IBM WebSphere InterChange Server

Access Development Guide

Version 4.2

<|ll

Note!
FBefore using this information and the product it supports, read the information in|[“Notices” on page 103,

20March2004

This edition of this document applies to IBM WebSphere InterChange Server, version 4.2.2, and to all subsequent
releases and modifications until otherwise indicated in new editions.

To send us your comments about this document, email doc-comments@us.ibm.com. We look forward to hearing
from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1999, 2004. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document . Vii
Audience . . vii
Prerequisites for thrs document . vii
How to use this manual . . Vil
Related documents . Vviii
Typographic conventions . viil
New in this release. . Xi
New in WebSphere InterChange Server version 4 2. 2 . xi

February 2004. . .xi

December 2003 .xi
New in release 4.1.1. . xi
New in release 4.1 .xi
New in release 4.0.1 . xii
New in release 4.0.0 . xii
Part 1. Getting started.1

Chapter 1. Introduction to the Server Access Interface
Call-triggered flow

The role of IBM WebSphere bus1ness 1ntegrat10n data handlers
Call-triggered flow example . e
Overview of access-client development procedure

Tools for access-client development .

E-Business development kit

Sample access client .

IBM WebSphere Server Access Interface API

IBM WebSphere data handler API .

IBM WebSphere Java connector development k1t

Chapter 2. Setting up the access-client environments
Setting up the development environment .
Installing IBM WebSphere Server Access interface
Compiling the access client .
Setting up the run-time environment .
Generating a persistent .ior file .
Locating the .ior file .
Toggling event sequencing for access requests

Chapter 3. Configuring collaborations for call-triggered flows .

Using System Manager to implement a call-triggered flow option .
Designating collaboration ports for call-triggered flows.
Associating business objects and maps

Flow direction: Into the collaboration .

Flow direction: Out of the collaboration .

Dragging a business object .

Configuring collaboration object propertles

Chapter 4. Implementing an access client.
Creating an access session
Issuing the access request.
Sending a business object.
Sending serialized data
Obtaining the access response .

© Copyright IBM Corp. 1999, 2004

O O O ™I U W W

.11
.11
.12
.12
.12
.13
. 14

. 15

.15
. 16
. 18
.19
.19
. 19
. 20

. 21

.21
.21
.21
.23
.23

iii

Closing the access session .o .24
An example of implementing a call trlggermg ﬂow . .24
Part 2. Example . . 27
Chapter 5. A sample servlet with HTML data- handlmg capabllltles . . 29
The scenario . . . 29
Running the sample on a web server . . 30
Sample HTML data handler . .31

Data-handler meta-object . . 33

Sample code for HTML data handler . 36
Sample Java code—ATP servlet. . 40
Part 3. Server Access Interface API reference . . 49
Chapter 6. IAccessEngine interface . 51
IgetInterchangeAccessSession() . . 51
IcloseSession() . 52
Chapter 7. linterchangeAccessSession interface. . 53
IcreateBusinessObject () . 53
IcreateBusinessObjectArrayy(). . 54
IcreateBusinessObjectFromy() . . 55
IcreateBusinessObjectWithVerb() . 55
IexecuteCollaboration() . 56
IexecuteCollaborationExtFmt() . . 57
IreleaseBusinessObject() . 59
IreleaseBusinessObjectArray() . 59
setLocale(String) . . 60
Chapter 8. IBusinessObject interface. . 61
Iduplicate() . 62
Iequals() . . 63
IequalsKeys() . . . 64
IgetAppSpecificInfo() . . 64
IgetAttributeCount() . 65
IgetAttributeName() . 65
IgetAttributeType() . . . 66
IgetAttributeTypeAtIndex() . . 66
IgetBooleanAttribute() . . 67
IgetBOAppSpecification() . . . 68
IgetBusmessOb]ectArrayAttrlbute() . 68
IgetBusinessObjectAttribute() . 69
IgetDateAttribute() . . . 69
IgetDefaultValue() . . 70
IgetDoubleAttribute() . . 70
IgetFloatAttribute() . .71
IgetICSVersion() . .72
IgetIntAttribute() .72
IgetLongTextAttribute() .73
IgetName() .73
IgetStrmgAttnbute() .73
IgetVerb() . . . 74
IlsAttrlbuteMultlpleCardmahty() .75
TisBlankValue() .o .75
IisIgnoreValue() . . 76
IlisKey(). . . 76
IlisRequired() . .77
Iserialize() . .77

1V Access Development Guide

IsetAttributes() . . O £
IsetAttrlbuteToBlank() 4
IsetAttributeTolgnore().7
IsetBooleanAttribute() . . . 4
IsetBusmessOb]ectArrayAttrlbute() - 0
IsetBusinessObjectAttribute() .80
IsetDateAttribute() L oL st
IsetDoubleAttribute()o
IsetFloatAttribute() L L L&
IsetintAttribute(). L .. L Lo 82
IsetLongTextAttribute() .. .8
IsetStringAttribute() .8
IsetVerb() L . Lo s
ItoExternalForm() L . L ... s
ItoString() L ..o 85

Chapter 9. IBusinessObjectArray interfface87
Iduplicate() . . . O - V4
IdeleteBusmessOb]ectAtIndex() P - 1<
IgetBusinessObjectAtIndex() .88
IgetSize() L . . L ..o .88
IremoveAllElements() 8
IsetBusinessObject(). e 8
IsetBusinessObjectAtIndex() .9

Chapter 10. Server Access Interface exceptions91
IAttributeBlankException. Lo T
IAttributeNotSetException3
ICxAccessError . . .) |
IExecuteCollaboratlonError A
IInvalidAttributeNameException92
IInvalidAttributeTypeException. .00 0092
anathusmessOb]ectTypeExceptlon K
IInvalidIndexException . . . s
IInvalidVerbException. .. .9
IMalFormedDataException .9
IValueNotSetException .. .9
IVerbNotSetException .. .9

Part4. Appendixes. L i Lt e e e s e e e e e e e e . .95

Appendix. Internationalization considerations.97
What Is a locale? . . . 74
Designing an Access client for mternatlonahzatlon Y4

Locale considerations L L L L LY
Character-Encoding.98

Index e w99

Notices e 0K

Programmmg1nterface1nformat10n. e
Trademarks and service marks .104

Contents V

Vi Access Development Guide

About this document

IBM® WebSphere® InterChange Server and its associated toolset are used with
IBM WebSphere Business Integration Adapters to provide business process
integration and connectivity among leading e-business technologies and enterprise
applications.

This document describes how to use the IBM Server Access Interface APIs to
enable a call-triggered flow capability. A call-triggered flow is one that is initiated
by an access client process, which can then create business objects and execute
collaborations.

Audience

This document is for IBM WebSphere customers, consultants, or resellers who
create or modify collaborations. Before you start, you should understand all the
concepts explained in the manual Technical Introduction to IBM WebSphere
InterChange Server.

To implement the Server Access Interface APIs, you should know standard
programming concepts and practice as well as the Java ™ programming
language. The Server Access APIs are based on the Java programming language.

Prerequisites for this document

This manual assumes that you are starting with a specification, flow chart, or
pencil design. It does not cover analysis of business processes, development of
collaborations or connectors, or design of business objects.

Note: In this document backslashes (\) are used as the convention for directory
paths. For UNIX installations, substitute backslashes with slashes (/). All file
path names are relative to the directory where the IBM CrossWorlds product
is installed on your system.

How to use this manual

The Server Access Interface Development Guide is organized as follows:

Part I: Getting Started

Chapter 1, “Introduction to the| Is an overview of the Server Access

Server Access Interface,” on page 3| Interface.

Chapter 2, “Setting up the| Tells you how to install and set up your

ccess-client environments,” on| development and run-time environment.

page 11|

Chapter 3, “Configuring] Shows you how to configure

collaborations for call-triggered| collaborations for use with access clients.

flows,” on page 15

Chapter 4, “Implementing an access| Provides an overview of how to

client,” on page 21| implement an access client to execute a
collaboration.

Part II: Tutorial

© Copyright IBM Corp. 1999, 2004 vii

Chapter 5, “A sample servlet withl Shows a servlet written in Java that uses
HTML data-handling capabilities,”| the APIs.

on page 29|

Part III: Server Access Interface API Reference

Chapter 6, “IAccessEngine] Contains syntax and code snippets that
interface,” on page 51| show how to use methods in the
IAccessEngine interface.

Chapter 7) Contains syntax and code snippets that
‘IInterchangeAccessSession| show how to use methods in the
interface,” on page 53| IInterchangeAccessSession interface.
Chapter 8, “IBusinessObject] Contains syntax and code snippets that
interface,” on page 61 show how to use methods in the

IBusinessObject interface.

Chapter 9, “IBusinessObjectArray| ~ Contains syntax and code snippets that
interface,” on page 87] show how to use methods in the
IBusinessObjectArray interface.
Chapter 10, “Server Access Interface] Describes the exceptions of the Server
exceptions,” on page 91| Access Interface API.

Related documents

The complete set of documentation available with this product describes the
features and components common to all WebSphere InterChange Server
installations, and includes reference material on specific components.

This document contains many references to two other documents: the System
Installation Guide for Windows or for UNIX and the Implementation Guide for
WebSphere InterChange Server. If you choose to print this document, you may want
to print those guides as well.

Before using this document, you should read the Technical Introduction to IBM
WebSphere InterChange Server to understand how collaborations and connectors use
business objects and maps.

You can install the documentation from the following sites:

* For InterChange Server documentation:
[http: / /www.ibm.com /websphere/integration /wicserver/infocenter|

* For collaboration documentation:
[http:/ /www.ibm.com/websphere/integration/wbicollaborations/infocenter|

¢ For WebSphere Business Integration Adapters documentation:
[http:/ /www.ibm.com /websphere/integration /wbiadapters / infocenter]

These sites contain simple directions for downloading, installing, and viewing the
documentation.

Typographic conventions

This document uses the following conventions:

courier font Indicates a literal value, such as a command name, file
name, information that you type, or information that
the system prints on the screen.

bold Indicates a new term the first time that it appears.

Viil Access Development Guide

http://www.ibm.com/websphere/integration/wicserver/infocenter
http://www.ibm.com/websphere/integration/wbicollaborations/infocenter
http://www.ibm.com/websphere/integration/wbiadapters/infocenter

italic

italic courier

boxed couri er

blue text

(]

Indicates a variable name or a cross-reference. When
you view a IBM CrossWorlds document as a PDF file,
cross references are both italic and blue. You can click
on a cross-reference to jump to the target information.
Indicates a variable name within literal text.
Separates a code fragment from the rest of the text.

Blue text, which is visible only when you view the
manual online, indicates a cross-reference hyperlink.
Click any blue text to jump to the object of the
reference.

In a syntax line, curly braces surround a set of options
from which you must choose one and only one.

In a syntax line, brackets surround an optional
parameter.

In a syntax line, ellipses indicate a repetition of the
previous parameter. For example, option[,...] means
that you can enter multiple, comma-separated options.

About this document ~ 1X

X Access Development Guide

New in this release

This chapter describes the following new features of the Server Access Interface
Development Guide for the IBM WebSphere InterChange Server development
environment.

New in WebSphere InterChange Server version 4.2.2

February 2004

This release provides additional information on the OAport configuration property,
including how to set it within the InterChange Server configuration file. For more
information, see [“Generating a persistent .ior file” on page 12

December 2003

For this release of InterChange Server, the following changes have been made to
this guide:

¢ Terminology, product names, file names, path names, and copyright information
were updated in this manual for the WebSphere InterChange Server version 4.2.2
release.

* WebSphere Server Access now uses the IBM Java Object Request Broker (ORB)
to handle communication between the access client and InterChange Server. For
more information, see [‘Generating a persistent .ior file” on page 12.|

New in release 4.1.1

Updated in March, 2003. The “CrossWorlds” name is no longer used to describe an
entire system or to modify the names of components or tools, which are otherwise
mostly the same as before. For example “CrossWorlds System Manager” is now
“System Manager,” and “CrossWorlds InterChange Server” is now “IBM
WebSphere InterChange Server.”

This product has been internationalized. For details in this guide, see the
following:

* |"Locales and encoding” on page 23|

* [“setLocale(String)” on page 60|

« |"Internationalization considerations,” on page 97

New in release 4.1

The changes made in IBM WebSphere InterChange Server version 4.1 do not affect
the content of this document. However, the following changes have been made to
the document itself:

* The introductory material in [Chapter 1, “Introduction to the Server Access|
[Interface,” on page 3/ has been updated to use more consistent terminology.

* Chapters on the interfaces of the Server Access Interface API (Chapter 6| through
ﬁ

apter 10) have been updated to provide more information and more
consistent terminology.

* A index has been prepared for the guide.

© Copyright IBM Corp. 1999, 2004 xi

New in release 4.0.1

The changes made in IBM WebSphere InterChange Server version 4.0.1 do not
affect the content of this document.

New in release 4.0.0

The IBM WebSphere InterChange Server version 4.0.0 of this guide includes the
following changes:

e The sample servlet in |Chapter 5, “A sample servlet with HTML data—handling|
[capabilities,” on page 29 has been updated to include new initialization
parameters.

 Several corrections and clarifications have been made throughout the guide.

xil Access Development Guide

Part 1. Getting started

© Copyright IBM Corp. 1999, 2004

2 Access Development Guide

Chapter 1. Introduction to the Server Access Interface

The IBM WebSphere business integration system Server Access Interface is an API
that allows an external process to request execution of a collaboration inside IBM
WebSphere InterChange Server (ICS). This external process, called an access client,
sends an access request to initiate a call-triggered flow.

This chapter provides an overview of the Server Access Interface, how it enables
business-to-business connectivity, and how to begin developing site-specific

solutions using the Server Access Interface API.

The chapter contains the following sections:

* |“Call-triggered flow” on page 3]

« ["The role of IBM WebSphere business integration data handlers” on page 4|

+ |“Call-triggered flow example” on page 5|

* [“Overview of access-client development procedure” on page 6|

+ |“Tools for access-client development” on page 7|

+ |“E-Business development kit” on page §

* [“Sample access client” on page §

+ |“IBM WebSphere Server Access Interface API” on page 9

+ |“IBM WebSphere data handler API” on page 9|

* [“IBM WebSphere Java connector development kit” on page 9

Call-triggered flow

The Server Access Interface is an API that allows an external process to request
execution of a collaboration inside IBM WebSphere InterChange Server. A
collaboration represents a business process that can involve several applications.
By using Server Access Interface, this external process, called an access client, can
obtain data from applications that ICS handles through executing a collaboration.

The Server Access Interface makes it possible for WebSphere InterChange Server to
receive requests for execution of a collaboration directly, without receiving a
triggering event from a connector. The requests that the access client sends are
called access requests. To send an access request, an access client issues a call to a
method in the Server Access Interface instead of actually sending an event.

Therefore, the flow trigger that an access client initiates is called a call-triggered
flow, instead of the event-triggered flow that a connector initiates (see Figure 1)

The call-triggered flow is handled with the economy and transparency of an
event-triggered flow. The main operational distinction is that call-triggered flows
are processed synchronously and are therefore not persistent within the WebSphere
InterChange Server system. By contrast, the event-triggered flows are processed
asynchronously and are persistent. For more on how these flows are processed in
the system, see the Technical Introduction to IBM WebSphere InterChange Server.

© Copyright IBM Corp. 1999, 2004 3

Access client InterChange Server

Server Access request _ Server
Access Access Collaboration
Interface Interface
(client side) Access response (server side)

Figure 1. Call-triggered flow

As shows, an access request that an access client initiates involves the
following steps:

1. The access client creates the triggering access data, which it sends to
WebSphere InterChange server during the access request. This data is what
triggers the specified collaboration; that is, the collaboration requires this data
to begin execution.

2. The access client calls a method of the Server Access Interface API to send a
triggering access call to the Server Access Interface within InterChange Server.
The triggering access call includes the triggering access data and the name of
the collaboration to execute. Through this method call, the access client
performs an access request, which initiates the call-triggered flow.

3. The Server Access Interface within IBM WebSphere InterChange Server receives
the triggering access call, performing any needed conversion of its triggering
access data to a system business object. For more information on this data
conversion, see [“The role of IBM WebSphere business integration datal
[handlers” on page 4

4. The Server Access Interface within InterChange Server sends the triggering
access data to the specified collaboration to trigger its execution.

5. Once the collaboration completes, it sends the resulting business object to the
Server Access Interface.

6. The Server Access Interface performs any needed conversion from the resulting
business object to the triggering access data’s original format then performs the
access response to send the access-response data back to the access client. For
more information on this data conversion, see [“The role of IBM WebSphere|
[business integration data handlers” on page 4

This section provides the following additional information about call-triggered
flow:

¢ |The role of IBM WebSphere business integration data handlers|
+ |Call-triggered flow example|

The role of IBM WebSphere business integration data handlers

An IBM WebSphere business integration data handler converts between serialized
data and an IBM WebSphere business object. These data handlers support a variety
of data formats for the serialized data. The Server Access Interface API allows the
access client to send a triggering event formatted in one of several different
formats. If the triggering access data is in XML, the Server Access Interface within
WebSphere InterChange server makes calls to the XML data handler, which parses
the triggering access data and converts it to the IBM WebSphere data format: a
business object. Optionally, the access client can pass the resulting business object

4 Access Development Guide

from a collaboration response to the Server Access Interface, which calls the
appropriate the data handler for conversion back to the incoming (in this case,
XML) format.

To invoke a data handler, the Server Access Interface must first locate a top-level
data-handler meta-object that it uses to create an instance of a data handler. The
top-level meta-object for InterChange Server is MO_Server_DataHandler and it
resides on the same machine as WebSphere InterChange server. The Server Access
Interface Development software includes the XML data handler, EDI data handler,
NameValue data handler, FixedWidth data handler, and Delimiter data handler. It
also supports development of custom data handlers. By default, the
MO_Server_DataHandler meta-object is configured so that the Server Access
Interface automatically calls the XML data handler when it receives serialized data
from an access client. If your access client uses serialized data in some format other
than XML, you need to make sure that this MO_Server_DataHandler meta-object is
modified to support the appropriate data handler. For more information, see the
Data Handler Guide.

Call-triggered flow example

The Server Access Interface supports business-to-business transactions that require
secure, reliable, external access by suppliers, vendors, or networked corporate units
to backend applications. What follows is a business-to-business example involving
two fictional firms, Firm A and Firm B.

Firm B
InterChange server

Firm A
browser

i Server
= Access Collaboration
Interface
@ [IOP Data
handlers
Servlet -
SAP
enterprise
application |
Firm B
webserver

Figure 2. Business-to-business example

In this example, Firm A wishes to order 1,000 ICs from Firm B. For authorized
suppliers such as Firm A, Firm B supports call-triggered flows to its IBM
WebSphere InterChange Server-integrated backend. The process unfolds as follows:

Chapter 1. Introduction to the Server Access Interface 5

A Firm A employee logs in to the Firm B Web site, entering an account ID and
password. The employee then places an order for 1,000 ICs. The Firm B Web
server authenticates the user as an authorized vendor.

The access client initiates a call-triggered flow at Firm B’s e-business server
(IBM WebSphere InterChange Server). Firm B’s Server Access Interface receives
and processes the API calls from the access client. The triggering access call
indicates that the data is in XML format.

Firm A’s call-triggered flow passes data to the XML data handler. This data
handler converts the serialized data into Firm B’s generic business-object
format. Business object definitions are extracted from the DTDs in the XML
data stream and from the data-handler meta-object.

Firm A’s access client executes the collaboration inside the Firm B InterChange
Server, launching an Order_Generation process. The business object uses a IBM
WebSphere collaboration that is appropriately configured—one that is bound to
a port with an access-client capability and that has a map to convey data to
and from that port.

The business object is routed to a IBM WebSphere connector for SAP, which
accesses Firm B’s SAP/R3 application and places the order. (Firm B routes the
order to its supplier sites for fulfillment). The result—order confirmation—is
generated and passed via a connector back to the access client.

Firm A’s access client sends the resulting business object to the XML data
handler. The XML data handler parses and converts the result into an XML
data stream.

The result is streamed to the Web server site, which launches a separate process
to e-mail the Firm A employee with confirmation of the transaction, including
the order number.

Overview of access-client development procedure

To develop an access client, you code the access-client source file and complete
other tasks. The task of creating an access client includes the following general
steps:

1.

Set up the development environment. Install the IBM WebSphere business
integration software including the AccessInterfaces.idl file and then use a
utility to generate either Java or C++ stubs from the AccessInterfaces.idl file.

Configure a port of a collaboration for access and execution by a call-triggered
flow. This step involves configuring external collaboration ports, which can
handle access clients.

Implement and debug the access client (such as a web servlet) that executes the
Server Access Interface API calls. Import the IdTAccessInterfaces.* classes,
and implement Java code to do the following:

* Get an access session to IBM WebSphere InterChange Server.

* Send a triggering access call to a specified collaboration, including data
handler calls

* Execute a collaboration.

Configure the top-level data handler meta-object M0_Server_DataHandler to

point to the data handler instances needed to convert data from the external

format (sent from the access client) to the IBM WebSphere business-object

format. For more information, see the IBM WebSphere Business Integration Data
Handler Guide.

provides an overview of the access-client development process and
provides a quick reference to chapters where you can find information on specific

6 Access Development Guide

Task:

topics. Note that if a team of people is available for access-client development, the
major tasks of developing an access client can be done in parallel by different
members of the development team.

Steps: Refer to:

environment

Setup development

e |Install the Server Access Interface |- Chapter 2
e Install the development software

Configure IBM
WebSphere
Collaboratons

Configure collaboration object properties
Designate collaboration ports for the call-§ Chapter 3
triggered flow

Code the
Access client

Open asessionto InterChangeserver | Chapter 4
Create atriggering access data, either as

v

abusiness object or as serialized datain
some supported format.
e Execute acollaboration

Configure the
top-level
meta-object

Set name of top-level meta-object Data handler

Add meta-object to list guide

Test and debug

e Invoke the access client
e Cadl adata handler from the access client
[]

Verify that datais converted

Figure 3. Overview of the access-client development task

Tools for access-client development

Because access clients are written Java, you can develop them on either a Windows

or UNIX system. The following table lists the tools that IBM WebSphere provides
for access-client development.

IBM WebSphere tool Description
E-Business Development Kit (EDK) Includes the following:

¢ Sample data handlers
e Stub file for extending DataHandler class

Server Access Interface API Contains Java classes to access InterChange
Server from within an access client.
Data Handler API Contains a single class, DataHandler, which

you extend to create a custom data handler.

Chapter 1. Introduction to the Server Access Interface

7

IBM WebSphere tool Description
IBM WebSphere Java Connector Includes Java classes to work with business
Development Kit (JCDK) objects.

E-Business development kit

The WebSphere Business Integration E-Business Development Kit (EDK) provides
developers with tools to develop the custom software in the following table.

Custom software Subdirectory of DevelopmentKits\edk
Connector ConnectorAgent

Data handler DataHandler

Protocol handler ProtocolHandler

Access client ServerAccessInterfaces

Utilities, including the XMLBORGEN utility ~ Utilities
(used by the XML data handler)

As the previous table shows, the tools to develop access clients are in the
ServerAccessInterfaces directory, under the DevelopmentKits\edk subdirectory of
the ProductDir directory.

Sample access client

To assist with the development of an access client, EDK includes a sample access
client in the IBM WebSphere directory:
[DevelopmentKits\edk\ServerAccessInterfaces\ AccessSample]

This directory contains:

* The sample access client, ATPServiet.java, is a servlet that provides the ability
to convert HTML data into a business object, which can then be sent to a
collaboration in InterChange Server.

¢ A custom data handler, Htm1DataHandler. java, handles conversion between
HTML data and a WebSphere Interchange Server business object.

e The SampleRepos. jar file, which contains repository definitions of the
components used by the Access sample.

* The subdirectories listed in the following table contain additional sample files.

Name Description
collaborations Contains collaborations configured for call-triggered flows.
DLMs Contains the required native maps.

Note: While this sample is useful to examine, it does not provide examples of all
the functionality supported in the Server Access Interface API.

For more information, see [Chapter 5, “A sample servlet with HTML data-handling]
lcapabilities,” on page 29

8 Access Development Guide

DevelopmentKits...dkServerAccessInterfacesAccessSample

IBM WebSphere Server Access Interface API

The IBM WebSphere Server Access Interface API provides the following interfaces:

Server Access Interface
IAccessEngine

IInterchangeAccessSession

IBusinessObject

IBusinessObjectArray

Description

Provides a method to bind
the access client to
InterChange Server
Provides methods to
control access to an access
session in InterChange
Server

Provides methods to
perform business object
operations such as getting,
setting, and comparing
attribute values

Provides methods that
allow an access client to
interact with and

For more information

Chapter 6, “IAccessEngine|

interface,” on page 51

(Chapter 7)

“IInterchange AccessSession|

interface,” on page 53|

Chapter 8, “IBusinessObject

interface,” on page 61|

Chapter 9,|

“IBusinessObjectArray|

interface,” on page 87|

manipulate business object
arrays

Note: The methods in the interfaces that the previous table lists throw the
exceptions described in|Chapter 10, “Server Access Interface exceptions,” on

IBM WebSphere data handler API

The IBM WebSphere data handler API provides a single class, called DataHandler.
The abstract DataHandler base class facilitates the development of a custom data
handler. This class contains the methods that populate a business object with
values extracted from serialized input data, and methods that serialize a business
object into a string or a stream. The class also includes utility methods that a
custom data handler can use. You derive a custom data handler from this
DataHandler class. For information on the methods in the DataHandler class, see
the Data Handler Guide.

Note: You only need to consider developing a custom data handler if your access
client formats its serialized data in some format other that one supported by
existing IBM WebSphere Business Integration Server data handlers. For a list
of these data handlers, see [“The role of IBM WebSphere business integration|
[data handlers” on page 4|

IBM WebSphere Java connector development kit

If you develop a custom data handler, you must use methods of some of the
classes in the IBM WebSphere Java Connector Development Kit (JCDK) to work
with business objects. As you develop your data handler, you might need to
import additional JCDK classes, such as CxCommon.CxObjectContainerInterface or
CxCommon.Cx0ObjectAttr. For reference information on the JCDK methods, see the
Connector Reference: Java Class Library.

Chapter 1. Introduction to the Server Access Interface 9

10 Access Development Guide

Chapter 2. Setting up the access-client environments

This chapter shows you how to set up your environment to develop and run
access clients. The chapter contains the following sections:

* [“Setting up the development environment” on page 11

* |“Setting up the run-time environment” on page 1

Setting up the development environment

The development environment for you access client requires that you have access
to the Server Access Interface API stubs, which are part of the software that IBM
WebSphere installer installs. Therefore, to include calls to the Server Access
Interface API in your access client, you must have access to the following software:

¢ A IBM Java ORB development environment (version 4.5 or later; consult your
IBM WebSphere Business Integration System Installation Guide for the current
release)

* A Java development environment and JDK 1.3.1
* The current release of IBM WebSphere software
* InterChange Server that is booted and running

* An IBM WebSphere repository with collaborations that have been configured for
call-triggered flow (For more information on how to perform this configuration,
see [Chapter 3, “Configuring collaborations for call-triggered flows,” on page 15)

Once you have access to the software listed above, setting up the development
environment for an access client involves the following steps:

+ |“Installing IBM WebSphere Server Access interface”}—Install the Server Access
Interface on the development machine.

« [“Compiling the access client” on page 12l—Create an executable for the access
client.

Installing IBM WebSphere Server Access interface

To be able to develop an access client, you must install the Server Access Interface
on the development machine. IBM WebSphere Installer installs the files associated
with the IBM WebSphere Server Access Interface. It installs the directories and files

shown in [Table 1]

Table 1. Installed file structure for the IBM WebSphere Server Access Interface

Directory Description

DevelopmentKits\edk\ Contains the AccessInterfaces.idl file for
ServerAccessInterfaces access clients.

DevelopmentKits\edk\ Contains source code for the sample access
ServerAccessInterfaces\ AccessSample client.

repository\edk Contains file for MO_Server_DataHandler

meta-object that defines which data handlers the
Server Access Interface supports.

IBM WebSphere Installer installs the files in automatically when it installs
the IBM WebSphere software. To ensure that the Server Access Interface API is
installed, make sure that the Server and Tools component is selected on the Select

© Copyright IBM Corp. 1999, 2004 11

Components screen of IBM WebSphere installer. When the installer installs this
component, it automatically installs the directories and files listed in
For information on IBM WebSphere Installer, see the IBM WebSphere
System Installation Guide for UNIX or for Windows.

Note: IBM WebSphere installer also installs files needed by the IBM
WebSphere-delivered data handlers. For more information, see the
installation chapter in the IBM WebSphere Data Handler Guide.

Compiling the access client

When you are ready to compile your access client, you must make sure that the
paths to the following files are on your classpath:

¢ The IBM WebSphere crossworlds.jar file
* The IBM Java Object Request Broker (ORB) jar files

You can use the javac compiler or any Integrated Development Environment
(IDE).

Setting up the run-time environment

At run time, the access client does not need to reside on a machine that contains
IBM WebSphere InterChange Server, nor does it need to reside on the same
machine as the development environment. However, for the access client to be able
to locate the InterChange Server instance it needs at run time, it must be able to
locate the Object Request Broker (ORB) server, which keeps track of the locations
of different CORBA objects (including InterChange Server instances) and
communicates this information to ORB clients (such as an access client). To obtain
the location of the ORB server, the access client can use the Interoperable Object
Reference File that its ICS instance generates. When ICS starts or reboots, it
generates an Interoperable Object Reference file, which has the .ior extension. The
access client can use this file to locate the ORB server, and, in turn, to
communicate with its ICS instance.

Therefore, for the access client to locate its ICS instance, you must take the
following steps:

1. Request that InterChange Server generate a persistent .1ior file.

2. Ensure that the machine on which the access client resides is able to locate the
.ior file for its InterChange Server instance.

Each of these steps is described in more detail in the following sections.

Generating a persistent .ior file

When InterChange Server version 3.1.0 or later is booted up, it generates a new
.ior file. However, InterChange Server dynamically assigns a port number for the
ORB server. If the port number changes each time the server boots, the access
client cannot depend on the .ior file to locate the ORB Server. Therefore, an access
client needs InterChange Server to generate a persistent .ior file.

To have InterChange Server generate a persistent .1ior file, you must edit the ICS
configuration file (InterchangeSystem.cfg) in an XML editor and add a subsection
for CORBA, if one does not already exist. [Figure 4 on page 13|shows the XML code

12 Access Development Guide

that defines an empty CORBA subsection (one with #no configuration parameter
defined).

<tns:property>

<tns:name>CORBA</tns:name>

<tns:isEncrypted>false</tns:isEncrypted>

<tns:updateMethod>system restart</tns:updateMethod>

<tns:Tocation>
<tns:reposController>false</tns:reposController>
<tns:reposAgent>false</tns:reposAgent>
<tns:localConfig>true</tns:localConfig>

</tns:location>

XML definitions of CORBA properties go here
</tns:property>

Figure 4. XML definition of CORBA subsection

The CORBA subsection specifies the static port number with the 0OAport
configuration parameter, which has the following syntax:

OAport=portNumber

For example, if the static port number is to be 15000, assign a value of 15000 to its
OAport parameter in the CORBA subsection. The following XML fragment would
appear within the <tns:property> tag for the CORBA subsection, in the place
indicated in with the string "XML definitions of CORBA properties go here":
<tns:property>
<tns:name>0Aport</tns:name>
<tns:value xml:space="preserve">15000</tns:value>
<tns:isEncrypted>false</tns:isEncrypted>
<tns:updateMethod>system restart</tns:updateMethod>
<tns:location>
<tns:reposController>false</tns:reposController>
<tns:reposAgent>false</tns:reposAgent>
<tns:localConfig>true</tns:localConfig>
</tns:location>
</tns:property>

Important: The ICS configuration file is an XML file. To add the CORBA
subsection and its configuration parameter, you must use an XML
editor or must correctly format the appropriate XML tags.

For more information on the CORBA subsection in the configuration file, see the
IBM WebSphere System Installation Guide for UNIX or for Windows.

Locating the .ior file

For the access client to locate the ORB server at run time, it must be able to locate
the .ior file for its InterChange Server instance. Locating this file is not a problem
if the access client and InterChange Server are on the same machine. However, if
these two components are not on the same machine, you must take one of the
following actions to ensure that the access-client machine can access the .ior file:

* Copy the .ior file that InterChange Server has generated to the machine on
which the access client resides.

* Create a shared directory on the machine with InterChange Server and point the
access-client machine to the directory.

Chapter 2. Setting up the access-client environments 13

Toggling event sequencing for access requests

When synchronous requests are sent to the collaboration using the access
framework, the sequence of requests may not be important, especially when tuning
for performance. By default, event sequencing is turned on at the collaboration
level for synchronous access requests. To turn event sequencing off for
synchronous access requests, edit the InterchangeSystem.cfg file and add the
following lines:

[ACCESS]
EVENT_SEQUENCING=FALSE

14 Access Development Guide

Chapter 3. Configuring collaborations for call-triggered flows

This chapter shows you how to configure collaborations for call-triggered flows.
You must configure the collaborations before executing them from an access client.
Topics in this chapter include:

* [“Using System Manager to implement a call-triggered flow option”|

* [“Designating collaboration ports for call-triggered flows” on page 16|

« [“Associating business objects and maps” on page 18|

* |“Flow direction: Into the collaboration” on page 19

« |“Flow direction: Out of the collaboration” on page 19

* [“Dragging a business object” on page 19

. "’Configuring collaboration object properties” on page 20|

[“IBM WebSphere Java connector development kit” on page 9

Important: To configure a collaboration for call-triggered flow, you must have
installed all IBM WebSphere software and have InterChange Server up
and running.

Using System Manager to implement a call-triggered flow option

You use System Manager to configure a collaboration for a call-triggered flow. To
implement a call-triggered flow option for a collaboration, you must first create a
new collaboration object from one of the existing collaboration templates in the
repository. To create the new collaboration object, follow these steps:

1. In System Manager, right-click on the Collaboration Objects folder and choose
New Collaboration Object.

The Create New Collaboration Object dialog box opens, listing the installed
templates in the Template Name column.

2. Click the name of a collaboration template from which you want to configure a
collaboration object to support a call-triggered flow.

3. Enter a name for the collaboration object in the Collaboration object name field.
Click Next.

The Bind Collaboration Ports dialog box opens.

Once the collaboration object exists, you can configure it for call-triggered flow
with the steps listed in

Table 2. Configuring a collaboration port for a call-triggered flow

Configuration step For more information

Designate collaboration ports for call-triggered “Designating collaboration ports forf

flows and bind the port to the collaboration. call-triggered flows” on page 16|

Select maps that associate the business object flow |“Associating business objects and]

with the collaboration. maps” on page 18|

Set properties for the new collaboration object. “Configuring collaboration object|
properties” on page 20|

Note: A collaboration can have multiple call-triggered flow ports configured.

© Copyright IBM Corp. 1999, 2004 15

[Table 2 on page 15| provides a summary of how to configure a collaboration for a
call-triggered flow. For more on collaboration configuration and System Manager,
see the System Implementation Guide and the Collaboration Development Guide.

Designating collaboration ports for call-triggered flows

For each collaboration you wish to configure for a call-triggered flow, you must
perform the port configuration on the collaboration object.

To configure a collaboration port for a call-triggered flow:

1. Make sure that the Collaboration Object View window for your collaboration
object displays in the Server Monitor area of the System Manager.

If this window is not currently displaying, navigate to the Collaboration Objects
folder in the System Manager object browser, and double-click the collaboration
object that you want to configure.

2. Right-click the port you want to configure for call-triggered flow and choose
Bind Port.

The Configure Port dialog box opens (see [Figure 5). Its default setting for type
of port is Internal.

16 Access Development Guide

.y Configure Port TestCollab.fronm

=10l x|

ginlgl=

SreConnectar
DestCannector

Business Object Definition; TestP arentBOMultChild

Type
* |ntemal

i External

B irdhw/ith

* Connectar

" Collaboration

5

Ok

Cancel

Figure 5. Configure port (internal) dialog box

3. Click External in the Type area.

This displays the Configure Port (External) dialog box as shown In the
Configure as area, the dialog box displays the type of port you have chosen to
configure: Incoming or Outgoing.

Chapter 3. Configuring collaborations for call-triggered flows 17

. § Configure Port TestCollab.fro =10 x|
Souwce BO | Iricomming b aps | Drestination BO | Type
Souwce EO | Outgoing Maps | Crestination BO | Tvpe
Buginezs: Object Defirition: TeztParentB O ultChild
— Type Configure Az
i Internal * |ncorming
* External " Dutgoing
0K Cancel

Figure 6. Configure port (external) dialog box

Associating business objects and maps

You must associate a map and a business object with the collaboration that you
have configured for call-triggered flow. You do this in one of three ways:

* By clicking and dragging a business object from the Business Object folder in the
Designer Directory at the left of the Object View area to the
Destination pocket in the Configure Port dialog box. When the business object is
dropped into this pocket, all the maps that go from the source to destination are
displayed in a pop-up window. You select the appropriate map.

or

* If you know the map you wish to associate with the collaboration, you can click
and drag a map to the Incoming Maps or Outgoing Maps pocket in the
Configure Port dialog box.

or

18 Access Development Guide

* If you don’t want to associate any maps to this collaboration when executed by
an external entity, leave the incoming and outgoing business objects columns

empty.

A e A L] d clddw Lo deog AL R,
<0 LAY
o T |

LA e |

ar bdaraner lielrareard o

b

o D e = i
L

| LR

el ke A wn =l
| Ak arilie Tl g
I L3 whever v s - by }
[3 JEwveroTiz D
! i BT TR L B P TR IO T I T
—*-‘i T TERT I ERT R A H
L 1 TSR T g [ramn T
I--‘ FI-TIRT, I O
r-g o' HY
I vk ar tode
| E awbeor Dnowenead Ae
i R T TR NEUY _I .
I [¥ aewr o Tole= * =
! M rwraTzboopo.. -2
L e YOO T

Click and Drag
a Business Object
to the Destination pocket

(LIS . or .. Famin 1

Figure 7. Mapping a business object to a call-triggered flow collaboration

Note: See the System Implementation Guide and the Collaboration Development Guide
for more on collaborations, business objects, and maps.

Flow direction: Into the collaboration

Dragging a business object—The business object is used as the destination type
for the collaboration. Select an appropriate map from the pop-up window. The
destination will always be the business object definition that is shown in the
Configure Port window.

Dragging a Map—The map is used when the call is made to the collaboration.
Select a map that supports the destination business object.

Flow direction: Out of the collaboration

Dragging a business object—The business object options are used when the
collaboration is returning the result.

Dragging a map—The map is used when the collaboration returns data or
attributes to the requesting process.

Dragging a business object

To bind a business object type and map to a collaboration by dragging a business
object:
1. Double-click the Business Object folder in the Designer Directory.

This displays a list of business objects.

2. Click, drag, and drop the business object into the Destination pocket in the
Configure Port dialog box. Choose Incoming or Outgoing Maps, depending on
the port you are configuring.

Chapter 3. Configuring collaborations for call-triggered flows 19

This displays the map and business object in the Configure Port dialog box.

3. Choose a map from those displayed with the business object (there may be
only one map displayed). Click OK.

Configuring collaboration object properties

For each collaboration you wish to configure for a call-triggered flow, set its
number of concurrent events to zero (0). To configure the properties of a
collaboration for a call-triggered flow:

1. Make sure that the Collaboration Object View window for your collaboration
object displays in the Server Monitor area of the System Manager.
If this window is not currently displaying, navigate to the Collaboration Objects
folder in the System Manager object browser, and double-click the collaboration
object that you want to configure.

2. Right-click the collaboration’s icon (the center icon) and choose Properties.
The Collaboration Properties dialog box opens.

3. Configure the properties of the collaboration object as desired.

Important: Make sure that the property Maximum number of concurrent events
is set to a value of 0. Call-triggered flows are by default
multi-threaded, so setting this property to 0 ensures that no
additional threads are spawned by InterChange Server to provide
the multi-threading capability. Consult the WebSphere InterChange
Server System Administration Guide for further details about this
property.

4. Click OK to close the Collaboration Properties dialog box.

20 Access Development Guide

Chapter 4. Implementing an access client

This chapter provides an overview of how to implement an access client, which
can request execution of a collaboration with InterChange Server through the
Server Access Interface APL Topics in this chapter include:

* [“Creating an access session”

* |“Issuing the access request”

* |“Sending a business object”]

+ [“Creating the business object” on page 22|

« |“Operating on the business object” on page 22|

* [“Requesting execution of the collaboration” on page 22|

. "’Sending serialized data” on page 23|

« |“Locales and encoding” on page 23|

[“Obtaining the access response” on page 23

[“Closing the access session” on page 24|

* [“An example of implementing a call-triggering flow” on page 24|

Creating an access session

Before an access client can issue an access request, it must first establish an access
session with InterChange Server. To allow the access client to connect to
InterChange Server, the IAccessEngine interface provides the
[getInterchangeAccessSession()| method. This method creates the access session,
which provides the access client with access to the Server Access Interface within
InterChange Server (ICS). You must provide a valid ICS user name and password
to the IgetInterchangeAccessSession() method as arguments.

Important: The ICS user name must be admin.

For a more detailed explanation of the IAccessEngine interface, see|[Chapter 6
[‘TAccessEngine interface,” on page 51|

Issuing the access request

Once the access client has created an access session, it can send an access request
to ICS. The access request is what initiates the call-triggered flow within ICS.
Before it can send its triggering access call, the access client must generate the
triggering access data that is sent to the collaboration. The Server Access Interface
provides the following ways for an access client to issue an access request, based
on the format of the triggering access data:

+ |“Sending a business object”]

+ [“Sending serialized data” on page 23|

Sending a business object

The access client can send its triggering access data encapsulated in an IBM
WebSphere InterChange Server business object. The IInterchangeAccessSession

interface provides methods for creating business objects and executing
collaborations. For a more detailed explanation of this interface, see|[Chapter 7

[“IInterchangeAccessSession interface,” on page 53

© Copyright IBM Corp. 1999, 2004 21

Sending a business object as triggering access data involves the following steps:

* |“Creating the business object”

« |"Operating on the business object”|

* |"Requesting execution of the collaboration”]

Creating the business object
shows the methods that the Server Access Interface API provides in the
IInterchangeAccessSession interface for the access client to create a business

object.

Table 3. linterchangeAccessSession methods for creating a business object
Creating the business object IInterchangeAccessSession method
Create a business object IcreateBusinessObject()

Create a business object with a verb that [createBusinessObjectWithVerb()|
specifies an operation on the object

attributes.

Create a business object array that [lcreateBusinessObijectArray()f
contains one or more attributes, each

attribute having a business object as its

type.

Create a business object from data that is [lcreateBusinessObijectFrom()|
formatted in a specified MIME type.

Operating on the business object

Once the access client has created the business object, it can use the interfaces in
to perform any operations required to put the triggering access data into
this object.

Table 4. Interfaces to access a business object

Type of business
object Server Access Interface API For more information

Business object (single IBusinessObject Allows the access Chapter 8, “IBusinessObiject|
cardinality) client to perform business object interface,” on page 61
operations such as getting, setting,
and comparing attribute values.
Business object array ~ IBusinessObjectArray Allows the Chapter 9]
access client to interact with and “IBusinessObijectArray]
manipulate business object arrays. interface,” on page 87|
The methods include setting or
getting business object array
elements, copying an array, adding a
business object to an array, or
fetching the number of elements in
an business object array.

Requesting execution of the collaboration
The IInterchangeAccessSession interface provides the [lexecuteCollaboration()|
method for sending a business object as the triggering access data in the triggering
access call. This method tells the Server Access Interface within ICS to send the
business object as the triggering access data to the specified collaboration.

Note: The collaboration, port, and business object must be configured and mapped
for direct call access and manipulation.

22 Access Development Guide

Sending serialized data

The access client can send its triggering access data as serialized data in a specified
MIME type. The Server Access Interface within the WebSphere InterChange Server
(ICS) performs the data conversion necessary from the serialized data to an IBM
WebSphere business object. Sending a serialized data involves a call to a single
method of Server Access Interface API, [lexecuteCollaborationExtFmt()l This method
provides the following tasks for the access client:

* Specify a data handler (based on the MIME type of the serialized data) to
convert the serialized data to a business object.

* Create the business object that triggers the collaboration.
¢ Set the verb to a specified value.

e Execute the collaboration.

Locales and encoding

By default, the access session uses the Locale value of the ICS. However, you may
wish to change the Locale value to match the Locale value of a business object or
collaboration that you are creating or executing through the access session.

Input data sent to the Server Access Interface must use Unicode encoding.
For an overview of Locales, see Appendix A, Internationalization Considerations.

For a description of the method for setting Locale values, see setLocale(String) in
(Chapter 7, “IInterchangeAccessSession interface,” on page 53.]

Obtaining the access response

A collaboration returns an access response to the access client through the return
value of one of the methods in The format of this access request depends
on the method that the access client used to send the access request.

Table 5. Methods for obtaining the access response

Access request Server Access Interface method Format of access response
Sends triggering access [lexecuteCollaboration()| Business object

data as a business

object

Sends triggering access [lexecuteCollaborationExtFmt() Serialized data

data as serialized data (in the same MIME format
in a specified MIME as the access request)

type

Note: If your access response is in the form of an IBM WebSphere InterChange
Server business object, you can use the methods of the interfaces listed in
[Table 4 on page 22|to operate on this business object.

Chapter 4. Implementing an access client 23

Closing the access session

When the access client have completed its access request, it should take the steps
in

Table 6. Closing the access session

Task Server Access Interface method
Release resources that the Server Access IInterchangeAccessSession methods:
Interface within ICS is using for business [releaseBusinessObject())

objects and business object arrays IreleaseBusinessObjectArray()|

Close the access session IAccessEngine method: |!closeSession(]

Note: A call to IcloseSession() releases the resources that the access session is
using.

An example of implementing a call-triggering flow

shows a more detailed of a call-triggered flow, initiated, in this case, by an
access client that is a client browser.

Client
Browser

InterChange Server

(5

- Server
Access
Interface

ONI©)
iop| @ !

@ Data

Handlers

Collaboration

A

Servlet [

Enterprise
Application @

Enterprise
Application

A

Web Server

Enterprise
Application

Figure 8. Sample call-triggered flow initiated by a client browser

As shown in

1. The client browser issues a request in a specific protocol and format (for
example, an HTTP protocol and an XML data format).

2. The enterprise Web server loads a servlet to handle the request. This servlet is
the access client. It is programmed to look for the name of the
CORBA-compliant Interchange Server (from the CORBA registry).

24 Access Development Guide

8.

The access client, via an IIOP connection, logs in to InterChange Server by
creating an access session with the IgetInterchangeAccessSession() method of
the IAccessEngine interface of the Server Access Interface APIL

Note: To execute the collaboration, InterChange Server does not create any
threads of its own, but uses the CORBA thread. See the Collaboration
Development Guide for details on how collaborations use threads.

The access client uses the IcreateBusinessObjectFrom() method in the
IInterchangeAccessSession interface to transform the XML data into a generic
IBM WebSphere InterChange Server business object. In response to this method
call, the Server Access Interface within ICS invokes the XML data handler to
perform the data transformation and then returns the business object to the
access client.

The access client uses the IexecuteCollaboration() method in the
IInterchangeAccessSession interface to send the triggering access call, which
contains the business object as the triggering access data. This process requests
the execution of a collaboration that manipulates the business object.

Note: The Server Access Interface API also provides the
IexecuteCollaborationExtFmt () method, which combines step@ and
step E|into a single method call.

Traversing connectors, the collaboration places requests, sorts, and fetches data,
manipulating enterprise applications as required. The collaboration returns
requested data, or results of requested actions, to the access client in
business-object format.

If the access client has used the IexecuteCollaborationExtFmt() method to
issue the access request, it does not need to explicitly perform the actions in
step El The IexecuteCollaborationExtFmt() method automatically transforms
the business object back to its original format (in this case, the XML format)
and returns this serialized data to the access client.

The results are delivered to the client browser.

As shown in the Web server handling the call loads a servlet to handle
the call, which connects to WebSphere InterChange Server.

Chapter 4. Implementing an access client 25

26 Access Development Guide

Part 2. Example

© Copyright IBM Corp. 1999, 2004

27

28 Access Development Guide

Chapter 5. A sample servlet with HTML data-handling
capabilities

This chapter presents a typical e-commerce scenario and sample code that uses the
Server Access Interface APIs. Topics covered in this chapter include:

* [“The scenario”l

* [“Running the sample on a web server” on page 30|
» |“Sample HTML data handler” on page 31|

* [“Data-handler meta-object” on page 33|

» |“Sample code for HTML data handler” on page 36|
* |“Sample Java code—ATP servlet” on page 40

The scenario

A common problem encountered in e-commerce environments is that of item
availability and the prospect of assured delivery by a requested date. This class of
problems is commonly known as available to promise, or ATP.

An enterprise that uses a supply chain optimization system or enterprise resource
planning (ERP) system will generally query their system to determine whether a
product can be delivered by the requested delivery date. Some firms, particularly
those with online trading relationships with several vendors, may wish to
determine product availability before committing to order the products.

An ATP capability means effectively accessing a firm’s ERP or supply chain
optimization system. In the following example, the Server Access Interface APIs are
utilized to perform the following tasks:

* Data conversion - Convert an incoming quote object from its HTML format to
an IBM WebSphere business object.

* Collaboration execution - Trigger a collaboration that retrieves the ATP data for
each item encountered in the incoming quote object.

¢ Results retrieval - Return results as an HTML table.

depicts a single available to promise collaboration.

© Copyright IBM Corp. 1999, 2004 29

Firm B

WebSphere InterChange Server

Client
Browser

= Server -~
»! Access ATP access
Interface i @ collaboration

A

@

Y

Firm B
Web server 1oP Data
handlers
Servlet <

SAP
enterprise
application

A

Figure 9. An available-to-promise e-commerce scenario

1.

The browser client sends an HTML form that contains the data corresponding
to an IncomingQuote object. The IncomingQuote object is HTML formatted
data supplied by a third-party application.

The servlet (see example code below) uses the Server Access Interface APIs to
convert the HTML to a generic SalesQuote object and then send it to the
collaboration.

The ATP Access Collaboration then retrieves the available-to-promise date from
the SAP connector.

The collaboration returns this information to the servlet.

The servlet constructs an HTML table containing an ATP date for each
requested item and displays this table on the client browser.

Running the sample on a web server

You can load and run the sample Server Access Interface code samples. This
section shows you how.

1. Install Server Access Development software and go to

DevelopmentKits\edk\ServerAccessInterfaces\AccessSample to locate the
following:

e The two java code samples:
HtmlDataHandler.java
ATPServlet.java
e The HTML Sales Quote Inquiry form: Example2.html
¢ The sample repository: SampleRepos.jar
* The collaborations subdirectory contains the collaborations and classes.
e The DLMs directory contains the native map classes.

. Load the SampleRepos.in with the repos_copy utility. For help with loading

files into the repository, see the System Administration Guide.

30 Access Development Guide

10.

11.
12.

13.
14.

15.
16.

17.

Compile the servlet file ATPServiet.java.

Deploy the compiled servlet into your web server. Set the initialization
parameter values appropriately for your configuration. Refer to your web
server documentation for details about deployment and initialization of
servlets.

If you have a Solaris or HP-UX operating system, add the ibmorb.jar, located
in <ProductDirectory>jre\lib\ext (IBM Java ORB class files) to the classpath
of the client and the web server. Restart the web server if needed. For details,
consult your web server documentation.

Make Example2.html available to your web server.

Copy the AccessSample\collaborations directory to
ProductDir\collaborations.

Copy the AccessSample\DLMs directory to ProductDir\DLMs.
Compile HtmlDataHandTer. java.

Create a .jar file and save it as Htm1DataHandler. jar, maintaining the output
directory structure.

Copy the HtmlDataHandler.jar file to ProductDir\1ib.

Modify the start_server batch file, adding
ProductDir\1ib\HtmlDataHandler.jar to the class path.

Restart InterChange Server.

Make the Interoperable Object Reference (.ior) file available to your web
server.

For more information, see [‘Setting up the run-time environment” on page 12|

Launch a browser, and open the example2.html page (see .

Start the test connector, and open and add the “SampleSapConnector” profile.
Press the Connect button to bring the connector up.

Enter data in at least one row of fields (see[“Sample HTML data handler”| for
more on the sample HTML page) and perform a sample Retrieve operation.

The following sections describe the data handler and servlet used in this example:

* [“Sample HTML data handler”

+ |“Sample Java code—ATP servlet” on page 40|

Sample HTML data handler

In the sample, the HTML data handler converts the incoming HTML query string
into an IBM WebSphere InterChange Server business object. For more on the IBM
WebSphere data handler capability, see the IBM WebSphere Business Integration Data
Handler Guide. These are among the noteworthy features of the data handler
component:

* The datahandler base class - The sample HTML data handler extends the IBM
WebSphere InterChange Server supplied DataHandler base class and is

automatically loaded at run time when an access request is encountered for a

MIME type of “text/htm1”.

Metadata-based configuration - Metadata tells the system where to find the
data handler and how to call it. Accordingly, multiple data handlers can execute

concurrently in a single InterChange Server.

Generic transformation - The HTML data handler is generic in nature and can

be re-used without modification to transform any type of HTML query string.

Chapter 5. A sample servlet with HTML data-handling capabilities 31

shows the HTML page as it might appear on a client browser. The
HTML data handler relies on the properties associated with text boxes on the page.

ZJ C:ATEMPAEample2_html - Micrasoft Interet Explorer

Fle Edt View Favoites Tools Help |
S < I s = e . R s R e B
Eack Fongard Stop Refiesh Home Search Favoites History bdail Frint Edit Discuss
| Address [CATEMPAEsample2. bl =] @B |Liks»
B
Sales Quote Inquiry
Customerld
ItemlId OrderQty Requested Delivery Date|
Itemld OrderQty Requested Delivery Date|
TtemlId OrderQty Requested Delivery Date|
Fetrieve
|
&] Done [[[My Computer

#histan|) Exploring 7D | [EAdobe FrameMa..| [inbox - Micrasolt..| 275 Hilaak Captue | B Meta Handier ab.| 54 Source fomfor .. |[E1CATEMPYER . [P @ a00pM

Figure 10. The HTML sales quote inquiry page

In each text box has an HTML property associated with it. The HTML
text box property contains IBM WebSphere InterChange Server business object
grammar. This grammar enables the HTML data handler to convert the data
associated with the property into a business object.

For example, the properties associated with the first item are the following;:
e Itemld - Orderltems[0].ItemID

* OrderQty - Orderltems[0].orderQty

* Requested delivery date - Orderltems[0].deliveryDate

As shown in the data handler converts the data on the HTML page to a

hierarchical SalesQuote business object with child (orderQty, deliveryDate, and so
on) business objects.

32 Access Development Guide

SalesQuote

CW_Item
itemID = nn
orderQty = nn

deliveryDate = nn/nn/nn

Figure 11. Hierarchical parent-child business objects

Data-handler meta-object

IBM WebSphere business integration software delivers two top-level data-handler
meta-objects, one for the server and one for connectors. In addition, there is a child
meta-object for each data handler, several of which are delivered with IBM
WebSphere business integration software. When you configure your environment,
you can:

Modify the top-level server meta-object attribute name.

The top-level data-handler meta-object used with data handlers called in the
context of the Server Access Interface is MO_Server_DataHandler.

Modify the default values of the child meta-object to reflect the data handler
instance you need to create.

You define an attribute in the top-level meta-object for the MIME type and any
subtype (BOPrefix) you want to support. This attribute represents a child
meta-object, which has attributes to provide the class name and configuration
properties required by the data handler to do its work.

[Figure 12 on page 34 shows the text format of two meta-objects:

The top-level data-handler meta-object, MO_Server_DataHandTer.

Note that this meta-object contains an attribute named for the MIME supported
by the HTML data handler (text.html). This attribute represents the child
data-handler meta-object for the HTML data handler,
MO_DataHandler_DefaultHtmlConfig.

The child data-handler meta-object for the HTML data handler,
MO_DataHandler_DefaultHtmlConfig.

The child meta-object declares a ClassName attribute, whose DefaultValue
attribute property lists the name of the data handler class
(com.crossworlds.DataHandlers.Html.Htm1DataHandTer) to use to invoke for the
HTML data handler.

Chapter 5. A sample servlet with HTML data-handling capabilities 33

[BusinessObjectDefinition]
Name = MO_Server_DataHandler
Version = 1.0.0

[Attribute]

Name = text.html

Type = MO_DataHandler_DefaultHtmlConfig
ContainedObjectVersion = 1.0.0
Relationship = Containment

Cardinality = 1
MaxLength =1

IsKey = true
IsForeignkKey = false
IsRequired = false
IsRequiredServerBound
[End]

[Attribute]

Name = ObjectEventId
Type = String
MaxLength = 255

IsKey = false
IsForeignkKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

false

[Verb]
Name = Create
[End]

[Verb]
Name = Delete
[End]

[Verb]
Name = Retrieve
[End]

[Verb]
Name = Update

[End]
[End]

Figure 12. Text Format of HTML meta-objects (Part 1 of 2)

34 Access Development Guide

<?xml version="1.0" encoding="utf-8" standalone="no"?>

<xsd:schema elementFormDefault="qualified"
targetNamespace="http://www.ibm.com/websphere"
xmIns:bx="http://www.ibm.com/websphere"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:annotation><xsd:documentation>

Tue Mar 11 14:25:46 PST 2003
</xsd:documentation>
</xsd:annotation>

<xsd:element name="TestChildB0">d

<xsd:annotation>

<xsd:appinfo>

<bx:boDefinition version="3.0.0" />

</xsd:appinfo>

</xsd:annotation>

<xsd:complexType><xsd:sequence>

<xsd:element name="FirstName" minOccurs="0">
<xsd:annotation>

<xsd:appinfo>

<bx:boAttribute>

<bx:attributeInfo isForeignKey="false" isKey="false" />
</bx:boAttribute>

</xsd:appinfo>

</xsd:annotation>

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="255" />

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="LastName" minOccurs="1">
<xsd:annotation>

<xsd:appinfo><bx:boAttribute>

<bx:attributeInfo isForeignKey="false" isKey="true" />
</bx:boAttribute>

|</xsd:appinfo>

</xsd:annotation>

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="255" />

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="ObjectEventId" type="xsd:string" minOccurs="0" />
</xsd:sequence>

<xsd:attribute name="version" type="xsd:token" default="0.0.0" />
<xsd:attribute name="delta" type="xsd:boolean" default="false" />
<xsd:attribute name="verb" use="required"><xsd:simpleType>
<xsd:restriction base="xsd:NMTOKEN">

<xsd:enumeration value="Create" />

<xsd:enumeration value="Delete" />

<xsd:enumeration value="Retrieve" />

<xsd:enumeration value="Update" />

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Figure 12. Text Format of HTML meta-objects (Part 2 of 2)

Chapter 5. A sample servlet with HTML data-handling capabilities

35

~
>(->(->(->(->(->(->(->(—i

*

*/

Sample code for HTML data handler
Here is the HTML data handler Java code sample.

@(#) HtmlDataHandler.java

Copyright (c) 1997-2000 CrossWorlds Software, Inc.
A1l rights reserved.

This software is the confidential and proprietary information of IBM, Inc.

You shall not disclose such Confidential information and shall

use it only in accordance with the terms of the license agreement you entered into
with CrossWorlds Software.

import com.crossworlds.DataHandlers.*;
import com.crossworlds.DataHandlers.Exceptions.*;
import AppSide_Connector.JavaConnectorUtil;

import CxCommon.BusinessObjectInterface;

// java classes
import java.util.*;
import java.io.*;

[**
*%
*%
*%
*%
*%

*/

This is a html data handler which converts a html query
string to a Crossworlds Business object. This example is
assumes the incoming html query is structured in a specific
format as explained in the program below. See the comments
associated with the method parse() in this class.

public class HtmlDataHandler extends DataHandler

{

/*

*%
%
*%
%

*/

A utility method to convert a HTML query string into a crossworlds BO.

See comments associated with the parse() method for a detailed explanation
@param String serializeddata

@param Object the incoming mime type

public BusinessObjectInterface getBO(String serializedData,
Object config)

}

throws Exception

HashMap nameValuePairs = parse((String) serializedData);

/*
*% Get the BO to be created from the hidden tag BusObjName
*/
String boName = (String) nameValuePairs.get("BusObjName");
if (boName == null)
throw new Exception("Unable to find business object name in "
+ "serjalized business object");

BusinessObjectInterface bo = JavaConnectorUtil.createBusinessObject (boName);
String verb = (String) nameValuePairs.get("Verb");
if (verb == null)

throw new Exception("Unable to find verb in serialized business object");

bo.setVerb(verb);

/*

**% Get the elements from the HashMap and set it into the BO
*/

setValues(bo, nameValuePairs);

return bo;

36 Access Development Guide

/*

*% Parse an HTML query string looking for tokens of the form &name=value.
*% The format of the incoming query string must conform to the &name=value
*x format as well as the following semantics:

*% if name does not contain syntax of the form name[X].attribute it is
*k assumed to be the name of an attribute in the parent object otherwise
Kk the expression will be used AS IS to set the value of a child object
*k and attribute.

* %

**% For example, the following query string can be successfully parsed by
** this method:

%
*x CustomerID=&items[0].1itemID=44&items[0].orderQty=258&items[0].
*ok deliveryDatel=12/12/00

*% &items[1].itemID=67&items[1].orderQty=28&items[1].
*% deliveryDate=12/12/00&Verb=Retrieved
*x BusObjName=SalesQuote&SubObjName=CwItem

*%

%

*% (@param String query sent from the webserver to be parsed
*% @return HashMap a hash map containing the name value pairs

*/
private HashMap parse(String queryString)
{
HashMap nameValuePairs = new HashMap();
String content = queryString.replace('+', ' ');
StringTokenizer st = new StringTokenizer(content,"&");
while (st.hasMoreTokens())
{
String token = st.nextToken();
int i = token.indexOf("=");
String name = token.substring(0, 1);
String value = token.substring(i+l);
/*
*% HTTP will encode certain ASCII values as their hex equivalents.
*x Convert any of these encodings back to ASCII for both the name
% and the value strings (i.e. right hand side of = and left hand
*x side of =)
*/
name = replaceHexEncodedWithAscii(name);
value = replaceHexEncodedWithAscii(value);
/*
** Store these value in the hashmap so that our caller can look
** them up.
*/
nameValuePairs.put(name, value);
1
return(nameValuePairs);
}
/*
* Given a Hashmap of name/value pairs, enumerate through the business
* object and set each attribute in the BO with the corresponding
* value from the Hashtable
* @param IBusinessObject target of the set
* @param Hashmap contains the name/value pairs
*/

private void setValues(BusinessObjectInterface bo, HashMap nameValuePairs)
throws Exception
{

String SubObjName = null;

Chapter 5. A sample servlet with HTML data-handling capabilities

37

Iterator alterator = nameValuePairs.keySet().iterator();
// Save the SubObject name so we need to save it
while (alterator.hasNext())

String name = (String) alterator.next();

*
*%
*%

*/

Ignore any hidden keywords that we parsed out of the HTML and
stored in the hash map

if (name.equalsIgnoreCase("BusObjName") |

*

*%
%
%
*%

*/

name.equalsIgnoreCase("Verb")
name.equalsIgnoreCase("SubObjName") ||
name.equalsIgnoreCase("ContainerAttrName"))

System.out.printin("Skipping Item : " + name);
continue;

A11 subobjects have a grammar in the form of object[X].attribute
where X is the index of the contained subobject. Therefore, if
the name does not have this embedded string, it's an attribute
of the parent object

if (name.index0f("[") == -1)
bo.setAttrValue(name, (String) nameValuePairs.get(name));

else

{
/
{
}
/
}

}
/*

bo.setAttributeWithCreate(name, (String) nameValuePairs.get(name));

* Replace any hex encoded bytes with the ASCII char equivalent and return
* the new string to the caller.
* @param name The string to convert.

*/

private String replaceHexEncodedWithAscii(String name)

{

int nameLength = name.length();

/*

x%x Replace any hex values (HTTP may send over a hex value int
*% the form of %XX for certain characters) with their
*% corresponding char equivalents

*/

StringBuffer nameBuffer = new StringBuffer();
for (int i = 0; i < namelength; ++i)

{
char ¢ = name.charAt(i);
switch (c)
{
case '%':
byte[] b = { Byte.parseByte(name.substring(i+1, i+3),
16) };
nameBuffer.append(new String(b));
i+=2;
break;
default:
nameBuffer.append(c);
1
}

return(nameBuffer.toString());

}
[**

*+ Implementation of abstract methods in the Data Handler class

38 Access Development Guide

** (@param BusinessObjectInterface the actual business object
** (@param Object config
*% Q@return String string representation of the BO

*/

public String getStringFromBO(BusinessObjectInterface theObj, Object config)
throws Exception
{

}

[**

** Implementation of abstract methods in the Data Handler class

* @param Reader actual data

* @param BusinessObjectInterface the actual business object

* @param Object config

*

/

public void getBO(Reader serializedData, BusinessObjectInterface theObj,
Object config)
throws Exception

throw new Exception("Not implemented");

throw new Exception("Not Implemented");

[x*
** Implementation of abstract methods in the Data Handler class
* @param String actual data
* @param BusinessObjectInterface the actual business object
* @param Object config
*
/
public void getBO(String serializedData, BusinessObjectInterface theObj,
Object config)
throws Exception

throw new Exception("Not Implemented");

[**

** Implementation of abstract methods in the Data Handler class

* @param BusinessObjectInterface the actual business object

* @return InputStream a handle to the stream

*

/

public InputStream getStreamFromB0O(BusinessObjectInterface theObj,
Object config)
throws Exception

throw new Exception("Not Implemented");

** Implementation of abstract methods in the Data Handler class
* @param Reader actual data
* (@param BusinessObjectInterface the actual business object
* Q@return BusinessObjectInterface the translated BO
*
/
public BusinessObjectInterface getBO(Reader serializedData, Object config)
throws Exception
{

}

throw new Exception("Not Implemented");

Chapter 5. A sample servlet with HTML data-handling capabilities

39

Sample Java code—ATP servlet

Here is the sample ATP servlet described in [“The scenario” on page 29

~
*
*

@(#) ATPServlet.java

Copyright (c) 1997-2000 CrossWorlds Software, Inc.
A1l rights reserved.

This software is the confidential and proprietary information of

IBM. You shall not disclose such Confidential information and shall
use it only in accordance with the terms of the license agreement you
entered into with IBM Software.

EE I T R

*

*

/

import javax.servlet.http.*;
import javax.servlet.x;

import java.io.*;

import java.util.*;

import java.text.x;

import IdlAccessInterfaces.*;
import CxCommon.BusinessObject;

[x%

* Available To Promise Serviet example

*/

public class ATPServiet extends HttpServlet
{

// Defines for some statics

public static String DEFAULT_SERVER = "CrossWorlds";
public static String DEFAULT_IOR = "CrossWorlds.ior";
public static String DEFAULT_USER = "admin";

public static String DEFAULT_PASSWD = "null";

// User name to Togin into the IC Server

private String userName = DEFAULT_USER;

// Password

private String passWord = DEFAULT_PASSWD;

// ServerName

private String serverName = DEFAULT_SERVER;

// I0R File

private String iorFile = DEFAULT_IOR;

// AccessSession

private IInterchangeAccessSession accessSession = null;
// AccessEngine

private IAccessEngine accessEngine = null;

// Servlet Context for getting config information
private ServletContext ctx;

// A formatter to print the price with precision.
private static DecimalFormat formatter;

// MIME type

private String mimeType = "text/html";

[**

* The init method. This method is used by the web server
* when the Serviet is loaded for the first time.

* @param ServletConfig Configuration information

* associated with the servlet.

* @exception ServietException is thrown when the

* servlet cannot be initialized

public void init(ServlietConfig aConfig)throws ServletException
{
super.init(aConfig);
// Formatter for printing prices in the correct format
formatter = new DecimalFormat();

40 Access Development Guide

}

formatter.setDecimalSeparatorAlwaysShown(true);

// Read up the initial parameters so we can connect to
// the right ICS server
String configuredServer = null;
String configurediorFile = null;
String configuredUser = null;
String configuredpassWord = null;
configuredServer = aConfig.getInitParameter("ICSNAME");
if (configuredServer != null)
{

this.serverName = configuredServer;

}

{
this.log(
"No Interchange Server configured, using
default of CROSSWORLDS");

else

}
configurediorFile = aConfig.getInitParameter("IORFILE");
if (iorFile != null)

this.iorFile = configurediorFile;

}

else
this.Tog(
"IOR file not defined, will use CrossWorlds.ior
from home directory");
}
try

{

initAccessSession();
catch(Exception e)

this.log("Encountered Initialization error", e);
throw new ServletException(e.toString());

}

[**
* Cleanup method called when the servlet is unloaded from the Web Server

*/

public void destroy()

}
/*

*%
%
*%
%

*/

// Release our session
if ((accessEngine != null) && (accessSession != null))

accessEngine.IcloseSession(accessSession);
accesskEngine = null;
accessSession = null;

}

Utility method which creates an access session with InterChange Server.

If one has already been established then return that.
@exception Exception when an error occurs while establishing
the connection to InterChange Server.

private synchronized void initAccessSession() throws Exception

{

try
{
/*
*x If the access session has already been established then

Chapter 5. A sample servlet with HTML data-handling capabilities

41

42 Access Development Guide

*% see if the session is still valid (i.e. InterChange
*%x Server could have been rebooted since the last time
*% we used the session).
*#% If it's not still valid, then open up a new one.
*/
if (accessSession != null)
{
try {
accessSession.IcreateBusinessObject("");
} catch (ICxAccessError e) {
/*
**% Cached session is still valid. We expect
to get this exception
*/
return;
}
// Catch Corba SystemException
catch (org.omg.CORBA.SystemException se) {
/*
*% The session is invalid.
*% (Open a new one below
*/
this.log("Re-establishing sessions to ICS");

}

}
[**
* Add the relevant Visigenic ORB properties to initialize the
* visigenic ORB.
*/
Properties orbProperties = new java.util.Properties();
orbProperties.setProperty("org.omg.CORBA.ORBClass",
"com.ibm.CORBA.iiop.0ORB");
orbProperties.setProperty("org.omg.CORBA.ORBSingletonClass",
"com.ibm.rmi.corba.0ORBSingleton");
org.omg.CORBA.ORB orb =
org.omg.CORBA.ORB.init((String[])null, orbProperties);
/*
% Use the file that contains the Internet Inter-Orb Reference.
*x This object reference will be a serialized CORBA object
*x reference to the running Interchange Server that
*% we wish to talk to.
*/
LineNumberReader input =
new LineNumberReader(new FileReader(iorFile));
/*
*x (Create a memory resident CORBA object reference from the IOR
*% in the file
*/
org.omg.CORBA.Object object = orb.string_to_object
(input.readLine());

/*
*x Now get create a real session with the running object
*/
accesskngine = IAccessEngineHelper.narrow(object);
if (accessEngine == null)
throw new Exception("Unable to communicate with server
" + serverName + " using IOR from " + iorFile);

/*

*% Now that we have an object reference to a running

*% server, we must authenticate ourselves before we

*% can get a session that is useful.

*/

accessSession = accesskEngine.IgetInterchangeAccessSession(
userName,
passWord) ;

if (accessSession == null)
throw new Exception("Invalid user name and password");

}

catch (Exception e)

this.log("Encountered orb Initialization error" , e);
if (e instanceof org.omg.CORBA.SystemException)
throw new Exception(e.toString());
else
throw e;
}

[**

* Get method called by the WebServer whenever a GET action

* is requested by an HTML page.

* @param HttpServletRequest handle to the http request

* object@param HttpServletResponse handle to the http response
* object @exception ServletException is thrown when the servlet
* encounters an error @exception is thrown when the

* Webserver cannot communicate to the calling

* html page

*/

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException
{

// String serializedHTMLQuote = null;

// A BusinessObject to hold our incoming BO from the
// requesting HTML page
IBusinessObject aB0O = null;

// A BusinessObject to hold our resultant BO from the
// result of the Collaboration execution

IBusinessObject returnedQuoteBusObj = null;

/*
*% Make sure we have a valid access session with the interchange
** server first
*/
try
{

initAccessSession();
catch(Exception e)

throw new ServletException
("InitAccessSession Failed " + e.toString());
}

// Create a BO from the data provided by the HTML page
try {
aBo =
accessSession.IcreateBusinessObjectFrom
(req.getQueryString(),
mimeType) ;
} catch (ICxAccessError e) {
throw new ServletException
(" Creating Business Object Failed : " +
e.lerrorMessage);

}

if (aBO == null)
{

throw new ServietException("Attempting to use Null Bo ");

Chapter 5. A sample servlet with HTML data-handling capabilities

43

1
/*
** Execute the collaboration. We'll get back a
** (CrossWorlds business object that contains an ATP
** date for each item.
*/
try
{
returnedQuoteBusObj = accessSession.IexecuteCollaboration(
"ATPExample","From", aB0);

catch(IExecuteCollaborationError ae)
{
String error = "Collaboration Error :
" + ae.IlerrorMessage
+ ae.status;
this.log("Collaboration Error", ae);
throw new ServletException(error);

}

/*

*x Now create a table to send back that has:

*k ItemNumber Quantity Price

*

/

res.setContentType(mimeType);

PrintWriter out = res.getWriter();

out.printin("<body>");

out.printin("<TABLE BORDER=\"1\">");

out.printin("<caption align=\"center\" > " +
"" +
"Sales Quote Response</caption>");

out.printin("<TR> <TH>Item ID" +

"<TH> Item Description" +

"<TH> Quantity " +

"<TH> Item Price" +

"<TH> Available Date " +

"<TH> Total Price " +

II</TH> </TR>II) ;
IBusinessObjectArray itemContainer = null;
try {

itemContainer =

returnedQuoteBusObj.
IgetBusinessObjectArrayAttribute
("OrderItems");

} catch (IInvalidAttributeTypeException e) {

throw new ServletException(e.IerrorMessage);
} catch (IInvalidAttributeNameException e) {

throw new ServiletException(e.IerrorMessage);
} catch (IAttributeBlankException e) {

throw new ServietException(e.IerrorMessage);
} catch (IAttributeNotSetException e) {

throw new ServietException(e.IerrorMessage);
1

// A subobject to hold each individual Item
IBusinessObject item = null;

int size = itemContainer.IgetSize();
// Loop thru the array and print each item
// separately
String attr = null;
int itemQuantity = 0;
doubTe itemPrice = 0;
//Loop thru the array of returned items
for (int i = 0;i < size; i++)
{
try

44 Access Development Guide

{
// Get the item BusinessObject at the
current indexitem =
itemContainer.IgetBusinessObjectAtIndex(i);
if (item !'= null)
{
// Build a html table row beginning with ITemID
// attribute
try {
attr = item.IgetStringAttribute("ItemID");
out.print("<TR> <TD> " +
attr +
||</TD>|| + "<TD>");
// We have printed the value,
// set it to null again
attr = null;
} catch (IAttributeNotSetException e) {
attr = "N/A";
out.print("<TR> <TD> ");
out.print(attr + "</TD>" + "<TD>");
} catch (IInvalidAttributeNameException e) {
attr = "N/A";
out.print("<TR> <TD> ");
out.print(attr + "</TD>" + "<TD>");
} catch (IInvalidAttributeTypeException e) {
attr = "N/A";
out.print("<TR> <TD> ");
out.print(attr + "</TD>" + "<TD>");

1
// Get the ItemType attribute
try {

attr = item.IgetStringAttribute
("itemType");
out.print(attr + "</TD>" + "<TD>");
// We have printed the value,
// set it to null again
attr = null;
} catch (IAttributeNotSetException e) {
attr = "N/A";
out.print(attr + "</TD>" + "<TD>");
} catch (IInvalidAttributeNameException e) {
attr = "N/A";
out.print(attr + "</TD>" + "<TD>");
} catch (IInvalidAttributeTypeException e) {
attr = "N/A";
out.print(attr + "</TD>" + "<TD>");

1
// Get the orderQty Attribute
try {
attr = item.IgetStringAttribute
("orderQty");
try {
itemQuantity = Integer.parselnt(attr);
} catch (NumberFormatException e) {
itemQuantity = -1;
}

out.print(attr + "</TD>" + "<TD>");
// We have printed the value,
// set it to null again

attr = null;
} catch (IAttributeNotSetException e) {
attr = "N/A";

itemQuantity = -1;
out.print(attr + "</TD>" + "<TD>");
} catch (IInvalidAttributeNameException e) {
attr = "N/A";
out.print(attr + "</TD>" + "<TD>");

Chapter 5. A sample servlet with HTML data-handling capabilities

45

46 Access Development Guide

} catch (IInvalidAttributeTypeException e) {
attr = "N/A";
out.print(attr + "</TD>" + "<TD>");

1
// Get the ItemPrice attribute
try {

attr = item.IgetStringAttribute("itemPrice");
int index0fDollar = attr.indexOf("$");
String priceToParse = null;
// Locate if we have "$" in the value
if (indexOfDollar == -1)
priceToParse = attr;
else
priceToParse = attr.substring
(indexOfDollar + 1);
// Format the price so it looks Tike $NNNN.NN
try {
itemPrice = Double.parseDouble

(priceToParse);

} catch (NumberFormatException e) {
itemPrice = -1;

}

out.print(attr + "</TD>" + "<TD>");
// We have printed the value,
set it to null again
attr = null;
} catch (IAttributeNotSetException e) {
attr = "N/A";
itemPrice = -1;
out.print(attr + "</TD>" + "<TD>");
} catch (IInvalidAttributeNameException e) {
attr = "N/A";
out.print(attr + "</TD>" + "<TD>");
} catch (IInvalidAttributeTypeException e) {
attr = "N/A";
out.print(attr + "</TD>" + "<TD>");

}
// Get the ATPDate and print it
try {

attr = item.IgetStringAttribute("ATPDate");
out.print(attr + "</TD>" + "<TD>");
} catch (IAttributeNotSetException e) {
attr = "N/A";
out.print(attr + "</TD>" + "<TD>");
} catch (IInvalidAttributeNameException e) {
attr = "N/A";
out.print(attr + "</TD>" + "<TD>");
} catch (IInvalidAttributeTypeException e) {
attr = "N/A";
out.print(attr + "</TD>" + "<TD>");
1
/*
% Now print the total price for the item.
*x If we don't have sufficient information then
*x print N/A
*/
if ((itemPrice == -1) || (itemQuantity == -1))

{
out.printin(attr + "</TD>" + "<TD>");
// We have printed the value,
// set it to null again
attr = null;
}
else
{
double totalPrice = itemQuantity
* itemPrice;

out.printin("$" + formatter.format
(totalPrice).trim()

+ II</TD>II
+ "<TD>");
}
} // end if (Item != null)
} // End try
catch (IAttributeBlankException e2) {
continue;

} catch (IInvalidIndexException e) {
throw new ServletException(e.getMessage());
}

}// End for loop
// Close the HTML table
out.printin("</TABLE>");
// Finish the page body
out.printIn("</body></htm1>");
} // end do get

Chapter 5. A sample servlet with HTML data-handling capabilities 47

48 Access Development Guide

Part 3. Server Access Interface API reference

© Copyright IBM Corp. 1999, 2004

49

50 Access Development Guide

Chapter 6. IAccessEngine interface

The IAccessEngine interface provides methods to open and close an access session
with InterChange Server. summarizes the methods in the IAccessEngine
interface.

Table 7. Member methods of the IAccessEngine interface

Method Description Page
[[getInterchange AccessSession()| Creates an access session to

InterChange Server for the
access client.

[closeSession Closes the access session with

InterChange Server.

IgetinterchangeAccessSession()

Creates an access session to InterChange Server for the access client.

Syntax

IInterchangeAccessSession IgetInterchangeAccessSession(
string userName, string password);

Parameters
userName The name of the IBM WebSphere InterChange Server user.
password The IBM WebSphere InterChange Server password for the user.

Return Values

An IInterchangeAccessSession object for the access session.

Exceptions

ICxAccessError Thrown when an invalid user name or password is
encountered.

Notes

The IgetInterchangeAccessSession() method verifies that userName and password
are valid for the ICS instance.

Important: The user name for this method must be admin.

Example

// Open the access session

String userName = "admin";

String password = "null";

IInterchangeAccessSession aSession =
serverAccessEngine.IgetInterchangeAccessSession(
userName,
password) ;

© Copyright IBM Corp. 1999, 2004 51

IcloseSession()

Closes the access session with InterChange Server.

Syntax

void IcloseSession(IInterchangeAccessSession session);
Parameters

session The access-session object to close.

Return Values
None.

Example

// Close the access session
serverAccesskEngine.IcloseSession(aSession);

52 Access Development Guide

The IInterchangeAccessSession interface provides methods for creating business
objects and executing collaborations.
IInterchangeAccessSession interface.

Chapter 7. linterchangeAccessSession interface

Table 8. Member methods of the linterchangeAccessSession interface

Table 8] summarizes the methods of the

Method

[[createBusinessObject()|

[[createBusinessObjectArray()|

[[createBusinessObjectFrom ()|

[[createBusinessObjectWithVerb()|

[[lexecuteCollaboration()|

[[lexecuteCollaborationExtFmt()|

[[releaseBusinessObject()|

[releaseBusinessObjectArray()|

setLocale(String

Description

Creates a business object from a
specified business object
definition.

Creates the business object array
that contains one or more
elements, each element having a
specified business object as its
type.

Converts serialized data in the
specified MIME format into an
IBM WebSphere InterChange
Server business object.

Creates a business object with a
specified verb.

Executes a collaboration, sending
in a business object as the
triggering access data in the
access request.

Executes a collaboration, sending
in serialized data as the
triggering access data in the
access request.

Releases the resources of a
business object.

Releases the resources of a
business object array.

Sets the locale.

Page

El & [E

IcreateBusinessObject()

Creates a business object from a specified business object definition.

Syntax

IBusinessObject IcreateBusinessObject(string busObjName);

Parameters

bus0bjName

Return Values

An IBusinessObject object to hold the new business object.

© Copyright IBM Corp. 1999, 2004

The name of the business object definition to use when creating the
business object.

53

Exceptions

ICxAccessError Thrown when the specified business object
definition is not present in the IBM WebSphere
InterChange Server repository.

Notes

The Server Access Interface creates a business object of type busObjName and sends
it back to the access client.

Example

The following code fragment creates a business object:

// This method creates a business object

// Declare our object

IBusinessObject exampleObj = null;

exampleObj = aSession.IcreateBusinessObject("PayablesNetChange");

IcreateBusinessObjectArray()

Creates the business object array that contains one or more elements, each element
having a specified business object as its type.

Syntax

IBusinessObjectArray IcreateBusinessObjectArray(string busObjName) ;
Parameters

busObjName The name of the business object definition to use when creating the

business objects in the business object array.

Return Values

An IBusinessObjectArray object to hold the new business object array.

Exceptions
ICxAccessError Thrown when the specified business object
definition is not present in the IBM WebSphere
InterChange Server repository.
Notes

The Server Access Methods creates a business object array and sends it back to the
access client. The IcreateBusinessObjectArray() method returns an
IBusinessObjectArray object. Other methods in the IBusinessObjectArray interface
allow you to manipulate the business object array.

Example

The following example creates a business object array:

// Declare the array
IBusinessObjectArray exampleObjArray = null;
// Create the business object array that holds "CustomerAcct"
// business objects
exampleObjArray =
accessSession.IcreateBusinessObjectArray ("CustomerAcct");

54 Access Development Guide

IcreateBusinessObjectFrom()
Converts serialized data in the specified MIME format into an IBM WebSphere

InterChange Server business object.

Syntax

IBusinessObject IcreateBusinessObjectFrom(string serializedData,
string mimeType);

Parameters
serializedData The incoming serialized data.
mimeType The MIME type of the serializedData data.

Return Values

An IBusinessObject object to hold the business object that the data handler creates
from the serializedData data.

Exceptions
ICxAccessError Thrown when the data cannot be converted into a
business object or if the data handler cannot be
accessed.
Notes

The IcreateBusinessObjectFrom() method sends the serializedData data in its
specified mimeType MIME type to InterChange Server. The Server Access Interface
within ICS invokes the necessary data handler to convert the specified MIME type
into an IBM WebSphere InterChange Server business object, which is compatible
with the IBM WebSphere InterChange Server environment. The serializedData
data must specify the name of the business object definition to use when creating
the business object. The data handler parses and converts the data into a business
object, returning it to the Server Access Interface within ICS, which in turn returns
it to the access client. The external format of the serialized data must be of a type
that a data handler (IBM WebSphere InterChange Server-delivered or a custom
data handler you have written) supports. For more information, see the Data
Handler Guide.

Example

// Declare the object
String custData = "exampleXmlData";
String mimeType = "text/Xml";
IBusinessObject exampleObj = null;
// This method creates the business object from data in XML format
exampleObj =
accessSession.IcreateBusinessObjectFrom(custData, mimeType);

IcreateBusinessObjectWithVerb()

Creates a business object with a specified verb.

Syntax

IBusinessObject IcreateBusinessObjectWithVerb(string busObjName,
string verb);

Chapter 7. IInterchangeAccessSession interface 55

Parameters

busObjName The name of the business object definition to use when creating the
business object.

verb The verb for the new business object.

Return Values

An IBusinessObject object that holds the new business object with the specified
verb value.

Exceptions

ICxAccessError Thrown when the specified business object
definition is not present in the IBM WebSphere
InterChange Server repository or if the verb passed
is invalid for the business object definition.

Notes

The Server Access Interface creates a business object of type busObjName and
initializes it with the verb verb. It then sends this business object back to the access
client. Only verbs supported in the business object definition are valid.

Example

// Create the business object

IBusinessObject exampleobj = null

exampleObj =
accessSession.IcreateBusinessObjectWithVerb("AcctsRecCurrent",
"Retrieve");

lexecuteCollaboration()
Executes a collaboration, sending in a business object as the triggering access data

in the access request.

Syntax

IBusinessObject IexecuteCollaboration
(string collabName, string portName, IBusinessObject busObj);

Parameters
collabName The name of the collaboration to execute.
portName The name of the external collaboration port to
which the access client is bound.
busObj The generic business object that contains the

triggering access data for the collaboration.

Return Values

An IBusinessObject object that contains the business object that the collaboration
returns.

56 Access Development Guide

Exceptions

IExecuteCollaborationError
Thrown when the collaboration is not active or the maps have failed. This
exception contains a status value set to one of the following constants to
indicate the details of the call when the exception occurred. For more
information on how to access this status, see [“IExecuteCollaborationError’]
b page 9]

Constant Name Description

UNKNOWNSTATUS The status of the call to the
IexecuteCollaboration() method is
unknown.

FAILEDTOREACHCOLLABORATION The access request did not reach the
collaboration.

FATLEDINEXECUTIONOFCOLLABORATION The access request failed while executing
the collaboration.

FAILEDINRETURNTOCLIENT The collaboration executed but an error

occurred while delivering the response to
the access client.

Notes

The IexecuteCollaboration() method requests execution of the collabName
collaboration. To initiate the collaboration, Server Access Interface sends the
triggering access data in the busObj business object to the portName port of the
collabName collaboration. This port must be configured as external so that is
supports call-triggered flow.

Note: The collaboration, port, and business object must be configured and mapped
for call-triggered flow and manipulation.

Example

String portName = "From";
IBusinessObject srcBO =
accessSession.IcreateBusinessObject ("payableNetChange");

// set srcBO attributes, verb, or both

// Execute the collaboration

IBusinessObject resultantBO = null;

resultantBO = accessSession.IexecuteCollaboration(
"getCustAcctPayable",
portName,
srcB0);

lexecuteCollaborationExtFmt()

Executes a collaboration, sending in serialized data as the triggering access data in
the access request.

Syntax

string IexecuteCollaborationExtFmt(string collabName, string portName,
string serializedData, string mimeType, string verb);

Chapter 7. IInterchangeAccessSession interface 57

Parameters

collabName The name of the collaboration to execute.

portName The name of the external collaboration port to
which the access client is bound.

serializedData The serialized data that represents the triggering
access data.

mimeType The external format (as a MIME type) of the
serialized data.

verb The value for the business object’s verb.

Return Values

A string that contains the serialized version of the business object that the
collaboration returns. This string is in the mimeType external format.

Exceptions

IExecuteCollaborationError
Thrown when the collaboration is not active or the maps have failed. This
exception contains a status value set to one of the following constants to
indicate the details of the call when the exception occurred. For more
information on how to access this status, see [“IExecuteCollaborationError”]

Constant Name Description

UNKNOWNSTATUS The status of the call to the
IexecuteCollaborationExtFmt () method is
unknown.

FAILEDTOREACHCOLLABORATION The access request did not reach the
collaboration.

FAILEDINEXECUTIONOFCOLLABORATION The access request failed while executing
the collaboration.

FAILEDINRETURNTOCLIENT The collaboration executed but an error

occurred while delivering the response to
the access client.

Notes

The IexecuteCollaborationExtFmt () method performs the same basic task as
IexecuteCollaboration(): it requests execution of the collabName collaboration.
The main difference is that this method allows you to perform the following tasks
with a single call:

e Convert the serializedData data to a business object, using the data handler
appropriate for the data’s mimeType MIME type. This business object represents
the triggering access data for the collaboration.

* Set the business object’s verb to the specified verb value.

* Send the business object to the portName port of the collaboration to initiate
execution of the collaboration. This port must be configured as external so that is
supports call-triggered flow.

Note: No CORBA objects are passing in or out of this method.

58 Access Development Guide

The collaboration and port must be configured and mapped for call-triggered flow
and manipulation.

The mimeType parameter specifies the external format of the serialized data for the
business object. The Server Access Interface uses this MIME type to determine
which data handler it calls to parse and convert the data into an IBM WebSphere
InterChange Server business object. The external format must be of a type that a
data handler (IBM WebSphere InterChange Server-delivered or a custom data
handler you have written) supports. For more on data handling, see the Data
Handler Guide.

Example

String portName = "From";
// Execute the collaboration
IBusinessObject resultantBO = null;
resultantB0 = accessSession.IexecuteCollaborationExtFmt (
"getCustAcctPayable",
portName,
serializedXMLData,
"text/xml",
"Create");

IreleaseBusinessObject()

Releases the resources of a business object.

Syntax
void IreleaseBusinessObject(IBusinessObject releaseObject);
Parameters
releaseObject The business object whose resources are released.

Return Values
None.

Notes

When the access client is finished using a business object, it should the
IreleaseBusinessObject () method to free the IBusinessObject object in
InterChange Server memory.

Example

// Create the business object

IBusinessObj anObject = null;

accessSession.IcreateBusinessObjectWithVerb("AcctsRecCurrent",
"Retrieve");

// Release the object

accessSession.IreleaseBusinessObject(anObject);

IreleaseBusinessObjectArray()

Releases the resources of a business object array.

Syntax

void IreleaseBusinessObjectArray(IBusinessObjectArray releaseObject);

Chapter 7. IInterchangeAccessSession interface 59

Parameters

releaseObject The business object array whose resources are
released.

Return Values

Notes

None.

When the access client is finished using a business object array, it should the
IreleaseBusinessObjectArray() method to free the IBusinessObjectArray object in
InterChange Server memory.

Example

// Create the array
IBusinessObjectArray exampleObjArray = null;
exampleObjArray =

accessSession.IcreateBusinessObjectArray ("CustomerAcct");
// Release the object array
accessSession.IreleaseBusinessObjectArray(exampleObjArray);

setLocale(String)

Sets the locale of the access interface session object.

Syntax

public String setLocale(String);

Parameters

Notes

A string designating the locale, in this format:
1T

where 1 is a two-character language code (usually in lower case) and 7T is a an
optional two-letter country and territory code (usually in upper case). For example,
the following strings are valid locales:

en
de_DE

The setLocale() method sets the locale for the access interface session object. The
locale defines cultural conventions for data according to language and country (or
territory).

By default, the locale used in the beginning of a session object is the same as the
locale used by the ICS. When you use a call on the setLocale() method to change to
a new locale, calls on all subsequent methods in the session object will use the new
locale.

60 Access Development Guide

Chapter 8. IBusinessObiject interface

The IBusinessObject interface provides methods that operate on objects of the
type BusinesssObject. These represent IBM WebSphere business integration system
business objects that are defined in the IBM WebSphere repository.

summarizes the methods in the IBusinessObject interface.

Table 9. Member methods of the IBusinessObject interface

Method
[duplicate()

lequalsKeys

[[getAppSpecificInfo()

[getAttributeCount()|

[getAttributeName()|

[getAttributeType()|
[getAttributeTypeAtIndex()|

[[getBooleanAttribute()

[[getBOAppSpecification()|

[[getBusinessObjectArray Attribute()|

[getBusinessObjectAttribute()|

[[getDateAttribute()f

[[getDefaultValue()|

[[getDoubleAttribute()|

[[getFloatAttribute()

[oetIntAttribute()

IIgetLongTextAttribute()l

[[getString Attribute()

Description

Creates a clone of the business
object.

Compares this business object’s
attribute values with those of the
input business object.

Compares this business object’s key
attribute values with those of the
input business object.

Retrieves the application-specific
information for the attribute.
Retrieves the number of attributes
in the business object.

Retrieves the attribute name at the
specified position in the business
object definition.

Retrieves the type of the attribute.
Retrieves the type of the attribute
at the specified position in the
business object definition.
Retrieves a boolean value of an
attribute.

Retrieves the value of an attribute
that is a business object array
(multiple cardinality).

Retrieves the value of a business
object attribute that is a business
object array (multiple cardinality).
Retrieves the value of an attribute
of single cardinality.

Retrieves the value of the date
attribute.

Retrieves the default value of the
attribute.

Retrieves a double value of an
attribute.

Retrieves a float value of an
attribute.

Retrieves an int value of an
attribute.

Retrieves a longtext value of an
attribute.

Retrieves the name of the business
object definition.

Retrieves a string value of an
attribute.

(¢

& &

B EEEEEEEEB E

© Copyright IBM Corp. 1999, 2004

61

Table 9. Member methods of the IBusinessObject interface (continued)

Method
etVerb(),

[lisAttributeMultipleCardinality()|

I

isBlankValue(

islgnoreValue(

isKey/()
isRequired
serialize()

setAttributes

=1 = = =
@
@]
U2
>
=
=,
o
o
=
g
)
=
—_
)
=}
=
|~

)

[
2]
o
-+
>
=+
=
o
c
-
=
o
=

Q
=]
o
=]
o)

S

=4

[setBooleanAttribute()|
[setBusinessObjectArray Attribute()|

[[setBusinessObijectAttribute()|

[setDateAttribute()|
[setDoubleAttribute()
[setFloatAttribute()|
[setIntAttribute()
[setLongTextAttribute()

[setString Attribute()|
[setVerb()

[[toExternal Form ()

[toString(

Description

Retrieves the verb for the business
object.

Determines whether the attribute
has multiple cardinality.
Determines whether the attribute
value is a blank value.

Determines whether the attribute
value is “ignore”.

Determines whether the attribute is
a key.

Determines whether the specified
attribute is required.

Returns the attribute data in a
readable (serialized) format.

Sets attributes in a business object
from serialized data in a specified
MIME type.

Sets the attribute in a business
object to a blank value.

Sets an attribute in a business
object to “ignore”.

Sets an attribute to a boolean value.
Sets the value of an attribute that is
a business object array (multiple
cardinality).

Sets the value of an attribute of
single cardinality.

Sets an attribute to a date value.
Sets an attribute to a double value.
Sets an attribute to a float value.
Sets an attribute to an int value.
Sets an attribute to a Tongtext
value.

Sets an attribute to a string value.
Sets the verb for the business
object.

Serializes the business object data
into an external format of the
specified MIME type.

Serializes the business object data
using an IBM WebSphere
InterChange Server format.

3 I 1 IS = I 5 5 S e

ER & &

[ELE]

Eg

E

Iduplicate()

Creates a clone of the business object.

Syntax

IBusinessObject Iduplicate();

Parameters

None.

62 Access Development Guide

Return Values

An an IBusinessObject object that contains the duplicate business object.

Exceptions

ICxAccessError Thrown when the object cannot be found.

Notes

The Iduplicate() method makes a clone of the business object and returns it. You
must explicitly assign the return value of this method call to a declared variable of
IBusinessObject type.

Example

The following example duplicates sourceCustomer to create destCustomer.
IBusinessObject destCustomer = sourceCustomer.Iduplicate();

lequals()

Compares this business object’s attribute values with those of the input business
object.

Syntax

boolean Iequals(IBusinessObject 0bj2);

Parameters

obj2 The business object to compare.

Return Values

Returns true if the values of all attributes and the verbs are the same; otherwise,
returns false.

Notes

The Iequals() method compares this business object’s attribute values with those
in the input business object. If the business objects are hierarchical, the comparison
includes all attributes in the child business objects. The verbs and the attribute
values must match.

In the comparison, a null value is considered equivalent to any value to which it is
compared and does not prevent a return of true.

Example

The following example compares the verbs and attributes of order?2 to all attributes
of orderl:

boolean isEqual = false;

IBusinessObject orderl =
accessSession.IcreateBusinessObjectwithVerb("salesorder",
"create");

IBusinessObject order2 =
accessSession.IcreateBusinessObjectwithVerb("salesorder",
"create");

isEqual = orderl.Iequals(order2);

if(isEqual)

Chapter 8. IBusinessObject interface 63

System.out.printin("orderl is the same as order2")
else

System.out.printin("orderl is not the same as order2");

lequalsKeys()

Compares this business object’s key attribute values with those of the input
business object.

Syntax

boolean IequalsKeys(IBusinessObject 0bj2);

Parameters

obj2 A business object to evaluate for the comparison.

Return Values

Returns true if the values of all key attributes are the same; otherwise, returns
false.

Notes

The IequalsKeys() method performs a shallow comparison; that is, it does not
compare the keys in child business objects.

Example

The following example compares key attributes of order2 with key attributes of
orderl, excluding the attributes of child business objects, if any.

boolean keyEqual = false;

IBusinessObject orderl =
accessSession.IcreateBusinessObjectwithVerb("salesorder",
"retrieve");

IBusinessObject order2 =
accessSession.IcreateBusinessObjectwithVerb("salesorder",
"retrieve");

keyEqual = orderl.IequalsKeys(order2);

if(keyEqual)

System.out.printin("orderl is the same as order2")

else

System.out.printin("orderl is not the same as order2");

IgetAppSpecificinfo()

Retrieves the application-specific information for the attribute.

Syntax

string IgetAppSpecificInfo(string attributeName)
Parameters

attributeName The name of the attribute.

Return Values

A string that contains the application-specific information associated with the
specified attribute.

64 Access Development Guide

Exceptions

IInvalidAttributeNameException
Thrown when the attribute name is invalid.

IValueNotSetException Thrown when the attribute has no
application-specific information.

Notes
The IgetAppSpecificInfo() method can return a null.

Example

// This method determines the app-specific info of an attribute
String appSpecificInfo;
appSpecificInfo = aBusObj.IgetAppSpecificInfor();

IgetAttributeCount()

Retrieves the number of attributes in the business object.

Syntax

Tong IgetAttributeCount();

Parameters
None.

Return Values

An integer value to indicate the number of attributes in the current business object.

Example

long attributeCount = 0;
attributeCount = aBusObj.IgetAttributeCount();

IgetAttributeName()
Retrieves the attribute name at the specified position in the business object
definition.
Syntax
string IgetAttributeName(long position);
Parameters
position The position of the attribute in a business object definition.

Return Values

A string that contains the name of the attribute at the specified position in the
business object definition.

Exceptions

IInvalidIndexException Thrown when the position index is invalid.

Chapter 8. IBusinessObject interface 65

Example

int position = 1;
String attribute name;
attributeName = aBusObj.IgetAttributeName(position);

IgetAttributeType()

Retrieves the type of the attribute.

Syntax

long IgetAttributeType(string attributeName);

Parameters

attributeName The name of the attribute whose type is returned.

Return Values

An integer to indicate the data type of the specified attribute in the business object,
as follows:

Object
booTean
int
float
doubTe
string

date

N SN ok W NN =R o

longtext

Exceptions

ITnvalidAttributeNameException
Thrown when the attribute name is invalid.

Example

String attributeName = "Name";
long attributeType = 0;
attributeType = aBusObj.IgetAttributeType(attributeName);

IgetAttributeTypeAtindex()

Retrieves the type of the attribute at the specified position in the business object

definition.
Syntax
Tong IgetAttributeTypeAtIndex(long position);
Parameters
position The position of the attribute in the business object definition.

66 Access Development Guide

Return Values

An integer to indicate the data type of the attribute at the specified position in the

business object, as follows:

0 Object

1 boolean

2 int

3 float

4 doubTe

5 string

6 date

7 longtext
Exceptions

ITnvalidIndexException Thrown when the position index is invalid.
Example

int indexPosition = 1;
long attributeType = 0;
attributeType = aBusObj.IgetAttributeTypeAtIndex(indexPosition);

IgetBooleanAttribute()

Retrieves a boolean value of an attribute.

Syntax

boolean IgetBooleanAttribute(string attributeName);

Parameters

attributeName The name of the boolean attribute whose value is retrieved.

Return Values
The boolean value of the attribute.

Exceptions

IAttributeNotSetException
Thrown when the attribute value is not set.

IInvalidAttributeNameException
Thrown when the attribute name is invalid.

ITnvalidAttributeTypeException
Thrown when the attribute is not of the boolean date type.

IAttributeBlankException
Thrown when the attribute has a blank value.

Chapter 8. IBusinessObject interface

67

Example

// Call the boolean method
String booleanAttribute = "MyBooleanAttribute";
boolean value = exampleBusObj.IgetBooleanAttribute(booleanAttribute);

IgetBOAppSpecification()
Retrieves application-specific information.

Syntax

public String IgetBOAppSpecificInfo();

Parameters

This method has no input parameters.

Return Values

AnlIgetBOAppSpecificInfo()object that contains application specific information for
the business application.

Exceptions

IValueNotSetException
Thrown when the attribute value is invalid.

IgetBusinessObjectArrayAttribute()

Retrieves the value of an attribute that is a business object array (multiple
cardinality).

Syntax

IBusinessObjectArray IgetBusinessObjectArrayAttribute(
string attributeName)

Parameters

attributeName
The name of the multiple-cardinality attribute whose value is retrieved.

Return Values

An IBusinessObjectArray object that contains the value of the multiple-cardinality
attribute.

Exceptions

IAttributeNotSetException
Thrown when the attribute value is not set.

IInvalidAttributeNameException
Thrown when the attribute name is invalid.

ITnvalidAttributeTypeException
Thrown when the attribute is not a single-cardinality attribute (it is of
some other date type).

68 Access Development Guide

IAttributeBlankException
Thrown when the attribute has a blank value.

Example

// Call the BusinessObjectArray method and get the attribute

String arrayAttribute = "Account";

IBusinessObjectArray aBusObj =
exampleBusObj.IgetBusinessObjectArrayAttribute(arrayAttribute);

IgetBusinessObjectAttribute()

Retrieves the value of an attribute of single cardinality.

Syntax

IBusinessObject IgetBusinessObjectAttribute(string attributeName);

Parameters

attributeName
The name of the single-cardinality attribute whose value is retrieved.

Return Values

An IBusinessObject object that contains the value of the single-cardinality
attribute.

Exceptions

IAttributeNotSetException
Thrown when the attribute value is not set.

IInvalidAttributeNameException
Thrown when the attribute name is invalid.

ITInvalidAttributeTypeException
Thrown when the attribute is not a single-cardinality attribute (it is of
some other date type).

IAttributeBlankException
Thrown when the attribute has a blank value.

Example

// Call the get business object method and get the attribute
String busObjAttribute = "Customer";
IBusinessObject aBusObj =

exampleBusObj.IgetBusinessObjectAttribute (busObjAttribute);

IgetDateAttribute()

Retrieves the value of the date attribute.

Syntax

string IgetDateAttribute(string attributeName);

Parameters

attributeName The name of the date attribute whose value is retrieved.

Chapter 8. IBusinessObject interface

69

Return Values

A string that contains the value of the date attribute.

Exceptions

IAttributeNotSetException
Thrown when the attribute value is not set.

IInvalidAttributeNameException
Thrown when the attribute name is invalid.

ITnvalidAttributeTypeException
Thrown when the attribute is not of the date type.

IAttributeBlankException
Thrown when the attribute has a blank value.

Example

//call the Date method and get the attribute

String dateAttributeName = "DateOfBirth";

String aDate;

aDate = exampleBusObj.IgetDateAttribute(dateAttributeName);

IgetDefaultValue()

Retrieves the default value of the attribute.

Syntax

string IgetDefaultValue(string attributeName);

Parameters

attributeName The name of the attribute whose default value is retrieved.

Return Values
A string that contains the default value of the attribute.

Exceptions

IInvalidAttributeNameException
Thrown when the attribute name is invalid.

IValueNotSetException
Thrown when the attribute has no default value.

Example

// Call the default value method

String attributeName = "Name";

String defaultAttributeValue;

defaultAttributeValue =
exampleBusObj.IgetDefaultValue (attributeName);

IgetDoubleAttribute()

Retrieves a double value of an attribute.

70 Access Development Guide

Syntax

double IgetDoubleAttribute(string attributeName);

Parameters

attributeName The name of the attribute whose double value is retrieved.

Return Values
The double value of the attribute.

Exceptions

IAttributeNotSetException
Thrown when the attribute value is not set.

IInvalidAttributeNameException
Thrown when the attribute name is invalid.

ITInvalidAttributeTypeException
Thrown when the attribute is not of the double type.

IAttributeBlankException
Thrown when the attribute has a blank value.

Example

// Call the double method and get the attribute

double doubleValue = 0;

String doubleAttributeName = "Average";

doubleValue = exampleBusObj.IgetDoubleAttribute(doubleAttributeName);

IgetFloatAttribute()

Retrieves a float value of an attribute.

Syntax

float IgetFloatAttribute(string attributeName);

Parameters

attributeName The name of the attribute whose float value is retrieved.

Return Values
The float value of the attribute.

Exceptions

IAttributeNotSetException
Thrown when the attribute value is not set.

ITInvalidAttributeNameException
Thrown when the attribute name is invalid.

ITnvalidAttributeTypeException
Thrown when the attribute is not of the float type.

IAttributeBlankException
Thrown when the attribute has a blank value.

Chapter 8. IBusinessObject interface

71

Example

// Call the Float method and get the attribute

float floatValue = 0.0;

String floatAttributeName = "Height";

floatValue = exampleBusObj.IgetFloatAttribute(floatAttributeName);

IgetiICSVersion()

Retrieves the InterChange framework version number.

Syntax

public String IgetICSVersion();

Parameters

No input parameters

Return Values

Returns the version number of the InterChange framework.

Exceptions

This method throws no exceptions.

IgetintAttribute()

Retrieves an int value of an attribute.

Syntax

long IgetIntAttribute(string attributeName);

Parameters

attributeName The name of the attribute whose integer value is retrieved.

Return Values
A long value that holds the integer value of the attribute.

Exceptions

IAttributeNotSetException
Thrown when the attribute value is not set.

IInvalidAttributeNameException
Thrown when the attribute name is invalid.

ITnvalidAttributeTypeException
Thrown when the attribute is not of the integer type.

IAttributeBlankException
Thrown when the attribute has a blank value.

Example

// Call the int method and get the attribute

int intValue = 1;

String intAttributeName = "priority";

intValue = exampleBusObj.IgetIntAttribute(intAttributeName);

72 Access Development Guide

IgetLongTextAttribute()

Retrieves a longtext value of an attribute.

Syntax

string IgetLongTextAttribute(string attributeName);

Parameters

attributeName The name of the attribute whose longtext value is retrieved.

Return Values
The Tongtext value of the attribute as a string.

Exceptions

IAttributeNotSetException
Thrown when the attribute value is not set.

ITInvalidAttributeNameException
Thrown when the attribute name is invalid.

IInvalidAttributeTypeException
Thrown when the attribute is not of the lTongtext type.

IAttributeBlankException
Thrown when the attribute has a blank value.

Example

// Call the LongText method and get the attribute

long TongValue = "net30";

String TongAttributeName = "Customer";

TongValue = exampleBusObj.IgetlLongTextAttribute(TongAttributeName);

IgetName()

Retrieves the name of the business object definition.

Syntax

string IgetName();

Parameters

None.

Return Values

A string that contains the name of the business object definition.

Example

// Get the name of the business object definition
String busObjName;
busObjName = exampleBusObj.IgetName();

IgetStringAttribute()

Retrieves a string value of an attribute.

Chapter 8. IBusinessObject interface

73

Syntax

string IgetStringAttribute(string attributeName);

Parameters

attributeName The name of the attribute whose string value is retrieved.

Return Values

A string that contains the value of the attribute.

Exceptions

IAttributeNotSetException
Thrown when the attribute value is not set.

ITnvalidAttributeNameException
Thrown when the attribute name is invalid.

IInvalidAttributeTypeException
Thrown when the attribute is not of the string type.

IAttributeBlankException
Thrown when the attribute has a blank value.

Example

// Call the String method and get the attribute

String stringValue = "declined";

String stringAttributeName = "SalesOrder";

stringValue = exampleBusObj.IgetStringAttribute(stringAttributeName);

IgetVerb()

Retrieves the verb for the business object.

Syntax

string IgetVerb();

Parameters
None.

Return Values

A string that contains the verb of the business object, which can be null.

Exceptions
IVerbNotSetException

Thrown when the verb is not set.

Example

// Get the verb of the business object.
String busObjName;
busObjName = exampleBusObj.IgetVerb();

74 Access Development Guide

lisAttributeMultipleCardinality()

Determines whether the attribute has multiple cardinality.

Syntax

boolean IisAttributeMultipleCardinality(string attributeName);

Parameters

attributeName The name of the attribute whose cardinality is determined.

Return Values
Returns true if the attribute has multiple cardinality; otherwise, it returns false.

Exceptions

ITnvalidAttributeNameException
Thrown when the attribute name is invalid.

Example

// Call the multiple cardinality method.
boolean multCard = false;
String busAttribute = "AttributeName";
multCard =
exampleBusObj.IisAttributeMultipleCardinality(busAttribute);
if (multCard)
System.out.printin ("attribute is multiple cardinality");
else
System.out.printin ("attribute is not multiple cardinality");

lisBlankValue()

Determines whether the attribute value is a blank value.

Syntax

boolean IisBlankValue(string attributeName);

Parameters

attributeName The name of the attribute whose attribute value is tested for a
blank value.

Return Values

Returns true if the attribute value is a blank value; otherwise, it returns false.

Exceptions

IInvalidAttributeNameException
Thrown when the attribute name is invalid.

Chapter 8. IBusinessObject interface

Example

// See if attribute is blank

boolean isBlank = false;

String busAttribute = "AttributeName";

isBlank = exampleBusObj.IisBlankValue(busAttribute);
if (isBlank)

lisignoreValue()

Determines whether the attribute value is “ignore”.

Syntax

boolean IisIgnoreValue(string attributeName);

Parameters

attributeName The name of the attribute whose value is tested for “ignore”.

Return Values

Returns true if the attribute value is “ignore”; otherwise, it returns false.

Exceptions

IInvalidAttributeNameException
Thrown when the attribute name is invalid.

IValueNotSetException
Thrown when the attribute has no default value.

Example

// Call the attribute ignore method

boolean isIgnore = false;

String busAttribute = "AttributeName";

isIgnore = exampleBusObj.IisIgnoreValue(busAttribute);
if (isIgnore)

lisKey()

Determines whether the attribute is a key.

Syntax
boolean IisKey(string attributeName);
Parameters
attributeName The name of the attribute that is checked for a key.

Return Values

The method returns true if the attribute is a key, else it returns false.

Exceptions

ITnvalidAttributeNameException
Thrown when the attribute name is invalid.

76 Access Development Guide

Example

// See if attribute is key

boolean isKey = false;

String busAttribute = "AttributeName";
isKey = exampleBusObj.IisKey(busAttribute);
if (isKey)

lisRequired()

Determines whether the specified attribute is required.

Syntax

boolean IisRequired(string attributeName);

Parameters

attributeName The name of the attribute that is checked for whether it is required.

Return Values

Returns true if the attribute is required; otherwise, it returns false.

Exceptions

IInvalidAttributeNameException
Thrown when the attribute name is invalid.

Example

// Call the isRequired method

boolean isReq = false;

String busAttribute = "AttributeName";

isReq = exampleBusObj.IisRequired (busAttribute);
if (isReq)

Iserialize()

Serializes the business object data using the IBM WebSphere InterChange server
serialization format.

Syntax

string Iserialize();

Parameters
None.

Return Values

A string that contains the serialized data for the business object.

Chapter 8. IBusinessObject interface 77

Example

// Call the serialize data method
IBusinessObject srcBO =
accessSession.IcreateBusinessObject ("Customer");

String serializedCustomer = scrB0.Iserialize();

IsetAttributes()

Sets attributes in a business object from serialized data in a specified MIME type.

Syntax

void IsetAttributes(string serializedData, string mimeType);

Parameters

serializedData The serialized data in the specified MIME type format.

mimeType The MIME type that identifies the external format of the serialized
data.

Return Values

None.

Exceptions

IMalFormedDataException
Thrown when the data is not formatted correctly.

Example

// Establish data format type

String externalData = "incomingData"

String mimeType = "text/xml";
exampleBusObj.IsetAttributes (externalData, mimeType);

IsetAttributeToBlank()

Sets the attribute in a business object to a blank value.

Syntax

void IsetAttributeToBlank(string attributeName);

Parameters

attributeName The name of the attribute whose value is set to blank.

Return Values

None.

Exceptions

IInvalidAttributeNameException
Thrown when the attribute name is invalid.

78 Access Development Guide

Example

// Call the set-attribute-to-blank method
String attributeName = "checkType";
exampleBusObj.IsetAttributeToBlank(attributeName);

IsetAttributeTolgnore()

Sets an attribute in a business object to “ignore”.

Syntax

void IsetAttributeToIgnore(string attributeName);

Parameters

attributeName The name of the attribute whose value is set to “ignore”.

Return Values

None.

Exceptions

ITInvalidAttributeNameException
Thrown when the attribute name is invalid.

Example

// Set the Default Attribute to a CxIgnore value
String attributeName = "Ignore";
exampleBusObj.IsetAttributeToIgnore(attributeName);

IsetBooleanAttribute()

Sets an attribute to a boolean value.

Syntax

void IsetBooleanAttribute(string attributeName, boolean value);

Parameters

attributeName The name of the attribute whose value is set.

value The boolean value for the attribute.

Return Values

None.

Exceptions

ITnvalidAttributeTypeException
Thrown when the attribute is not a boolean type.

IInvalidAttributeNameException
Thrown when the attribute name is invalid.

Chapter 8. IBusinessObject interface

79

Example

// Call the Boolean method

String attributeName = "custID";

boolean value = false;
exampleBusObj.IsetBooleanAttribute(attributeName, false);

IsetBusinessObjectArrayAttribute()

Sets the value of an attribute that is a business object array (multiple cardinality).

Syntax

void IsetBusinessObjectArrayAttribute(string attributeName,
IBusinessObjectArray value);

Parameters

attributeName The name of the multiple-cardinality attribute whose value is set.

value The business object array that is the value for the attribute.

Return Values

None.

Exceptions

IInvalidAttributeTypeException
Thrown when the attribute is not a business object array.

IInvalidAttributeNameException
Thrown when the attribute name is invalid.

Example

// Call the BusinessObjectArray attribute method

String arrayAttribute = "CustomerAddress";

IBusinessObject CustomerAddress =
accessSession.IcreateBusinessObjectArray ("Address");

IBusinessObject exampleBO =
accessSession.IcreateBusinessObject ("Customer");

exampleB0.IsetBusinessObjectArrayAttribute(arrayAttribute,
CustomerAddress) ;

IsetBusinessObjectAttribute()

Sets the value of an attribute of single cardinality.

Syntax

void IsetBusinessObjectAttribute(string attributeName,
IBusinessObject value);

Parameters

attributeName The name of the single-cardinality attribute whose value is set.

value The business object that is the value for the attribute.

Return Values
None.

80 Access Development Guide

Exceptions

ITnvalidAttributeTypeException
Thrown when the attribute is not a business object.

ITnvalidAttributeNameException
Thrown when the attribute name is invalid.

Example

// Call the BusinessObject attribute method

String attributeName = "AccountStatus";

String value = "delgnt";
exampleBusObj.IsetBusinessObjectAttribute(attributeName, value);

IsetDateAttribute()

Sets an attribute to a date value.

Syntax

void IsetDateAttribute(string attributeName, string value);

Parameters

attributeName The name of the attribute whose value is set.

value The date value for the attribute, in a string format.

Return Values
None.

Exceptions

IInvalidAttributeTypeException
Thrown when the attribute is not a date.

ITInvalidAttributeNameException
Thrown when the attribute name is invalid.

Example

// Call the set Date attribute method

String dateAttribute = "DateofBirth";

String dateValue = "11/18/1966";
exampleBusObj.IsetDateAttribute(dateAttribute, dateValue);

IsetDoubleAttribute()

Sets an attribute to a double value.

Syntax

void IsetDoubleAttribute(string attributeName, double value);

Parameters

attributeName The name of the attribute whose value is set.

value The double value for the attribute.

Chapter 8. IBusinessObject interface

81

Return Values

None.

Exceptions

IInvalidAttributeTypeException
Thrown when the attribute is not double type.

IInvalidAttributeNameException
Thrown when the attribute name is invalid.

Example

// Call the double method

String doubleAttributeName = "Average";

double value = 5.75;
exampleBusObj.IsetDoubleAttribute(doubleAttributeName, value);

IsetFloatAttribute()

Sets an attribute to a float value.

Syntax

void IsetFloatAttribute(string attributeName, float value);

Parameters

attributeName The name of the attribute whose value is set.

value The float value for the attribute.

Return Values

None.

Exceptions

ITInvalidAttributeTypeException
Thrown when the attribute is not float type.

IInvalidAttributeNameException
Thrown when the attribute name is invalid.

Example

// Call the Float method

String floatAttributeName "FloatAttributeName";

float value = 0.999;
exampleBusObj.IsetFloatAttribute(floatAttributeName, value);

IsetintAttribute()

Sets an attribute to an int value.

Syntax

void IsetIntAttribute(string attributeName, long value);

82 Access Development Guide

Parameters

attributeName The name of the attribute whose value is set.

value A Tong value for the integer attribute.

Return Values

None.

Exceptions

IInvalidAttributeTypeException
Thrown when the attribute is not an integer type.

ITInvalidAttributeNameException
Thrown when the attribute name is invalid.

Example

// Call the int method

String intAttribute = "CustomerNumber";

int value = 5002;
exampleBusObj.IsetIntAttribute(intAttribute, value);

IsetLongTextAttribute()

Sets an attribute to a Tongtext value.

Syntax

void IsetLongTextAttribute(string attributeName, string value);

Parameters

attributeName The name of the attribute whose value is set.

value The value for the attribute, in string format.

Return Values

None.

Exceptions

ITInvalidAttributeTypeException
Thrown when the attribute is not Tongtext type.

IInvalidAttributeNameException
Thrown when the attribute name is invalid.

Example

// Call the LongText method

String TongTextAttributeName = "Description";

String value = "A very long text"
exampleBusObj.IsetLongTextAttribute(longTextAttributeName, value);

IsetStringAttribute()

Sets an attribute to a string value.

Chapter 8. IBusinessObject interface

Syntax

void IsetStringAttribute(string attributeName, string value);

Parameters

attributeName The name of the attribute whose value is set.

value The string value for the attribute.

Return Values
None.

Exceptions

ITnvalidAttributeTypeException
Thrown when the attribute is not string type.

ITnvalidAttributeNameException
Thrown when the attribute name is invalid.

Example

// Call the String method

String stringAttribute = "CustomerName";

String value = "Greatest Customer";
exampleBusObj.IsetStringAttribute(stringAttribute, value);

IsetVerb()

Sets the verb for the business object.
Syntax

void IsetVerb(string verb);
Parameters

verb The verb for the business object
Return Values

None.

Exceptions

IInvalidVerbException
Thrown when the verb is not supported by the business object.

Example

// Set the verb
String verb = "Create";
exampleBusObj.IsetVerb(verb);

ItoExternalForm()

Serializes the business object data into an external format of the specified MIME
type.

84 Access Development Guide

Syntax

string ItoExternalForm(string mimeType);

Parameters

mimeType The MIME type (of the access client) to convert the business object
to.

Return Values

A string that contains the serialized version of the business object, in the specified
MIME type.

Exceptions

IMaTFormedDataException
Thrown when the conversion runs into an error.

Notes

The ItoExternalForm() method invokes a data handler, passing it the MIME type
of the serialized data. The data handler parses and converts the InterChange Server
business object into serialized data of the requested MIME type, returning the
serialized data to the access client. The format of the serialized data must be of a
type that IBM WebSphere InterChange Server Software supports or a custom data
handler you have written. For more information, see the Data Handler Guide.

Example

// Serialize data into html
String mimeType = "text/html");
String htmldata = exampleBusObj.ItoExternalForm(mimeType);

ItoString()

Returns the dump o f the business object in the WebSphere InterChange Server
broker serialization format.

Syntax

string ItoString();

Parameters
None.

Return Values

A string that contains the serialized data in an IBM WebSphere InterChange
Server-compatible format.

Example

// Convert to IBM format
String stringBusObj;
stringBusObj = exampleBusObj.ItoString();

Chapter 8. IBusinessObject interface 85

86 Access Development Guide

Chapter 9. IBusinessObjectArray interface

The IBusinessObjectArray interface provides methods to return a business object
an array, an array attribute or to set attributes or objects within an array. [Table 10
summarizes the methods of the IBusinessObjectArray interface.

Table 10. Member methods of the IBusinessObjectArray interface

Method Description Page

[duplicate() Returns a clone of the business object
array.

[[deleteBusinessObjectAtIndex()| Deletes the business object at the B
specified index of the business object
array.

[[zetBusinessObijectAtIndex() Retrieves a business object at the 38
given index of the business object
array.

Returns the size of the business object [8§]
array.

[removeAllElements() Removes all the elements (business
objects) in the business object array.

[[setBusinessObject() Sets the business object at the end of
the business object array.

[[setBusinessObjectAtIindex()| Sets the business object at the @
specified index of the business object
array.

Iduplicate()

Returns a clone of the business object array.

Syntax

IBusinessObjectArray Iduplicate();

Parameters

None.

Return Values

An IBusinessObjectArray object that contains the duplicate business object array.

Exceptions
ICxAccessError Thrown when the business object array cannot be
accessed.
Example

The following example duplicates sourceCustomer in order to create destCustomer.

IBusinessObjectArray srcBOArray =
accessSession.IcreateBusinessObjectArray ("Customer");
IBusinessObjectArray destBOArray = scrBOArray.Iduplicate();

© Copyright IBM Corp. 1999, 2004 87

IdeleteBusinessObjectAtindex()

Deletes the business object at the specified index of the business object array.

Syntax

void IdeleteBusinessObjectAtIndex(long index);
Parameters

index The index in the business object array of the business object to delete.
Return Values

None.

Exceptions

IInvalidIndexException
Thrown when the index is invalid.

Example
//Delete the business object
long index = 5;
exampleBusObjArray.IdeleteBusinessObjectAtIndex (index);

IgetBusinessObjectAtindex()

Retrieves a business object at the given index of the business object array.

Syntax

IBusinessObject IgetBusinessObjectAtIndex(long index);

Parameters

index The index in the business object array of the business object to retrieve.

Return Values

An IBusinessObject object that contains the business object at the specified index
of the business object array.

Exceptions

IInvalidIndexException
Thrown when the index is invalid.

Example

// call the get business object at index method

IBusinessObject aBusinessObject = null;

long index = 1;

aBusinessObject = exampleBusObjArray.IgetBusinessObjectAtIndex(index);

IgetSize()

Returns the size of the business object array.

88 Access Development Guide

Syntax

long IgetSize();

Parameters
None.

Return Values

An integer to indicate the number of elements (business objects) in the business
object array.

Example

// get the array size
long = arraySize = 0;
arraySize = exampleBusObjArray.IgetSize();

IremoveAllElements|()

Removes all the elements (business objects) in the business object array.

Syntax

void IremoveAl1ETements()

Parameters

None.

Return Values
None.

Example

// remove array elements
exampleBusObjArray.IremoveAl1Elements();

IsetBusinessObiject()

Sets the business object at the end of the business object array.

Syntax

void IsetBusinessObject(IBusinessObject value);

Parameters

value The business object to set at the end of the array.

Return Values

None.

Exceptions

IInvalidBusinessObjectTypeException
Thrown when the business object is not supported.

Chapter 9. IBusinessObjectArray interface

89

Example

// Set the business object at the end of the array

IBusinessObject srcBO = accessSession.IcreateBusinessObject(
"PayableNetChange");

exampleBusObjArray.IsetBusinessObject(srcB0);

IsetBusinessObjectAtindex()

Sets the business object at the specified index of the business object array.

Syntax

void IsetBusinessObjectAtIndex(long index, IBusinessObject inObJj);

Parameters

index The index in the business object array.

inObj The business object to be placed in the array.

Exceptions

IInvalidIndexException
Thrown when the index is invalid.

IInvalidBusinessObjectTypeException
Thrown when the business object type is not supported by the business
object array.

Example

// Set the business object at the index

long index = 1;

IBusinessObject aBusObj = accessSession.IcreateBusinessObject (
"PayableNetChange");

exampleBusObjArray.IsetBusinessObjectAtIndex(index, aBusObj);

90 Access Development Guide

Chapter 10. Server Access Interface exceptions

This chapter describes the Server Access Interface exceptions. The exceptions
thrown by methods of the Server Access Interface are subclasses of the following
exception class:

org.omg.CORBA.UserException

Note: This UserException class is external class. It is not an IBM Crosswords
exception class. Please consult the IBM Java ORB documentation for the
members and methods of UserException.

All Server Access Interface exceptions contain a string error message member
called IerrorMessage.

able 11| summarizes the exceptions of the Server Access Interface.

Table 11. Exceptions summary

Exception Page

[AttributeBlankExceptior|
[AttributeNotSetException|
[CxAccessErroy
[ExecuteCollaborationErroy
[Invalid AttributeNameException|
[Invalid Attribute TypeException|
[InvalidBusinessObijectTypeException|
[InvalidIndexException|

[Invalid VerbException|
[MalFormedDataException|
[ValueNotSetException|
[VerbNotSetException|

1
o1
o1
02
o2
o2
X
X
X
3]
3]
p3]

IAttributeBlankException

This exception is thrown when the attribute contains a blank value.

Members

string IerrorMessage;

IAttributeNotSetException

This exception is thrown when the attribute does not contain a value.

Members

string IerrorMessage;

ICxAccessError

This exception is thrown when an object cannot be accessed.

© Copyright IBM Corp. 1999, 2004 91

Members

string IerrorMessage;

IExecuteCollaborationError

This exception is thrown when execution of a collaboration fails.

Members

string IerrorMessage;
long status;

Notes

The two following methods, which request execution of a collaboration, can throw
the IExecuteCollaborationError exception:

+ [lexecuteCollaboration()|

+ |lexecuteCollaborationExtFmt()|

This exception contains a public int variable called status to indicate the details of
when the exception occurred. The Server Access Interface provides execution-status
constants to represent the possible values of this status variable. The
execution-status constants for this exception are listed in

Table 12. Values for the |IExecuteCollaborationError Status

Constant Name Description

UNKNOWNSTATUS The status of the call to
IexecuteCollaboration() or
IexecuteCollaborationExtFmt() method.

FATLEDTOREACHCOLLABORATION The access request did not reach the
collaboration.

FAILEDINEXECUTIONOFCOLLABORATION The access request failed while executing
the collaboration.

FAILEDINRETURNTOCLIENT The collaboration executed but an error

occurred while delivering the response to
the access client.

To obtain this value, dereference your exception variable as follows:
this_exception_name_caught.status

linvalidAttributeNameException

This exception is thrown when the attribute name is invalid.

Members

string IerrorMessage;

linvalidAttributeTypeException

This exception is thrown when the attribute type is invalid.

Members

string IerrorMessage;

92 Access Development Guide

linvalidBusinessObjectTypeException

This exception is thrown when the business object type does not match the
container.

Members

string IerrorMessage;

linvalidindexException

This exception is thrown when the index is invalid.

Members

string IerrorMessage;

linvalidVerbException

This exception is thrown when the verb is invalid.

Members

string IerrorMessage;

IMalFormedDataException

This exception is thrown when the data is malformed.

Members

string IerrorMessage;

IValueNotSetException

This exception is thrown when the attribute has no default value.

Members

string IerrorMessage;

IVerbNotSetException

This exception is thrown when the verb is not set.

Members

string IerrorMessage;

Chapter 10. Server Access Interface exceptions

93

94 Access Development Guide

Part 4. Appendixes

© Copyright IBM Corp. 1999, 2004

95

96 Access Development Guide

Appendix. Internationalization considerations

An internationalized access client is one that has been written in such as way that
it can be customized for a particular locale. A locale is the part of a user’s
environment that brings together information about how to handle data that is
specific to the end user’s particular country, language, or territory.

This section provides the following information on an internationalized access
client:

* |“What Is a locale?”]

* [“Designing an Access client for internationalization”|

What Is a locale?

A locale is the part of a user’s environment that brings together information about
how to handle data that is specific to the end user’s particular country, language,
or territory. The locale is typically installed as part of the operating system.

A locale provides the following information for the user environment:
* Cultural conventions according to the language and country (or territory)
— Data formats:

Dates: define full and abbreviated names for weekdays and months, as well
as the structure of the date (including date separator).

Numbers: define symbols for the thousands separator and decimal point, as
well as where these symbols are placed within the number.

Times: define indicators for 12-hour time (such AM and PM indicators) as
well as the structure of the time.

Monetary values: define numeric and currency symbols, as well as where
these symbols are placed within the monetary value.

— Collation order indicates how to sort data for the particular character code set
and language.

— String handling includes tasks such as letter “case” (upper case and lower
case) comparison, substrings, and concatenation.

Designing an Access client for internationalization

To use an access client in an internationalized context, take into account both
Locale and character-encoding considerations.

Locale considerations

To be internationalized, a access client must be coded to be locale-sensitive; that is,
its behavior must take the locale setting into consideration and perform the task
appropriate to that locale.

Typically the access client should follow these locale-sensitive design principles:

* The text of any error, status, and trace messages should be isolated from the
application-specific component in a message file and translated into the
language of the locale.

© Copyright IBM Corp. 1999, 2004 97

+ Sorting or collation of data uses a collation order appropriate for the language
and country of the locale.

* String processing (such as comparison, substrings, and letter case) is appropriate
for characters in the locale’s language.

* Formats of dates, numbers, and times are appropriate for the locale.

Character-Encoding
The Server Access Interface uses UCS-2, a form of Unicode. Data that the access

client transfers to the Server Access Interface must be use Unicode
character-encoding.

98 Access Development Guide

Index

Special characters Business object (continued)

] setting value of 62, 80, 87, 89, 90
"Ignore” attribute value 62, 76, 79 Business object array

class for 87
creating 22, 53, 54

A deleting element from 87, 88, 89
Access client 3,21, 25 determining size of 87, 88
creating access session 21, 51 duplicating 87
development environment 11 releasing resources of 53, 59
development process 6, 7 retrieving element from 87, 88
issuing access request 4, 21 retrieving value of 61
runtime environment 12 setting value of 62, 80, 87, 89, 90
sample 8,11, 29, 49 Business object definition 53, 61, 73

Access request 3, 21
Access response 4, 23

Access session 25 C
closir}g 24,51, 52 Call-triggered flow 3, 15, 20, 21
creating 21, 51 Cardinality 62, 75
AccessInterfaces.idl file 6, 11 Collaboration 3

Application-specific information 61, 64 configuring for call-triggered flow 15, 20

Attribute executing 22, 23, 53, 56, 57
application-specific information 61, 64
cardinality 62, 75

determining number of 61, 65 D
name of 61, 65
required 62, 77 Data handler 4
type 61, 66 API for 9
Attribute value invoking 55, 58, 85
"ignore” 62,76, 79 meta-object 5, 6, 11, 33
blank 62, 75, 78 sample 31, 39
boolean 61, 62, 67, 79 specifying 23
business object 61, 62, 68, 69, 80 DataHandler class 9
business object array 61, 62, 80 Default attribute value 61, 70
comparing 61, 63, 64 Development process 6, 7
date 61, 62, 69, 81
default 61, 70
double 61, 62, 70, 81 E
float 61, 62,71, 82 E-Business Development Kit (EDK) 8
integer 61, 62, 72, 82 Exception 91, 93
long text 61, 62, 73, 83 IAttributeBlankException 91
retrieving 61, 67 IAttributeNotSetException 91
serialized = 62, 78 ICxAccessError 91

string 61, 62, 73, 83 IExecuteCollaborationError 92

IInvalidAttributeNameException 92

IInvalid AttributeTypeException 92
B IInvalidBusinessObjectTypeException 93
Blank attribute value 62, 75, 78 IInvalidVerbException 93
Business object IMalFormedDataException 93
class for 61 InvalidIndexException 93
comparing 61, 63, 64 IValueNotSetException 93
converting from serialized data 23, 53, 55 IVerbNotSetException 93

converting to serialized data 62, 84
creating 22, 23, 53, 55

deleting 87, 88, 89 F

duplicating 61, 62 FAILEDINEXECUTIONOFCOLLABORATION execution-status
operating on 22, 23 constant 57, 58, 92

receiving as access response 23 FAILEDINRETURNTOCLIENT execution-status constant 57,
releases resources of 53, 59 58, 92

retrieving value of = 61, 68, 69, 87, 88 FAILEDTOREACHCOLLABORATION execution-status
sending as access request 21 constant 57, 58, 92

serializing 62, 84

© Copyright IBM Corp. 1999, 2004 99

I lequals() method 63
lequalsKeys() method 64

TAccessEngine interface 9, 21, 25, 51, 52 IexecuteCollaboration() method 22, 25, 56
IcloseSession() 52 IExecuteCollaborationError exception 92
IgetInterchangeAccessSession() 51 IexecuteCollaborationExtFmt() method 23, 25, 57
method summary 51 IgetAppSpecificnfo() method 64

IAttributeBlankException exception 91 IgetAttributeCount() method 65

IAttributeNotSetException exception 91 IgetAttributeName() method 65

IBusinessObject interface 9, 22, 61, 87 IgetAttributeType() method 66
Iduplicate() 62 IgetAttributeTypeAtIndex() method 66
lequals() 63 IgetBooleanAttribute() method 67
lequalsKeys() 64 IgetBusinessObjectArrayAttribute() method 68
IgetAppSpecificInfo() 64 IgetBusinessObjectAtIndex() method 88
IgetAttributeCount() 65 IgetBusinessObjectAttribute() method 68, 69
IgetAttributeName() 65 IgetDateAttribute() method 69
IgetAttributeType() 66 IgetDefaultValue() method 70
IgetAttributeTypeAtIndex() 66 IgetDoubleAttribute() method 70
IgetBooleanAttribute() 67 IgetFloatAttribute() method 71, 72
IgetBusinessObjectArrayAttribute() 68 IgetintAttribute() method 72
IgetBusinessObjectAttribute() 68, 69 IgetInterchangeAccessSession() method 21, 25, 51
IgetDateAttribute() 69 IgetLongTextAttribute() method 73
IgetDefaultValue() 70 IgetName() method 73
IgetDoubleAttribute() 70 IgetSize() method 88
IgetFloatAttribute() 71, 72 IgetStringAttribute() method 73
IgetIntAttribute() 72 IgetVerb() method 74

IgetLongTextAttribute() 73 IInterchangeAccessSession interface 9, 21, 53, 60
IgetName() 73 IcreateBusinessObject() 53
IgetStringAttribute() 73 IcreateBusinessObjectArray() 54

IgetVerb() 74 IcreateBusinessObjectFrom() 55

I%SAttributeMultipleCardinality() 75 IcreateBusinessObjectWithVerb() 55
I%sBlankValue() 75 IexecuteCollaboration() 56
lisIgnoreValue() 76 IexecuteCollaborationExtFmt() 57

lisKey() 76

lisRequired() 77

Iserialize() 77

IsetAttributes() 78
IsetAttributeToBlank() 78
IsetAttributeTolgnore() 79
IsetBooleanAttribute() 79
IsetBusinessObjectArrayAttribute() 80

IreleaseBusinessObject() 59

IreleaseBusinessObjectArray() 59

method summary 53
IInvalid AttributeNameException exception 92
[Invalid AttributeTypeException exception 92
IInvalidBusinessObjectTypeException exception 93
IInvalidIndexException exception 93
IInvalidVerbException exception 93

IsetBusinesszjectAttribute() 80 lisAttributeMultipleCardinality() method 75
IsetDateAttribute() 81 lisBlankValue() method 75
IsetDoubleAttribute() 81 lisIgnoreValue() method 76
IsetFloatAttribute() 82 lisKey() method 76

IsetIntAttribute() 82 lisRequired() method 77

IsetLongTextAttribute() 83
IsetStringAttribute() 83
IsetVerb() 84
ItoExternalForm() 84
ItoString() 85

method summary 61

IMalFormedDataException exception 93
InterChange Server

connecting to 21, 51

disconnecting from 51, 52

OAport configuration parameter 13
Interoperable object reference (.ior) file 12, 31

IBusinessObjectArray interface 9, 22, 54, 87, 90 IreleaseBusinessObject() method 24, 59
IdeleteBusinessObjeCtAtIndex() 88 IreleaseBusinessObjectArray() method 24, 59
Iduplicate() 87 IremoveAllElements() method 89
IgetBusinessObjectAtIndex() 88 Iserialize() method 77
IgetSize() 88 IsetAttributes() method 78
IremongllElerpentS() 89 IsetAttributeToBlank() method 78
ISe’EBUS}HQSSOb].eCt() 89 IsetAttributeTolgnore() method 79
IsetBusinessObjectAtIndex() 90 IsetBooleanAttribute() method 79
methOfi summary 87 IsetBusinessObject() method 89

IcloseSession() method 24, 52 IsetBusinessObjectArrayAttribute() method 80

IcreateBusinessObject() method 22, 53 IsetBusinessObjectAtIndex() method 90

IcreateBusinessObjectArray() method = 22, 54 IsetBusinessObjectAttribute() method 80

IcreateBusinessObjectFrom() method 22, 25, 55 IsetDateAttribute() method 81

IcreateBusinessObjectWithVerb() method 22, 55 IsetDoubleAttribute() method 81

ICxAccessError exception 91 IsetFloatAttribute() method 82

IdeleteBusinessObjectAtIndex() method 88 IsetIntAttribute() method 82

Iduplicate() method 62, 87

100 Access Development Guide

IsetLongTextAttribute() method 83
IsetStringAttribute() method 83
IsetVerb() method 84
ItoExternalForm() method 84
ItoString() method 85
IValueNotSetException exception 93
IVerbNotSetException exception 93

J

Java Connector Development Kit (JCDK) 9

K

Key attribute value 61, 62, 64, 76

L

Locale 97

M

MIME type 58, 62, 78, 84
MO_Server_DataHandler meta-object 5, 6, 11, 33

S

Serialized data
converting 4
creating business object from 53, 55
creating from business object 62, 84
receiving as access response 23
sending as access request 23, 53, 57
setting attributes from 62, 78

Server Access Interface 3, 6
development environment 11
installing 11

Server Access Interface (server-side)
converting serialized data 23
obtaining access to 21
returning business object 23
returning serialized data 23

Server Access Interface API 9
exceptions 91
IAccessEngine 9, 51
IBusinessObject 9, 61
IBusinessObjectArray 9, 87
IInterchangeAccessSession 9, 53

Servlet 24, 40

System Manager 15

T

Triggering access call 4, 21, 22
Triggering access data 4, 21, 23, 53, 56, 57

U

UNKNOWNSTATUS execution-status constant 57, 58, 92

\'

Verb
retrieving 62, 74
setting 23, 53, 55, 58, 62, 84

Index

101

102 Access Development Guide

Notices

IBM may not offer the products, services, or features discussed in this document in
all countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or program(s) described in this publication
at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Burlingame Laboratory Director
IBM Burlingame Laboratory
577 Airport Blvd., Suite 800

© Copyright IBM Corp. 1999, 2004 103

Burlingame, CA 94010
US.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not necessarily tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples may include

the names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

Programming interface information

Programming interface information, if provided, is intended to help you create
application software using this program.

General-use programming interfaces allow you to write application software that
obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and service marks

The following terms are trademarks or registered trademarks of International
Business Machines Corporation in the United States or other countries, or both:

104 Access Development Guide

IBM

the IBM logo
AIX
CrossWorlds
DB2

DB2 Universal Database
Domino
Lotus

Lotus Notes
MQIntegrator
MQSeries
Tivoli
WebSphere

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

MMX, Pentium, and ProShare are trademarks or registered trademarks of Intel
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Other company, product or service names may be trademarks or service marks of
others.

JAVA.

IBM WebSphere InterChange Server v4.2.2, IBM WebSphere Business Integration
Toolset v4.2.2

Notices 105

	Contents
	About this document
	Audience
	Prerequisites for this document
	How to use this manual
	Related documents
	Typographic conventions

	New in this release
	New in WebSphere InterChange Server version 4.2.2
	February 2004
	December 2003

	New in release 4.1.1
	New in release 4.1
	New in release 4.0.1
	New in release 4.0.0

	Part 1. Getting started
	Chapter 1. Introduction to the Server Access Interface
	Call-triggered flow
	The role of IBM WebSphere business integration data handlers
	Call-triggered flow example
	Overview of access-client development procedure
	Tools for access-client development
	E-Business development kit
	Sample access client
	IBM WebSphere Server Access Interface API
	IBM WebSphere data handler API
	IBM WebSphere Java connector development kit

	Chapter 2. Setting up the access-client environments
	Setting up the development environment
	Installing IBM WebSphere Server Access interface
	Compiling the access client
	Setting up the run-time environment
	Generating a persistent .ior file
	Locating the .ior file

	Toggling event sequencing for access requests

	Chapter 3. Configuring collaborations for call-triggered flows
	Using System Manager to implement a call-triggered flow option
	Designating collaboration ports for call-triggered flows
	Associating business objects and maps
	Flow direction: Into the collaboration
	Flow direction: Out of the collaboration
	Dragging a business object
	Configuring collaboration object properties

	Chapter 4. Implementing an access client
	Creating an access session
	Issuing the access request
	Sending a business object
	Creating the business object
	Operating on the business object
	Requesting execution of the collaboration

	Sending serialized data
	Locales and encoding

	Obtaining the access response
	Closing the access session
	An example of implementing a call-triggering flow

	Part 2. Example
	Chapter 5. A sample servlet with HTML data-handling capabilities
	The scenario
	Running the sample on a web server
	Sample HTML data handler
	Data-handler meta-object
	Sample code for HTML data handler

	Sample Java code—ATP servlet

	Part 3. Server Access Interface API reference
	Chapter 6. IAccessEngine interface
	IgetInterchangeAccessSession()
	IcloseSession()

	Chapter 7. IInterchangeAccessSession interface
	IcreateBusinessObject()
	IcreateBusinessObjectArray()
	IcreateBusinessObjectFrom()
	IcreateBusinessObjectWithVerb()
	IexecuteCollaboration()
	IexecuteCollaborationExtFmt()
	IreleaseBusinessObject()
	IreleaseBusinessObjectArray()
	setLocale(String)

	Chapter 8. IBusinessObject interface
	Iduplicate()
	Iequals()
	IequalsKeys()
	IgetAppSpecificInfo()
	IgetAttributeCount()
	IgetAttributeName()
	IgetAttributeType()
	IgetAttributeTypeAtIndex()
	IgetBooleanAttribute()
	IgetBOAppSpecification()
	IgetBusinessObjectArrayAttribute()
	IgetBusinessObjectAttribute()
	IgetDateAttribute()
	IgetDefaultValue()
	IgetDoubleAttribute()
	IgetFloatAttribute()
	IgetICSVersion()
	IgetIntAttribute()
	IgetLongTextAttribute()
	IgetName()
	IgetStringAttribute()
	IgetVerb()
	IisAttributeMultipleCardinality()
	IisBlankValue()
	IisIgnoreValue()
	IisKey()
	IisRequired()
	Iserialize()
	IsetAttributes()
	IsetAttributeToBlank()
	IsetAttributeToIgnore()
	IsetBooleanAttribute()
	IsetBusinessObjectArrayAttribute()
	IsetBusinessObjectAttribute()
	IsetDateAttribute()
	IsetDoubleAttribute()
	IsetFloatAttribute()
	IsetIntAttribute()
	IsetLongTextAttribute()
	IsetStringAttribute()
	IsetVerb()
	ItoExternalForm()
	ItoString()

	Chapter 9. IBusinessObjectArray interface
	Iduplicate()
	IdeleteBusinessObjectAtIndex()
	IgetBusinessObjectAtIndex()
	IgetSize()
	IremoveAllElements()
	IsetBusinessObject()
	IsetBusinessObjectAtIndex()

	Chapter 10. Server Access Interface exceptions
	IAttributeBlankException
	IAttributeNotSetException
	ICxAccessError
	IExecuteCollaborationError
	IInvalidAttributeNameException
	IInvalidAttributeTypeException
	IInvalidBusinessObjectTypeException
	IInvalidIndexException
	IInvalidVerbException
	IMalFormedDataException
	IValueNotSetException
	IVerbNotSetException

	Part 4. Appendixes
	Appendix. Internationalization considerations
	What Is a locale?
	Designing an Access client for internationalization
	Locale considerations

	Character-Encoding

	Index
	Notices
	Programming interface information
	Trademarks and service marks

