cannot change the DTD or schema itself, only the WebSphere Data

Interchange properties associated with the DTD or schema. To change a DTD or

schema, edit the original DTD or schema outside of WebSphere Data

Interchange using a text editor or a DTD or schema editor, then re-import the

DTD or schema into WebSphere Data Interchange. For send and Receive maps,

see Appendix D, “DTD Conversion Utility,” on page 321.

To access an XML editor:

1. Click XML on the WebSphere Data Interchange Navigator bar.

The XML list window, which contains tabs for the components, is displayed.

2. Click the tab of the XML component you wish to work with.

The list window for that component is displayed.

This window opens a list of existing XML components. A list of XML dictionaries is

shown. Each row contains information about a component; each column contains

data stored in that component. Information in the columns displays in fields in the

editor.

3. To view an item or to add or change information in an item, double-click the row of

the item you wish to work with.

The editor is displayed. You add information or make changes to the component

through its tabs, as described in the following sections.

The following sections contain detailed procedures for creating XML dictionaries and

importing DTDs and schemas. For information about viewing, copying, editing,

renaming, deleting, exporting, and printing components, see WebSphere Data

Interchange for MultiPlatforms User's Guide, SC34-6215-01.

Creating the XML dictionary

An XML dictionary is a named group of related DTDs. The relationship between the

DTDs in a dictionary is not fixed. For example, you can group DTDs that refer to one

another or DTDs created and maintained by one organization. You can put all DTDs

from a particular XML format in one dictionary.

Create a new dictionary when you want to create a logical group of DTDs.

1. Select the XML Dictionary tab and click New on the tool bar. The XML dictionary

editor is displayed with the General tab in front.

2. Type a name in the Dictionary Name field.

XML

62 Mapping Guide

Notes:

a. The name is displayed in uppercase letters.

b. You cannot type spaces within the name.

c. The name can be up to 30 characters long.

3. Enter a description of the XML dictionary in the Description field. This field is

optional.

4. Click Save on the tool bar to save the dictionary.

Importing and defining a DTD or schema file

After you have created an XML dictionary, DTDs and schemas can be imported into

WebSphere Data Interchange. Import a new DTD object when you plan to process an

XML document defined by an XML DTD which has not previously been imported into

WebSphere Data Interchange

Note: DTD objects are assigned to an XML Dictionary. The XML Dictionary must be

created before importing the DTD into WebSphere Data Interchange.

To import a new DTD or schema object:

1. Select either the XML or Schemas tab.

2. Select File > Open Import File from the File menu. This opens the Select Import File

dialog.

3. In the Files of Type list, select either XML DTD File or XML Schema File. The

window changes so only files with the appropriate type display.

4. Use the dialog to select a directory and file name of the DTD or Schema to be

imported. Click Open after you select your DTD or Schema file. The Select a

System dialog opens if you have more than one System defined to WebSphere

Data Interchange Client. If you only have one System defined, the Import XML DTD

dialog opens.

5. If the Select a System dialog opens, select the WebSphere Data Interchange

system you wish to import the DTD or schema into, then click OK. An import dialog

opens.

6. On the import dialog, enter the appropriate information for the DTD or Schema and

click Import.

At this point the object is imported into WebSphere Data Interchange. A DTD or

Schema object name must be unique within its XML Dictionary, but does not need be

unique across all XML Dictionaries. An imported DTD replaces any existing DTD object

or Schema object that has the same name. DTDs or Schemas that represent a

document commonly need to have elements that identify the sending and receiving

trading partners. Use the DTD editor to identify the elements that contain the

information identifying the sending and receiving trading partners.

WebSphere Data Interchange needs to know the name of the Trading Partner profile

representing the sender and receiver of the document. Certain elements in an XML

document are used to determine who sent a document and who the receiver of the

document is. These elements are used to determine the name of a Trading Partner

Creating an XML dictionary

Chapter 5. Extensible Markup Language 63

profiles representing the sending and receiving trading partners. The elements are

typically named things like <Partner> or <Vendor> In addition, names can be two parts,

like people names. The first part is called the qualifier and usually denotes the name

space to be used to interpret the second part of the name, usually referred to as the ID.

An example of a name space for companies would be DUNS numbers.

WebSphere Data Interchange does not know what elements (if any) in an arbitrary XML

document denote the sender and receiver of the document. You must identify the

elements to WebSphere Data Interchange so it can determine the sender’s Trading

Partner profile and receiver’s Trading Partner profile. Use the Sender Qualifier Element

and Sender ID Element fields to specify which elements to use to help determine the

sender’s Trading Partner profile. Use the Receiver Qualifier Element and Receiver ID

Element fields to specify which elements to use to help determine the receiver’s Trading

Partner profile. The Internal Trading Partner ID field can also be used to help determine

the receiver’s Trading Partner profile in a source XML document. The Sender

Translation Table field can be used with the Sender Qualifier and ID Element fields to

help determine the name of the Trading Partner profile representing the sender. The

Receiver Translation Table field can be used with the Receiver Qualifier and ID Element

fields to help determine the name of the Trading Partner profile representing the

receiver.

The DTD and schema editors are used to maintain properties of the DTD or schema

and to view the DTD or schema. It cannot be used to change the DTD or schema itself.

Change the original DTD or schema using a text editor or a DTD editor.

To define information such as a description or root element for a DTD or schema:

1. Click XML on the WebSphere Data Interchange Client Navigator bar. The XML list

window is opens.

2. Click the DTDs or Schemas tab.

The list window for DTDs or schemas opens.

3. Double-click the row of the DTD or schema you wish to work with.

The General tab in the DTD or schema editor opens.

4. Complete the fields on the General tab as follows:

a. The DTD Name and XML Dictionary are used to uniquely identify the DTD

object. These fields cannot be changed on existing DTD objects, except by

using WebSphere Data Interchange’s rename feature. Use these fields to refer

to this object in maps, and WebSphere Data Interchange PERFORM

commands.

b. Enter a description of the object. This field is optional.

c. Enter the Root Element if the object is to be used in maps.

d. If there are elements within the object that contain the sender qualifier and

sender ID, the element paths need to be entered for those elements in the

appropriate fields. It is recommended that you set these values using the

Overview tab.

e. If there is an element within the DTD that contains the internal trading partner

ID, the element’s path needs to be entered into the appropriate field. It is

recommended that you set this value using the Overview tab.

Importing and defining a DTD file

64 Mapping Guide

f. If there are elements within the DTD that contain the receiver qualifier and

receiver ID, the element paths need to be entered for those elements in the

appropriate fields. It is recommended that you set these values using the

Overview tab.

g. If the XML document split feature is going to be used with the documents

defined by this DTD, then enter the name of the elements that identify the

header section, messages, and trailer section of the documents.

h. Click Save on the toolbar to save the object.

5. Click the View tab on the DTD or schema View Window.

The View opens, showing the contents of the DTD or schema.

6. Click the Overview tab on the DTD or schema View Window.

The Overview opens, showing a graphical view of the DTD or schema.

Creating an XML Namespace

The Namespace object in WebSphere Data Interchange is used to identify an XML

namespace to WebSphere Data Interchange. Namespaces are used primarily within

XML schemas and are generally created automatically when XML schemas are

imported into WebSphere Data Interchange Client. Namespace objects are located in

the XML Functional Area. The Namespaces list window is used to list and perform

maintenance functions on WebSphere Data Interchange Namespace objects. A

Namespace is named after the Uniform Resource Identifier (URI) it represents. These

names typically look like the familiar URLs on the World Wide Web. Each Namespace

object is contained within an XML Dictionary.

Note: A Namespace object name must be unique within its XML Dictionary, but does

not need be unique across all XML Dictionaries.

WebSphere Data Interchange Client scans a schema looking for the namespace

identifier, xmlns, while the schema is being imported. When the identifier is

encountered, WebSphere Data Interchange determines if a corresponding Namespace

object exists within the same XML Dictionary. If one does not exist, a corresponding

Namespace object is created within the XML Dictionary. The prefix and other

information associated with Namespace objects can be changed later.

You can create a Namespace object if needed. To create a new Namespace object:

1. Select the Namespaces tab and click New on the list window toolbar. The

Namespace editor opens with the General tab in front.

2. Type in the URI for the Namespace object. It serves as the name of the Namespace

object.

3. Use the Dictionary Name list to select the XML Dictionary for the Namespace

object.

4. Enter a description, prefix, and schema location as needed. You enter the prefix or

schema location, or both. These fields are optional.

5. Select the Comments tab and add any comments you have about the Namespace

object.

Importing and defining a DTD file

Chapter 5. Extensible Markup Language 65

6. Click Save on the editor toolbar. WebSphere Data Interchange Client saves the new

Namespace object to the System.

7. Close the editor when you are done.

XML Document processing

The default XML document processing using Data Transformation enables the mapping

of a single XML document to a single target document. Many XML source documents

resemble EDI data. A single XML document contains header type information, multiple

messages, and trailer type information. It is desirable, for example, to map the XML

source document to multiple EDI target documents. To achieve this, using the default

XML processing, a double transformation process is needed to transform the XML

document to an intermediate document, for example data format, with a second

transformation process to map the intermediate document to the EDI document.

Options exist to split a single XML document based on a defined compound XML

element and reconstructed before the document enters the Data Transformation

message flow.

WebSphere Data Interchange XML DTD and Schema definitions contain an Overview

tab to display a visual layout of the DTD or schema. You can right click elements and

use functions on the popup menu to set certain fields in the General tab. A right click a

simple element opens a popup menu to set elements that contain the sender and

receiver ID and qualifier paths. A right click a compound elements opens a popup menu

to set XML document split element IDs.

Note: The split element identification is not a path, it is an element ID.

There are three elements that can be defined to split the XML document.

v Element identifying the header area in the XML document

v Element identifying the individual messages (split area)

v Element identifying the trailer area in the XML document.

These definitions are used to split and reconstruct the XML documents before they are

placed in the Data Transformation message flow. The element identifying the individual

messages is required to split the source XML document. If the element identification is

not defined, the source XML document is not be split. If the header area is not defined,

the beginning of the XML document up to the element identifying the message is used

to construct a header area for the split document. If the trailer area is not defined, the

end root element are used as the trailer area for the split document. If the trailer area is

defined and is actually a terminating element in the XML source input, then the right

click to define this using WebSphere Data Interchange is to right click the compound

element (that begins the trailer element), define the element as the trailer element, and

check the Element Terminator Indicates Start of Trailer Section box on the General tab.

An XML source document property MsgSplitCnt is available and can be used to identify

the number of documents split within each header/message/trailer split. The

MsgSplitCnt property is set to zero until the last split message is processed.

Creating a namespace

66 Mapping Guide

MsgSplitCnt property is reset with each new trailer/header identification. The

MsgSplitCnt property can be used, for example, to MapChain() to a summary mapping

by counting the number of source messages processed using a global variable within

the source document mapping and comparing this to the MsgSplitCnt property.

The InputMsgCnt source document property identifies the number of input messages

processed and is available in Data Transformation mapping.

During processing, the XML source input message is read and stored in a buffer. The

root element is identified (from the input message) and the WebSphere Data

Interchange DTD or Schema definition is retrieved to determine if the source XML

document has been defined as a split document. This is done with all XML input source

messages and can be removed by specifying the PERFORM keyword XMLSPLIT(N).

During the XML document definition retrieval, if there are multiple DTD or Schema

definitions defining the same root element, it might be necessary to use PERFORM

keywords DICTIONARY or DOCUMENT to identify the specific DTD or Schema being

used for processing.

If the XML document is to be split, the header area is identified and stored in a header

area buffer, the trailer area is identified and stored in a trailer area buffer. The header

area is the beginning of the XML document and the Header element identification up to

the first Message element identification. The trailer area is defined as the Trailer

element identification up to the next header element identification. The area between

the first message element identification up to the trailer element identification are written

out to the XMLWORK file. During reconstruction, each split message is read from the

XMLWORK file. The header/message/trailer are constructed and sent through the Data

Transformation message flow as individual documents.

Note: The XMLWORK file must be allocated.

Example 1

The sample XML document contains information about three companies. The expanded

elements (those proceeded by a dash) show the first company element contains

information about the company and information about four employees of the company.

If each employee element needs to be translated into its own document, then the

employee element would be listed as the Message Element on the General tab of the

Schema editor. The Header Element would be the company element. The Trailer

Element would be the employee-list element with the Element Terminator Indicates Start

of Trailer Section check box set.

Creating a namespace

Chapter 5. Extensible Markup Language 67

In the result would be one document like the following for each employee contained in

the source document.

Example 2

The sample XML document contains information about three companies. The expanded

elements (those proceeded by a dash) show the first company element contains

information about the company and information about four employees of the company.

If each employee element needs to be translated into its own document, then the

employee element would be listed as the Message Element on the General tab of the

Schema editor. The Header Element would be the company element. The Trailer

Element would be the employee-list element with the Element Terminator Indicates Start

of Trailer Section check box set.

<?xml version="1.0" encoding="UTF-8" ?>

- <root-element xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="ThisDoc.xsd">

 - <company> <=== Header Element

 - <company-details>

 + <campany-name>

 + <campany-address>

 </company-details>

 - <employee-list>

 + <employee> <==== Message Element (Split here)

 + <employee>

 + <employee>

 + <employee>

 </employee-list> <=== Trailer Element

 </company> (Note: end of header area)

 + <company>

 + <company>

</root-element>

<?xml version="1.0" encoding="UTF-8" ?>

- <root-element xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="ThisDoc.xsd">

 - <company>

 - <company-details>

 <campany-name>

 + <campany-address>

 </company-details>

 - <employee-list>

 + <employee>

 </employee-list>

 </company>

</root-element>

Creating a namespace

68 Mapping Guide

In the result would be one document like the following for each employee contained in

the source document.

Example 3

The sample XML document contains information about three companies. The expanded

elements (those proceeded by a dash) show the first company element contains

information about the company and information about four employees of the company.

If each employee element needs to be translated into its own document, then the

employee element would be listed as the Message Element on the General tab of the

Schema editor. The Header Element would be the company element.

Note: With no trailer area, only the first header element occurrence can be identified.

All employee elements are split under the first company occurrence. MsgSplitCnt

property is a total and set with the last employee split processed.

<?xml version="1.0" encoding="UTF-8" ?>

- <root-element xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="ThisDoc.xsd">

 - <company> <=== Header Element

 - <company-details>

 + <campany-name>

 + <campany-address>

 </company-details>

 </company> (Note: end of header area)

 - <employee-list>

 + <employee> <==== Message Element (Split here)

 + <employee>

 + <employee>

 + <employee>

 </employee-list> <=== Trailer Element

 + <company>

 + <company>

</root-element>

<?xml version="1.0" encoding="UTF-8" ?>

- <root-element xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="ThisDoc.xsd">

 - <company>

 - <company-details>

 <campany-name>

 + <campany-address>

 </company-details>

 </company>

 - <employee-list>

 + <employee>

 </employee-list>

</root-element>

Creating a namespace

Chapter 5. Extensible Markup Language 69

In the result would be one document like the following for each employee contained in

the source document.

<?xml version="1.0" encoding="UTF-8" ?>

- <root-element xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="ThisDoc.xsd">

 - <company> <=== Header Element

 - <company-details>

 + <campany-name>

 + <campany-address>

 </company-details>

 </company> (Note: end of header area)

 + <employee> <==== Message Element (Split here)

 + <employee>

 + <employee>

 + <employee>

 + <company>

 + <company>

</root-element>

<?xml version="1.0" encoding="UTF-8" ?>

- <root-element xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="ThisDoc.xsd">

 - <company>

 - <company-details>

 <campany-name>

 + <campany-address>

 </company-details>

 </company>

 + <employee></root-element>

Creating a namespace

70 Mapping Guide

Chapter 6. EDI standards

EDI standards provide a common document layout that trading partners use to

exchange data between their computer applications. In essence, EDI standards provide

the building blocks for electronic versions of common business documents.

WebSphere Data Interchange translates data from one document layout to another.

Commonly, the source document layout describes a document from a business

application, which is translated into an EDI standard transaction for transmission to a

trading partner. Conversely, WebSphere Data Interchange commonly translates data

received in an EDI standard transaction into a format used by a business application.

When you install WebSphere Data Interchange, you receive copies of EDI standards

currently approved by the primary EDI standards organizations. You can also download

EDI standards from the WebSphere Data Interchange Web site:

http://www.ibm.com/websphere/datainterchange

For instructions on how to install EDI standards, see WebSphere Data Interchange for

MultiPlatforms User's Guide, SC34-6215-01.

To begin exchanging documents with a trading partner using an EDI standard

transaction, you must select an EDI standard transaction that corresponds to the

information you want to send or receive. Ideally, you and your trading partner can agree

on an EDI standard transaction that requires no customization to meet your needs, but

this is not always possible. Imagine, for example, that you and your trading partner

need to exchange specific information that is not included in existing EDI standards.

With WebSphere Data Interchange Client, you can customize currently approved EDI

standards so that they fit your needs.

 Attention: When altering EDI standards, work in close partnership with your trading

partners. If you customize EDI standards without informing your trading partners of the

changes, they might not be able to process the transactions you send.

Terminology

The terms transaction set in ANSI ASC X12 and message in UN/EDIFACT are

equivalent to transaction in WebSphere Data Interchange.

 An EDI standard structures data into two basic categories: envelopes and transactions.

Envelopes

Envelopes are made up of the control structures that wrap data for communications to

trading partners. UN/EDIFACT refers to envelope standards as service segments, and

ASC X12 refers to them as envelope interchange control segments. Envelope

standards also specify the default delimiters used in the EDI standard data, such as the

data element delimiter, subelement delimiter, and segment delimiter. See “Editing an

envelope standard” on page 84

© Copyright IBM Corp. 2007 71

Note: Envelopes are used for send and Receive maps only.

Transactions

Transactions correspond to business documents such as purchase orders or invoices.

An EDI standard contains one definition for each unique segment and data element that

occur in a transaction. These segments and data elements are then used in as many

transaction sets as necessary.

A transaction consists of the following components:

v EDI standard dictionary

An EDI standard dictionary contains information about all of the transaction sets,

segments, and data elements that comprise the specific version and release of an

EDI standard. For detailed information about a particular EDI standard, consult the

appropriate EDI standards manuals.

When you install WebSphere Data Interchange, you receive a copy of EDI standard

dictionaries currently approved by the primary EDI standards organizations. For

information about how to create dictionaries, see “Creating the EDI standard

dictionary” on page 74.

v Transaction set

Transaction sets represent business documents such as invoices or purchase orders.

Transaction sets are called messages in UN/EDIFACT and transactions in

WebSphere Data Interchange. A transaction set contains segments. These segments

are sometimes grouped into tables representing heading information (such as billing

address), detail information (such as line items from a purchase order), and trailing

information (such as totals). For more information about how to create or edit

transactions, see “Creating a transaction” on page 76.

v Segment

A transaction set is composed of segments. In essence, each line of a business

document corresponds to a segment in the EDI transaction set. Segments begin with

a segment identifier assigned by the EDI standard. They are either mandatory,

conditional, optional, or floating (floating segments can display anywhere in the

transaction). All segments except for floating segments display in a fixed sequence

for a given transaction.

Segments can repeat within a transaction up to the number of times specified by the

EDI standard. Groups of segments, such as the group which makes up a name and

address, can form a loop. Loops are identified by a loop ID. Entire loops can be

repeated in succession up to the number of times specified by the EDI standard. For

information about how to create or edit segments, see “Creating a segment” on page

79.

v Data element

A segment is composed of data elements and composite data elements, which

represent the individual units of data found in business documents, such as quantity

ordered or unit price. Data elements display in a sequence specified by the EDI

standard and are separated by a delimiting character, such as an asterisk. They have

a minimum and maximum length, and are either mandatory, conditional, or optional.

Envelopes

72 Mapping Guide

WebSphere Data Interchange Client also supports composite data elements.

Composite data elements are composed of a group of logically related simple data

elements. A Composite Unit of Measure, for example, is a combination of Unit of

Basis for Measurement, Component, and Multiplier. Composite data elements are

defined in the EDI standards.

All EDI standard data elements must be of a data type prescribed by the EDI

standard, such as date, time, and alphanumeric. Identifiers, such as data type ID,

must contain one of the codes prescribed by the EDI standard. The EDI standard

specifies the list of acceptable codes, which you can customize. For information

about how to create or edit data elements, see “Creating a data element” on page

81.

v Code lists

A code list is a list of acceptable values for segments or data elements that can only

contain certain values. If you include a segment or data element that can only

contain certain values in the transaction set you are creating, enter all acceptable

values into a code list.

When the WebSphere Data Interchange Server validates or translates a document

and the use of a Code List is specified to validate a piece of data, the specified Code

List is searched to see if it contains the value. If the field contains a value that does

not display in the code list, WebSphere Data Interchange returns a processing error.

For information about how to create code lists, see “Creating a code list” on page 84.

Terminology

Code lists are called Validation Tables on the WebSphere Data Interchange

Server.

Using the EDI standard editors

Use the EDI standard editors to create or maintain the various components that make

up an EDI standard. Although you can use the WebSphere Data Interchange Client

standard editors to create a completely new EDI standard, most users are not likely to

do that.

The EDI standard editors are most often used to modify existing EDI standards to meet

a company’s needs. This section provides a generic description of the procedures for

using the EDI standards editors.

Use the EDI standard list window to gain access to the EDI standards component

editors. Each component editor corresponds to a tab on the EDI standard list window,

as follows:

v The EDI Standard Dictionary tab provides access to the EDI standard dictionary list

window and dictionary editor.

v The Transactions tab provides access to the transactions list window and the EDI

standard transaction editor.

v The Segments tab provides access to the segments list window and EDI standard

segment editor.

Transactions

Chapter 6. EDI standards 73

v The Data Elements tab provides access to the data elements list window and EDI

standard data element editor.

v The Code Lists tab provides access to the code lists list window and code list editor.

v The Envelope Standards tab provides the ability to view or change an existing

Envelope Standard.

v The Envelope Control Strings tab displays a list of Envelope Control Strings

selected by the current Query

To accessing the EDI Standards editor:

1. Click EDI Standards on the WebSphere Data Interchange Client Navigator bar.

The EDI Standards list window is opens.

2. Click the tab of the EDI standard component you wish to work with.

The list window for that component opens.

This window opens a list of existing items in an EDI standards component. Each

row contains information about an item; each column contains data stored in that

item. Information in the columns displays in fields in the editor. The list window also

contains the date, time, and user ID of the last update.

To display additional columns, click the scroll bar on the bottom of the page to scroll

to the right or left. To alter the columns that display on the page, or to change which

query is executed to produce the list, click Modify Window Properties. To create new

queries, see WebSphere Data Interchange for MultiPlatforms User's Guide,

SC34-6215-01

3. To view an item or to add or change information in an item, double-click the row of

the item.

The editor opens. You add information or make changes to the EDI standard item

using its editor, as described in the following sections.

The following instructions are for creating EDI standards components. For information

about viewing, copying, editing, renaming, deleting, and printing components, see

WebSphere Data Interchange for MultiPlatforms User's Guide, SC34-6215-01. For

information about exporting components, see WebSphere Data Interchange for

MultiPlatforms User's Guide, SC34-6215-01. (EDI Standard dictionaries, EDI standard

transactions, and code lists are the only EDI standards components that can be

exported.)

The EDI standard component editors are described in the following sections in the order

in which you use them when creating an EDI standard.

Creating the EDI standard dictionary

An EDI standard dictionary is a named group of other related components.

Detailed procedures for creating a new dictionary follow. For information about viewing,

copying, editing, renaming, deleting, and printing dictionaries, see WebSphere Data

Interchange for MultiPlatforms User's Guide, SC34-6215-01. For information about

exporting dictionaries, see WebSphere Data Interchange for MultiPlatforms User's

Guide, SC34-6215-01.

EDI standard editors

74 Mapping Guide

Create a new dictionary when you want to create your own customized EDI standard.

1. Select the EDI Standard Dictionary tab and click New on the tool bar.

The EDI standard dictionary editor opens with the General tab in front.

2. Type a name in the Dictionary Name field.

Notes:

a. The name is displayed in uppercase letters.

b. You cannot type spaces within the name.

c. The name can be 8 characters in length.

3. Enter a description of the EDI standard dictionary in the Description field. This field

is optional.

4. Select an envelope type from the Envelope Type list.

Note: When you save your dictionary, the Transactions, Segments, Composite

Elements, and Simple Elements buttons in the List Of box become available.

Click those buttons to display list windows that contain the components

associated with this dictionary. When you first create a dictionary, the lists

are empty.

5. Enter the version and release of the dictionary. These fields are optional.

6. Select an Industry Code from the list provided; if a list is not available, you can type

a name in the list. The available codes are:

RAIL Association of American Railroads

UCS Uniform Communication Standard

VICS Voluntary Inter-Industry Communications Standard

7. Select an Agency Code from the list provided; if a list is not available, you can type

a name in the list. The available codes are:

EDI standard dictionary

Chapter 6. EDI standards 75

T TDCC, ODETTE

UN UN/EDIFACT

X ASC X12, RAIL, UCS, VICS

8. Click Save on the tool bar to save the dictionary.

To view lists of EDI standard components in the current dictionary:

1. Click the button in the List Of group box corresponding to the component you wish

to view.

A list window displaying EDI standard components associated with this dictionary

opens.

v The Transactions button opens the EDI Standard Transactions list window.

v The Segments button opens the EDI Standard Segments list window.

v The Composite Elements button opens the EDI Standard Data Elements list

window showing only composite data elements.

v The Simple Elements button opens the EDI Standard Data Elements list window

showing only simple data elements (data elements that are not composite data

elements).

2. You can open any item in the list by double-clicking on it.

Creating a transaction

The EDI standard transaction editor defines and structures the components that make

up a transaction. The EDI standard transaction editor contains four tabs:

v The General tab contains the fields for you to enter and change transaction

properties, such as name and description.

v The Details tab contains the fields for you to add or change the usage of segments

associated with the selected transaction.

v The Notes tab displays a list window of the notes associated with specific

transaction. You can also add a new note from this list window.

v The Comments tab contains a field for you to type any comments.

The following instructions are for creating a new transaction. For information about

viewing, copying, editing, renaming, deleting, and printing transactions, see WebSphere

Data Interchange for MultiPlatforms User's Guide, SC34-6215-01.

Create a new transaction when the transactions shipped as part of the EDI standards

do not meet your business needs. This editor also modifies existing transactions.

 1. Selects the Transactions tab and click New on the tool bar.

The EDI Standard Transaction editor opens with the General tab in front.

 2. Type a name in the Transaction field.

Notes:

a. The name is displayed in numbers and capital letters.

b. You cannot type spaces within the name.

EDI standard dictionary

76 Mapping Guide

c. The name can be up to 8 characters long and can contain alphanumeric

characters and any of the special characters “!@#$%&*()_-+=’:;<,>.?”.

 3. Select the dictionary in which you want the transaction to occur through the

Dictionary list.

 4. Enter a description of the transaction in the Description field and a brief summary

of the transaction’s purpose in the Purpose field. These fields are optional.

 5. Enter a Functional Group, such as IN for invoice.

 6. Select the Details tab and click New. The Add EDI Standard Transaction Detail

editor opens.

 7. Complete the optional fields you need. The following table describes the fields and

their values.

 Table 10. Add EDI Standard Transaction Detail editor fields

Field Description

Table The value in this field indicates the table in which the Segment

belongs. A table is a section of the transaction. Many Transactions

have only a single table (numbered 1. Some Transactions have a

grouping that uses the value 1 to represent header information in

the document, the value 2 to represent the details of the document,

and the value 3 to represent the trailer information of the document.

The valid values for the field are 1 to 32,767.

Position The value in this field indicates the relative position of the Segment

within the specific table of the Transaction. Each value must be

unique within the table. The values do not need be sequential.

When the Transaction is saved the list of Segments are sorted

based on the table and position number. The valid values for this

field are 1 to 32,000.

Segment This column is used to identify the name of the Segment. Select a

name from the list of available Segments.

Requirement Designator Use this column to indicate whether the Segment is optional,

mandatory, conditional, or floating. The conditional value indicates

that the Segment might present depending on semantic conditions.

Use the EDI Standard Notes action to see a list of Notes or to

maintain Notes for the Transaction.

Maximum Repeat This value indicates the maximum number of times the Segment

can occur at this position. The value can be from 1 to 9,998. This

field is disabled if the Unlimited Repeat is selected. The first

Segment within a Loop must have the Maximum Repeat column set

to 1.

Unlimited Repeat This check box is used to indicate that the Segment can repeat

infinitely. A set check box indicates the Segment can repeat

infinitely. A reset check box indicates the Segment cannot repeat

infinitely. When the check box is set, the Maximum Repeat column

is disabled. The first Segment within a Loop must not repeat

infinitely.

EDI standard transaction

Chapter 6. EDI standards 77

Table 10. Add EDI Standard Transaction Detail editor fields (continued)

Field Description

Loop ID The ID of the group of related EDI Standard Segments if the

Segment is part of a Loop. By convention, a Loop is the same as a

segment group in EDIFACT, ODETTE, or TRADACOMS EDI

Standards. The Loop Level and Loop ID fields are used to

determine the Segments that are part of a specific Loop.

Maximum Loop Repeat This value indicates the maximum number of times the Loop can

repeat. The value can be from 0 to 999,998. This field is disabled if

the Unlimited Loop Repeat column is set. A value must be entered

only for the first Segment within a Loop. The first Segment within a

Loop must have the Maximum Repeat column set to 1. A value of

zero in this column is treated as one.

Unlimited Loop Repeat This check box is used to indicate that the Loop can repeat

infinitely. A set check box indicates the Loop can repeat infinitely. A

reset check box indicates the Loop cannot repeat infinitely. When

the check box is set, the Maximum Loop Repeat field is disabled.

Loop Level The Loop Level indicates the current nesting level of a Loop.

Segments that are not within a Loop must have a value of zero in

this column. When a Loop starts, the Loop Level for each Segment

at that level of the Loop must have a value of 1. If a Loop is nested

within that first Loop, then that nested Loop Level must be 2 to

indicate the second level of looping. All Segments that are part of

nested Loop must have the Loop Level of 2. Nested Loops can be

up to 16 levels deep. The Loop Level and Loop ID columns are

used together to determine the Segments that are part of a specific

Loop.

Description This column describes the Segment. This value in this column

cannot be changed.

 8. At this point you have two options:

v To add the transaction and continue adding transactions, click Insert and return

to step 7 on page 77.

v To add the transaction and close the editor, click OK. The transaction is added

to the list window and the editor closes.

 9. Add any notes required. You must have a transaction defined before you can add

a note. To add a note to an EDI standard transaction:

a. Select the Notes tab and click New. The Add EDI Standards Transaction Note

editor opens.

b. Select the table and position that identifies the segment being referred to by

this note.

c. Select from the Note Type list the code that specifies the type of this note.

d. Type the text of your note in the Note field.

e. At this point you have two options:

v To add the note and continue adding notes, click Insert and return to step

9b.

EDI standard transaction

78 Mapping Guide

v To add the note and close the editor, click OK. The note is added to the list

window and the editor closes.

10. Select the Comments tab and enter any additional information about the

transactions.

11. When you have completed entering information, click Save on the tool bar to save

the transaction.

Creating a segment

Use the EDI standard segment editor to enter new segments into an EDI standard or to

edit existing segments. From the segments editor, you can add or edit the usage of

data elements in segments.

The segments editor contains four tabs:

v The General tab contains the fields for you to name the segment and select its

dictionary.

v The Details tab contains the fields for you to add or change data elements

associated with the selected segment.

v The Notes tab displays a list window of the notes associated with specific segments.

You can also add a new note from this list window.

v The Comments tab contains a field for you to type any comments.

The following instructions are for creating a new segment. For information about

viewing, copying, editing, renaming, deleting, and printing segments, see WebSphere

Data Interchange for MultiPlatforms User's Guide, SC34-6215-01.

Create a new segment when business needs require one.

 1. Select the Segments tab and click New on the tool bar.

The EDI Standard Segment editor opens with the General tab in front.

 2. Type a name in the Segment field.

Notes:

a. The name is displayed in numbers and capital letters.

b. You cannot type spaces within the name.

c. The name can be up to 8 characters long and can contain alphanumeric

characters and any of the special characters “!@#$%&*()_-+=’:;<,>.?”.

 3. Select the dictionary in which you want the segment to display through the

Dictionary list.

 4. Enter a description of the segment in the Description field, and a brief summary of

the segment’s purpose in the Purpose field. These fields are optional.

 5. Select the Details tab and click New to enter information about the data elements

contained in this segment.

 6. Complete the Position and Element fields and any of optional fields you need. The

following table describes the fields and their values.

EDI standard transaction

Chapter 6. EDI standards 79

Table 11. Add EDI Standard Transaction Segment editor fields

Field Description

Position The value in this field indicates the relative position of the Data Element

within the Segment. Each value must be unique. The values do not need

be sequential. When the Segment is saved the list of Data Elements are

sorted based on the position number. The valid values for this field are 1 to

32,000.

Element This field is used to identify the name of the Data Element. Select a name

from the list of available Data Elements.

Requirement

Designator

Use this field to indicate whether the Data Element is optional, mandatory,

or conditional. The conditional value indicates that the Data Element might

be present depending on semantic conditions. Use the EDI Standard

Notes action to see a list of Notes or to maintain Notes for the Segment.

Maximum Repeat This value indicates the maximum number of times the Data Element can

occur at this position. The value can be from 0 to 32,000.

 7. At this point you have two options:

v To add the segment and continue adding segments, click Insert and return to

step 6 on page 79.

v To add the segment and close the editor, click OK. The segment is added to the

list window and the editor closes.

 8. Add any notes required. You must have a segment defined before you can add a

note. To add a note to a EDI standard segment:

a. Select the Notes tab and click New. The Add EDI Standards Segment Note

editor opens.

b. Specify the position that identifies the Data Element that this note refers.

c. Select the Note Type from the list.

d. Select from the Relation list the code that specifies the relationship of the

identified EDI standard data element to other EDI standard data elements

listed in the position fields.

e. Select the position that identify up to ten related Data Elements to which the

selected EDI Standard Data Element is related.

f. Type the text of your note in the Notes field.

g. At this point you have two options:

v To add the note and continue adding notes, click Insert and return to step

8b.

v To add the note and close the editor, click OK. The note is added to the list

window and the editor closes.

 9. Select the Comments tab and enter any additional information about the

transactions.

10. When you have completed entering information, click Save on the tool bar to save

the segment.

EDI standard segment

80 Mapping Guide

Creating a data element

Use the EDI standard data element editor to enter new data elements into a standard

or to edit existing data elements.

The data elements editor contains four tabs:

v The General tab contains the fields for you to name the data element and select its

dictionary.

v The Details tab contains the fields for you to add or change the component data

elements associated with a composite data element.

v The Notes tab displays a list window of the notes associated with specific segments.

You can also add a new note from this list window.

v The Comments tab contains a field for you to type any comments.

The following instructions are for creating a new data element. For information about

viewing, copying, editing, renaming, deleting, and printing data elements, see

WebSphere Data Interchange for MultiPlatforms User's Guide, SC34-6215-01.

Create a new data element when business needs require one.

 1. Select the Data Elements tab and click New on the tool bar.

The EDI Standard Data Element editor opens with the General tab in front.

 2. Type a name in the Data Element field.

Notes:

a. The name is displayed in numbers and capital letters.

b. You cannot type spaces within the name.

c. The name can be up to 8 characters long and can contain alphanumeric

characters and any of the special characters “!@#$%&*()_-+=’:;<,>.?”.

 3. Select the dictionary in which you want the data element to display through the

Dictionary list.

 4. Enter a description of the data element in the Description field, and a brief

summary of the data element’s purpose in the Purpose field. These fields are

optional.

 5. Select the data element’s data type from the list in the data type field. The data

types are explained in Table 13 on page 83.

 6. Enter the minimum and maximum length of the data element in the Min Length

and Max Length fields. These are required fields.

 7. If the data element you are creating can only contain certain values, select the

code list which identifies acceptable values for the data element you are creating

from the Code List field.

If none of the existing code lists specify the acceptable values for your data

element, you can create a new code list. See “Creating a code list” on page 84.

 8. The Details and Notes tabs are only available when the data type is CD

(composite data element).

v If you are creating a composite data element and selected CD in the data type

list, go to step 9 on page 82.

EDI standard data element

Chapter 6. EDI standards 81

v If you are creating any other type of data element, go to step 13.

 9. Select the Details tab to identify the component data elements that are associated

with this composite data element and the properties of those associations.

10. Complete the Position and Element fields and any of optional fields you need. The

following table describes the fields and their values.

 Table 12. Add EDI Standard Transaction Segment editor fields

Field Description

Position The value in this field indicates the relative position of the component Data

Element within it’s parent composite Data Element. Each value must be

unique. The values do not need be sequential. When the composite Data

Element is saved the list of component Data Elements is sorted based on

the position number.

Element This field is used to identify the name of the component Data Element.

Select a name from the list of available Data Elements.

Requirement

Designator

Use this column to indicate whether the component Data Element is optional,

mandatory, or conditional. The conditional value indicates that the

component Data Element might not be present depending on semantic

conditions. Use the EDI Standard Notes action to see a list of Notes or to

maintain Notes for the composite Data Element.

11. At this point you have two options:

v To add the data element and continue adding data elements, click Insert and

return to step 10.

v To add the data element and close the editor, click OK. The data element is

added to the list window and the editor closes.

12. Add any notes required. You must have a data element defined before you can

add a note. To add a note to a EDI standard data element:

a. Select the Notes tab and click New. The Add EDI Standards Data Element

Note editor opens.

b. Specify the position that identifies the Data Element that this note refers.

c. Select the Note Type from the list.

d. Select from the Relation list the code that specifies the relationship of the

identified EDI standard data element to other EDI standard data elements

listed in the position fields.

e. Select the position that identify up to five related Data Elements.

f. Type the text of your note in the Notes field.

g. At this point you have two options:

v To add the note and continue adding notes, click Insert and return to step

12b.

v To add the note and close the editor, click OK. The note is added to the list

window and the editor closes.

13. Select the Comments tab and enter any additional information about the

transactions.

14. When you have completed entering information, click Save on the tool bar to save

the data element.

EDI standard data element

82 Mapping Guide

Table 13. Data types for EDI standard data elements

Data Type Name Description

A Alphabetic Alphabetic characters up to the length of the field.

AN Alphanumeric You can use any combination of characters in the ALPHANUM code

list, up to the length of the field.

CD Composite

data element

A data element with data type CD and data element ID beginning

with a C by convention for EDI standard composite data elements

and S for envelope composite data elements. The component data

elements are defined using the Details tab in the EDI Standard Data

Element editor.

CH Character Any combination of characters up to the length of the field.

DT Date Date format yyyymmdd, where yyyy is the year, mm is the month

(01-12), and dd is the day.

ID Identifier A data element which usually has a code list for the valid values for

the data element. For example, data element UM, unit of measure,

has data type ID, and the valid values for this data element are

listed in the UMCODES code list. The table name is the same as or

starts with the data element ID.

IV Incrementing

value

A data element, such as a message reference number, that starts at

1 and increases by 1 for each usage.

Note: IV is used for send and Receive maps only.

N Numeric Any combination of 0–9 and an optional sign (+ or -). The length

includes the sign.

When mapping data elements defined as data type N in

UN/EDIFACT EDI standards, replace it with data type R (because

data type N in the ASC X12 EDI standards is the same as data type

R in UN/EDIFACT EDI standards).

Nn Numeric Numeric data with N places to the right of an implied decimal point.

The only acceptable characters are the digits 0 through 9. N is the

same as N0. For example, if the data type is N2, the value 123

means 1.23. A sign (+ or -) is optional. Positive is assumed if no

sign is present. The length does not include the sign.

This data type must be used when defining data elements defined

as data type N in UN/EDIFACT EDI standards.

PW Password A password used in the interchange or functional group header.

R Real Numeric data that requires a decimal point for fractional values. The

decimal point is optional for integers. A sign (+ or -) is optional.

Positive is assumed if no sign is present. The length does not

include the decimal point and sign.

This data type must be used when defining data elements defined

as data type N in UN/EDIFACT EDI standards.

Rn Real Signed or unsigned numeric data with a minimum of n significant

decimal places. On sending, at least n decimal places are

generated. On receiving, the decimal places are the same as data

type R. A sign (+ or-) is optional. Positive is assumed if no sign is

present. The length does not include the decimal point and sign.

EDI standard data element

Chapter 6. EDI standards 83

Table 13. Data types for EDI standard data elements (continued)

Data Type Name Description

TM Time Time format is hhmm or hhmmss, depending on the length of the data

element, where hh is the hour, mm is the minutes, and ss is the

seconds. The time format uses a 24-hour clock, where the hour is

specified as 01 to 24 for EDIFACT and 00 to 23 for X12.

Creating a code list

A code list is a list of acceptable values for data elements which can only contain

certain values.

The following instructions are for creating a new code list. For information about

viewing, copying, editing, renaming, deleting, and printing profiles, WebSphere Data

Interchange for MultiPlatforms User's Guide, SC34-6215-01. For information about

exporting profiles, WebSphere Data Interchange for MultiPlatforms User's Guide,

SC34-6215-01.

Note: Code lists can also be specified in data format fields (when used with send and

Receive maps) and can be used in all maps.

Create a new code list when you create a data element which can only contain certain

values. A code list can also be created if you wish to restrict the values of any data item

during translation. In this case, the code list is specified during mapping.

See “Creating code lists” on page 89 for the process to create a code list.

Editing an envelope standard

An envelope standard is a name under which components of an EDI envelope standard

are grouped.

Note: Envelopes are used for send and Receive maps only.

The following procedure detail how to edit an envelope standard. For information about

viewing, copying, editing, renaming, deleting, and printing profiles, see WebSphere Data

Interchange for MultiPlatforms User's Guide, SC34-6215-01.

Envelope standards and control strings from the database are not used with Data

Transformation maps. Instead the server uses plug-in enveloper and deenveloper

modules for the supported standards.

Note: An envelope standard cannot be created - it must be imported. Obtain envelope

standards from the WebSphere Data Interchange Web site at

http://www.ibm.com/websphere/datainterchange.

EDI standard data element

84 Mapping Guide

Edit existing envelope standards when you want to change the default values of

envelope fields for envelopes being created during translation.

1. Select the envelope standard you want to edit from the list displayed on the

Envelope Standards list window.

The Envelope Standard editor opens with the General tab in front and the

Dictionary field filled in with the name of the selected dictionary.

2. Edit the description of the envelope standard in the Description field.

Note: Click the Segments, Composite Elements and Simple Elements buttons to

display list windows that contain the components associated with this

envelope standard.

3. Enter the version and release of the envelope standard.

4. Select an Industry Code from the list provided; if a list is not available, you can type

a name in the list. The available codes are:

RAIL Association of American Railroads

UCS Uniform Communication Standard

VICS Voluntary Inter-Industry Communications Standard

5. Select an Agency Code from the list provided; if a list is not available, you can type

a name in the list. The available codes are:

T TDCC, ODETTE

UN UN/EDIFACT

X ASC X12, RAIL, UCS, VICS

6. Enter a purpose for the envelope.

7. Click the Delimiters tab to add the envelope specific information. Complete the

fields on the Delimiters tab. The following table describes the fields and their

values.

 Table 14. Add EDI Standard Transaction Segment editor fields

Field Description

Segment ID Separator Segment ID separator is the character, or its hexadecimal value, that

separates the segment ID and the first EDI standard data element in a

EDI standard segment. To use an equal sign, for example, either select

the character =, or select 7E (EBCDIC) or 3D (ASCII) from the list.

Segment Delimiter Segment delimiter is the character, or its hexadecimal value, which

marks the end of a EDI standard segment in an EDI standard

transaction set. To use an exclamation point, for example, either select

the character !, or select 5A (EBCDIC) or 21 (ASCII) from the list.

Data Element Delimiter Data Element delimiter is the character, or its hexadecimal value, that

separates EDI standard data elements in an EDI standard transaction

set. To use the asterisk, for example, either select the character *, or

the value 5C (EBCDIC) or 2A (ASCII) from the list.

EDI envelope standard

Chapter 6. EDI standards 85

Table 14. Add EDI Standard Transaction Segment editor fields (continued)

Field Description

Subelement Delimiter Subelement delimiter is the character, or its hexadecimal value, that

separates subelements (EDI standard composite data elements) in a

EDI standard transaction set. To use a colon, for example, either select

the character :, or select 7A (EBCDIC) or 3A (ASCII) from the list.

Release Character Release character is the character, or its hexadecimal value, which

indicates where a delimiter character is part of the data. To use

quotation marks, for example, either select the character quotation

marks (″), or select 7F (EBCDIC) or 22 (ASCII) from the list. Assuming

that the asterisk ordinarily separates EDI standard data elements, an

asterisk that is part of the data must, for this example, be preceded by

quotation marks (″*) to be recognized as data.

Decimal Notation Decimal Notation is the character that represents the decimal point in

numeric values of an EDI standard transaction set. To use a dot, for

example, select the character dot (.) from the list. The EDIFACT

standard uses comma as the primary decimal mark.

Optional Functional

Groups

Optional Functional Groups is a check box which indicates whether or

not the functional group envelope is optional. A selected check box

indicates that functional groups are optional. An cleared check box,

indicates functional groups are required.

Delimiter Segment ID Delimiter Segment ID is the ID of the EDI standard segment used to

send your delimiter values to a trading partner. An example is the UNA

segment for EDIFACT.

Interchange Header Interchange Header is the segment ID of the interchange header for

this envelope standard. The value cannot be changed for this standard.

Interchange Trailer Interchange Trailer is the segment ID of the interchange trailer for this

envelope standard. The value cannot be changed for this standard.

Group Header Group Header is the segment ID of the functional group header for this

envelope standard.

Group Trailer Group Trailer is the segment ID of the functional group trailer for this

envelope standard.

Transaction Header Transaction Header is Enter the segment ID of the EDI standard

transaction set header for this envelope standard.

Transaction Trailer Transaction Trailer is the segment ID of the EDI standard transaction

set trailer for this envelope standard.

8. Select the Comments tab and add any additional information about the envelope.

9. Click Save on the tool bar to save the changes to the envelope standard.

To view lists of EDI standard components in the current envelope standard:

1. Click the button in the List Of group box corresponding to the component you wish

to view.

A list window displaying EDI standard components associated with this envelope

standard displays:

v The Segments button opens the EDI Standard Segments list window.

EDI envelope standard

86 Mapping Guide

v The Composite Elements button opens the EDI Standard Data Elements list

window showing all composite data elements in this envelope standard.

v The Simple Elements button opens the EDI Standard Data Elements list window

showing all simple data elements (those that are not composite data elements) in

this envelope standard.

2. You can open any of the components by double-clicking them.

Envelope control strings

An envelope control string helps improve performance of the translator when envelopes

are prepared. Envelope control strings must be compiled by WebSphere Data

Interchange Client after they are installed and after any change is made. If standalone

mode is being used on the WebSphere Data Interchange Client, the envelope control

string must be exported from the WebSphere Data Interchange Client and imported into

the server. In client/server mode, the envelope control string is automatically stored on

the server database during the compile.

The Envelope Control String list window is opens a list of compiled envelope standards

and shows the compilation information about each.

To compile an envelope control string:

1. Select the envelope control string to be compiled from the list displayed on the

Envelope Control Strings list window. Alternately, select the envelope standard on

the Envelope Standards list window.

2. Click Compile Control String(s) on the tool bar of the list window.

While compiling, WebSphere Data Interchange Client checks for errors in the

changes you made. Error messages are written to the event log.

EDI envelope standard

Chapter 6. EDI standards 87

EDI envelope control string

88 Mapping Guide

Chapter 7. Creating map objects

Use map objects to customize your maps. The following steps describe how to access

the map objects.

1. Click Mapping to open the Mapping functional area.

2. Select one of the following tabs:

v Code Lists

v Translation Tables

v Global Variables

Creating code lists

You create a new code list when you need to ensure a value is valid during translation.

For instance, you might want to ensure that a simple element contains a valid part

number. The following steps describe how to create a new code list.

 1. Open the Code Lists editor. The following steps describe how to do this.

a. Click either Mapping or EDI Standards on the tool bar of the main application

window.

b. Select the Code Lists tab, click New on the list window tool bar. The Code List

editor opens.

 2. On the General tab of the Code List editor, type in the name of the code list into

the Name field. This value must be unique among translation tables and code lists.

 3. In the Description field, type a description of the code list. This field is optional.

 4. In the Data Type field, indicate whether the values contained in the code list are

character or numeric. Character is the default.

 5. In the Maximum Length field, identify the maximum length of the values. The

length can be up to 35 characters long. 5 is the default.

 6. Click New to open the Add New Code List Entry dialog to create the code list

entries. Each entry identifies a valid value within the code list.

 7. In the dialog, enter a value that is to be considered valid and its corresponding

description.

 8. Click Insert to insert the entry. The dialog remains open so another entry can be

made. Click OK to add the last entry to the code list, or click Cancel if the last

entry has already been made.

 9. Click the Comments tab, and type any comments you have about the code list.

10. Click Save on the toolbar. WebSphere Data Interchange saves the new code list to

the database.

11. Close the editor when you are done.

© Copyright IBM Corp. 2007 89

Creating translation tables

You create a new translation table when you need to translate a value in a document to

a corresponding value. For instance, a simple element that contains an internal part

number that must be converted to a trading partner‘s corresponding part number.

The following steps describe how to create a new translation table.

 1. Open the Translation Table editor. The following steps describe how to do this.

a. Click Mapping on the main application window.

b. In the Translation Tables tab, click New. The Translation Table editor opens.

 2. On the General tab of the Translation Table editor, type in the name of the

translation table in the Name field.

 3. You can optionally type a description of the translation table in the Description

field.

 4. In the Source Value group box, indicate whether the source values are character

or numeric in the Data Type field.

 5. In the Source Value group box, identify the maximum length of the source values

in the Maximum Length field. The length can be up to 35 characters long.

 6. In the Target Values group box, indicate whether the target values are character or

numeric in the Data Type field.

 7. In the Target Value group box, identify the maximum length of the target values in

the Maximum Length field. The length can be up to 63 characters long. The

combined length of the source and target values cannot exceed 68 characters.

 8. Click New to open the Add New Translation Table Entry dialog to create the

translation table entries. Each entry associates a source value with a target value.

In the dialog, enter a source value and its corresponding target value. Click Insert

to insert the entry. The dialog remains open so another association between a

source value and a target value can be made. Click OK to add the last entry to the

translation table, or click Cancel if the last association has already been made.

 9. Click the Comments tab, and add any comments you have about the translation

table.

10. Click Save on the toolbar. WebSphere Data Interchange Client saves the new

translation table to the database.

11. Close the editor when you are done.

Creating global variables

Create a new global variable when you need a variable for a Data Transformation map,

validation map, or Functional Acknowledgement map that needs to retain its information

beyond the current document being translated.

The following steps describe how to create a new global variable.

1. Open the Global Variables editor. The following steps describe how to do this.

a. Click Mapping on the main application window.

b. Select the Global Variables tab, click New. The Global Variable editor opens.

Translation tables

90 Mapping Guide

2. On the General tab, type in the name of the global variable into the Name field.

3. You can type a description of the variable in the Description field. This field is

optional.

4. Indicate the scope of the global variable as either Session, Interchange, or Group.

5. From the Data Type list, select the data type of the global variable. The choices are:

Binary, Boolean, Character, Integer, and Real. The default is character.

6. In the Maximum Length field, you can set the maximum length of the global

variable. The default is 32.

7. In the Initial Value field, type an initial value for the global variable.

8. Click Save on the toolbar. WebSphere Data Interchange saves the new global

variable to the database.

9. Close the editor when you are done.

Global variables

Chapter 7. Creating map objects 91

Global variables

92 Mapping Guide

Chapter 8. Creating a map

Mapping is the process by which you relate input and output documents. Through

mapping, you specify the relationships between the internal documents used by your

applications and the external documents that you exchange with trading partners. Maps

are then compiled using WebSphere Data Interchange Client into control strings so that

translation servers can transform documents between the internal and external formats.

WebSphere Data Interchange Client is designed to make mapping easy. You can

choose to select elements in your source document, drag them onto elements in the

target document, and drop them. Or you can choose to select elements in your target

document, drag them onto elements in the source document, and drop them. You can

then apply WebSphere Data Interchange's specialized mapping functions as required.

Using the map editor

WebSphere Data Interchange Client's map editor features a visual means for

associating elements from a source document definition with elements in a target

document definition, or from a target document definition with elements in a source

document definition.

The editor contains three tabs:

v The General tab contains the fields for you to enter and change map properties.

v The Details tab contains the fields for you to create and maintain the mapping

commands

v The Comments tab contains a field for you to type any comments you wish about

the selected map.

The Details tab uses a split page that permits you to create map associations. The

divisions on this page varies based on the type of map.

v For Data Transformation maps, the Details tab has four window panes as follows:

– Upper left corner

This is the Source Document Definition pane of the Details tab. This pane

identifies the source document definition and displays the layout of the document

that is used as the source of the translation.

– Upper right corner

This is the Target Document Definition pane of the Details tab. This pane

identifies the target document definition and displays the layout of the document

that is created by the translation.

– Lower left corner

This is the Mapping Command pane of the Details tab. This pane displays a

representation of either the source document definition or the target document

definition, depending on whether the map is a source-based or target-based, and

the mapping commands and comments associated with the map.

– Lower right corner

© Copyright IBM Corp. 2007 93

This is the Variables pane of the Details tab. This pane displays the variables

associated with the map. This pane is divided into three sub-panes that list all

special variables, global variables, and local variables.

v For Validation maps, the Details tab has two window panes as follows:

– Left side

This is the Mapping Command pane of the Details tab. This pane displays a

representation of the source document definition. The representation is similar to

the source document definition, but it might not be exactly the same. Use this

pane to create and maintain mapping commands.

– Right side

This is the Variables pane of the Details tab. This pane is divided into three

sections, one for each type of variable. Use the Variables window to manage

Local Variables and to map with Global Variables, Local Variables, and Special

Variables.

v Functional Acknowledgment maps have four window panes as follows:

– Upper left corner

This is the Source Document Definition pane of the Details tab page. This pane

identifies the source document definition and displays the layout of the document

that is used as the source.

– Upper right corner

This is the Target Document Definition pane of the Details tab page. This pane

identifies the target document definition and displays the layout of the document

that is created.

– Lower left corner

This is the Mapping Command pane of the Details tab page. This pane displays a

representation of the source document definition. The representation is similar to

the source document definition, but it might not be exactly the same. Use this

pane to create and maintain mapping commands.

– Lower right corner

This is the Variables pane of the Details tab. This pane displays the variables

associated with the map. This pane is divided into three sub-panes that list all

special variables, global variables, and local variables.

v Send maps have two window panes as follows:

– Left side

This is the Source Document Definition pane of the Details tab. This pane

displays a representation of the source document definition. The representation is

similar to the source document definition, but might not be exactly the same.

– Right side

This is the Mapping pane of the Details tab. This pane displays a representation

of the document definition that describes the layout of the target document.

v Receive maps have two window panes as follows:

– Left side

Map editor

94 Mapping Guide

This is the Target Document Definition pane of the Details tab. This pane displays

a representation of the target document definition. The representation is similar to

the target document definition, but might not be exactly the same.

– Right side

This is the Mapping pane of the Details tab. This pane displays a representation

of the document definition that describes the layout of the source document.

Starting the map editor

The Map editor opens when you select a map from the Mapping list window, as follows.

1. Click Mapping on the WebSphere Data Interchange Client Navigator bar.

The Mapping Functional Area opens.

This window is used to access the list windows for each component type that

occurs in the Mapping Functional Area.

To display additional columns, click the scroll bar on the bottom of the page to scroll

to the right or left. To alter the columns that display on the page, or to change which

query is executed to produce the list, click Modify Window Properties. To create new

queries, see WebSphere Data Interchange for MultiPlatforms User's Guide,

SC34-6215-01.

2. To view a map or to add or change its information, double-click the row of the map

you want to work with.

The map editor opens with the Details tab in front. You add information or make

changes to maps through its tabs and related windows, as described in the

following sections.

General editing procedures

Using the Details tab in the Map editor you can perform drag-and-drop mapping on

your documents.

Map editor

Chapter 8. Creating a map 95

The top left pane in the window opens the source document definition, and the top right

pane displays the target document definition. The lower left pane is the Mapping

Command window pane, and the lower right pane is the variables window pane, which

includes the lists for Global, Local, and Special Variables.

For more information about the Map Command window pane, see “Using the Map

Command window pane” on page 99.

For a list of mapping components and their associated graphics, see Table 15 on page

98.

1. Click the plus (+) sign next to a compound element, such as a loop, segment, or

record in the target document definition. Simple elements, such as fields and data

elements, do not have a plus (+) sign next to them.

The compound element expands to show the compound and simple elements that

comprise the compound element.

If you wish to close any expanded compound element, click the minus (-) sign.

2. Click the element you want to map on the top left side of the page. While holding

down the mouse button, drag it to the corresponding element in the target document

definition on the top right pane.

As you drag the element to the right side of the page over the element with which

you want to associate it, that component becomes highlighted. Release the mouse

button.

You can drag all simple elements and repeating compound elements. When you are

dragging an element, holding it over a compound element causes the compound

Figure 8. Data Transformation Map editor, Details tab

General editing procedures

96 Mapping Guide

element to expand after a few moments, if it is not already expanded. Dragging an

element to any edge of the window pane causes the window pane to automatically

scroll up, down, left or right, depending on which edge you are near and whether

the window pane can be scrolled in that direction.

Note: If the element does not become highlighted when you move the cursor on

top of it, that means it is not a valid place to perform a drop. For example,

you cannot drop a data format record onto a data element in an EDI

transaction.

After you have mapped an element, a command is created in the mapping

commands window pane and inserted into an appropriate position. A check mark

displays next to the mapped element in the mapping command window. A check

mark also displays next to its parent elements so that you know the parent element

contains mapped components.

Note: This procedure presents a simple mapping situation in which you associate

elements in the source document definition with elements in the target

document definition. For anything but the most basic mapping associations,

you must use WebSphere Data Interchange's advanced mapping

capabilities. For more information, “Using the Map Command window pane”

on page 99

3. Continue dragging and dropping elements in the source document definition onto

elements in the target document definition until you have mapped all of the

information required for this map.

4. Enter any general comments on the map in the Comments tab.

5. When you have completed mapping, click Save on the tool bar to save the map.

Editing a map

Edit a map when you have modified the associated target or source document

definition, or when you need to add, delete, or change mapping commands within the

map. You might also need to edit a map to meet specific requirements of a new trading

partner.

1. In the Mapping list window, double-click the map you wish to edit.

The map displays in the map editor with the Details tab in front.

Figure 9. Example of a Data Transformation Map

General editing procedures

Chapter 8. Creating a map 97

Changes you made earlier to the map or its associated items display on the page,

as well as changes you made to the source or target document definition.

2. Create new associations between the source and target elements, or change

existing ones.

v To make an association between a new element in the source document

definition and an element in the target document definition, drag the source

element and drop it on the proper target element.

v To edit an existing association, double-click the mapping command in the

Mapping Command window pane. The Mapping Command editor opens.

v To delete an association, select the mapping command you want to delete and

press the Delete key.

3. Change information as required in the General tab.

4. Click Save on the tool bar to save the map.

 Table 15. Symbols used in maps

Symbol Mapping Data Format EDI Standard XML DTD

EDI Standard

Transaction

Table

Record Segment

Repeating

Record

Repeating

Segment

Loop Loop

Repeating Loop Repeating Loop

Structure Composite Data

Element

Compound

Element

Repeating

Structure

Repeating

Composite Data

Element

Repeating

Compound

Element

Field** Simple Data

Element**

Simple Element**

Repeating

Simple Data

Element**

Mapping

Indicator

General editing procedures

98 Mapping Guide

Table 15. Symbols used in maps (continued)

Symbol Mapping Data Format EDI Standard XML DTD

Mapping

Command

Command Group

Comment

Comment Group

If, ElseIf, Else,

EndIf

Qualify

Qualify

(multi-
occurrence)

** Simple Elements - all others are Compound Elements

Using the Map Command window pane

The Map Command window pane is where you can apply WebSphere Data Interchange

Client’s advanced mapping capabilities.

1. Right-click an element in the Mapping Command window pane and follow the

cascading menus. You can choose to insert a command, a command group, a

comment, or a comment group. You can choose to insert your selection before,

after, or within the element you have selected.

2. If you want to insert a command, select where the command is inserted, select

Command, and then select the command to be inserted.

The Mapping Command editor opens with a prototype of the command.

3. Edit the prototype to create the command you need.

4. Click Repeat if you want to add the command, and create another similar to it.

5. Click OK when you have your last command ready.

Figure 10. Cascading menus in the Map Command window pane

General editing procedures

Chapter 8. Creating a map 99

Advanced mapping techniques

WebSphere Data Interchange techniques for using literal keywords and other advanced

mapping techniques are documented in Chapter 14, “Advanced send and Receive

mapping,” on page 241.

To make mapping easier, WebSphere Data Interchange Client help contains syntax for

literals, mapping commands, and operators.

Mapping task list

Follow this process to create a map. The same basic steps work for maps that you

create to translate data that are sent to trading partners and for maps that you create to

translate data that are received from trading partners. In both cases, you are mapping

data from one document format to another.

1. Obtain the layout of the source document to be used in the translation.

This might be a data format, an EDI standard transaction, or an XML DTD. You

might need to obtain the layout from your trading partner. When you have the

source document layout (called the source document definition), put that layout into

WebSphere Data Interchange.

If the source document is data in a proprietary format, create a data format in

WebSphere Data Interchange. For information about creating a data format, see

“Creating a data format” on page 26.

If the source document is an EDI standard transaction, study the layout of the

transaction. EDI standards are broad. You can use a number of methods to map

onto an EDI standard transaction. Any number of organizations are likely to use

different methods to map the same data to the same transaction. When you are

comfortable with the transaction, make sure the transaction is defined in

WebSphere Data Interchange. For instructions on how to install EDI standards, see

WebSphere Data Interchange for MultiPlatforms User's Guide, SC34-6215-01.

If the source Document is in XML format, obtain the corresponding DTD and import

it into WebSphere Data Interchange. This is done using import. For information

about importing a DTD file, see WebSphere Data Interchange for MultiPlatforms

User's Guide, SC34-6215-01.

 Attention: If you change the metadata for a document, it affects each map that

uses that document as either a source or target document.

2. Obtain the layout of the target document to be used in the translation.

This might be a data format, EDI standard transaction, or an XML DTD. You might

need to obtain the layout from your trading partner. When you have the target

document layout (called the target document definition), put that layout into

WebSphere Data Interchange. See step 1 for additional information.

3. Decide how source data is handled.

When you are creating a map to send a document to a trading partner, study the

target document definition and decide how you want to use it to pass your source

data.

When you are creating a map that receives a document from a trading partner,

study your trading partner's document definition to see what data your partner is

sending and how you handle it.

General editing procedures

100 Mapping Guide

4. Compare your source document definition to the target document definition.

When you map, you are associating elements in one document definition with

elements in another document definition.

Study the source document definition for which you are creating a map. Make note

of which elements in the source document definition correspond to which elements

in the target document definition. Then decide how you are going to map the two

document definitions. For example, you might use a loop on an EDI standard

transaction to handle repeating records in a data format.

5. Map the data elements in each segment.

Use the Map editor to drag elements between the source and target document

definitions. You might notice that some elements in target document definition do

not occur in the source document definition. If they are required, you need to fill

them with data on the outbound side. WebSphere Data Interchange can fill many

such elements using special handling options, literals, mapping commands, and

accumulators.

Special handling options and mapping commands perform such functions as

translating date formats, converting values supplied by a trading partner to values

you require, and validating the contents of data elements.

Accumulators and variables perform such actions as counting segments in a

transaction for later placement in a transaction's trailer record.

Literals and mapping commands are a means of supplying data to data elements or

fields, such as dates and times.

6. Specify how repeating simple and compound elements are handled.

Document definitions can include repeating elements. Examples of repeating

elements are loops in a data format, records, and structures. You must specify how

WebSphere Data Interchange handles the repeating elements.

7. Associate the map with a trading partner using a usage or map rule.

After you have created a map, you must associate it with trading partners. Because

you can use the same map for multiple trading partners, each usage or rule

identifies one or more trading partners that use the map. The usage or rule can

supply values specific to that trading partner or group of trading partners, such as:

v Validation and error levels

v Unique values for enveloping that override the default values

v The logical name of the file to which output data is written

For more information, see WebSphere Data Interchange for MultiPlatforms User's

Guide, SC34-6215-01.

8. Compile a map.

The WebSphere Data Interchange uses a control string in its processing, not the

map itself. When you complete your mapping work, you must compile the map

using WebSphere Data Interchange Client to create a control string. The compiler

identifies any errors when it creates a control string.

Task list

Chapter 8. Creating a map 101

Choosing the right map

WebSphere Data Interchange supports several types of maps that you can use to

transform data that you exchange with other business and trading partners:

v Data Transformation maps

Using Data Transformation maps, you can define any-to-any transformations for

creating complex mapping operations. These support the wide range of mapping that

you might need to handle data formats, EDI, and XML messages.

For information about creating a Data Transformation map, see Chapter 9, “Data

Transformation mapping,” on page 121.

v Functional Acknowledgement maps

A set of standard Functional Acknowledgement maps is sent with WebSphere Data

Interchange. You can customize these maps, or create your own if you have special

requirements for your functional acknowledgements.

For information about creating a Functional Acknowledgement map, see “Creating a

Functional Acknowledgement map” on page 137.

v Validation maps

Validation maps specify extended checking of the EDI input data, beyond the normal

standard validation performed by WebSphere Data Interchange. Using a validation

map, you can check whether the data conforms to an implementation guide or other

user-defined requirements.

For information about creating a validation map, see “Creating a validation map” on

page 132.

v Send and Receive maps

Send and Receive maps are supported in Version 3.3 of WebSphere Data

Interchange for migration and compatibility. If you have created send and Receive

maps in previous releases, you can continue to use these.

For information about creating send and Receive maps, see Chapter 13, “Send and

Receive mapping,” on page 201.

Choosing the right map

102 Mapping Guide

Specifying qualification

Terminology

You must understand the following terminology when you use qualification.

Simple element

A single value

Compound element

A grouping of elements

Element

Refers to either a simple or compound element

 In data formats, simple elements are fields within the data format. Compound

elements include structures, records, and loops.

In EDI standards, simple elements are data elements or subelements. Compound

elements include loops, segments, and composite data elements.

An XML element is a compound element. An XML attribute and an XML value are

considered simple elements.

 Within your document, certain elements and groups of elements can repeat. When you

map an element that repeats within the source document (whether compound or simple

element), you must tell WebSphere Data Interchange which occurrence of the segment

or loop you are using. This is called qualifying the segment or loop.

WebSphere Data Interchange supports five types of qualification for maps. You can

qualify by:

v Occurrence

v Multi-occurrence (Data Transformation maps only) or path (send and Receive maps

only)

v Value

v Expression

Mapping tip

When creating new maps with complex looping, start mapping a few fields in the

loop and testing the qualification before mapping the entire document. It is easier

to test and correct the looping with a subset of fields before completing the entire

Map.

 When you qualify by occurrence, your mapping is related to the position of data in a

repeating sequence. When you qualify by value, your mapping is related to the value

that you receive in a simple element or in a variable. When you qualify by expression,

your mapping is based upon a condition. For multi-occurrence qualification, you are

Qualification

Chapter 8. Creating a map 103

indicating what mapping instructions are executed for iterations of the repeating element

that are not handled in a previous qualification

Note: You can mix types of qualification for the same loop, segment, or data element.

Path qualification works with Value qualification on receive. Occurrence works

with Path on both send and receive. You cannot mix Occurrence and Value

qualification.

Qualifying a Data Transformation map

WebSphere Data Interchange supports four types of qualification for Data

Transformation maps. You can qualify by:

v Occurrence

v Multi-occurrence

v Value

v Expression

When you qualify by occurrence, your mapping is related to the position of data in a

repeating sequence. When you qualify by value, your mapping is related to the value

that you receive in a simple element or in a variable. When you qualify by expression,

your mapping is based upon a condition. For multi-occurrence qualification, you are

indicating what mapping instructions are executed for iterations of the repeating element

that are not handled in a previous qualification. If there are no qualifications in place for

a repeating element, then it is handled as a multi-occurrence qualification by default.

If there are no qualifications in place for a repeating element, then it is handled as a

multi-occurrence qualification by default. However, when Overlays occur in the Target

data, a CloseOccurrence mapping command might be necessary and placement is

extremely important. There is a WebSphere Data Interchange feature with Target based

maps that executes Source looping structures multiple times. For example, you can

execute mapping commands for all occurrences of the loop and execute a different set

of mapping commands for all occurrences of the same Loop. This can be beneficial if

you want to save some values from the source looping structure and then execute the

source looping structure again and use the saved values.

Qualifying repeating simple and compound elements

Compound elements can be qualified by single occurrence, multi-occurrence, value,

and expression.

Qualify by occurrence when the order in which repeating data occurs in either the

source or target document is important. For more information, “Qualifying an element by

occurrence” on page 105

Qualify by multi-occurrence when you want to create multiple elements in the target to

correspond to repeating elements in the source using the same mapping instructions.

All iterations of the repeating element that are not otherwise qualified are handled under

the multi-occurrence qualification. For more information, see “Qualifying an element by

multi-occurrence” on page 106

Qualification

104 Mapping Guide

Qualify by value when you want a set of mapping instructions to be executed for a

repeating element when a specific value occurs in a source element or in a variable.

For more information, see “Qualifying an element by value” on page 107

Qualify by expression when you need a more complex qualification. For more

information, see “Qualifying an element by expression” on page 108

Qualifying an element by occurrence

Qualify an element by occurrence when a specific instance of a repeating element

requires mapping instructions specific to that occurrence of the repeating element. For

example, say that you are working with a source document that has an address

compound element. The first occurrence of the address compound element has the

send-to address, the second occurrence has the ship-to address. Map each occurrence

to the appropriate target element using occurrence qualification.

Note: Whether you are doing qualification in a source or target-based map, you are

always qualifying on something in the source. Qualify(Occurrence() = 1)

means the first Occurrence of something in the source, not an Occurrence of

something in the target.

1. For a source based map, right-click the repeating source element in the Mapping

Command window pane. For a target based map right-click the ForEach command

underneath the repeating target element. If one does not exist, then first right-click

the repeating target element and select ForEach to create one. For more

information about the ForEach command see “Qualifying an element by

multi-occurrence” on page 106.

2. Select By Occurrence.

The Qualify by Occurrence Number widow opens.

3. Type in a number in the Enter the Occurrence Number field that corresponds to the

occurrence number of the element you are mapping.

If you are mapping the second occurrence of an element, type 2 in the Enter the

Occurrence Number field.

4. If you need to map additional occurrences, click Repeat.

A mapping command is created that qualifies the element by occurrence and then

redisplays the Qualify by Occurrence Number window.

5. When you have specified the required number of occurrences, click OK.

A mapping command is created that qualifies the element by occurrence, and the

Qualify by Occurrence Number window is closed.

You can qualify an element by more than one occurrence in a single expression. For

example the expression:

Qualify ((Occurrence() EQ 1) OR (Occurrence() EQ 2))

performs the same set of mapping commands for occurrence one and occurrence two

of the repeating element. This command can be created by using the Qualify by

expression command or by creating a qualify by occurrence and then editing the

qualify by occurrence command after it has been created.

Qualification

Chapter 8. Creating a map 105

Qualifying an element by multi-occurrence

Qualify an element by multi-occurrence when you need WebSphere Data Interchange

to handle all occurrences of a repeating element, that are not otherwise qualified, in the

same way. For example, say you are working on an EDI standard transaction to data

format map and you find that the PO1 segment in a purchase order repeats to handle

multiple purchase-order line items. You need WebSphere Data Interchange to create a

separate record for each instance of the PO1 segment and when each occurrence of

the PO1 segment is to execute the same mapping instructions.

Consequently, you would qualify the PO1 segment by multi-occurrence. That way,

WebSphere Data Interchange creates as many line-item records in your application

data as there are occurrences of PO1 in your trading partner’s transaction.

The WebSphere Data Interchange mapping function automatically qualifies repeating

elements. The mapping commands under the repeating element is executed for each

occurrence of the repeating element.

The multi-occurrence qualification commands for source-based maps and target-based

maps are different. Source-based maps use Mapto() and the Default qualification

commands, but target-based maps use the ForEach and Default commands. In

addition, you can only have one multi-occurrence qualification (Default) on a source

repeating element, but you can have multiple multi-occurrence qualifications (ForEach)

on a target repeating element. Although they have different names and usage rules,

they accomplish the same thing.

For example, if you want to map two repeating source elements (S1 and S2) to a single

repeating target element (T1), then you either create two Default qualifications in a

source-based map (one on S1 and one on S2), or two ForEach qualifications in a

target based map (both on T1).

The main difference between multi-occurrence qualification in source-based and

target-based maps is that because you can map more than one repeating source

element to a repeating target element, the tree display has an extra level of hierarchy.

In a source based map the qualifications appear directly under the repeating source

element. In a target based map, each repeating source element associated with the

repeating target element results in the creation of a ForEach command under the

repeating target element. The qualifications related to that source element appear under

the ForEach command.

If there are no qualifications in place for a repeating element, then it is handled as a

multi-occurrence qualification by default. However, overlays can occur in the Target data

and a CloseOccurrence mapping command might be necessary and placement is

extremely important. There is a WebSphere Data Interchange feature for target based

maps that executes source looping structures multiple times. For example: You can

execute mapping commands for all occurrences of the loop and execute a different set

of mapping commands for all occurrences of the same Loop. This can be beneficial if

you want to save some values from the source looping structure and then execute the

source looping structure again and use the saved values.

Qualification

106 Mapping Guide

In source-based maps, the multi-occurrence Default command only displays if there are

other existing qualifications for the same repeating element. When you are using

multiple qualifications, multi-occurrence qualification always displays last when it is

present. This indicates that mappings under the multi-occurrence qualification are

performed only when the specific instance of the repeating source element is not

resolved to one of the other qualifications. This is why it is known as the default

qualification.

In target-based maps, the multi-occurrence qualification ForEach command displays

whenever there is any type of qualification on the element. Default only displays when

there are other existing qualifications for the same repeating source element. When

multiple qualifications exists and the multi-occurrence qualification is present, it always

displays last. This indicates that mappings under the multi-occurrence qualification are

performed only when the specific instance of the repeating source element is not

resolved to one of the other existing qualifications. This is why it is known as the default

qualification.

Drag a compound element onto a repeating element in the source document definition:

v If there are no existing qualifications for the element, a Mapto() command is inserted

under the corresponding repeating element in the Mapping Command window pane.

For source based maps, if there are no existing qualifications for the element, a

Mapto() command is inserted under the corresponding repeating source element in

the Mapping Command window pane. For target based maps, If there are no existing

qualifications for the element, a ForEach command is inserted under the

corresponding repeating target element in the Mapping Command window pane.

v If there is an existing qualification for the repeating element, the Default command is

inserted as the last qualification for the repeating element in the Mapping Command

window pane.

The multi-occurrence command Default is automatically created when you first qualify a

repeating element that already has mapping commands under it. The existing mapping

commands be moved to under the Default command.

Qualifying an element by value

Qualify an element by value when you want the value of data in a simple element or

variable to drive WebSphere Data Interchange’s translation of a repeating element.

For example, say you want to qualify the N1 loop with the value of BY in Element 98,

which is the “Entity Identifier Code,” received in a purchase order to create a buyer

record. Further, say that you want the buyer’s name to be mapped into the buyer record

depending on the value in Element 98 of the N1 loop.

To handle that case, you would qualify the element by value. That way, WebSphere

Data Interchange puts specific information into the buyer records it creates from the

purchase order depending on the name in each order’s Entity Identifier Code.

1. For a source based map, right-click the repeating source element in the Mapping

Command window pane. For a target based map, right-click the ForEach command

underneath the repeating target element. If one does not exist, right-click the

repeating target element and select ForEach to create one.

Qualification

Chapter 8. Creating a map 107

2. Right-click to select Qualify.

3. Click By Value.

The Mapping Command editor opens.

4. Drag the element you wish to qualify from the source document window and drop it

onto the word path on the Mapping Command editor.

5. Highlight the word value in the Qualify field in the Mapping Command editor.

6. Type the value.

7. If you are creating multiple qualifications by value, click Repeat. Then repeat the

previous steps.

Clicking Repeat creates the qualification in the Mapping Command window pane

and redisplays the Mapping Command editor.

8. When you have created the required number of qualifications of this element, click

OK.

Clicking OK creates the qualification in the Mapping Command window pane and

closes the Mapping Command editor.

You can qualify an element by several different values in a single expression. For

example the expression:

Qualify ((StrComp(\Table 1\310 O N1 Loop\310 O N1\1 M 98\\, "BY") EQ 0) OR

(StrComp(\Table 1\310 O N1 Loop\310 O N1\1 M 98\\, "BG") EQ 0))

performs the same set of mapping commands if the value in element 98 is ″BY″ or

″BG″

Qualifying an element by expression

1. For a source based map, right-click the repeating source element in the Mapping

Command window pane. For a target based map, right-click the ForEach command

underneath the repeating target element. If one does not exist, right-click the

repeating target element and select ForEach to create one.

2. Right-click to select Qualify.

3. Click By Expression.

The Mapping Command editor opens.

4. Enter a valid expression into the Mapping Command editor.

5. If you are creating multiple qualifications by expression, click Repeat. Then repeat

the previous steps.

Clicking Repeat creates the qualification in the Mapping Command window pane

and redisplays the Mapping Command editor.

6. When you have mapped the required number of qualifications of this element, click

OK.

Clicking OK creates the qualification in the Mapping Command window pane and

closes the Mapping Command editor.

Editing an element qualification

Edit a qualified element when you want to change the qualification.

Qualification

108 Mapping Guide

If the element is qualified by occurrence, value, or expression, and you wish to change

occurrence, value, or expression qualifications:

1. Double-click the qualify command in the Mapping Command window pane that is to

be changed.

The Mapping Command editor opens.

2. Edit the qualification.

3. Click OK.

Changing multi-occurrence qualification on a qualified element

1. Create a multi-occurrence qualification if one does not already exist.

2. Check that the multi-occurrence qualification command (Default) is selected.

3. Drag repeating element from the source document definition onto a repeating

element in the target document definition.

A MapTo command is created in the Mapping Command window pane under the

multi-occurrence qualification command (Default).

4. If the new MapTo command is to replace an existing MapTo command, delete the

existing MapTo command by right-clicking on it and selecting Delete.

Qualifying a repeating data element or composite data element by

occurrence

Qualify a repeating data element or composite data element by occurrence when a

specific instance of the data element must be mapped to a specific component area of

the data format.

1. Double-click the repeating data element or composite data element (maximum use

value greater than one).

The Qualify an Element by Occurrence window opens.

2. Type in a number in the Enter the Occurrence Number field that corresponds to the

occurrence number of the data element you are mapping.

If you are mapping the second occurrence of the data element, type 2 in the Enter

the Occurrence Number field.

3. If you need to map additional occurrences, click Repeat.

The qualification is added to the map and displays on the transaction side of the

Map editor. The Qualify an Element by Occurrence Number window redisplays with

the next available number in the Enter the Occurrence Number field increased by

one.

4. When you have specified the required number of occurrences, click OK.

The qualification is added to the map and displays on the transaction side of the

Map editor.

Qualifying a repeating data element or composite data element by

path

1. Drag a structure onto a repeating data element (a data element that has a

maximum use value greater than one).

The title of the data element or composite data element changes to include the

words Qualified by Path of (Path Name).

Qualification

Chapter 8. Creating a map 109

Changing the path qualification on a qualified repeating data

element

1. Drag a structure onto the loop or repeating segment.

For Send maps, the Qualify an Element window opens. Move to step2.

For Receive maps, you can only have one path qualified mapping for a repeating

data element. Dragging a structure onto an existing path qualified repeating data

element results in the qualification being replaced by the new path qualification.

2. When the Qualify an Element window opens, click New or Replace, depending on

whether you want to add another qualification or replace the existing qualification.

Qualifying a send or Receive map

Within the EDI standards, certain segments and groups of segments, called loops, can

repeat. Some EDI standards also support data elements or composite data elements

that can repeat.

When you map a segment, loop, or data element that repeats within an EDI standard,

you must tell WebSphere Data Interchange which occurrence of the segment, loop, or

data element you are using. This is called qualifying the segment, loop, or data

element.

WebSphere Data Interchange supports three types of qualification for send and Receive

map types. You can qualify by:

v Occurrence

v Path

v Value (loops and repeating segments on Receive maps only)

Non-repeating data elements can also be qualified by value on Receive maps.

When you qualify by occurrence, your mapping is related to the position of data in a

repeating sequence. When you qualify by path, your mapping is related to a specific

structure or record in the data format and how it handles repeating segments or data

elements in the EDI standard. When you qualify by value, your mapping is related to

the value that you receive in a data element.

Qualifying loops and segments

You can qualify loops and segments by:

v Occurrence when the order in which repeating data occurs in either the data format

or EDI standard transaction is important. For more information, see “Qualifying a loop

or segment by occurrence” on page 111.

v Path when you want to create multiple segments in an EDI standard transaction to

correspond to multiple occurrences of a record or structure in a data format and vice

versa. For more information, see “Qualifying a loop or segment by path” on page

111.

v Value when you want to specify data received in a standard transaction to trigger the

creation or population of fields in your data format. For more information, see

“Qualifying a loop or segment by value” on page 112.

Qualification

110 Mapping Guide

Qualifying a loop or segment by occurrence

Qualify a loop or segment by occurrence when a specific instance of the segment or

loop must be mapped to a specific component of the data format. For example, say that

you are working on a Send map and need to send two addresses, the send-to address

and the bill-to address. Map the ship-to address to the first occurrence of the N1

segment and the bill-to address to the second occurrence of N1.

 Attention: Qualification by occurrence creates records or segments first and then

looks for the data to fill them. If you use occurrence qualification on a Receive map,

then you need to move data to that record because WebSphere Data Interchange

creates the record, and it might not contain any data.

WebSphere Data Interchange Client’s mapping function automatically qualifies loops

and segments that repeat. When you drop a field onto a data element that occurs in a

loop or a repeating segment, the loop or segment is automatically qualified by

occurrence; the title of the loop or segment changes after the drop to include the words,

“Qualified by Occurrence #1”. Use the Qualify a Loop or Segment window, as follows.

To qualify a loop or segment by occurrence:

1. Double-click a loop or repeating segment (a segment that has a maximum use

value greater than one).

For Receive maps, either the Qualify a Loop or Qualify a Segment window opens.

For Send maps, proceed to step 3.

Note: You can also drop a field onto a data element in a loop or repeating

segment. The loop or segment is automatically qualified by occurrence. See

“Editing a loop or segment qualification” on page 113 to change the

occurrence number.

2. Click Occurrence.

Either the Qualify a Segment by Occurrence window or the similar window for loops

displays. The name of the loop or segment displays in the title bar.

3. Type in a number in the Enter the Occurrence Number field that corresponds to the

occurrence number of the component you are mapping.

If you are mapping the second occurrence of a field in your data format to an EDI

standard transaction, type 2 in the Enter the Occurrence Number field.

4. If you need to map additional occurrences, click Repeat.

The qualification is added to the map and displays on the transaction side of the

Map editor. The Qualify a Segment by Occurrence Number window or its

corresponding loop window redisplays with the next available number in the Enter

the Occurrence Number field.

5. When you have specified the required number of occurrences, click OK.

The qualification is added to the map and displays on the transaction side of the

Map editor.

Qualifying a loop or segment by path

Qualify a loop or segment by path when you need WebSphere Data Interchange to

create multiple instances of either:

Qualifying

Chapter 8. Creating a map 111

v a record or structure for Receive maps

v a segment or loop for Send maps

For example, say you are working on a Receive map and find that the PO1 segment in

a purchase order repeats to handle multiple purchase-order line items. You need

WebSphere Data Interchange to create a separate record for each instance of the PO1

segment.

Consequently, you would qualify the PO1 segment by path. That way, WebSphere Data

Interchange creates as many line-item records in your application data as there are

occurrences of PO1 in your trading partner’s transaction.

Note: Qualification by path finds loops or repeating segments and creates records for

them on receive and vice versa on send. Use path qualification when the

number of records WebSphere Data Interchange might need to create is

unknown.

WebSphere Data Interchange Client’s mapping function automatically qualifies loops

and segments that repeat. When you drop a record or structure onto a loop or

repeating segment, the loop or segment is automatically qualified by path; the title of

the loop or segment changes after the drop to include the words, “Qualified by Path of

(Path Name),” as follows.

To qualify a loop or segment by path:

1. Drag a record or structure onto a loop or repeating segment (a segment that has a

maximum use value greater than one).

The title of the loop or segment changes to include the words, “Qualified by Path of

(Path Name).”

Qualifying a loop or segment by value

Qualify a loop or segment by value when you want the value of data received in a data

element to drive WebSphere Data Interchange's translation of a whole loop or segment.

Qualification by value is not supported on Send maps.

For example, say you want to qualify the N1 loop with the value of BY in Element 98

(Entity Identifier Code) received in a purchase order to create a buyer record. Further,

say that you want the buyer’s name to be mapped into the buyer record depending on

the value in Element 98 of the N1 loop.

To handle that case, you would map the segment by value. That way, WebSphere Data

Interchange puts specific information into the buyer records it creates from the purchase

order depending on the name in each order’s Entity Identifier Code.

To qualify a loop or segment by value in Receive maps:

1. Double-click a loop or a repeating segment (a segment that has a maximum use

value greater than one).

The Qualify a Loop or Qualify a Segment window opens.

2. Click Value.

Qualifying

112 Mapping Guide

Either the Qualify a Segment by Element window or a similar window for loops

opens. The name of the segment or loop displays in the title bar.

3. Select from the Select an Element list the name of the data element by which you

want to qualify the loop or segment. The list includes all data elements in the

segment or in the first segment within a loop.

4. In the Enter a Qualifying Value list, select a value or type in the value you want to

qualify the loop or segment on. The list contains values when a code list is

associated with the selected data element.

5. If you are mapping multiple occurrences, click Repeat.

The qualification is added to the map and displays on the transaction side of the

Map editor. Then either the Qualify a Segment by Element window or the similar

window for loops redisplays. Repeat Step 4 and Step 5.

6. When you have mapped the required number of occurrences of this segment, click

OK.

The qualification is added to the map and displays on the transaction side of the

Map editor.

Editing a loop or segment qualification

Edit a qualified loop or segment when you want to change the default qualification that

WebSphere Data Interchange Client places on a segment when you use drag-and-drop

mapping of fields, structures, and records.

To edit a qualified loop or segment:

If the Loop or Repeating Segment is Path Qualified and you wish to change to or add

occurrence or value qualifications:

1. Double-click the qualified loop or repeating segment.

The Qualify a Segment window opens.

2. Click New or Replace, depending on whether you want to add another qualification

or replace the existing qualification.

If this is a Receive map and you have no other qualifications for this loop or

repeating segment, the Qualify a Loop or Qualify a Segment window opens with the

choices Value, Occurrence, and Cancel. Continue with step 3.

If other qualifications exist for the loop or segment, then additional qualifications

must be of the same type. The Qualify a Loop by an Element, Qualify a Segment by

Element, Qualify a Loop by Occurrence Number, or Qualify a Segment by

Occurrence Number window opens directly in this case.

For Send maps, the Qualify a Loop by Occurrence Number or Qualify a Segment by

Occurrence number displays. Skip to step 4.

3. Click Occurrence or Value (if given the choice) depending on how you want to

qualify the loop or segment.

4. When you have qualified the required number of occurrences of the loop or

segment, click OK.

Qualifying

Chapter 8. Creating a map 113

Changing path on qualified repeating element

1. Drag a record or structure onto the loop or repeating segment.

The Qualify a Segment or Qualify a Loop window opens.

2. Click New or Replace, depending on whether you want to add another qualification

or replace the existing qualification.

Note: For Receive maps, you can only have one path qualified mapping for a loop

or segment. You are issued an error message if you attempt to create a

second path qualified mapping.

Qualifying data elements

Nonrepeating data elements can be used to qualify by value other nonrepeating data

elements. Repeating data elements can be qualified by occurrence number or path. A

repeating data element can be qualified by both an occurrence number and a path.

Qualify data elements by value when you receive data elements that have qualifiers in

a segment. In such cases, you might need to qualify how WebSphere Data Interchange

handles each occurrence of the data element. Data element qualification by value is not

supported on Send maps.

If data you receive from a trading partner contains many units of measure, (each, case,

for example), you might need to qualify each data element. By doing so, WebSphere

Data Interchange can translate data in the data elements into a single unit of measure

for your application.

When you qualify a repeating data element by occurrence, your mapping is related to

the position of data in a repeating sequence. When you qualify a repeating data

element by path, your mapping is related to a specific structure in the data format and

how it handles repeating data elements in the EDI standard.

Qualifying a data element by value in Receive maps

Use the Add an Element Qualification window to qualify a data element by the value of

another data element, as follows.

1. Double-click the data element in the segment that will be used to qualify one or

more data elements in the segment. Make sure you qualify data elements before

you map them.

The Qualified Element Support window opens.

2. Click Qualified.

The Add an Element Qualification wizard opens.

If you click Normal, the Mapping Data Element editor opens. For more information,

see “Using the mapping data element editor” on page 202

3. Select the data element or data elements you want to qualify.

a. Select the data element or data elements in the Select Elements group box.

b. Click > to move the selected data element or data elements to the Qualified

Elements group box.

Clicking >> moves all data elements in the list.

Qualifying

114 Mapping Guide

Clicking < or << removes the selected element or all data element(s) from the

Qualified Elements group box.

4. Click Next.

The second page of the Add an Element Qualification wizard opens.

5. Select or enter a qualifying value. Values appear in the list if a code list is

associated with the qualifying element.

a. Click the value or values from the Enter a Value list. You can also type a value

in the list.

b. Click > to move the value to the Qualifying Values group box.

Clicking >> moves all values in the list.

Clicking < or << removes the selected value or all values from the Qualifying

Values group box.

6. Click Finish.

An element mapping icon (or icons, if you selected several values) displays below

the data element or data elements you qualified and below the qualifying data

element. The mapping element is designated Not Mapped - Qualified by Element in

Position x with a Value of y where x is the position of the qualifying data element in

the segment and y is the value you selected.

Editing qualification of a data element qualified by value

1. Double-click the qualifying data element if you want to add additional values.

The Update an Element Qualification window opens.

2. Select or enter a new qualifying value. Values appear in the list if a code list is

associated with the qualifying element.

a. Click the value or values from the Enter a Value list. You can also type a value

in the list.

b. Click > to move the value to the Qualifying Values group box.

Clicking >> moves all values in the list.

Clicking < or << removes the selected value or all values from the Qualifying

Values group box.

3. If you want to see all information about the qualified element, click Previous

Selected Info.

The Previous Element Qualification Data window opens, displaying all data

elements qualified by this element and the values used to qualify those elements.

4. Click OK.

An element mapping icon (or icons, if you specified several values) displays below

the data element or data elements you previously qualified. The mapping element is

designated Not Mapped - Qualified by element in Position x with a Value of y where

x is the position of the qualifying element in the segment and y is the value you

specified.

Qualifying

Chapter 8. Creating a map 115

Compiling control strings

After you complete a map and associate it with trading partners, you must compile a

control string before WebSphere Data Interchange can use the map. WebSphere Data

Interchange Client uses the data you created during the mapping process as input to a

program that compiles the map to create a control string. The WebSphere Data

Interchange Server uses the control string in its translation processing.

While compiling, WebSphere Data Interchange Client checks for errors in the map you

created. Error messages are displayed in the Execution Status window. Serious errors

are also logged to the Message log.

Compiling a control string is the last thing you do after adding or updating a map. Any

time you change a map, you must compile a new control string.

To compile a control string:

1. Select the tab for the map type.

2. In the map list window, select the maps you want to compile.

3. Click Compile on the list window tool bar.

An Execution Status window opens. Any errors are noted in the window.

Note: If you are not using WebSphere Data Interchange Client in stand alone

mode, export the control string into the WebSphere Data Interchange Server.

For more information about exporting and importing, see WebSphere Data

Interchange for MultiPlatforms User's Guide, SC34-6215-01.

Compiled control strings display in the Control Strings list window. Click Mapping on the

navigator bar to view the control strings list window. Then click the Control Strings tab

to view the Control Strings list window. Table 16 describes the fields that display in the

control strings list window.

 Table 16. Control string list window field descriptions

Field Description

Map Name The name of the map that this control string compiled.

Generation Date The date the control string was compiled.

Generation Time The time the control string was compiled.

Recompiling control strings

Map control strings are recompiled using WebSphere Data Interchange Client any time

the corresponding map is changed or any time the related source or target document

definition is changed. Changes are not available to WebSphere Data Interchange until a

recompile has been successfully completed.

The following steps describe how to recompile map control string.

Control strings

116 Mapping Guide

1. Open the Control Strings list window by clicking Mapping on the WebSphere Data

Interchange navigator bar and selecting the Control Strings tab.

2. Select one or more map control strings in the Control Strings list window.

3. Click Compile on the toolbar, or select Compile from the Actions menu.

WebSphere Data Interchange Client recompiles the selected control strings and opens

an Execution Status window. When WebSphere Data Interchange is finished

recompiling, a message appears on the Execution Status window indicating that the

compile has been completed. You can click Cancel on the Execution Status window to

terminate the compile function.

Migrating a map

The source or target document definition in a map can be changed at any time. This is

most commonly done to change from one version of a document definition to another.

This occurs commonly with EDI standards. To change the source or target document

definition:

1. On the General tab of the map editor, select a different source or target document

from the menus. When changing the version or release of an EDI standard

transaction, usually only the dictionary name must be changed. For more

information about using the map editor, see “Using the Data Transformation Map

editor” on page 121.

2. Click Save.

For Data Transformation maps, the map editor tries to validate existing mapping

commands. If the base document definition was changed, the map editor attempts

to locate the appropriate place in the Mapping Commands window pane to migrate

the existing mapping commands. Any mapping commands that cannot be migrated

display with a red exclamation mark. You can edit those mappings or drag them to

the correct place in the map. Any elements in the source document definition that

the map cannot identify appear with a red exclamation mark. Any commands under

these can be moved or deleted as needed. When you are sure you no longer need

the unknown elements that have a red exclamation mark by them, you can delete

them by right-clicking and selecting Delete.

Control strings

Chapter 8. Creating a map 117

Migrating a map

118 Mapping Guide

Part 2. Data Transformation Maps

© Copyright IBM Corp. 2007 119

120 Mapping Guide

Chapter 9. Data Transformation mapping

A Data Transformation map is a set of mapping instructions that describes how to

translate data from a source document into a target document. The order in which the

mapping instructions occur can be based on the source document (source-based

mapping) or the target document (target-based mapping). Both the source and target

documents can be one of several supported document types.

This chapter contains the following:

v “XML mapping considerations” on page 123

v “Applying map rules” on page 125

v “Mapping MQMD and MQRFH2 values” on page 126

Using the Data Transformation Map editor

You can use the Data Transformation Map editor to show how data is to be translated

from the source document to the target document. The editor works by displaying the

source document definition on one side of the page and target document definition on

the other. Using the Data Transformation Map editor you can associate components of

your source document with components of the target document by dragging source

components and dropping them into the correct locations in the target document

definition. Components include simple elements, such as fields in a data format or data

elements in an EDI standard transaction, and compound elements, such as loops and

record in a data format and segments in an EDI standard transaction.

You can map the simple elements in the source document definition to the simple

elements in the target document definition in any of these patterns:

v One simple element to one simple element

v Several simple elements to one simple element

v One simple element to several simple elements

The Data Transformation Map editor contains three tabs:

v The General tab contains the fields for you to enter and change map properties.

v The Details tab contains the fields for you to create and maintain the mapping

commands.

v The Comments tab contains a field for you to type any comments you wish about

the selected map.

The following section is the procedure for creating a Data Transformation map. For

information about viewing, copying, editing, renaming, deleting, and printing maps, see

WebSphere Data Interchange for MultiPlatforms User's Guide, SC34-6215-01. For

information about exporting maps, see WebSphere Data Interchange for MultiPlatforms

User's Guide, SC34-6215-01.

© Copyright IBM Corp. 2007 121

Creating a new Data Transformation map

Create a new map when you want to translate a document from one format to another.

In the most basic sense, creating a new map consists of associating simple elements in

a source document definition with simple elements in a target document definition. The

following procedure shows how WebSphere Data Interchange makes basic associations

between simple elements.

 1. In the Mapping list window, click the Data Transformation maps tab.

 2. Click New on the tool bar.

The Create a Data Transformation Map—Map Name wizard page opens.

 3. Type a map name in the Map Name field.

You can use both letters and numbers to identify your map. Letters display in

capitals. You cannot type spaces within the name.

You can enter a more complete description of the map in the Description field.

 4. Click Next to continue. The Source or Target wizard opens.

Select the appropriate radio button according to whether you want to create a

source-based Data Transformation map, or a target-based Data Transformation

map.

 5. Click Next to continue.

The Source Syntax Type wizard opens.

 6. Select the appropriate radio button that indicates the syntax type of your source

document definition, and click Next to continue.

The Source Dictionary wizard opens with a list of the dictionaries for your specified

syntax type.

 7. Select your source dictionary and click Next.

A wizard opens with a list of the document definitions in your source dictionary.

The wizard page is titled Source Data Format, Source EDI Standard Transaction,

or Source XML DTD, depending on the Source Syntax Type previously selected.

 8. Select the data format, the EDI Standard transaction, or the XML DTD to be used

as the source document definition in your map, and click Next.

The Target Syntax Type window opens. In this window you can indicate the syntax

type of your target document definition.

 9. Select the syntax type of your target document, and click Next.

The Target Dictionary wizard opens with a list of the dictionaries for your specified

syntax type.

10. Select your target dictionary, and click Next.

A wizard opens with a list of the document definitions in your target dictionary. The

wizard page is titled Target Data Format, Target EDI Standard Transaction, or

Target XML DTD, depending on the Target Syntax Type previously selected.

11. Select the data format, the EDI standard transaction, or the XML DTD to be used

as the target document definition in your map, and click Next.

The Confirmation window opens.

12. Confirm the selections. If they are correct, click Finish to save the information.

Creating a Data Transformation map

122 Mapping Guide

After finishing the map information, the Map editor is opened with the Details tab

in front.

a. Click the General tab.

The General tab contains general information about the map. It includes the

map name, a brief description of the map and it identifies the source and target

document definitions.

The name of the map is set when the map is created. It displays on the

General tab for informational purposes only. If you want to change it, you must

use the rename action.

Use the Description field to provide a brief description of the map. The

description can be up to 50 characters long.

Mapping hierarchical loops

A hierarchical loop (HL) is similar to an organization chart. Just as an organization chart

shows you the various groups of people and their relationships to the whole, a

hierarchical loop shows you each group of data and its relationship to the whole.

Hierarchical loops define different levels of data, which can be used in any sequence

and skipped when appropriate. By defining hierarchical loops you can place the loop

anywhere in your data.

Note: WebSphere Data Interchange includes support for Hierarchical Loops. For

detailed explanations of HL loops and how WebSphere Data Interchange

handles them, see Appendix B, “Hierarchical loops,” on page 297.

XML mapping considerations

With Namespaces you can use multiple XML schema definitions within an XML

document or building a grammar from several different schemas, by providing a way to

resolve name conflicts between the schemas. For example, one schema might define

an address element to be a person name, that includes street, city, state, and zipcode

elements. Another might define address to be an e-mail address that contains a simple

string. By using different namespaces, these can be uniquely identified.

For example, to show that element address belongs to a particular namespace, a

schema or instance document defines a prefix for the namespace. For example, it might

define xmlns:po="http://example.com/ns/POExample". Then when the qualified element

appears in the data, the element would appear as <po:address>, to show that it is part

of that namespace. The po prefix in this example is just a shorthand way to represent

the namespace "http://example.com/ns/POExample". Even though the schema might

use prefix po, instance documents might use different prefixes, for example mypo,

purch, or even define it as the default namespace, so no prefix is used for this element.

As long as these were defined to the "http://example.com/ns/POExample" namespace

in the instance documents they must all be considered equivalent.

The mapping and translation for XML schemas is namespace aware. This means that it

recognizes that the prefix represents a namespace, and gives it special treatment

Creating a Data Transformation map

Chapter 9. Data Transformation mapping 123

instead of just treating it as part of the element name. Since the schema translation and

mapping is namespace-aware, elements with the same name and namespace would be

considered to be equivalent, even if they used different prefixes.

Namespaces

The Namespaces tab provides information that is associated with each namespace

URI. Each namespace table entry is associated with an XML dictionary. Besides the

namespace URI and dictionary name, each entry includes the following information for

the URI when it is used in that dictionary.

v Description

This is a text description for the namespace. It is only used to help the user identify

the namespace, and is not used for mapping or translation.

v Prefix

This is the prefix that will be used for the namespace when qualified elements and

attributes are displayed in the map, and when the elements and attributes are written

in the XML output. If no prefix is specified, or if no namespace entry exists for a

namespace URI, then the element or attribute is written without a prefix.

v Schema location - This specifies the schema location that is used if the namespace

URI is used in a SetSchemaLocation command.

When a schema is imported, the schema is scanned for any xmlns attributes. If an

xmlns attribute is found namespace for a namespace URI that is not already defined for

the dictionary, a new namespace table entry is created using the prefix defined for the

attribute. The description and schema location can be added later if needed.

The prefix and schema location are not included in the internal map representation, so

the map does not need to be recompiled if these values are changed.

Target Namespace

The target namespace tells which namespace a schema describes. It is identified in the

schema by the targetNamespace attribute.

When a schema is imported, the schema is scanned for a targetNamespace attribute. If

this attribute is found, the target namespace for the schema is set from the attribute

value. The target namespace associated with the schema can be changed, but typically

must not be unless the import was not able to find it correctly. Setting the target

namespace to a value that does not match the targetNamespace attribute can prevent

WebSphere Data Interchange from parsing the schema correctly, which results in errors

when trying to map the document.

Namespace Processing for Input XML documents

You must specify XMLNS(Y) on your PERFORM command if you are doing schema

validation, or your XML schema uses namespace qualified elements/attributes.

Namespace processing is required for schema validation, because the attributes that

help locate the schema definitions (xsi:schemaLocation and

xsi:noNamespaceSchemaLocation) use namespace qualification. If your source or

Advanced mapping techniques

124 Mapping Guide

target document is a schema that uses qualified elements or attributes, namespace

processing is required so the internal names used by the translation process matches

the internal names used in the map.

Namespace Processing for Output XML Documents

When generating output XML documents, qualified elements and attributes use the

prefix specified by the namespace table entry for the URI. If no prefix is specified, or if

no namespace entry exists for a namespace URI, then the element or attribute is

written without a prefix.

Some special attributes are sometimes needed in the XML output to identify the

namespaces used and the schema location(s). Mapping commands that specify

attributes are used for XML output only and are ignored for EDI and data format output.

XML schema restrictions

Some special content types that are defined by schemas have limitations on their

mapping capabilities. These include:

v xsd:anyType

This means that this element can contain any type of content, including child

elements, simple elements, or mixed content. In WebSphere Data Interchange can

only be mapped as if it were a simple string element.

v xsd:any

This means that any child element can appear in this position, sometimes subject to

namespace restrictions. In WebSphere Data Interchange you cannot map to or from

this element.

v xsd:anyAttribute

This means that any attribute can appear on this element. In WebSphere Data

Interchange you cannot map to or from this attribute.

v Substitution groups

This means that one element can be substituted for another. In WebSphere Data

Interchange you cannot map to or from the substitution group elements.

Applying map rules

When you have completed a map, you must associate it with a trading partner or

trading partners. WebSphere Data Interchange calls those associations rules, map

rules, or Data Transformation map rules.

Applying the minimal trading partners concept

The concept of minimal trading partners attempts to reduce the amount of time spent

on administrative functions. The traditional WebSphere Data Interchange was based on

the idea that each trading partner would be identified to the product through a trading

partner profile and a map rule or usage. Thus, a WebSphere Data Interchange

installation with tens of thousands of trading partners would require an equal number of

profiles and map rules or usages, even though the options might be identical. The

WebSphere Data Interchange concept of generic rules and usages reduces the

administrative impact of this model, but does not completely meet all its needs. Some

Advanced mapping techniques

Chapter 9. Data Transformation mapping 125

installations do not need a setup for a trading partner because they keep that

information in their application and pass it to WebSphere Data Interchange at

transformation time. WebSphere Data Interchange uses a combination of techniques

and terminology to accommodate this minimal administrative model.

The following procedures can be done from the trading partner list windows as well as

from the Mapping list window. For more information about trading partners see the

WebSphere Data Interchange for MultiPlatforms User's Guide, SC34-6215-01.

Viewing map rules

To view a map rule:

1. In the Data Transformation Maps list window, select a map.

2. Click Usages and Rules on the tool bar.

WebSphere Data Interchange Client runs a query and opens a window containing

the Data Transformation Map Rule list window. A list of map rules associated with

the map displays.

Mapping MQMD and MQRFH2 values

This enhancement maps commands to get and set the values of the MQMD and

MQRFH2 headers used by WebSphere MQ. By accessing the values in these MQ

headers from your maps, WebSphere Data Interchange can be more easily integrated

with other WebSphere MQ and JMS applications.

The header values from the input message can now be read using the GetProperty

command. The header values on the output message can now be set using the

SetProperty command.

Getting and setting properties in the MQMD and MQRFH2 headers

To get the values in the MQMD and MQRFH2 headers you use the GetProperty

mapping function in your map. To set new values in these headers, you use the

SetProperty command.

You must specify the fully qualified path, starting with ROOT. Each component of the

path is specified by a dot (.). Unlike the other properties, this path name is case

sensitive.

The MQMD properties are specified by path "ROOT.MQMD". For example,

"ROOT.MQMD.ReplyToQ" is the ReplyToQ field in the MQMD header.

The MQRFH2 properties are specified by path ″ROOT.MQRFH2″. For example

″ROOT.MQRFH2.Encoding″ is the Encoding field in the MQRFH2 header. Folders

within the MQRFH2 folder, such as the mcd and usr folders can also be specified as

part of the path. For example, ″ROOT.MQRFH2.mcd.Set″ is the Set value in the mcd

folder of the MQRFH2 header.

Sample mapping commands are:

v Get the value of the MQMD MsgId and save it in variable MyMsgId:

Minimal trading partners

126 Mapping Guide

MyMsgid = GetProperty("ROOT.MQRFH2.MsgId")

v Get the value of the MQRFH2 Format field and save it in variable Rfh2Fmt:

Rfh2Fmt = GetProperty("ROOT.MQRFH2.Format")

v Get the value of the domain (msd) from the MQRFH2 mcd folder:

MsgDomain = GetProperty("ROOT.MQRFH2.mcd.Msd")

v Set the value of field ″MyField″ in the usr folder of the MQRFH2 header:

SetProperty("ROOT.MQRFH2.usr.MyField", "My user data")

Some of the fields in the MQMD and MQRFH2 use integer or binary values, instead of

the character values used by the GetProperty and SetProperty functions. To access

these values:

v The GetProperty function converts the from character when you get MQMD and

MQRFH2 fields.

v The SetProperty functions converts the to character when you set MQMD and

MQRFH2 fields.

When you get these properties from the source message:

v Integer values are converted to the character representation.

v Binary values are encoded, similar to the HexEncode function. For example, an

8-byte binary value of x0123456789ABCDEF would be returned as a 16-character

string 0123456789ABCDEF.

v Character values include the blank padding when they are read from fixed-length

header fields.

When you set these properties in the target message:

v For integer values, the character string is converted to an integer.

v For binary values, the encoded character string must be passed, similar to the value

passed to HexDecode function. For example, to set an 8-byte binary value of

x0123456789ABCDEF you must pass a 16-character string 0123456789ABCDEF. If

the string is too short, it is padded with null characters. If the string is too long, it is

truncated. If unable to decode the string, a warning message is issued.

v For character values, it truncates the string or pad with blanks if needed for

fixed-length fields.

The supported properties and associated types are listed in Table 17.

 Table 17. MQMD properties (ROOT.MQMD.xxx)

Name Type Length Description

StrucId Char 4 Structure identifier

Version Int Structure version number

Report Int Options for report messages

MsgType Int Message type

Expiry Int Message lifetime

Feedback Int Feedback or reason code

Map rules

Chapter 9. Data Transformation mapping 127

Table 17. MQMD properties (ROOT.MQMD.xxx) (continued)

Name Type Length Description

Encoding Int Numeric encoding of message data

CodedCharSetId Int Character set identifier of message

data

Format Char 8 Format name of message data

Priority Int Message priority

Persistence Int Message persistence

MsgId Binary(24) 24 Message identifier

CorrelId Binary(24) 24 Correlation identifier

BackoutCount Int Backout counter

ReplyToQ Char(48) 48 Name of reply queue

ReplyToQMgr Char(48) 48 Name of reply queue manager

UserIdentifier Char(12) 12 User identifier

AccountingToken Binary(32) 32 Accounting token

ApplIdentityData Char(32) 32 Application data relating to identity

PutApplType Int Type of application that put the

message

PutApplName Char(28) 28 Name of application that put the

message

PutDate Char(8) 8 Date when message was put

PutTime Char(8) 8 Time when message was put

ApplOriginData Char(4) 4 Application data relating to origin

Table 18 shows properties for Windows and AIX only (not z/OS and CICS).

 Table 18. MQMD properties for Windows and AIX

Name Type Length Description

GroupId Binary 24 Group identifier

MsgSeqNumber Int Sequence number of logical

message in group

Offset Int Offset of data in physical message

from start of logical message

MsgFlags Int Message flags

OriginalLength Int Length of original message

 Table 19. MQRFH2 properties (ROOT.MQRFH2.xxx)

Name Type Length Description

StrucId Char 4 Structure identifier

Version Int Structure version number

Map rules

128 Mapping Guide

Table 19. MQRFH2 properties (ROOT.MQRFH2.xxx) (continued)

Name Type Length Description

StrucLength Int Total length of MQRFH2 including

NameValueData

Encoding Int Numeric encoding of data that

follows NameValueData

CodedCharSetId Int Character set identifier of data that

follows NameValueData

Format Char 8 Format name of data that follows

NameValueData

Flags Int Flags

NameValueCCSID Int Character set identifier of

NameValueData

Values in MQRFH2 folders such as the mcd (ROOT.MQRFH2.mcd.xxx) and usr

(ROOT.MQRFH2.usr.xxx) are treated as character. No padding or truncation is done.

Other notes

v The ability to get/set the MQRFH2 values is supported on Windows, AIX, and z/OS.

It is not supported on CICS. The ability to get/set the MQMD values is supported on

all platforms.

v WebSphere Data Interchange still sets the following values in the MQRFH2 header

as before: Encoding, CodedCharSetId, and the mcd folder values. So if the user sets

any of these values, they get overwritten by WebSphere Data Interchange specified

values.

v The updated MQMD/MQRFH2 is only used if EDIRFH2 is used as the network

program. Network program EDIMQSR continues to use the original MQMD header as

before (not the values set in the map), and does not use an MQRFH2 header.

v The MQMD and MQRFH2 headers are not saved in the Document Store. The

header values cannot be retrieved or set in the map when doing deferred translation,

deferred enveloping, or re-enveloping.

v Default values are used for any MQMD/MQRFH2 values that are not set by the user.

v The MQMD/MQRFH2 values set by the user are not validated by WebSphere Data

Interchange. If the user sets these to invalid values, they can cause errors when the

message is written to the queue or when it is received by another application.

Map rules

Chapter 9. Data Transformation mapping 129

Map rules

130 Mapping Guide

Chapter 10. Validation mapping

Validation maps provide the instructions needed to perform additional validation beyond

what is specified in the EDI Standard. The name of the validation map is specified in

the map rule when it is to be used to perform additional validation on the source or

target document in a translation. Validation maps contain mapping commands that are

instructions used to provide additional validation of an EDI Standard Transaction.

A validation map is used to handle extended validation requirements, and to call an

extended error function to report the information needed to create a functional

acknowledgement. A validation map can also copy to local variables, and use most

other mapping functions. A in cannot produce an output.

This chapter contains the basic information for creating validation maps. For detailed

information about mapping techniques see Chapter 9, “Data Transformation mapping,”

on page 121, and Chapter 12, “Data Transformation mapping commands and

functions,” on page 141.

Starting the validation map editor

WebSphere Data Interchange Client's editor features a visual means for defining your

extended validation criteria.

The editor displays a mapping commands window pane on its left side. The mapping

commands window pane displays the layout of the document to be validated with

mapping commands and comments inserted into it. These commands are used to

check the source document for various user-defined conditions, and set appropriate

errors or functional acknowledgement information if the conditions are not met. There is

also a variables window pane in the map editor. It is divided into three sub-panes that

list all special variables, global variables, and local variables.

The editor opens when you select a map from the Mapping list window, as follows.

1. Click Mapping on the WebSphere Data Interchange Client tool bar.

The Mapping Functional Area opens.

This window is used to access the list windows for each component type that

occurs in the Mapping Functional Area. Select the Validation Maps tab to view the

Validation Map list window. The list window shows all of the Validation Maps

selected by the current query. Each row in a list window is opens information about

a different Validation Map.

To display additional columns, click the scroll bar on the bottom of the page to scroll

to the right or left. To alter the columns that display on the page, or to change which

query is executed to produce the list, click the Modify Window Properties icon on

the WebSphere Data Interchange Client Navigator bar. To create new queries, see

WebSphere Data Interchange for MultiPlatforms User's Guide, SC34-6215-01.

2. To view a map or to add or change its information, double-click the row of the map

you want to work with.

© Copyright IBM Corp. 2007 131

The editor opens, with the Details tab in front. You add information or make

changes to maps through its tabs and related windows, as described in the

following sections.

Creating a validation map

Create a new map when you want to handle extended validation requirements, or you

want to call an extended error function to report the information needed to create a

functional acknowledgement.

A validation map usually includes a number of If commands to check whether the

document meets various user-defined conditions. If the conditions are not met, then the

Error or FAError command is used to write a message to the log and set an error code

for the transaction. The FAError command sets functional acknowledgement

information, in addition to writing the log message and setting the error code. The

following procedure shows how to create a validation map.

 1. In the Mapping list window, click the Validation Maps tab.

 2. Click New on the list window tool bar.

The Create a Validation Map window opens.

 3. Type a map name in the Map Name field.

You can use both letters and numbers to identify your map. Letters display in

capitals. You cannot type spaces within the name. A must have a unique map

name. Click Show Existing Map Names to view a list of map names.

 4. Enter a detailed description of the map in the Description field. This field is

optional.

You can enter the later using the General tab of the Validation map editor.

 5. Click Next to continue.

 6. The Source dictionary opens. Select the EDI standard dictionary to use as the

source document definition in the validation map you are creating.

 7. Click Next to continue.

 8. The Source EDI Standard Transaction opens. Select the EDI standard transaction

to use as the source document definition for your map.

 9. Click Next to continue.

10. The Confirmation window opens. Confirm the selections. If they are correct, click

Finish to save the information.

After finishing the map information, the Map editor opens with the Details tab in

front.

Using validation maps

You can use Validation maps in the same way as you can Data Transformation Maps.

Many of the concepts explained for Data Transformation maps in Chapter 9, “Data

Transformation mapping,” on page 121 also apply to Validation Maps. However, note

the following:

The editor

132 Mapping Guide

v Validation maps are source-based maps, in which the commands are based on the

order of the source document. Commands that are only valid for target-based maps

are not permitted in a validation map.

v You can use the FAError command in Validation Maps. For information about

FAError, see Chapter 12, “Data Transformation mapping commands and functions,”

on page 141.

v Validation maps do not have a target document. Commands and functions that

specify a target element, such as MapTo, are not permitted in a validation map.

For more information about Validation Mapping techniques and concepts, see the

following sections in Chapter 9, “Data Transformation mapping,” on page 121:

v “Specifying qualification” on page 103

v “Specifying HL levels” on page 297

v “Applying map rules” on page 125

v “Compiling control strings” on page 116

WebSphere Data Interchange techniques for using literal keywords and other advanced

mapping techniques are documented in Chapter 12, “Data Transformation mapping

commands and functions,” on page 141.

Creating a validation map

Chapter 10. Validation mapping 133

Creating a validation map

134 Mapping Guide

Chapter 11. Functional Acknowledgement mapping

A Functional Acknowledgement map is a Data Transformation map that provides the

instructions on how to produce a functional acknowledgement to be returned to your

trading partner. After creating the Functional Acknowledgement map, you can select it

on the trading partner rules setup as the map to be used during functional

acknowledgement generation. Both source and target based mapping are available for

Functional Acknowledgement maps.

For detailed information about mapping techniques see Chapter 9, “Data Transformation

mapping,” on page 121, and Chapter 12, “Data Transformation mapping commands and

functions,” on page 141

Functional Acknowledgement maps provided with WebSphere Data Interchange

Several Functional Acknowledgment maps are provided with WebSphere Data

Interchange:

 Table 20. Standard Functional Acknowledgement maps

Map name Description

&DT_FA997V2R4 For X12 997 Version 2 Release 4 and lower

&DT_FA997V3R5 For X12 997 Version 3 Release 5

&DT_FA997V3R7 For X12 997 Version 3 Release 7

&DT_FA997V4R2 For X12 997 Version 4 Release 2

&DT_FA997V4R6 For X12 997 Version 4 Release 6 and higher

&DT_FA999V5R1 Implementation Guide Syntax for X12 999 Version 5 Release 1

&DT_FA999V3R3 For UCS 999 Version 3 Release 3 and lower

&DT_FACONTRL For UN/EDIFACT earlier than Version 94B

&DT_FACONTRL94B For UN/EDIFACT version 94B (Version 2, Release 1) and higher

&DT_FACONTRL94A For UN/EDIFACT version 94A (Version 4, Release 1) and higher

&WDI_TA1_ACK For TA1 Acknowledgment

&WDI_TDIENV_VAL UNTDI TRADACOMS Envelope Validation Mapping

Note: The Functional Acknowledgement maps must not be modified or deleted. If you

need to make a customization, it is recommended that you copy the appropriate

map make the required changes in the map copy.

The &DT_FA997V3R7 Functional Acknowledgement map is used to generate functional

acknowledgements for X12 version 3, release 7 and higher. The &DT_FACONTRL94B

Functional Acknowledgement map is used to generate functional acknowledgements for

UN/EDIFACT version 2, release 1 (D94B) and higher. All of the Functional

Acknowledgement maps listed must not be modified or deleted. If you need to make a

customization, it is recommended that the appropriate map is copied and the needed

change is made in the copied map.

© Copyright IBM Corp. 2007 135

Note: The &WDI_TA1_ACK map name cannot change. It is recommended that a

MapSwitch() command be added to execute a custom TA1 map.

The source document definition for Functional Acknowledgment maps always uses

Dictionary &FUNC_ACK_METADATA_DICTIONARY and Document &FUNC_ACK_META. This is the

data format definition for the functional acknowledgement records created during syntax

validation of EDI data. The target document definition is a selection of EDI standard

transaction definitions and are provided as follows:

 Table 21. Functional acknowledgement dictionaries

Dictionary Description

&DT99724 For X12 997 Version 2 Release 4 and lower

&DT99735 For X12 997 Version 3 Release 5 and lower

&DT99737 For X12 997 Version 3 Release 7 and lower

&DT99742 For X12 997 Version 4 Release 2 and later

&DT99746 For X12 997 Version 4 Release 6 and later

&DT99951 For X12 999 Version 5 Release 1 and later

&DT99933 For UCS 999 Version 3 Release 3 and lower

&DTCTL For UN/EDIFACT earlier than Version 94B

&DTCTL41 For UN/EDIFACT version 99A (Version 4) and later

&DTCTL21 For UN/EDIFACT version 94B (Version 2, Release 1) and later

Starting the Functional Acknowledgement map editor

The Functional Acknowledgement map editor opens when you select a map from the

Mapping list window, as follows.

1. Click Mapping on the WebSphere Data Interchange Client Navigator bar.

The Mapping Functional area opens, showing lists of existing maps.

This window is used to access the list windows for each component type that

occurs in the Mapping Functional Area.

2. Select the Functional Acknowledgement Maps tab to view the Functional

Acknowledgement Map list window. The list window shows all of the Functional

Acknowledgement Maps selected by the current query. Each row in a list window is

opens information about a different Functional Acknowledgement Map.

To display additional columns, click the scroll bar on the bottom of the page to scroll

to the right or left. To alter the columns that display on the page, or to change which

query is executed to produce the list, click the Modify Window Properties icon on

the WebSphere Data Interchange Client Navigator bar. To create new queries, see

WebSphere Data Interchange for MultiPlatforms User's Guide, SC34-6215-01.

3. To view a map or to add or change its information, double-click the row of the map

you want to work with.

The Functional Acknowledgement map editor opens, with the Details tab in front.

You add information or make changes to maps through its tabs and related

windows, as described in the following sections.

136 Mapping Guide

Using the Functional Acknowledgement map editor

Using the Functional Acknowledgement map editor, you can show how data is to be

translated from the source document to the target document. The editor works by

displaying the source document definition on one side of the page and target document

definition on the other. With the Functional Acknowledgement map editor you can also

associate components of your source document with components of the target

document by dragging source components and dropping them into the correct locations

in the target document definition. Components include simple elements, such as fields

in a data format or data elements in an EDI standard transaction, and compound

elements, such as loops and record in a data format and segments in an EDI standard

transaction.

You can map the simple elements in the source document definition to the simple

elements in the target document definition in any of these patterns:

v One simple element to one simple element

v Several simple elements to one simple element

v One simple element to several simple elements

The Functional Acknowledgement map editor contains three tabs:

v The General tab contains the fields for you to enter and change map properties.

v The Details tab contains the fields for you to create and maintain the mapping

commands.

v The Comments tab contains a field for you to type any comments you wish about

the selected map.

The following procedures detail how to create maps. For information about viewing,

copying, editing, renaming, deleting, and printing maps, see WebSphere Data

Interchange for MultiPlatforms User's Guide, SC34-6215-01. For information about

exporting maps, see WebSphere Data Interchange for MultiPlatforms User's Guide,

SC34-6215-01.

Creating a Functional Acknowledgement map

It is recommended that you do not create or modify Functional Acknowledgement maps.

However, if you require a custom functional acknowledgement you can you the

following procedure.

Note: To create a Functional Acknowledgement map, you need to have a functional

acknowledgement document definition. Functional acknowledgement document

definitions are:

v 997 and 999 in the X12 EDI Standard

v CONTRL transaction in the EDIFACT EDI standard

1. In the Mapping list window, click the Functional Acknowledgement Maps tab.

2. Click New on the list window tool bar.

The Create a Functional Acknowledgement Map window opens.

Creating a Functional Acknowledgement map

Chapter 11. Functional Acknowledgement mapping 137

3. Type a map name in the Map Name field.

You can use both letters and numbers to identify your map. Letters display in

capitals. You cannot type spaces within the name. A Functional Acknowledgement

Map must have a unique map name. Click Show Existing Map Names to view a list

of map names.

Click Next to continue.

4. Enter a detailed description of the map in the Description field. This field is optional.

You can enter the later using the General tab of the Functional Acknowledgement

map editor.

5. The Source or Target opens. Use this page to define whether your map is source

based, or target based.

Select Source or Target by selecting the appropriate radio button.

Click Next to continue.

6. The Select Target opens. Available target document definitions are displayed in the

page’s list box.

Choose the functional acknowledgement to be used as the target document

definition in your map.

Click Next to continue.

7. The Confirmation window opens. Confirm the selections displayed. If they are

correct, click Finish to save the information.

After finishing the map information, the Functional Acknowledgement Map editor

opens with the Details tab in front.

Source document definition record layout

The Source document definition record layout is:

Interchange response Record - ID = INTHREC

Functional Group Response Loop:

Functional Group Response Record - ID = GRPHREC

Message Response Loop:

Message response Record - ID = MSGHREC

 Implementation Reference (ST03 Value)

Segment Data Loop:

Data Segment Note Record - ID = SEGREC

Segment Context Record – ID = SEGCTX

Element Data Loop:

Data Element Note Record - ID = ELEREC

Element Context Record – ID = ELECTX

Message Response Trailer Record - ID MSGTREC

Functional Group Response Trailer Record - ID = GRPTREC

Creating a Functional Acknowledgement map

138 Mapping Guide

Source document definition record definitions &FUNC_ACK_META

Interchange response Record - ID = INTHREC

Interchange control reference

Sender Identification

Partner Identification code

Address for reverse routing

Recipient Identification

Partner Identification code

Routing address

Action, coded

Syntax error, coded

Segment tag, coded

Erroneous data element position

Erroneous component data element

Functional Group Response Record - ID = GRPHREC

Functional Identifier Code

Group Control Number

Application sender’s identification

Partner Identification code

Application recipient’s identification

Partner Identification code

Action, coded

Syntax error, coded

Segment tag, coded

Erroneous data element position

Erroneous component data element

Message response Record - ID = MSGHREC

Message reference number

Message type identifier

Common Access Reference

Message type version number

Message type release number

Controlling agency

Association assigned code

Action, coded

Syntax error, coded

Segment tag, coded

Erroneous data element position

Erroneous component data element

Implementation Reference (ST03 Value)

Data Segment Note Record - ID = SEGREC

Segment ID Code

Segment Position in Transaction Set

Loop Identifier Code

Segment Syntax Error Code

Segment Context Record – ID = SEGCTX

Text Char (35)

Reference Char (35)

Creating a Functional Acknowledgement map

Chapter 11. Functional Acknowledgement mapping 139

Data Element Note Record - ID = ELEREC

Element Position in Segment

Component Data Element Position in Composite

Data Element Reference Number

Data Element Syntax Error Code

Copy of Bad Data Element

Element Context Record – ID = ELECTX

Text Char (35)

Reference Char (35)

Message Response Trailer Record - ID MSGTREC

Message Acknowledgment Code

Message Syntax Error Code

Message Syntax Error Code

Message Syntax Error Code

Message Syntax Error Code

Message Syntax Error Code

Functional Group Response Trailer Record - ID = GRPTREC

Functional Group Acknowledge Code

Number of Messages Included

Number of Received Messages

Number of Accepted Messages

Functional Group Syntax Error Code

Functional Group Syntax Error Code

Functional Group Syntax Error Code

Functional Group Syntax Error Code

Functional Group Syntax Error Code

Using Functional Acknowledgement Maps

You can work with and use Functional Acknowledgement maps in much the same way

as you can with Data Transformation Maps. Many of the concepts explained for Data

Transformation maps in Chapter 9, “Data Transformation mapping,” on page 121 also

apply to Functional Acknowledgement maps. Note the following:

v Functional Acknowledgment maps always use the same data format for the source

document. The dictionary name is &FUNC_ACK_METADATA_DICTIONARY, and the data

format name is &FUNC_ACK_META.

For more information about Functional Acknowledgement Mapping techniques and

concepts, see the following sections:

v “Specifying qualification” on page 103

v “Applying map rules” on page 125

v “Compiling control strings” on page 116

WebSphere Data Interchange techniques for using literal keywords and other advanced

mapping techniques are documented in Chapter 12, “Data Transformation mapping

commands and functions,” on page 141.

Creating a Functional Acknowledgement map

140 Mapping Guide

Chapter 12. Data Transformation mapping commands and functions

In addition to mapping a source element to a target element by using drag-and-drop,

the Data Transformation Map editor includes a powerful set of commands. Using these

commands, you can use conditional logic such as if/then/else, qualify repeating

elements, save values in variables, create complex expressions, and many other

functions. This appendix describes the command language used in the Data

Transformation Map editor to perform these tasks.

Note: Although at the time of release this document contains a complete list of Data

Transformation commands, upgrade and maintenance releases can add or

change commands. See the WebSphere Data Interchange Client help for an

updated list of commands.

When you create a map, you are basically creating a sequence of commands. Each

command is attached to an object in the source or target document, such as a

segment, data element, field, XML element, and so on. Whenever WebSphere Data

Interchange finds an object in the source or target document, it executes any

commands associated with it. You can also add commands before and after objects in

the document. The WebSphere Data Interchange executes these commands, even if

the elements before and after are not found. You can create the commands by dragging

and dropping a source element to a target element (or a variable) or vice versa. This

results in a MapTo (for source-based mapping) or ForEach (for target-based mapping)

command or an assignment command being created. You can also create commands

by right-clicking a node in the map command display to start the mapping command

wizard.

The following sections describe the supported commands and functions, and provides

information about other important features of the mapping language.

Map variables

Map variables are used like variables in any programming language. They are an

integral part of the WebSphere Data Interchange mapping command language.

Variables are used to hold and manipulate values assigned to them by the user.

WebSphere Data Interchange supports three types of variables: local, global, and

special variables.

Local variables are unique to the map they are defined in. A local variable must be

defined to a map before it can be used in that map. Local variables have a scope of

document or loop. During translation, local variables defined with a scope of document

are created at the start of every document and deleted at the end of the document.

Variables defined with a scope of loop are created and initialized whenever a new loop

iteration is started, and destroyed at the end of each loop iteration. A loop variable does

not disturb the value of another variable with the same name at another level of

looping. Local variables are maintained within the map in which they are defined. You

can add, delete, and alter the properties of any local variable.

© Copyright IBM Corp. 2007 141

Special variables are a group of predefined variables used by WebSphere Data

Interchange. They function much like local or global variables, except they each have a

special purpose. A user can view properties of a special variable, but no changes can

be made. Special variables always start with “DI”, which is reserved.

Special variables are write-only. That means you can set the value of a special variable,

but cannot read it or use it in an expression.

Table 22 lists the special variables supported:

 Table 22. Supported special variables

Name Scope Type Length Description

DIOutFile Document Character 8 Specifies the name of the file to

which the translated data is written. It

overrides any value that was

specified in the Data Transformation

rule or data format definition.

DIOutType Document Character 2 Specifies the file type to which the

translated data is written. It overrides

any value that was specified in the

Data Transformation rule or data

format definition.

Naming variables

Variable names can be up to 30 characters long and can contain the characters 0–9,

A-Z, a-z, and the special characters “@#$_”. Special variables always start with “DI”.

Local variables cannot start with a number, dollar sign, or ampersand. Variables cannot

be the same as any reserved word (command name, function name, or other reserved

word).

Names can be in mixed case. Case is not used in determining uniqueness, for instance,

the variable “MyValue” is the same as the variable “MYVALUE”.

Note: During translation, WebSphere Data Interchange might use variables whose

names start with $R to hold intermediate values. These variables are not visible

in the map, but might appear in messages during translation.

Literals

The Data Transformation Map editor uses the term literals differently from the send and

Receive map editors. In the Data Transformation map editor, the term literal refers to a

static value, such as a default value. The special literals used in the send and Receive

maps are replaced by mapping commands in Data Transformation maps.

Literals can be either numeric or character strings. Character strings can be contained

in either single or double quotation marks. For example:

"This is a character literal"

Map variables

142 Mapping Guide

'This literal contains "quotes" within'

Numeric literals are made up of a sequence of digits, and can include a decimal point.

(Negative numbers can also be used, but the negative sign is considered separate from

the numeric literal.) For example:

99

1.23

Comments

You can enter comments by creating comment nodes in the mapping commands

window. A comment group node adds several comments within a single node.

Keywords

This section identifies keywords that have special meaning to WebSphere Data

Interchange. In addition to the keywords listed in this section, all mapping commands,

logical operators, comparison operators, and arithmetic operators are considered

keywords.

False Used as a boolean value to test boolean expressions and set boolean

variables.

targetRoot

Can be used on the MapCall command. See “Commands” on page 149 for

more information.

This Can be used as a source or target path in mapping commands to indicate the

current source or target element.

True Used as a boolean value to test boolean expressions and set boolean

variables.

Specifying a path

Paths are used to identify a source or target element in various mapping commands. To

specify a source or target path in a command, drag the element from the source or

target tree display to the command window.

The path indicates the position of a compound element or a simple element in the

source or target document definition. Paths are used in various mapping commands to

identify the compound element or simple element involved in the command. Paths are

syntax dependent. For instance, all of the path examples use paths from EDI standard

X12, version 3, release 6, transaction 837.

A path can include compound element identifiers and simple element identifiers. The

path begins with a backslash to indicate that it starts at the root of the document. Each

element of a path is separated by a backslash. The path is always terminated by two

backlashes. An example of a path is:

\T 2\L 2300\S CLM 130\C C023 5\E 1332 2\\

Literals

Chapter 12. Data Transformation mapping commands and functions 143

This path translates to: table 2, loop Id 2300, CLM segment at position 130, composite

data element C023 at position 5, and component data element 1332 at position 2.

The following path refers to the CLM segment at position 130 within table 2 and loop Id

2300:

\T 2\L 2300\S CLM 130\\

Note: Source document elements are read-only. You cannot update values in the

source document. Target document elements are write-only. You cannot read the

value that has been assigned to an element in the target document.

Forward and reverse references

WebSphere Data Interchange always has a current position in the source data. The

current position is the path just located or obtained from the source data.

In source data, WebSphere Data Interchange is able to locate paths or simple elements

before or after the current position. Doing this does not change the current position. The

forward or reverse reference can be helpful in examining simple data or determining if a

particular path exists.

For repeating items (loops, segments, elements, and so on), you cannot refer to a

previous or later occurrence of the item. For example, if you are currently processing

the second occurrence of a repeating segment, you cannot refer to an element from the

first or third occurrence of the segment. If you have not yet started processing a

repeating item, the first occurrence of the item is considered the current occurrence.

A more efficient option to using references is to save the information you need in

variables. Then use the variable in place of the forward or reverse reference.

Forward and reverse references can be specified in expressions. A reference is

specified by using a path.

Data types supported by mapping commands and functions

WebSphere Data Interchange supports a wide variety of data types for simple

elements. When the input data is parsed, the values are kept internally as one of the

following data types:

character Character data

int Integer data

real Floating-point data

boolean Boolean data

binary Binary data

 Variables can also be any of these data types. Literals are always either real or

character. Implicit type conversion is done by the WebSphere Data Interchange when

an element, variable, or literal is assigned to another type of element or variable, or is

used in a function or command that expects a different type. Integer values can be

converted to real or character; real values can be converted to integer or character;

Specifying a path

144 Mapping Guide

character values can be converted to integer or real values. If an invalid type

conversion is attempted, for example trying to assign a boolean variable to a character

variable, an error is issued during the control string compilation.

Many of the commands and functions expect numeric values for their arguments or

return a numeric value. All functions, commands, and expressions process numbers

internally using data type real. However, because real values are implicitly converted to

or from integers, integer variables and elements can be used in place of any of the real

arguments or return values described in“Expressions.”

Expressions

Expressions are commonly used in the mapping command language. The basic form of

an expression is:

token operator token [operator token [operator token [...]]]

Where:

token One of the following:

v A variable, either local, global, or special

v A path identifying a source simple element

v A numeric constant, such as 1024

v A string constant, such as ‘ABCD’

v A mapping function

operator One of the following types of operators:

v Logical

v Comparison

v Arithmetic

v Unary

 Quotation marks must be used at the start and end of a string constant. Either single (‘)

or double quotation marks (“) can be used, but whichever is used to start the string

constant must also be used to end it.

All variables, literals, and simple source and target elements have a specific data type.

WebSphere Data Interchange converts the value to the appropriate type for the

expression if needed. If it cannot convert the value to the appropriate type because the

types are incompatible (for example, boolean to binary), an error is issued during the

control string compilation. If it cannot convert the value to the appropriate type because

the values are incompatible, (for example "abc" to real), WebSphere Data Interchange

issues an error or warning during translation.

Logical operators

Data Transformation maps use the following logical operators:

v AND returns a value of True if both conditions are true. False is returned when

either condition is false.

v OR returns a value of True if either condition is true. False is returned when neither

condition is true.

Data types

Chapter 12. Data Transformation mapping commands and functions 145

v NOT reverses the boolean result of an expression. For logical expressions,

NOT(expression) returns False if the result of expression is True. NOT(expression)

returns True if expression is False.

NOT has a short form that can be specified as an exclamation point (!). For example,

the following are valid:

NOT(expression)

!(expression)

NOT(myBoolFlag)

!myBoolFlag

Note: Case is not relevant with the logical operators. They can be entered as

uppercase, lowercase, or mixed.

Comparison operators

Comparison operators tell the WebSphere Data Interchange to compare two numeric

objects. WebSphere Data Interchange processes comparison operators in the same

way that it handles logical operators. If the comparison is true, True is returned. If the

comparison is false, False is returned. Table 23 lists the comparison operators

supported.

 Table 23. Comparison operators

Operator Alternate Description

EQ = The first value is the same as the second

GE >= The first value is greater than or equal to the second

value

GT > The first value is greater than the second value

LE <= The first value is less than or equal to the second value

LT < The first value is less than the second value

NE != or <> The first value is not equal to the second value

Case is not relevant with the comparison operators. They can be entered as uppercase,

lowercase, or mixed.

Note: The comparison operators are for numeric (integer and real) data types only.

Character strings can be compared using the string comparison functions.

Arithmetic operators

Data Transformation maps support addition, subtraction, multiplication and division of

numeric values. A modulus operator is also supported. The modulus operator (%) will

return the remainder of the first operand divided by the second.

Division by zero using the division operator (/) will produce an error. Division by zero

using the modulus operator (%) will also produce an error.

Operators

146 Mapping Guide

Unary operators

One unary (single component) operator is supported by the WebSphere Data

Interchange, the dash (-). This operator changes the sign of the expression it precedes.

For example, if the value of var1 is 9, specifying –var1 returns –9. It does not change

the value of var1.

Order of precedence

During processing, all expressions are evaluated from left to right. The order of

precedence is:

1. Unary minus (-)

2. Multiple (*), Divide (/)

3. Modulus (%)

4. Addition (+), Subtraction (-)

5. Relational Operators (GT, GE, LT, LE, EQ, NE)

6. Logical NOT Operator

7. Logical AND Operator

8. Logical OR Operator

Precedence can be overridden by using parentheses within an expression. For

example, 2+3*5 equals 17 because the multiplication is done first, then the addition.

(2+3)*5 equals 25 because the parentheses indicate that the addition is done first, then

the multiplication.

Assignment

A value can be assigned to any variable or any target simple element. This is

accomplished using an assignment statement. An assignment statement has the

following format:

target = expression

Where:

target Is any defined variable or simple element in the target document

definition.

expression Is any valid expression.

 WebSphere Data Interchange attempts to convert the result from expression to the

same data type of target, if needed. If it is unable to make the conversion, an error is

issued.

Conditional commands

If / ElseIf / Else / Endif

The If command is used to conditionally perform one or more mapping commands. The

If command uses the following format:

Operators

Chapter 12. Data Transformation mapping commands and functions 147

If (condition)

 mapping commands

[ElseIf (condition)

 mapping commands]

[ElseIf (condition)

 mapping commands]

[Else

 mapping commands]

EndIf

Where:

condition Any valid expression that evaluates to True or

False.

mapping commands One or more mapping commands.

 The If command marks the beginning of the If condition block. EndIf is used to mark the

ending of the If condition block.

When the If command is encountered by the WebSphere Data Interchange, the

condition is evaluated. When condition evaluates to True, the mapping commands

immediately following the If command is executed. If condition evaluates to False,

WebSphere Data Interchange looks for an ElseIf statement within the If condition block.

If an ElseIf statement is found, its associated condition is evaluated. When condition

evaluates to True, the mapping commands immediately following the ElseIf statement

is executed. If condition evaluates to False, WebSphere Data Interchange looks for the

next ElseIf statement within the If condition block. When all ElseIf statements have

been tested and evaluated to False, WebSphere Data Interchange looks for an Else

statement within the If condition block. If an Else statement is found, the mapping

commands immediately following the Else statement is executed.

The ElseIf and Else statements are optional. When present, an Else statement always

precedes the EndIf statement. ElseIf statements always follow the If statement and

precede the Else statement (if present) or the EndIf statement (when the Else

statement is not present).

WebSphere Data Interchange examines the If and ElseIf statements sequentially until

an associated condition evaluates to True. When a condition has evaluated to True,

only the mapping commands associated with the corresponding If or ElseIf statement is

executed. After the mapping commands have been executed, WebSphere Data

Interchange exits the If condition block and resume processing after the EndIf

statement. If no condition evaluates to True, the mappings commands associated with

the Else statement is executed and WebSphere Data Interchange resumes processing

after the EndIf statement. If no condition evaluates to True and there is no Else

statement, no mapping commands within the If condition block is executed and the

translator resumes processing after the EndIf statement.

Commands

148 Mapping Guide

Commands

Mapping commands all perform a specific action as described in the following sections.

The command name is not case sensitive. For example, the Error command can also

be specified as ERROR. Most commands can take any expression for their arguments,

as long as the expression evaluates to the appropriate type (or its result can be

converted to the appropriate type). The only exception is when the argument is

specified as a sourcepath or targetpath. For those commands, the argument must be a

source or target path. A description of each of the supported commands is provided in

the following sections.

CloseOccurrence

Use the CloseOccurrence command to close the current occurrence of a repeating

element and force the creation of another instance of the element. This command can

be used for both source-based and target-based maps.

In target-based documents, the CloseOccurrence command prevents overlaying of

data in the Target document. The commands closes the current occurrence of a

repeating target element and forces the creation of another instance of the element.

Use the CloseOccurrence command in the following instances:

v Forward and Reverse References

References or mapping to elements not at the current position might need a

CloseOccurrence command.

v Mapping between Elements

Mapping not attached to a particular element might need a CloseOccurrence

command.

v Qualification on non-repeating or non-compound elements.

There is an Implied CloseOccurrence at the loop level. A CloseOccurrence might be

needed to close the occurrence of the non-repeating target element before the

implied CloseOccurrence is executed.

Note: For Multi-Occurrence Qualifications, there is an implied CloseOccurrence with

each instance of the source or target path.

The CloseOccurrence command has the following format:

CloseOccurrence(targetpath)

Where:

targetpath Specifies a repeating target element that is ″closed″ to any new

elements in the current occurrence. Any additional mappings to this

element or its children result in a new occurrence of the targetpath

element.

 The CloseOccurrence command can be shortened to CloseOccur.

Commands

Chapter 12. Data Transformation mapping commands and functions 149

Example

Suppose your source document has the following structure:

 Rec1

 Field1

 Field2

 Field3

 Field4

Suppose your target document has the following structure:

 Seg (repeats)

 Seg01

 Seg02

Field1 and Field2 are to be mapped to the first occurrence of Seg (Seg01 and Seg02),

and Field3 and Field4 to the second occurrence of Seg (again, Seg01 and Seg02). To

accomplish this, you would:

v Map Field1 to Seg01, Field2 to Seg02.

v Insert a CloseOccurrence(Seg) command to close the first occurrence of Seg.

v Map Field3 to Seg01, Field4 to Seg02, which creates a second occurrence of Seg.

Create

The Create command is used to create a specified compound element in the target

data. The Create command has the following format:

Create(targetpath)

Where:

targetpath identifies the path in the target document definition that is to be

created. targetpath must be a compound map node, such as an XML

element. To create simple nodes such as an attribute or an element

value, the assignment command or MapFrom/MapTo commands are

used.

Error

Use the Error command to issue an error condition. This command enables you to

establish your own errors for a translation. Typically, the error is issued from within an If

conditional block.

When the Error command is used in a validation map, the error message is written to

the PRTFILE as the validation map is processed. Because the validation map is run as

a pre-processing step before the normal EDI standard syntax validation, this means that

all PRTFILE messages generated by the Error command appears before the TRxxxx

messages generated by the EDI validation, and before the messages generated by the

FAError commands.

The Error command has the following format:

Error(real level, real code, char text)

Commands

150 Mapping Guide

Where:

level Indicates the severity of the error. It is a value of 0, 1, or 2.

code Is the unique error code that is associated with the error. This can be

any value from 5000 to 5999.

text Is the string value, which is included in an error message issued by

WebSphere Data Interchange when this command is executed.

 The message is issued as a UT0033 error message. Within this message, text and

code are included.

The level that is assigned affects the extended return code from the translator, and thus

the JCL condition code in the WebSphere Data Interchange utility. If level exceeds the

acceptable error level specified in the document usage, the translation is not successful.

ErrorContext

To create the implementation guide syntax (IGS) context, the ErrorContext mapping

command can be used following the FAError or FAErrorPath mapping command in the

validation map.

The ErrorContext command has the following format:

ErrorContext (char Text, char Reference)

Where:

Text Is the IGS Name. Maximum characters is 35.

Reference

Is the IGS Reference. Maximum characters is 35.

 Example:

 The ErrorContext is associated with the previous FAError or FAErrorPath. A previous

FAError or FAErrorPath for error type T (Transaction), G (Group), or I (Interchange) is

ignored because the 999 does not support context reporting at these levels.

FAError

Use the FAError command to set a functional acknowledgement code. You can only

use this command in validation maps.

When an FAError command occurs in a validation map, the FAError information is held

and associated with the current position in the source data. When the remaining

validation is done, such as checking for missing mandatory elements and segments, the

FAError(1, 5001, “7”, “HL22\SBR02\Subscriber Individual Relationship Code Element Value in Error”, “E”, “SBR”, 2, 0)

ErrorContext (“Required only when Subscriber is Patient”, “NSF Reference: DA0-17.1”)

Commands

Chapter 12. Data Transformation mapping commands and functions 151

validation processing checks to see if there is any FAError information for this position.

If so, the FAError information is written to the PRTFILE and added to the input for the

Functional Acknowledgement map. Because the FAError information is held and

associated with the current position, resulting PRTFILE messages are interspersed with

any normal validation messages, such as missing mandatory segments and elements.

Use this command at any point at which you want to identify an error condition. This

command enables you to establish your own error codes for translation. Typically, the

error is issued from within an If conditional block.

The FAError command has the following format:

FAError(level, code, facode, msgtext)

Where:

level Indicates the severity of the error. It is a value of 0, 1, or 2

code Is the unique error code that is associated with the error. This can be

any expression that evaluates to an integer with a value from 5000 to

5999.

facode Is an acknowledgement code that is associated with this error. This

value is placed in the functional acknowledgement if a functional

acknowledgement is being generated. This can be any expression

that evaluates to a string. You must ensure that the string is valid for

the specific syntax type.

msgtext Is any expression that evaluates to a string. It is included in an error

message issued by WebSphere Data Interchange when this

command is executed.

 The message is issued as a UT0033 error message. Within this message, text and

code are included.

The level that is assigned affects the extended return code from the translator, and thus

the JCL condition code in the WebSphere Data Interchange utility. If level exceeds the

acceptable error level specified in the document usage, the translation is successful.

The FAError command has been extended to with some new optional parameters. The

new parameters enable you to specify additional type/position information instead of just

basing this information about the segment, element, or subelement where it was issued.

The new command takes the following parameters:

FAError(level, code, faCode, msgText, errType, segId, eltPos, subEltPos)

The level, code, faCode, and msgText parameters are the same as before. The new

parameters are as follows:

errType (optional, data type character)

I Indicates an interchange level error (such as bad interchange header/trailer).

G Indicates a group level error (such as bad group header/trailer).

Commands

152 Mapping Guide

T Indicates a transaction level error (such as bad transaction header/trailer).

S Indicates a segment error (such as for missing segment).

E Indicates a data element error (such as for missing element or subelement).

If this is not specified, the default is determined from the parent node. If the parent

node is a simple or composite data element, errType E is assumed. Otherwise, errType

S is assumed.

Note: If this parameter is used, it must be entered as string literal in the command

(such as I, G, T, S, or E.). Variables and other expressions are not permitted so

that the map editor can check for valid values, instead of waiting for invalid

values to cause a runtime error.

segId

This is the segment id, for example ″CUR″, that is to be returned in the functional

acknowledgement (if applicable). If this parameter is not specified or if an empty string

(″″) is used, then the segment id is determined as follows:

v If the FAError command is issued from within a segment (including within a data

element or subelement), the id of that segment is used.

v Otherwise, the segment id of the next segment found in the loop or transaction is

used.

Default values are not used for (I)nterchange, (G)roup, or (T)ransaction type errors.

eltPos (optional, data type integer)

This is the element position within the segment. For example the second element of

segment would have a value of ″2″. This value is also returned in the functional

acknowledgement if applicable. If this parameter is not specified or is 0, then the

element position is determined as follows:

v If the FAError command is issued from within a simple or composite data element

(including within a subelement), the position of that element is used.

v Otherwise, the element position is omitted.

Note: This parameter is ignored for segment errors. Default values are not used for

(I)nterchange, (G)roup, or (T)ransaction type errors.

subeltPos (optional, data type integer)

This is the subelement position within the composite data element. For example the

third subelement of a composite would have a value of ″3″. This value is also returned

in the functional acknowledgement if applicable. If this parameter is not specified or is

0, then the subelement position is determined as follows:

v If the FAError command is issued from within a subelement, the position of that

subelement is used.

v Otherwise, the element position is omitted.

Commands

Chapter 12. Data Transformation mapping commands and functions 153

Note: This parameter is ignored for segment errors. Default values are not used for

(I)nterchange, (G)roup, or (T)ransaction type errors.

If FAError is issued with errType=″I″, this flags the entire interchange as being invalid.

This is only recognized if it is the first transaction in the interchange, and is only used

for input validation. If it is not the first transaction in the interchange or the map is used

for output validation, then this FAError is ignored. Segment and data element errors

within the transaction are reported, and validation and processing of the remaining

transactions in the interchange is skipped. The segment/element/subelement is taken

from the optional parameters as described.

If FAError is issued with errType=″G″, this flags the entire group as being invalid. This is

only recognized if it is the first transaction in the group, and is only used for input

validation. If it is not the first transaction in the group, groups are not being used, or the

map is used for output validation, then this FAError is ignored. Segment and data

element errors within the transaction are not reported, and validation and processing of

the remaining transactions in the group is skipped. The segment/element/subelement is

taken from the optional parameters as described.

If FAError is issued with errType=″T″, this flags the entire transaction as being invalid. It

is only used for input validation. If the map is used for output validation, then this

FAError are ignored. Segment and data element errors within the transaction are not

reported. The segment/element/subelement is taken from the optional parameters as

described.

If FAError is issued with errType=″S″, this causes a segment error record to be

generated after the other segments in the loop or transaction are processed. The

segment information is set as follows:

v The segment id (AK301 for X12, N/A for EDIFACT) is set from the segId value, or

calculated as described.

v The segment position (AK302 for X12, UCS01 for EDIFACT) is set based on the

parent.

– If the FAError command is on the root node or within a LOOP node, then the

segment position sets the next segment found in the transaction.

– If the FAError command is within a segment node (including within data elements

or subelements), then the current segment position is used. This would be similar

to the FAError command, but the segId value overrides the segment id if

specified.

The element or subelement information is not used.

If the FAError is issued with errType=″E″, this causes a data element error record to be

generated after the other data elements or subelements are processed. The segment

position (AK3 or UCS) is taken from the current segment information, so errType=″E″

can only be used within a segment or data element. If the FAError with errType=″E″ is

used outside of a segment (that is, between segments), an error is issued when the

map is compiled. The element and subelement information is set from the eltPos and

subeltPos as described.

Commands

154 Mapping Guide

FAErrorPath

The FAErrorPath command has the following format:

FAErrorPath(level, code, facode, msgtext, errType, sourcepath)

Where:

level Indicates the severity of the error. It is a value of 0, 1, or 2 .

code Is the unique error code that is associated with the error. This can be any

expression that evaluates to an integer with a value from 5000 to 5999.

facode

Is an acknowledgement code that is associated with this error. This value is

placed in the functional acknowledgement if a functional acknowledgement is

being generated. This can be any expression that evaluates to a string. You

must ensure that the string is valid for the specific syntax type.

msgtext

Is any expression that evaluates to a string. It is included in an error message

issued by WebSphere Data Interchange when this command is executed.

errType (data type character)

I Indicates an interchange level error (for example, bad interchange

header/trailer).

G Indicates a group level error (for example, bad group header/trailer).

T Indicates a transaction level error (for example, bad transaction

header/trailer).

S Indicates a segment error (for example, for missing segment).

E Indicates a data element error (for example, for missing element or

subelement).

sourcepath

This is used to identify the segment or element position where the

FAErrorPath command is issued. If the SourcePath is not found, the current

position is used.

ForEach

Use the ForEach command to execute mapping commands for each occurrence of the

specified source node. Each occurrence of the source results in a new occurrence of

the current target element.

You can include multiple ForEach command blocks within a single target element. The

target element can be either a repeating node or a non-repeating node, and can be

either a simple or a compound node.

If the target node is not repeating, you might need to use the Qualify command or

conditional logic (If/Then/Else) so that only one occurrence of the source value is

written to the target. If the target is not repeating and multiple values are written to it,

later values overwrite the earlier values.

Commands

Chapter 12. Data Transformation mapping commands and functions 155

You can only use the ForEach command in a target-based map.

The ForEach command has the following format:

ForEach(sourcepath)

Where:

sourcepath

 Identifies an element in the source document definition. Each

occurrence of the element results in the creation of the target element

which this command is under.

 Establishes a current source position for the commands within the

ForEach block.

 The mapping commands within each ForEach command are executed for each

occurrence of the specified source node (contrast this with the Qualify command, in

which the mapping commands are executed only if a specific expression evaluates to

True). See “Example 1.”

Forward and backward references to source elements outside the domain are

performed with the same limitations that they have in source-based mappings. That is,

you can refer to other siblings, cousins, and so on, but cannot refer to other elements

within other occurrences of the sourcepath. Also, any nested ForEach elements must

be within the current domain. This is illustrated in “Example 2” on page 157.

A single ForEach command can apply to multiple subdomains. “Example 3” on page

157 provides an example of this.

Example 1

A map might be represented something like:

N1 Loop (element node)

 ForEach (\Order\Header\Sender\\) (command node)

 N1 (element node, might contain commands)

 N2 (element node, might contain commands)

 ...

 ForEach (\Order\Header\Receiver\\) (command node)

 N1 (element node, might contain commands)

 N2 (element node, might contain commands)

 ...

In this example, there are two ForEach commands within the N1 Loop. Each

occurrence of source elements Sender or Receiver results in a new occurrence of a

target N1 Loop. When a source Sender element is being processed, the mapping

commands within the first ForEach block are executed to create the target N1 Loop

occurrence. When a source Receiver element is processed, the mapping commands

within the second block are executed

Commands

156 Mapping Guide

Example 2

A source document might have the following structure (where ″*″ indicates repeating

element):

Order

 Header

 PONumber

 Date

 NameAddress*

 Type

 Name

 ...

 DetailLoop*

 LineItemNumber

 SubDetailLoop*

 Description

 ...

 Trailer

 Total

If your map has a ForEach(\Order\DetailLoop\\) command, the domain for this block is

the current DetailLoop occurrence. Commands in this block can refer to nonrepeating

elements outside of the domain, such as \Order\Header\PONumber\\ and

\Order\Trailer\Total\\. The commands can also refer to repeating elements outside the

domain, such as \Order\Header\NameAddress\\. However, with forward and backward

references to repeating elements it is more difficult to predict which occurrence is used

(it depends on what commands have been processed previously). If another ForEach

command is nested within the ForEach(\Order\DetailLoop\\), it must refer to an element

within \Order\DetailLoop\\, such as \Order\DetailLoop\SubDetailLoop\\. The nested

ForEach command cannot refer to an element outside the current domain, such as

\Order\Header\NameAddress\\.

Example 3

For example, a source document has the following structure:

Order

 DetailLoop

 SubDetailLoop

 SubDetailLoop

 DetailLoop

 SubDetailLoop

 SubDetailLoop

If the current domain is the root of the document (Order), and you specify

ForEach(\Order\DetailLoop\SubDetailLoop\\) without the intermediate ForEach

(\Order\DetailLoop\\), all four occurrences of SubDetailLoop (across both DetailLoop

occurrences) are processed. If only the SubDetailLoop occurrences within a current

DetailLoop are to be used, a ForEach(\Order\DetailLoop\\) command is specified, then

a ForEach(\Order\DetailLoop\SubDetailLoop\\) command is specified within it.

Commands

Chapter 12. Data Transformation mapping commands and functions 157

HLLevel

Use the HLLevel command to create an HL loop within an EDI source or target based

map.

The HLLevel command has the following format:

HLLevel(char levelcode)

Where:

levelcode Indicates the level code for this level. You must select this value from

the list of level codes that are valid for the code list for HL03 (element

735). This value identifies the context of a series of segments

following the current HL up to the next occurrence of an HL, or the

end of the loop.

 If you are working with a source-based map:

v Drag a structure or record from the target window and drop it on to the HL loop in

the source window. A MapTo command is created under the loop.

v To create the underlying HL nesting levels or children for this HL level, right-click the

HL loop and select AddChild, or select AddPeer to create a sibling.

If you are working with a target-based map:

v Right-click the HL loop again and select the ForEach command

v Drag the source path to the command wizard window.

v To create the underlying HL nesting levels or children for this HL Level, right-click the

HL loop and select AddChild, or select AddPeer to create a sibling.

For more information about HL loops, see Appendix B, “Hierarchical loops,” on page

297.

MapCall

Use the MapCall command to indicate that a new map must be used to process the

data within the current source element (for source-based maps) or the specified source

element (for target-based maps).

When this command is encountered, a new copy of the translator is loaded. It receives

the data from the current element to use as its input document. The element can be a

simple element (for example, the BIN02 element in a BIN segment) or it can be a

compound element (a subtree or subset). The copied translator shares global variables

with the parent translator.

When the copied translator has completed translation, it terminates, and control is

returned to the parent translator. The parent translator checks if the imbedded

translation was successful, and if so, resumes its own translation processing.

The output depends on the specified targetPath and the target document definition in

the called map.

Commands

158 Mapping Guide

The MapCall command has the following format:

MapCall(sourcepath, char mapname, targetpath)

Where:

sourcepath Identifies a source element that is to be used as the root of the

source tree for the imbedded map. If the sourcepath element does not

exist in the input message, the MapCall command is not executed.

v For source-based maps, this value must be the keyword This,

which indicates the current source element.

v For target-based maps, the sourcepath element must be within the

current domain.

mapname Is a character string that specifies the map name. You can specify a

literal value or a more complex expression that evaluates to a

character string.

targetpath Identifies the target element where the output of the imbedded map

goes.

v If this is a simple binary element, such as a BIN02, the output from

the called map is serialized and placed into this element. Use of

compound elements and other data types for the targetPath on the

MapCall command is not supported in Version 3 Release 2.

v If this is the keyword targetRoot, the following logic is applied:

– If the target document on the submap is the same as the target

document on the primary map, the submap output is inserted

into the same message as the primary map output. Children of

the root in the submap output become children of the root in the

primary map output.

– If the target document on the submap is different than the target

on the primary map, a separate message output is created.

MapChain

Use the MapChain command to indicate that the document needs to be translated by

another map after the current translation has completed. The subsequent translation

only occurs if the current translation is successful.

The MapChain command has the following format:

MapChain(char mapname)

Each MapChain command encountered during translation of a map indicates that the

document is translated an additional time using the newly specified map. This process

stops if an error is encountered in any one translation. The output from a translation is

independent from the other translations.

MapFrom

You can use the MapFrom command in the following ways:

Commands

Chapter 12. Data Transformation mapping commands and functions 159

v To move data from a repeating simple element in the target document definition to a

corresponding repeating simple element in the source document definition.

When you use the MapFrom command on a repeating target node, multi-occurrence

mapping is required, and the MapFrom command must be included within a ForEach

command.

v To move data from a nonrepeating simple element or variable in the target document

definition to a corresponding simple element in the source document definition.

You cannot use the MapFrom command with compound elements.

Use the MapFrom command for target-based maps only: you must use the MapTo

command for source-based maps. If the map is source-based and this command is

used, the compiler command processor issues an error.

The MapFrom command has the following format:

MapFrom(expression)

Where:

expression Is the expression whose value is placed into the simple element. This

expression can be any data type, as long as it is compatible with the

target element that it is being mapped to.

 The expression is evaluated, just as it would be for source-based transformation. The

expression can be a simple source element, a variable, or a complex expression. If the

expression does not evaluate to an empty string, the expression result is saved in the

current target node. This is functionally equivalent to:

If (not IsEmpty(TrimRight(expr)))

 This = expr

MapSwitch

Use the MapSwitch command to indicate that the document needs to be translated by

another map instead of the current map. Any translation performed by the current map

is terminated and the document is translated by the map specified in the MapSwitch

command.

MapSwitch has the following format:

MapSwitch(char mapname)

Use this command when data in the document must be inspected before it can be

determined which map to use. With this command, you can switch the map dynamically

based on the data that is contained in the document. You can create a map that initially

examines the data in the document. Only the compound and simple elements

necessary to make a mapping decision are mapped. The map that is used to translate

the document is determined based on the mapped elements. Then use conditional

mapping commands and the MapSwitch command to begin translating the document

with the correct map.

Commands

160 Mapping Guide

MapTo

You can use the MapTo command in several different ways:

v To associate a repeating compound element in the source document definition to a

corresponding repeating compound element in the target document definition.

v To move data from a repeating simple element in the source document definition to a

corresponding repeating simple element in the target document definition.

v To move data from a nonrepeating simple element or variable in the source

document definition to a corresponding simple element in the target document

definition.

A MapTo command is generated when you drag a source element to a target element

or a target element to a source element.

Use the MapTo command for source-based maps only: you must use the MapFrom

command for simple assignments for target-based maps, or the ForEach command for

multi-occurrence mapping with target-based maps. If the map is target-based and the

MapTo command is used, the compiler command processor issues an error.

The MapTo command has the following format:

MapTo(targetpath [, expression])

Where:

targetpath Identifies the path in the target document definition that is being

mapped.

expression Is the expression whose value is placed into the simple element

identified by targetpath. This expression can be any data type that is

compatible with the target element that it is being mapped to.

 When placed on a repeating or nonrepeating compound element and only targetpath is

specified, the compound element in the source document definition is associated with

the compound element identified by targetpath in the target document definition. Each

occurrence of the source compound element results in the creation of a corresponding

target compound element.

When placed on a repeating simple element and only targetpath is specified, the simple

element in the source document definition is associated with the simple element

identified by targetpath in the target document definition. Each occurrence of the source

simple element results in the creation of a corresponding target simple element and

data being moved from the source simple element to the target simple element. This is

equivalent to the assignment statement:

targetpath = (current source element)

When placed on a nonrepeating simple element and only targetpath is specified, the

simple element in the source document definition is associated with the simple element

identified by targetpath in the target document definition. Encountering the source

Commands

Chapter 12. Data Transformation mapping commands and functions 161

simple element results in the creation of a corresponding target simple element and

data being moved from the source simple element to the target simple element. This is

equivalent to the assignment statement:

targetpath = (current source element)

When targetpath is specified with expression, the result of expression is moved to the

simple element identified by targetpath in the target document definition. This is

equivalent to the assignment statement:

targetpath = expression

Qualify and Default

The Qualify command is used on repeating compound or repeating simple elements in

the source document definition. It is used to indicate that a specific iteration or iterations

of the elements are to be handled differently than other iterations of the element. For

instance, you might want to say that the first iteration of a loop is handled differently

than all other iterations of the loop. The Qualify command uses the following format:

Qualify(bool boolExpr)

Where:

boolExpr Is the boolean value or expression that, when True, indicates the

mapping commands within the qualification is executed by the

translator.

 boolExpr can indicate if this is a particular occurrence of a repeating compound or

simple element. Values of variables or simple elements in the source document

definition can also be checked to determine when to execute the qualification. For

instance, you can check to see if a specific simple element has a value of “ABC”. If it

does, the mapping commands within the qualification is executed by the translator.

Example 1

Qualify (StrComp(\Table 1\310 O N1 Loop\310 O N1\1 M 98\\, "ZZ") = 0)

In this example, the value contained in simple element "\Table 1\310 O N1 Loop\310 O

N1\1 M 98\\" is compared to the literal “ZZ”. If the function returns 0 (values are equal),

the mapping commands within the qualification are executed.

Example 2

Qualify(Occurrence() = 2 OR Occurrence() = 3)

In this example, the mapping commands within the qualification are executed if it is the

second or third occurrence of the simple or compound element.

Example 3

Qualify(Occurrence() =

 2 AND StrComp(\Table 1\310 O N1 Loop\310 O N1\1 M 98\\, "ZZ") = 0)

Commands

162 Mapping Guide

In this example, the mapping commands within the qualification are executed if it is the

second occurrence of the current compound source element and simple element "\Table

1\310 O N1 Loop\310 O N1\1 M 98\\" is “ZZ”.

The Occurrence and StrComp functions are described in more detail in “Functions” on

page 175. Any boolean expression or function can be used as the expression on the

Qualify command.

The Default command can be used to specify the commands that are executed if none

of the Qualify expressions evaluate to True.

SetElementAttribute

This command controls how leading zeros, leading and trailing blanks, left and right

justification, and empty elements are handled when they are output for an EDI optional

Data Element. This command does not affect the values of simple elements during

translation. it only affects the formatting of simple elements when they are written to the

output document. This command can be specified anywhere in a Data Transformation

Map. The SetElementAttribute command has the following format:

SetElementAttribute (targetPath, attributeName, attributeValue)

Where:

targetPath

A path in the target document definition that identifies a simple or compound

element. The reserved word TargetRoot can be specified to indicate that the

attribute value is the default for the element attribute for all simple elements

within the document. The keyword This can be used to indicate the command

is being applied to the parent element.

attributeName

The name of the element attribute you want to set. See “Element attributes” for

additional information about element attributes and a complete list of attributes

that you can set. This parameter is typically a string constant, but can be a

variable, a path identifying a simple element in the source document definition,

or an expression that evaluates to a character string.

attributeValue

The value for the element attribute. This can be a numeric or string constant,

variable, path identifying a simple element in the source document definition,

or an expression.

Note: Excessive use of the SetElementAttribute command increases memory usage

during map execution.

Element attributes

The following sections describes each of the element attributes.

TrimLeadingZeros: Indicates how to treat leading zeros for values of simple elements

declared to be of a numeric type. Valid values are:

Y Specifies that leading zeros beyond the ones position from the beginning of a

Commands

Chapter 12. Data Transformation mapping commands and functions 163

simple element value up to the minimum length of the simple element are

trimmed before adding the value to the output document. At lease one zero is

produced before the decimal point for numeric data types that contain a

decimal point, such as real (R). At least one zero is produced before the

decimal digits for numeric data types that have an implied decimal, such as

numeric (N).

 The minimum length of the simple element is not considered when the

NumValueTooShort element attribute has been specified and the

TrimLeadingZeros element attribute has been specified with a value of Y.

Leading zeros are always removed to the first significant non-zero digit to the

left of the decimal position.

N Do not trim leading zeros at the beginning of a simple element value before

adding it to the output document.

Formatting notes for each document syntax type:

XML The default setting for this element attribute is N (do not remove leading

zeros). All XML values have a minimum length 1. A value is considered to be

numeric if the value contains all numbers or numbers with a decimal. The

evaluation to determine if an XML value is numeric is performed after any

optional operations to remove leading or trailing blanks. By default, trailing

blanks are automatically removed for XML values while leading blanks are not

automatically removed.

EDI Standard

The default setting for this element attribute is Y (remove leading zeros). The

minimum length is specified in the definition of the Data Element. A Data

Element is considered to be numeric if its data type is real or numeric.

Data Format

The default setting for this element attribute is N (do not remove leading

zeros). The minimum length for a fixed length Data Format Field is always the

same as the defined maximum length for the field. The minimum length of a

field in a comma delimited Data Format is one unless dictated otherwise by the

data type. For instance, a Field with a data type of real with two significant

decimal positions (R2) has a minimum length of 4 (as in the value 0.00). A

Data Format Field is considered to be numeric if its data type is real, numeric,

integer, binary, hexadecimal, packed decimal, or zoned decimal.

TrimTrailingZeros: Indicates how to treat trailing zeros to the right of the decimal

point for values of simple elements declared to be of a numeric type. Valid values are:

Y Trims trailing zeros to the right of the decimal point beginning at the end of the

value and continuing left until a non-zero decimal digit or the minimum number

of decimal digits is reached before adding it to the output document.

N Does not trim trailing zeros at the end of a simple element value before adding

it to the output document.

 Formatting notes for each document syntax type:

XML The default setting for this element attribute is N (do not remove trailing zeros).

Commands

164 Mapping Guide

Zero decimal digits are required for all XML values. A value is considered to be

numeric if the value contains all numbers or numbers with a decimal. The

evaluation to determine if an XML value is numeric is performed after any

optional operations to remove leading or trailing blanks. By default, trailing

blanks are automatically removed for XML values while leading blanks are not

automatically removed.

EDI Standard

The default setting for this element attribute is Y (remove trailing zeros). The

number of required decimal digits is specified using the data type in the

definition of the Data Element. A Data Element is considered to be numeric if

its data type is real or numeric.

Data Format

The default setting for this element attribute is Y (remove trailing zeros). The

number of required decimal digits is specified using the data type in the

definition of the Field. A Data Format Field is considered to be numeric if its

data type is real, numeric, integer, binary, hexadecimal, packed decimal, or

zoned decimal.

TrimLeadingBlanks: Indicates how to treat leading white space at the beginning of a

simple element value. White space includes blanks, carriage returns, line feeds and tab

characters. Valid values are:

Y Removes all leading white space from the beginning of a simple element value

up to the minimum length of the simple element before adding it to the output

document. The minimum length of the simple element is not considered when

the CharValueTooShort element attribute or NumValueTooShort element

attribute has been specified and the TrimLeadingBlanks element attribute has

been specified with a value of Y. Leading white space is always removed to

the first non-white space character.

N Does not remove all leading white space from the beginning of a simple

element value before adding it to the output document.

 Formatting notes for each document syntax type:

XML The default setting for this element attribute is N (do not remove leading

blanks). All XML values have a minimum length 1. If the value is a string of

blanks then it is reduced to a single blank.

EDI Standard

The default setting for this element attribute is N (do not remove leading

blanks). The minimum length is specified in the definition of the Data Element.

Data Format

The default setting for this element attribute is N (do not remove leading

blanks). The minimum length for a fixed length Data Format field is the same

as the defined maximum length of the field. The minimum length of a character

field in a comma delimited Data Format is zero.

Commands

Chapter 12. Data Transformation mapping commands and functions 165

TrimTrailingBlanks: Indicates how to treat trailing white space at the end of a simple

element value. White space includes blanks, carriage returns, line feeds and tab

characters. Valid values are:

Y Remove all trailing white space from the end of a simple element value to the

minimum length of the simple element before adding it to the output document.

The minimum length of the simple element is not considered when the

CharValueTooShort element attribute or NumValueTooShort element attribute

has been specified and the TrimTrailingBlanks element attribute has been

specified with a value of “Y”. Trailing white space is always removed to the last

non-white space character in this situation.

N Do not remove all trailing white space from the end of a simple element value

before adding it to the output document.

 Formatting notes for each document syntax type:

XML The default setting for this element attribute is Y (remove trailing blanks). All

XML values have a minimum length 1. If the value is a string of blanks then it

is reduced to a single blank.

EDI Standard

The default setting for this element attribute is Y (remove trailing blanks). The

minimum length is specified in the definition of the Data Element.

Data Format

The default setting for this element attribute is “N” (do not remove trailing

blanks). The minimum length for a fixed length Data Format field is the same

as the defined maximum length for the field. The minimum length of a

character field in a comma delimited Data Format is one.

SuppressZeroValues: Indicates whether or not to output the value of a simple

element declared to be of a numeric type, if it has a value of zero. Valid values are:

Y Suppresses zero values and does not write the value of the simple element to

output document if it has a value of zero. Compound elements with this value

for the SuppressZeroValues element attribute are not written to the output

document if all of the elements within the compound element contain zero

values.

N Does not suppress zero values writes the value of the simple element to the

output document even when it has a value of zero.

 Formatting notes for each document syntax type:

XML The default setting for this element attribute is N (do not suppress zero

values). A value is considered to be numeric if the value contains all numbers

or numbers with a decimal. The evaluation to determine if an XML value is

numeric is performed after any optional operations to remove leading or trailing

blanks. By default, trailing blanks are automatically removed for XML values

while leading blanks are not automatically removed.

EDI Standard

The default setting for this element attribute is Y (suppress zero values).

Commands

166 Mapping Guide

Mandatory Data Elements with a zero value are written to the output document

regardless of the setting for this element attribute. A Data Element is

considered to be numeric if its data type is real or numeric

Data Format

The default setting for this element attribute is N (do not suppress zero

values). A Data Format field is considered to be numeric if its data type is real,

numeric, integer, binary, hexadecimal, packed decimal, or zoned decimal. This

element attribute has the effect of moving no value for fixed position Data

Format output files. This means that numeric fields have blank values in the

output record. This element attribute affects the output of a field for comma

separated values in a Data Format output file. If the suppressed zero value is

the last Field in the Data Format Record then the terminating comma for the

last Field is not written.

SuppressEmptyElements: Indicates whether or not to output the value of a simple

element if it has no value. An element is considered to have no value when it has a

length of zero or it contains only white space. White space includes blanks, carriage

returns, line feeds and tab characters. Valid values are:

Y Suppresses empty values. Specifies that a simple element is not written to the

output document if it has no value. Compound elements are not written to the

output document if any element within the compound element does not contain

a value.

N Does not suppress empty values. The element is written to the output

document even if it has no value or all the elements contained within it have

no value.

 Formatting notes for each document syntax type:

XML The default setting for this element attribute is N (do not suppress empty

elements).

EDI Standard

The default setting for this element attribute is Y (suppress empty elements).

Mandatory Composite Data Elements and mandatory Data Elements are

written to the output document regardless of the setting for this element

attribute. When the setting is Y for:

v A Segment (mandatory or optional) then the Segment is not written to the

output document if all Data Elements within the Segment are empty.

v An optional Composite Data Element then the Composite Data Element is

not written to the output document if all Data Elements within the Composite

Data Element are empty. Only the required delimiters are written.

v An optional Data Element then the Data Element is not written to the output

document. A delimiter is written if required by the EDI Standard. If the value

is N on a Data Element, then the Data Element is written to the output

document even when it contains no value. This means that the terminator

for the Data Element preceding the Data Element with the N value for its

SuppressEmptyElements element attribute is written.

Commands

Chapter 12. Data Transformation mapping commands and functions 167

Data Format

The default setting for this element attribute is N (do not suppress empty

elements). If the SuppressEmptyElements element attribute is specified on a

Data Format Record with a value of Y then the Data Format record is not

written to the output document if none of the fields within the record contain a

value. If the SuppressEmptyElements element attribute is specified on a Data

Format loop with a value of Y, then the Data Format records within the loop

are not written to the output document unless one or more fields within the

record contains a value. This assumes that no Data Format records within the

loop have the SuppressEmptyElements element attribute for the record set to

N. The SuppressEmptyElements element attribute has no effect for a fixed

position Data Format field. It does affect the output of a field in a comma

separated values Data Format output file.

NumValueTooShort: This element attribute indicates how to handle numeric values

that are shorter than the minimum length defined for the simple element. It is only

useful when the simple element is defined with a numeric data type. Valid values are:

RB Right justify the value and pad on the left with blanks to the minimum length of

the simple element.

RZ Right justify the value and pad on the left with zeros to the minimum length of

the simple element.

LB Left justify the value and pad on the right with blanks to the minimum length of

the simple element.

LZ Left justify the value and pad on the right with zeros to the minimum length of

the simple element.

IG Ignore minimum length specification for the simple element. No left or right

justification is performed. The value of the simple element is written to the

output document without insuring the value meets the minimum length

specification for the simple element.

Note: The right and left justify operations do not remove leading or trailing zeros,

blanks, or other white space. Use the various TrimLeadingBlanks,

TrimTrailingBlanks, TrimLeadingZeros, and TrimTrailingZeros element attributes

to ensure you get the justification required. The minimum length of the simple

element is not considered when using this attribute and the various trimming

attributes.

Formatting notes for each document syntax type:

XML All elements in XML have a default minimum length of one. Therefore this

element attribute never has any affect on an XML element.

EDI Standard

The default value is RZ for Data Elements defined as a numeric data type. All

other Data Elements have a default value of IG. A Data Element is considered

to be numeric if its data type is real or numeric.

Data Format

The default setting for this element attribute is RZ for numeric Data Format

Commands

168 Mapping Guide

fields. LB is the default value for non-numeric Data Format Field. The minimum

length for a fixed length Data Format field the same as the defined maximum

length of the field. The minimum length of a field in a comma delimited Data

Format is one unless dictated otherwise by the data type. A Data Format field

is considered to be numeric if its data type is real, numeric, integer, binary,

hexadecimal, packed decimal, or zoned decimal.

CharValueTooShort: This element attribute indicates how to handle character values

that are shorter than the minimum length defined for the simple element. Elements that

are defined as a numeric data type that is written as characters can utilize this element

attribute effectively. Valid values are:

RB Right justify the value and pad on the left with blanks to the minimum length of

the simple element.

RZ Right justify the value and pad on the left with zeros to the minimum length of

the simple element.

LB Left justify the value and pad on the right with blanks to the minimum length of

the simple element.

LZ Left justify the value and pad on the right with zeros to the minimum length of

the simple element.

IG Ignore minimum length specification for the simple element. No left or right

justification is performed. The value of the simple element is written to the

output document without insuring the value meets the minimum length

specification for the simple element.

Note: The right and left justify operations do not remove leading or trailing zeros,

blanks, or other white space. Use the TrimLeadingBlanks, TrimTrailingBlanks,

TrimLeadingZeros, and TrimTrailingZeros element attributes to ensure you get

the justification required. The minimum length of the simple element is not

considered when using this attribute and the various trimming attributes.

Formatting notes for each document syntax type:

XML All elements in XML have a default minimum length of one. Therefore this

element attribute does not have any affect on an XML element.

EDI Standard

The default value is RZ for Data Elements defined as a numeric data type. All

other Data Elements have a default value of IG. A Data Element is considered

to be numeric if its data type is real or numeric.

Data Format

The default setting for this element attribute is RZ for numeric Data Format

Fields. LB is the default value for non-numeric Data Format field. The minimum

length for a fixed length Data Format field is the same as the defined

maximum length of the field. The minimum length of a field in a comma

delimited Data Format is one unless dictated otherwise by the data type. A

Data Format field is considered to be numeric if its data type is real, numeric,

integer, binary, hexadecimal, packed decimal, or zoned decimal.

Commands

Chapter 12. Data Transformation mapping commands and functions 169

Processing order

The following lists the order in which the element attributes are applied to an element

as it is written to an output document:

 TrimLeadingBlanks

 TrimTrailingBlanks

If the value is numeric:

 TrimTrailingZeros

 TrimLeadingZeros

 NumValueTooShort (LB)

 Adjust left blank pad

 NumValueTooShort (LZ)

 Adjust left zero pad

 NumValueTooShort (RB)

 Adjust right blank pad

 NumValueTooShort (RZ)

 Adjust right zero pad

If the value is not numeric:

 CharValueTooShort (LB)

 Adjust left blank pad

 CharValueTooShort (LZ)

 Adjust left zero pad

 CharValueTooShort (RB) Adjust right blank pad

 CharValueTooShort (RZ)

 Adjust right zero pad

Formatting notes for each document syntax type:

XML A value is considered to be numeric if the value contains all numbers or

numbers with a decimal. The evaluation to determine if an XML value is

numeric is performed after any optional operations to remove leading or trailing

blanks. By default, trailing blanks are automatically removed for XML values

while leading blanks are not automatically removed.

EDI Standard

A Data Element is considered to be numeric if its data type is real or numeric.

Data Format

A Data Format Field is considered to be numeric if its data type is real,

numeric, integer, binary, hexadecimal, packed decimal, or zoned decimal.

Example 1

The following command alters the default setting for the SuppressZeroValues element

attribute for all simple elements within the target document. The command indicates

that simple elements are written to the output document even when they contain a zero

value unless otherwise specified.

SetElementAttribute (TargetRoot, “SuppressZeroValues”, “N”)

Commands

170 Mapping Guide

The following command alters the setting for the SuppressZeroValues element attribute

for the M8 simple element within the target document. The command indicates that the

M8 simple element is written to the output document if it contains a zero value.

SetElementAttribute (\ADTBXML\M8\\, “SuppressZeroValues”, “Y”)

Formatting notes for each document syntax type:

XML For the examples in Table 24, assume that the XML element M803 contains an

attribute element named desc and an element containing the value associated

with the M803 element. It is assumed that the SuppressEmptyElements

element attribute is set to N for the M803 element.

 Table 24. Format examples for SuppressZeroValues

Example

Attribute

element

Value

element Output result

1

Element value 0 0

<M803 desc="0″/>

SuppressZeroValues N N

2

Element value 0 0

<M803 desc="0″/>

SuppressZeroValues N Y

3

Element value 0 0 <M803>0</M803>

SuppressZeroValues Y N

4

Element value 0 0 <M803/>

SuppressZeroValues Y Y

6

Element value 12 0 <M803 desc="12″/>

SuppressZeroValues Y Y

7

Element value 0 82 <M803>82</M803>

SuppressZeroValues Y Y

Data Format

If a Record contains four fields, RECORDID, TYPE, QUANTITY, and

DESCRIPTION with the values “RECID”, “ABC”, 0, and “My Item Order”

respectively, then the comma separated values Record appears as follows

when the SuppressZeroValues element attribute is set to “N” for the third Field:

“RECID”,“ABC”,0,“My Item Order” The Record appears as follows when the

SuppressZeroValues element attribute is set to “Y” for the third Field:

“RECID”,“ABC”,,“My Item Order” If the suppressed zero value is the last Field

in the Data Format Record then the terminating comma for the last Field is not

written

Example 2

The following command alters the setting for the SuppressEmptyElements element

attribute for the LOOPX02 compound element within the target document. The

command indicates that the LOOPX02 compound element is not written to the output

document if all simple elements within it contain no significant value.

SetElementAttribute (\DATHDR_LOOP2\LOOPX02\\, "SuppressEmptyElements", “Y”)

Commands

Chapter 12. Data Transformation mapping commands and functions 171

XML For the following formatting examples, assume XML element M803 contains an

attribute element named desc and an element containing the value associated

with the M803 element. It is assumed that the SuppressEmptyElements

element attribute is set to N for the M803 element.

 Table 25. Format examples for SuppressZeroValues

Example

Attribute

element

Value

element M803 Output result

1

Element value " " " " — <M803 desc=" ">

</M803> SuppressEmptyElement N N N

2

Element value " " " " —

<M803 desc=" "/>

SuppressEmptyElement N Y N

3

Element value " " " " — <M803> </M803>

SuppressEmptyElement Y N N

4

Element value " " " " — <M803/>

SuppressEmptyElement Y Y N

6

Element value "ABC" " " — <M803 desc="ABC″/>

SuppressEmptyElement Y Y N

7

Element value " " "DEF" — <M803>DEF</M803>

SuppressEmptyElement Y Y N

7

Element value "ABC" " " — <M803 desc="ABC″/>

SuppressEmptyElement Y Y Y

8

Element value " " " " — M803 XML element is

not written. SuppressEmptyElement Y Y Y

Data Format

If a Record contains four fields, RECORDID, TYPE, DESCRIPTION, and

QUANTITY with the values “RECID”, “ABC”, “” and 0 respectively, then the

comma separated values record appear as follows when the

SuppressEmptyElements element attribute is set to N for the third Field:

"RECID","ABC","",0

The record will appear as follows when the SuppressZeroValues element

attribute is set to Y for the third Field:

"RECID","ABC",,0

If the suppressed empty value is the last field in the Data Format Record then

the terminating comma for the last field will not be written.

SetNamespace

If the SetNamespace command is included, an attribute of the following form will be

created on the root element of the XML output:

 xmlns:prefix="URI"

Commands

172 Mapping Guide

The specified URI is looked up in the namespace table, and the prefix is taken from

that entry. For example: xmlns(″http://www.ibm.com/schema/example″) would generate

the following (assuming the namespace table defines xmp as the prefix for namespace

http://www.ibm.com/schema/example):

xmlns:xmp="http://www.ibm.com/schema/example"

If there is more than one occurrence of this command, then an attribute will be created

for each command.

SetNamespace has the following format:

SetNamespace(URI)

Where:

URI is a URI from the namespace table.

SetNoNSSchemaLocation

If this command is included, an attribute of the following form will be created on the root

element of the XML output:

xsi:noNamespaceSchemaLocation="location"

For example:

noNamespaceSchemaLocation("myschema.xsd")

Would generate the following:

xsi:noNamespaceSchemaLocation="myschema.xsd"

Note: The xsi prefix will be changed if you have a different prefix specified in the

namespace table for http://www.w3.org/2001/XMLSchema-instance. If you do not

have a namespace table entry for http://www.w3.org/2001/XMLSchema-instance

the default prefix xsi will be used. An appropriate xmlns:prefix=http://www.w3.org/
2001/XMLSchema-instance attribute will automatically be generated when this

command is used.

If there is more than one occurrence of this command, only the last value is used.

SetNoNSSchemaLocation has the following format:

SetNoNSSchemaLocation(location)

Where:

location is a character expression that indicates the schema

location for the output.

SetSchemaLocation

If this command is included, an attribute of the following form will be created on the root

element of the XML output:

xsi:schemaLocation="URI location"

Commands

Chapter 12. Data Transformation mapping commands and functions 173

The specified URI is looked up in the namespace table, and the location is taken from

that entry. For example:

SetSchemaLocation("http://www.ibm.com/schema/example")

Would generate the following (assuming the namespace table defines example.xsd as

the location for namespace http://www.ibm.com/schema/example):

xsi:schemaLocation="http://www.ibm.com/schema/example example.xsd"

Note: The xsi prefix will be changed if you have a different prefix specified in the

namespace table for http://www.w3.org/2001/XMLSchema-instance. If you do not

have a namespace table entry for http://www.w3.org/2001/XMLSchema-instance

the default prefix xsi will be used. An appropriate xmlns:prefix=http://www.w3.org/
2001/XMLSchema-instance attribute will automatically be generated when this

command is specified.

This command might be specified multiple times in the map. If there is more than one

occurrence of this command, then a namespace/location pair will be created for each

command.

SetSchemaLocation has the following format:

SetSchemaLocation(URI)

Where:

URI is a URI from the namespace table.

SetProperty

The SetProperty command is used to set a special processing property of the target

message. Various special properties are defined to control things such as the EDI

envelope fields or the XML prolog. The SetProperty command uses the following

format:

SetProperty(char propertyName, char propertyValue)

Where:

propertyName The name of the document property you want to

set. See Document properties for additional

information about document properties and a

complete list of properties that you can set. This is

typically a string constant, but can be a variable, a

path identifying a simple element in the source

document definition, or an expression that evaluates

to a character string.

propertyValue The value the document property is set to. This can

be a numeric or string constant, variable, path

identifying a simple element in the source document

definition, or an expression.

Commands

174 Mapping Guide

See “Message properties” on page 193 for a list of the property names that can be

specified.

Functions

All functions take zero or more arguments as input and return a value. The data type of

the return value, as well as the number and data types of the arguments varies from

one function to the next. Appropriate type conversions are done implicitly if needed (and

possible), just as they are done for the expressions.

Some functions have optional parameters. If the optional parameters are omitted from

the function call, a default value is used for that argument.

Most functions can take an expression as an argument, as long as the result of the

expression is (or can be converted to) the correct data type. For example, the Char

function converts a value to a character string. The command:

Var1 = Char (1 + 2)

Is equivalent to:

Var1 = Char (3)

The only time you cannot use an expression as an argument is when the argument is

identified as a source or target path. For example, you cannot pass an expression to

the Created function.

The input arguments for a function are never modified by the function. The return value

and argument list for each of the functions is described in the following sections.

The function names are not case sensitive. For example, the function name Char is the

same as CHAR.

Char

The Char function returns a character representation of a numeric value. The Char

function uses the following format:

char Char(real value)

Where:

value Is the value to be converted to a character value. It can be of data type real or

int. (Data type character can be used, but does not cause any conversion.)

Results

The character representation of value.

This function is not normally needed, because the conversion is generally done

implicitly. However, it can be used to force the conversion to a character value, or to

clarify when the conversion is done.

Commands

Chapter 12. Data Transformation mapping commands and functions 175

Concat

The Concat function concatenates one character string to another. The Concat function

uses the following format:

char Concat(char value1, char value2)

Where:

value1 Is the value that is appended to.

value2 Is the value that is appended to the end of value1.

Results

The concatenated string.

Example

chVar = Concat("abc", "def")

Would set chVar to "abcdef".

Created

The Created function is used to determine if the specified path was created in the target

data. The Created function uses the following format:

boolean Created(targetPath)

Where:

targetPath Identifies the path in the target document that is being checked.

Results

True When the specified path has been created in the target data

False When it has not been created in the target data.

 This function can only be used with paths in the target document definition. If the

element is within a repeating compound element (such as a repeating loop or segment),

then only the current (or most recent) iteration is searched for the targetPath.

This function can only be used with paths that can occur in the target document

definition.

Example

If (!Created(\T 2\L 2300\S CLM 130\C C023 5\\))

 mapping command

EndIf

In this example, if path “\T 2\L 2300\S CLM 130\C C023 5\\” has not been created,

mapping command is executed by the translator.

Commands

176 Mapping Guide

Date

The Date function returns the system date as a character string in the format yyyymmdd.

The Date function uses the following format:

char Date()

Results

The current system date in the format yyyymmdd.

DateCnv

The DateCnv function is used to assist in converting one date format to another. The

DateCnv function uses the following format:

char DateCnv(char sourceDate, char frommask, char tomask)

The actual syntax requires quotation marks. For example:

Mapping Path = DateCnv(’20021216’,’CCYYMMDD’,’CCYY-MM-DD’)

Where:

sourceDate Is the string that contains the source date.

frommask Is the mask that identifies the format of the date in sourceDate.

tomask Is the mask that identifies the format of the date required in the result

string.

Results

The converted date as a character string.

The mask format for the DateCnv function is the same as the mask format used in send

and Receive maps. “Date conversion special operators” on page 263 for information

about the values that can appear in the from and to mask.

Exit

The any-to-any mapping function is called Exit. Exit can be used within transformation

maps to invoke a field exit and will return a string value. Results that are returned can

be used to update a variable or target a simple element in an assignment statement.

The Exit function uses the following format:

 char Exit(char exitname[, char parameter[, char parameter[, ...]]])

Where:

result A string returned by the user exit

exitname A string expression that results in the User Exits profile member

name that contains the function information to be executed.

parameter Evaluates to a string that will be passed to the field exit. Parameter

cannot evaluate to a simple element in the target data. Up to 4

parameters can be passed to the Exit function.

Commands

Chapter 12. Data Transformation mapping commands and functions 177

You must define field exits in the User Exits profile. If the exit is not properly defined,

an error is issued. Zero to four parameters can be passed to the exit and it is the job of

the field exit to determine how many parameters to expect.

Find

The Find function is used to determine if a string is contained within another string. The

Find function uses the following format:

real Find(char toSearch, char searchVal, real startPos)

Where:

toSearch Is the string to be searched.

searchVal Is the string that is to be searched for within toSearch.

startPos Is the starting position within toSearch where the search will be

started.

Results

The position where string occurs in the simple element or variable.

Zero is returned when:

v searchVal is not found within toSearch

v The toSearch value has less than startPos characters

v toSearch is empty

startPos is one-based, so a startPos of one will start the search from the beginning of

the string, a position of two begins the search at the second character, and so on.

Examples

Assuming var1 contains the string “ABCDEFG”,

Find(var1, “CDE”, 1) will return 3

Find(var1, “CDE”, 3) will return 3

Find(var1, “CDE”, 4) will return 0

Find(var1, “CDE”, 0) will cause an error to be issued

Found

Found is used to determine if a specified path exists in the source data. The Found

function uses the following format:

boolean Found(sourcePath)

Where:

sourcePath Identifies the path that is being checked.

Commands

178 Mapping Guide

Results

True When the specified path is found in the source data

False When it is not in the source data.

 This function can only be used with paths in the source document definition. If the

element is within a repeating compound element (such as a repeating loop or segment),

then only the current iteration is searched for the sourcePath.

Example

If (!Found(\T 2\L 2300\S CLM 130\C C023 5\\))

 mapping command

EndIf

In this example, if path “\T 2\L 2300\S CLM 130\C C023 5\\” is not found, mapping

command is executed by the translator.

GetProperty

The GetProperty function is used to get a property of the source message. This can be

used to retrieve information such as EDI envelope header elements. The GetProperty

function uses the following format:

char GetProperty(char propertyName)

Where:

propertyName Is the name of the property you want to retrieve. See “Message

properties” on page 193 for a list of properties that you can retrieve.

Results

The value associated with the specified message property.

If the propertyName is not set in the source message, an empty string is returned.

Example

var1 = GetProperty("ISA04")

Will set var1 to the value that was in the ISA04 element in the X12 ISA segment.

HexEncode

The HexEncode function is used to encode binary data to a character format. The

HexEncode function uses the following format:

char HexEncode(binary binValue)

Where:

binValue Is the binary value to be encoded.

Commands

Chapter 12. Data Transformation mapping commands and functions 179

Results

An encoded character string that represents the binary data.

Each byte of the binary value will be encoded as two characters in the resulting string.

For example, if the input is a 4 byte binary value: 0x01020A0B, the result would be the

8-character string: "01020A0B".

HexDecode

The HexDecode function is used to decode a character string that contains encoded

binary data. The HexDecode function uses the following format:

binary HexDecode(char encodedStr)

Where:

encodedStr Is an encoded string.

Results

A binary value derived from the encoded character string.

Each byte of the binary value will be derived from two characters in the encoded string.

For example, if the input is the 8-character string: "01020A0B", the result would be a 4

byte binary value: 0x01020A0B.

IsEmpty

The IsEmpty function is used to determine if a character string contains any data. The

IsEmpty function uses the following format:

boolean IsEmpty(char value)

Where:

value Is the value to check.

Results

True When value is empty (set to an empty string: "").

False When value contains data.

 If the value is a source element, this will also return True if the element is not found.

The expression:

IsEmpty(value)

is equivalent to the following string comparison expression:

(StrComp(value, "") = 0)

Example

If (not IsEmpty(var1))

 mapping command

EndIf

Commands

180 Mapping Guide

In this example, if var1 contains a value other than an empty string, mapping command

is executed by the translator.

Left

The Left function is used to obtain the first few characters from a string. The Left

function uses the following format:

char Left(char stringIn, real length)

Where:

stringIn Is the input string that characters are copied from.

length Is the number of characters to be copied.

Results

A character string containing the leftmost characters of stringIn.

Only available characters from stringIn will be copied. Therefore, the returned string will

contain length characters unless stringIn has less than length characters. See “Example

2.”

Example 1

var1 = left(“ABCDEFG”,3)

After this code has been executed, var1 will equal “ABC”.

Example 2

var1 = left(“ABCD”,6)

After this code has been executed, var1 will equal “ABCD” because there are not

enough characters in the stringIn argument to fulfill the request.

Length

The Length function is used to determine the length of a string. The Length function

uses the following format:

real Length(char value)

Where:

value Is a string, usually a variable or a simple element in the source document

definition.

Results

The length of the character string value.

Commands

Chapter 12. Data Transformation mapping commands and functions 181

Example

If (Length(var1) < 5)

 mapping command

EndIf

In this example, if var1 has a length that is less than 5, mapping command is executed

by the translator.

Lower

The Lower function is used to convert a string to lowercase. The Lower function uses

the following format:

char Lower(char value)

Where:

value Is a string, usually a variable or a simple element in the source document

definition.

Results

A copy of value, with all characters converted to lowercase.

Example

var1 = Lower("ABC")

In this example, var1 will be set to "abc".

Number

The Number function converts a character value to a real value. The Number function

uses the following format:

real Number(char value)

Where:

value Is the character value to be converted to a real value. (Data type real or int

can be used, but do not cause any conversion.)

Results

The (data type) real representation of value.

This function is not normally needed, because the conversion is generally done

implicitly. However, it can be used to force the conversion to a numeric value, or to

clarify when the conversion is done.

NumFormat

The NumFormat function formats a real number or integer as a character string using a

specified number of decimal positions. Unused digits are either truncated or rounded.

The NumFormat function uses the following format:

char NumFormat(real value, real decimals[, char flag])

Commands

182 Mapping Guide

Where:

value Is the number that will be formatted as a character string.

decimals Is the number of decimal positions that are included in the returned

value.

flag Indicates whether unused digits are rounded or truncated. Specify

“ROUND” to round unused digits or “TRUNCATE” to truncate unused

digits. These can be shortened to “R” or “T”. If no flag is specified, the

value default is “ROUND”.

Results

The character representation of value, containing the specified number of decimal

places.

Example 1

var1 = NumFormat(1234.567, 2, “T”)

This example will set var1 to “1234.56”.

Example 2

var1 = NumFormat(1234.567, 2, “R”)

This example will set var1 to “1234.57”.

Occurrence

Use the Occurrence function to obtain the current occurrence number of:

v The current repeating compound element or simple element

v A specific repeating compound element or simple element

Occurrence can be shortened to Occur. The Occurrence function has the following

format:

real Occurrence([sourcepath])

Where:

sourcepath Is the path that refers to a compound or simple element in the source

document definition. If no sourcepath is specified, the current

compound or simple element in the source document is assumed.

 If this function is used in a target-based map, you must include the

source element as a parameter. The source element must be the

current source domain, or an ancestor (for example, parent or

grandparent) of the current source domain. If you omit the

sourcepath, the compiler command processor issues an error.

 For source-based maps, the source element parameter continues to

be optional (if omitted, the current source element is assumed).

Commands

Chapter 12. Data Transformation mapping commands and functions 183

Results

The current occurrence number of the specified element.

When Occurrence is specified with no parameters, it will return the occurrence number

of the current compound or simple element. When sourcePath is specified, it will return

the current occurrence number of the specified repeating compound element or simple

element. The specified element must be the current element, a parent of the current

element, or one of the other elements on the path to the current element (such as the

grandparent of the current element).

Example 1

If (Occurrence (\Table 2\10 M PO1 Loop\\) = 2)

 mapping command

EndIf

In this example, if this is the second occurrence of the PO1 loop, then mapping

command will be executed by the translator.

Example 2

If (Occurrence() != 1)

 mapping command

EndIf

In this example, if this is not the first occurrence of the current source element, mapping

command is executed by the translator.

Overlay

The Overlay function is used to overlay a portion of a string with data from another

string. The Overlay function uses the following format:

char Overlay(char string1, char string2, real position [,

real length])

Where:

string1 Evaluates to a string that will be overlaid with data from string2.

string2 Evaluates to a string that will overlay data in string1.

position Indicates the position where the overlay will begin in string1.

length Is an optional parameter that indicates the number of characters to be

overlaid in string1. If omitted or less than 0, all of the characters

following position will be overlaid until all characters from string2 have

been used.

Results

The resulting string position is one-based, so a position of one will begin overlaying

characters at the beginning of string1, a position of two begins overlaying at the second

Commands

184 Mapping Guide

character, and so on If the length of string1 has less than position characters, then

blanks will be used to fill the positions between the end of string1 and the starting

position.

Example

var1 = overlay(“ABCDEFG”, “WXYZ”, 3, 3)

After this code has been executed, var1 will equal “ABWXYFG”.

Right

The Right function is used to obtain the last few characters from a string. The Right

function uses the following format:

char Right(char stringIn, real length)

Where:

stringIn Is the input string that characters are copied from.

length Indicates the number of characters to be copied.

Results

A character string containing the rightmost characters of stringIn.

Only available characters from stringIn will be copied. Therefore, the returned string will

contain length characters unless stringIn has less than length characters. See “Example

2.”

Example 1

var1 = Right(“ABCDEFG”,3)

After this code has been executed, var1 will equal “EFG”.

Example 2

var1 = Right(“ABCD”,6)

After this code has been executed, var1 will equal “ABCD” because there are not

enough characters in the stringIn argument to fulfill the request.

Round

The Round function rounds the input value to the specified number of decimal places.

The Round function uses the following format:

real Round(real value, real decimals)

Where:

value Is the value that will be rounded.

decimals Is the number of decimals to round to.

Commands

Chapter 12. Data Transformation mapping commands and functions 185

Results

A real number rounded to the specified number of decimal places.

For instance, Round(4321.556, 2) will return a result of 4321.560000. Round(4321.556,

0) will return a result of 4322.000000.

Note: This function returns a numeric (real) value. If the return value will be assigned

to a character string and trailing zeros are to be removed, the NumFormat

function is used.

StrComp

The StrComp function is used to compare two character strings. The StrComp function

uses the following format:

real StrComp(char string1, char string2)

Where:

string1 Is the first string to be compared.

string2 Is the second string to be compared.

Results

-1 If string1 < string2

0 If the strings are equal

1 If string1 > string2

Example

If (StrComp(var1, "ABC") = 0)

 mapping command

EndIf

In this example, if var1 is "ABC", mapping command is executed by the translator.

StrCompI

The StrCompI function is used to compare two character strings without regard to case.

The StrCompI function uses the following format:

real StrCompI(char string1, char string2)

Where:

string1 Is the first string to be compared.

string2 Is the second string to be compared.

Results

-1 If string1 < string2 (case insensitive)

0 If the strings are equal (case insensitive)

1 If string1 > string2 (case insensitive)

Commands

186 Mapping Guide

Example

If (StrCompI(var1, "ABC") = 0)

 mapping command

EndIf

In this example, if var1 is "ABC", "abc", "Abc", mapping command is executed by the

translator.

StrCompN

The StrCompN function is used to compare the first length characters of two character

strings. The StrCompN function uses the following format:

real StrCompN(char string1, char string2, real length)

Where:

string1 Is the first string to be compared.

string2 Is the second string to be compared.

length Is the number of characters to compare.

Results

-1 If the first length characters of string1 < the first length characters of string2

0 If the first length characters of the two strings are equal

1 If the first length characters of string1 > the first length characters of string2

Example

If (StrCompN(var1, "ABC", 3) = 0)

 mapping command

EndIf

In this example, if the first 3 characters of var1 are "ABC", then mapping command will

be executed by the translator.

StrCompNI

The StrCompNI function is used to compare the first length characters of two character

strings without regard to case. The StrCompNI function uses the following format:

real StrCompNI(char string1, char string2, real length)

Where:

string1 Is the first string to be compared.

string2 Is the second string to be compared.

length Is the number of characters to compare.

Results

-1 If the first length characters of string1 < the first length characters of string2

(case insensitive).

Commands

Chapter 12. Data Transformation mapping commands and functions 187

0 If the first length characters of the two strings are equal (case insensitive).

1 If the first length characters of string1 > the first length characters of string2

(case insensitive).

Example

If (StrCompNI(var1, "ABC", 3) = 0)

 mapping command

EndIf

In this example, if the first 3 characters of var1 are "ABC", "abc", "Abc", and so on,

mapping command is executed by the translator.

SubString

The SubString function is used to obtain a portion of a string. The SubString function

uses the following format:

char SubString(char string, real position [, real length])

Where:

string Is the string value.

position Indicates the starting position of the substring within the string.

length Is an optional parameter that indicates the number of characters to be

copied into the substring. If this argument is omitted or the length is

less than 0, all remaining characters to the end of the string are

copied.

Results

The resulting character string returned by the function.

position is one-based, so a position of one will start copying characters from the

beginning of string, a position of two begins copying data from the second character,

and so on

Only available characters from the string value will be copied. Therefore, the substring

will contain length characters unless string has less than position plus length minus one

characters. See “Example 2.” If the string value has less than position characters, an

empty string will be returned.

Example 1

var1 = substring(“ABCDEFG”,3,3)

After this code has been executed, var1 will equal “CDE”.

Example 2

var1 = substring(“ABCD”,3,3)

Commands

188 Mapping Guide

After this code has been executed, var1 will equal “CD” because there are not enough

characters in the string argument to fulfill the request.

Time

The Time function returns the system time as a character string in the format hhmmss.

The Time function uses the following format:

char Time()

Results

The system time as a character string in the format hhmmss.

Translate

The Translate function attempts to locate a specified string in a translation table. If the

string is found in the table, the corresponding value in the table is returned. The

Translate function uses the following format:

char Translate(char table, char direction, char valueIn [,

boolean error[, char default]])

Where:

table Is the string that identifies the translation table.

direction Is either “SOURCE” or “TARGET”. This can be shortened to either “S”

or “T”.

valueIn Is the string value that will be looked up in the translation table.

error Indicates whether a not found condition will result in a warning

message. If True, a warning message will be issued if the value is not

found in the table. If False, no warning message will be issued. The

default is True.

default Is a string that provides a default value that is returned when valueIn

is not found in the translation table.

Results

The resulting character string.

table must be a valid Forward Translation table. If table does not exist, a warning will be

issued and it will be treated as a not found condition.

A translation table contains two values for each entry in the table, one called the Local

Value and the other called the Standards or Trading Partner Value. When direction is

specified as “SOURCE”, an attempt is made to find valueIn in the Local Value column

in the table. If it is found, the value from the corresponding Standards or Trading

Partner Value column is returned by the function. When direction is specified as

“TARGET”, an attempt is made to find valueIn in the Standards or Trading Partner

Value column in the table. If it is found, the value from the corresponding Local Value

column is returned by the function.

Commands

Chapter 12. Data Transformation mapping commands and functions 189

In a Forward Translation translation table, the Local Value column must be unique. The

Standards or Trading Partner Value column does not need be unique. A Forward

Translation translation table used in the Translate command will always produce

predictable results when SOURCE is specified as the direction. The results are also

always predictable when TARGET is specified as the direction if the values in the

Standards or Trading Partner Value column are unique. If the values are not unique in

the Standards or Trading Partner Value, the results might not be predictable when

TARGET is specified as the direction.

If valueIn is not found in the translation table, a warning message will be issued if error

is True. Also, if valueIn is not found in the translation table, the default value will be

returned if specified. If a default value is not specified, an empty string ("") is returned.

Example

var1 = Translate(“MYTABLE”, “S”, stringVar, False, “ABC”)

This command will get the data contained in variable stringVar and attempt to locate

that value in the Local Value column of translation table “MYTABLE”. If the value is not

found in the translation table, a warning message is not issued and var1 will be set to

“ABC”. If the value is found in the translation table, var1 will be set to the value in the

corresponding Standards or Trading Partner Value column.

TrimLeft

The TrimLeft function is used to remove unwanted leading characters from a string. The

TrimLeft function uses the following format:

char TrimLeft(char value, [char trimList])

Where:

value Is the string value that is to be trimmed.

trimList Is an optional string value that includes all the characters that are to

be removed. If this is not specified, all leading whitespace characters

are removed.

Results

The resulting character string.

All characters contained in trimList will be removed from the beginning of the value

string. The operation ends when the first character not contained in trimList is

encountered. If trimList is omitted, whitespace is removed from the beginning of the

value string. Whitespace includes blanks, carriage returns, line feeds and tab

characters.

Example 1

var1 = TrimLeft(“ ABCD”)

In this example, var1 will equal “ABCD” after the function has been executed.

Commands

190 Mapping Guide

Example 2

var1 = TrimLeft(“ZZYDABCD”, “DYZ”)

In this example, var1 will equal “ABCD” after the function has been executed. All

characters “D”, “Y” and “Z” will be removed from the beginning of value until an

unspecified character is encountered.

TrimRight

The TrimRight function is used to remove unwanted trailing characters from a string.

The TrimRight function uses the following format:

char TrimRight(char value, [char trimList])

Where:

value Is a string value that is to be trimmed.

trimList Is an optional string value that includes all the characters that are to

be removed. If this is not specified, all trailing whitespace characters

are removed.

Results

The resulting character string.

All characters contained in trimList will be removed from the end of the value string.

The operation ends when the first character not contained in trimList is encountered. If

trimList is omitted, whitespace is removed from the end of the value string. Whitespace

includes blanks, carriage returns, line feeds and tab characters.

Example 1

var1 = TrimRight(“ABCD ”)

In this example, var1 will equal “ABCD” after the function has been executed.

Example 2

var1 = TrimRight(“ABCDZZY”, “AYZ”)

In this example, var1 will equal “ABCD” after the function has been executed. All

characters “A”, “Y” and “Z” will be removed from the end of the string until an

unspecified character is encountered.

Truncate

The Truncate function is used to truncate a number to the specified number of decimal

places. The Truncate function uses the following format:

real Truncate(real value, real decimals)

Where:

value Is the value that will be truncated.

Commands

Chapter 12. Data Transformation mapping commands and functions 191

decimals Is the number of decimals to truncate to.

Results

A real number truncated to the specified number of decimal places.

The real number value is truncated to decimals decimal places - no rounding occurs.

For instance, Truncate(4321.556, 2) will return a result of 4321.550000.

Truncate(4321.556, 0) will return a result of 4321.000000.

Note: This function returns a numeric (real) value. If the return value will be assigned

to a character string and trailing zeros are to be removed, the NumFormat

function is used.

Upper

The Upper function is used to change a string to upper case. The Upper function uses

the following format:

char Upper(char value)

Where:

value Is a string, usually a variable or a simple element in the source document

definition.

Results

A copy of value, with all characters converted to uppercase.

Example

var1 = Upper("abc")

In this example, var1 will be set to "ABC".

Validate

The Validate function attempts to locate a specified string in a validation table. The

Validate function uses the following format:

boolean Validate(char table, char value [, boolean error])

Where:

table Is a string that identifies the validation table.

value Is a string value that will be looked up in the validation table.

error Indicates whether a not found condition will result in a warning

message. If True, a warning message will be issued if the value is not

found in the table. If False, no warning message will be issued. The

default is True.

Results

True If the string resulting from value is found in the validation table.

Commands

192 Mapping Guide

False Is returned if the string is not found in the validation table.

 table must be a valid Code List table. If table does not exist, a warning message will be

issued and it will be treated as a not found condition.

The value string is used to search the validation table. If the string is found in the

validation table, True is returned by the function. If the string is not found in the

validation table, False is returned.

Example

If (Validate(“MYTABLE”,\Table 1\20 M BEG\1 M 353\\))

 mapping command

Else

 Error(1, 5001, , “Invalid value specified”)

EndIf

This code will get the data contained in simple element “\Table 1\20 M BEG\1 M 353\\”

and attempt to locate that value in the validation table “MYTABLE”. If the value is found

in the validation table, the mapping command will be executed. If the value is not found

in the validation table, an error is issued with error code 5001.

Message properties

This section lists the message properties that you can access using the SetProperty

command and GetProperty function:

v “Target document properties” on page 194

v “EDI envelope standard generic properties” on page 195

v “EDI envelope standard specific properties” on page 196

Source document properties

The following properties are specific to source documents. They can be checked by

using the GetProperty command.

Alphanum Inbound alphanumeric data validation table from the rule.

Charset Inbound character data validation table from the rule.

GrpLvlFA Group level functional acknowledgement only flag from the rule.

InputMsgCnt Identifies the number of input messages processed.

LastMsg A value of ’Y’ indicates the current message being processed is the

last input message is in the message flow.

MsgSplitCnt Identifies the number of XML documents split within each

header/message/trailer split. The MsgSplitCnt property is set to zero

until the last split message is processed. MsgSplitCnt property is reset

with each new trailer/header identification.

Process The process value from the trading partner profile.

Thandle Specifies the ID assigned by the system to a transaction when it is

Commands

Chapter 12. Data Transformation mapping commands and functions 193

placed in the Document Store. To ensure uniqueness, the ID is a

concatenation of the date, time, and a sequence number in format:

YYYYMMDDHHMMSSnnnnnn.

ValErrLevel Inbound acceptable error level from the rule.

ValLevel Inbound validation level from the rule.

ValMap Inbound validation map name from the rule.

Target document properties

The following properties are specific to target documents. They can be set using the

SetProperty command.

Setting these properties does not effect the current map, but might affect processing of

the target document in later steps

ACField Substitutes the application control value established by the mappings

of the AC field from the data format or the concatenation of the fields

specified during creation of the transaction mapping.

AckReq Overrides the acknowledgement expected setting on the rule.

Alphanum Overrides the outbound alphanumeric data validation table from the

rule.

Charset Overrides the outbound character data validation table from the rule.

CtlNumFlag Overrides the control numbers by transaction id flag from the rule.

DIDocId Document id value. This appears in the PRTFILE message when the

output is written to a file or queue.

DIProlog Used to override the default XML prolog in the target document.

EdiDecNot Overrides the EDI decimal notation character from the trading partner

profile.

EdiDeDlm Overrides the EDI data element delimiter from the trading partner

profile.

EdiDeSep Overrides the EDI repetition separator from the trading partner profile.

EdiRlsChar Overrides the EDI release character from the trading partner profile

EdiSeDlm Overrides the EDI subelement delimiter from the trading partner

profile

EdiSegDlm Overrides the EDI segment delimiter from the trading partner profile

EdiSegSep Overrides the EDI segment id separator from the trading partner

profile

EncodeTarget Specifies an alternate encoding for target XML documents. Examples

of other encodings that can be used are “UTF-16”, “UTF-16LE”,

“UTF-16BE”, “UCS-2”, and “UTF-8”.

EnvProfName Overrides the envelope profile name from the rule.

Message properties

194 Mapping Guide

EnvType Overrides the envelope type from the rule.

NetProfId Overrides the network profile id from the trading partner profile

SegOutput Overrides the segmented output flag from the trading partner profile

ValLevel Overrides the outbound alphanumeric data validation table from the

rule.

ValErrLevel Overrides the outbound acceptable error level from the rule.

ValMap Overrides the outbound alphanumeric data validation table from the

rule.

EDI envelope standard generic properties

The EDI envelope standard generic properties enable you to get or set information in

the EDI envelope standard segments. They have generic names that can apply to any

of the EDI standard types. For example, IchgSndrId is used for the interchange sender

ID, regardless of the EDI standard type.

These properties are available when the source document is received within an EDI

envelope standard. The properties can be obtained using the GetProperty function. If

you request a property that is not present, an empty string is returned.

These values can also be set for the target EDI document using the SetProperty

command. If set, they will override the values specified in the envelope profile.

Here is a list of the EDI envelope standard generic properties.

IchgCtlNum Interchange control number

IchgSndrId Interchange sender ID

IchgRcvrId Interchange receiver ID

IchgSndrQl Interchange sender qualifier

IchgRcvrQl Interchange receiver qualifier

IchgDate Interchange date

IchgTime Interchange time

IchgPswd Interchange password

IchgUsgInd Interchange usage indicator

IchgAppRef Interchange application reference

IchgVerRel Interchange version/release

IchgGrpCnt Number of groups in interchange

IchgCtlTotal Control total from interchange trailer segment

IchgTrxCnt Number of transactions in interchange

GrpCtlNum Group control number

Message properties

Chapter 12. Data Transformation mapping commands and functions 195

GrpFuncGrpId Functional group ID

GrpAppSndrId Group application sender ID

GrpAppRcvrId Group application receiver ID

GrpDate Group date

GrpTime Group time

GrpPswd Group password

GrpVer Group version

GrpRel Group release

GrpTrxCnt Number of transactions in group

TrxCtlNum Transaction control number

TrxCode Transaction code

TrxVer Transaction version

TrxRel Transaction release

TrxSegCnt Number of segments in the transaction

BegEnv Begin Envelope

EndEnv End Envelope

BegGrp Begin Group

EndGrp End Group

EDI envelope standard specific properties

The EDI envelope standard specific Properties also enable you to get or set information

in the EDI envelope standard segments. These have names that are specific to a

particular EDI standard, and specify a particular segment and element number. For

example, ISA04 is used for the fourth element of the ISA segment in an X12 envelope.

All of these properties are used to obtain the value of common data contained in an

EDI envelope standard segment. These properties are available when the source

document is received within an EDI envelope standard. These properties can be

obtained using the GetProperty function. If you request a property that is not present,

an empty string is returned.

These values can also be set for the target EDI document using the SetProperty

command. If set, they will override the values specified in the envelope profile.

Here is a list of the EDI envelope standard specific properties.

ISAnn “nn” is 01 through 16. Use attribute ISA01 through ISA16 to obtain

information from each element in the ISA segment contained in the

envelope.

Message properties

196 Mapping Guide

GSnn “nn” is 01 through 08. Use attribute GS01 through GS08 to obtain

information from each element in the GS segment contained in the

envelope.

STnn “nn” is 01 or 02. Use attribute ST01 and ST02 to obtain information

from each element in the ST segment contained in the envelope.

SEnn “nn” is 01 through 02. Use attribute SE01 and SE02 to obtain

information from each element in the SE segment contained in the

envelope.

GEnn “nn” is 01 through 02. Use attribute GE01 and GE02 to obtain

information from each element in the GE segment contained in the

envelope.

IEAnn “nn” is 01 through 02. Use attribute IEA01 and IEA02 to obtain

information from each element in the IEA segment contained in the

envelope.

UNBeess “ee” is 01 through 11. This is the position of either the element or

composite in the segment. ″ss″ is 01 through 04. This is optional. If

″ee″ is a composite element, then ″ss″ is the position of the element

within the composite. Use attribute UNB0101 through UNB11 to

obtain information from each element in the UNB segment contained

in the envelope.

UNGeess “nn” is 01 through 08. This is the position of either the element or

composite in the segment. ″ss″ is 01 through 04. This is optional. If

″ee″ is a composite element, then ″ss″ is the position of the element

within the composite. Use attribute UNG01 through UNG08 to obtain

information from each element in the UNG segment contained in the

envelope.

UNHeess “nn” is 01 through 07. This is the position of either the element or

composite in the segment. ″ss″ is 01 through 04. This is optional. If

″ee″ is a composite element, then ″ss″ is the position of the element

within the composite. Use attribute UNG01 through UNG07 to obtain

information from each element in the UNG segment contained in the

envelope.

UNTnn “nn” is 01 through 02. Use attribute UNT01 and UNT02 to obtain

information from each element in the UNT segment contained in the

envelope.

UNEnn “nn” is 01 through 02. Use attribute UNE01 and UNE02 to obtain

information from each element in the UNE segment contained in the

envelope.

UNZnn “nn” is 01 through 02. Use attribute UNZ01 and UNZ02 to obtain

information from each element in the UNZ segment contained in the

envelope.

BGnn “nn” is 01 through 07. Use attribute BG01 through BG07 to obtain

information from each element in the BG segment contained in the

envelope.

Message properties

Chapter 12. Data Transformation mapping commands and functions 197

EGnn “nn” is 01 through 04. Use attribute EG01 through EG04 to obtain

information from each element in the EG segment contained in the

envelope.

Message properties

198 Mapping Guide

Part 3. Send and Receive Maps

© Copyright IBM Corp. 2007 199

200 Mapping Guide

Chapter 13. Send and Receive mapping

Send maps and Receive maps are the original map types in WebSphere Data

Interchange. These maps are primarily used for migration and compatibility with maps

from earlier versions of WebSphere Data Interchange.

Send maps contain a set of mapping instructions that describe how to translate a

proprietary application data document into an EDI standard transaction. Receive maps

contain a set of mapping instructions that describe how to translate an EDI standard

transaction into a proprietary application data document.

Creating a send or Receive map

You can create a new send or Receive map only after you create a data format. In

some cases, you might need to create a new map to meet the data requirements of a

particular trading partner. You can also create a new map from an existing data format

to meet new requirements. The EDI standard transaction you are going to work with

must also exists in WebSphere Data Interchange. For information about creating data

formats, see Chapter 4, “Data formats,” on page 25.

The following procedure shows how to use WebSphere Data Interchange to make basic

associations between fields and data elements.

 1. In the Map list window, select either the Send Maps or Receive Maps tab.

 2. Click New on the tool bar.

The Create map editor opens.

 3. Type a map name in the Map Name field.

Notes:

a. You can use both letters and numbers to identify your map.

b. Letters display in capitals.

c. You cannot type spaces within the name.

To check the names of existing maps, click Show Existing Map Names.

 4. Enter a description of the map in the Description field. This field is optional.

 5. Click Next to continue.

The Source Dictionary list is displayed.

v For Send maps, this is a list of data format dictionaries.

v For Receive maps, this is a list of EDI standard dictionaries.

 6. Select the dictionary for the source document.

 7. Click Next. A list of the available document definitions within the selected dictionary

is displayed.

v For Send maps, this is a list of data formats within the selected data format

dictionary.

v For Receive maps, this is a list of all transactions within the selected EDI

standard dictionary.

© Copyright IBM Corp. 2007 201

8. Select the document definition to be used as the target document definition in your

map, and click Next.

The appropriate opens.

v For Send maps, this page contains a list of EDI standard dictionaries.

v For Receive maps, this is a list of data format dictionaries.

 9. A list of the available document definitions within the selected dictionary is

displayed.

v For Send maps, this is a list of all transactions within the selected EDI standard

dictionary.

v For Receive maps, this is a list of data formats within the selected data format

dictionary.

10. Select the definition and click next.

v For Send maps, the Confirmation window opens. Proceed to step 12.

v For receive mps the Compliance Checking wizard opens. This page offers you

the choice of checking all EDI Standard Data for Compliance to the EDI

standard, or only checking mapped data. Proceed to step 11.

11. Select the compliance checking you want on this map, then click Next.

The Confirmation window opens.

12. Confirm the selections displayed. If correct, click Finish to save the information.

After saving the information, the Map editor opens with the Details tab in front.

The Details tab is where you can drag components of your data format and drop

them on data elements within the transaction. For more information about the how

to drag-and-drop components in the Map editor, see “General editing procedures”

on page 95

13. You can drag fields onto data elements until you have mapped all of the

information required for this map.

14. Enter any comments on the map in the Comments tab.

15. When you have completed mapping, click Save on the tool bar to save the map.

Using the mapping data element editor

The Mapping Data Element editor enables you to use the advanced mapping

capabilities of WebSphere Data Interchange with data elements and fields. You can:

v Use an accumulator to store, count, and add values to a field or data element.

Accumulators are used for such actions as counting segments in a transaction for

later placement in a transaction’s trailer record. For more information about

accumulators, see “Using accumulators” on page 241.

v Associate a WebSphere Data Interchange literal or other mapping commands with a

field or data element. Literals are used for such actions as providing data to trading

partners that your application does not contain. For more information about literals,

see “Using literals and mapping commands” on page 211.

v Use any of special handling options in WebSphere Data Interchange on a field or

data element. Special handling options are used for such actions as editing dates,

verifying data in a field against predefined lists, and converting data from one value

to another.

Creating a send or Receive map

202 Mapping Guide

Applying advanced mapping capabilities to a field or data element

1. Double-click a data element in an EDI transaction that has not been mapped, or if

the element has been mapped, then double-click of the mappings below it.

Note: If this is a Receive map, the Qualified Element Support window opens.

Select Qualified Element Support or normal support, as appropriate. If this is

a Send map, go to step 3.

2. Click Normal.

The Mapping Data Element editor opens.

3. Select the mapping capability you want to apply to this field or data element. You

can use more than one.

v To use a literal, type any literal or mapping commands you desire to use on the

field or data element in the Literal or Mapping Commands field. See “Using

literals and mapping commands” on page 211 for more information.

v To use an accumulator, select an accumulator from the Accumulators list. For

each accumulator, you must select an action from the Actions list. You can use

up to four accumulators on any data element or field. See “Using accumulators”

on page 241 for more information.

v To use a special handling option on a field or data element, click Special

Handling. See “Using the special handling button” for more information.

v To create another element mapping for this data element or field, click Repeat.

See “Using the Repeat Button” on page 209 for more information.

4. If you wish, you can view attributes of the data element and field you are mapping.

v To view the attributes of the data element on which you are working, click

Element Attributes.

The Data Element Attributes window opens. You see the same information about

the data element that is displayed on the General tab of the Data Elements

editor.

v To view the attributes of the field on which you are working, click Field Attributes.

The Field Attributes window opens. You see the same information about the field

that is displayed on the General tab of the Data Format Field editor.

5. Type any comments on the mapping in the Comments field.

6. Click OK to save the mapping.

Using the special handling button

Use the Special Handling button when you want to request special handling on data

elements and fields for both send and Receive maps. You can:

v Change date formats from one format to another.

v Verify field values against predefined lists.

v Translate field values from one predefined value to another.

v Call an external program to perform custom processing on the value contained in a

field or data element.

Mapping data element editor

Chapter 13. Send and Receive mapping 203

v Specify the length and position of fields when mapping a concatenation for Send

maps or specify the length and position of fields that are included in a substring for

Receive maps.

To request special handling options:

1. While working on a data element or field in the Mapping Data Element editor, click

Special Handling.

The Data Element Special Handling window opens.

2. Click the option corresponding to the Special Handling option you desire.

 Table 26. Special Handling Options

Option Description

None

Date Edit Use this option to convert a date from one format to another. In a

Send Map, the format of the date in the data is specified in the

list. It will be converted to the format set in the EDI Standards. In

a Receive Map, the date in the Data Element is converted to the

format specified by the value selected in the list.

Whenever your application requires a date in a format that is

different from the EDI Standard, use the appropriate date edit

code. For Send Maps, all date formats are changed to yymmdd.

For Receive Maps, all date formats are changed from yymmdd. If

the predefined date edits do not satisfy your date edit

requirements, you can use the any-to-any date conversion facility

described in “Date conversion special operators” on page 206.

Code List Use the Code List option to verify values that appear in the data

against a pre-defined Code List. For instance, if the Data Format

Field or Data Element can contain only a certain range of values,

you can enter those values into a Code List. When WebSphere

Data Interchange processes the Data Element, it references the

Code List and checks the value of the data against it. If the data

contains a value that does not appear in the Code List,

WebSphere Data Interchange returns a processing error.

Note: You must create a Code List or load it from an EDI

Standard before it appears in the list.

Figure 11. Data Element Special Handling window

Mapping data element editor

204 Mapping Guide

Table 26. Special Handling Options (continued)

Option Description

Translation Table Use the Translation Table option to convert the value that appears

in the Data Format Field or Data Element into another value. For

instance, you can use this option to translate part numbers used

for your parts by a trading partner into the values you use in your

system. When WebSphere Data Interchange processes the Data

Element, it will reference the Translation Table selected in this

mapping and converts the value as defined in the table.

Translation Tables can also be used to translate values between

those used by your application and those used in the EDI

Standard.

Note: Both Forward Translation Tables and Reverse Translation

Tables are included in the list.

Field Exit Use this option to call a program outside WebSphere Data

Interchange to perform additional processing on the value

contained in the Data Format Fields or Data Element.

Note: You must create a User Exit profile for your field exit

routine before it can appear in the list. For more information about

User Exit profile, see “User Exit profile” on page 208.

Concatenation Position (Send

maps only)

For Send maps, use this field to put a part of the data into the

Data Element. This field specifies the position to begin

concatenation in the characters to be included in the new Data

Element. Use the Concatenation Length field to specify how many

characters are included. The concatenation option enables you to

select two or more Data Format Fields in a business document

you are sending and combine parts of each Field into a single

Data Element. Note: If you map two fields to the same Data

Element, those fields concatenate automatically. Leading zeros

and trailing blanks are stripped out. This option is only available

for Send Maps when no other options are selected on the Data

Element Special Handling dialog. It is not available for Receive

Maps.

Concatenation Length (Send

maps only)

Use this field to specify the number of characters to move to the

new Data Element. This field is used with the Concatenation

Position field. This option is only available for Send Maps when

no other options are selected on the Data Element Special

Handling dialog. It is not available for Receive Maps

Substring Position (Receive

maps only)

Use this field to extract part of the data from the Data Element.

This field specifies the position to begin extracting the characters

from the Data Element. Use the Substring Length field to specify

how many characters are extracted. The substring option enables

you to weed out unnecessary data received from a trading

partner. For example, if the first two bytes of a given Data

Element are always the same, you can instruct WebSphere Data

Interchange not to include those characters in your Data Format

Field. This option is only available for Receive Maps when no

other options are selected on the Data Element Special Handling

dialog. It is not available for Send Maps.

Mapping data element editor

Chapter 13. Send and Receive mapping 205

Table 26. Special Handling Options (continued)

Option Description

Substring Length (Receive

maps only)

Use this field to specify the number of characters to include in the

data. This field is used with the Substring Position field. This

option is only available for Receive Maps when no other options

are selected on the Data Element Special Handling dialog. It is

not available for Send Maps.

3. Select the item you need from the list.

4. Click OK to save your options.

Note: You can use more than one Special Handling option on any field by using

repeat mapping. Click Repeat to create another instance of the element

mapping you are working with. Edit that instance with the Mapping Data

Element editor using the Special Handling button again to select another

option.

Date conversion special operators

WebSphere Data Interchange can perform any-to-any date conversions. The format of

the any-to-any date conversion operator is:

&E(variable FD mask TD mask)

Where:

variable

The value to be converted.

FD From Date operator which signals that the following variable establishes the

mask that describes the date within variable.

TD To Date operator which signals that the following variable establishes the mask

that describes the date that is wanted.

mask The mask that describes the FROM or TO date. A mask consists of the

symbols which identify the date provided or date wanted. Symbols can be in

upper or lower case. Any value in the mask that is not one of the symbols

listed is expected to be physically part of the source data (FD) or will become

physically part of the result data (TD). The valid symbols are:

CC Century.

YY Year.

MM Month of year.

DD Day of month.

D Day of month as a single character, if possible.

HH Hour of day.

MM Minute of hour.

II Minute of hour.

Mapping data element editor

206 Mapping Guide

MM can be used when it immediately follows HH as in HHMM;

however, if you want minute followed by hour, you must use IIHH,

because MMHH would be interpreted as month of year and hour of

day.

SS Second of minute

WW Week of year (1 through 52)

K Day of week (Monday=1, Tuesday=2, and so on)

 D can be used if it immediately follows WW as in WWD; however, if

you want day of week followed by week, you must use KWW,

because DWW would be interpreted to be day of month and week of

year.

JJJ Julian day of year

Q Quarter (1,2,3,4)

E Semester (1,2)

ZZZ Time zone

TM Textual month (for example, January, February)

 TM can be followed by the name of a translate table to convert a

textual month to a numeric month (FD), or from a numeric month to a

textual month (FD). If a table name is not provided, the default table

names are DIMONTXT to translate from text to numeric and

DIMONNUM to translate from numeric to text. A table name is

indicated using parenthesis, for example; TM(tablename), where

tablename must be a constant.

 Processing considerations for WebSphere Data Interchange after creating the From

Date and before creating the To Date:

v SS (seconds) default is 0.

v CC (century) default is 19 when the YY (year) is greater than 10 and to 20 otherwise.

v JJJ (Julian day) is created based on WW (week of year) and K (day of week) if not

otherwise provided and WW and K were provided.

v JJJ (Julian day) is created based on MM (month of year) and DD (day of month) if

not otherwise provided and MM and DD were provided.

v JJJ (Julian day) is used to determine WW (week of year), K (day of week), if either

WW or K was not provided.

v JJJ (Julian day) is used to determine MM (month of year) and DD (day of month), if

either MM or DD was not provided.

v Q (Quarter) is determined based on MM (month of year), if not otherwise provided.

v E (Semester) is determined based on MM (month of year), if not otherwise provided.

The following are examples using CONSTANTS for all values:

v Simple example to remove delimiters &E(’96/06/07’ FD ’YY/MM/DD’ TD ’YYMMDD’)

yields ’960607’.

Mapping data element editor

Chapter 13. Send and Receive mapping 207

v Simple example to remove delimiters and rearrange &E(’96/06/07’ FD ’YY/MM/DD’

TD ’MMDDYY’) yields ’060796’ and &E(’96/06/07 EDT’ FD ’YY/MM/DD ZZZ’ TD ’ZZZ

MMDDYY’) yields ’EDT 060796’.

v Change delimiters and convert from one form to another &E(’96/06/07’ FD

’YY/MM/DD’ TD ’YY:JJJ’) yields ’96:157’

v Textual month to Numeric month &E(’June 7, 1996’ FD ’TM D, CCYY’ TD ’YYMMDD’)

yields ’960607’

v Numeric month to Textual month &E(’060796’ FD ’MMDDYY’ TD ’TM D, CCYY’)

yields ’June 7, 1996’

v Numeric month to Textual month with a special translate table that uses

abbreviations for the months &E’060796’ FD ’MMDDYY’ TD ’DDTM(ABBREV)CCYY’)

yields ’07JUN1996’

User Exit profile

A User Exit profile defines a user provided program or exit routine to WebSphere Data

Interchange. It provides WebSphere Data Interchange with the information it needs to

call user provided programs and exit routines. WebSphere Data Interchange can call

these at various stages of translation. The name of a User Exit profile is used as a

logical name for the user provided program or exit routine throughout WebSphere Data

Interchange. A User Exit profile identifies the name of the program or exit routine load

module. It also specifies the programming language the program or exit routine is

compiled as. The programming language is necessary so WebSphere Data Interchange

can provide the correct linkage to the program or routine.

You need a User Exit profile defined for each user provided program or exit routine you

use. WebSphere Data Interchange supports programs for:

v Network communications

v Security

v Data Mapping

There are two types of user exits supported by WebSphere Data Interchange. One type

defines user exits used in Data Transformation. These are known as Data

Transformation Exits . These are currently used in Data Transformation Maps,

Validation Maps and Functional Acknowledgement Maps. The other exit type is known

as Send or Receive Exits. Send or Receive exits are used in Send Maps, Receive

Maps, network communications, network security, pre-translation, and post-translation.

See Data Transformation field exit routine for additional information about Data

Transformation Exits. See the WebSphere Data Interchange for MultiPlatforms

Programmer's Reference Guide, SC34-6217-01 for additional information about other

exit types.

Send or Receive User Exit profiles identify what functions each user exit can support.

See the WebSphere Data Interchange for MultiPlatforms User's Guide, SC34-6215-01

for information about creating User Exit profiles.

Mapping data element editor

208 Mapping Guide

Using the Repeat Button

Use the Repeat button when you want to duplicate the element mapping you completed

in the Mapping Data Element editor. One reason to duplicate an element mapping is to

apply more than one special handling option for the data element or field. For example,

if you want to use more than one literal command on a field, you need to repeat the

element mapping as you can only use one literal command per element mapping.

You can also use repeat mapping to add data to your application when it does not

occur in the EDI standard and vice versa. The following example shows how you can

add data to your application that does not occur in the EDI standard through a Receive

map using repeat mapping.

Say that an EDI transaction contains a purchase order total in a particular data element

in a particular segment. A purchase order total less than $100 is an error that you want

to report. You can use the Repeat button to repeat the element mapping and enter the

mapping commands necessary to accomplish this task, as follows.

To repeat an element mapping:

1. Double-click the data element that contains the purchase order total.

The Mapping Data Element editor opens.

2. Enter in the Literal or Mapping Command field the mapping command &SAVE

TOTPO to save the data element value in variable TOTPO.

3. Click Repeat.

The element mapping is saved and another element mapping is created. The

Mapping Data Element editor redisplays with the new element mapping. The saved

element mapping appears under the associated data element in the Map editor.

You can select any options you desire for the new element mapping.

4. Enter the mapping command in the Literal or Mapping Command field to check if

the value saved is less than 100 and to issue a user error.

&IF (TOTPO < 100) &ERR(1,1,0,“PO is less than $100.00”).

5. Click OK and finish editing the map.

The new element mapping is designated Literal of (the entered mapping command).

Setting an application control key

To make it easier to find a series of documents in WebSphere Data Interchange's

Document Store database, you can set up keys in your maps using application control

fields. The application control field contains an ID used to identify the document in the

Document Store, such as the purchase order number in a purchase order document. In

the Application Control Fields window, you can select up to eight fields, literals and

variables to used to construct the application control field.

For example, say your company has a string of characters that occur in front of a

purchase order number. Your trading partners likely send only the number, but you can

use the Application Control Fields window to have WebSphere Data Interchange add

the characters you desire to their values. You can also use WebSphere Data

Interchange variables to modify data in the application control field.

Repeat button

Chapter 13. Send and Receive mapping 209

To make documents received from or sent to a particular trading partner easier to find

in the Document Store, you can add a string of characters representing that company to

the application control field. That character string becomes something you can search

on to build a list of documents when viewing the Document Store.

For more information about the Document Store, see the WebSphere Data Interchange

for MultiPlatforms User's Guide, SC34-6215-01.

Note: Application control fields are optional; the translator does not require them.

To set up application control fields:

1. Click the Details tab of the map for which you want to set up application control

fields.

2. On the data format (left) side of the page, click the field you want to set as an

application control field and hold down the left mouse button. Drag the field over the

Application Control Fields pane of the transaction (right) side of the page, and

release the mouse button.

The Application Control Fields window opens.

The Path column contains the name of the data format loop(s), record and

(possibly) structures in which the field you dragged occurs. The Field column

contains the name of the field. The Length column contains the length of the field.

You can add as many as eight fields to the window.

3. If you want to add fixed data to the application control fields, click Add &LIT.

The Application Control Fields - &LIT Support window opens.

a. Type in the Enter Literal field the data you wish to add to the application control

field.

b. Type in the Enter Length field the length of the data you wish to add to the

application control field.

c. Click OK.

The data you typed is displayed in the Field column in a row below the field to

which you added it. The data is preceded by &LIT.

4. If you want to include the data from a WebSphere Data Interchange variable, click

Add &VAR.

The Application Control Fields - &VAR Support window opens.

a. Type in the Enter Variable field the name of the WebSphere Data Interchange

variable you wish to use.

b. Type in the Enter Length field the length of the data you wish to add to the

application control field.

c. Click OK.

5. When you have completed your setup, click OK.

The Details tab of the Map editor redisplays.

Application control key

210 Mapping Guide

Using literals and mapping commands

WebSphere Data Interchange literals and mapping commands let you add data to a

transaction that is not contained in your business application for Send maps, or put data

into your application data that is not contained in the transaction. When your application

does not have specific information required by the transaction, or when you need to

pass specific information, you can map a literal to the data element. Conversely, when

your application requires data that is not specified in the transaction, you can supply the

information by mapping a literal.

A literal is a value that you specify for the field or data element. The value can be a

constant or it can be calculated by any of several WebSphere Data Interchange

expressions.

A mapping command is a WebSphere Data Interchange command that begins with an

ampersand (&). For a list of mapping commands, search for the key mapping

commands in WebSphere Data Interchange Client Help.

Adding a literal or mapping command to a map

You can add literals or mapping commands to maps through the Mapping Data Element

editor, as follows.

1. Double-click an element mapping that has been mapped to a field from a data

format, or double-click a data element that has not been mapped. If this is a

Receive mapping, the application data field is required for a literal.

The Mapping Data Element editor opens.

2. Type the name of the literal and any required expressions. Note that literals are

case-sensitive. Mapping commands and variable names are not.

3. Complete any other mapping you require from the Mapping Data Element editor,

and click OK.

Literals and data types

The following apply to literals used in both send and Receive maps:

v For data types BN, Bn, HX, IT, In, Ln, PD, Pn, Zd, and Zn, the translator converts the

literal before placing it in the outgoing EDI standard data or the incoming application

data. In Send maps, it converts the literal to character data. In Receive maps, it

converts the literal to the application data type. For example, if the data type is BN,

the translator converts the literal to binary and then moves it to the application field.

v Do not type a decimal point when one is implied. To use a default value of 9.99 for a

field defined as P2 (packed number with two implied decimal positions), enter the

literal as 999.

v Literal values for hexadecimal fields are hexadecimal strings. For example, if the

application field is defined as a one-byte hexadecimal field and you want to use a

default value of X’FF’, enter FF as the value of the literal. For incoming data, the

translator converts each two bytes of literal value to a single byte of application data.

 Attention: Type hexadecimal numbers using their EBCDIC values, not their ASCII

values.

Using literals and mapping commands

Chapter 13. Send and Receive mapping 211

v Specify a literal value of zero to move this value into a data element. WebSphere

Data Interchange generally removes leading zeros from application data so that a

field containing all blanks or all zeros will result in no value for the data element. A

value of zero is treated the same as all other literal values when determining if a

segment is created. The &ZEROSIG special literal can also be used to indicate that

zeros within the application field are significant.

v In translation and validation tables, enter numeric values left-justified and formatted

according to the data format. For example, if the data format defines a field as R2,

enter the value 7 as 7.00 or the value 7.1 as 7.10.

Note: Before creating a new map for a specific trading partner, check to see if you

can use WebSphere Data Interchange’s advanced mapping functions to meet

a trading partner’s special processing requirements. You can set up a map so

that WebSphere Data Interchange meets a trading partner’s custom data and

processing requirements. For more information, “Using the mapping data

element editor” on page 202

Translation tables

When WebSphere Data Interchange translates data from your data format to an EDI

transaction or from an EDI transaction to your data format, it can also substitute one

value for another. WebSphere Data Interchange substitutes values through translation

tables. Use translation tables to handle:

v Differences between your data and your trading partners’ data. For example, say

your trading partner uses its own numbers for parts you sell. You can set up a

translation table to convert the part numbers your trading partner uses to those you

use. An example of such a translation table is illustrated in Table 27.

 Table 27. Translation table, differences in data

Local Value Trading Partner Value

GLF8088 FR0100

GLF8588 FR0600

GLF8788 FR0800

v Conflicts between application data and EDI standards. For example, your application

uses a code for a unit of measure that does not occur in the EDI standard. You can

create a translation table to substitute an EDI standard code for your code on the

send side and your code for the EDI standard code on the receive side. An example

of such a translation table is illustrated in Table 28.

 Table 28. Translation table, conflicts with standards

Local Value Trading Partner Value

Boxes BX

Cases CS

Doz DZ

Each EA

Literals and data types

212 Mapping Guide

You associate translation tables with maps through the Special Handling button on the

Mapping Data Element editor, as described on “Using the mapping data element editor”

on page 202. This section describes how to set up translation tables.

For more information about Translation Tables, see the WebSphere Data Interchange

for MultiPlatforms User's Guide, SC34-6215-01.

WebSphere Data Interchange provides two types of translation tables:

v Forward translation tables

v “Reverse translation tables”

Forward translation tables

The most commonly used is the forward translation table. Set up a forward translation

table when you want to translate values from your application into values required by

your trading partner when sending data, or translate values from your trading partner

data into values required by your application when receiving data. This type of

translation table contains values with a one-to-one relationship or many application

values to one EDI standard value. The local value side of the table definition must be

unique, as illustrated in Table 29.

 Table 29. Sample forward translation, table values

Target (Application Value) Source (Standard Value)

01 AA

02 BB

03 CC

04 CC

This type of translation table can be used on either send or Receive maps, when both

application and EDI standard values are unique. It can be used in Send maps when

only the application values are unique.

Reverse translation tables

Set up a reverse translation table when you want to translate one or more values from

your trading partner to a single value in your application. This type of translation

contains values with a one-to-one relationship or many EDI standard values to one

application value. The EDI standard value side of the table definition must be unique,

as illustrated in Table 30.

 Table 30. Sample reverse translation, table values

Application Value Standard Value

01 AA

01 BB

01 CC

Translation tables

Chapter 13. Send and Receive mapping 213

Table 30. Sample reverse translation, table values (continued)

Application Value Standard Value

22 DD

22 EE

The procedures for creating Forward Translation tables and Reverse Translation tables

are exactly the same.

Creating a new translation table

Create a new translation table when you need to substitute values supported by your

application for values supported by the trading partner’s. You can also need to create a

translation table to substitute values supported by your application and EDI standard

transactions.

In the following procedure:

v If you are creating a Forward Translation Table, first group refers to the Source

Variable group box.

v If you are creating a Reverse Translation Table, first group refers to the EDI

Standards Value group box.

v If you are creating a Forward Translation Table, second group refers to the Target

Variable group box.

v If you are creating a Reverse Translation Table, second group refers to the Data

Format Value group box.

 1. In the Mapping list window, click either the Forward Translation tab or the

Reverse Translation tab.

 2. Click New on the tool bar.

The General opens.

 3. Type in a name for the translation table.

Notes:

a. This value must be unique among Forward Translation Tables, Reverse

Translation Tables, and Code Lists.

b. The name is displayed in uppercase letters.

c. You cannot type spaces within the name.

d. The name can be up to 8 characters long and can contain alphanumeric

characters and any of the special characters “!@#$%&*()_-+=’:;<,>.?”.

 4. Enter a description for the translation table. This field is optional.

 5. In the first group of the editor, select a data type from the Data Type list. This field

identifies the type of data that can be contained in the values. It can be either:

v Character—All characters.

v Numeric—Only numbers (0–9).

 6. In the first group, specify the maximum length of the value.

Translation tables

214 Mapping Guide

7. In the second group of the editor, select a data type from the Data Type list. This

field identifies the type of data that can be contained in the values. It can be either:

v Character – All characters.

v Numeric – Only numbers (0–9).

 8. In the second group, specify the maximum length of the value.

Note: The combined length of the lengths from the first and second group cannot

exceed 68 characters.

 9. Click New to add entries to the translation table.

10. To define the entry:

v For Forward Translation tables, enter a source value and its corresponding

target value.

v For Reverse Translation tables, enter an EDI Standards value and its

corresponding Data Format value.

11. At this point you have two options:

v To add the entry and continue adding entries, click Insert and return to step 10.

v To add the entry and close the editor, click OK. The entry is added to the list

and the editor closes.

12. Click Save on the editor tool bar to save the translation table.

Specifying send and receive usages

When you have completed a map, you must associate it with a trading partner or

trading partners. WebSphere Data Interchange calls those associations send usages or

receive usages, or jointly usages. Send usages are also referred to as Send map

usages. Receive usages are also referred to as Receive map usages.

Applying the minimal trading partners concept

The concept of minimal trading partners attempts to reduce the amount of time spent

on administrative functions of EDI. The traditional WebSphere Data Interchange was

based on the idea that each trading partner would be identified to the product through a

trading partner profile and a send usage or receive usage. Thus, a WebSphere Data

Interchange installation with tens of thousands of trading partners would require an

equal number of profiles and usages, even though the options were identical. The

WebSphere Data Interchange concept of generic usages reduces the administrative

impact of this model, but does not completely meet all its needs. Some installations do

not need a setup for a trading partner, relying on post-translator processes to validate

EDI transactions. WebSphere Data Interchange uses a combination of techniques and

terminology to accommodate this minimal administrative model.

Applying the minimal trading partners concept, usages enable you to specify the same

transaction mapping for several trading partners and provide specific overrides for each

trading partner. This gives you the capability to use a single map for several different

trading partners. Each send or receive usage instructs WebSphere Data Interchange

Translation tables

Chapter 13. Send and Receive mapping 215

Client which components of the map are used and which are overridden for that

particular trading partner. See WebSphere Data Interchange for MultiPlatforms User's

Guide, SC34-6215-01 for more information.

The following procedures can be carried out from the trading partner windows as well

as the mapping windows.

Viewing usages

To view usages:

1. In the Mapping list window, click the map for which you want to view usages, or go

to the editor for that map.

2. Click View Usages on the tool bar.

WebSphere Data Interchange Client runs a query that displays the Usages list

window, which contains one tab. The Send Map Usages opens if the map is a

Send map. It displays a list of Send Usages associated with the map. The Receive

Map Usages opens if the map is a Receive map. It displays a list of Receive

Usages associated with the map.

Creating a Send map usage

Create a new send usage after you create a new send and need to associate an

existing trading partner with the map. You can also create usages to associate trading

partners with existing maps. Figure 12 shows the Send Map Usage editor.

 To create a Send map usage:

 1. Open the Send Map Usages list window. This can be accomplished by any of the

following means:

v Select the Open Functional Area action on the File menu. This opens the Open

Functional Area dialog. Select Rules and Usages and then click OK. The Rules

and Usages Functional Area window will open containing list windows for Map

Figure 12. Send Map Usage editor

Send and receive usages

216 Mapping Guide

Rules, Send Map Usages, and Receive Map Usages. Click on the Send Map

Usages tab to display the Send Map Usages list window. The list window will

contain a list of all Send Map Usages selected by the current Query. Alternately

you can click Rules and Usages on the navigator bar to open the Rules and

Usages Functional Area window.

v Select the Open Query List action on the File menu. This will open the Query

list window dialog. Select the Rules and Usages Functional Area, and then

select Send Map Usages. Finally, select the Query you wish to execute and

click Run. A window will open containing the Send Map Usages list window. The

list window will contain a list of all Send Map Usages selected by the Query.

v Open the Send Maps list window by clicking Mapping on the WebSphere Data

Interchange Client navigation bar. Click on the Send Maps tab to display the

Send Maps list window. Select the Send Map associated with the Send Map

Usage you wish to create. Click Rules and Usages on the toolbar or select

Rules and Usages from the Actions menu. A window will open containing the

Send Map Usages list window. It will contain a list of all Send Map Usages

associated with the selected Send Map.

v Open the Trading Partners list window by clicking Trading Partner on the

WebSphere Data Interchange Client navigation bar. Click on the Trading

Partners tab to display the Trading Partners list window. Select the Trading

Partner profile associated with the Send Map Usage you wish to create. Click

Rules and Usages on the toolbar or select Rules and Usages from the Actions

menu. A window will open containing the Send Map Usages list window. It will

contain a list of Send Map Usages associated with the selected Trading Partner

profile.

 2. Click New on the list window toolbar. The Send Map Usage editor is opens with

the General tab in front.

 3. Select the name of the map to associated with this Send Map Usage.

Note: When you select a map, then the Data Format Name field are filled in

automatically using the map’s source document. This cannot be changed.

When the Send Map Usages list window is opened from the Send Maps list

window or the Send Map editor, the Map Name and Data Format Name

fields are filled in and cannot be changed .

 4. Enter an internal trading partner ID if required.

Begin this field with an ampersand (&) followed by blanks or a three character

routing code if you are defining a generic Send Map Usage.

This field identifies the name of trading partner whom you will send the

Transaction. This is usually a vendor or customer number that your application

uses to see the trading partner where the Transaction is being sent. An internal

trading partner ID obtained from the source document at the beginning of the

translation process can be used to help determine which Send Map Usage is used

to identify the Send Map used to translate the source document. It can also help to

identify the Trading Partner profile representing the receiving trading partner.

 5. Select the name of the Receiving Trading Partner profile.

If you are going to create a generic Send Map Usage, leave the receiving Trading

Partner profile field blank.

Send and receive usages

Chapter 13. Send and Receive mapping 217

Note: When the Send Map Usages list window is opened from the Trading

Partners list window or the Trading Partner editor, this field might be

pre-filled with the name of the selected Trading Partner profile. This occurs

when the selected Trading Partner profile is trading partner type EDI

Trading Partner. You will not be able to change this value in this case.

 6. Select the name of the Sending Trading Partner profile.

Note: When the Send Map Usages list window is opened from the Trading

Partners list window or the Trading Partner editor, this field might be

pre-filled with the name of the selected Trading Partner profile. This occurs

when the selected Trading Partner profile is trading partner type Application

Trading Partner. You will not be able to change this value in this case.

 7. In the Usage Indicator pane of the tab, indicate whether the Send Map Usage is

used when the source document is a production, test, or information document.

The value of this field is used to set a flag in the EDI Standard Envelope when the

created Transaction is enveloped. This field is also used to help determine which

Send Map Usage is used to identify which Send Map is used to translate the

source proprietary document. Documents being translated are classified as

production, test or information documents. For Data Formats, classification is

determined from a flag on the C record, when using C and D records. When using

raw data format data formats, classification is production unless the RAWUSAGE

keyword is present in the PERFORM command.

 8. Indicate if a functional acknowledgement is expected from the trading partner. The

outbound EDI document is reconciled with the inbound functional

acknowledgement if the Document Store is active.

A marked Acknowledgement Expected check box indicates that the outbound EDI

data as expecting a functional acknowledgement returned from the Trading

Partner. An unmarked check box indicates that a functional acknowledgement is

not expected from the Trading Partner.

 9. Indicate whether you want WebSphere Data Interchange to save an image of the

application data in the Event Log.

A marked Log Application Data check box indicates that generated application data

is logged to the Event Log. An unmarked check box indicates that generated

application data is not logged to the Event Log.

10. Indicate if the Send Map Usage is active. Inactive Send Map Usages are not used

when trying to determine what Send Map is used to translate a document.

When the internal trading partner ID is not blank, there can only be one active

Send Map Usage with the same document, sending Trading Partner profile,

internal trading partner ID, and usage indicator combination. When the internal

trading partner ID is blank, there can only be one active Send Map Usage with the

same document, sending Trading Partner profile, receiving Trading Partner profile,

internal trading partner ID, and usage indicator combination.

11. Select the Exit Routines tab and complete the fields as necessary. See Table 31

on page 219 for descriptions of the fields on this tab.

The Exit Routines tab page of the Send Map Usage editor holds information

related to a post-translation exit routine that can be called. Group and Transaction

level authentication and encryption keys can also be provided on this tab page is a

Send and receive usages

218 Mapping Guide

user written authentication or encryption routine will be used.

 Table 31. Send map usages Exit Routines tab fields descriptions

Field Description

Post-Translation Exit

Routine

This field can be used to indicate the WebSphere Data Interchange is

supposed to call a user-written exit routine after translating the

document.

If a post-translation exit routine is called, select the name of a User Exit

profile from the list. The User Exit profile identifies the exit routine that

will be called. Only User Exit profiles identified as post-translation exit

routines will be listed in the list.

See the WebSphere Data Interchange for MultiPlatforms Programmer's

Reference Guide, SC34-6217-01 for additional information about exit

routines.

Group Encryption Key If you are using a user-written encryption routine, use this field to enter

the encryption key that WebSphere Data Interchange puts in the group

security Segments and passes to a user-written encryption routine.

The field can contain up to 16 characters in any combination of A–Z,

0–9 and any of the special characters “!@#$%&*()_-+=’:;<,>.?/”.

Group Authentication

Key

If you are using a user-written authentication routine, use this field to

enter the authentication key that WebSphere Data Interchange puts in

the group security Segments and passes to a user-written

authentication routine.

Transaction Encryption

Key

If you are using a user-written encryption routine, use this field to enter

the encryption key that the WebSphere Data Interchange puts in the

Transaction set security Segments and passes to a user-written

encryption routine.

Transaction

Authentication Key

If you are using a user-written authentication routine, use this field to

enter the name of the authentication key that the WebSphere Data

Interchange puts in the Transaction set security Segments and passes

to a user-written authentication routine.

12. Select the Envelope Attributes tab and complete the fields as necessary. See

Table 32 on page 220 for descriptions of the fields on this tab.

The Envelope Attributes tab holds information related to EDI Standard

Envelopes. Some of the information about this tab is used to override the default

EDI Standard Envelope that normally would be generated for a target EDI

Standard Transaction. Typically, you want to provide the name of an Envelope

Profile

Send and receive usages

Chapter 13. Send and Receive mapping 219

Table 32. Send map usages Envelope Attributes tab field descriptions

Field Description

Envelope Type This field is used to identify the type of EDI Standard Envelope that will

be generated for the target EDI Standard Transaction when an envelope

is created for it. Valid values are:

v UN/EDIFACT

v ICS - Interchange Control Structures

v UN/TDI - Trade Data Interchange

v UCS - Uniform Communication Standard

v X12

v Dictionary Created from an XML DTD

v No Interchange Envelope Will Be Used

v Default Envelope

EDI Standard Transactions that are a part of the ICS, UCS, and X12

EDI standards can be sent without an interchange envelope.

A blank value is equivalent to the Default Envelope value.

If Default Envelope is selected, the envelope type identified by the EDI

Standard Dictionary associated with the EDI Standard Transaction is

used. A value other than Default Envelope overrides the value in the

EDI Standard Dictionary.

Dictionary Created from an XML DTD is used to identify EDI Standard

Dictionaries that were created from an XML DTD. This is a function

used to support XML to Data Format translation using Send Maps and

Receive Maps.

Send and receive usages

220 Mapping Guide

Table 32. Send map usages Envelope Attributes tab field descriptions (continued)

Field Description

Envelope Profile Name This field contains the name of the Envelope Profile that is used to

provide some values when the EDI Standard Envelope is generated for

the target EDI Standard Transaction.

The values that appear in this list are based upon the value contained

the Envelope Type field. When the Envelope Type field indicates that a

UN/EDIFACT envelope will be used, this field will list all E Envelope

profiles. I Envelope profiles are listed when the Envelope Type field

indicates that an ICS envelope will be used. When the Envelope Type

field specifies that a UN/TDI envelope will be used, this field will list all

T Envelope profiles. When the Envelope Type field indicates that a UCS

envelope will be used, this field will list all U Envelope profiles. All X

Envelope profiles will be listed when the Envelope Type field indicates

that an X12 envelope will be used. This field is disabled when the

Envelope Type field indicates that the default envelope or the envelope

will not include the interchange portion of the envelope.

Select the Envelope profile to use when creating an Envelope related to

the target EDI Standard Transaction. If the field is left blank, the

Envelope profile with the same name as the EDI Standard Dictionary

associated with the target EDI Standard Transaction will be used.

A generic Envelope profile name can be specified in this field. You can

specify a generic Envelope profile name by entering an ampersand (&)

followed by a 1 to 6 character base name. During translation, the

Envelope profile suffix from the Trading Partner profile will be appended

to the base name to dynamically determine the name of the Envelope

profile to use when enveloping the document.

Application Sender ID The sender ID identifies the specific sender of the document, such as a

department number.

The value specified in this field is used as the sender ID in the

functional group header of the EDI Standard Envelope that might be

generated for the target EDI Standard Transaction. The sender ID maps

to the EDI Standard Data Element with data type AS. A value entered

here overrides the sender ID specified in the Envelope profile. Providing

an application sender ID in the C record (when using C and D records)

overrides the sender ID in the Envelope profile and any value specified

in this field.

Application Receiver ID The receiver ID identifies the specific receiver of the document, such as

a department number.

The value specified in this field is used as the receiver ID in the

functional group header of the EDI Standard Envelope that might be

generated for the target EDI Standard Transaction. The receiver ID

maps to the EDI Standard Data Element with data type AR. A value

entered here overrides the receiver ID specified in the Envelope profile.

Providing an application receiver ID in the C record (when using C and

D records) overrides the receiver ID in the Envelope profile and any

value specified in this field.

Send and receive usages

Chapter 13. Send and Receive mapping 221

Table 32. Send map usages Envelope Attributes tab field descriptions (continued)

Field Description

Application Password This field is used as the password in the functional group header of the

EDI Standard Envelope that might be generated. The password maps to

the EDI Standard Data Element with data type PW. A value entered

here overrides the password specified in the Envelope profile.

Group Security Select the name of the Network Security profile that contains the

information needed by WebSphere Data Interchange at the functional

group level to:

v Build security segments.

v Call user-written exit routines for security and data compression.

A value entered here overrides the Network Security Profile specified in

the Trading Partner profile.

Transaction Security Select the name of the Network Security profile that contains the

information needed by WebSphere Data Interchange at the Transaction

set level to:

v Build security Segments.

v Call user-written exit routines for security and data compression.

A value entered here overrides the Network Security Profile specified in

the Trading Partner profile.

13. Select the WDI Options tab. Identify any processing options that are used when

processing a document using this Send Map Usage. See Table 33 for descriptions

of the fields on this tab.

 Table 33. Send map usages WDI options tab field descriptions

Fields Description

Validation Level Use this field to indicate the level of automatic validation you would like

performed during the translation. The valid values are:

Value Meaning

Only Mandatory Validation

No additional validation over the mandatory validation done by

WebSphere Data Interchange to convert data between the source

data type and the EDI Standard data type. With this level of

validation, any Code Lists specified in the Send Map or in an EDI

Standard Data Element are ignored.

Mandatory Validation Plus Code Lists

Includes mandatory validation plus the use of the Code Lists

specified in the Send Map and in EDI Standard Data Elements.

Mandatory Validation Plus Code Lists Plus Data Type Verification

Includes mandatory validation plus the use of the Code Lists

specified in the Receive Map and in EDI Standard Data Elements. In

addition, verification that the data values supplied are consistent with

the Data Element’s data type. For instance, use this level of validation

to verify that a Data Element that is supposed to contain a date has a

valid date, or a numeric Data Element contains numeric data only.

Send and receive usages

222 Mapping Guide

Table 33. Send map usages WDI options tab field descriptions (continued)

Fields Description

Acceptable

Error Level

Use this field to indicate what level of error will be acceptable for a translation

to be considered successful. Valid values are:

v Allow only translations with no errors.

v Allow a translation that has no error or has only Data Element errors.

v Allow a translation that has no error, has Segment errors, or has Data

Element errors.

Alphanumeric

Data Validation

Table

This field is used to specify the name of an alternate alphanumeric data

validation table that is to be used for validating alphanumeric character data

during translation. The table identified in this field contains a subset of the

characters found in the character data validation table. If an alphanumeric data

validation table is specified in this field, it will be used for the translation instead

of the default alphanumeric data validation table. When this field is blank, the

default alphanumeric data validation table will be used.

The alphanumeric data validation table is defined as a Code List in the EDI

Standards Functional Area. ALPHANUM is the name of the default table

provided by WebSphere Data Interchange. The default table can be overridden

by specifying the name of an alternate alphanumeric data validation table in the

Application Defaults profile. An alphanumeric data validation table specified in

the Application Defaults profile will become the default table.

For performance considerations, this field must have limited use. This is

because it takes time to load an alphanumeric data validation table. When this

field is used, the data validation table will replace the default alphanumeric data

validation table in memory. After translation has been completed, there is a

likelihood that the default alphanumeric data validation table, or another

alphanumeric data validation table, will need to be loaded.

This field is only used when the validation level is set to 2. Essentially, this table

is used to define the set of valid characters for the alphanumeric data type

(data type “AN”).

Send and receive usages

Chapter 13. Send and Receive mapping 223

Table 33. Send map usages WDI options tab field descriptions (continued)

Fields Description

Character Data

Validation Table

This field is used to specify the name of an alternate character data validation

table that is to be used for validating character data during translation. If a

character data validation table is specified in this field, it will be used for the

translation instead of the default. When this field is blank, the default character

data validation table will be used.

The character data validation table is defined as a Code List in the EDI

Standards Functional Area. CHARSET is the name of the default table provided

by WebSphere Data Interchange. The default table can be overridden by

specifying the name of an alternate character data validation table in the

Application Defaults profile. A character data validation table specified in the

Application Defaults profile will become the default table.

For performance considerations, this field must have limited use. This is

because it takes time to load a character data validation table. When this field

is used, the data validation table will replace the default character data

validation table in memory. After translation has been completed, there is a

likelihood that the default character data validation table, or another character

data validation table, will need to be loaded.

This field is only used when the validation level is set to 2. Essentially, this table

is used to define the set of characters that can appear in an EDI Standard

Transaction, excluding delimiters.

Enforce Record

Hierarchy

Use this check box to indicate whether you want WebSphere Data Interchange

to issue an error if application data is passed to WebSphere Data Interchange

out of the hierarchical sequence defined by the Data Format. A marked check

box indicates that an error is issued when application data is passed to

WebSphere Data Interchange out of the hierarchical sequence defined by the

Data Format. An unmarked check box indicates an error is not issued under

this condition.

When marked, WebSphere Data Interchange automatically creates as many

parent components as necessary to satisfy the hierarchical definition. The

created components will be initialized with blanks.

WebSphere Data Interchange will not issue an error for components that only

exist for grouping other components. If a component does not contain any

Fields, then its absence will not result in an error.

Record Must

Produce Data

Use this check box to indicate whether WebSphere Data Interchange issues an

error if either of the following occurs:

v A Data Format Record associated with a loop or repeating Segment was

provided, but it did not generate any data as output. For example, if all the

Data Format Fields in the Record mapped to the EDI Standard Segment

contained blank values.

v A Data Format Record is provided and that Record is the sole source of data

for an EDI Standard Segment but no standard data was generated.

A marked check box indicates that an error is issued. An unmarked check box

indicates that an error is not issued.

Note: This field is not used if you are using special hierarchical loop support.

Send and receive usages

224 Mapping Guide

Table 33. Send map usages WDI options tab field descriptions (continued)

Fields Description

Control

Numbers by

Transaction ID

When the Control Numbers by Transaction ID field is marked, WebSphere Data

Interchange will assign control numbers based on the values for the

sender/receiver pairing and specific EDI Standard Transaction combination

being processed. If the box is not marked, control numbers are assigned based

on the sender/receiver pairing alone.

14. Click Save on the toolbar. WebSphere Data Interchange saves the new Send Map

Usage to the System.

15. Close the editor when you are done.

Creating a receive usage

In most cases, you do not need to create a Receive Map. Instead, you create a Data

Transformation Map. Data Transformation Maps have effectively replaced Receive

Maps. Receive Maps remain are supported for compatibility with earlier version of

WebSphere Data Interchange only. You can still create Receive Maps if you need to.

However, there might come a point in time when Receive Maps must be converted to

Data Transformation Maps. Receive Maps transform an EDI Standard Transaction into

a proprietary Data Format document. Often, an existing map can be used with

conditional mapping commands to produce similar documents with minor variations,

perhaps based on the trading partner the source document is being received from. If

there is no similar existing map, then a new map must be created. Figure 13 shows the

Send Map Usage editor.

 To create a Receive map usage:

 1. Open the Receive Map Usages list window. This can be accomplished by any of

the following means:

v Select the Open Functional Area action on the File menu. This opens the Open

Functional Area dialog. Select Rules and Usages and then click OK.

Figure 13. Receive Map Usage editor

Send and receive usages

Chapter 13. Send and Receive mapping 225

The Rules and Usages Functional Area window will open containing list

windows for Map Rules, Send Map Usages, and Receive Map Usages. Click on

the Receive Map Usages tab to display the Receive Map Usages list window.

The list window contains a list of all Receive Map Usages selected by the

current Query.

Alternately you can click Rules and Usages on the navigator bar to open the

Rules and Usages Functional Area window.

v Select the Open Query List action on the File menu. This will open the Query

list window dialog. Select the Rules and Usages Functional Area, and then

select Receive Map Usages. Finally, select the Query you wish to execute and

Run.

A window opens containing the Receive Map Usages list window. The list

window contains a list of all Receive Map Usages selected by the Query.

v Open the Receive Maps list window by clicking Mapping on the WebSphere

Data Interchange Client navigation bar. Click on the Receive Maps tab to

display the Receive Maps list window. Select the Receive Map associated with

the Receive Map Usage you wish to create. Click Rules and Usages on the

toolbar or select Rules and Usages from the Actions menu.

A window opens containing the Receive Map Usages list window. It contains a

list of all Receive Map Usages associated with the selected Send Map.

v Open the Trading Partners list window by clicking Trading Partner on the

WebSphere Data Interchange Client navigation bar. Click on the Trading

Partners tab to display the Trading Partners list window. Select the Trading

Partner profile associated with the Receive Map Usage you wish to create. Click

Rules and Usages on the toolbar or select Rules and Usages from the Actions

menu.

A window opens containing the Receive Map Usages list window. It contains a

list of Receive Map Usages associated with the selected Trading Partner profile.

 2. Click New on the list window toolbar.

The Receive Map Usage editor opens with the General tab in front.

 3. On the General tab, select the name of the map that to associated with this

Receive Map Usage.

Note: When you select a map, then the Transaction field is filled in automatically

using the map’s source document. This cannot be changed. When the

Receive Map Usages list window is opened from the Receive Maps list

window or the Receive Map editor, the Map Name and Transaction fields

are filled in and cannot be changed .

 4. Enter an internal trading partner ID. This field is optional.

 5. Select the name of the sending Trading Partner profile.

Set this field to an ampersand (&) when a generic Receive Map Usage is being

defined.

Note: This field is pre-filled with the name of the selected Trading Partner profile

when the selected Trading Partner profile is trading partner type EDI trading

partner. You cannot change the value in this case. When the Receive Map

Send and receive usages

226 Mapping Guide

Usages list window is opened from the Trading Partners list window or the

Trading Partner editor, this field might be pre-filled with the name of the

selected Trading Partner profile. This occurs when the selected Trading

Partner profile is trading partner type EDI Trading Partner. You will not be

able to change this value in this case.

 6. Select the name of the receiving Trading Partner profile.

Note: When the Receive Map Usages list window is opened from the Trading

Partners list window or the Trading Partner editor, this field is pre-filled with

the name of the selected Trading Partner profile. This occurs when the

selected Trading Partner profile is trading partner type “Application Trading

Partner”. You cannot be able to change this value in this case.

 7. In the Usage Indicator pane of the tab, indicate whether the Receive Map Usage is

used when the source Transaction is a production, test, or information document.

This field is used to help determine which Receive Map Usage is used to identify

the Receive Map to use to translate the source Transaction. Documents being

translated are classified as production, test or information documents. For a

Transaction, the classification is determined from a flag in the EDI Standard

Envelope associated with the Transaction.

Note: A production Receive Map Usage can be used for test Transactions or

information Transactions when the Production Usage - Test Message check

box in the Application Defaults profile is marked.

 8. Indicate whether you want WebSphere Data Interchange to save an image of the

application data in the Event Log.

A marked Log Application Data check box indicates that generated application data

is logged to the Event Log. An unmarked check box indicates that generated

application data is not logged to the Event Log.

 9. Indicate if the Receive Map Usage is active. Inactive Receive Map Usages are not

used when trying to determine what Receive Map is used to translate a document.

A Receive Map Usage can be active or inactive. Inactive Receive Map Usages are

used when determining which Receive Map to use in the translation of a

document. For each document, sending Trading Partner profile, receiving Trading

Partner profile, application sender and receiver ID, release, version, and

responsible agency code combination, there can only be one active production

Receive Map Usage, one active test Receive Map Usage, and one active

information Receive Map Usage. During translation, a search is performed to

locate an active Receive Map Usage with a classification corresponding to the

source Transaction. An error is issued during translation if an active Receive Map

Usage for the source Transaction cannot be located.

10. In the Application Routing pane of the tab, enter information into the fields if these

fields are to be used to help determine which Receive Map Usage is to be used to

translate the source Transaction. See Table 34 on page 228 for a description of the

fields.

Send and receive usages

Chapter 13. Send and Receive mapping 227

Table 34. Application Routing field descriptions

Field Description

Sender ID The application sender ID identifies the specific sender of the Transaction

within the trading partner, such as a department number. If you enter a

value in this field, do not enter a value in the application receiver ID field.

When a Transaction is going to be translated, WebSphere Data

Interchange looks for a Receive Map Usage with a matching application

sender ID to help determine the correct Receive Map Usage. If there is

no matching Receive Map Usage found, WebSphere Data Interchange

looks for a Receive Map Usage with a matching application receiver ID to

help determine the correct Receive Map Usage. If no matching Receive

Map Usage is found, WebSphere Data Interchange uses a blank

application sender and receiver ID to determine the correct Receive Map

Usage. Therefore, you can define several active Receive Map Usages

based on who the application sender ID or application receiver ID.

v If functional groups are present in the interchange being received, the

application sender ID is taken from the Data Element with the data type

AS.

v If functional groups are not present, the application sender ID is taken

from the Data Element with data type RS.

v If the Data Element with data type RS is defined but contains blanks or

contains no data, the application sender ID is taken from the Data

Element with data type IS.

v If the Data Element with data type RS is not defined, the application

sender ID is taken from the Data Element with data type AS.

v If the Data Element with data type AS is not defined, the application

sender ID is taken from the Data Element with data type IS.

For existing Receive Map Usages, this field cannot be changed. If you

need to change this field on an existing Receive Map Usage, you must

copy the Receive Map Usage and then delete the original Receive Map

Usage. This field can be changed when copying a Receive Map Usage.

Send and receive usages

228 Mapping Guide

Table 34. Application Routing field descriptions (continued)

Field Description

Receiver ID The receiver ID identifies the specific receiver of the translated document

within your company, such as a department number. If you enter a value

in this field, do not enter a value in the application sender ID field.

When a Transaction is going to be translated, WebSphere Data

Interchange looks for a Receive Map Usage with a matching application

sender ID to help determine the correct Receive Map Usage. If there is

no matching Receive Map Usage found, WebSphere Data Interchange

looks for a Receive Map Usage with a matching application receiver ID to

help determine the correct Receive Map Usage. If no matching Receive

Map Usage is found, WebSphere Data Interchange uses a blank

application sender and receiver ID to determine the correct Receive Map

Usage. Therefore, you can define several active Receive Map Usages

based on who the application sender ID or application receiver ID.

v If functional groups are present in the interchange being received, the

application receiver ID is taken from the Data Element with the data

type AR.

v If functional groups are not present, the application receiver ID is taken

from the Data Element with data type RR.

v If the Data Element with data type RR is defined but contains blanks

or contains no data, the application receiver ID is taken from the Data

Element with data type IR.

v If the Data Element with data type RR is not defined, the application

receiver ID is taken from the Data Element with data type AR.

v If the Data Element with data type AR is not defined, the application

receiver ID is taken from the Data Element with data type IR.

For existing Receive Map Usages, this field cannot be changed. If you

need to change this field on an existing Receive Map Usage, you must

copy the Receive Map Usage and then delete the original Receive Map

Usage. This field can be changed when copying a Receive Map Usage.

Release field Use this field in addition to the application sender ID or application

receiver ID fields to provide different Receive Map Usage selection

capabilities. It is expected, but not necessary, that this field is combined

with the agency and version fields so that a different Receive Map Usage

can be selected based on the defining agency, release and version of the

Transaction being translated.

For example, it is possible to have a separate map for a TDCC version 3

810 and an X12 version 3 810 from the same trading partner. The data

entered into this field must exactly match the release when taken from the

Transaction being translated other than trailing blanks, which are not

significant.

For existing Receive Map Usages, this field cannot be changed. If you

need to change this field on an existing Receive Map Usage, you must

copy the Receive Map Usage and then delete the original Receive Map

Usage. This field can be changed when copying a Receive Map Usage.

Send and receive usages

Chapter 13. Send and Receive mapping 229

Table 34. Application Routing field descriptions (continued)

Field Description

Version Use this field in addition to the application sender ID or application

receiver ID fields to provide different Receive Map Usage selection

capabilities. It is expected, but not necessary, that this field will be

combined with the release and agency fields so that a different Receive

Map Usage can be selected based on the defining agency, release and

version of the Transaction being translated.

For example, it is possible to have a separate map for a TDCC version 3

810 and an X12 version 3 810 from the same trading partner. The data

entered into this field must exactly match the version when taken from the

Transaction being translated other than trailing blanks, which are not

significant.

For existing Receive Map Usages, this field cannot be changed. If you

need to change this field on an existing Receive Map Usage, you must

copy the Receive Map Usage and then delete the original Receive Map

Usage. This field can be changed when copying a Receive Map Usage.

Responsible Agency

Code

Use this field in addition to the application sender ID or application

receiver ID fields to provide different Receive Map Usage selection

capabilities. It is expected, but not necessary, that this field will be

combined with the release and version fields so that a different Receive

Map Usage can be selected based on the defining agency, release and

version of the Transaction being translated.

For example, it is possible to have a separate map for a TDCC version 3

810 and an X12 version 3 810 from the same trading partner. The data

entered into this field must exactly match the agency when taken from the

Transaction being translated other than trailing blanks, which are not

significant. For existing Receive Map Usages, this field cannot be

changed. If you need to change this field on an existing Receive Map

Usage, you must copy the Receive Map Usage and then delete the

original Receive Map Usage. This field can be changed when copying a

Receive Map Usage.

11. Identify the Envelope Profile if a functional acknowledgement is required.

The values that appear in this list are based upon the EDI Standard Transaction

that is being translated. When the Transaction is UN/EDIFACT (UNB/UNZ), this

field will list all E Envelope profiles. I Envelope profiles are listed when Transaction

is Interchange Control Segments (ICS/ICE). When the Transaction is Trade Data

Interchange (STX/END), this field will list all T Envelope profiles. When the

Transaction is Uniform Communication Standard (BG/EG), this field will list all U

Envelope profiles. All X Envelope profiles will be listed when the Transaction is X12

(ISA/IEA).

Select the Envelope profile to use when creating an Envelope related to the

functional acknowledgement generated for the received EDI Standard Transaction.

If the field is left blank, the Envelope profile with the same name as the EDI

Standard Dictionary associated with the source EDI Standard Transaction will be

used.

Send and receive usages

230 Mapping Guide

A generic Envelope profile name can be specified in this field. You can specify a

generic Envelope profile name by entering an ampersand (&) followed by a 1 to 6

character base name. During translation, the Envelope profile suffix from the

Trading Partner profile will be appended to the base name to dynamically

determine the name of the Envelope profile to use when enveloping the document.

12. Identify which functional acknowledgement to generate in the Acknowledgement

Type field if a functional acknowledgement is required.

13. Indicate if an outbound EDI functional acknowledgement is generated for inbound

EDI data. A group level only functional acknowledgement is generated if no errors

exist in the inbound EDI data.

Note: This field is only available after a an acknowledgement type is selected in

the Acknowledgement Type field.

A marked Group Level Acknowledgement only check box indicates that an

outbound EDI functional acknowledgement is generated. An unmarked check box

indicates that no acknowledgement is generated.

14. Click on the Attributes tab and complete any required fields there. See Table 35 on

page 232 for a description of the fields.

Send and receive usages

Chapter 13. Send and Receive mapping 231

Table 35. Receive map usages Attributes tab field descriptions

Field Description

Document Destination

Type

This field along with the Document Destination Name field identifies

the destination of the output document. For all platforms, the output

document can be written to a file or to a WebSphere MQ message

queue. In addition, the CICS platform can invoke an application to

process the output document.

A value here overrides the Document Destination Type field in the

Data Format.

The Receive Map used to translate the Transaction can specify what

happens to the resulting document. This occurs when a value is

specified in the DIAPPTYPE special variable. If a value occurs in the

variable, it overrides the value specified here and in a Data Format.

You can select a value to indicate the type of destination that is used

for documents produced using this Receive Map Usage if you wish

to specify a default output destination.

All values apply to the WebSphere Data Interchange Server on the

CICS platform. For all other server platforms, WebSphere MQ

Message Queue is the only applicable value. If this field is left blank

in CICS, the default is Temporary Storage Queue (Auxiliary Storage).

A blank value on a z/OS system indicates the output document is

written to a file and the value in the Document Destination Name

field identifies a ddname. For all other platforms, a blank value

indicates the output document is written to a file and the value in the

Document Destination Name field identifies a logical file name.

Specifying a value that is not applicable for the platform the

WebSphere Data Interchange Server is running on results in the

output document being written to a file.

If the value in this field indicates a WebSphere MQ message queue

is used, then the Document Destination Name field identifies the

name of a MQSeries Queue profile. The MQSeries Queue profile

identifies the WebSphere MQ message queue used to write the

document during translation.

On the CICS platform, the document can be routed to a response

program or response transaction. These are CICS applications

designed to accept and process the output document produced by

WebSphere Data Interchange. Select CICS Program Name to

indicate the Document Destination Name field identifies the name of

a CICS program. Select CICS Transaction ID to indicate the

Document Destination Name field identifies the name of a CICS

transaction. See the WebSphere Data Interchange for MultiPlatforms

Programmer's Reference Guide, SC34-6217-01for more information

about response programs and response transactions.

Send and receive usages

232 Mapping Guide

Table 35. Receive map usages Attributes tab field descriptions (continued)

Field Description

Document Destination

Type

This field along with the Document Destination Name field identifies

the destination of the output document. For all platforms, the output

document can be written to a file or to a WebSphere MQ message

queue. In addition, the CICS platform can invoke an application to

process the output document.

A value here overrides the Document Destination Type field in the

Data Format.

The Receive Map used to translate the Transaction can specify what

happens to the resulting document. This occurs when a value is

specified in the DIAPPTYPE special variable. If a value occurs in the

variable, it overrides the value specified here and in a Data Format.

You can select a value to indicate the type of destination that is used

for documents produced using this Receive Map Usage if you wish

to specify a default output destination.

All values apply to the WebSphere Data Interchange Server on the

CICS platform. For all other server platforms, WebSphere MQ

Message Queue is the only applicable value. If this field is left blank

in CICS, the default is Temporary Storage Queue (Auxiliary Storage).

A blank value on a z/OS system indicates the output document is

written to a file and the value in the Document Destination Name

field identifies a ddname. For all other platforms, a blank value

indicates the output document is written to a file and the value in the

Document Destination Name field identifies a logical file name.

Specifying a value that is not applicable for the platform the

WebSphere Data Interchange Server running on results in the output

document being written to a file.

If the value in this field indicates a WebSphere MQ message queue

is used, then the Document Destination Name field identifies the

name of a MQSeries Queue profile. The MQSeries Queue profile

identifies the WebSphere MQ message queue used to write the

document during translation.

On the CICS platform, the document can be routed to a response

program or response transaction. These are CICS applications

designed to accept and process the output document produced by

WebSphere Data Interchange. Select CICS Program Name to

indicate the Document Destination Name field identifies the name of

a CICS program. Select CICS Transaction ID to indicate the

Document Destination Name field identifies the name of a CICS

transaction. See the WebSphere Data Interchange for MultiPlatforms

Programmer's Reference Guide, SC34-6217-01 for more information

about response programs and response transactions.

Application Password This field is not used.

15. Click on the WDI Options tab. Identify any processing options that are used when

processing a Transaction using this Receive Map Usage.

Send and receive usages

Chapter 13. Send and Receive mapping 233

Table 36. Receive map usages WDI Options tab field descriptions

Field Description

Pre-Translation Exit

Routine

This field can be used to indicate that WebSphere Data Interchange is

supposed to call a user-written exit routine before translating the

document.

If a pre-translation exit routine is called, select the name of a User Exit

profile from the list. The User Exit profile identifies the exit routine that is

called. Only User Exit profiles identified as pre-translation exit routines are

listed in the list.

See the WebSphere Data Interchange for MultiPlatforms Programmer's

Reference Guide, SC34-6217-01 for additional information about exit

routines.

Validation Level Use this field to indicate the level of automatic validation you would like

performed during the translation. The valid values are:

Value Meaning

Only Mandatory Validation

No additional validation over the mandatory validation done by

WebSphere Data Interchange to convert data between the EDI

Standard data type and the target data type. With this level of

validation, any Code Lists specified in the Receive Map or in an

EDI Standard Data Element are ignored.

Mandatory Validation Plus Code Lists

Includes mandatory validation plus the use of the Code Lists

specified in the Receive Map and in EDI Standard Data

Elements.

Mandatory Validation Plus Code Lists Plus Data Type Verification

Includes mandatory validation plus the use of the Code Lists

specified in the Receive Map and in EDI Standard Data

Elements. In addition, verification that the data values supplied

are consistent with the Data Element’s data type will occur. For

instance, use this level of validation to verify that a Data

Element that is supposed to contain a date has a valid date, or

a numeric Data Element contains numeric data only.

Acceptable Error

Level

Use this field to indicate what level of error will be acceptable for a

translation to be considered successful. Valid values are:

v Allow only translations with no errors.

v Allow a translation that has no error or has only Data Element errors.

v Allow a translation that has no error, has Segment errors, or has Data

Element errors.

Send and receive usages

234 Mapping Guide

Table 36. Receive map usages WDI Options tab field descriptions (continued)

Field Description

Alphanumeric Data

Validation Table

This field is used to specify the name of an alternate alphanumeric data

validation table that is to be used for validating alphanumeric character

data during translation. The table identified in this field contains a subset

of the characters found in the character data validation table. If an

alphanumeric data validation table is specified in this field, it is used for

the translation instead of the default alphanumeric data validation table.

When this field is blank, the default alphanumeric data validation table is

used.

The alphanumeric data validation table is defined as a Code List in the

EDI Standards Functional Area. ALPHANUM is the name of the default

table provided by WebSphere Data Interchange. The default table can be

overridden by specifying the name of an alternate alphanumeric data

validation table in the Application Defaults profile. An alphanumeric data

validation table specified in the Application Defaults profile becomes the

default table.

For performance considerations, limit the use of this field. This is because

it takes time to load an alphanumeric data validation table. When this field

is used, the data validation table will replace the default alphanumeric data

validation table in memory. After translation has been completed, there is a

likelihood that the default alphanumeric data validation table, or another

alphanumeric data validation table, is loaded.

This field is only used when the validation level is set to 2. Essentially, this

table is used to define the set of valid characters for the alphanumeric

data type (data type “AN”).

Character Data

Validation Table

This field is used to specify the name of an alternate character data

validation table that is to be used for validating character data during

translation. If a character data validation table is specified in this field, it

will be used for the translation instead of the default. When this field is

blank, the default character data validation table will be used.

The character data validation table is defined as a Code List in the EDI

Standards Functional Area. CHARSET is the name of the default table

provided by WebSphere Data Interchange. The default table can be

overridden by specifying the name of an alternate character data

validation table in the Application Defaults profile. A character data

validation table specified in the Application Defaults profile will become the

default table.

For performance considerations, limit the use of this field. This is because

it takes time to load a character data validation table. When this field is

used, the data validation table will replace the default character data

validation table in memory. After translation has been completed, there is a

likelihood that the default character data validation table, or another

character data validation table, will need to be loaded.

This field is only used when the validation level is set to 2. Essentially, this

table is used to define the set of characters that can appear in an EDI

Standard Transaction, excluding delimiters.

Send and receive usages

Chapter 13. Send and Receive mapping 235

Table 36. Receive map usages WDI Options tab field descriptions (continued)

Field Description

Data Overlay Check Use this check box to indicate whether WebSphere Data Interchange

issues an error when a data overlay condition occurs. A marked check ox

indicates that an error is issued when a data overlay condition occurs. An

unmarked check box indicates that an error is not issued when a data

overlay condition occurs. Data overlay conditions can occur if:

v You are mapping data from a repeating Segment to a non-repeating

application component.

v More than one occurrence of a qualified Segment, loop, or Data

Element is received when only one is expected.

Unexpected Data

Element Check

This check box is used to indicate whether WebSphere Data Interchange

issues an error when the source Transaction includes Data Elements that

are not mapped. Mark this check box to indicate that an error occurs in

this situation. Leave the check box unmarked when no error occurs.

Unmapped Data Elements can indicate that your trading partner’s

application has changed and includes new Data Elements in mapped

Segments.

Unexpected

Segment Check

This check box is used to indicate whether WebSphere Data Interchange

issues an error when the source Transaction includes Segments that are

not mapped. Mark this check box to indicate that an error occurs in this

situation. Leave the check box unmarked when no error occurs.

Unmapped Segments can indicate that your trading partner’s application

has changed and includes new information.

Switch Application

Routing IDs on FA

When a Transaction is received in an EDI Standard Envelope, the

Envelope contains an application sender ID and application receiver ID.

When a functional acknowledgement is to be generated, WebSphere Data

Interchange can use the received application sender ID and application

receiver ID in the Envelope that is generated for the functional

acknowledgement. Mark this check box to indicate the received sender ID

and receiver ID are to be used in the envelope associated with the

functional acknowledgement. Leave this check box unmarked if the sender

ID and receiver ID used in the Envelope for the functional

acknowledgement will be provided elsewhere (such as the Envelope

profile specified for the functional acknowledgement).

If this check box is marked:

v The application sender ID in the received Envelope becomes the

application receiver ID in the Envelope generated for the functional

acknowledgement.

v The application receiver ID in the received Envelope becomes the

application sender ID in the Envelope generated for the functional

acknowledgement.

Send and receive usages

236 Mapping Guide

Table 36. Receive map usages WDI Options tab field descriptions (continued)

Field Description

Inbound Envelope

Used on FA

This check box is used to indicate whether the EDI Standard Envelope

received with the Transaction being translated is used to generate the

Envelope associated with a generated functional acknowledgement. Mark

this check box to indicate that the Envelope received with the Transaction

is to be used to generate the Envelope associated with the generated

functional acknowledgement. Leave this check box unmarked if the

Envelope associated with the functional acknowledgement is generated

normally.

If this check box is marked, the following tables indicate which elements

received in the Envelope will be moved or switched to generate the

Envelope for the functional acknowledgement:

v UN/EDIFACT (UNB/UNZ) Envelope

UNB01 to UNB01, UNB02 to UNB02, UNB03 to UNB06, UNB04 to

UNB07, UNB05 to UNB08, UNB06 to UNB03, UNB07 to UNB04,

UNB08 to UNB05, UNB15 to UNB15, UNB17 to UNB17, UNG02 to

UNG04, UNG03 to UNG05, UNG04 to UNG02, UNG05 to UNG03,

UNG09 to UNG09, UNG10 to UNG10, UNG11 to UNG11.

v Interchange Control Segments (ICS/ICE) Envelope

ICS02 to ICS02, ICS03 to ICS03, ICS04 to ICS06, ICS05 to ICS07,

GS02 to GS03, GS07 to GS07, GS08 to GS08.

v Trade Data Interchange (STX/END) Envelope

STX01 to STX01, STX02 to STX02, STX03 to STX05, STX04 to

STX06, STX05 to STX03, STX06 to STX04, STX12 to STX12.

v Uniform Communication Standard (BG/EG) Envelope

BG02 to BG03, BG03 to BG02, BG04 to BG05, BG05 to BG04, GS02

to GS03, GS03 to GS02, GS07 to GS07, GS08 to GS08.

v X12 (ISA/IEA) Envelope

ISA05 to ISA07, ISA06 to ISA08, ISA07 to ISA05, ISA08 to ISA06,

ISA11 to ISA11, ISA12 to ISA12, GS02 to GS03, GS03 to GS02, GS07

to GS07, GS08 to GS08.

The Envelope profile name specified on the Receive Map Usage will

override the values obtained from the received Envelope.

Control Numbers by

Transaction ID

When the Control Numbers by Transaction ID check box is marked,

WebSphere Data Interchange will assign control numbers based on the

values for the sender/receiver pairing and specific EDI Standard

Transaction combination being processed. If the box is not marked, control

numbers are assigned based on the sender/receiver pairing alone. Control

numbers are generated for the functional acknowledgement that might be

generated as a result of processing the source Transaction.

16. Click Save on the toolbar. WebSphere Data Interchange saves the new Receive

Map Usage to the system.

17. Close the editor when you are done.

Send and receive usages

Chapter 13. Send and Receive mapping 237

Editing send and receive usages

Edit a send or receive usage when you need to change translation specifications.

1. In the Mapping list window, click the map for which you want to edit a send or

receive usage.

2. Click View Usages on the tool bar.

Either the Send Map Usages tab or the Receive Map Usages opens. If you have

created usages for this map, the existing usages display in the list window.

3. Double-click the send or receive usage you need to edit.

The General opens.

4. Add, change, or delete entries as required.

5. When you have finished entering all values required in the send or receive usage,

click Save on the tool bar to save the send or receive usage.

Copying send or receive usages

The copy function duplicates a send or receive usage within the WebSphere Data

Interchange system in which you are working. If you want to base a new send or

receive usage on an existing one, for example, copy the existing trading send or

receive under a new name and edit it to the new specifications. You can also copy a

usage to a different map or to a new trading partner.

1. In the Mapping list window, select the map that is associated with the send or

receive usage you wish to copy.

2. Click View Usages on the tool bar.

Either the Send Map Usages tab or the Receive Map Usages opens. If you have

created usages for this map, the existing usages display in the list window.

3. Select the send or receive usage you wish to copy.

4. Select Copy from the Actions menu.

The Copy Send Usage or Copy Receive Usage window opens.

5. Select or enter new values into the field provided on the window.

6. Click OK.

WebSphere Data Interchange Client copies the send or receive usage using the

information specified on the copy window.

WebSphere Data Interchange Client copies the send or receive usage using the

information specified on the copy window. For information about deleting send or

receive usages, see WebSphere Data Interchange for MultiPlatforms User's Guide,

SC34-6215-01.

Defining generic send usages

Where multiple trading partners can use the same send usage definition and map, a

generic send usage can be defined to WebSphere Data Interchange. When combined

with a generic routing code supplied by the application, it provides the capability to

define one or more generic usages, each of which can handle multiple trading partners.

Send and receive usages

238 Mapping Guide

The generic routing code is an optional, three-character code provided by the

application to select the correct generic usage when no specific usage has been

defined for the trading partner. The Generic Routing Code can be provided in one of

three ways:

1. The Translator Control Block (TRCB) includes a three-character field for the generic

routing code. The API calls can provide the routing code in the TRCB.

2. For C and D processing, the C record includes a field for the three-character

generic routing code.

3. For raw data processing, an application field that contains the generic routing code

can be specified when defining the data format. The application field is one to three

characters. If less than three characters, the value is filled with blanks. If greater

than three characters, it is truncated to three.

When defining send usages, an Internal Trading Partner ID that begins with an

ampersand (&) indicates it is a generic usage. For a specific usage by routing code,

specify an ampersand (&) followed by the three-character generic routing code that the

application provides to select this usage.

If the application does not want to provide a routing code or does provide a routing

code but wants to select a default generic usage, the Internal Trading Partner ID can be

defined as a single (&) followed by blanks. This type of generic definition is the default

definition and is selected when no routing code is provided, or when the routing code is

provided but no specific usage is found, or when the routing code contains blanks.

The purpose of the generic routing code is to use a file containing one data format to

generate more than one type of transaction (such as purchase orders and

purchase-order changes). The generic routing code is required when the user wants to

process transactions using different maps that reference the same data format.

For example, if the user wants to process purchase orders and purchase-order change

documents that are defined using the same data format, the application can provide the

following: a routing code of POR for a purchase order and WebSphere Data

Interchange would select the usage with the Internal Trading Partner ID of &POR, which

would reference a purchase order map; and a routing code of POC for a

purchase-order change and WebSphere Data Interchange would select usage &POC,

which would reference a purchase-order change map. An additional benefit when using

this type of definition is that multiple documents can be included in the same raw data

file if they all use the same data format.

Defining generic receive usages

When transactions received from multiple trading partners can use the same mapping,

a generic receive usage can be defined to WebSphere Data Interchange to handle

multiple trading partners with a single usage and map.

When defining the generic receive usages, a trading partner nickname with only an

ampersand (&) is a special form indicating that it is a generic usage. The generic usage

is selected when the normal selection process using the trading partner nickname does

not find a receive usage.

Send and receive usages

Chapter 13. Send and Receive mapping 239

Many generic receive usages can be defined as long as one of the listed match criteria

is different (such as Application Sender, Application Receiver, Agency, Version, or

Release, production/test).

Creating fixed-to-fixed maps

Fixed-to-fixed translation is a method of translating application data from one format to

application data of another format. This requires a Send map to direct the movement of

data between data formats.

There are Mapping and Control String Export considerations. The Target Data Format

definition used to create the Standard that is used in the fixed-to-fixed mapping process

must be present in the Server Execution or Runtime data base. It is not automatically

exported with the Map or Control String and must be exported in a separate export

execution.

Note: It is recommended that a Data Transformation map be used to create a map

from a data format to a data format instead of using a Send map. When using a

Data Transformation map, you can specify the original data format definitions in

the source and target documents, avoiding the need to convert a data format to

an EDI standard.

To create a fixed-to-fixed map:

1. The target data format must be converted to an EDI standard. Begin by selecting

the target data format from the Data Format list window.

2. Select Create Standard from Data Format from the Action menu to convert the

target data format into an EDI standard.

Note: The name of the generated EDI standard is taken from the Application

File/Queue name field on the General tab of the Data Format editor. This

conversion only needs to be done once when the target data format is

defined. If the target data format changes, the Create Standard from data

format can be repeated to delete the old EDI standard and create a new one.

An EDI standard is created. You can view this using the EDI standards related list

windows and editors.

3. Create a Send map using the source data format and the target EDI standard just

created. See “Creating a send or Receive map” on page 201.

4. Create send usages as needed. See “Specifying send and receive usages” on page

215.

5. Compile the control string for the map. See “Compiling control strings” on page 116.

Send and receive usages

240 Mapping Guide

Chapter 14. Advanced send and Receive mapping

This appendix describes how to map your application data to an EDI standard

transaction set. This appendix assumes that you are familiar with your application data

layout and have already defined your application data to WebSphere Data Interchange.

It also assumes you are familiar with the EDI standard transaction set you are using.

Using accumulators

Accumulators are special fields that keep running totals or accumulate numeric data.

Accordingly, WebSphere Data Interchange’s accumulators can add data to an EDI

transaction that does not occur in an application database and vice versa. WebSphere

Data Interchange Client supports global and transaction accumulators. The scope of a

global accumulator is an entire translation session. The scope of a transaction

accumulator is a single transaction.

You can use accumulators to count occurrences of an event, such as counting the

detail line items in a purchase order to provide a hash total. You can also use

accumulators to total fields for control purposes, such as totaling the quantity field to

cross check the number of items sent or received.

Accumulators can apply to individual transactions or to all transactions in a translation

session. To map both an accumulator and a received value for the same element, use

the Repeat action to create another occurrence of the element mapping. Then map one

occurrence from the data element to a field and the other occurrence from the

accumulator to a field. Each element mapping can support up to four accumulators.

For send transactions, accumulator actions will not be processed unless one of the

following occurs:

v Data is generated for the EDI standard data element.

v The variable is mapped.

For receive transactions, accumulator actions will not be processed unless one of the

following occurs:

v The data element associated with the accumulator is received.

v The accumulator is mapped and at least the segment containing the data element is

received.

To map both an accumulator and a received value for the same data element, map the

data element to a field. Then click Repeat in the Mapping Data Element editor to create

another mapping occurrence of the data element. In the new mapping occurrence of the

data element, map from the accumulator to a field.

Accumulators have the following limitations:

v Each accumulator holds a maximum of 31 digits.

v Each data element mapping can support up to 4 accumulators.

© Copyright IBM Corp. 2007 241

v You can use up to 10 transaction accumulators for a transaction.

v You can use up to 10 global accumulators for an entire translation session.

Accumulator types

WebSphere Data Interchange supports transaction accumulators and global

accumulators, as follows.

 Table 37. WebSphere Data Interchange accumulator types

Name Type Description

T0-T9 Transaction

Accumulator

Applies only to one transaction and are reset at the beginning

of each transaction. You can use a maximum of 10 per

transaction. Each accumulator holds a maximum of 31 binary

digits.

G0-G9 Global

Accumulator

Applies to entire translation session and are reset at the

beginning of each translation session. You can use a maximum

of 10 per session. Each accumulator holds a maximum of 31

binary digits.

Accumulator actions

WebSphere Data Interchange supports the following accumulator actions.

 Table 38. Accumulator actions

This action. . . Does this:

Increment the

accumulator

Adds 1 to the value stored in the accumulator.

Map the accumulator Maps the value stored in the accumulator to the data element for

Send maps and to the application field for Receive maps.

Zero the accumulator Sets the accumulator value to 0.

Map the accumulator and

then increment it

Maps the value stored in the accumulator to the data element for

Send maps and to the application field for Receive maps, and then

adds 1 to that value.

Only one accumulator can be mapped on any given mapping.

Increment the

accumulator and then

map it

Adds 1 to the value stored in the accumulator, and then maps the

value stored in the accumulator to the data element for Send maps

and to the application field for Receive maps.

Add to the accumulator

and then map it

Adds the value of an element or field, and then maps the value

stored in the accumulator to the data element for Send maps and to

the application field for Receive maps.

Map the accumulator and

then add to it

Maps the value stored in the accumulator to the standard data

element for Send maps and to the application field for Receive maps,

and then adds the value of a data element or field to it.

Adding an accumulator to a map

You set up an accumulator through the Mapping Data Element editor, as follows.

Using accumulators

242 Mapping Guide

1. Double-click an element mapping in an EDI transaction that has been mapped to a

field from a data format.

2. Double-click a data element in an EDI transaction that has been mapped to a field

from a data format or on a field that has been mapped onto a data element.

The Mapping Data Element editor opens.

3. Select an accumulator from the Accumulators list.

Accumulator values are described in Table 37 on page 242.

4. Select an action for the accumulator from the Actions list.

Only actions that are valid for this data element or field display in the list. Actions

are described in Table 38 on page 242.

5. Complete any other mapping you need from the Mapping Data Element editor and

click OK.

For outgoing data, accumulator actions are not processed unless:

v Data is generated for the data element or segment, or

v The accumulator is mapped.

For incoming data, the accumulator actions are not processed unless:

v The data element associated with the accumulator is received, or

v The accumulator is mapped and at least the segment containing the data element is

received.

Using literals

For send transactions, literals let you supply data that is not in your application data.

For receive transactions, literals let you supply data required by your application that is

not received with the standard data. WebSphere Data Interchange offers a variety of

options for using literals. This section provides details on each option available,

including rules for use, keywords, and syntax.

Transactions are always processed starting with the first data element of the first

segment and proceeding to the last data element of the last segment, as documented

in the standard. This is true for both send and receive processing.

Using literals for Send mapping

When mapping literals for sending data, you can map both an application field and a

literal to the same data element. The literal value is used if one of the following

conditions occur:

v The record containing the application data field was provided, but the application

data field does not supply a value or contains all blanks.

v The application data field supplies a value that does not match a value in the

validation or translation table specified in the mapping.

v The application data field supplies a value, but the conversion from the application

data type to the EDI standard data type fails.

Using accumulators

Chapter 14. Advanced send and Receive mapping 243

WebSphere Data Interchange attempts a conversion for any application data field

defined as a numeric field. The conversion removes leading and trailing blanks, leading

zeros before the decimal, trailing zeros after the decimal, and changes the decimal

point if the application decimal notation is different from the EDI standard decimal

notation. If the data types are numeric, the conversion fails if the data contained

anything other than a number or a decimal point. The literal value is used if the

conversion fails. See “Validation during mapping” on page 282 for more information.

v If a translation table is specified, the literal value is checked against this table. If no

matching entry is found, the translator logs a warning message in the event log, then

uses the literal value. For information about the event log, see Table 15 on page 98.

Segment creation for Send mapping

When an EDI standard segment is mapped with a combination of literal values and

application data, the application data determines if the segment is produced. When the

values from the application data produce data for the segment, the EDI standard

segment is created. When the values in the application data do not produce data for the

segment, such as when the records are not found, the application fields contain all

blanks or zeros, or the application field values are not found in the associated validation

or translation tables, then the EDI standard segment is not created. An exception is

when zeros are passed to a mandatory numeric data element, in which case the

segment is created. If this is not desirable, then pass blanks in the application data

instead, or use the logic information presented later in this section to suppress the

segment.

In some cases it might be desirable to suppress a segment altogether depending on

input application data values. It is possible to suppress a segment using IF logic. When

all contributing data element mappings for a segment contain conditional IF statements

and all conditions are false, the segment is not produced. A contributing data element

mapping is one that can produce output in the corresponding data element; such as

specifying an application field name or a literal value, or specifying USE on a variable.

Noncontributing data element mappings, such as SAVE or SET, do not have any effect

on segment creation. See Table 39 on page 246 for details on IF, USE, SAVE, and SET

usage.

Note: If the segment being suppressed begins a loop of segments, the entire loop is

suppressed.

Using literals for Receive mapping

If a data element mapping provides a literal, the literal value is used if one of the

following conditions occur:

v The EDI standard data includes the segment being mapped, but the data element

within the segment does not supply a value.

v The EDI standard data element supplies a value that does not match a value in the

validation or translation table specified in the mapping.

v The EDI standard data element supplies a value, but the conversion from the EDI

standard data type to the application data type fails. WebSphere Data Interchange

attempts a conversion for any EDI standard data field defined as a numeric field. If

Using literals

244 Mapping Guide

the data types are numeric and the EDI standard data field contains nonnumeric

characters, the conversion would fail and the literal value would be used.

v The EDI standard data element supplies a value, but the &FORCE special literal is

used to force the literal into the application field regardless of the EDI standard data

element's contents.

Format of literal data

When using literals in send or Receive mapping:

v For data types BN, Bn, HX, Hn, IT, In, Ln, PD, Pn, ZD, and Zn, the translator

converts the literal before placing it in the standard data (send) or the application

data (receive). For sending, it converts the literal to character data. For receiving, it

converts the literal to the application data type. For example, if the data type is

binary, the translator converts the literal to binary, then moves it to the application

field.

v Do not type a decimal point when it is implied. For example, if you want to use a

default value of 9.99 for a field defined as data type P2 (packed number with two

implied decimal positions), enter 999 as the value of the literal.

v Enter literal values for hexadecimal fields as hexadecimal strings. For example, if the

application field is defined as a one-byte hexadecimal field and you want to use a

default value of X'FF', enter FF as the value of the literal. For receiving, the translator

converts each two bytes of literal value to a single byte of application data.

v You can specify a literal value of zero to move a value into the standard field.

WebSphere Data Interchange generally removes leading zeros from an application

field so that an application field containing nothing but blanks or zeros will not result

in a value for the data element. A value of zero is treated the same as all other literal

values when determining if a segment is created. The &ZEROSIG special literal can

also be used to indicate that zeros within the application field are significant.

In translation and validation tables, enter numeric values left-justified and formatted

according to the application data format. For example, if the data format defines a field

as R2, enter the value 7 as 7.00 or the value 7.1 as 7.10.

Accumulator literals

Accumulator literals access the local and global accumulators. You can map an

accumulator using the accumulator action, or you can map it using the literal associated

with the accumulator. By using literals, you can exit to gain control. An accumulator has

a data type of R. The literals are:

&Tn (Where n can be 0 through 9) identifies the accumulators T0 through T9.

&Gn (Where n can be 0 through 9) identifies the accumulators G0 through G9.

Conditional processing of literals

Conditional processing lets you define how you want data processed, based on rules

you establish. The following terms are used in the conditional processing:

Named variable

A name used to represent data whose value can be changed while a program

is running. You supply the name you want to use.

Using literals

Chapter 14. Advanced send and Receive mapping 245

Expression

A sequence of instructions which can consist of named variables, literals,

operators, and constants. When processed, this sequence of instructions

provides a single value.

Constant

A value that does not change.

Operator

A symbol that represents an operation to be done. WebSphere Data

Interchange uses arithmetic operators, Boolean operators, comparison

operators, unary operators, relational operators, and special operators.

Operation

An action performed on one or more data items such as multiplying, comparing

or moving.

Value A data value you provide. You can use any of the special literals that provide a

data value; for example, &DATE, &TIME, &E, &ICN. This includes &T0 through

&T9 and &G0 through &G9 to get the values for global and local accumulators.

Default value

A default data value you provide. This value is not enclosed in quotation marks

("). You can use any of the special literals that provide a data value; for

example, &DATE, &TIME, &E, &ICN. This includes &T0 through &T9 and &G0

through &G9 to get the values for global and local accumulators.

Note: When using conditional processing on a data element used to qualify a loop or

repeating segment, the first occurrence of the qualifying data element mapping

must specify a literal or application data field.

Literal keywords

 Table 39. Literal keywords

Keyword S/R Keyword description and syntax

&ACFIELD S/R Syntax: &ACFIELD

Substitutes the application control value established by the mappings of the AC field from

the data format or the concatenation of the fields specified during creation of the

transaction mapping.

Note: Literals specified with &LIT and variables specified with &VAR in the mapping are

not available in the AC field until the end of the translation process and will not appear in

the AC field data that is moved using the &ACFIELD keyword.

Using literals

246 Mapping Guide

Table 39. Literal keywords (continued)

Keyword S/R Keyword description and syntax

&ASSERTn S/R Syntax: &ASSERTn(expression)

The action associated with this literal is only executed if the expression is false and the

assertion level is not greater than n. The &ASSERT keyword can be combined with:

v A mapping between an application data field and EDI standard data elements

v The &SET, &SAVE, and &USE keywords

v An error condition; for example, &ASSERTn followed by &ERR.

The differences between &ASSERT and &IF are:

v &ASSERT is a statement about the transaction that is expected to be true. For

example, the number of items processed in the transaction equals the total number of

items claimed to be in the transaction (value from CTT segment). If the &ASSERT is

not true, a special action takes place. An &ASSERT is usually associated with an

&ERR condition, but this is not required.

v With &IF, if the expression is true, a special action takes place. An &IF is usually

associated with a mapping or named variable, but this is not required.

v &ASSERT has 10 levels (&ASSERT0 through &ASSERT9). Level 9 assertions are

always executed. Assertions at level 0 (&ASSERT0) through 8 are controlled by the

assertion level used to start the translation. Thus, it is possible to turn off assertions,

but &IF conditions are always checked.

When using the API, the assertion level is set in the ASSERTLVL field of the translator

control block. When using the WebSphere Data Interchange Utility, the assertion level is

set with the ASSERTLVL keyword on the PERFORM command. See the WebSphere

Data Interchange for MultiPlatforms Programmer's Reference Guide, SC34-6217-01for

additional information about the API.

See “Expressions” on page 258 for more information.

For an example of using this keyword, see “Example 8” on page 274.

&DATE S/R Syntax: &DATE

Substitutes the system date. The length of the date field in the EDI standard data (send)

or application data (receive) determines whether the date is formatted as yyyymmdd or

yymmdd. The date is then edited as requested by the date edit specified in mapping.

You can use the &DATE keyword as source data for any of the EDI standard data types.

You can also combine the &DATE keyword with the &IFDATA, &IFNODATA, or &FORCE

keywords.

Using literals

Chapter 14. Advanced send and Receive mapping 247

Table 39. Literal keywords (continued)

Keyword S/R Keyword description and syntax

&DEFERRED S Syntax: &DEFERRED &USE variable

Allows you to signal that at a later time a value will be set using the same name as

specified in the &DEFERRED &USE mapping. When the value is set, the data is put into

the mapped segment.

For example, if you had an HDR segment that contained a total number of items field,

you can use &DEFERRED &USE TOTITEMS while mapping the HDR segment field.

Note: It is not recommended that the value be set within the same segment mapping.

This will produce unexpected results. If the entire segment is mapped based on the use

of deferred mapping, the segment can be produced without data.

At the end of the mapping, you would then repeat map some field with &SET TOTITEMS

X, which will move the literal value 'X' into the HDR segment field. If X is used as a

variable, the mapping would be &SET TOTITEMS &E(X), which would move the contents

of the variable X into the HDR segment field.

&E S/R Syntax: &E(expression)

The expression is evaluated and the result used as if it had been entered directly as a

literal value. This keyword performs calculations without using a user exit. See

“Expressions” on page 258 for more information.

For examples of using this keyword, see “Example 7” on page 273.

Using literals

248 Mapping Guide

Table 39. Literal keywords (continued)

Keyword S/R Keyword description and syntax

&ERR S/R Syntax: &ERR(level,code,facode,text)

Allows you to establish your own errors for a transaction. This literal keyword can be

used in one of three ways:

v On the Literal line itself

v &IF (expression)

v &ASSERT (expression)

Note: If you specify a field in the application name field, you cannot use &ERR on this

occurrence of the element mapping.

level is the severity of error where 1=data element, 2=segment, 3=transaction.

code is the unique error code that is associated with the error. This value can range from

0 to 999. WebSphere Data Interchange automatically adds 5000 to separate this value

from WebSphere Data Interchange detected errors.

facode is the functional acknowledgement error code that is associated with this error

(receive only).

text is some text that is included in an error message logged by WebSphere Data

Interchange if this error is detected.

If an &ERR special literal is executed (normally controlled by either an &IF or an

&ASSERTion), then WebSphere Data Interchange will log message TR0026. Within this

message, the text and code will be identified. The level that you assign in the &ERR

becomes the extended return code from the translator and thus the JCL condition code

in the WebSphere Data Interchange Utility. If level exceeds the acceptable error level

specified in the transaction usage, then the translation will not be successful and the

application data will not be returned. The value of code plus 5000 will also be added to

the list of errors for the transaction. These are available to the API programs in the

ERRCDE field of the translator control block.

For an example of using this keyword, see “Example 8” on page 274.

&FORCE R Syntax: &FORCE value

Forces a literal value into an application field regardless of the EDI standard data

element's contents. A literal value specified for Receive mapping is normally used only if

the EDI standard data element does not contain any data, or if an error occurs while

processing the data (see “Using literals for Receive mapping” on page 244).

For the &FORCE keyword to be effective, you must use it in a data element of a

segment that is present in the input transaction.

&FORMAT S/R Syntax: &FORMAT

Substitutes the data format ID.

You can also use the &FORMAT keyword with the &IFDATA, &IFNODATA, or &FORCE

keywords.

Using literals

Chapter 14. Advanced send and Receive mapping 249

Table 39. Literal keywords (continued)

Keyword S/R Keyword description and syntax

&IF S/R Syntax: &IF(expression)

The action associated with this literal is only executed if the expression is true. The &IF

literal can be combined with:

v A mapping between application fields and EDI standard data elements

v A request to SET/SAVE/USE a named variable

v An error condition (for example, an &IF followed by &ERR)

The differences between &ASSERT and &IF are:

v &ASSERT is a statement about the transaction that is expected to be true. If the

&ASSERT is not true, special action takes place.

With &IF, if the expression is true, a special action takes place. An &IF is usually

associated with a mapping or named variable, but this is not required.

v &IF conditions are always checked.

See “Expressions” on page 258 for more information. For examples of using this

keyword, see “Example 5a” on page 271, “Example 5b” on page 272, and “Example 5a”

on page 271.

&IFDATA S/R Syntax: &IFDATA value

For sending, uses a literal value only if an application field contains data. For example, a

segment has a pair of data elements for a qualified value and its qualifier. The

application data has a corresponding field for the qualified value, but not for the qualifier.

You want to supply the qualifier with a literal, but only when the application supplies a

qualified value. You can do this using the &IFDATA keyword with the Application field

name and Literal fields on the Map Data Element panel (TP10). &IFDATA can be used in

combination with &SET or &SAVE keywords.

The test performed by the translator to determine whether or not a source field contains

data is different depending on the data type of the source field. For numeric data types,

zeros are not considered significant, in which case the assumption is made that the field

does not contain data. &IFDATA can be used in combination with &ZEROSIG if you want

a zero value to be considered significant. &ZEROSIG must precede the save keyword.

&IFDATA can be used on receive but only when used in combination with the &SET or

&SAVE keywords.

For an example of using this keyword, see “Example 2” on page 270.

&IFNODATA S/R Syntax: &IFNODATA value

Uses a literal value only if an application field does not contain data. If you do not use a

keyword before the literal, &IFNODATA is used by default.

&IFNODATA can be used in receive transactions, but only when used in combination

with the &SET keyword.

Using literals

250 Mapping Guide

Table 39. Literal keywords (continued)

Keyword S/R Keyword description and syntax

&IFNOVAR S/R Syntax: &IFNOVAR

This keyword is only valid when used with &SAVE, &LSAVE, &SET, or &LSET:

&IFNOVAR &SAVE variable

&IFNOVAR &LSAVE variable

&IFNOVAR &SET variable

&IFNOVAR &LSET variable

The named variable will only be created if it does not already exist. If the named variable

already exists, the data in it is not overlaid.

For an example of using this keyword, see “Example 3” on page 270

&LOOPBREAK S Syntax: &LOOPBREAK

Use when an outer and an inner loop are qualified on the same record, and when you

want the inner loop to be generated more than once. By putting a &LOOPBREAK in the

inner loop, then the inner loop will be repeated until the &LOOPBREAK condition is met.

The &LOOPBREAK condition is established using &IF; for example,

&IF((A < B) AND (X > Y)) &LOOPBREAK

Note: You cannot enter an application field name on the same mapping occurrence that

uses &LOOPBREAK.

&LOOPCHECK S Syntax: &LOOPCHECK

This keyword is very similar to &LOOPBREAK, but &LOOPCHECK does all the

conditional processing automatically, based on the application field name used in the

mapping that specifies &LOOPCHECK. WebSphere Data Interchange will save this field

value the first time the loop is created, and will continue to create inner loops until a

record with a different non-blank field value is found.

Note: You cannot enter an application field name on the same mapping occurrence that

uses &LOOPCHECK.

Using literals

Chapter 14. Advanced send and Receive mapping 251

Table 39. Literal keywords (continued)

Keyword S/R Keyword description and syntax

&LSAVE S/R Syntax: &LSAVE variable<,position><,length> <default value>

Saves the value from the current data element in a named variable, but only for the

duration of the loop instance. A value saved in an outer loop is available within

associated inner loops. A repeating segment is considered to be a loop; therefore, values

saved in one instance of a repeating segment are not available in subsequent segment

iterations.

The value to be saved is normalized before being stored in the variable. The

normalization that takes place depends on the data type of the source field being saved.

For character data types A, AC, AN, CH, or ID, any trailing blanks are removed from the

source value. If the value in the field (defined with a character data type) contains all

numbers, the data will be treated as a numeric data type. Leading zeros will be removed

from numeric data types. For numeric data types, the source value has all leading and

trailing blanks removed, it is converted to a REAL value, and all leading zeros before the

decimal and trailing zeros after the decimal are removed. If a source field is numeric and

contains a zero value, the variable will contain null. If a value of zero needs to be saved,

&ZEROSIG must be used in combination with the save. &ZEROSIG must precede the

&LSAVE keyword.

position is optional, but if provided, it indicates the position within the current variable

where the information is saved. You can use an asterisk (*) to save at the end of the

variable; for example, &LSAVE name,*. If position is not specified, the data replaces the

current value of the variable.

length is optional, but if provided, it indicates the length of data that is saved. You can

use an asterisk to save the total length of the data being supplied; for example, &LSAVE

name,*,*.

For example, if you want data to be saved starting in position 4 and the data you want

saved is 5 characters long, the position and length would be stated as 4,5. Stating both

the position and length, you can combine more than one data element into a single

named variable. Special processing might be needed when combining data elements

with different data types into a single named variable. See “Example 9” on page 275 and

“Example 10” on page 276

The default value is also optional, and if provided, the value is saved in the variable

when the current data element contains no value.

If the named variable does not already exist, it is created. If it already exists, the data in

the existing variable is overlaid with the new data. If the data element is empty and no

default value is supplied, the named variable is created but it contains no data.

A variable established with &LSAVE does not affect the value of a variable with the same

name at any other looping level. If the variable was created outside the loop with LSAVE

or SAVE, and the variable is created again inside the loop, the USE for the variable

inside the loop will use the value which was saved inside the loop. If the USE for the

variable is outside the loop, then the value which was saved outside the loop will be

used.

For an example of using this keyword, see “Example 3” on page 270.

Using literals

252 Mapping Guide

Table 39. Literal keywords (continued)

Keyword S/R Keyword description and syntax

&LSET S/R Syntax: &LSET variable<,position><,length> value The named variable is created or

overlaid with the stated value, but only for the duration of the loop instance. A value set

in an outer loop is available within associated inner loops. A repeating segment is

considered to be a loop; therefore, values set in one instance of a repeating segment are

not available in subsequent segment iterations. position is optional, but if

provided, it indicates the position within the current variable where value is

set. You can use an asterisk to set value at the end of the variable, for

example, &LSET name,* abcd. If position is not specified, value replaces the

current value of the variable.

length is optional, but if provided, it indicates the length of value that is set. You can use

an asterisk to set the total length of value, for example, &LSET name,*,* abcd. Special

processing might be needed when combining data elements with different data types into

a single named variable. See “Example 9” on page 275 and “Example 10” on page 276

A variable established with &LSET does not affect the value of a variable with the same

name at any other looping level. If the variable was created outside the loop with LSET

or SET and the variable is created again inside the loop, the USE for the variable inside

the loop will use the value which was set inside the loop. If the USE for the variable is

outside the loop, then the value which was set outside the loop will be used.

When zeros are passed in a DT application field and mapped to a DT element, they are

considered significant data, and are populated to the element. In other words,

WebSphere Data Interchange treats DT data as character versus numeric.

&LSID R Syntax: &LSID value

Identifies the instance of the LS loop, where value is equal to the LS01 value in the EDI

standard data. This special literal is required only if the translator has no other way to

determine which LS loop is provided.

&SAMEAS S/R Syntax: &SAMEAS seqno

Indicates when mapping for a current data element must be exactly the same as the

data element identified by <segno>.

For example, if the mapping for element 2 of the POC segment must be exactly the

same as the mapping for element 1 of the POC segment, then specify the special literal

value of '&SAMEAS 1' when mapping element 2. This results in the mapping for element

2 being the same as element 1, which is useful when qualifying (Q/S) data elements on

a Receive mapping.

Using literals

Chapter 14. Advanced send and Receive mapping 253

Table 39. Literal keywords (continued)

Keyword S/R Keyword description and syntax

&SAVE S/R Syntax: &SAVE variable<,position><,length> <default value>

Saves the value from the current data element (inbound) or application field (outbound)

in a named variable. The value to be saved is normalized before being stored in the

variable. The normalization that takes place depends on the data type of the source field

being saved. For character data types A, AC, AN, CH, or ID, any trailing blanks are

removed from the source value. For numeric data types, the source value has all leading

and trailing blanks removed, it is converted to a REAL value, and all leading zeros before

the decimal and trailing zeros after the decimal are removed. If a source field is numeric

and contains a zero value, the variable will contain null. If a value of zero needs to be

saved, &ZEROSIG must be used in combination with the save. &ZEROSIG must

precede the &SAVE keyword.

position is optional, but if provided, it indicates the position within the current variable

where the information is saved. You can use an asterisk to save at the end of the

variable; for example, &SAVE name,*. If position is not specified, the data replaces the

current value of the variable.

length is optional, but if provided, it indicates the length of data that is saved. You can

use an asterisk to save the total length of the data being supplied, for example, &SAVE

name,*,*.

For example, if you want data to be saved starting in position 4 and the data you want

saved is 5 characters long, the position and length would be stated as 4,5. Stating both

the position and length, you can combine more than one data element into a single

named variable. Special processing might be needed when combining data elements

with different data types into a single named variable. See “Example 9” on page 275 and

“Example 10” on page 276.

The default value is also optional, and if provided, the value is saved in the variable

when the current data element contains no value.

If the named variable does not already exist, it is created. If it already exists, the data in

the existing variable is overlaid with the new data. If the data element is empty and no

default value is supplied, the named variable is created but it contains no data.

For examples of using this keyword, see “Example 1” on page 270.

When zeros are passed in a DT application field and mapped to a DT element, they are

considered significant data, and are populated to the element. In other words,

WebSphere Data Interchange treats DT data as character versus numeric.

Using literals

254 Mapping Guide

Table 39. Literal keywords (continued)

Keyword S/R Keyword description and syntax

&SET S/R Syntax: &SET variable< ,position><,length> value

The named variable is created or overlaid with the stated value. If no default value is

specified, &SET clears the variable.

position is optional, but if provided, it indicates the position within the current variable

where value is set. You can use an asterisk to set value at the end of the variable, for

example, &SET name,* abcd. If no default value is specified, &SET clears the variable.

length is optional, but if provided, it indicates the length of value that is set. You can use

an asterisk to set the total length of value; for example, &SET name,*,* abcd. Special

processing might be needed when combining data elements with different data types into

a single named variable. See “Example 9” on page 275 and “Example 10” on page 276

When zeros are passed in a DT application field and mapped to a DT element, they are

considered significant data, and are populated to the element. In other words,

WebSphere Data Interchange treats DT data as character versus numeric.

&THANDLE R Syntax: &THANDLE

Substitutes the WebSphere Data Interchange archive key. Can be used to assist in

mapping the SAP IDOC. It enables mapping of the WebSphere Data Interchange archive

key to the SAP IDOC for inbound processing. The length of the THANDLE field is 20

characters and is formatted as YYYYMMDDHHMMSSnnnnnn. It is the concatenation of

the date, time, and a sequence number to ensure uniqueness.

&TIME S/R Syntax: &TIME

Substitutes the system time. The length of the time field in the EDI standard data (send)

or application data (receive) determines whether the time is formatted as hhmm or hhmmss.

You can use the &TIME keyword as source data for any of the EDI standard data types.

You can also combine the &TIME keyword with the &IFDATA, &IFNODATA, or &FORCE

keywords.

&TPID S/R Syntax: &TPID

Substitutes the value of the internal trading partner ID.

You can also use &TPID keyword with the &IFDATA, &IFNODATA, or &FORCE

keywords.

&TPNICKN S/R Syntax: &TPNICKN

Substitutes the value of the trading partner nickname.

You can also use &TPID keyword with the &IFDATA, &IFNODATA, or &FORCE

keywords.

Using literals

Chapter 14. Advanced send and Receive mapping 255

Table 39. Literal keywords (continued)

Keyword S/R Keyword description and syntax

&USE S/R Syntax: &USE variable<,position><,length> <default value>

For inbound transactions, the value of the named variable is the source of data for the

application field. The value of the EDI standard data element being mapped is ignored.

For outbound transactions, the value of the named variable is used to provide data for

the EDI standard data element being mapped. An application field cannot be specified.

The named variable must be saved or set using the appropriate keyword before you can

use it with this keyword.

position is optional, but if provided, it indicates the position within the variable from which

the data is retrieved.

length is optional, but if provided, it indicates the length of data that is retrieved. You can

use an asterisk to move all data beginning at the location specified by the position

parameter through the end of the variable, for example, &USE var 3,*.

default value is optional, and if provided, the default value is used when the variable

contains no value.

Note: For numeric elements, a variable value of zero causes WebSphere Data

Interchange to use the default value. In the case where no default is specified, as in

literal = &USE X, there will be no output if variable X contains zero. At times, however,

zero needs to be considered significant. In these cases, the user specifies the default, as

in literal = &USE X 0.

For an example of using this keyword, see “Example 1” on page 270.

&ZEROSIG S Syntax: &ZEROSIG <default value>

Use the keyword &ZEROSIG to indicate that a zero in an application field is significant

when mapping to optional or conditional data elements. Without use of this special literal,

WebSphere Data Interchange considers a zero value being mapped to an optional or

conditional data element as insignificant and produces no output during translation. You

can combine the use of &ZEROSIG with &IFDATA, &IFNODATA, &SAVE, and &LSAVE

keywords. &ZEROSIG must precede the other keyword. &ZEROSIG can also be used

with a default literal to indicate that the application field is used if it contains a value,

including zero, but the default literal is used if the field is blank. Binary data types

preclude this because blanks represent real values.

Named variables

For receiving transactions, one way to use data in one data element for multiple

application fields is to map the data element to each application field, using the repeat

mapping capability. The disadvantage is that the application structures are always

created, whether or not they are needed. Sometimes, you do not want the structure to

be created unless some other data within the transaction is present. Named variables

let you save the value of a data element until the time when the application structure is

created. Then when you are mapping the data element that creates the structure, you

can use the repeat mapping capability to map the value in the named variable.

Using literals

256 Mapping Guide

Named variables are also critical to the use of expressions and conditional processing.

See “Expressions” on page 258 and “Conditional processing of literals” on page 245 for

additional information. Data values from an application field for outbound processing or

standard data elements for inbound processing are not directly available for use in an

expression. The values must first be saved to a named variable using for example, the

&SAVE literal, then the named variable can be used within the expression.

A variable name can be the same as your application field name, up to 16 characters,

but it cannot start with any of the following:

v A numeric digit (0 through 9).

v The letter P. These variables are reserved for future use.

v The letters DI. These variables are reserved for WebSphere Data Interchange.

v An ampersand (&), so they do not get confused with special literals.

v A left parenthesis, so they do not get confused with the start of an expression.

A variable name cannot contain any of the special characters designated as Arithmetic

Operators or Alternate Comparison Operators. Use of these special characters within a

variable name will produce unpredictable results.

The first character of a variable name determines the life span or scope of the variable:

v If the first letter is anything other than G, the variable has transaction scope. The

variable is deleted after the transaction is translated. This is the same scope as local

accumulators (T0 through T9). For more information, see “Using accumulators” on

page 241.

v If the first letter is G, the variable has translator session scope. The variable is not

deleted until the session with the translator is terminated. This is the same scope as

global accumulators (G0 through G9). For more information about accumulators, see

“Using accumulators” on page 241.

v To create a variable that will exist only for the duration of the loop in which it was

created, use the &LSAVE or &LSET literal keywords. When the loop repeats or

terminates, any variable created using these keywords is deleted. A variable

established with &LSAVE or &LSET does not disturb the value of a variable with the

same name at any other looping level.

Variable names are not case sensitive. TOTALITEMS and totalitems are the same

variable. Special processing might be needed when combining data elements with

different data types into a single named variable. See “Example 9” on page 275 and

“Example 10” on page 276.

You can combine the substring capability in mapping with the substring capability of

named variables. For example, you can use sub strings to get the first 4 bytes of a

standard data element, then use the position or length options to put the data in a

specific place in the named variable.

Named variables

Chapter 14. Advanced send and Receive mapping 257

Expressions

Special literals that use expressions are:

v &IF

v &ASSERT

v &E

The syntax for an expression is:

Expression syntax

��

�

token

OP

token

��

Where token can be any of:

v A named variable, such as TOTALS

v A numeric constant, such as 1024

v A text constant, such as 'ABCD'

Note: You must use quotation marks around text constants to distinguish them from

named variables. You can use single or double quotation marks (' or “), but

whichever is used to start the text constant must also be used to end it.

and where OP is one of the following types of operators:

v Boolean

v Comparison

v Arithmetic

v Unary

v Special

By default, the data type of a variable is implicitly assigned. If the contents are all

numeric digits, the data type is assumed to be numeric and is treated as such in

subsequent comparisons. This assignment does not take into consideration the data

type of the source data field that originally supplied the value for the variable. It is

based on the contents of the variable. If a variable contains any nonnumeric characters,

the variable data type is assumed to be character. You can override this implicit data

type assignment with the use of the CHAR or NUMBER operators which work as

follows:

CHAR The CHAR operator forces WebSphere Data Interchange to treat a value as a

character value rather than a numeric value.

NUMBER

The NUMBER operator forces WebSphere Data Interchange to treat a value

Expressions

258 Mapping Guide

as a numeric value rather than a character value. WebSphere Data

Interchange will normally treat a value in quotation marks as a character value

and, if both operands look like character values then what might be thought of

as a numeric operator will be treated as a string operator. Thus, the expression

&E('12' + '34') will yield '1234' because both operators are flagged as character

data. If what you really wanted was an arithmetic addition rather than a string

concatenation then you can use &E(NUMBER('12') + NUMBER('34')) which will

yield 46 (as would &E(12 + 34)).>

Boolean operators

WebSphere Data Interchange has two Boolean operators: AND and OR. AND returns a

value of 1 if both conditions are true, or a value of 0 if either condition is not true. OR

returns a value of 1 if either condition is true, or a value of 0 if both conditions are not

true. AND and OR must be entered in uppercase because they are case sensitive.

Comparison operators

Comparison operators tell WebSphere Data Interchange to compare two objects.

WebSphere Data Interchange processes comparison operators the same way it does

Boolean operators. If the comparison is true, it returns a value of 1. If it is not true, it

returns a value of 0.

WebSphere Data Interchange has the following comparison operators (you can use

either the letters or the symbols):

EQ (=) The first value is the same as the second value.

GE (>=)

The first value is greater than or equal to the second value.

GT (>) The first value is greater than the second value.

LE (<=)

The first value is less than or equal to the second value.

LT (<) The first value is less than the second value.

NE (!=) The two values are not equal (including being of different data types).

Notes:

1. If you use the alphabetic operators, such as EQ, they must be uppercase.

2. Comparing a numeric constant or variable to a character constant or variable results

in an invalid comparison. This produces a false result for all comparisons with the

exception of Not Equal (NE or!=), in which case a true result is returned.

3. If you enclose a numeric constant in quotation marks (“), a numeric data type is still

assumed for the data. Therefore, comparison to a variable that contains numeric

data will not fail.

Arithmetic operators

In the following descriptions, single quotation marks (') surround absolute values.

WebSphere Data Interchange has the following arithmetic operators:

Expressions

Chapter 14. Advanced send and Receive mapping 259

+ a + b has a value equal to the sum of the two. For numeric values, the sum is

numeric. For example, 2 + 2 = 4. For nonnumeric values, the sum is a

concatenation of the values. For example, 'AB' + 'CD' equals 'ABCD'. The use

of quotation marks around a numeric constant has special meaning when used

during addition. The enclosed value will be treated as character data and

concatenated to the second value. For example, '19' + 940323 = 19940323.

- a - b has a value equal to the difference between the two. For numeric values,

the result is numeric. For example 4 - 2 = 2. For nonnumeric values, the result

is a deconcatenation of the two values. For example, 'ABCD' - 'CD' equals

'AB'. The use of quotation marks around a numeric constant has special

meaning when used during subtraction. The enclosed value will be treated as

character data and deconcatenated from the second value. For example,

19940323 - '23' = 199403.

* a * b has a value equal to the multiplication of a and b, if both a and b are

numeric. For example, 4 * 4 = 16. If either variable is nonnumeric, the result is

created by concatenating the value of the b after each character in a. For

example, 'ABCD'*'Z' equals 'AZBZCZDZ'.

/ a / b has a value equal to the division of a by b, if both a and b are numeric.

For example, 16 / 4 = 4. Division by 0 yields a 0 value. If either variable is

nonnumeric, the result is created by removing each occurrence of b from a.

For example, 'ACDBCD'/'CD' equals 'AB'.

CHAR The CHAR operator forces WebSphere Data Interchange to treat a value as a

character value rather than a numeric value.

NOT An operator to reverse the Boolean value of an expression. The exclamation

point (!) is a short hand for the NOT operator. NOT(value) has the following

meanings:

1. If value is numeric, then NOT(value) is 1 if the value is 0 and 1 otherwise.

Thus, NOT(0) yields 1 and NOT(1) yields 0.

2. If value is a string value, then NOT(value) is 1 if the string has no length

and zero otherwise. Thus, NOT('abc') yields 0 and NOT('') yields 1.

NUMBER

The NUMBER operator forces WebSphere Data Interchange to treat a value

as a numeric value rather than a character value. WebSphere Data

Interchange will normally treat a value in quotation marks as a character value

and, if both operands look like character values then what might be thought of

as a numeric operator will be treated as a string operator. Thus, the expression

&E('12' + '34') will yield '1234' because both operators are flagged as character

data. If what you really wanted was an arithmetic addition rather than a string

concatenation then you can use &E(NUMBER('12') + NUMBER('34')) which will

yield 46 (as would &E(12 + 34)).

RD or:

a RD n has a value equal to a rounded to n decimal places if a is numeric. For

example, 4321.556 RD 2 equals 4321.56. If a is nonnumeric, the result is

created by taking the first n characters from a. For example, 'ACDBCD' RD 3

equals 'ACD'. If n is less than or equal to zero it is interpreted to be a request

Operators

260 Mapping Guide

to remove leading blanks. Thus, ' ABC' RD 0, yields 'ABC'. If using the

character string RD for rounding instead of the special character : , it must be

entered using uppercase.

TU or; a TU n has a value equal to a truncated to n decimal places if a is numeric.

For example, 4321.556 TU 2 is 4321.55. Notice that the number 6 is dropped

from the result and not rounded. If a is nonnumeric, the result is created by

taking the last n characters from a. For example, 'ACDBCD' TU 3 yields 'BCD'.

If n is less than or equal to zero it is interpreted to be a request to remove

trailing blanks. Thus, 'ABC���' TU 0 yields 'ABC'. If using the character string

TU instead of the special character ; , it must be entered using uppercase.

Unary operator

WebSphere Data Interchange has one unary (single component) operator, “-”.

&E(-a) changes the sign of a. If a does not exist, the value is 0.

Special operators

UE &E(a UE 'MYPROG') returns a value from the user-written program MYPROG.

Note: As mentioned under the descriptions of “&LSAVE” on page 252 and

“&LSET” on page 253, variables are normalized to REAL value

equivalents. When using this special operator, the variable value that is

passed is converted back to its Nn numeric format.

TS &E(a TS 'MYTABL') translates the local value a to the standard value using the

MYTABL translation table.

Notes:

1. As noted under the descriptions of “&LSAVE” on page 252 and “&LSET” on

page 253, variables are normalized to REAL value equivalents. When

using this special operator, the variable value that is passed is converted

back to its Nn numeric format.

2. If the translation table specified does not exist, or the value passed does

not match an entry in the table, then no data is produced from this

instruction and no errors or exceptions are issued.

TL &E(a TL 'MYTABL') translates the standard value a to the local value using the

MYTABL translation table.

Notes:

1. As noted under the descriptions of “&LSAVE” on page 252 and “&LSET” on

page 253, variables are normalized to REAL value equivalents. When

using this special operator, the variable value that is passed is converted

back to its Nn numeric format.

2. If the translation table specified does not exist, or the value passed does

not match an entry in the table, then no data is produced from this

instruction and no errors or exceptions are issued.

IN &E(a IN 'MYTABL') returns a value equal to 1 if a exists in the MYTABL

validation table.

Operators

Chapter 14. Advanced send and Receive mapping 261

Notes:

1. As noted under the descriptions of “&LSAVE” on page 252 and “&LSET” on

page 253, variables are normalized to REAL value equivalents. When

using this special operator, the variable value that is passed is converted

back to its Nn numeric format.

2. If the validation table specified does not exist, or the value passed does

not match an entry in the table, then no data is produced from this

instruction and no errors or exceptions are issued.

SC &E(a SC max.dec) scales a real number to a maximum of max digits with a

maximum of dec decimal places, truncating unused digits. For example:

&E(1234.56 SC 4.2) gives 1234

&E(1234.56 SC 6.2) gives 1234.56

&E(1234.56 SC 6.1) gives 1234.5

&E(1234.56 SC 8.1) gives 1234.5

&E(1234.56 SC 8.8) gives 1234.56

&E(1234.56 SC 3.3) gives 1234.56

&E(1234.56 SC 4.5) gives 1234

v If max is less than the number of significant digits to the left of the decimal

point, the SC is ignored.

v If dec is greater than max, dec is set equal to max.

SC applied to strings provide a substring capability. When applied to strings,

the format is &E('STRING' SC pos.len). For example:

&E('ABCDEF' SC 4.2) gives 'DE'

&E('ABCDEF' SC 1.5) gives 'ABCDE'

&E('ABCDEF' SC 9.1) gives ''

&E('ABCDEF' SC 1.9) gives 'ABCDEF'

&E('ABCDEF' SC .1) gives 'A'

&E('ABCDEF' SC 5) gives 'E'

If you do not provide pos or len, WebSphere Data Interchange uses 1 for that

value.

SR &E(a SR max.dec) scales a real number to a maximum of max digits with a

maximum of dec decimal places, rounding the value. For example:

&E(1234.56 SR 4.2) gives 1235

&E(1234.56 SR 6.2) gives 1234.56

&E(1234.56 SR 6.1) gives 1234.6

&E(1234.56 SR 8.1) gives 1234.6

&E(1234.54 SR 8.1) gives 1234.5

IS &E(a IS pattern) has a value equal to a but establishes a pattern for the data

within a. This pattern only has meaning when using the TO operator (next). All

variables have a default pattern of "ABCDEFGHIJKLMNOPQRSTUVWXYZ".

TO &E(a TO pattern) has a value that is created by matching the pattern

associated with a with the pattern in this expression. A character from TO

pattern, if located in the IS pattern and if found the corresponding character

from a, is moved to the result field. If a match cannot be found, the character

from the TO pattern is moved to the result field. For example:

v To reverse a string:

Operators

262 Mapping Guide

&E('PLEH' IS 'ABCD' TO 'DCBA') gives 'HELP'

v To insert delimiters:

&E('HHMM' IS 'ABCD' TO 'AB:CD') gives 'HH:MM'

v To remove delimiters:

&E('HH:MM' IS 'ABCDE' TO 'ABDE') gives 'HHMM'

The last three examples all show the use of both the IS and TO operators for

clarity. The IS operator is not really necessary because all variables

automatically have the default pattern described in the IS operator. Therefore:

&E('PLEH' TO 'DCBA') gives 'HELP'

&E('THISAMEG ' TO 'ABCDICDIEIFGDDEHG') gives 'THIS

IS A MESSAGE'

Date conversion special operators

WebSphere Data Interchange can perform any-to-any date conversions. The format of

the any-to-any date conversion operator is:

&E(variable FD mask TD mask)

where:

variable

The value to be converted.

FD From Date operator. This signals that the following token is the mask that

describes the date format in variable.

TD To Date operator. This signals that the following token is the mask that

describes the date format that is wanted.

mask The mask that describes the FROM or TO date format. A mask consists of

symbols which identify the date provided or date wanted. Symbols can be in

upper or lower case. Any value in the mask that is not one of the symbols

listed is expected to be physically part of the source data (FD) or will become

physically part of the result data (TD).

CC Century

YY Year

MM Month of year

DD Day of month

D Day of month as a single character, if possible

HH Hour of day

MM Minute of hour

II Minute of hour

 MM can be used when it immediately follows HH as in HHMM;

however, if you want minute followed by hour, you must use IIHH,

because MMHH would be interpreted as month of year and Hour of

day.

Operators

Chapter 14. Advanced send and Receive mapping 263

SS Second of minute

WW Week of Year (1 through 52)

K Day of Week (Monday=1, Tuesday=2, and so on)

 D can be used if it immediately follows WW as in WWD; however, if

you want day of week followed by week, you must use KWW,

because DWW would be interpreted to be day of month and Week of

year.

JJJ Julian day of year

Q Quarter (1,2,3,4)

E Semester

ZZZ Time zone

TM Textual month (such as January, February, and so on)

 TM can be followed by the name of a translate table to convert a

textual month to a numeric month (FD), or from a numeric month to a

textual month (FD). If a table name is not provided, the default table

names are DIMONTXT to translate from text to numeric and

DIMONNUM to translate from numeric to text. A table name is

indicated using parentheses, for example:

TM(tablename)

where tablename must be a constant.

 After processing the From Date and before creating the To Date, the following

processing will be done.

1. SS (seconds) will be defaulted to 0.

2. CC (century) will be defaulted to 19 when the YY (year) is greater than 10 and to 20

otherwise.

3. JJJ (julian day) will be created based on WW (week of year) and K (day of week) if

not otherwise provided and WW and K were provided.

4. JJJ (julian day) will be created based on MM (month of year) and DD (day of

month) if not otherwise provided and MM and DD were provided.

5. JJJ (julian day) will be used to determine WW (week of year), K (day of week), if

either WW or K was not provided.

6. JJJ (julian day) will be used to determine MM (month of year), DD (day of month), if

either MM or DD was not provided.

7. Q (Quarter) will be determined based on MM (month of year) if not otherwise

provided.

8. E (Semester) will be determined based on MM (month of year) if not otherwise

provided.

Here are some examples using CONSTANTS for all values:

v Simple example to remove delimiters.

Operators

264 Mapping Guide

&E('96/06/07' FD 'YY/MM/DD' TD 'YYMMDD') yields '960607'

v Simple example to remove delimiters and rearrange.

&E('96/06/07' FD 'YY/MM/DD' TD 'MMDDYY') yields '060796'

&E('96/06/07 EDT' FD 'YY/MM/DD ZZZ' TD 'ZZZ MMDDYY') yields 'EDT 060796'

v Change delimiters and convert from one form to another.

&E('96/06/07' FD 'YY/MM/DD' TD 'YY:JJJ') yields '96:157'

v Textual month to Numeric month.

&E('June 7, 1996' FD 'TM D, CCYY' TD 'YYMMDD') yields '960607'

v Numeric month to Textual month.

&E('060796' FD 'MMDDYY' TD 'TM D, CCYY') yields 'June 7, 1996'

v Numeric month to Textual month with a special translate table that uses

abbreviations for the months.

0 FD 'MMDDYY' TD 'DDTM(ABBREV)CCYY') yields '07JUN1996'

Newer releases of X12 and EDIFACT standards contain segments with variable

date/time formats. The format is determined by a qualifier value in the segment.

WebSphere Data Interchange provides two tables for dynamically translating the

qualifier into a mask. Table DIXDTMSK is used for X12 and table DIEDTMSK is used

for EDIFACT.

Assume the following X12 data is received in the DTP segment (Date or Time period):

v DTP**D8*19940927!

Where D8 is the date or time period format qualifier (CCYYMMDD) and 19940927 is

the date or time period.

Assume your application requires the date in YYMMDD format. You map the DTP

segment as follows:

v DTP03 - &SAVE Qual

Results in Qual is D8

v DTP03 - &SAVE Date

Results in Date is 19940927

v DTP03 - &FORCE &E(Date FD (QUAL TS 'DIXDTMSK') TD 'YYMMDD')

Results of (Qual TS 'DIXDTMSK') is CCYYMMDD

Results of &FORCE is 940927

Order of precedence

During processing, all expressions are evaluated from left to right. The order of

precedence is:

1. Unary minus (-)

2. Rounding (RD) and truncating (TU)

3. Special operators (UE, TS, TL, IN, IS, TO, SC, SR, FD, TD)

4. Multiply (*), Divide (/)

5. Addition (+), Subtraction (-)

Operators

Chapter 14. Advanced send and Receive mapping 265

6. Relational Operators (GT, GE, LT, LE, EQ, NE)

7. Boolean (AND)

8. Boolean (OR)

Precedence can be overridden with parentheses embedded within an expression. For

example, &E(2+3*5) equals 17 because the multiplication is done first, then the

addition. &E((2+3)*5) equals 25 because the parentheses indicate that the addition is

done first, then the multiplication.

Special variables

WebSphere Data Interchange has reserved the prefix DI for variables that will be

reserved for use WebSphere Data Interchange to accomplish special functions. The

following DI variables are currently available and are used with the &SET keyword:

DIAPPFILE

Use this variable to change the name of the file to which the translation

application data will be written during a Receive Translate. It will override any

value that was used in the receive usage or in the application data format

definition. It provides the capability for data that is being received to influence

the final destination for the data. For example, the statement

&SET DIAPPFILE SPECIAL

would force the current transaction to be written to the application file identified

by the ddname SPECIAL.

DIAPPTYPE

This variable sets the application file type that corresponds with the file name

provided by DIAPPFILE.

DIAUTOCC

Allows automatic century manipulation for both inbound and outbound

translation. Century will be automatically added or removed from the date

using the length of the standard data element or application field. For example,

the following statement uses a value of 1:

&SET DIAUTOCC 1

DICCCTRL

Use to remove the century control year from the translator and enable the

selection of the century control year. If year is greater than 10, century is 19;

otherwise century is 20. The century control year is 10. For example, if year is

less than 95, century is 20, control year is 95:

&SET DICCCTRL 95

DICUSERDATA

This variable is used to set the data value that will be inserted in the TRCB

field cuserdata. This field is copied to any output 'C' record before the 'C'

record is written. Received data can be placed into a named variable in any

combination up to 256 bytes. Then use the reserved variable DICUSERDATA

anytime the value of the named variable needs to be placed into the TRCB.

Operators

266 Mapping Guide

For example, suppose a named variable tvar has been created and filled with

the data from a previously mapped data element.

 That data can be placed in the TRCB cuserdata field by including the following

in a map:

&SET DICUSERDATA &E(TVAR)

DIERRFILTER

This variable can be used to control which errors are actually meaningful to

you at a point in time during a translation. A description of the error filter can

be found in the WebSphere Data Interchange for MultiPlatforms Programmer's

Reference Guide, SC34-6217-01.

DIEXPTRACE

This variable, when given a nonzero value (&SET DIEXPTRACE 1), causes

WebSphere Data Interchange to create a TRACE of the results of all

expression evaluations. When tracing is active, WebSphere Data Interchange

will write out message TR0411 to the PRTFILE for each expression. The

message will show the expression being evaluated and the result of the

evaluation. Tracing will remain active until the DIEXPTRACE is given a zero

value (&SET DIEXPTRACE 0).

Note: The TR0410 and TR0411 messages always occur as the first messages

for a transaction. They are not merged with any other error messages

for the transaction.

DIMAPCHAIN

This variable can be used when an inbound transaction is required by more

than one application program. It enables more than one mapping to be

executed for the specified transaction. The last value given to DIMAPCHAIN in

a mapping will establish the application sender ID value that will be used to

locate the next mapping to execute. For example, if MAPABC had this coded:

&SET DIMAPCHAIN APPLICATIONB

The inbound transaction would be translated using map MAPABC, and then it

would be translated using the map that is associated with application sender

ID APPLICATIONB. The DIMAPCHAIN command will cause all maps indicated

by each DIMAPCHAIN command to be translated, whereas the

DIMAPSWITCH command will stop translating the map that has the

DIMAPSWITCH variable in it, and literally switch to the new map indicated in

the command.

DIMAPSWITCH

This variable can be used when data being received needs to be inspected

before it can be determined exactly what mapping is done against the

transaction. With this variable, you can switch the map that is being executed

dynamically based on the data that is being received. A map can be created to

initially look at the data being received. Only those data elements necessary to

make a mapping decision would be mapped. WebSphere Data Interchange

would determine the real map to be used by interpreting values resulting from

conditional logic expression. For example, a map would contain conditional

logic expression:

special variables

Chapter 14. Advanced send and Receive mapping 267

&IF(X > Y) &SET DIMAPSWITCH APPLICATIONA

Here, if X is greater than Y, the mapping identified with an application sender

ID value of APPLICATIONA would be used to translate the transaction.

DISAPSEQ

This variable can be used to save the SAP IDOC record sequence number on

the first error encountered during outbound processing. The sequence number

can be provided through the application or using the WebSphere Data

Interchange accumulators. Variable DISAPSEQ is captured in the SAP status

record to indicate the first record in error. For more information, see the

WebSphere Data Interchange for MultiPlatforms Programmer's Reference

Guide, SC34-6217-01.

DIVALLEVEL

This variable can be used to control the level of validation done. It can have

the same values as the validation level specified in a usage record, which are:

0 (no validation), 1 (validation tables activated), and 2 (validation tables plus

type checking). Any value other than 0, 1, or 2 will be treated as a 0.

DIVALTYPE

This variable can be used to control the data types for which data type

checking is done (validation level of 2). The types that can be specified are DT,

TM, N, R, CH, AN, A, and HX. They must be specified in uppercase and

separated by a comma. Any value specified that is not valid is ignored. For

example, to activate DT, TM and HX validation, the following can be done:

&SET DIVALTYPE DT,TM,HX

DIVARTRACE

This variable, when given a nonzero value (&SET DIVARTRACE 1), causes

WebSphere Data Interchange to create a TRACE of all accesses to variables.

When tracing is active, WebSphere Data Interchange will write out message

TR0410 to the PRTFILE for each variable access. The message will indicate

the variable being accessed and its current value. Tracing will remain active

until the DIVARTRACE is given a zero value (&SET DIVARTRACE 0).

Mapping techniques for literal keywords

As you will see in the following examples, deciding where to save variables, execute

expressions, and subsequently use variables is fundamental. To determine where these

operations are done, it is essential to understand the order in which the translator

executes element mapping instructions. As stated earlier, transactions are always

processed starting with the first data element of the first segment and proceeding to the

next element of the same segment, after which the next segment is processed, and so

on. If one element has repeat mappings, the instructions are executed in a top-down

fashion.

It is equally important to understand the difference between a mapping that might

contribute to the output versus one that does not. For example, specifying &SAVE

variable or &SET variable will not contribute to the output directly. Only direct mappings

such as specifying an Application Field Name, forcing a literal value, specifying &USE

special variables

268 Mapping Guide

variable, or evaluating an &IF expression, can contribute to the output. Determining

where to save and use variables is different for inbound and outbound translation.

For send processing, proper placement is easy for mappings that contribute to the

output because you know which element requires the result. Proper placement for a

mapping that does not contribute is not as obvious because there might be no data

element relationship with this action. In most cases, you will save an application value

into a variable, check or manipulate the variable, then use it. In other cases, it might not

be appropriate to perform all these actions in successive repeat element mappings. For

instance, you can have two independent looping structures (records) and you need to

save a value from a particular iteration in the first loop. This particular value must be

saved while the translator is processing this first loop. The saved variable can then be

inspected and manipulated in the second repeating loop to provide the required result.

In summary, the location of a mapping that saves a variable can be far from a

corresponding mapping that actually uses the variable. The best technique for deciding

where to save values is to do so at or near processing points in the map when the

translator is working on the corresponding record.

Note: Typically, the map for saving a value into a variable will precede the event of

actually using the variable. A feature called &DEFERRED &USE can be utilized in the

event that output is necessary in an earlier segment than where the final result

will be set.

For receive processing, the situation is reversed. It is easy to decide where to save

variables because you already know which element value in the input you need to work

with. Proper placement for a mapping that contributes to your output application data is

not as obvious because there might be no data element relationship with this action. In

most cases, you will save a data element value into a variable, check or manipulate the

variable, then use it in your application record. In other cases, it might not be

appropriate to perform all these actions in successive repeat element mappings. For

instance, you might need to save values from two different segments, compare them,

and write the result to an application field. One input element that needs to be saved is

in the header section of the EDI transaction and the second is in an outer loop (the

name loop for example).

The output application field that needs to be output after comparing these two variables

is related to the detail loop (line item loop for example). It is most appropriate to use the

result within the detail loop because this might have an independent repeating record

that is not associated with the name or header segments. Hence, the comparison and

use of the result is done within this detail loop that controls the creation of the detail

record. The best technique for deciding where to use variables is to do so at or near

processing points in the map when the translator is working on the corresponding

record.

Note: For receive processing, the map for saving a value into a variable must precede

the event of actually inspecting or using the variable. The feature of &DEFERRED

&USE cannot be used during inbound translation.

Mapping techniques for literal keywords

Chapter 14. Advanced send and Receive mapping 269

Examples of using literal keywords and named variables

Example 1

For an inbound transaction, if your trading partner sends you the city name, state

abbreviation, and zip code in three fields, but your database puts all of this information

in one 30-byte field, ADDRESS, you can use &SAVE to put the address information into

the single field:

1. Map the city name data element using the literal &SAVE citystzip,1,19.

This creates the named variable citystzip and places the received city in the first 19

bytes of the named variable.

2. Map the state abbreviation data element using the literal &SAVE citystzip,20,2.

This places the received state abbreviation in the bytes 20 and 21 of the named

variable.

3. Map the zip code data element using the literal &SAVE citystzip,22,9.

This places the received zip code in bytes 22 through 30 of the named variable.

4. Repeat the mapping of the zip code data element. Specify application field

ADDRESS and the literal &USE�citystzip.

WebSphere Data Interchange uses the value in the named variable that was

concatenated in the first three steps.

Example 2

For an outbound transaction, you want to provide a telephone number, either of a

specific contact (CONTACTPHONE) or of the organization (ORGPHONE). If a contact

phone number is provided, you want to use it; otherwise, you want to use the

organization phone number. CONTACTPHONE occurs before ORGPHONE.

1. In the first mapping of the phone number data element, specify application field

CONTACTPHONE and the literal &IFDATA &SAVE Tphone.

This creates the named variable Tphone only if the CONTACTPHONE field contains

data.

2. Repeat the mapping of the phone number data element. Specify application field

ORGPHONE and the literal &IFNOVAR &SAVE Tphone.

This creates the named variable Tphone only if the named variable did not already

exist (CONTACTPHONE did not contain any data).

3. Repeat the mapping of the phone number data element. Specify the literal &USE

Tphone.

Example 3

For an inbound transaction, the application field NAME receives the value from EDI

standard data element 123 (CUSTNAME) in the first occurrence of the name and

address loop, or from the data element (ORGNAME) in the second occurrence of the

loop, if the first occurrence does not contain data.

1. When mapping the first occurrence of the loop, specify the literal &IFDATA &SAVE

Name. Do not specify an application field.

This will create the named variable Name only if the first occurrence contains data.

Literal keywords and named variables

270 Mapping Guide

2. When mapping the second occurrence, specify the literal &IF(Name EQ '') &LSAVE

Name. Do not specify an application field.

This will create the named variable Name only if it does not already exist (the first

occurrence did not contain any data). &LSAVE is used so that the value of Name

from the first occurrence of the loop is not disturbed.

3. Repeat the mapping for the second occurrence. Specify application field NAME and

the literal &USE Name.

This will use either the value saved in step 2 (first occurrence did not contain a

value) or the value saved in step 1 on page 270 (first occurrence did contain a

value). All future occurrences of the loop and unrelated loops or segments only see

the value of Name saved in step 1 on page 270.

Example 4

For an inbound transaction, the application field NAME receives the value from EDI

standard data element 123 (CUSTNAME) in the second occurrence of the name and

address loop, or from the data element (ORGNAME) in the first occurrence of the loop,

if the second occurrence does not contain data.

1. When mapping the first occurrence of the loop, specify the literal &SAVE Name. Do

not specify an application field.

This will create the named variable Name.

2. When mapping the second occurrence, specify the literal &IFDATA &SAVE Name.

Do not specify an application field.

This will overlay the named variable Name only if the second occurrence contains

data.

3. Repeat the mapping for the second occurrence. Specify application field NAME and

the literal &USE Name.

This will use either the value saved in step 2 (second occurrence contained a value)

or the value saved in step 1 (second occurrence did not contain a value).

Example 5a

For an outbound transaction, either application field ORDQTY or MINQTY supplies a

value for an EDI standard data element. The field with the largest value is used. If

neither ORDQTY or MINQTY contain data then a value of 100 is used.

1. In the first mapping of the data element, specify application field ORDQTY and the

literal &SAVE QTY1.

This saves the value of the application field to a named variable. If the application

field does not contain a value, the variable value is zero.

2. Repeat the mapping of the data element. Specify application field MINQTY and the

literal &SAVE QTY2.

This saves the value of the application field to a named variable. If the application

field does not contain a value, the variable value is zero.

3. Repeat the mapping of the data element. Specify the literal &IF(QTY1 >= QTY2)

&USE QTY1 100. Do not specify an application field.

This compares the values of the named variables. If QTY1 is greater than or equal

to QTY2, WebSphere Data Interchange will use QTY1. If neither ORDQTY or

Literal keywords and named variables

Chapter 14. Advanced send and Receive mapping 271

MINQTY contain a value then both QTY1 and QTY2 will have a value of 0 and will

therefore be equal. However, a value of 0 is not significant, which causes

WebSphere Data Interchange to use the default literal value of 100.

4. Repeat the mapping of data element 123. Specify the literal &IF(QTY1 < QTY2)

&USE QTY2. Do not specify an application field.

This compares the values of the named variables. If QTY1 is less than QTY2,

WebSphere Data Interchange will use QTY2.

Example 5b

Assume you have created a mapping similar to that of example 5a, but forgot to do

step 1. Because it is necessary to define QTY1 before using it, you need to insert a

mapping of this data element, making it the first occurrence of the loop. Instead of

remapping all of the occurrences, perform the following:

1. Drag application field ORDQTY to the data element.

2. Open the Mapping Data Element editor for the new mapping.

3. Enter the literal &SAVE QTY1 and click OK.

4. Drag the new mapping to the appropriate location and drop it there.

Example 6

Your application can generate three different discount rates: the regular discount

(REGDISC), a volume discount (VOLDISC), and a special discount (SPECDISC). For

an outbound transaction, if application field SPECDISC contains a value, you want to

use it for EDI standard data element 456. However, if SPECDISC does not contain a

value, then the larger value of either REGDISC or VOLDISC is used.

1. In the first mapping of data element 456, specify application field REGDISC and the

literal &SAVE REGDISC.

This saves the value of the application field to a named variable. If the application

field does not contain a value, the variable value is zero.

2. Repeat the mapping of data element 456. Specify application field VOLDISC and

the literal &SAVE VOLDISC.

This saves the value of the application field to a named variable. If the application

field does not contain a value, the variable value is zero.

3. Repeat the mapping of data element 456. Specify application field SPECDISC and

the literal &IF(REGDISC >= VOLDISC) &E(REGDISC).

This mapping will be executed only if the value of REGDISC is greater or equal to

the value of VOLDISC. If this is the case, then SPECDISC will be mapped to the

data element. However, if SPECDISC does not contain any data, then the default

literal value of &E(REGDISC) will be used.

4. Repeat the mapping of data element 456. Specify application field SPECDISC and

the literal &IF(REGDISC < VOLDISC) &E(VOLDISC).

This mapping will be executed only if the value of REGDISC is less than the value

of VOLDISC. If this is the case, then SPECDISC will be mapped to the data

element. However, if SPECDISC does not contain any data, then the default literal

value of &E(VOLDISC) will be used.

Literal keywords and named variables

272 Mapping Guide

Notes® on examples 5 and 6

Examples 5 and 6 illustrate the differences between &IF, &USE, and &E:

v &IF is used to determine if a mapping is executed. The value of the &IF expression

is not used in the mapping; it only controls the execution of the mapping. If the

expression is true (nonzero value), the mapping is executed. If the expression is

false (zero value) the expression is not executed. In examples 5 and 6, only one of

the maps in steps 3 and 4 will be executed because the expressions are mutually

exclusive.

v &USE indicates that a named variable is used as the primary source for data in the

mapping. An application field cannot be specified, but you can have a default literal

value if the variable name being used does not contain any data.

v &E is used exactly the same as a literal value, but instead of having a constant literal

value, &E is computed, taken, or computed and taken from a named variable. If the

last operator of an expression is a Boolean or comparison operator, then the value of

the expression will either be true (1) or false (0), and you can map these values.

For example, if a data element contains a 1 if FLD1 is greater than FLD2, or a 0 if it

is not, then mapping the expression &E(FLD1 > FLD2) would result in either a 1 or 0

being moved to the EDI standard data element. If a data element contains a 1 if

FLD1 is greater than FLD2, or nothing if it is not, then the conditional mapping

&IF(FLD1 > FLD2) 1 would map the constant value of 1 only when FLD1 is greater

than FLD2.

Example 7

For an outbound transaction, data element 321 must have a value of S if the value of

application field SIZE is 6, 7, or 8; a value of M if SIZE is 9, 10, 11, or 12; and a value

of L if SIZE is 13, 14, or 15. These values are specified in the translation table

SIZETAB. However, for this transaction, SIZE can also be less than 6, in which case

data element 321 must have a value of XS, or greater than 15, in which case data

element 321 must have a value of XL.

1. In the first mapping of data element 321, specify application field SIZE and the

literal &SAVE Size.

This saves the value of the application field to a named variable. If the application

field does not contain a value, the variable value is zero.

2. Repeat the mapping of data element 321. Specify the literal &IF(Size > 0 AND Size

< 6) XS.

This compares the value of the named variable to 6 and 0. If the value is less than

6 but greater than 0, WebSphere Data Interchange uses the value XS.

3. Repeat the mapping of data element 321. Specify the literal &IF(Size > 15) XL.

This compares the value of the named variable to 15. If the value is greater than

15, WebSphere Data Interchange uses the value XL.

4. Repeat the mapping of data element 321. Specify application field SIZE and the

literal &IF(Size >= 6 AND Size <= 15) &E(Size TS 'SIZETAB').

This compares the value of the named variable to 6 and 15. If the value is greater

than or equal to 6, and less than or equal to 15, WebSphere Data Interchange uses

the translation table SIZETAB to determine the corresponding value for the named

variable.

Literal keywords and named variables

Chapter 14. Advanced send and Receive mapping 273

Example 8

Assume you have a lumber supply business and your trading partners are home

builders in the area. The unit of measure on their orders ranges from inches to rods

(one rod equals 5 yards). You have implemented just-in-time inventory processes so if

you receive an order that requires additional inventory, your order is immediately sent to

your supplier. Your application stores all measurements in board feet, and therefore

must convert all incoming data to board feet.

Your application fields are QUANTITY and UNITMEAS. Using the conditional

processing literals, you would:

1. Map the unit of measure data element, using the literal &SAVE UOM. Do not specify

an application field.

This saves the present value of the standard data element in the named variable

UOM.

2. Repeat the mapping of the unit of measure data element, using the literal &IF(UOM

EQ 'IN' OR UOM EQ 'BF' OR UOM EQ 'RD') &SET UOMOK 1. Do not specify an

application field.

This statement enables you to determine if you have only the values you want, and

if the statement is true, WebSphere Data Interchange puts a 1 in the named

variable UOMOK for later use.

3. Repeat the mapping of the unit of measure data element. Specify application field

UNITMEAS and the literal &IF (UOMOK EQ 1) &FORCE BF.

This forces the value 'BF' into the application field only when the unit of measure is

a valid value. The steps that follow will convert the data received into board feet.

4. Map the quantity data element, using the literal &SAVE QTY. Do not specify an

application field.

This saves the present value of the standard data element in the named variable

QTY.

5. Repeat the mapping of the quantity data element. Specify application field

QUANTITY and the literal &IF(UOM EQ 'IN') &FORCE &E(QTY/144).

This statement saves the value of quantity converted to board feet in the application

field QUANTITY only if the incoming unit of measure was 'IN'.

6. Repeat the mapping of the quantity data element. Specify application field

QUANTITY and the literal &IF(UOM EQ 'RD') &FORCE &E(QTY*198/144).

This statement saves the value of quantity converted to board feet in the application

field QUANTITY only if the incoming unit of measure was 'RD'.

7. Repeat the mapping of the quantity data element. Specify application field

QUANTITY and the literal &IF(UOM EQ 'BF') &FORCE &E(QTY).

This statement saves the value of quantity converted to board feet in the application

field QUANTITY only if the incoming unit of measure was 'BF'.

8. Repeat the mapping of the unit of measure data element, using the literal

&ASSERT1(UOMOK EQ 1) &ERR(2,100,,'Invalid unit of measure') Do not specify

an application field.

This statement creates a translation error for anything that does not meet our

criteria. Assume you received something in yards. You can add a repeat mapping

for yards, then retranslate. The transaction would then pass through the translation.

Literal keywords and named variables

274 Mapping Guide

An alternative to using conditional processing literals would be a single mapping using a

translation table. For example, you can set up a translation table UOMDIV as follows:

 Table 40. Sample translation table UOMDIV

Local value Standard value

IN 144

RD 1.375

BF 1

If a translation table is used, then the mapping can be reduced to the following:

1. Map the unit of measure data element, using the literal &SAVE UOM.

2. Repeat the mapping of the unit of measure field, using the literal &SET divisor

&E(UOM TS 'UOMDIV').

3. Repeat the mapping of the unit of measure field, using the literal &IF divisor NE 0)

&FORCE BF.

4. Map the quantity data element using the literal &SAVE QTY.

5. Repeat the mapping of the quantity data element, using the literal &FORCE

&E(QTY/divisor).

6. Repeat the mapping of the unit of measure data element, using the literal

&ASSERT1(divisor NE 0) &ERR(2,100,,'Invalid unit of measure').

This method might be preferred if the values of UOM are expected to change. If this

happens, only the UOMDIV table needs to be updated rather than changing the

mapping.

Example 9

For an outbound transaction, the application field TEST1 is an N2 data type and

contains the value 100. You need to build a variable that contains "XX" in the first and

second positions, "01" in the third, forth, fifth, and sixth positions, and the value in the

application field TEST1 beginning in the seventh position.

To put this information into a single variable, do the following:

1. Map a data element using the literal &SET TVAR.

This creates the named variable TVAR and sets the variable to null.

2. Repeat the data element and map the data element using the literal &SET

TVAR,*,2 XX.

This places "XX" in bytes 1 and 2 of the variable TVAR.

3. Repeat the data element and map the data element using the literal &SET

TVAR,*,4 01.

This places "01" in bytes 3 through 6 of the variable TVAR.

4. Repeat the data element and map the data element using the application field

TEST1 and a literal &SAVE TVAR,*,7.

This places "100" in bytes 7 through 9 of the variable TVAR. The variable TVAR

now contains the following:

Literal keywords and named variables

Chapter 14. Advanced send and Receive mapping 275

XX01 100

Note: At this point, the variable TVAR has been normalized to the data type of the

application field TEST1, which is defined as an N2 data type.

To map TVAR position 3 through 6 to an EDI standard data element with an ID data

type, you would need to do the following because of the normalization of the variable to

an N2 data type:

1. Map a data element using the literal &E(CHAR(TVAR) SC 3.4).

The &E computes the literal. The CHAR forces the variable TVAR to have a data

type of character for this instruction. The SC is a scaling function but can be used to

substring character data. The resulting value would be "01".

An alternative to using the scaling function is as follows:

1. Map a data element using the literal &E(CHAR(TVAR) TO 'CDEF').

The TO 'CDEF' is used to create the value by matching the default pattern

('ABCDEFGHIJK...') with the 'CDEF' pattern in this expression. The resulting value

would be "01".

2. Map a data element using the literal &USE TVAR,3,4.

The resulting value would be "0.01".

To map TVAR position 7 through 9 to an EDI standard data element with an R data

type, you can move the data.

1. Map a data element using the literal &USE TVAR,7,3. The resulting value would be

"1.00".

Example 10

For an outbound transaction, the application field TEST1 is an N2 data type and

contains the value 123. Application field TEST2 is an N0 data type and contains the

value 100.

To put this information into a single variable do the following:

1. Map a data element using the literal &SET TVAR.

This creates the named variable TVAR and sets the variable to null.

2. Repeat the data element and map the data element using the application field

TEST1 and a literal &SAVE TVAR,*,3.

This places "123" in bytes 1 through 3 of the variable TVAR.

3. Repeat the data element and map the data element using the application field

TEST2 and a literal &SAVE TVAR,*,3.

This places "100" in bytes 4 through 6 of the variable TVAR.

The variable TVAR now contains the following:

 123100

Literal keywords and named variables

276 Mapping Guide

Note: At this point the variable TVAR has been normalized to the data type of the

application field TEST1 which is defined as an N0 data type.

To map TVAR position 1 through 3 to an EDI standard data element with an R data

type, you would need to do the following because of the normalization of the variable to

an N2 data type:

1. Map a data element using the literal &SET TEMPVAR &E(CHAR(TVAR) SC 1.3).

The &E computes the literal. The CHAR forces the variable TVAR to have a data

type of character for this instruction. The SC is a scaling function but can be used to

substring character data. The resulting value would be "123".

2. Repeat the data element and map the data element using the literal &E(TEMPVAR /

100).

The resulting value would be 1.23.

An alternative is as follows:

1. Map a data element using the literal &USE TVAR,1,3.

The resulting value would be 123.

Control data literals

Audit and control are generally high priority items. If you have the need to add the

internal trading partner nickname of your trading partner to your application data for

each transaction, use the &TPID or &TPNICKN literals. If you need to include the data

format ID associated with the current transaction, use the &FORMAT literal. Finally, if

you require the application control value associated with the current transaction, use the

&ACFIELD literal. This value will only be correct after ALL the fields that comprise the

application control field have been processed.

Using service segment fields

Service segments are the segments used when an EDI Transaction is enveloped (ISA,

GS, ST, UNB, UNH, UNT, and so on). Use the PERFORM command keyword

SERVICESEGVAL to indicate which validation level must be applied to the service

segments. If you do not specify the SERVICESEGVAL keyword, no service segment

validation occurs. Valid values for the keyword are:

1 Validates the service segments for syntax only. This includes checking for

mandatory data that is missing, as well as Data Elements that are too large or

too small.

2 In addition to level 1 checking, level 2 checking validates the service segment

date and time data elements according to their types. Also, Data Elements that

specify a Code List will have the value of the Data Element validated against

the values contained in the Code List.

 Service segment validation occurs on EDI Standard Transactions that are used as the

source of a translation. Service segment validation is not available for EDI documents

being created as the result of a translation. Validation errors that result from service

Literal keywords and named variables

Chapter 14. Advanced send and Receive mapping 277

segment validation cause the interchange, group, or Transaction with the error to be

skipped (not processed). Translation continues on the remainder of the input data.

The SERVICESEGVAL keyword is used with the following PERFORM commands:

v DEENVELOPE

v DEENVELOPE AND TRANSLATE

v ENVELOPE

v ENVELOPE AND SEND

v RECEIVE AND DEENVELOPE

v REENVELOPE AND TRANSLATE

v REENVELOPE

v REENVELOPE AND SEND

v TRANSLATE AND ENVELOPE

v TRANSLATE AND SEND TRANSFORM

Mapping service segment fields (send only)

During the Send mapping process, the &TCN special literal can be used to indicate the

application field which contains the message or transaction control number. Any field

from a segment currently mapped can be chosen and either mapped or repeated, and

the special literal &TCN used to identify the application field containing the control

number.

v If the application field is part of a record that occurs more than once, the first record

is the only one that will be used.

v It is possible to have more than one mapping which contributes to the transaction

control number. The data from each mapping will be concatenated with the current

data from previous mappings.

v If &DATE is used in the mapping, the format will be yyyymmdd. If &TIME is used in the

mapping, the format will be hhmmss.

The transaction control number is extracted at translate time so if delayed enveloping is

used and &DATE or &TIME, or both, are used to construct the control number, the date

and time will be the date and time of translation and not the date and time of

enveloping.

v Translation tables and validation tables can be used during &TCN mappings the

same as they can be used in any other mapping.

v The transaction control number generated by the application is truncated to the

maximum length for a control number specified by the EDI standard, never to exceed

fourteen bytes.

v It is possible to combine delayed enveloping with application assignment of control

numbers. If this is done, when an envelope operation is requested, the transactions

will be sorted such that all transactions for which WebSphere Data Interchange will

assign control numbers will occur before the transactions for which the application

has assigned control numbers. Also, during an envelope operation, a switch from a

transaction that requires WebSphere Data Interchange to assign the control number

to a transaction with application assigned control numbers will cause a new

interchange to be started. Transactions with application assigned control numbers will

be sorted by the value of the transaction control number.

Control data literals

278 Mapping Guide

Error message TR0115 is displayed if the application field containing the control number

was not provided, if it contained all blanks, or was otherwise invalid.

Error message TR0116 is issued if the control number assigned is a duplicate within the

group/interchange. The translator requires that message control numbers must be

unique within the group. If groups are not being used, then message control numbers

must be unique within the interchange.

These errors are considered level 3 errors.

You must fix the application so that the message control numbers are unique within the

interchange or group.

The following table shows the type of validation done for every possible mapping

between application data types (down) and EDI standard data types (across) during a

TRANSLATE TO STANDARD processing.

Mapping specific service segment fields (receive only)

Table 41 lists the literals that are provided so that every field within every service

segment can be accessed using a combination of the segment ID (ISA, UNB, STX, and

so forth) concatenated with a 2-byte number indicating the field within the segment

wanted. The names created with this concatenation match the names of the fields

defined in the E, I, T, U, and X profiles.

Invalid names (for example, ISA44) are not flagged as errors, but return no data. Using

names that do not match the envelope type being received (for example, using ISA01

when UN/EDIFACT service segments (UNB) are being used) is not an error, but no

data is returned.

 Table 41. Literals to identify fields in service segments

Literal: nn Value: Segment:

&ISAnn 01 through 16 ISA

&GSnn 01 through 08 GS

&STnn 01 through 02 ST

&SEnn 01 through 02 SE

&GEnn 01 through 02 GE

&IEAnn 01 through 02 IEA

&UNBnn 01 through 18 UNB

&UNGnn 01 through 13 UNG

&UNHnn 01 through 09 UNH

&UNTnn 01 through 02 UNT

&UNEnn 01 through 02 UNE

&UNZnn 01 through 02 UNZ

&STXnn 01 through 12 STX

&BATnn 01 through 01 BAT

Control data literals

Chapter 14. Advanced send and Receive mapping 279

Table 41. Literals to identify fields in service segments (continued)

Literal: nn Value: Segment:

&MHDnn 01 through 06 MHD

&MTRnn 01 through 01 MTR

&EOBnn 01 through 01 EOB

&ENDnn 01 through 01 END

&BGnn 01 through 07 BG

&EGnn 01 through 04 EG

&ICSnn 01 through 10 ICS

&ICEnn 01 through 02 ICE

Mapping generic service segment fields (receive only)

You can map received envelope data to application fields by using substitution

keywords in the Literal field. The keywords indicate which service segment field is

mapped to the application field.

Table 42 describes the substitution keywords you can use to map service segment

fields. The Envelope Data Type column indicates the required data type for the service

segment field. The EDI Standard Data Type indicates the data type that WebSphere

Data Interchange uses for conversions from an EDI standard data type to the

application data type.

 Table 42. Keywords for mapping envelope data (receive only)

Keyword:

Envelope Data

Type:

EDI Standard

Data Type:

Envelope Data Mapped to

Application:

&I A Entire interchange service

segment, up to the length of the

application field

&ICN CN or IV AN Interchange control number

&IIS IS, AS, or RS A Interchange sender ID

&IIR IR, AR, or RR A Interchange receiver ID

&IDT DT DT Interchange date

&ITM TM TM Interchange time

&IPW PW A Interchange password

&IAP AP A Interchange application reference

&IVR VR A Interchange version/release

&IGT N0 Interchange total number of

groups

&ICT CT N0 Interchange control total from the

interchange trailer segment

&ITT N0 Interchange total number of

transactions

Mapping service segment fields

280 Mapping Guide

Table 42. Keywords for mapping envelope data (receive only) (continued)

Keyword:

Envelope Data

Type:

EDI Standard

Data Type:

Envelope Data Mapped to

Application:

&G A Entire group service segment, up

to the length of the application

field

&GCN CN or IV AN Group control number

&GFG FG A Functional group ID

&GAS AS, IS, or RS A Group application sender ID

&GAR AR, IR, or RR A Group application receiver ID

&GDT DT DT Group date

>M TM TM Group time

&GPW PW A Group password

&GVR VR A Group version

&GLV LV A Group release

>T N0 Group total number of

transactions

&T A Entire transaction service

segment, up to the length of the

application field

&TCN CN or IV AN Transaction control number. The

&TCN keyword is valid for both

send and receive. See “Mapping

service segment fields (send

only)” on page 278 for an

explanation on the use of &TCN

for application assigned control

numbers.

&TTC TC A Transaction code

&TVR VR A Transaction version

&TLV LV A Transaction release

&TTS N0 Transaction total number of

segments

WebSphere Data Interchange interprets any literal beginning with an ampersand (&) as

a special keyword. To use a literal that begins with an ampersand, use two

ampersands. The translator discards the first one and uses the remaining characters as

literal data. For example, if you enter &T in the Literal field, the translator moves the

entire transaction service segment to the application data. If you enter &&T in the

Literal field, the translator removes the first & and uses &T as literal data. The service

segments (ISA, GS, ST, UNB, UNG, and so on) are not provided in the list of segments

that can be mapped for trading partner transactions. Because they are not provided in

the list, a direct mapping of a field from a service segment is not possible. In order to

use one of the literals from Table 39 on page 246 or Table 42 on page 280, you must

map, or repeat map, some other data element defined in the transaction. When one of

Mapping service segment fields

Chapter 14. Advanced send and Receive mapping 281

the special literals is used, WebSphere Data Interchange knows that the value of the

data element being mapped must be ignored, and the value of the special literal must

be used instead.

Restrict the mapping of service segment fields to data elements in nonrepeating

segments. Select a data element in the first nonrepeating segment that you know will

always be present in the received transaction data. The segment must be present in the

data being received for the mapping instructions to be executed. Repeat the element

mapping as many times as is necessary to map (or &SAVE) all of the service segment

fields you need. WebSphere Data Interchange recognizes the substitution keywords

and moves the value from the associated service segment field rather than the

transaction data element that is currently being mapped to the application field or

named variable. Data conversions and table translations, and user exits are possible

when service segment special literals are used.

Validation during mapping

Table 43 describes the type of validation used during translation, based on the type of

data being validated.

 Table 43. Validation used during mapping for different data types

Data type: Validation:

A The ALPHANUM validation table shipped with WebSphere Data Interchange, with

numeric digits (0 through 9) removed, is used to validate the data.

AN The ALPHANUM validation table shipped with WebSphere Data Interchange is

used to validate the data.

BIN A generic data type that encompasses the P, L, Z, B, I and H data types.

CH The CHARSET validation table shipped with WebSphere Data Interchange is

used to validate the data.

N Only digits, leading or trailing sign characters, and leading or trailing blanks are

valid.

R Only digits, decimal notation, leading or trailing sign characters, and leading or

trailing blanks are valid.

DT Must be a valid date according to the format specified during the mapping

process.

TM Must be a valid time.

- Validation is done automatically because a data conversion is required.

Table 44 shows the type of validation done for every possible mapping between

application data types (down) and EDI standard data types (across) during a

TRANSLATE TO STANDARD processing.

 Table 44. Type of validation during Translate to Standard

Data type: A: AN: BIN: N: R: DT: TM:

A A R AN N R DT TM

AN A R AN N R DT TM

Mapping service segment fields

282 Mapping Guide

Table 44. Type of validation during Translate to Standard (continued)

Data type: A: AN: BIN: N: R: DT: TM:

AC A R AN N R DT TM

CH CH R CH N R DT TM

DT DT DT DT DT DT DT DT

TM TM TM TM TM TM TM TM

R R R R R R DT TM

N N N N N N DT TM

P — — — — — DT TM

L — — — — — DT TM

Z — — — — — DT TM

B - - - - - DT TM

I - - - - - DT TM

FN CH R CH CH CH CH CH

H - - - - - DT TM

Table 45 shows the type of validation done for each possible mapping between

application data types (down) and EDI standard data types (across) during

TRANSLATE TO APPLICATION processing.

 Table 45. Type of validation during Translate to Application

Data type: A: AN: N: R: DT: TM:

A A A N R DT TM

AN AN AN N R DT TM

AC AN AN N R DT TM

CH CH CH N R DT TM

DT DT DT DT DT DT DT

TM TM TM TM TM TM TM

R R R R R DT TM

N N N N R DT TM

P R R N R DT TM

L R R N R DT TM

Z R R N R DT TM

B R R N R DT TM

I R R N R DT TM

FN CH CH CH CH CH CH

H R R N R DT TM

Validation during mapping

Chapter 14. Advanced send and Receive mapping 283

284 Mapping Guide

Appendix A. Mapping Binary Data

The ASC-X12 Specifications/Technical Information transaction set (841) defines a way

for trading partners to exchange technical information the same way they exchange EDI

transactions. This technical information, which can be graphic, image, or audio, can

contain binary data. The binary data can assume any value in the range X'00' rough

X'FF'.

In the syntax of X12 transaction sets, data elements that are separated by delimiters

are combined into a segment that is identified by a segment ID and terminated with a

segment delimiter. The binary data introduced by the 841 transaction set causes

problems for this syntax because the binary data can contain a value that matches a

segment delimiter. Translators and networks that support the 841 transaction set must

have a way to identify binary data and determine its length so that it does not interfere

with parsing the rest of the envelope. Special care must be taken if you want to send

and receive files between and translators on other platforms. Not all operating systems

support the record types uses. For more information, see “Format specifications” on

page 289.

The BIN segment ID

The binary data is identified with a BIN segment ID, which notifies the parser that data

following the segment ID is binary. Although the parser must always treat the BIN

segment as if it contained binary data, the segment can contain normal text. The first

data element of the BIN segment contains the length of the binary data so that the

parser knows the amount of data to pass without interference. The first character after

the binary data must be BIN segment terminator. Any other value is a syntax error that

ends parsing for the envelope.

The BIN segment ID triggers the special binary processing. Although the 841

transaction set is the only one that uses the BIN segment, binary processing is not

limited to the X12 standard. In addition, applies this special processing to all envelope

types.

Length of the BIN segment

The value in the length data element of the BIN segment can be up to 15 characters

long, which means the maximum length of a BIN segment is 999,999,999,999,999

bytes (fifteen 9s). However, the maximum size that supports is 2,147,483,647 bytes,

which is the maximum signed integer value that a fullword can hold. The binary

segment is a repeating segment with an unlimited number of repetitions, therefore it is

unlimited for EDI.

Data Transformation for Binary Data

This section covers mapping binary data for Data Transformation to and from an

application field.

© Copyright IBM Corp. 2007 285

Mapping a BIN segment

The BIN segment, as mentioned earlier, can have a rather impressive length. A new

segment BDS has been introduced to transmit binary data in X12V4R4, transaction 102

(Associated Data).

The BIN and BDS segments

The binary data is identified with a BIN or BDS segment ID, which notifies the parser

that data following the segment ID is binary. Although the parser must always treat the

BIN and BDS segments as if it contained binary data, the segment can contain normal

text.

The first data element of the BIN segment contains the length of the binary data so that

the parser knows the amount of data to pass without interference.

The second data element of the BDS segment contains the length of the binary data so

that the parser knows the amount of data to pass without interference.

The first character after the binary data must be BIN or BDS segment terminator. Any

other value is a syntax error that ends parsing for the envelope.

The BIN and BDS segment IDs triggers the special binary processing.

Although using a file name is the primary way of providing data for a binary Segment,

with Data Transformation maps you provide the data by passing it to WebSphere Data

Interchange in application fields, the way all other application data is passed. The

binary data itself must be defined in the Data Format with a data type of BN. The

application can provide the length of the binary data If the length of the binary data is

not provided by the application the length will be the length of the application data field

defining the binary data.

However, WebSphere Data Interchange has a maximum length of 32767 bytes for

application fields, which is significantly less than the 999,999,999,999,999 bytes defined

by the standard or the 2,147,483,547 bytes for WebSphere Data Interchange.

WebSphere Data Interchange knows that it is dealing with binary data, and that some

special processing is needed to put it into a BIN or BDS segment. The easiest way to

pass this binary data to WebSphere Data Interchange is with a data format such as:

BINARY_LOOP1 999 Repeating loop

BINARY_STRUCTURE1 Record

 LENGTH N0 15 15-byte length field

 BINARY_DATA_LOOP 99 Repeating loop

 BINARY_DATA1 Record

 BINARY_FIELD BN 32767 Binary data field

Both BINARY_STRUCTURE1 and BINARY_DATA1 are passed separately records.

Now the application provides WebSphere Data Interchange with a

BINARY_STRUCTURE1 and as many BINARY_DATA1 records as necessary to satisfy

the length specified in the LENGTH field. WebSphere Data Interchange builds one BIN

or BDS segment for each occurrence of BINARY_STRUCTURE1.

BIN segment ID

286 Mapping Guide

The BIN and BDS segment has a length value as specified by the LENGTH field and

contains data from the BINARY_DATA1 records.

The EFI segment

For the 841 transaction set, an Electronic Format Identification (EFI) segment precedes

a group of repeating BIN segments. The EFI segment provides information about the

binary data file. provides special processing for only the following data elements in the

EFI segment:

v File name

v Block type

v Record length

v Block length

Data elements such as security technique and compression technique do not receive

special processing. When data compression is used, the sender must compress the

data before translation, and the receiver must decompress it after translation. Any

security that occurs is for the entire transaction or for the group containing the

transaction. does not provide a special security interface for data in the BIN segments.

Use of the four data elements are covered later in the information pertaining to send

and receive processing.

The following information can help explain how treats two of them: file name and block

type.

File name: The EDI standard essentially defines file name as free format with a

maximum length of 64 characters. Its format depends on the computer operating

system being used. Accordingly, treats this element as a fully qualified data set name,

including the owner ID. A file name value with a length greater than 44 characters (the

maximum length of a data set name) is ignored.

Block type: The standard defines block type as free format with a maximum length of 4

characters. Its value indicates the organization of data in the BIN segments. Examples

are fixed length, variable length, and spanned.

However, the definition does not provide any codes to represent the organizations, such

as F for fixed and V for variable. In the absence of standard codes, interprets the block

type as a string of characters that can have the following values:

A ASA printer control characters

B Block

F Fixed

M Machine code printer control characters

S Spanned

U Undefined

BIN segment ID

Appendix A. Mapping Binary Data 287

V Variable

Send processing for the binary segment

This section covers mapping a file or an application field to a binary segment.

Mapping data from a file to a binary segment

The primary intent of the 841 transaction set and the BIN segment is to transmit files

between trading partners. Therefore, provides a way for you to map a file to a data

element in the EDI standard. Normally, you would map a data element to an application

field. Mapping data from a file to the BIN segment requires a new application data type,

FN (file name).

The FN data type has special meaning only when it is mapped to the BIN02 data

element of the BIN segment. At all other times, the FN data type is treated as an

alphanumeric (AN) field. The special meaning for the FN data type when mapped to the

BIN02 element is as follows:

v Rather than moving the field containing data to BIN02, moves the entire contents of

a file named by the field to the BIN02 data element.

v automatically supplies the length (BIN01), based on the amount of data read from

the file.

Aside from the special processing, the mapping of an FN field is the same as any other

field, including the use of a translation table or user exit routine. For example, the

application might not know the data set name of a file to be transmitted. The application

might know it by a coded name. A translation table or a user exit provides a way of

transforming the coded name to a data set name. You can also use a literal if the

application data does not contain a value at all or if the value it supplies is all blanks.

Because the name of the file mapped to the BIN segment can also be specified in the

EFI segment, you must use the same field for mapping both segments.

If an EFI segment is built and it contains a value in the file name data element, that file

name is used if the field mapped to the BIN02 data element is all blanks and no literal

value is supplied.

The format of data in an FN type field is:

type:name

In this format, type is an optional value that indicates the type of file being provided.

Valid values are as follows:

DD Data definition name (ddname)

DS Data set name

MQ queue profile member name

VS VSAM entry sequenced data set

TD Transient data queue

EFI segment

288 Mapping Guide

TM Temporary storage queue (main)

TS Temporary storage queue (auxiliary)

Note: VS, TD, TM, and TS are for CICS® only. The default is DS in and TS in CICS.

The name is either a ddname or data set name based on the value of type. It must

conform to the conventions for its type. A ddname has a maximum length of 8. A data

set name has a maximum length of 44.

The value of name can also be the literal &IV, which tells to substitute a value that

represents the current binary file being processed. Each time a binary file is processed,

increments this internal number. Thus, a specification of DD:EDIBF&IV equates to a

ddname value of EDIBF1 the first time a binary file is processed, EDIBF2 the second

time a binary file is processed, and so on.

The BIN segment, as mentioned earlier, can have a rather impressive length, and you

might think that the entire file can be put into a single BIN segment. This is not always

true. The number of BIN segments required to hold any file depends on the size of the

file and the format of records in the file.

Format specifications

A file must be transmitted in a form that permits the receiver to recreate an exact copy

of the file.

For based systems, a file consists of individual records and each record consists of

some number of characters. Records can either have a fixed format where each record

has the same number of characters, or a variable format where each record has a

variable number of characters. For variable length records, the number of characters in

the record is maintained in a record header which is the first 4 bytes of the record and

has a format of LLXX, where LL is the number of characters in the record (including the

length of the LLXX field) and XX is reserved.

Files on other systems (such as Windows® or) do not have record boundaries but are

treated as a stream of characters with record boundaries (if any) established by the

program that is reading the stream. provides 8 different ways to combine data from a

file into BIN segments so that the receiver of the file can recreate an exact copy of the

file being sent. The 8 different ways represent combinations of how records are put into

binary segments (either combined or individually) and the format of the record header

within the BIN segment. There are four possible header formats for records within the

BIN segment:

1. No header - the data is put into the binary without a header.

2. format - each record in the binary segment is preceded by a record header of the

form LLXX.

3. SHORT format - each record in the binary segment is preceded by a record header

of the form LL.

4. LONG format - each record in the binary segment is preceded by a record header

of the form LLLL.

Binary segment: mapping from file

Appendix A. Mapping Binary Data 289

WebSphere Data Interchange transmits all files with a fixed format by combining the

records into a single binary segment without any record headers. Because the file has a

fixed format, the record headers are not needed for the receiving side to reconstruct the

file.

WebSphere Data Interchange transmits all files with a variable format by sending each

record within the file as a single binary segment. Again record headers are not used

because they are not necessary to be able to reconstruct the file.

If the defaults are not satisfactory, (for example, you want to send a file with variable

length records as a stream of data in a single binary segment) then a special literal

value can be supplied at mapping time that overrides the defaults. This literal is

specified when mapping the binary element in the BIN segment (BIN02). You can either

type it in the literal field on the mapping page, or map an application field to the BIN02,

which at run time supplies the literal to . This literal consists of a series of keywords.

Except for the first keyword (BinSpec), you can specify them in any order. In the

following list, the keywords are shown with acceptable abbreviations in CAPS:

BinSpec

Signals that binary specifications follow.

BINary(C)

Indicates records are combined into a single binary segment (default for fixed

record lengths).

BINary(R)

Indicates each record is a binary segment (default for variable record lengths).

Format(N)

No header precedes each record in the binary segment (default).

Format(V)

Use a header of the form LLXX, where LL is the number of bytes in the record

and XX is binary zeros.

Format(S)

Use a header of the form LL, where LL is the number of bytes in the record.

Format(L)

Use a header of the form LLLL, where LLLL is the number of bytes in the

record.

LIMIT(nnnnn)

If records are being combined, then nnnnn is the maximum size for a binary

segment. After a binary segment reaches this limit, it is stopped and a new

binary segment is started. The default limit is over 2 gigabytes or the amount

of virtual storage available to the program, whichever is lower.

Examples

Sending PC executable files

In order to send a Windows or executable file received from a personal computer back

to a personal computer, use the combined and no headers options:

Format specifications

290 Mapping Guide

BINSPEC BINARY(C) FORMAT(N)

Note: A variable length file sent with these options cannot always be recreated,

because the records have been combined and no record length information has

been added. This format is needed to send data to some PC translators.

Sending variable length files to PCs

In order to send a variable length file (such as a LIST3820) to a personal computer, so

that none of the record length information is lost, even if all of the records are combined

into one file, use the combined and any format option other than N.

 BINSPEC BINARY(C) FORMAT(S)

In order to convert a file formatted as described back to its original format, use the

same options on receive processing.

Sending a file to a system with a limit

Some systems have a limit to the size of a binary segment they can process. In order

to limit the size of the data inside the BIN02 element to 1000 bytes, use the following

option:

 BINSPEC LIMIT(1000)

Note: A variable length file with records larger than 1000 bytes sent with these options

cannot always be recreated, because the records have been split and no record

length information has been added. The format parameter can also be used to

add record length information.

Mapping an application field to a binary segment

Although using a file name is the primary way of providing data for a binary segment,

you might find it useful to provide the data by passing it to in application fields, the way

all other application data is passed. If you do this, the application provides the length of

the binary data and the binary data itself.

However, has a maximum length of 999 bytes for application fields, which is

significantly less than the 999,999,999,999,999 bytes defined by the standard or the

2,147,483,547 bytes defined by WebSphere Data Interchange. knows that it is dealing

with binary data, and that some special processing is needed to determine the length of

data being passed, gather it, and put it into a BIN segment. The easiest way to pass

this binary data to is with a data format such as this:

BINARY_LOOP1 999 Repeating loop

 BINARY_STRUCTURE1 Record

 LENGTH N0 15 15-byte length field

 BINARY_DATA_LOOP 99 Repeating loop

 BINARY_DATA1 Record

 BINARY_FIELD CH 999 Binary data field

Both BINARY_STRUCTURE1 and BINARY_DATA1 are passed separately. Now the

application provides with a BINARY_STRUCTURE1 and as many BINARY_DATA1

Format specifications

Appendix A. Mapping Binary Data 291

structures as necessary to satisfy the length specified in the LENGTH field. builds one

BIN segment for each occurrence of BINARY_STRUCTURE1.

The BIN segment has a length value as specified by the LENGTH field and contains

data from the BINARY_DATA1 structures.

If the BINARY_DATA1 structures you provide exceed the length you specified, ignores

the extras. If you provide fewer than needed, binary zeros are added to the BIN

segment until the LENGTH value is satisfied. The number of repetitions you specify for

the structures is not important. accepts as many as the application passes.

As another example, suppose the application wants to pass in data from the file and

have structures built in the same way described for variable-length files. The normal

variable-length record format for records is a binary halfword containing the length of

the data followed by the data itself. The data format definition required to accomplish

this is:

BINARY_LOOP 999 Repeating loop

 BINARY_STRUCTURE2 Record

 LENGTH I0 2 2-byte binary length (the I0 is I (as in I am) 0)

 BINARY_DATA_LOOP 32767 Repeating loop

 BINARY_DATA2 ST Record

 BINARY_FIELD CH 1 Binary data field

BINARY_DATA2 is defined as physically part of its parent. Its maximum use count is

32756, because that is the maximum logical record length for physical sequential files.

The only difference between this example and the previous one is in the way data is

passed to . In the first case, BINARY_STRUCTURE1 is passed followed by multiple

BINARY_DATA1 structures. In the second case, only BINARY_STRUCTURE2 is

passed because BINARY_DATA2 is defined as physically part of

BINARY_STRUCTURE2.

There is a trade-off in choosing between the two cases. Structures always have a fixed

length in . Therefore, when is presented with BINARY_STRUCTURE2, it always

expects to get 32758 bytes. On the receive side, it always creates 32758 bytes. In

effect, each variable-length record is expanded to its maximum length. The method

used with BINARY_STRUCTURE1 conserves main storage at the expense of making

the application break up the data into 999-byte chunks, in order for to put it back

together.

You might ask, “But a structure can repeat only 32757 times, and a field can be only

999 bytes long, for a maximum record size of 32,724,243 bytes? What if I want to pass

in more than that as a single structure?” assumes that if the field mapped to the binary

data element of the BIN segment is the first field of a structure, then the length of the

structure, not the length of the field, is used to move data. Furthermore, if the structure

is defined to be physically part of its parent, and its parent is defined to be physically

part of its parent, and it has no other fields, uses the length of the parent structure. For

example:

Binary segment: mapping from application field

292 Mapping Guide

BINARY_LOOP 999 Repeating loop

 BINARY_STRUCTURE3 Record

 LENGTH N0 15 15-byte length field

 BINARY_DATA_LOOP1 10000 Repeating loop

 BINARY_DATA3 Record structure

 BINARY_DATA_LOOPA 1000 Repeating loop

 BINARY_DATA3A Record

 BINARY_DATA_LOOPB 10000 Repeating loop

 BINARY_DATA3B Record

 BINARY_FIELD1 CH 999 Binary data field

 BINARY_FIELD2 CH 1 Binary data field

BINARY_DATA3, BINARY_DATA3A, and BINARY_DATA3B are all defined to be

physically part of their parent. Using this definition and mapping the binary data field in

the standard to BINARY_FIELD1, the translator arrives at a length value of 1000 (the

length of BINARY_FIELD1+BINARY_FIELD2) * 10000 (the number of times

BINARY_DATA3B repeats) * 10000 (the number of times BINARY_DATA3A repeats) *

10000 (the number of times BINARY_DATA3 repeats). This yields an effective length of

10 to the 15th (1 greater than defined by the standard).

Of course this structure cannot really be used because the maximum length defined by

WebSphere Data Interchange is 2,147,483,647. Nevertheless, the example illustrates

the technique of creating an effective length greater than 999.

Receive processing for the binary segment

This section covers mapping a binary segment to a file or an application field.

Mapping data from a binary segment to a file

Receiving presents a set of problems that are not present on the send side. During

send processing, it is reasonable to assume that senders know what they are sending,

when they are sending it, and the data set names of the files they are sending.

Receivers, on the other hand, can have little control over what they receive, when they

receive it, and how many files they receive at any one time. Therefore, must be capable

of creating files when necessary.

As with sending, if you want the binary data passed to you in a file rather than the

application fields, map the binary data to a field in the application defined with the FN

data type. You do not receive the binary data in the field; instead you receive the name

of the data set where the data was written.

On the send side, you can provide the file name in an application field buffer or as a

literal value. You can also provide a literal on the receive side. If you provide a literal for

an FN data type that is mapped to the binary data element of the BIN segment (BIN02),

gives the literal special processing. Normally, a literal mapped for receiving is used only

if the standard data element is blank. The special processing for this literal is that you

can use it to provide the file name and allocation parameters that needs to create the

file on your system.

The literal has this format:

Binary segment: mapping from application field

Appendix A. Mapping Binary Data 293

type:name parameters

type

 An optional value that indicates the type of file being provided. Valid values

are:

DD Data definition name (ddname)

DS Data set name

MQ queue profile member name

VS VSAM entry sequenced data set

TD Transient data queue

TM Temporary storage queue (main)

TS Temporary storage queue (auxiliary)

VS, TD, TM, and TS are for CICS only. The default is DS in and TS in CICS.

name

 is either a ddname or data set name based on the value of type. It must

conform to the conventions for its type. A ddname has a maximum length of 8

characters. A data set name has a maximum length of 44 characters.

 name can also contain one of the following special literals to substitute other

values in this field:

&IV A value that represents the current binary file that is being processed.

An F is inserted in front of this value if the IV value begins another

level of qualification on the data set name.

&U The current user ID. A dot (.) is inserted after the user ID to force

another level of qualification on the data set name.

&D The current date as a yymmdd value. D is inserted in front of this value

if it begins another level of qualification on the data set name.

&T The current time as an hhmmss value. A T is inserted in front of this

value if it begins another level of qualification on the data set name.

&E The current file name from the EFI segment. Another level of

qualification is forced both before and after the EFI file name.

name is optional. If you do not provide it, the file name from the EFI segment

is used. If an EFI segment does not exist or does not contain a file name field,

a default data set name &U.BIN&V.D&D.T&T is used. The name that is used is

returned to the application in the FN field. The maximum length of a data set

name is 44 characters, and truncation occurs if necessary.

parameters

 A series of keywords and values that supply the data needed to create a new

data set on your system. Except for the first keyword (ALL), you can specify

them in any order. The keywords are shown with an acceptable abbreviation in

CAPS:

Binary segment: mapping to file

294 Mapping Guide

ALLocate

Signals that allocation parameters follow.

TRacKs

Allocation unit is tracks.

CYLinders

Allocation unit is cylinders. This is the default value if TRK or BLK is

not specified.

BLocKs(b)

Allocation unit is BLOCKS with an average block length of b.

Space(p, s)

Primary space quantity of p (default value of 10). Secondary quantity

of s (default value of 10).

UNit(vvvv)

vvvvv is the unit name for the allocation. Default value is SYSDA.

UCount(n)

n is the number of units for the allocation. Default value is 1.

Lrecl(l) l is the logical record length. Default value is 32756 or the value taken

from the EFI segment.

Blksize(b)

b is the block size. Default value is 32760 or the value taken from the

EFI segment.

Recfm(xxxx)

xxxx is the record format for records in the file. Default value is VB or

the value taken from EFI segment. Valid values are:

A ASA printer control characters

B Block

F Fixed

M Machine code printer control character

S Spanned

U Undefined

V Variable

LIKE(dsname)

dsname is the name of some other data set from which the LRECL,

BLKSIZE, and RECFM are copied.

 first tries to open a given data set name. If the attempt to open the data set is

successful, the file is used, and any data in the file is overlaid by the new data. If the

attempt fails, tries to create a new file using the allocation value (or default) shown. The

new data set has a specification of (NEW,CATLG,CATLG), and all unused space in the

data set is released when the data set is closed. For CICS, if the attempt to open the

data set fails, a unique temporary storage queue is created, and the data is written to

Binary segment: mapping to file

Appendix A. Mapping Binary Data 295

this queue. Default values are overridden by values from the EFI segment, which in turn

are overridden by literal values supplied at mapping time.

If the data being received is being written to a fixed-length file, assumes the binary

segment consists of multiple records without any record headers. If the data being

received is being written to a variable-length file, assumes each binary segment

contains data for a single record without any record headers.

takes data from the binary segments and adds them to the file. For each BIN segment,

the amount of data defined by the logical record length of the file is extracted and

written to the file. This continues until the amount of data left in the BIN segment is less

than or equal to the logical record length. If the amount of data left in a binary segment

is less than the logical record length, fixed-length records are padded with binary zeros;

variable-length records are written with the shortened logical record length. Data from

the end of one BIN segment is never combined with the data from the beginning of the

next BIN segment. At a minimum, each BIN segment defines the beginning of a new

record in the file.

If the defaults previously described are not required, then the binary specifications

described in “Format specifications” on page 289 (BINary and Format) can be provided

as part of the allocation parameters in the receive literal value.

Mapping data from a binary segment to an application field

The considerations described for mapping from an application field to a binary segment

also apply when mapping data from a binary segment to an application field. See

“Mapping an application field to a binary segment” on page 291.

Binary segment: mapping to file

296 Mapping Guide

Appendix B. Hierarchical loops

A hierarchical loop (HL) is similar to an organization chart. Just as an organization chart

shows you the various groups of people and their relationship to the whole, an HL

shows you each group of data and its relationship to the whole. Figure 14 shows the

different levels in the organization, and who reports to whom.

Hierarchical loops define different levels of data, which can be used in any sequence,

and skipped when appropriate, enabling you to fit the loop to your data. See Figure 15.

Specifying HL levels

Hierarchical loops are a way for EDI transactions to dynamically define the looping

structure. The standard defines all segments which might be a part of a HL but it is the

application/standard data being received which adds structure to those segments. For

example an HL loop would be defined to contain segments A, B, C, D, E; but it is the

President

Vice President Vice President

Manager

Employees

Manager

Employees Employees Employees

Figure 14. HL example 1

Shipment

Order Order

ItemsItems Items Items

Pack Pack

Figure 15. HL example 2

© Copyright IBM Corp. 2007 297

application/standard data which defines that segments A,B,C form one level 1 inner

loop, segments D,E form another level 1 inner loop and further that segments D,E

might form a level 2 inner loop within the A,B,C loop. Theoretically there is no limit to

the nesting levels.

HL loops can be qualified and mapped using the usual qualification and mapping

methods described in this book. However, with the HL support in WebSphere Data

Interchange, you can define Hierarchical levels and specify unique mapping instructions

for each identifiable group of structures in a hierarchical level (loop).

Note: It is not required to use special HL Qualification when specifying an HL.

The HL segment

Sometimes you might need to nest loops several levels deep to map all of your data,

yet each level contains similar information, such as name and address. In the following

figure, loops are nested four levels deep, and the N1 and N3 segments occur at the

beginning of each loop.

The hierarchical level (HL) segment makes it easier to map these loops. Each HL

segment contains information about the relationship of segments in a hierarchical loop

BSN
DTM
N1
N3
TD3
N1
N3
CLD
N1
N3
PO4
PKG
N1
N3
LIN
SN1|
PID
CTT

Item

Pack

Order

Shipment

Figure 16. The HL segment

Hierarchical loops

298 Mapping Guide

to the other segments in the loop. This information is described in Table 46.

 Table 46. The HL segment

Field ID Field Name Description

HL01 ID number A unique number that identifies

the occurrence of the HL

segment. This data element is

alphanumeric and has a

maximum length of 12

characters. This field usually

contains a sequential number

that increments for each

occurrence of the HL segment.

HL02 Parent ID The HL01 value of the HL

segment that is the parent of

the current HL segment.

HL03 Level code A code that indicates the level

of the HL segment in the

current HL loop. For example,

the level code can refer to the

shipment, order, or item level

information in the ANSI X12

Shipping Notice transaction

set.

HL04 Child code A code that indicates if the

segment has subordinate

segments: 1 for subordinate

segments, or 0 for no

subordinate segments. The

default is 0.

HL01 and HL02 provide the information for WebSphere Data Interchange to determine

the nesting of loops within each other.

Note: The HL segment is not supported by all standards.

Preparing hierarchical loops

HL support enables you to specify unique mapping instructions for each identifiable

group of structures in a hierarchical loop. WebSphere Data Interchange can handle 16

levels of nesting within the HL loop structure. To begin mapping a hierarchical level

loop, follow these steps:

1. Create the hierarchy for your application data.

2. Assign node IDs to your hierarchy to uniquely identify logically grouped segments in

the hierarchical loop. This ensures that WebSphere Data Interchange processes

your data the way you want it to be processed. The logical grouping of segments

within the HL and the hierarchical relationship is defined by standards organizations

or industry groups. Trading partners then agree which segments they will use and

how they will be mapped.

Mapping service segment fields

Appendix B. Hierarchical loops 299

3. Create the application data format for this hierarchical loop. The data format and the

HL mapping tell WebSphere Data Interchange how to build the hierarchical loop.

Figure 17 shows how each group of segments in your hierarchy is numbered in a

top-down, left-right order. Use this number as the node ID value.

Data Transformation Mapping for HL Loops

WebSphere Data Interchange provides special mapping support for the HL loop which

defines Hierarchical levels and specifies unique mapping instructions for each

identifiable group of structures in a hierarchical level (loop). For EDI target messages

the HL segment can be automatically created eliminating the need for the application to

supply the hierarchical information.

Creating a Data Transformation Map

Source based mapped is required to use special HL mapping support when EDI is the

source message.

Target based mapped is required to use special HL mapping support when EDI is the

target message.

For information about creating a Data Transformation map, see Chapter 9, “Data

Transformation mapping,” on page 121.

Defining HL loop levels

Defining HL loop levels. To create the base HL level:

1. Go to the mapping details tab, and right-click the HL loop in the command window.

The Qualification Selection Window opens.

2. Select Add HL Qualification.

3. Select an HL level code from the list. The list contains valid codes from the code list

for HL03 (element 735).

Level code
(Hl03)

S

O

P

I

2 7

1

5

6

3

4 8 9

Shipment

Order Order

ItemsItems Items Items

Pack Pack

Figure 17. Preparing Hierarchical Loops

Mapping service segment fields

300 Mapping Guide

An HLLevel command is created in the command window as follows:

HLLevel(char "level code")

HLLevel(’S’)

To create the underlying HL nesting levels or children for this HL level, right-click the

HLLevel command and select HL Qualification. The AddChild HL Qualification and

AddPeer HL Qualification commands display.

v To create a child node, select the AddChild command.

After selection of AddChild, select an HL level code from the list. The list contains

valid codes from the code list for HL03 (element 735). The HL loop is inserted as a

child of the current HL loop with an HLLevel command. The HL segment is

automatically selected and all elements mapped with an HLAutoMapped command.

This command cannot be removed or modified. Additional mapping for these

elements can be accomplished using normal mapping methods.

v To create a sibling node, select the AddPeer command.

After selection of AddPeer, select an HL level code from the list. The list contains

valid codes from the code list for HL03 (element 735). The HL loop is inserted as a

sibling of the current HL loop with an HLLevel command. The HL segment is

automatically selected and all elements mapped with an HLAutoMapped command.

This command cannot be removed or modified. Additional mapping for these

elements can be accomplished using normal mapping methods.

With each HL loop level created, the HL loop is copied to its hierarchical location (as a

child or peer) with an HLLevel command, and displayed in the command window as if

the hierarchy were explicitly defined in the standard.

Qualifying HL loop levels in an EDI source message

To qualify the HL level, right click the HLLevel command and select the Qualify

command to select qualification by occurrence, value, or expression. For multiple

occurrence qualification, drag the source path from the source window to the target

path in the target window or drag the target path from the target window to the HL loop

in the mapping command window. This creates a MapTo() command under the HLLevel

command in the command window.

Qualifying HL loop levels in an EDI target message

This creates a ForEach() command under the HLLevel command in the command

window. For additional qualification using occurrence, value, or expression, right click

the ForEach command and select the Qualify command.

If you do not want a ForEach command (for multiple occurrence qualification),

occurrence is assumed.

To add qualifications using value or expression, right click the HLLevel command, select

Insert Within, and use conditional commands.

For information about commands not described in this section, see Chapter 12, “Data

Transformation mapping commands and functions,” on page 141.

Mapping service segment fields

Appendix B. Hierarchical loops 301

Handling special HL mapping for Data Transformation maps

In some cases, you might find it necessary to create a special HL mappings for a Data

Transformation map. A special HL mapping does not use Parent IDs in input data.

Note: Special HL mapping is used only if the source data does not contain the values

for an HL segment. It is not required to use special HL Qulaification when

mapping an HL loop.

Source based HL mapping

Source based mapping is required to use special HL mapping support when EDI is the

source message.

If special HL mapping is used, the EDI parser constructs the HL Hierarchy in the

abstract message. HL Loops are then placed as a child of their parent.

Then the transformation executes the mapping instructions based on the hierarchy in

the map and the abstract message. Otherwise the abstract message is re-constructed

as a flat hierarchy. If your source message does not contain the parent and child

elements in the HL segment, the hierarchy will be flat and the HL loops are all siblings.

Figure 18 is an example of an EDI that has no hierarchy.

ST*856*45920001~

BSN*30*01*050524*0049~

HL*1**S~

N1*SF**92*SHIP1~

HL*2**O~

PRF*ORD1*11113711**050523~

HL*3**P~

MAN*GM*PAC1111~

HL*4**O~

PRF*ORD2*11113712**050523~

HL*5**P~

MAN*GM*PAC2222~

HL*6**S~

N1*SF**92*SHIP2~

HL*7**O~

PRF*ORD3*11113711**050523~

HL*8**P~

MAN*GM*PAC3333~

HL*9**O~

PRF*ORD4*11113712**050523~

HL*10**P~

MAN*GM*PAC4444~

CTT*10~

Figure 18. Example of EDI no hierarchy (no parent id HL02)

Mapping service segment fields

302 Mapping Guide

Target based HL mapping

Target based mapping is required to use special HL mapping support when EDI is the

target message. If special HL mapping is used, the transformation creates the hierarchy

with the HL level code value HL03 in the abstract message and HL Loops are placed

as a child of their parent. The EDI serialization generates HL01, HL02, and HL04

values based on the parent/child relationship in the abstract message produced by the

transformation.

With XML source, the DTD does not always have the parent/child relationship for the

hierarchy and there is no proper hierarchical nesting for mapping. Although the XML

source input data can look like it contains the hierarchy with spacing and indentation, it

is free form. The only way to identify the hierarchy is by using the DTD or Schema

definition.

Figure 19 shows an XML DTD with nesting and Figure 20 on page 304 show and XML

DTD with no nesting.

Figure 19. XML DTD with nesting

Mapping service segment fields

Appendix B. Hierarchical loops 303

Creating a special HL qualification

The special HL Loop mapping is accomplished by using the HL Loop Level codes.

Drag-and-drop operations cannot be used.

Creating the base HL level:

1. Go to the mapping details tab, and right-click the HL loop in the command window.

The HL Qualification window opens.

2. Select Insert HL Qualification.

Figure 20. XML DTD without nesting

Mapping service segment fields

304 Mapping Guide

3. Select an HL level code from the list. The list contains valid codes from the code list

for HL03 (element 735).

4. Click OK. An HLLevel mapping command is created in the command window as

follows:

 HLLevel (char “level code”)

 HLLevel (‘1’)

Figure 21. Loop menu

Figure 22. HL Qualification window

Mapping service segment fields

Appendix B. Hierarchical loops 305

The HL segment is automatically selected and all elements mapped with an

HLAutoMapped command. This command cannot be removed or modified.

Additional mapping for these elements can be accomplished using normal mapping

methods.

Creating a default qualification

With each HL loop level created, the HL loop is copied to its hierarchical location (as a

child or peer) with an HLLevel command and displayed in the command window as if

the hierarchy were explicitly defined in the standard. To create a default HL Level

mapping as a base level, right-click the HL loop in the command window and select

Insert HL Default Qualification. This selection is only available with EDI Source based

maps. The HL loop is inserted as a sibling of the current HL loop with an HLLevel

command.

Adding levels to an HL qualification

To create the underlying HL nesting levels or children and peers (siblings) for a HL

level:

 Right-click a HLLevel command and select HL Qualification. The Insert Child HL

Qualification and Insert Peer HL Qualification commands display.

– To create a child node, select the Insert Child HL Qualification command.

Select an HL level code from the list. The list contains valid codes from the code

list for HL03 (element 735). The HL loop is inserted as a child of the current HL

loop with an HLLevel command.

Figure 23. HLLevel command

Mapping service segment fields

306 Mapping Guide

– To create a peer (sibling) qualification, select the Insert Peer command.

Select an HL level code from the list. The list contains valid codes from the code

list for HL03 (element 735). The HL loop is inserted as a sibling of the current HL

loop with an HLLevel command.

Comparing HLLevel and Qualify by value

v The HLLevel mapping command behavior is similar to using a Qualify by value

Qualification for EDI source maps.

– Qualify (StrComp (path, ″value″) EQ 0)

Figure 24. A child HL qualification

Figure 25. A peer (sibling) HL qualification

Mapping service segment fields

Appendix B. Hierarchical loops 307

– HLLevel (“1”)

v The difference between the Qualify by value and the HLLevel are:

– There is a path associated with Qualify by value.

– There is no path associated with HLLevel.

v Additional Qualification, such as a multi-occurrence qualification MapTo and ForEach

commands, can be placed under the HLLevel mapping command by using the

drag-and-drop technique. Other qualification can be added with a right click HLLevel

mapping command.

v Adding additional qualification to the HLLevel mapping command activates the

implied CloseOccurrence.

v If no additional qualification is added, a CloseOccurrence command might be

needed.

Example of no qualification under HLLEVEL

Figure 26. No qualification under HLLEVEL data example

Mapping service segment fields

308 Mapping Guide

Using CloseOccurence with no qualification

Figure 27. CloseOccurence command with no qualification example

Figure 28. CloseOccurence command with no qualification incorrect data example

Mapping service segment fields

Appendix B. Hierarchical loops 309

Mapping the HL segment in a send or Receive map

WebSphere Data Interchange provides special handling for Hierarchical Loops. This

section shows how to map the HL segment using the WebSphere Data Interchange

Client interface.

1. Double-click an HL Loop.

Figure 29. Multi-occurence qualification example

Figure 30. Multi-occurence qualification data example

Mapping service segment fields

310 Mapping Guide

The Hierarchical Loop Support window opens.

2. Click Special HL Support.

The Qualify a Hierarchical Loop window opens.

3. Type the ID of the node you are mapping in the Node Number field. Click the

question mark icon for field descriptions.

4. Select a hierarchical level code from the Hierarchical Level Code (HL03) list. Click

the question mark icon for field descriptions.

5. If you need to repeat the segment mapping, click Repeat.

The Hierarchical Loop Support window reopens.

6. When you have completed all repeat mappings, click OK.

The words Qualified by HL Logic. . . display next to the segment name in the

Mapping editor.

HL segment literal keywords for Send and Receive Maps

Your application data cannot contain the information the translator needs to create the

HL segment, but you can use the following special literals to supply the values for the

HL segment with a Send or Receive Map.

 Table 47. HL segment literal keywords

Keyword Description

&HLID Supplies a sequential number for each HL segment created.

&HLPID Supplies the HLID value for the parent of the current HL.

&HCODE Supplies the hierarchical code associated with the current HL segment.

&HCHILD Supplies the value 1 if the current HL segment has subordinate

segments.

When you map the HL segment, you can use these literal keywords by typing them in

the Literal field of the Map Data Element panel (TP10) when you map the data

elements. For send, they will be automatically mapped with their corresponding special

literal when the HL loop is qualified. You must remap these elements if you want

different mappings.

v HL element 628 will be mapped with &HLID

v HL element 734 will be mapped with &HLPID

v HL element 735 will be mapped with &HCODE

v HL element 736 will be mapped with &HCHILD

For more information about HLs with send and Receive maps, see the WebSphere

Data Interchange client help.

Mapping service segment fields

Appendix B. Hierarchical loops 311

312 Mapping Guide

Appendix C. Handling international characters

WebSphere Data Interchange Version 3.3 now supports the translation of international

data using Data Transformation maps and processing using code pages. The

WebSphere Data Interchange database now supports Unicode characters. Unicode is a

character set standard that is designed to include characters that appear in most

languages. Currently, the Unicode standard contains 34,168 distinct coded characters

derived from 24 supported language scripts. These characters cover the principal

written languages of the world.

Unicode defines two mapping methods:

v Unicode Transformation Format (UTF)

v Universal Character Set (UCS)

WebSphere Data Interchange primarily uses the UTF-8 encoding which is an 8-bit,

variable-width encoding, compatible with ASCII.

The addition of Unicode to WebSphere Data Interchange adds the following support:

v The use of any international character into WebSphere Data Interchange objects

such as profiles, maps, and translation and validation tables. This removes the

current restrictions on characters outside the default code page appearing in the

database.

v The ability to enter international characters using the WebSphere Data Interchange

Client.

v Enables the import and export of Unicode data, including international characters.

v The ability to specify the source and target encoding.

v The support of International characters in values such as EDI segment IDs.

v Multiple XML documents in an input file, even if the input encoding is not compatible

with the local code page.

v XML tag names to contain characters that are outside the local code page.

v Remove limitation on current Data Transformation processing.

The following restrictions apply for international characters in WebSphere Data

Interchange:

v The WebSphere Data Interchange Client interface, server error messages, and

reports are presented in English only. However, the WebSphere Data Interchange

Client opens and accepts international characters in the data fields. Server error

messages and reports can, in some cases, display substitution characters from

embedded data that contain international characters.

v The WebSphere Data Interchange batch utility will not process Unicode PERFORM

commands. Certain names such as profile names and map names are commonly

used in batch utility commands and in reports. Characters outside the local code

page will not be supported for these fields.

v Send and Receive maps do not support Unicode and international characters.

© Copyright IBM Corp. 2007 313

v The DTD Convert utility continues to support the local code page only. If user data

containing international characters appears as substitution data in the messages, the

international characters might be replaced by substitution characters.

v CICS transactions are used to start WebSphere Data Interchange and for specific

WebSphere Data Interchange components or processing. These transactions are

limited and do not handle international characters as parameters or inputs.

The following sections contain information about the enhancements in WebSphere Data

Interchange that enable the handling of International characters.

Note: Use of international characters in object names is not restricted, but not

recommended. Using characters that cannot be represented in the local code

page for the object names can prevent them from being used or displayed

properly when used or referenced in the PERFORM command or send and

Receive maps.

Note: International characters are not supported in send and Receive maps. If used,

the characters are either replaced with a substitution character or can result in a

WebSphere Data Interchange error.

Processing and automatic detection for UNICODE

The SourceEncode and TargetEncode PERFORM keywords override the automatic

detection process. The following section describe the processing and automatic

detection of data.

Encoding used for incoming Application data

The encoding used to interpret incoming Application data is determined as follows:

v The data format definition code page field is used to determine the source application

data encoding for raw data and C and D record formats.

v For C and D record formats, all UNICODE values and the LOCALCP (default system

code page) are used to identify the C record.

v If no encoding is found, the LOCALCP value is used.

Encoding used for outgoing Application data

The encoding used to interpret outgoing Application data is determined as follows:

v The SetProperty mapping command using the EncodeTarget keyword determines

the target application data encoding for raw data and C and D record formats

v The data format definition code page field is used to determine the target application

data encoding for raw data and C and D record data.

v If no encoding is found, the LOCALCP (default system code page) value is used.

Encoding used for incoming EDI data

The encoding used to interpret incoming EDI data is determined as follows:

v For EDIFACT data only:

Handling international characters

314 Mapping Guide

The EDI parser looks up the UNB0101 value in the EDISYNTX table. This new

translation table is supplied in the form of an EIF file to convert the EDIFACT syntax

id (UNB0101) subelement to an encoding value.

For example, it converts UNOC to ISO8859-1, UNOD to ISO8859-2, and so on.

Users can modify this table if needed, or omit it entirely if they do not want to use the

EDIFACT encoding detection logic.

v If no encoding is found, the value LOCALCP (default system code page) is be used.

Encoding used for outgoing EDI data

The encoding used to create outgoing EDI data will be determined as follows:

 If no encoding was found, the EncodeTarget property set in the map is used. The

availability of TP User fields as mapping properties enables you to specify different

EncodeTarget values for different trading partners. For example, they can set the

User Field 1 in the trading partner to a specific encoding, and include a mapping

command such as the following:

SetProperty("EncodeTarget", GetProperty("ReceiverTPUser1"))

The following mapping properties from the sender and receiver trading partner profiles

can be retrieved using the GetProperty mapping function in a map:

Property name

Property Description

SenderTPProfile

Sender trading partner profile name. If no profile is found for the sending

trading partner, the value UNKNOWN is returned.

ReceiverTPProfile

Receiver trading partner profile name. If no profile is found for the sending

trading partner, the value UNKNOWN is returned.

SenderTPUser1–SenderTPUser10

User fields from the sender’s TP profile. If no sender TP profile was found, the

user fields from the ANY trading partner will be used.

ReceiverTPUser1–ReceiverTPUser10

User fields from the receiver’s TP profile. If no receiver TP profile was found,

the user fields from the ANY trading partner will be used.

 If no encoding is found, the LOCALCP (default system code page) value is used.

Encoding used for incoming XML data

The encoding used to interpret incoming XML data is determined as follows:

 The encoding is determined by the normal XML auto-detection logic defined in the

W3C XML recommendation, Appendix F.

Encoding used for outgoing XML data

The encoding used to interpret outgoing XML data is determined as follows:

v The SetProperty mapping command with the EncodeTarget keyword is used to

determine the target XML data encoding.

Handling international characters

Appendix C. Handling international characters 315

v If no encoding was found, the LOCALCP (default system code page) value is used.

Import and export considerations

Import accepts data in either UTF-8 format or in the local code page format. This

enables the support of older EIF files and user-generated EIF files.

Export uses UTF-8 format to export data. Using UTF-8 exclusively with exports ensures

that any international characters are preserved.

MQ profile fields

As result of UTF-8 implementation, two new MQ profile fields are available:

v CNVTFLAG

The CNVTFLAG value controls whether WebSphere Data Interchange uses get

(without convert) or get-with-convert. The default is get-with-convert.

v CCSID

The CCSID value specifies the CodedCharSetId used on get-with-convert. This value

is used only if the first property indicates that conversion is done. The default is to

use the CCSID of the queue manager.

PERFORM keywords for international data

New PERFORM keywords associated with the Unicode enhancement are available for

the PERFORM TRANSFORM command:

v SOURCEENCODE

v ENCODETARGET

v IGNOREBOM

SOURCEENCODE and ENCODETARGET

Any supported encoding value can be specified. The SOURCEENCODE and

ENCODETARGET keywords are used with the PERFORM TRANSFORM command

and provide the following functions:

v The SOURCEENCODE value is used to interpret the source data. This overrides

any encoding value that is set in the data definition or the data. These values are

typically set using the encoding= value in the XML data or the syntax id in EDIFACT

data.

v The ENCODETARGET value is used to generate the target data. This overrides any

encoding value that is set in the data definition (for flat file data), or from the

EncodeTarget map property.

The SOURCEENCODE keyword has a special substitution value that enables

WebSphere Data Interchange to use the value from the MQ header. If the

SOURCEENCODE value is set to MQCCSID, the parser converts this value as follows:

v If the incoming message has an RFH2 header, it gets the CodedCharSetId value

from the RFH2 header.

Handling international characters

316 Mapping Guide

v If the incoming message has no RFH2 header, but has an MQMD header, it gets the

CodedCharSetId value from the MQMD header.

v If a CodedCharSetId value is found in either the MQMD or RFH2 header, the parser

converts the CCSID to an encoding name as follows:

1. The parser looks up the value in the translate table CCS2ENC.

Note: This value is an integer value. The parser needs to convert the integer

value to a character string for the table lookup.

For example, the value for RFH2 CCSID value is 1208. The translate table that

the value 1208 is mapped to the Unicode value of UTF-8, then the value UTF-8

is substituted for the SOURCEENCODE value.

2. If the value is not found, the encoding name “ibm-nnnn” is used, where “nnnn” is

the CCSID.

For example, if the CCSID value is 1208 and it is not in the CCS2ENC table, the

encoding name ibm-1208 is used.

3. The converted value is used as the SOURCEENCODE value and an

informational message will be issued to indicate which encoding name was used.

v If the message does not have an RFH2 or MQMD header, a warning message is

issued and the source encoding is processed as if the SOURCEENCODE value was

not specified, that is, it is detected from the data or the default encoding.

IGNOREBOM

This keyword prevents WebSphere Data Interchange from misinterpreting binary fields

at the beginning of a data format record as a byte-order mark (BOM). A Byte Order

Mark (BOM) is the character as a marker to indicate that text is encoded in UTF-8.

Valid values are:

Y Ignore any byte-order mark, just treat as part of data.

N Process the byte-order mark as encoding information, not part of data. This is

the default.

Note: This keyword only applies to data formats. It does not apply to EDI or XML,

because these syntaxes cannot begin with binary information. If these bytes

appear at the beginning of an EDI or XML file, the only valid way to interpret

them would be as a byte-order mark.

Byte-order mark support

WebSphere Data Interchange Version 3.3 supports Byte Order Mark (BOM). BOM is

the character at code point U+FEFF (zero-width no-break space). When that character

is used as a marker to indicate that text is encoded in UTF-8, UTF-16 or UTF-32.

Table 48 on page 318 describes the BOMs recognized by WebSphere Data Interchange

for input messages (all syntaxes)

Handling international characters

Appendix C. Handling international characters 317

Table 48. WebSphere Data Interchange supported BOMs

Byte order mark Description

00 00 FE FF UCS-4, big-endian machine (1234 order)

FF FE 00 00 UCS-4, little-endian machine (4321 order)

FE FF xx xx UTF-16, big-endian

FF FE xx xx UTF-16, little-endian

EF BB BF UTF-8

Notes:

1. Endian refers to sequencing methods used in a one-dimensional system (such as writing or

computer memory). The two main types of endianness are known as big-endian (big units

first) and little-endian (little units first).

2. Big endian is the most significant byte (MSB) stored at the memory location with the lowest

address.

3. Little-endian is the least significant byte (LSB) first.

If any of the byte sequences in Table 48 are found at the beginning of an input file, the

encoding for each of the documents in the input file will be set to the encoding specified

by the BOM.

The priority for determining the encoding is:

1. The SOURCEENCODE keyword, if specified.

2. The byte-order mark at the start of the file, if present.

3. The encoding determined based on the data, if appropriate (code page in Data

format definition, XML encoding= value, or EDIFACT syntax id).

4. The default system code page.

A new PERFORM keywords exist in WebSphere Data Interchange for the prevention of

misinterpreting binary fields at the beginning of a Data Format record as a byte-order

mark. See “PERFORM keywords for international data” on page 316.

For output messages (all syntaxes) a new target document property, ByteOrderMark, is

available.

If this property is set to Y, a byte-order mark (based on the output encoding type) is

added when a new file is created and the EncodeTarget property is set to one of the

encodings described Table 48. When appending to an existing file, no byte-order mark

is added.

If the ByteOrderMark property is N, byte order marks will not be added. If the underlying

code page conversion libraries set the byte-order mark, it is removed. If the

ByteOrderMark is not specified, then the output will continue to appear as it is today.

That is, if the code page conversion libraries add the BOM, it is left as part of the

message. If the code page conversion libraries do not add the BOM, WebSphere Data

Interchange does not insert it.

Handling international characters

318 Mapping Guide

Examples

The following scenarios highlight some of the international tasks that WebSphere Data

Interchange handles.

Scenario 1: WebSphere Data Interchange in a worldwide data center

You are using WebSphere Data Interchange in a worldwide data center which handles

transactions from many different countries. The data center is translating XML, EDI, and

data format data from many different countries. Thus the transactions contain a wide

variety of characters. In addition to the Latin characters A–Z, a–z, and 0–9, the data

also include characters from many other languages, including Chinese, Japanese,

Cyrillic, Arabic, and Greek.

You need to use any of the characters in your data as part of the Data Transformation

processing, including:

v Trading partner profiles

v Translation tables and code lists

v Mapping commands

v XML tag names

Example: Transforming data containing international characters

To transform the input that contains characters from different international alphabets,

you indicate the source and target encodings the same way as you did in the previous

version of WebSphere Data Interchange. That is, by using XML autodetection logic,

having EDI use the EDISNTX table, and ADF use the code page definition.

Or, you can use the new SOURCEENCODE keyword. Using this keyword enables you

to use all WebSphere Data Interchange Data Transformation functions, regardless of

the source and target encodings and the characters being used.

Scenario 2: Exporting data from one database and importing it into another

The following use cases show how WebSphere Data Interchange handles international

characters during the importing and exporting of data with the client and server.

Example 1: Exporting and importing using the client

Export the data from the client as usual. Data exports in UTF-8 format, which can

represent any character in virtually any language.

You import the data as usual the database. WebSphere Data Interchange recognizes

that the import file is UTF-8 and interprets it appropriately.

Example 2: Exporting and importing using the server

You can export data from the server as usual. The data exports in UTF-8 format, which

can represent any character in virtually any language. You can then import the data as

usual into the database. The server recognizes that the import file is UTF-8 and

interprets it appropriately.

Handling international characters

Appendix C. Handling international characters 319

Note: Import files are not readable on a z/OS server, but can be downloaded in binary

format and viewed on a Windows system.

Example 3: Exporting using the client, importing using the server

You can export data from the client as usual. The data is exported in UTF-8 format,

which can represent any character in virtually any language.

You can then upload the data in binary format to the server and import the data as

usual into the database. The server recognizes that the import file is UTF-8 and

interprets it appropriately.

Example 4: Exporting using the server, importing using the client

You can export data from the server as usual. The data is exported in UTF-8 format,

which can represent any character in virtually any language. You the download the data

in binary format to the WebSphere Data Interchange Client and import the data as

usual into the database. The WebSphere Data Interchange Client recognizes that the

import file is UTF-8 and interprets it appropriately.

Note: Import files are not readable on a z/OS server, but can be downloaded in binary

format and viewed on a Windows system.

Scenario 3: Migrating from a previous version of WebSphere Data Interchange

You have existing version of WebSphere Data Interchange and want to:

v Migrate to version 3.3.

v Continue using existing Send, Receive and Data Transformation maps.

Since the earlier version of WebSphere Data Interchange did not support Unicode, the

EIF file and all of the migrated data is in the local default code page.

Example 1: Importing data with the client (either for release

migration or individual EIF files)

You can import the data as usual into the database. WebSphere Data Interchange

recognizes that the import file is in the local code page and interprets it appropriately.

Note: Only migration of WebSphere Data Interchange 3.2 maps (both send and

receive and Data Transformation) is supported when importing using the client.

The migration of WebSphere Data Interchange 3.1 map databases is not

supported by the client.

Example 2: Importing data with the server (either for release

migration or individual EIF files)

You can import the data as usual into the database. The server recognizes that the

import file is in the local code page and interprets it appropriately.

Note: If the import file contains WebSphere Data Interchange 3.1 maps, they are

converted to WebSphere Data Interchange 3.3 format send and Receive maps

during the import process.

Handling international characters

320 Mapping Guide

Appendix D. DTD Conversion Utility

The DTD Conversion Utility is used to create the EDI standard from an XML DTD. The

EDI standard is a representation of the XML data using an EDI-type syntax that is

understood by WebSphere Data Interchange. The generated EDI standard has a

structure similar to the XML document.

Note: XML is handled natively in WebSphere Data Interchange Version 3.3. It is not

necessary to use the DTD Conversion Utility with WebSphere Data Interchange

Version 3.2 and later unless you are updating a DTD that was converted in

Version 3.1. When using XML in WebSphere Data Interchange Version 3.2 and

later, the DTD is imported directly into the WebSphere Data Interchange Client.

Converting a DTD

1. Start the DTD Conversion Utility by selecting the corresponding shortcut or by

double-clicking on the DTDCONVERT.EXE file located in the Data Interchange

install directory.

Figure 31. DTD Conversion Utility

© Copyright IBM Corp. 2007 321

2. Click Browse to locate the XML DTD file to be converted by the utility. The DTD

Name is a required field. For information about DTD file name resolution, see

“Resolving DTD file names” on page 328.

Note: If the DTD contains a reference to an external DTD and you want the parser

to process the external DTD along with the XML data, then you must upload

the DTD file to the server. See “Processing external DTDs” on page 327 for

more information about processing an external DTD.

3. Specify the Root Element Name. This field is required.

The root element is an element that contains all other elements of the document.

The maximum length is 64 characters. Only valid XML element name characters are

permitted in this field. The valid characters for XML elements include letters,

numbers, and the following special characters: dot (.), dash (-), underscore (_), and

colon (:).

4. Complete the rest of the optional fields. Table 49 describes the valid values for each

field.

 Table 49. DTD Conversion Utility field descriptions

Field Description

Standard Name The name of the EDI standard to be generated from this DTD. If

not specified, the first 8 alphanumeric characters of the root

element name are used. The maximum length is 8 characters.

Only letters and numbers are permitted in this field.

Transaction Name The name of the EDI standard transaction associated with this

DTD. If not specified, the first 6 characters of the root element

name are used. The maximum length is 6 characters. Only valid

XML element name characters are permitted in this field. The valid

characters for XML elements include letters, numbers, and the

following special characters: dot (.), dash (-), underscore (_), and

colon (:).

Qualifier (Sender Element

pane)

The XML element name, attribute, or path that defines the sender

qualifier for the standard. The maximum length is 64 characters.

Only valid XML element name characters, and the slash (/) and

dollar sign ($) characters to indicate path or attribute names, are

permitted in this field. The valid characters for XML element names

include letters, numbers, and the following special characters: dot

(.), dash (-), underscore (_), and colon (:).

For inbound processing, the value from the sender qualifier is used

as the interchange sender qualifier. If the Sender Qualifier element

is not specified, or if the specified element, attribute or path is not

found in the XML data, the value ZZ is used as the default sender

qualifier.

For outbound processing, this field is not used, and the

interchange sender qualifier is ZZ.

For more information, see “Specifying Sender and Receiver

Information” on page 332.

322 Mapping Guide

Table 49. DTD Conversion Utility field descriptions (continued)

Field Description

ID (Sender Element pane) The XML element name, attribute, or path that defines the sender

ID for the standard. The maximum length is 64 characters. Only

valid XML element name characters, and the slash (/) and dollar

sign ($) characters to indicate path or attribute names, are

permitted in this field. The valid characters for XML element names

include letters, numbers, and the following special characters: dot

(.), dash (-), underscore (_), and colon (:).

For inbound processing, the value from the sender ID element is

used as the interchange sender. If the Sender ID element is not

specified, or if the specified element, attribute or path is not found

in the XML data, the value XMLPROC is used as the default

sender ID.

For outbound processing, this field is not used, and the

interchange sender ID is XMLPROC.

For more information, see “Specifying Sender and Receiver

Information” on page 332.

Qualifier (Receiver Element

pane)

The XML element name, attribute, or path that defines the receiver

qualifier for the standard. The maximum length is 64 characters.

Only valid XML element name characters, and the slash (/) and

dollar sign ($) characters to indicate path or attribute names, are

permitted in this field. The valid characters for XML element names

include letters, numbers, and the following special characters: dot

(.), dash (-), underscore (_), and colon (:).

For inbound processing, the value from the receiver qualifier is

used as the interchange receiver qualifier. If the Receiver Qualifier

element is not specified, or if the specified element, attribute or

path is not found in the XML data, the value ZZ is used as the

default receiver qualifier.

For outbound processing, this field is not used, and the

interchange receiver qualifier is ZZ.

For more information, see “Specifying Sender and Receiver

Information” on page 332.

Appendix D. DTD Conversion Utility 323

Table 49. DTD Conversion Utility field descriptions (continued)

Field Description

ID (Receiver Element pane) The XML element name, attribute, or path that defines the receiver

ID for the standard. The maximum length is 64 characters. Only

valid XML element name characters, and the slash (/) and dollar

sign ($) characters to indicate path or attribute names, are

permitted in this field. The valid characters for XML element names

include letters, numbers, and the following special characters: dot

(.), dash (-), underscore (_), and colon (:).

For inbound processing, the value from the receiver ID element is

used as the interchange receiver. If the Receiver ID element is not

specified, or if the specified element, attribute or path is not found

in the XML data, the value XMLRCVR is used as the default

receiver ID.

For outbound processing, this field is not used, and the

interchange receiver ID is XMLRCVR.

For more information, see “Specifying Sender and Receiver

Information” on page 332.

EDI Standard File If converting a DTD that was previously converted using the DTD

Conversion Utility, specify the name of the WebSphere Data

Interchange export file that contains the EDI standard created in

the previous conversion. You can use the import file generated in

the previous conversion of this DTD or you can export the EDI

standard from WebSphere Data Interchange. The export file must

be in tagged export format.

This field is used in conjunction with the XML Dictionary File field.

See “DTD Conversion Utility output” on page 325 for additional

information about the import file generated when running the DTD

Conversion Utility.

XML Dictionary File If converting a DTD that was previously converted using the DTD

Conversion Utility, this field is used to identify the name of the

original XML dictionary file generated from the previous

conversion. You must reconvert a DTD if the DTD is changed. For

more information about reconverting the DTD see “Updating a

previously converted DTD” on page 327.

This field is required if the EDI Standard file field is used. If the

EDI Standard File field is not specified, then this field is ignored.

This field identifies the name of the original XML dictionary file

generated from the DTD Conversion Utility using the original XML

DTD.

See “DTD Conversion Utility output” on page 325 for additional

information about the XML dictionary file generated when running

the DTD Conversion Utility.

5. Click OK to begin converting the DTD.

324 Mapping Guide

During the conversion processing, a status window is opens. The status window

opens messages pertinent to the conversion, including identifying the names of the

two output files produced by the utility. You can close the status window clicking

Close.

6. After the conversion of a DTD has been completed, you can convert another DTD

by specifying the necessary information in the DTD Conversion Utility. Once you

have completed all conversions, close the utility by clicking Close.

Two output files are produce for each DTD that is converted. The first file is a common

WebSphere Data Interchange import file. It contains an EDI standard the correlates to

the DTD. The second file is a proprietary XML dictionary file that associates XML

element and attribute names with the EDI standard segments and data elements. For

more information about the DTD Utility output files, see “DTD Conversion Utility output.”

If the DTD is ever changed, you need to reconvert the DTD. See “Updating a previously

converted DTD” on page 327 for more information.

DTD Conversion Utility output

In WebSphere Data Interchange Version 3.1, implementing XML processing using

WebSphere Data Interchange required the use of the DTD Conversion Utility. The DTD

Conversion Utility is a standalone program. It reads an XML DTD and generates an EDI

standard representation of the XML structure. It parses the DTD file selected by the

user. From the DTD file and other user input, the DTD Conversion Utility generates two

output files:

v WebSphere Data Interchange Client import file:

The WebSphere Data Interchange Client import file is used to import the new EDI

standard into WebSphere Data Interchange Client. The EDI standard is used to

define the DTD in terms of an EDI standard. The filename is in the format

stdname.EIF, where stdname is the standard name you specify. If you do not specify

a standard name, the standard name is taken from the first 8 characters of the root

element.

v XML dictionary file:

The XML dictionary is used for runtime processing. It is used to correlate the XML

element and attribute names with EDI standard segments and data elements. The

filename is in the format stdname.DIC, where stdname is the standard name you

specify. If you do not specify a standard name, the standard name is taken from the

first 8 characters of the root element. This file is uploaded to the server and placed

either in a PDS member or an HFS file. For more information on the naming of the

server file for the XML dictionary, see “Resolving the XML dictionary file name” on

page 326.

You also have the original DTD file. The DTD file is optional for runtime processing. It

can be used to validate the inbound or outbound XML data or specify default XML

attribute values. Whether WebSphere Data Interchange uses the DTD or not depends

on the validation level for the transaction. If you want WebSphere Data Interchange to

process the DTD during the XML parsing, this file is uploaded to your server and placed

Appendix D. DTD Conversion Utility 325

in a PDS member or HFS file. For information on naming this file, see “Processing

external DTDs” on page 327. The DTD and XML dictionary files can be considered

library type files for XML processing.

XML Dictionary File

If converting a DTD that was previously converted using the DTD Conversion Utility, this

field is used to identify the name of the original XML dictionary file generated from the

previous conversion. You need to reconvert a DTD if the DTD is changed. This field is

required if the EDI Standard file field is used. If the EDI Standard File field is not

specified, then this field is ignored. This field identifies the name of the original XML

dictionary file generated from the DTD Conversion Utility using the original XML DTD.

Resolving the XML dictionary file name

The XML dictionary is used by the XML processor to correlate the XML elements and

attributes with the EDI standard segments and data elements. It is one of the two files

that are generated by the DTD Conversion Utility when you convert a DTD. The file is

saved in the same directory as the DTD being converted. The filename is in the format

standard.DIC, where standard is the standard name being generated.

This file must be uploaded to the server so the XML processor can access it during

translation. It is uploaded using text mode, because it is generated as an ASCII text file.

It can be stored on the server as either a PDS member, or as an HFS file. If it is stored

as a PDS member, the member name must be the same as the standard name. If it is

stored as an HFS file, the filename must be in the format /path/standard.DIC, where

path is the HFS directory for the file, and standard is the standard name (in uppercase).

The XMLDICT keyword on the PERFORM command is used to specify the location of

this file for the XML processor. If the XMLDICT value starts with a slash (/) character,

the dictionary is assumed to be an HFS file, and the XMLDICT value specifies the

directory. If the XMLDICT value does not start with a slash (/) character, the dictionary

is assumed to be a PDS member, and the XMLDICT value specifies the fully qualified

PDS name.

For inbound processing, the XMLSTDID keyword identifies the EDI standard (dictionary)

name to be used. If the XMLSTDID keyword is not used, the first 8 alphanumeric

characters of the root element in the XML data is used as the EDI standard (dictionary)

name.

For outbound processing, the dictionary name is defined in the map (the standard

dictionary name used for the map).

For example, if the dictionary name is CXML and is located in the PDS EDI.XML.DICT

then the dictionary file would be in EDI.XML.DICT(CXML). Your PERFORM command

would look something like this:

PERFORM TRANSLATE AND ENVELOPE WHERE XMLDICT(EDI.XML.DICT)

PERFORM DEENVELOPE AND TRANSLATE WHERE XMLSTDID(CXML) XMLDICT(EDI.XML.DICT)

If the dictionary name CXML is located in HFS directory /u/ediuser, it would be in file

/u/ediuser/CXML.DIC. The PERFORM command would look something like:

326 Mapping Guide

PERFORM TRANSLATE AND ENVELOPE WHERE XMLDICT(/u/ediuser)

PERFORM DEENVELOPE AND TRANSLATE WHERE XMLSTDID(CXML) XMLDICT(/u/ediuser)

Note: For HFS files, the path and filenames are case sensitive.

Updating a previously converted DTD

The mappings of WebSphere Data Interchange Client are based on the segment

position numbers and element position numbers in the EDI Standard. Every time a DTD

is changed, the position numbers get adjusted in the generated EDI standard. Thus

mappings can be lost after the DTD is converted and re-imported into WebSphere Data

Interchange Client. To address the problem with losing mappings each time an XML

DTD is reconverted using the XML DTD Conversion Utility and then re-imported into

WebSphere Data Interchange Client, the EDI Standard File and XML Dictionary File

fields are available and must be provided when a DTD is reconverted. Click Browse to

locate and identify the previous EDI standard import file and XML dictionary file that are

used as input to the converter.

Using the reconvert process, the XML DTD Conversion Utility attempts to merge the

DTD changes into the existing EDI standard so that the mapping losses are minimized.

The output is an updated WebSphere Data Interchange EDI standard. The output EDI

standard is named standard_upd.eif.

At most, nine consecutive segments can be added in between any two segments in the

original, unchanged DTD file. The sequence numbers in an EDI standard are normally

in intervals of 10. For example 20 , 30, 40 and so on. The DTD Conversion Utility

adjusts a maximum of nine elements between any two segments without affecting the

following mappings. For example, between segments 20 and 30 the new segments

have sequence numbers 21, 22, 23 an so on.

The stdadjust.log message file contains the list of EDI standard segments and elements

that lose mappings after the output EDI standard is imported. All the segments within a

loop with lost mappings also lose their mappings. The same is true with elements within

a segment that loses its mappings.

Processing external DTDs

External DTDs can be parsed along with the XML data. The DTD can be used to

validate the XML data. If you want the parser to process an external DTD along with

the XML data, then you must upload the DTD file to the server. The file is stored as

either a PDS member or an HFS file.

For outbound processing (data format to XML), the DTD is uploaded as text. For

inbound processing (XML to data format), if you specify XMLEBCDIC(Y), the DTD file is

uploaded as text. If you specify XMLEBCDIC(N), then the DTD file must contain an

XML declaration (“<?xml...>”) that includes the appropriate encoding type for the file.

See “Encoding considerations” on page 336 for more information.

Appendix D. DTD Conversion Utility 327

Resolving DTD file names

If DTD processing is to be done as part of the XML parsing (based on the validation

level), then the following processing takes place whenever the parser finds a reference

to an external DTD file:

1. When an external DTD reference is found in the XML data, all path information

(such as a URL path or file path information) is removed from the DTD name,

leaving only a base DTD name.

2. If a DTD alias file (DD:DTDALIAS) is allocated, then the base name is first looked

up in the alias file. See “Using a DTD alias file” on page 329 for more information.

3. If the base name is found in the alias file, then the alias name is combined with the

XMLDTDS value to determine the filename of the DTD file. The search for the base

name in the alias file is not case sensitive.

4. If no alias is found (or the DTDALIAS file is not allocated), then the base DTD name

is combined with the XMLDTDS value to determine the filename of the DTD file.

This DTD file is used by the XML parser in place of the URL specified on the

DOCTYPE declaration.

Normally, the XML processor takes the DTD name (without file or URL path information)

and combines it with the XMLDTDS value provided on the PERFORM command. If the

XMLDTDS value starts with a slash (/), then it is assumed to be an HFS path, and the

base name is appended to the path. Otherwise, the XMLDTDS value is assumed to be

a PDS, and the first 8 characters of the base name (minus the extension) are assumed

to be the member name.

For outbound processing, the DTD name is in the XML dictionary created by the DTD

Conversion Utility. If you use validation level 2, the DTD name is retrieved from the

XML dictionary and used to create the default DOCTYPE declaration. If you use

validation level 1, the DTD name is not included in the default DOCTYPE declaration,

but if you override the default prolog using the DIPROLOG variable and specify a DTD,

the DTD name is processed. If you use validation level 0, outbound XML data is not

validated using a DTD.

Example of DTD file resolution

If the XML data contains the following DOCTYPE declaration:

<!DOCTYPE PurchaseOrder SYSTEM "http://xyz.org/xml/dtds/MyPO.dtd">

The DTD name would be resolved as follows:

1. Remove the URL path information, leaving MyPO.dtd as the base name.

2. Look up MyPO.dtd in the DTDALIAS file. For this example, assume it is not found.

3. If the XMLDTDS value starts with a slash (/), then the base name is appended to

the XMLDTDS value. If XMLDTDS(/u/ediuser/mydtds) is specified, then the DTD file

name would be /u/ediuser/mydtds/MyPO.dtd.

4. If the XMLDTDS value does not start with a slash (/), then the base name (without

the extension) is assumed to be a PDS name. If XMLDTDS(EDIUSER.MYDTDS) is

specified, then the DTD file name would be EDIUSER.MYDTDS(MYPO).

328 Mapping Guide

Using a DTD alias file

This behavior can cause conflicts in certain cases, such as with long DTD names or

DTD names that differ only in the extension. To resolve conflicts caused by long DTD

names, use the DTDALIAS file to specify an alias for a DTD name. For example, if you

are keeping your DTD files in a PDS, but you have two DTD files: LongDTDName1.dtd

and LongDTDName2.dtd using the first 8 characters would yield the same member

name for both: LONGDTDN. The DTDALIAS file enables you to specify different

member names for each of these.

The format is the DTD (base) name followed by one or more blanks, followed by the

alias name. For example:

longdtdname1.dtd LONGN1

longdtdname2.dtd LONGN2

Note: HFS file names are case sensitive. PDS member names are not case sensitive.

As an example, if you used the DTDALIAS file, specified the parameter XMLDTDS

(EDIUSER.DTDS) on your PERFORM command, and your XML data contained the

following DOCTYPE declaration:

<!DOCTYPE po SYSTEM "http://xyz.org/xml/dtds/LongDTDName1.dtd">

The parser would resolve the DTD as follows:

1. Remove the URL path information from the DTD name, resulting in a base name of

LongDTDName1.dtd.

2. Look up this base name in the DTDALIAS file. Since this search is not case

sensitive, it would find the first entry, and result in an alias name of LONGN1.

3. Combine the alias name with the XMLDTDS value. Since EDIUSER.DTDS does not

start with a slash (/), it is assumed to be a PDS. Therefore, the member

EDIUSER.DTDS(LONGN1) is processed as the DTD file for this XML document.

Inbound Translation Process (XML to Data Format)

The inbound translation process is similar to the current EDI to data format (ADF)

process flow. The WebSphere Data Interchange Utility identifies the XML data as input

using the PERFORM keyword XML(Y/N). If XML(Y) is specified, the Utility calls the

XML processor service to convert the XML data into an EDI standard format, including

an EDIFACT envelope, and writes it to the XML work file XMLWORK. The Utility

continues the inbound process flow as normal through the translation process, and

passes the XMLWORK file as the FILEID parameter to translation services.

The level of XML validation is determined by the VALIDATE keyword on the Utility

PERFORM command.

0 Indicates that external DTD references are ignored.

1 Indicates the DTD specified on the DOCTYPE declaration is processed, but no

DTD validation is done. This is the default.

2 Indicates full validation against DTD.

Appendix D. DTD Conversion Utility 329

All XML data must be well-formed to be processed. Validation level 1 and 2 requires the

XMLDTD keyword to be used on the Utility PERFORM commands and that the DTD

files are on the server system.

XML processor errors are written to file XMLERR and signal the Utility to also log and

write an error message to the Audit trail report. The XML data containing errors is

written to the XMLEXCP file.

XML processor trace messages are written to the XMLTRC file if allocated. This file is

for WebSphere Data Interchange development use only. This file is typically allocated

when doing problem determination. Allocating this file during normal translation reduces

performance.

Document store and management reporting can be used with the current

implementation. XML data is represented in EDI standard format. Since the Document

store is usable and the XML data is stored in EDI standard format, other inbound

commands are supported. The interchange control numbers are generated from the

system clock to avoid duplicate envelopes.

Receiving XML data using VAN (inbound)

If you are using XMLEBCDIC(Y), you can also use the XMLSEGINP(Y/N) keyword to

control whether the record boundaries on your input XML data are treated as line

breaks or ignored.

v If you use XMLSEGINP(Y), then a newline character is assumed at the end of each

input record in the XML data. This will give more information for any error messages

generated by the XML parser, because it will include more accurate line and column

information. However, this requires that the record boundaries only occur where white

space characters are valid, such as between elements.

v If you use XMLSEGINP(N), then record breaks are ignored and the data is treated as

a continuous stream of characters. This enables record breaks to occur anywhere in

the data. However, any parser errors will not accurately show the line number,

because the entire document is treated as if it were a single line.

For XMLEBCDIC(N), the record boundaries are always ignored, and line numbers are

based on the carriage-return or newline characters that appear in the data.

The Interchange Sender ID and Qualifier will default to XMLPROC and ZZ if no sender

ID is present in the XML data. This means a Trading Partner profile and Trading Partner

receive usage for sender ID XMLPROC must be defined and attached to the XML map.

The interchange and transaction control numbers will be based on the system clock to

avoid duplicate envelopes in Transaction store.

The PERFORM RECEIVE command will receive EDI data only. It is a two step process

to receive XML data using a Value-added Network (VAN):

PERFORM RECVFILE

PERFORM DEENVELOPE AND TRANSLATE.

330 Mapping Guide

It is also a two step process to translate from XML to an EDI standard such as X12 or

EDIFACT. First you use this XML processor to translate from XML to application data.

Then you translate the application data to EDI.

Outbound Translation Process (Data Format to XML)

The outbound process is similar to the current data format (ADF) to EDI process flow.

The translation process determines the map to use with the current trading partner

usage lookup. An XML map is identified using envelope type L for the EDI standard

transaction. If the envelope type is L, each new transaction forces an interchange break

to build all EDIFACT envelope segments. The XML processor converts the EDI

standard data to XML data.

XML validation is determined by the trading partner usage overrides:

0 Indicates that no checking is done on the outbound XML data.

1 Verifies that the outbound XML data is well-formed. If a DTD is specified in the

DIPROLOG variable, it is processed for default attributes, parameter entity

references, and so on. The XML data is not checked against the DTD for

validity.

2 Validates the outbound XML data against the DTD, in addition to verifying that

it is well-formed. This requires the XMLDTD keyword to be used on the Utility

PERFORM commands.

Note: Validation of the outbound XML data causes additional processing, so it can

impact performance.

The Trading Partner Profile definition flag (segmented output = Y) causes XML data to

be written out in an easy to read format with line breaks and indentation. If segmented

output = N, the data is written as a continuous stream, with no blanks or line breaks

inserted. For more information about Trading Partner setup, see “Identifying trading

partners” on page 334.

XML processor errors and status messages are written to a file XMLERR. If an XML

processing error occurs, the processor signals the Utility to also log and write an error

message to the Audit trail report. If the XML data is generated by the XML processor,

but an error is found during the validation, the invalid XML data is written to the

XMLEXCP file. Form more information about processing errors, see “XML Processor

Messages and Codes” on page 344.

XML processor trace messages are written out to the XMLTRC file if allocated. This file

is for WebSphere Data Interchange development use only. It is typically allocated only

when doing problem determination. Allocating this file during normal translation reduces

performance.

Document store and management reporting can be used with current implementation.

XML data is represented in EDI standard format. Since the Document store is usable

and the XML data is stored in EDI standard format, other outbound commands are

Appendix D. DTD Conversion Utility 331

supported. The interchange sender and qualifier are XMLPROC and ZZ. Interchange

control numbers are updated based on trading partner similar to current EDI

processing.

Sending XML data using VAN (outbound)

The PERFORM SEND command sends EDI data only. It is a two step process to send

XML data using Value-added Network (VAN):

PERFORM TRANSLATE AND ENVELOPE

PERFORM SENDFILE

The mapping variable DIPROLOG enables you to map an override for the default XML

prolog generated by the XML processor. You can use this if you want to customize the

XML prolog information, such as the encoding type or the DOCTYPE declaration. The

maximum number of characters that can be saved is approximately 900.

To map from an EDI standard such as X12 or EDIFACT to XML format, there are two

options:

v You can map the EDI data to a data format (ADF) using server or WebSphere Data

Interchange Client mapping. With this option you need to map XML prolog, starting,

and ending tags as well as control any formatting wanted such as line breaks and

indentation.

v You can use the XML processor to translate from EDI to application data followed by

application data to XML translation.

Specifying Sender and Receiver Information

To identify the sender and receiver ID and qualifier fields using the DTD Conversion

Utility, you enter the name of the XML element that contains the value. For example, if

the XML data contains the following:

<Header>

 <From>SenderName</From>

 <To>ReceiverName</To>

</Header>

You would just enter the values From and To in the Sender ID and Receiver ID fields.

This example does not have any qualifiers, so you would leave those blank.

Note: These fields, like all XML elements names, are case sensitive.

Sometimes the sender and receiver information is in an attribute. The format to specify

an attribute is elementName$attributeName. For example, if the XML data contains:

<Header>

 <From type="DUNS">SenderName</From>

 <To type="DUNS">ReceiverName</To>

</Header>

332 Mapping Guide

You would specify the sender and receiver IDs as in the first example. For the sender

and receiver qualifiers you would specify:

Sender qualifier: "From$type"

Receiver qualifier: "To$type"

 Attribute names, like element names, are case sensitive.

In some cases, the sender and receiver information is specified not just by a unique

element, but also by the context in which the element occurs. For example, the

information can reflect information from the parent or ancestor elements. Take the

following XML as an example:

<Header>

 <From>

 <Credential domain="DUNS">

 <Identity>942888711</Identity> <!-- Sender ID -->

 </Credential>

 </From>

 <To>

 <Credential domain="Name">

 <Identity>XMLTEST1</Identity> <!-- Receiver ID -->

 </Credential>

 </To>

</Header>

In this example the sender and receiver IDs are both located in Identity elements, and

the qualifiers occur in the domain attribute of the Credential elements. But, the

Credential and Identity elements occur within both the From and To elements so you

need to identify the path to sender and receiver. You only need to include as much path

information as required to uniquely identify the element. You can use the To structure

for the receiver ID and the From structure for the sender ID. In the DTD Conversion

Utility you enter the following:

Sender ID element From/Credential/Identity

Sender qualifier element From/Credential$domain

Receiver ID element To/Credential/Identity

Receiver qualifier element To/Credential$domain

Other notes on specifying the sender and receiver information:

v The maximum path length for each sender and receiver element field is 64

characters.

v If the values in the XML data for the sender and receiver ID are longer than 35

characters, they are truncated to 35 characters

v If the values in the XML data for the sender and receiver qualifier are longer than 4

characters, they are truncated to 4 characters

Appendix D. DTD Conversion Utility 333

Identifying trading partners

Since the application data is converted to EDI data with an EDIFACT envelope as the

first step, trading partner identification works the same as current EDI processing. The

internal trading partner ID identified on the RAW data format or the WebSphere Data

Interchange C record is used along with the data format ID to locate the map.

For XML processing, the interchange sender ID and qualifier is XMLPROC and ZZ. The

receiver ID is populated using the trading partner profile information similar to traditional

processing. A minimal trading partner setup can be used, see WebSphere Data

Interchange for MultiPlatforms User's Guide, SC34-6215-01 for more information about

minimal trading partners.

For XML processing, the setup is the same as regular EDI processing. You set up the

trading partner profile and attach a trading partner usage to the map. Some trading

partner usage fields do not apply to XML data such as application sender/receiver,

functional acknowledgement fields, encryption, security, and authentication. These EDI

type fields are not used for XML processing and can produce unexpected results. The

envelope type field on the trading partner usage override must be ‘L’ for XML.

The envelope type indicates this is an XML trading partner. There is no envelope profile

for XML.

PERFORM Commands and Keywords

The following PERFORM commands can be used to process outbound XML data:

PERFORM TRANSLATE TO STANDARD

PERFORM ENVELOPE

PERFORM TRANSLATE AND ENVELOPE

 The following keywords are used on PERFORM commands to control how the

outbound XML data is processed:

XMLDTDS

Required for XML DTD processing. Identifies the PDS or HFS path where the

XML DTD members are located. Maximum length is 64. See “Resolving DTD

file names” on page 328 for more information.

XMLDICT

Required for XML processing. Identifies the PDS or HFS path where the XML

dictionary files generated by the DTD Conversion Utility are located. Maximum

length is 64.

XML Required for XML processing. Default is N.

Y Indicates that input data is XML.

N indicates normal processing (no XML processing).

XMLVALIDATE

Optional. All XML data must be well-formed to be processed. The default is 1.

334 Mapping Guide

0 Indicates that external DTD references are be ignored.

1 Indicates that if a DTD is specified on the DOCTYPE declaration, it is

processed (for example. default attributes, entity references, and so

on), but no DTD validation is done.

2 Indicates full validation against DTD.

XMLSTDID

Optional for XML processing. The standard ID that was created with the DTD

Conversion Utility. If this keyword is used, the specified standard ID is used to

convert each XML document to a corresponding EDI standard envelope and

transaction. If this keyword is not specified, then the first 8 alphanumeric

characters of the root element name are used as the standard ID for each

XML document. The maximum length is 8 characters.

MULTIDOCS

Optional for XML processing. Default is N.

Y Indicates the XML input file contains multiple documents. If Y is

specified, the input message must be in EBCDIC and each document

must begin with an XML declaration (<?xml...).

N Indicates the XML input file contains one document.

XMLEBCDIC

Optional for XML processing. Default is Y.

Y Indicates the XML data is to be interpreted as EBCDIC.

N Indicates that the encoding on XML declaration is used. See the

“Encoding considerations” on page 336 for more detail

XMLSEGINP

Optional for XML processing. Default is Y.

Y Indicates that the record boundaries in the input XML data are treated

as line breaks.

N Indicates that the record boundaries in the input XML data are

ignored. This keyword is ignored for XMLEBCDIC(N). See “Receiving

XML data using VAN (inbound)” on page 330 for more detail

XMLDTDS

Required for XML DTD processing. Identifies the PDS or HFS path where the

XML DTD members are located. Maximum length is 64. See“Resolving DTD

file names” on page 328 for more information.

XMLDICT

Required for XML processing. Identifies the PDS or HFS path where the XML

dictionary files generated by the DTD Conversion Utility are located. Maximum

length is 64. See “Resolving the XML dictionary file name” on page 326 for

more information.

Appendix D. DTD Conversion Utility 335

Encoding considerations

The XML processor uses the XML Toolkit for OS/390 to parse the XML data. This

parser supports many different character encodings, and follows the XML standards for

auto detection of the character encoding. However, this can cause problems when

dealing with EBCDIC data.

According to the XML standard, if the XML document is not in UTF-8 (similar to ASCII

for most commonly used characters) or UTF-16 format, it must begin with an XML

encoding declaration (<?xml...>). For EBCDIC data, the encoding= attribute must be

present and indicate which encoding type is in use. If the XML data was generated as

ASCII data, then converted to EBCDIC, it is likely that the encoding= attribute would not

be added or updated to reflect the EBCDIC conversion.

Additionally, the newline (EBCDIC x’15’) character is not recognized as a valid

whitespace character by the XML standard. However, on z/OS platforms this is often

inserted into files as a record separator by editors, upload applications, and other z/OS

applications.

To resolve both of these problems, the XML processor in WebSphere Data Interchange

can instruct the parser to override the default (auto detected) encoding type for the XML

document with a special encoding type: “ebcdic-xml-us”. This causes the parser to

ignore the encoding= attribute in the XML declaration, and use this special type instead.

This encoding type is based on the ibm1140 code page, and treats any newline

characters as a carriage-return (x’0A’), which is considered a valid XML whitespace

character.

When receiving XML data, the XMLEBCDIC(Y) keyword instructs the XML processor to

override the default encoding type with the special ebcdic-xml-us encoding type. This

applies to any external DTDs processed, as well as to the XML data itself. Overriding

the code page enables the XML processor to handle XML data and DTDs that are in

EBCDIC format, but contain newline characters or does not include the encoding type

in the XML declaration (or contains an incorrect encoding type). If XMLEBCDIC(N) is

specified, then the XML processor determines the encoding type (for both the data and

external DTDs) based on the normal XML auto detection rules. You typically use

XMLEBCDIC(N) if your input XML data is in a format other than EBCDIC. Since the

XMLEBCDIC value is also used to control the interpretation of the DTD files, using

XMLEBCDIC(N) also requires that your DTDs contain an XML declaration (<?xml...>)

with the proper encoding type.

When sending XML data, the XML data is always generated as EBCDIC. The special

ebcdic-xml-us encoding type checks the XML data and process any external DTDs. No

encoding type is specified in the default XML prolog. If you want to send the data in

some other format, such as ASCII or UTF-16, the translation must be done outside of

WebSphere Data Interchange. In many cases, it can be done by the transport

mechanism, such as FTP, that you use to send the data to another system. If you need

to specify an encoding= attribute in your XML declaration, you can override the default

prolog using the DIPROLOG mapping variable as described in “Overriding the Default

XML Prolog” on page 337.

336 Mapping Guide

Additional information about encoding considerations and the XML Toolkit for OS/390 is

on the XML Toolkit for OS/390 web site (http://www.s390.ibm.com/xml/) under the

Usage section.

Overriding the Default XML Prolog

For outbound processing a new mapping keyword, DIPROLOG, is available to override

the XML prolog declaration generated during XML processing. DIPROLOG is a special

WebSphere Data Interchange variable and can be created using literal data or from

your application data. There is no need to issue an &USE with the DIPROLOG variable.

The following is an example of the default prolog without DTD validation:

<?xml version="1.0"?>

If DTD validation is specified (validation level = 2), a DOCTYPE declaration is added to

the prolog which includes the root element and DTD name. The following is a sample

default prolog with DTD validation:

<?xml version="1.0"?>

<!DOCTYPE cXML SYSTEM "cXML.dtd">

To override the generated prolog declaration with literal values, add the following

mapping commands using your literal data:

&SET DIPROLOG <?xml version="1.0" encoding="iso-8859-1" ?>

&SAVE DIPROLOG,*,* <!DOCTYPE order SYSTEM "order.dtd">

Mapping considerations for XML data

Mapping XML data is similar to mapping EDI data using WebSphere Data Interchange

Client. To map between a data format and XML, just map the data format fields to the

data elements that correspond to the appropriate XML elements and attributes. To map

a data format field to an XML element value, map it to the first data element of the

segment that corresponds to the XML element. To map a data format field to an

attribute of an XML element, map it to the corresponding data element on the segment

for the XML element. The full XML element names are provided in the segment

descriptions, and the attribute names are included in the data element descriptions.

Most of the segment names are based on the name of the XML element that they

represent. However, there are some segments and loops that are not, these segments

start with $SQ and $CH, and are created by the DTD Conversion Utility to represent

certain types of complex DTD element definitions. See “Special Sequences and

Choices” on page 340 for more information about $SQ and $CH segments.

Many segments do not contain any data elements. These segments are used to

indicate the start and end of loops and are automatically qualified with occurrence 1

when you map inner loops using WebSphere Data Interchange Client. The XML and

translation processing handles these segments.

Since mapping for XML data is to and from an EDI standard representation of the XML

data, all WebSphere Data Interchange mapping functions apply such as Boolean logic,

Appendix D. DTD Conversion Utility 337

segment, loop, element qualification, accumulators, application control fields,

translation/validation tables, raw data, and C&D application data formats.

EDI Standard Representation of XML Data

There are some special rules used to equate the XML elements and attributes with the

standard segments and data elements. The segment and data element descriptions

contain the element names and attributes that they correspond to, but a general

understanding helps you determine, find and understand these better. The following

rules apply:

v Each XML element corresponds to an EDI segment.

The element name is truncated to 6 characters to create the segment ID. If the

truncation causes duplicate segment names, then a sequence number is used for the

last character(s) to ensure uniqueness. The segment description includes the full

XML element name.

v If the XML element is declared as type #PCDATA, ANY, or mixed content (a mixture

of #PCDATA and child elements), then the element values correspond to the first

data element on the segment.

When receiving these types of elements, all element values within the element are

concatenated and placed into the first data element on the segment. The tags and

attributes of any nested child elements for types mixed and ANY are discarded

(#PCDATA elements do not have nested child elements).

When sending these types of elements, the first data element of the segment is used

as the element value.

The description for the first data element includes the name of the XML element, and

also its content model, either Any or PCData/Mixed.

v If the XML element is declared as type EMPTY, then the first data element is not

used because no element value is permitted.

If the element has attributes (usually the case for EMPTY elements), the first data

element on this segment is the special data element UNUSED, which is not mapped.

If the element does not have any attributes, then the segment does not have any

data elements.

v If the XML element has any attributes, then the attributes correspond to data

elements 2-n on the segment.

The description for each data element includes the XML element name, followed by

a dollar sign ($) character, followed by the attribute name. For example,

elementName$attrName.

v If the XML element has child elements, then a loop is defined for it. The first segment

of the loop is the segment that corresponds to the XML element as described. The

first data element of this segment is the special data element “ UNUSED”, which is

not mapped.

v If the XML element has attributes, they appear as elements 2-n as normal. The start

segment does not need to be mapped, unless you want to map attribute values. The

last segment of the loop has the same segment id as the first segment, plus a “$” at

the end. The end segment does not need to be mapped. The start and end

segments are written if any of the nested segments within the loop contain data.

338 Mapping Guide

Sequences

A sequence means that the child elements are defined as a sequence of elements. For

example: <!ELEMENT A (B,C*)> . This means element A consists of element B,

followed by 0 or more occurrences of element C. The XML data might appear

something like the following:

<A>

 B-Value

 <C>C-value</C>

 <C>C-value2</C>

In this case, element A is defined as a loop, because it has children B and C. Each

child in the sequence is defined as a segment within the loop. Each segment is marked

as either mandatory or optional, and as either repeating or non-repeating, depending on

how the element is defined in the sequence.

In this example, segment B would be mandatory and not repeating, because the DTD

states that element B must occur exactly one time in the sequence. Segment C would

be defined as optional and repeating, because the DTD states that it occurs 0 or more

times. If B or C had other child elements, then they would appear as a nested loop (or

loops) within loop A. Loops can be defined as repeating, but are not required to be

defined as mandatory.

In this case, it is up to the person performing the mapping to understand the restrictions

imposed by the DTD and make sure that some data within loop B is mapped in order to

generate valid XML data. Otherwise, the data would not validate properly against the

DTD.

Choices

A choice means that the child elements are defined as a choice of elements. For

example: <!ELEMENT A (B|C)> . This means element A consists of either element B or

element C. The XML data might appear something like the following:

<A>

 B-Value

or

<A>

 <C>C-Value</C>

Here, element A is defined as a loop, because it has children B and C. Each child in the

sequence is defined as a segment (or loop) within the loop. Each segment (or loop) in a

choice is marked as optional, and not repeating. It is up to the person performing the

mapping to understand the structure of the XML data and only map one of the child

segments or loops.

Appendix D. DTD Conversion Utility 339

Special Sequences and Choices

Some types of XML sequences and choices require special handling to represent them

in an EDI type structure. These cases are:

v Repeating sequences

v Repeating choices

v A sequence within a choice

v A choice within a sequence

For each of these, some special segments are generated and inserted in the EDI

standard transaction representation. These start with $CH (for repeating choices or a

choice within a sequence) or $SQ (for repeating sequences or a sequence within a

choice). Segments beginning with $SQ and $CH have no data elements.

Mapping example

As an example, look at the following XML data structure:

<ItemIn quantity="6" lineNumber="1">

 <ItemID>

 <SupplierPartID>pn12345</SupplierPartID>

 <SupplierPartAuxiliaryID>EA</SupplierPartAuxiliaryID>

 </ItemID>

</ItemIn>

<ItemIn quantity="12" lineNumber="2">

 <ItemID>

 <SupplierPartID>823488664ZZZ</SupplierPartID>

 <SupplierPartAuxiliaryID>345602840800</SupplierPartAuxiliaryID>

 </ItemID>

</ItemIn>

Now if we look at the sections:

<ItemIn quantity="6" lineNumber="1"> Loop with attributes (quantity,lineNumber)

 <ItemID> Loop Segment Element

 <SupplierPartID>pn12345</SupplierPartID>

 <SupplierPartAuxiliaryID> EA</SupplierPartAuxiliaryID>

 </ItemID>End Loop

</ItemIn> End Loop

<ItemIn quantity="12" lineNumber="2">

 <ItemID>

 <SupplierPartID>823488664ZZZ</SupplierPartID>

 <SupplierPartAuxiliaryID>345602840800</SupplierPartAuxiliaryID>

 </ItemID>

</ItemIn>

Let’s begin with the inner most structures SupplierPartID and SupplierPartAuxiliaryID

identified under the heading Segment. These are considered child elements of ItemID.

Each child of ItemID, SupplierPartID and SupplierPartAuxiliaryID, has only one child,

identified under Element. The SupplierPartID and SupplierPartAuxiliaryID are

represented in the EDI standard as segments or repeating segments with one element.

The segment ID is generated from the XML element name. The element ID is the

segment ID + sequence number. Since SupplierPartID and SupplierPartAuxiliaryID are

child elements of ItemID, ItemID is represented in the EDI standard as a loop.

340 Mapping Guide

The ItemIn tag is an element with multiple ItemID child elements and also has

attributes. Attributes are represented in the EDI standard as data elements with element

IDs of segment ID + sequence number and a description of segment ID + ‘$’ + XML

attribute name.

In this example the ItemIn loop is equivalent to a line item loop and can be multiple

occurrence qualified using a structure or record. If the SupplierPartID element is

mapped without qualifying the ItemID loop, WebSphere Data Interchange Client

automatically qualifies the ItemID loop with occurrence 1.

Control String Generation

When mapping is complete, generate the control string using WebSphere Data

Interchange Client. If you are using WebSphere Data Interchange Client in standalone

mode (not client-server mode), you must export the control string along with any trading

partner profile or usage setup and upload/import to the server system.

The EDIFACT envelope standard must be loaded into the server.

Diagnosing Errors

If the DTD Conversion Utility detects a syntax error or issues a warning while trying to

parse the DTD, use this section to help you understand any messages.

Understanding DTD parsing

First, a short explanation of how the utility parses the DTD file:

1. First the utility creates short buffer of XML data, containing an XML declaration

("<?xml..."), a document type declaration ("<!DOCTYPE...″), and an empty root

element. It uses the root element and the DTD name that you provide as input to

create this XML data.

2. Then the utility passes the XML data to a parser component, which parses the data.

3. If the XML data and the referenced DTD file are well-formed (syntactically correct),

then the parser returns information about elements and attributes defined by the

DTD. The utility uses this information to generate the XML dictionary file and the

WebSphere Data Interchange Client import file.

4. If the data is not syntactically correct, the parser component passes error messages

to the utility, which are displayed in the status window.

Parser messages

If the parser detects a syntax error, the status window opens messages that look

something like the following:

Fatal error parsing the DTD - File: bad.dtd, line: 6, column: 2

Message text: Invalid document structure

The first line tells you the name of the DTD file, as well as the line and column number

where the parser detected the error. Note that this is the position that the parser

detected the error, not necessarily where the error is. For example, if you are missing

Appendix D. DTD Conversion Utility 341

the end of a comment in the DTD, the parser indicates where it first detected the error,

not where you meant for the comment to end.

The second line displays the error message that was returned from the parser. The

words ″Message text:″ are not part of the parser error message, but are generated by

the utility.

In some cases, you can see the file name XMLBuffer. This means that the error was

detected in the buffer of data that the utility generated. This can be caused by

something such as a syntactically bad root element name, or an unreadable DTD file.

To see the buffer of XML data that was created (XMLBuffer), you can look at the trace

file that the utility creates. This file is named XMLTRC, and is located in the same

directory as the DTD.

Note: The XMLTRC file can contain messages that start with "Ignoring validation error

in...". These are a result of using an empty root element and do not indicate a

problem.

Warning messages

There are also other warning messages that can be generated by the utility, even if the

DTD is parsed without errors. These are issued when the utility finds something about

the element structure that might indicate a problem. Warning messages are generated

for the following conditions:

v If an element is declared as a descendent of itself, the following message is

displayed:

Warning : Element ″name″ declared as a descendant of itself in the DTD file The

nested instance of element ″name″ is ignored

An example of this is if element A has child elements B and C. However, element B

has child A as one of its child elements. In this case, the utility ignores the nested

occurrence of A, and omits it from the list of children for element B. A does not

appear as a child of B in the EDI standard that is generated, and errors can occur if

XML data is received that contains A as a child element of B. If incoming data does

not use the nested occurrence of the element, and you do not need to map data to it,

then this warning does not cause a problem.

v If the parser indicates that the root element has content model "Any", the following

message is displayed:

Warning : Root element ″name″ has content model ″Any″ Element ″name″ might not

be declared in the DTD file

There are two cases where the parser indicates that the root element has content

model "Any". One case is that the DTD actually declares the element to by type

"Any";. Although this is legal, this type of DTD is not very useful for mapping,

because it does not define any structure for the DTD. The other case that can cause

this is that the root element specified in the input field is not declared in the DTD file.

(Note: XML element names are case sensitive.) In this case, the parser assumes that

it is type "Any" . If you see this warning, verify that the root element name is correct

for the DTD (including any case sensitivity). If not, correct it and retry. If the root

element name is declared as type "Any", then you are not able to do much mapping

for this DTD.

342 Mapping Guide

Utility JCL

The XML4C library (such as EDI.XML.SIXLMOD1) from the XML Toolkit must be

included in the Utility JCL. For example:

//STEPLIB DD DSN=EDI.V3R3M0.SEDILMD1,DISP=SHR

// DD DSN=DB93.DSNEXIT,DISP=SHR

// DD DSN=DB93.DSNLOAD,DISP=SHR

// DD DSN=EDI.SNA131.LOADLIB,DISP=SHR

// DD DSN=EDI.XML.SIXLMOD1,DISP=SHR

The following files can be allocated for XML processing:

v XMLWORK—Required.

This is a work file or temporary file used for XML inbound and outbound processing.

The file allocation for this is similar to FFSWORK. The WebSphere Data Interchange

Utility and XML processor opens this file for OUTPUT and INPUT and it is always

empty before the job begins. Use the JCL DISP=OLD to clear this file. It is a prime

candidate for a virtual I/O data set.

v XMLERR—Required.

Error and status messages from the XML processor are written to this file. The

record length is long enough to hold any messages from the XML processor

(typically LRECL=255 is adequate), or some messages can be truncated. If you do

not allocate this file in your JCL, then you are not able to see these messages. The

file allocation for this is similar to PRTFILE. The XML processor opens the file for

OUTPUT. It normally starts writing from the beginning of this file for each new

PERFORM command in your job step. Use the JCL DISP options to control whether

the file is cleared or appended to. If you are executing multiple PERFORM

commands, you want to use DISP=MOD.

v XMLTRC—Optional.

If allocated, it contains XML processing trace messages. The file allocation for this is

similar to EDITRACE. The XML processor opens the file for OUTPUT. It normally

starts writing from the beginning of this file for each transaction on outbound, and

each XML input file on inbound. Use the JCL DISP options to control whether the file

is cleared or appended to.

v XMLEXCP—Required.

XML data that is in error is written to this file. If this file is not allocated in the JCL,

the XML data that is in error is discarded. The file allocation for this is similar to

FFSEXCP. The XML processor opens the file for OUTPUT when processing the first

transaction, and starts writing from the beginning of the file. It then opens the file for

extend for each subsequent transaction in the PERFORM command. Use the JCL

DISP options to control whether the file is cleared or appended to during the first

use. The file is allocated the same as your XML input file for inbound processing. If

you are executing multiple PERFORM commands, you want to use DISP=MOD.

These files are used in a similar fashion as the related allocation files. The

recommendation is to allocate these files the same as the related files.

Appendix D. DTD Conversion Utility 343

XML Processor Messages and Codes

The XML processor generates the following error and status messages:

All messages are in the form: XPnnnnS, where:

nnnn is replaced by the message number

S tells the severity of the message. S can have the following values:

I means that the message is informational only, and is used to give status or to

give additional information about other messages

W means that the message describes a warning. The current document is still

considered valid, but an unusual condition was found that results in

unexpected output.

E means that the message describes an error. The current document is

considered invalid.

T means that the message describes a severe error that prevents any further

processing by the XML processor.

 Messages resulting from the XML processor can be found in the XMLERR file. XML

data that is in error is written to the XMLEXCP file.

See the DTD Conversion Utility help for a complete list of error messages.

344 Mapping Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the products

and services currently available in your area. Any reference to an IBM product,

program, or service is not intended to state or imply that only that IBM product,

program, or service may be used. Any functionally equivalent product, program, or

service that does not infringe any IBM intellectual property right may be used instead.

However, it is the user’s responsibility to evaluate and verify the operation of any

non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described

in this document. The furnishing of this document does not grant you any license to

these patents. You can send license inquiries, in writing, to:

IBM® Director of Licensing

IBM Corporation

North Castle Drive

Armonk, N.Y. 10504-1785

U.S.A.

 For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan.

 The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:INTERNATIONAL

BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING,

BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do

not allow disclaimer of express or implied warranties in certain transactions, therefore,

this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes

are periodically made to the information herein; these changes will be incorporated in

new editions of the publication. IBM may make improvements and/or changes in the

product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience

only and do not in any manner serve as an endorsement of those Web sites. The

materials at those Web sites are not part of the materials for this IBM product and use

of those Web sites is at your own risk.

© Copyright IBM Corp. 2007 345

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs and

other programs (including this one) and (ii) the mutual use of the information which has

been exchanged, should contact:

IBM Corporation

Department DD40

P.O. Box 30021

Tampa, Florida 33630-3021 USA

 Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for

it are provided by IBM under terms of the IBM Customer Agreement, IBM International

Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment.

Therefore, the results obtained in other operating environments may vary significantly.

Some measurements may have been made on development-level systems and there is

no guarantee that these measurements will be the same on generally available

systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the

applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those

products, their published announcements or other publicly available sources. IBM has

not tested those products and cannot confirm the accuracy of performance,

compatibility or any other claims related to non-IBM products. Questions on the

capabilities of non-IBM products should be addressed to the suppliers of those

products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject to

change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are fictitious

and any similarity to the names and addresses used by an actual business enterprise is

entirely coincidental.

346 Mapping Guide

COPYRIGHT LICENSE

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to IBM, for

the purposes of developing, using, marketing or distributing application programs

conforming to the application programming interface for the operating platform for which

the sample programs are written. These examples have not been thoroughly tested

under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,

or function of these programs.

If you are viewing this information softcopy, the photographs and color illustrations may

not appear.

Programming interface information

Programming interface information, if provided, is intended to help you create

application software using this program.

General-use programming interfaces allow you to write application software that obtain

the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning

information. Diagnosis, modification and tuning information is provided to help you

debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a

programming interface because it is subject to change.

Trademarks and service marks

The following terms are trademarks or registered trademarks of International Business

Machines Corporation in the United States or other countries, or both:

IBM

the IBM logo

AIX

CICS

IBMLink

IMS

WebSphere MQSeries

MVS

OS/390

WebSphere

z/OS

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft

Corporation in the United States, other countries, or both.

Notices 347

MMX, Pentium, and ProShare are trademarks or registered trademarks of Intel

Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product or service names may be trademarks or service marks of

others.

348 Mapping Guide

Glossary of terms and abbreviations

This glossary defines WebSphere Data

Interchange terms and abbreviations used in this

book. If you do not find the term you are looking

for, see the index or the IBM Dictionary of

Computing, New York: McGraw-Hill, 1994.

This glossary includes terms and definitions from

the American National Dictionary for Information

Systems, ANSI X3.172-1990, copyright 1990 by

the American National Standards Institute. Copies

may be ordered from the American National

Standards Institute, 11 West 42 Street, New York,

New York 10036. Definitions are identified by the

symbol (A) after the definition.

A

AAR. Association of American Railroads.

Represents the railroad industry in areas such as

standards, public relations, and advertising.

acknowledgement. See functional

acknowledgement, network acknowledgement.

ADF. See data format.

ANSI. American National Standards Institute.

ANSI ASC X12. ANSI Accredited Standards

Committee X12, which develops and maintains

generic standards for business transactions for

EDI.

application. A program that processes business

information. An application that requests services

from WebSphere Data Interchange is an enabled

application.

application data. The actual data in an

application data file.

application data format. See data format.

application default profile. Identifies business

applications, such as purchasing and accounts

receivable, to WebSphere Data Interchange and

sets specific WebSphere Data Interchange

processing defaults for an application.

B

base structure. The data structure that contains

all the data structures and data fields that define

the application data for a single transaction.

binary format (BIN). Representation of a

decimal value in which each field must be 2 or 4

bytes long. The sign (+ or -) is in the far left bit of

the field, and the number value is in the remaining

bits of the field. Positive numbers have a 0 in the

sign bit. Negative numbers have a 1 in the sign bit

and are in twos complement form.

C

CICS. Customer Information Control System.

CD-ROM. Compact Disk-Read Only Memory; a

storage medium for large amounts of data needed

external to the personal computer.

client-server. A computing environment in which

two or more machines work together to achieve a

common task.

code list. A table, supplied by WebSphere Data

Interchange or defined by the user, that contains

all acceptable values for a single data field.

composite data element. In EDI standards, a

group of related subelements, such as the

elements that make up a name and address.

compound element. An item in the source or

target document that contains child items.

Examples are EDI segments and composite data

elements, data format records and structures, and

XML elements.

control number. Numbers (or masks used to

create numbers) that are used to identify an

interchange, group, or EDI transaction.

control string. An object compiled from a map,

data format, and EDI standard transaction; it

contains the instructions used by the translator to

translate a document from one format to another.

© Copyright IBM Corp. 2007 349

control structure. The beginning and ending

segments (header and trailer) of standard

enveloped transmissions.

Customer Information Control System (CICS).

An IBM licensed program that enables

transactions entered at remote terminals to be

processed concurrently by user-written application

programs.

customize. To alter to suit the needs of a

company, such as removing from an EDI standard

the segments and data elements that the

company does not use.

D

data dictionary. A file containing the definitions

of all the data elements of an EDI standard.

data element. A single item of data in an EDI

standard, such as a purchase order number.

Corresponds to a data field in a data format.

data element delimiter. A character, such as an

asterisk (*), that follows the segment identifier and

separates each data element in a segment. See

also element separator and segment ID separator.

data field. A single item of data in a data format,

such as a purchase order number. Corresponds to

a data element in an EDI standard.

data format. A description of the application data

for a particular transaction. A data format is

composed of loops, records, data structures, and

fields.

data format dictionary. A file that contains data

format components.

data format record. A group of logically related

fields set up as a record in a data format.

data format structure. A group of related data

fields in a data format, such as the fields making

up the line item of an invoice. Corresponds to a

composite data element in an EDI standard.

DataInterchange/MVS™. The IBM

DataInterchange product used on the host; pieces

include a TSO parameter entry mechanism and a

translator. The functionality available in this

product is now available in WebSphere Data

Interchange for z/OS.

DataInterchange/MVS-CICS. The CICS-based

IBM DataInterchange product. The functionality

available in this product is now available in

WebSphere Data Interchange for z/OS.

data structure. A group of related data fields in

a data format, such as the fields making up the

line item of an invoice. Corresponds to a segment

in a standard.

Data Transformation map. One of three

supported map types. A Data Transformation map

is a set of mapping instructions that describes how

to translate data from a source document into a

target document. Both the source and target

documents can be one of several support

document types.

DB2®. Database 2, an IBM relational database

management system.

ddname. Data definition name.

decimal notation. The character that represents

a decimal point in the data.

delimiter. A character that terminates a string of

characters, such as the value contained in a data

element.

DI Client. WebSphere Data Interchange Client;

the Windows-based, client/server interface for

WebSphere Data Interchange.

dictionary. See data dictionary.

document. A business document that is

exchanged between two enterprises as part of a

business process, such as a purchase order or

invoice. A document within WebSphere Data

Interchange is singular. For example, it cannot

contain multiple purchase orders. A document can

also be represented in any syntax. For example,

an XML purchase order and an EDI purchase

order are both documents.

Document Type Definition (DTD). A list of all

components included in the XML document and

Glossary

350 Mapping Guide

their relationship to each other. This defines the

structure of an XML document.

domain. The data structure or group of data

structures in a data format to and from which you

should restrict the mapping of EDI repeating

segments and loops.

DTD. See Document Type Definition.

E

EDI. Electronic data interchange.

EDIA. Electronic Data Interchange Association.

EDI administrator. The person responsible for

setting up and maintaining WebSphere Data

Interchange.

EDI message. See message.

EDI standard. The industry-supplied, national, or

international formats to which information is

converted, allowing different computer systems

and applications to interchange information.

EDI transaction. A single business document,

such as an invoice.

EDI transaction set. A group of logically related

data that make up an electronic business

document, such as an invoice or purchase order.

EDIFACT. Electronic Data Interchange for

Administration Commerce and Transport. See

UN/EDIFACT.

electronic data interchange (EDI). A method of

transmitting business information over a network,

between business associates who agree to follow

approved national or industry standards in

translating and exchanging information.

electronic transmission. The means by which

information is transferred between parties, such as

over a public network.

element. See data element.

element separator. A character that separates

the data elements in a segment. See also data

element delimiter.

encryption. The encoding and scrambling of

data. Data is encrypted by the sender and

decrypted by the receiver using a predetermined

program and unique electronic key.

event. An occurrence that is important to a

user’s computer tasks, such as a software error,

sending a transaction, or acknowledging a

message.

Extensible Markup Language (XML). A

standard metalanguage for defining markup

languages that was derived from, and is a subset

of SGML. It is used to represent structured

documents and data.

F

field. See data field.

floating segment. A segment of an EDI

standard that may exist in many positions relative

to other segments.

forward translation table. A user-defined table

that translates data values that differ between

trading partners. For example, if a manufacturer

and supplier have different part numbers for the

same item, each company can use its own part

number and have it converted to the other

company’s part number during translation.

Forward translation tables translate local values to

standard values.

functional acknowledgement. An electronic

acknowledgement returned to the sender to

indicate acceptance or rejection of EDI

transactions.

functional group. One or more transaction sets

of a similar type transmitted from the same

location, enclosed by functional group header and

trailer segments.

Glossary

Glossary of terms and abbreviations 351

G

global variable.. A variable that is shared among

all instances of all documents within a translation

session.

H

header. A control structure that indicates the

start of an electronic transmission.

hierarchical loop. A technique for describing the

relationship of data entities which are related in a

parent/child manner, like a corporate organization

chart. Used in mapping to group related data

elements and segments such as trading partner

address.

HL. See hierarchical loop.

I

IBM Global Network. The IBM communications

network that provides products and services to

IBM customers.

ICS. International Control Segments.

import. The process of taking WebSphere Data

Interchange objects exported on another

WebSphere Data Interchange system and

incorporating them into the receiving system.

Information Exchange. A commerce engine of

IBM Interchange Services for e-business that

permits users to send and receive information

electronically.

interchange. The exchange of information

between trading partners.

J

JCL. Job Control Language.

K

key. In a profile member, the field that identifies

the member. For example, the key for members of

the trading partner profile is the trading partner

nickname.

L

literal. In mapping, a value that is constant for

each occurrence of the translation. If you provide

the literal value during mapping, the translator

does not have to refer repeatedly to the source to

obtain the value.

local variable. A variable that is specific to the

instance of the document in which it is being used.

log file. A file in which events are recorded.

logging. The recording of events in time

sequence.

loop. A repeating group of related segments in a

transaction set or a repeating group of related

records and loops in a data format.

loop ID. A unique code identifying a loop and the

number of times the group can be repeated.

loop repeat. A number indicating the maximum

number of times a loop can be used in a

transaction set.

M

mailbox. If you use a mail type protocol to

exchange messages with your trading partners,

you will have one or more registered mailboxes.

The mailbox profile is used in WebSphere Data

Interchange to define your mailboxes and any

associated preferences.

map. A set of instructions that indicate to

WebSphere Data Interchange how to translate

data from one format to another.

map rule. An association between a Data

Transformation map and a trading partner.

Glossary

352 Mapping Guide

maximum use. A number indicating the

maximum number of times a segment can be

used in a transaction set or the maximum number

of times that a data format loop or record can

repeat.

message. A free-form, usually short,

communication to a trading partner. In

UN/EDIFACT standards, a group of logically

related data that make up an electronic business

document, such as an invoice. A message is

equivalent to a document.

message log. The file in which WebSphere Data

Interchange Client logs messages about errors

that occur within the client.

multiple-occurrence mapping. A form of

mapping in which all occurrences of a loop or

repeating segment are mapped to the same

repeating structure in the data format.

N

network acknowledgement. A response from

the network indicating the status of an interchange

envelope, such as sent or received.

network commands. The commands that you

want WebSphere Data Interchange to pass to

your network, defined in the network commands

profile. In the host product, this file is named

NETOP.

O

ODETTE. Organization for Data Exchange

through Teletransmission in Europe.

P

parse. To break down into component parts.

path qualified mapping. A form of mapping in

which all occurrences of a repeating compound or

simple data element are mapped to a repeating

compound or simple data element in another

document.

PDS. Partitioned data set.

PDS members. Groups of related information

stored in partitioned data sets.

profile. Descriptive information about trading

partners, network connections, and so on. Each

profile can contain one or more objects or

members. For example, the trading partner profile

contains members for your trading partners (one

member for trading partner address).

program directory. A document shipped with

each release of a product that describes the

detailed content of the product.

Q

qualifier. A data element which gives a generic

segment or data element a specific meaning.

Qualifiers are used in mapping single or multiple

occurrences.

R

Receive map. One of three supported map

types. A Receive map is a set of mapping

instructions that describe how to translate an EDI

standard transaction into a proprietary application

data document.

receive usage. An association between a

Receive map and a trading partner.

record. A logical grouping of related data

structures and fields.

release character. The character that indicates

that a separator or delimiter is to be used as text

data instead of as a separator or delimiter. The

release character must immediately precede the

delimiter.

repository data. A group of data definitions,

formats, and rules/usages, that WebSphere Data

Interchange uses to process your data.

requestor. See mailbox.

reverse translation table. A user-defined table

that translates data values that differ between

trading partners. For example, if a manufacturer

and supplier have different part numbers for the

Glossary

Glossary of terms and abbreviations 353

same item, each company can use its own part

number and have it converted to the other

company’s part number during translation.

Reverse translation tables translate standard

values to local values.

rule. See map rule.

runtime data. Data used by the WebSphere

Data Interchange translator, such as control

strings, code lists, translation tables and profiles.

S

security administrator. The person who controls

access to business data and program functions.

segment. A group of related data elements. A

segment is a single line in a transaction set,

beginning with a function identifier and ending with

a segment terminator delimiter. The data elements

in the segment are separated by data element

delimiters.

segment directory. A file containing the format

of all segments in an EDI standard.

segment identifier. A unique identifier at the

beginning of each segment consisting of two or

three alphanumeric characters.

segment ID separator. The character that

separates the segment identifier from the data

elements in the segment.

segment terminator. The character that marks

the end of a segment.

Send map. On of three supported map types. A

Send map is a set of mapping instructions that

describe how to translate a proprietary application

data document into an EDI standard transaction.

send usage. An association between a Send

map and a trading partner.

simple element. An item in the source or target

document that does not contain child items, only

data. Examples are EDI data elements, data

format fields, XML attributes, and PCDATA values.

single-occurrence mapping. A form of mapping

in which each occurrence of a loop or repeating

compound or simple data element in a document

is mapped to a different compound or simple data

element in another document.

source document definition. A description of

the document layout that will be used to identify

the format of the input document for a translation.

special literal. The send and receive Mapping

Data Element Editors include the Literal or

Mapping Command field. Literals are constant

values you enter in this field, such as 123. Special

literals are values you enter in this field that begin

with an ampersand (&) and are command to

WebSphere Data Interchange, rather than

constant values. For example, to use today’s date,

you enter &DATE.

standards. See EDI standard.

structure. See data structure or data format

structure.

subelement. In UN/EDIFACT standards, a data

element that is part of a composite data element.

For example, a data element and its qualifier are

subelements of a composite data element.

subelement separator. A character that

separates the subelements in a composite data

element.

T

tag. In UN/EDIFACT standards, the segment

identifier. In export/import, a code identifies each

field in the export record. Such export/import files

are known as “tagged” files.

target document definition. A description of the

document layout that will be used to create an

output document from a translation.

TD queue. See transient data queue.

TDCC. Transportation Data Coordinating

Committee.

TDQ. Transient data queue.

Glossary

354 Mapping Guide

temporary storage queue (TS). Storage

locations reserved for immediate results in CICS.

They are deleted after the task that created them

is complete and they are no longer necessary.

TPT. Trading partner transaction. See map.

trading partner profile. The profile that defines

your trading partners, including information about

network account numbers, user IDs, who pays for

network charges, etc.

trading partners. Business associates, such as

a manufacturer and a supplier, who agree to

exchange information using electronic data

interchange.

trading partner transaction. See map.

trailer. A control structure that indicates the end

of an electronic transmission.

transaction. A single business document, such

as an invoice. See also EDI transaction.

transaction set. A group of standard data

segments, in a predefined sequence, needed to

provide all of the data required to define a

complete transaction, such as an invoice or

purchase order. See also EDI transaction set.

Transaction Store. The file that contains the

results of translations and a history of translation

activity.

transform. The process of converting a

document from one format to another.

transient data queue (TD). A sequential data

set used by the Folder Application Facility in CICS

to log system messages.

translation. The process of converting a

document from one format to another.

translation table. A user-defined table that

translates data values that differ between trading

partners. For example, if a manufacturer and

supplier have different part numbers for the same

item, each company can use its own part number

and have it converted to the other company's part

number during translation.

TSQ. See temporary storage queue.

U

UCS. Uniform Communication Standard.

unary operator. An operator that changes the

sign of a numeric value.

UN/EDIFACT. United Nations Electronic Data

Interchange for Administration Commerce and

Transport.

Uniform Communication Standard (UCS). The

EDI standard used in the grocery industry.

UN/TDI. United Nations Trade Data Interchange.

Usage. An association between a send or

Receive map and a trading partner.

V

validation table. A table, supplied by

WebSphere Data Interchange or defined by the

user, which contains all acceptable values for a

single data field.

variable. The entity in which a value may be

stored based on data received; as opposed to a

constant value.

W

WebSphere Data Interchange. A generic term

for the WebSphere Data Interchange products,

WebSphere Data Interchange for z/OS and

WebSphere Data Interchange for Multiplatforms.

WebSphere Data Interchange is a translator of

data from one document format to another; the

pieces of this product include a TSO parameter

entry mechanism, a CICS parameter entry

mechanism, a Windows-based parameter entry

mechanism (WebSphere Data Interchange Client),

and a translator.

WebSphere Data Interchange Client. A

Windows-based product for entry of parameters

needed by the WebSphere Data Interchange

translator.

Glossary

Glossary of terms and abbreviations 355

WebSphere MQ. An IBM product that is used to

implement messaging and queueing of data

groups. Earlier releases of this product were

known as MQSeries®.

WebSphere MQ queue profile. Represents a

relationship between a logical name and a

physical WebSphere MQ queue name.

WINS. Warehouse Information Network

Standard.

Windows®. Microsoft’s graphical operating

system under which WebSphere Data Interchange

Client runs.

X

X12. A common EDI standard approved by the

American National Standards Institute.

XML. See Extensible Markup Language.

Glossary

356 Mapping Guide

Bibliography

This section describes the documentation

available for the WebSphere Data Interchange

product.

WebSphere Data Interchange

publications

The WebSphere Data Interchange V3.3

publications are:

v WebSphere Data Interchange for MultiPlatforms

Quick Start Guide CF0YREN

v WebSphere Data Interchange for MultiPlatforms

Administration and Security Guide

SC34-6214-01

v WebSphere Data Interchange for MultiPlatforms

Messages and Codes Guide SC34-6216-01

v WebSphere Data Interchange for MultiPlatforms

User's Guide SC34-6215-01

v WebSphere Data Interchange for MultiPlatforms

Programmer's Reference Guide SC34-6217-01

v WebSphere Data Interchange for MultiPlatforms

Mapping Guide SC23-5874-00

v WebSphere Data Interchange for MultiPlatforms

Utility Commands and File Formats Reference

Guide SC23-5873-00

v WebSphere Data Interchange for z/OS V3.3

Program Directory GI10-2561-01

v WebSphere Data Interchange for z/OS V3.3

Installation Guide SC34-6269-01

v WebSphere Data Interchange for z/OS V3.3

License File GC34-6270-02

Softcopy books

All the WebSphere Data Interchange books are

available in softcopy format.

Portable Document Format (PDF)

The library is supplied as stand-alone PDFs in US

English in the DOC directory on the product CD.

The contents of the DOC directory can be viewed

without installing the product.

PDF files can be viewed and printed using the

Adobe Acrobat Reader. You will need Adobe

Acrobat Reader with Search Version 4.05 on

Windows NT, or Adobe Acrobat Reader with

Search Version 4.5 on UNIX® systems.

If you need to obtain the Adobe Acrobat Reader,

or would like up-to-date information about the

platforms on which the Acrobat Reader is

supported, visit the Adobe Systems Inc. Web site

at:

 http://www.adobe.com/

If you cut and paste examples of commands from

PDF files to a command line for execution, you

must check that the content is correct before you

press Enter. Some characters might be corrupted

by local system and font settings.

WebSphere Data Interchange

information available on the Internet

The WebSphere Data Interchange product Web

site is at:

 http://www.ibm.com/websphere/datainterchange/

By following links from this Web site you can:

v Obtain latest information about the WebSphere

Data Interchange products.

v Access the WebSphere Data Interchange books

in PDF format.

© Copyright IBM Corp. 2007 357

Bibliography

358 Mapping Guide

Index

Numerics
841 transaction set 285

A
accumulators

actions 242

adding to maps 242

types 242

types of 242

using 241

application control key, setting 209

application data
components

determining 28

fields 29

loops 30

records 29

structures 29

obtaining 27

raw data records 27

structuring 27

assignment 147

B
BIN segment ID 285

binary segment receive processing 293

C
Char function 175

CloseOccurrence command 149

code list 73

commands
CloseOccurrence 149

conditional 147

Else 147

ElseIf 147

EndIf 147

If 147

Create 150

Default 162

Error 150

ErrorContext 151

FAError 151

FAErrorPath 155

ForEach 155

HLLevel 158

MapCall 158

MapChain 159

MapFrom 159

MapSwitch 160

MapTo 161

overview 149

commands (continued)
Qualify 162

SetElementAttribute 163

SetNamespace 172

SetNoNSSchemaLocation 173

SetProperty 174

SetSchemaLocation 173

comments 143

Concat function 176

conditional commands 147

control and data format 28

control strings
compiling 116

viewing compiled 116

Create command 150

Created function 176

D
data elements

advanced mapping capabilities 203

creating 81

editor 202

parts of 72

qualifying 114

data format dictionary editor
creating 35

importing a COBOL copybook 36

data format editors
accessing 34

dictionary editor 35

field editor 49

loop editor 43

navigating
data formats editor paths 51

dictionary editor paths 50

field editor paths 53

loop editor paths 52

overview 50

record editor paths 52

structure editor paths 53

record editor 45

record ID information editor 38

structure editor 47

using 33, 40

data format worksheet 31

data formats 25

creating 26, 40

data types for
A (alphabetic) 54

AC (application control) 54

AN (alphanumeric) 55

Bn (binary–unsigned) 55

© Copyright IBM Corp. 2007 359

data formats (continued)
data types for (continued)

BN (binary–unsigned) 55

CH (character) 55

DT (date) 56

FN (file name) 56

Hn (hexadecimal) 56

HX (hexadecimal) 56

ID (identifier) 56

In (integer–signed) 57

IT (integer–signed) 57

IV (integer–signed) 57

Ln (decimal–leading sign) 57

N (numeric) 58

Nn (numeric) 58

PD (packed decimal) 58

Pn (packed decimal) 58

PW (password) 59

R (real) 59

Rn (real) 59

TM (time) 59

understanding 54

ZD (zoned decimal) 59

Zn (zoned decimal) 60

reusing components 53

Data Transformation
Functional Acknowledgement map editor

starting 136

using 137

map editor
using 121

validation map editor
starting 131

using 132

Data Transformation maps
commands 141

commands, conditional 147

creating 122, 132, 137

data types 144

details tab 95

editing 97

expressions 145

forward reference 144

functions 141

keywords 143

map rules
applying 125

viewing 126

operators
arithmetic 146

comparison 146

logical 145

modulus 146

order 147

unary 147

Data Transformation maps (continued)
path 143

qualification
editing an element qualification 108

specifying 103

types of 103

qualifying
repeating simple and compound elements 104

repeating simple and compound elements

multi-occurrence 106

repeating simple and compound elements

occurrence 105

repeating simple and compound elements:by

expression 108

repeating simple and compound elements:by

value 107

reverse reference 144

data types
conditions 211

for data formats 54

understanding 54

with mapping commands 144

Date function 177

DateCnv function 177

Default command 162

dictionary 72

document type definition (DTD) 61

DTD Conversion Utility
converting 321

diagnosing errors 341

DTD alias 329

DTD, processing external 327

encoding considerations 336

example 328

output 325

PERFORM commands 334

prolog, overriding the default 337

translation
inbound 329

outbound 331

updating 327

XML dictionary 326

DTD editor 64

E
EDI standard dictionary

creating a 74

EDI standards 71

EDI standards editors
accessing 74

code list editor 84

data element editor 81

dictionary editor 74

envelope
control string 87

360 Mapping Guide

EDI standards editors (continued)
envelope (continued)

editor 84

fields descriptions 85

segment editor 79

transaction editor 76

transaction, creating 76

using 73

editor, map 93

EFI segment 287

electronic format identification segment 287

elements, repeating 104

Else conditional command 147

ElseIf conditional command 147

encoding
application data

incoming 314

outgoing 314

EDI data
incoming 314

outgoing 315

XML data
incoming 315

outgoing 315

EndIf conditional command 147

envelope standard
compiling 87

editor 85

envelopes 71

Error command 150

ErrorContext command 151

examples
international tasks 319

literal keywords 270

named variables 270

PC executable files 290

sending to limited systems 291

variable length PC files 291

Exit function 177

expressions 145, 258

extensible markup language (XML)
See XML

F
FAError command 151

FAErrorPath command 155

fields
advanced mapping 203

application 291, 296

creating 49

description 29

editor path 53

MQ profile 316

service segment
generic 280

fields (continued)
service segment (continued)

Receive mapping 279

Send mapping 278

using 277

Find function 178

fixed-to-fixed maps 240

ForEach command 155

format specifications 289

Found function 178

functions
Char 175

Concat 176

Created 176

Date 177

DateCnv 177

Exit 177

Find 178

Found 178

GetProperty 179

HexDecode 180

HexEncode 179

IsEmpty 180

Left 181

Length 181

Lower 182

Number 182

NumFormat 182

Occurrence 183

Overlay 184

overview 175

Right 185

Round 185

StrComp 186

StrCompl 186

StrCompN 187

StrCompNI 187

SubString 188

Time 189

Translate 189

TrimLeft 190

TrimRight 191

Truncate 191

Upper 192

Validate 192

G
generic receive usages 239

generic send usages 238

GetProperty function 179

global accumulator 242

H
handling international characters

automatic detection 314

Index 361

handling international characters (continued)
byte-order mark support 317

considerations for import and export 316

encoding
incoming application data 314

incoming EDI data 314

incoming XML data 315

outgoing application data 314

outgoing EDI data 315

outgoing XML data 315

examples 319

MQ profile fields 316

overview 313

PERFORM keywords 316

processing 314

HexDecode function 180

HexEncode function 179

hierarchical loops
examples 297

in Data Transformation maps
adding levels 306

comparing 307

creating 300

defining 300

overview 300

qualifying 301

source based mapping 302

special mapping 302

target based mapping 303

in send or Receive maps
overview 310

segment literal keyword 311

mapping 123

mapping HL segment 310

overview 297

preparing 299

segments 298

specifying levels 297

HLLevel command 158

I
If conditional command 147

information on the Internet
WebSphere Data Interchange 357

WebSphere Data Interchange libraries 357

intellectual property 345

IsEmpty function 180

K
keywords 143

L
Left function 181

Length function 181

license, patents 345

licensing
address 345

literal keywords
conditional processing 245

examples 270

keywords 246

&ACFIELD 246

&ASSERT 247

&DATE 247

&DEFERRED 248

&E 248

&ERR 249

&FORCE 249

&FORMAT 249

&IF 250

&IFDATA 250

&IFNODATA 250

&IFNOVAR 251

&LOOPBREAK 251

&LOOPCHECK 251

&LSAVE 252

&LSET 253

&LSID 253

&SAMEAS 253

&SAVE 254

&SET 255

&THANDLE 255

&TIME 255

&TPID 255

&TPNICKN 255

&USE 256

&ZEROSIG 256

mapping techniques 268

literals
accumulator 245

adding to a map 211

and data types 211

conditional processing 245

control data 277

format 245

keywords
See literal keywords

overview 142

using 211, 243

using for Receive mapping 244

loops
creating 43

hierarchical
See hierarchical loops

overview 30

qualifying 110

Lower function 182

362 Mapping Guide

M
map editor

editing procedure 95

panes
Data Transformation maps 93

Functional Acknowledgement maps 94

Receive maps 94

Send maps 94

using 99

validation maps 94

starting 95

symbols 98

using 93

map rules
applying 125

viewing 126

map variables 141

MapCall command 158

MapChain command 159

MapFrom command 159

mapping
advanced techniques 100

choosing the right map 102

generic service segment fields (receive) 280

getting started 100

service segment fields (send) 278

specific service segment fields (receive) 279

mapping commands
Data Transformation maps

data types 144

overview 141

send and Receive maps
adding to a map 211

using 211

mapping data element editor
application control key 209

applying advanced mapping capabilities 203

applying advanced mapping capabilities with 99

date conversion operator 206

options, special handling 204

overview 202

repeat button 209

special handling button 203

user exit profile 208

maps
choosing 102

creating 93, 100

Data Transformation 121

fixed-to-fixed 240

functional acknowledgement 135

migrating 117

objects 89

receive 201

send 201

task list 100

maps (continued)
types 7

validation 131

MapSwitch command 160

MapTo command 161

migrating a map 117

minimal trading partners 125, 215

N
Number function 182

NumFormat function 182

O
Occurrence function 183

operators
arithmetic 146

comparison 146

date conversion 206

logical 145

modulus 146

unary 147

order of precedence 147

Overlay function 184

P
patents 345

path, specifying 143

PDF (Portable Document Format) 357

Portable Document Format (PDF) 357

properties
EDI envelope standard generic 195

EDI envelope standard specific 196

source document 193

target document 194

publications
WebSphere Data Interchange 357

Q
qualification

editing a data element 115

editing a loop 113

editing a segment 113

editing an element qualification 108

specifying 103, 110

types of 103, 110

Qualify command 162

qualifying
composite data element

by path 109

data elements
by value 114

editing 115

overview 114

loops
by occurrence 111

by path 111

Index 363

qualifying (continued)
loops (continued)

by value 112

overview 110

repeating data element
by occurrence 109

by path 109

repeating simple and compound elements
by expression 108

by multi-occurrence 106

by occurrence 105

by value 107

overview 104

segments
by occurrence 111

by path 111

by value 112

overview 110

R
Receive maps

advanced techniques 100

creating 201

qualification
editing a data element 115

editing a loop 113

editing a segment 113

specifying 110

types of 110

qualifying
data elements 114

data elements: by value 114

loops 110

loops: by occurrence 111

loops: by path 111

loops: by value 112

segments 110

segments: by occurrence 111

segments: by path 111

segments: by value 112

qualifying a composite data element
by occurrence 109

by path 109

qualifying a repeating data element
by occurrence 109

by path 109

translation tables 212

creating 214

receive processing, binary segment 293

records 29

creating 45

definition 29

editor path 52

ID information 38

references
forward 144

reverse 144

repeating elements 104

Right function 185

Round function 185

S
segment ID

BIN 285

BIN length 285

segments
BDS 286

BIN 285

binary 288

creating a 79

creation for Send maps 244

definition 72

EFI 287

mapping for Receive maps 279

mapping for Send maps 278

mapping generic for Receive maps 280

qualifying
by occurrence 111

by path 111

by value 112

editing 113

overview 110

receive processing 293

segment editor 79

send processing 288

service 277

sending
PC executable files 290

PC variable length files 291

to systems with file limitations 291

service segment fields 277

set 841 285

SetElementAttribute command 163

SetNamespace command 172

SetNoNSSchemaLocation command 173

SetProperty command 174

SetSchemaLocation command 173

softcopy books 357

special operators 206

StrComp function 186

StrCompl function 186

StrCompN function 187

StrCompNI function 187

structures
creating 47

definition 29

SubString function 188

364 Mapping Guide

T
task list, mapping 100

Time function 189

trading partners
copying usages of 238

creating usages for 216, 225

editing usages of 238

minimal concept 215

specifying usages of 215

viewing usages of 126

transaction accumulator 242

transaction sets 72

transactions
BIN segment length 285

electronic format identification (EFI) 287

overview 72

parts of
code list 73

data elements 72

dictionary 72

segments 72

transaction sets 72

Translate function 189

translation tables
creating 214

data differences 212

description 212

forward 213

reverse 213

TrimLeft function 190

TrimRight function 191

Truncate function 191

U
Upper function 192

usages
copying 238

creating
Receive map 225

Send map 216

editing 238

generic
receive 239

send 238

specifying 215

viewing 216

user exit profile 208

V
Validate function 192

validation 282

validation map
creating 132

editor 131

overview 131

validation map (continued)
using 132

variables
Data Transformation

local 141

naming 142

global 142

creating 90

overview 13

loop 141

Receive map
examples 270

local 256

variables 266

Send map
examples 270

local 256

variables 266

special 142

W
WebSphere Data Interchange on the Internet 357

WebSphere Data Interchange publications 357

worksheet, data format 31

X
XML

dictionary 62

document type definition (DTD) 61

DTD, importing 63

editor 62

Namespace 65

overview 61

processing 66

receiving data using VAN 330

XML dictionary
creating 62

XML dictionary editor 62

XML editors 62

Index 365

366 Mapping Guide

����

Printed in USA

SC23-5874-00

	Contents
	Figures
	Tables
	About this book
	Who should read this book
	How this book is organized
	Related books

	Part 1. Introduction
	Chapter 1. Introducing WebSphere Data Interchange Mapping
	Prerequisites

	Chapter 2. Understanding Mapping
	Mapping process overview
	How mapping works
	Map types
	Data Transformation maps
	Validation maps
	Functional acknowledgement maps
	Send maps
	Receive maps

	Object types
	Code lists
	Translation tables
	Global variables

	Control strings
	Queries

	Chapter 3. The WebSphere Data Interchange mapping interface
	Main application window
	Mapping functional area
	XML functional area
	EDI functional area

	Chapter 4. Data formats
	Creating a data format
	Understanding how your application data is structured
	Obtaining application data layout
	Structuring application data
	Determining data components

	Filling out a data format worksheet

	Using the WebSphere Data Interchange data format editors
	Accessing data format editors
	Creating a data format dictionary
	Importing a COBOL copybook
	Understanding COBOL copybook REDEFINES and SYNC clauses

	Creating the data format record ID information
	Creating a data format
	Creating loops
	Creating a data format record
	Creating a data format structure
	Creating a data format field

	Navigating between data format editors
	Data format dictionary editor paths
	Data format editor paths
	Data format loop editor paths
	Data format record editor paths
	Data format structure editor paths
	Data format field editor paths

	Reusing data format components
	Understanding data types

	Chapter 5. Extensible Markup Language
	Accessing XML editor
	Creating the XML dictionary
	Importing and defining a DTD or schema file
	Creating an XML Namespace
	XML Document processing
	Example 1
	Example 2
	Example 3

	Chapter 6. EDI standards
	Envelopes
	Transactions
	Using the EDI standard editors
	Creating the EDI standard dictionary
	Creating a transaction
	Creating a segment
	Creating a data element
	Creating a code list
	Editing an envelope standard
	Envelope control strings

	Chapter 7. Creating map objects
	Creating code lists
	Creating translation tables
	Creating global variables

	Chapter 8. Creating a map
	Using the map editor
	Starting the map editor
	General editing procedures
	Editing a map
	Using the Map Command window pane

	Advanced mapping techniques

	Mapping task list
	Choosing the right map
	Specifying qualification
	Qualifying a Data Transformation map
	Qualifying repeating simple and compound elements
	Qualifying an element by occurrence
	Qualifying an element by multi-occurrence
	Qualifying an element by value
	Qualifying an element by expression
	Editing an element qualification
	Changing multi-occurrence qualification on a qualified element
	Qualifying a repeating data element or composite data element by occurrence
	Qualifying a repeating data element or composite data element by path
	Changing the path qualification on a qualified repeating data element

	Qualifying a send or Receive map
	Qualifying loops and segments
	Qualifying a loop or segment by occurrence
	Qualifying a loop or segment by path
	Qualifying a loop or segment by value
	Editing a loop or segment qualification
	Changing path on qualified repeating element

	Qualifying data elements
	Qualifying a data element by value in Receive maps
	Editing qualification of a data element qualified by value

	Compiling control strings
	Recompiling control strings
	Migrating a map

	Part 2. Data Transformation Maps
	Chapter 9. Data Transformation mapping
	Using the Data Transformation Map editor
	Creating a new Data Transformation map
	Mapping hierarchical loops
	XML mapping considerations
	Namespaces
	Target Namespace
	Namespace Processing for Input XML documents
	Namespace Processing for Output XML Documents
	XML schema restrictions

	Applying map rules
	Applying the minimal trading partners concept
	Viewing map rules

	Mapping MQMD and MQRFH2 values
	Getting and setting properties in the MQMD and MQRFH2 headers
	Other notes

	Chapter 10. Validation mapping
	Starting the validation map editor
	Creating a validation map
	Using validation maps

	Chapter 11. Functional Acknowledgement mapping
	Functional Acknowledgement maps provided with WebSphere Data Interchange
	Starting the Functional Acknowledgement map editor
	Using the Functional Acknowledgement map editor
	Creating a Functional Acknowledgement map
	Source document definition record layout
	Using Functional Acknowledgement Maps

	Chapter 12. Data Transformation mapping commands and functions
	Map variables
	Naming variables
	Literals

	Comments
	Keywords
	Specifying a path
	Forward and reverse references
	Data types supported by mapping commands and functions
	Expressions
	Logical operators
	Comparison operators
	Arithmetic operators
	Unary operators
	Order of precedence

	Assignment
	Conditional commands
	If / ElseIf / Else / Endif

	Commands
	CloseOccurrence
	Example

	Create
	Error
	ErrorContext
	FAError
	FAErrorPath
	ForEach
	Example 1
	Example 2
	Example 3

	HLLevel
	MapCall
	MapChain
	MapFrom
	MapSwitch
	MapTo
	Qualify and Default
	Example 1
	Example 2
	Example 3

	SetElementAttribute
	Element attributes
	Processing order
	Example 1
	Example 2

	SetNamespace
	SetNoNSSchemaLocation
	SetSchemaLocation
	SetProperty

	Functions
	Char
	Results

	Concat
	Results
	Example

	Created
	Results
	Example

	Date
	Results

	DateCnv
	Results

	Exit
	Find
	Results
	Examples

	Found
	Results
	Example

	GetProperty
	Results
	Example

	HexEncode
	Results

	HexDecode
	Results

	IsEmpty
	Results
	Example

	Left
	Results
	Example 1
	Example 2

	Length
	Results
	Example

	Lower
	Results
	Example

	Number
	Results

	NumFormat
	Results
	Example 1
	Example 2

	Occurrence
	Results
	Example 1
	Example 2

	Overlay
	Results
	Example

	Right
	Results
	Example 1
	Example 2

	Round
	Results

	StrComp
	Results
	Example

	StrCompI
	Results
	Example

	StrCompN
	Results
	Example

	StrCompNI
	Results
	Example

	SubString
	Results
	Example 1
	Example 2

	Time
	Results

	Translate
	Results
	Example

	TrimLeft
	Results
	Example 1
	Example 2

	TrimRight
	Results
	Example 1
	Example 2

	Truncate
	Results

	Upper
	Results
	Example

	Validate
	Results
	Example

	Message properties
	Source document properties
	Target document properties
	EDI envelope standard generic properties
	EDI envelope standard specific properties

	Part 3. Send and Receive Maps
	Chapter 13. Send and Receive mapping
	Creating a send or Receive map
	Using the mapping data element editor
	Applying advanced mapping capabilities to a field or data element
	Using the special handling button
	Date conversion special operators
	User Exit profile

	Using the Repeat Button
	Setting an application control key

	Using literals and mapping commands
	Adding a literal or mapping command to a map
	Literals and data types

	Translation tables
	Forward translation tables
	Reverse translation tables
	Creating a new translation table

	Specifying send and receive usages
	Applying the minimal trading partners concept
	Viewing usages
	Creating a Send map usage
	Creating a receive usage
	Editing send and receive usages
	Copying send or receive usages
	Defining generic send usages
	Defining generic receive usages

	Creating fixed-to-fixed maps

	Chapter 14. Advanced send and Receive mapping
	Using accumulators
	Accumulator types
	Accumulator actions
	Adding an accumulator to a map

	Using literals
	Using literals for Send mapping
	Segment creation for Send mapping
	Using literals for Receive mapping
	Format of literal data
	Accumulator literals
	Conditional processing of literals
	Literal keywords

	Named variables
	Expressions
	Boolean operators
	Comparison operators
	Arithmetic operators
	Unary operator
	Special operators
	Date conversion special operators
	Order of precedence

	Special variables
	Mapping techniques for literal keywords
	Examples of using literal keywords and named variables
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5a
	Example 5b
	Example 6
	Notes® on examples 5 and 6
	Example 7
	Example 8
	Example 9
	Example 10

	Control data literals
	Using service segment fields
	Mapping service segment fields (send only)
	Mapping specific service segment fields (receive only)
	Mapping generic service segment fields (receive only)

	Validation during mapping

	Appendix A. Mapping Binary Data
	The BIN segment ID
	Length of the BIN segment
	Data Transformation for Binary Data
	Mapping a BIN segment
	The BIN and BDS segments

	The EFI segment
	Send processing for the binary segment
	Mapping data from a file to a binary segment
	Format specifications
	Examples
	Sending PC executable files
	Sending variable length files to PCs
	Sending a file to a system with a limit

	Mapping an application field to a binary segment

	Receive processing for the binary segment
	Mapping data from a binary segment to a file
	Mapping data from a binary segment to an application field

	Appendix B. Hierarchical loops
	Specifying HL levels
	The HL segment
	Preparing hierarchical loops
	Data Transformation Mapping for HL Loops
	Creating a Data Transformation Map
	Defining HL loop levels
	Qualifying HL loop levels in an EDI source message
	Qualifying HL loop levels in an EDI target message
	Handling special HL mapping for Data Transformation maps
	Source based HL mapping
	Target based HL mapping
	Creating a special HL qualification
	Creating a default qualification
	Adding levels to an HL qualification
	Comparing HLLevel and Qualify by value
	Example of no qualification under HLLEVEL
	Using CloseOccurence with no qualification

	Mapping the HL segment in a send or Receive map
	HL segment literal keywords for Send and Receive Maps

	Appendix C. Handling international characters
	Processing and automatic detection for UNICODE
	Encoding used for incoming Application data
	Encoding used for outgoing Application data
	Encoding used for incoming EDI data
	Encoding used for outgoing EDI data
	Encoding used for incoming XML data
	Encoding used for outgoing XML data

	Import and export considerations
	MQ profile fields
	PERFORM keywords for international data
	SOURCEENCODE and ENCODETARGET
	IGNOREBOM

	Byte-order mark support
	Examples
	Scenario 1: WebSphere Data Interchange in a worldwide data center
	Example: Transforming data containing international characters

	Scenario 2: Exporting data from one database and importing it into another
	Example 1: Exporting and importing using the client
	Example 2: Exporting and importing using the server
	Example 3: Exporting using the client, importing using the server
	Example 4: Exporting using the server, importing using the client

	Scenario 3: Migrating from a previous version of WebSphere Data Interchange
	Example 1: Importing data with the client (either for release migration or individual EIF files)
	Example 2: Importing data with the server (either for release migration or individual EIF files)

	Appendix D. DTD Conversion Utility
	Converting a DTD
	DTD Conversion Utility output
	XML Dictionary File
	Resolving the XML dictionary file name
	Updating a previously converted DTD

	Processing external DTDs
	Resolving DTD file names
	Example of DTD file resolution
	Using a DTD alias file
	Inbound Translation Process (XML to Data Format)
	Receiving XML data using VAN (inbound)
	Outbound Translation Process (Data Format to XML)
	Sending XML data using VAN (outbound)

	Specifying Sender and Receiver Information
	Identifying trading partners
	PERFORM Commands and Keywords
	Encoding considerations
	Overriding the Default XML Prolog
	Mapping considerations for XML data
	EDI Standard Representation of XML Data
	Sequences
	Choices
	Special Sequences and Choices
	Mapping example
	Control String Generation

	Diagnosing Errors
	Understanding DTD parsing
	Parser messages
	Warning messages

	Utility JCL
	XML Processor Messages and Codes

	Notices
	Programming interface information
	Trademarks and service marks

	Glossary of terms and abbreviations
	Bibliography
	WebSphere Data Interchange publications
	Softcopy books
	Portable Document Format (PDF)

	WebSphere Data Interchange information available on the Internet

	Index

