
Web services

Contents

1. WebSphere MQ transport for SOAP
1.1. Introduction

1.1.1. Integration of SOAP and WebSphere MQ
1.1.2. Implementation details for .NET Framework 1 and 2, and Axis 1.4
1.1.3. Web services reliable messaging

1.2. Installing WebSphere MQ Web transport for SOAP
1.3. Verifying the WebSphere MQ transport for SOAP
1.4. Developing WebSphere MQ Web services

1.4.1. Developing a JAX-RPC service for WebSphere MQ transport for SOAP using Eclipse
1.4.2. Developing a .NET 1 or 2 service using Visual Studio 2008
1.4.3. Developing a JAX-WS EJB Web service for W3C SOAP over JMS

1.5. Developing WebSphere MQ Web service clients for WebSphere MQ transport for SOAP
1.5.1. Developing a JAX-RPC client for WebSphere transport for SOAP using Eclipse
1.5.2. Developing a JAX-WS client for WebSphere transport for SOAP using Eclipse
1.5.3. Developing a .NET 1 or 2 client for WebSphere transport for SOAP using Microsoft Visual Studio 2008

1.6. Deploying Web services using the WebSphere MQ transport for SOAP
1.6.1. Deploying to Axis 1.4 using amqwdeployWMQService
1.6.2. Deploying to .NET Framework 1 and 2
1.6.3. Deploying to CICS Transaction Server
1.6.4. Deploying to WebSphere Application Server
1.6.5. Configuring WebSphere Application Server to use W3C SOAP over JMS
1.6.6. Deploying to WebSphere ESB and Process Server

1.7. Deploying Web service clients
1.7.1. Deploying to Axis 1.4
1.7.2. Deploying to Axis2
1.7.3. Deploying to Axis2 using W3C SOAP over JMS
1.7.4. Deploying to .NET Framework 1 and 2

1.8. Connect an Axis2 client to a JAX-WS service using W3C SOAP over JMS
1.9. Reference

1.9.1. amqSOAPNETListener: Websphere MQ SOAP Listener for .NET Framework 1 or 2
1.9.2. amqswsdl: generate WSDL for .NET service

1.9.3. amqwclientconfig: create client deployment descriptor
1.9.4. amqwdeployWMQService: deploy Web service utility

1.9.4.1. Output files
1.9.4.2. Usage notes

1.9.5. amqwRegisterdotNet: register WebSphere MQ transport for SOAP to .NET
1.9.6. Apache software license
1.9.7. MQMD SOAP settings
1.9.8. MQRFH2 SOAP settings
1.9.9. runivt: installation verification test
1.9.10. Secure WebSphere MQ Web services

1.9.10.1. SSL and the WebSphere MQ transport for SOAP
1.9.10.2. SSL connection factory parameters in the WebSphere MQ Web services URI

1.9.11. SimpleJavaListener: Websphere MQ SOAP Listener for Axis 1.4
1.9.12. SOAP listeners
1.9.13. SOAP senders

1.9.13.1. Use a channel definition table
1.9.14. Transactions

1.9.15. WebSphere MQ transport for SOAP URI
1.9.15.1. The Nojndi mechanism

1.9.16. W3C SOAP over JMS URI
1.9.17. WebSphere MQ transport for SOAP Web services
1.9.18. WebSphere MQ transport for SOAP Web service clients

2. WebSphere MQ bridge for HTTP
2.1. Introduction to WebSphere MQ bridge for HTTP
2.2. Installing, configuring, and verifying

2.2.1. Example: WebSphere Application Server V6.1.0.9
2.2.2. Configuring WebSphere MQ Bridge for HTTP

2.2.2.1. Configuring WebSphere MQ Bridge for HTTP to implement diagnostic tracing
2.2.2.2. Configuring your connection factory

2.3. Publish/subscribe
2.4. Running the samples
2.5. Security considerations
2.6. Reference

2.6.1. HTTP DELETE
2.6.2. HTTP GET
2.6.3. HTTP POST
2.6.4. HTTP headers

2.6.4.1. class: x-msg-class entity-header
2.6.4.2. Content-Length: HTTP entity-header
2.6.4.3. Content-Location: HTTP entity-header
2.6.4.4. Content-Range: HTTP entity-header
2.6.4.5. Content-Type: HTTP entity-header
2.6.4.6. correlId: x-msg-correlId entity-header
2.6.4.7. encoding: x-msg-encoding entity-header
2.6.4.8. expiry: x-msg-expiry entity-header
2.6.4.9. format: x-msg-format entity-header
2.6.4.10. msgId: x-msg-msgId entity-header
2.6.4.11. persistence: x-msg-persistence entity-header
2.6.4.12. priority: x-msg-priority entity-header

2.6.4.13. range: x-msg-range request-header
2.6.4.14. replyTo: x-msg-replyTo entity-header
2.6.4.15. Server: HTTP response-header
2.6.4.16. require-headers: x-msg-require-headers request-header
2.6.4.17. timestamp: x-msg-timestamp entity-header
2.6.4.18. usr: x-msg-usr entity-header
2.6.4.19. wait: x-msg-wait request-header

2.6.5. HTTP return codes

Page 1 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

2.6.5.1. HTTP 200: OK
2.6.5.2. HTTP 204: No content
2.6.5.3. MQHTTP0001: No connection factory specified in the Servlet context
2.6.5.4. MQHTTP0001: Could not get connection manager for queueOr Topic using the JNDI name of jndiNameTried
2.6.5.5. MQHTTP40001: Reserved
2.6.5.6. MQHTTP40002: URI is not valid for WebSphere MQ transport for HTTP
2.6.5.7. MQHTTP40003: URI is not valid. @qmgr is only valid on POST
2.6.5.8. MQHTTP40004: Invalid Content-Type specified
2.6.5.9. MQHTTP40005: Bad message header value
2.6.5.10. MQHTTP40006: Header_name is not a valid request-header
2.6.5.11. MQHTTP40007: Header_name is only valid on ...
2.6.5.12. MQHTTP40008: Header_name maximum length is ...

2.6.5.13. MQHTTP40009: Header field header_field is not valid for ...
2.6.5.14. MQHTTP40010: Message with Content-Type content_type could not be parsed
2.6.5.15. MQHTTP40301: You are forbidden from accessing ...
2.6.5.16. MQHTTP40302: You are forbidden from ...
2.6.5.17. MQHTTP40401: The destination destination_name could not be found
2.6.5.18. MQHTTP40501: Method method_namenot allowed
2.6.5.19. MQHTTP41301: The message being posted was too large for the destination
2.6.5.20. MQHTTP40401: The destination destination_name could not be found
2.6.5.21. MQHTTP41501: The media type character set is unsupported
2.6.5.22. MQHTTP41502: Media-type media-type is not supported ...
2.6.5.23. MQHTTP41503: Media-type media-type is not supported ...
2.6.5.24. MQHTTP41701: The HTTP header Expect is not supported
2.6.5.25. MQHTTP50001: There has been an unexpected problem ...
2.6.5.26. MQHTTP50201: An error has occurred between the HTTP bridge and the queue manager
2.6.5.27. MQHTTP50401: Message retrieval timed out
2.6.5.28. MQHTTP50501: HTTP 1.1 and upwards ...

2.6.6. Supported message types
2.6.7. URI Format

WebSphere MQ transport for SOAP and WebSphere MQ bridge for HTTP

WebSphere® MQ provides two ways of working with Web services. WebSphere MQ transport for SOAP is an alternative to HTTP for transferring SOAP
messages. WebSphere MQ bridge for HTTP enables any HTTP Web client to communicate with WebSphere MQ using the HTTP GET, POST and
DELETE verbs.

WebSphere MQ transport for SOAP
The WebSphere MQ transport for SOAP provides a JMS transport for SOAP. The WebSphere MQ transport for SOAP is also integrated into other
environments such as Microsoft Windows Communication Foundation, WebSphere Application Server, and CICS® Transaction Server.

WebSphere MQ bridge for HTTP
With WebSphere MQ bridge for HTTP, client applications can exchange messages with WebSphere MQ without the need to install a WebSphere
MQ client. You can call WebSphere MQ from any platform or language with HTTP capabilities.

This build: January 26, 2011 11:09:34

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts20121_

1. WebSphere MQ transport for SOAP

The WebSphere® MQ transport for SOAP provides a JMS transport for SOAP. The WebSphere MQ transport for SOAP is also integrated into other
environments such as Microsoft Windows Communication Foundation, WebSphere Application Server, and CICS® Transaction Server.

Introduction to WebSphere MQ transport for SOAP
The WebSphere MQ transport for SOAP provides a JMS transport for SOAP. The WebSphere MQ SOAP sender and listener provide a means to

call Web services. The listener supports services hosted by .NET Framework 1, .NET Framework 2, and Axis 1.4. The sender supports Web
services clients running on .NET Framework 1, .NET Framework 2, Axis 1.4 and Axis2. Clients can be either a WebSphere MQ server or client
application. The WebSphere MQ transport for SOAP is also integrated into other environments such as Microsoft Windows Communication
Foundation, WebSphere Application Server, and CICS Transaction Server.

Installing WebSphere MQ Web transport for SOAP
Use these instructions to install the WebSphere MQ Web transport for SOAP. The installation creates tools to run Web service clients or services
using WebSphere MQ as the SOAP transport. The tools are used in the .NET Framework 1, .NET 2, Axis 1.4, or Axis2 SOAP environments.

Verifying the WebSphere MQ transport for SOAP
Verify the WebSphere MQ transport for SOAP using the runivt command. The command runs a number of demonstration applications and
ensures that the environment is correctly set up after installation.

Developing Web services for WebSphere MQ transport for SOAP
Use your normal Web service development environment to develop services for use with the WebSphere MQ transport for SOAP.

Developing WebSphere MQ Web service clients for WebSphere MQ transport for SOAP
Use your normal development environment to develop Web service clients for use with the WebSphere MQ transport for SOAP.

Deploying Web services using the WebSphere MQ transport for SOAP
Deploy a Web service to one of a number of different server environments and connect to it using WebSphere MQ transport for SOAP.

Deploying Web service clients to use WebSphere MQ transport for SOAP
Deploy a Web service client to one of a number of different client environments and connect to a service using WebSphere MQ transport for

SOAP.

Connect an Axis2 client to a JAX-WS service using W3C SOAP over JMS and WebSphere Application Server

Page 2 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

When you complete this task you will have called a JAX-WS Web service running in WebSphere Application Server from an Axis2 client. The
Axis2 client and WebSphere Application Server use the W3C candidate recommendation for the SOAP over JMS protocol running on WebSphere
MQ. Use Eclipse Galileo and Rational® Application Developer to build the Web service client and Web service, respectively.

Reference
WebSphere MQ transport for SOAP reference information arranged alphabetically.

Parent topic: WebSphere MQ transport for SOAP and WebSphere MQ bridge for HTTP

This build: January 26, 2011 11:09:35

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts20000_

1.1. Introduction to WebSphere MQ transport for SOAP

The WebSphere® MQ transport for SOAP provides a JMS transport for SOAP. The WebSphere MQ SOAP sender and listener provide a means to call
Web services. The listener supports services hosted by .NET Framework 1, .NET Framework 2, and Axis 1.4. The sender supports Web services
clients running on .NET Framework 1, .NET Framework 2, Axis 1.4 and Axis2. Clients can be either a WebSphere MQ server or client application. The
WebSphere MQ transport for SOAP is also integrated into other environments such as Microsoft Windows Communication Foundation, WebSphere
Application Server, and CICS® Transaction Server.

The integration into Microsoft Windows Communication Foundation is part of the WebSphere MQ support for .NET Framework 3.

The WebSphere MQ transport for SOAP is a set of protocols and tools to transport of SOAP messages using JMS over WebSphere MQ. It is packaged
in different ways for different application environments as shown in Table 1.

Integration of the WebSphere MQ transport for SOAP into an application framework simplifies the development and deployment of Web services to
WebSphere MQ.

With additional WebSphere MQ SOAP components, you must interact directly with the WebSphere MQ SOAP components to develop and deploy
services. Use WebSphere MQ SOAP tools to configure Web services and Web service clients for deployment to WebSphere MQ.

In the integrated environments, development and deployment is simpler. You use the same tools for development and deployment as you would to
develop and deploy a SOAP HTTP Web service. You must still configure the WebSphere MQ queues, channels, and queue managers that you require
using WebSphere MQ tools.

You can mix and match WebSphere MQ SOAP clients and servers from any of these environments.

Benefits

The WebSphere MQ transport for SOAP offers existing WebSphere MQ users two principal benefits.

Using your WebSphere MQ network to connect existing Web services.

The services might be ones you have written, or services that are provided as interfaces to other packaged software applications you have
deployed.

The benefit comes from using your existing WebSphere MQ network to connect Web services. The WebSphere MQ transport has the advantage of
being a managed and reliable queued messaging service.

Writing new applications, or converting existing applications, to use SOAP rather than WebSphere MQ interfaces.

Typically, applications require a specific WebSphere MQ adapter to be developed to integrate with another application. Adapters have two parts:

the connector piece, that puts and gets messages to and from the transport, and the adapter piece that converts data to and from application-
specific formats. Integrating each pair of applications is a new challenge.

The benefit of SOAP comes from standardizing on SOAP for defining application interfaces, and then having a choice of transports. You do not need
to write application-specific adapters, and you can choose whether to use WebSphere MQ, or HTTP, as the connector. Which transport you choose
depends on what qualities of service and connectivity you require.

For existing SOAP over HTTP users, the benefit of WebSphere MQ transport for SOAP comes from using a managed and reliable asynchronous
transport. The benefits are twofold:

Truly asynchronous programming model for availability and performance.

By using an asynchronous client interface, you can write both short and long running request-reply applications. Long running request-reply
applications do not require both the client and service to be available at the same time. A long running request-reply client can be restarted
automatically to receive its reply when it is delivered.

A ready built managed network that is designed to be reliable and available.

By choosing WebSphere MQ as a transport, you are getting the advantage of using a managed network that provides reliable messaging.

In contrast, transports such as HTTP and FTP over TCP/IP are unmanaged. An unmanaged network is ideal for unpredictable connections: there are
fewer management tasks.

Table 1. WebSphere MQ transport for SOAP application environments

Integrated with additional

WebSphere MQ components

Integrated into a framework

Provided as part of

WebSphere MQ installation

.NET Framework 1, .NET Framework 2,

and Axis 1.4

Windows Communication Foundation (.NET

Framework 3)
Axis 2 (Client only)

Provided in another

software package

WebSphere Application Server

CICS Transaction Server 4.1

WebSphere ESB

WebSphere Process Server for

Multiplatforms

Page 3 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

Summary

WebSphere MQ transport for SOAP provides the following components:

� The SOAP/JMS transport binding is used in WSDL documents to bind a SOAP service to a JMS transport. The WebSphere MQ implementation of
the SOAP/JMS binding uses a URI that takes either of two forms:

WebSphere MQ transport for SOAP

jms:/queue?&Name=Value&Name=Value...

WebSphere MQ wire format for W3C candidate recommendation

jms:queue:qName?connectionFactory=connectQueueManager(qMgrName)&Name=Value&Name=Value...

� The mapping of a SOAP message onto a WebSphere MQ message.

� Two WebSphere MQ SOAP listeners to receive SOAP requests, one for Java and one for .NET Framework 1 or .NET Framework 2. The listeners
use .NET or Axis 1.4 to process the SOAP request.

� Two WebSphere MQ SOAP senders to create WebSphere MQ SOAP requests. Web services clients register with a sender to process jms: SOAP

requests.

� Integration with Windows Communication Foundation (WCF), sometimes known as .NET 3, to send and receive WebSphere MQ Transport for

SOAP messages.

� Integration of the client with Axis 2, sometimes known as JAX-WS, to send WebSphere MQ Transport for SOAP or W3C SOAP JMS messages.

� The command, amqwdeployWMQService creates development and run time components and scripts to deploy a Web service using the
WebSphere MQ transport for SOAP.

� Sample Java and .NET client and service code.

� A script to set the class path, and other utility scripts.

In the integrated environments the sender and listener are integrated into each environment, as are extensions to the development and deployment
tools.

Integration of SOAP and WebSphere MQ
The WebSphere MQ transport for SOAP extends SOAP, and Web services tools and run time, with WebSphere MQ as an alternative transport to
HTTP for SOAP. You do not need to modify existing Web services to use WebSphere MQ transport for SOAP as a transport. The transport uses a

custom URI format for SOAP/JMS. The W3C URI format for SOAP/JMS is supported in a limited way by Axis2 clients.

Implementation of WebSphere transport for SOAP on .NET Framework 1, .NET 2 and Axis 1.4
You might want to write your own WebSphere MQ SOAP sender and listener. Use the implementation of WebSphere MQ transport for SOAP
on .NET Framework 1, .NET Framework 2, and Axis 1.4 as a guide.

WebSphere MQ transport for SOAP and Web services reliable messaging
Web services reliable messaging is a protocol for reliably exchanging Web service requests and responses over an unreliable connection. It is

best-suited to solve problems of short-lived connection disruption.

Parent topic: WebSphere MQ transport for SOAP

Related concepts
Using WebSphere MQ custom channels for WCF

Related information
Configuring CICS to use the WebSphere MQ transport
Configuring JMS resources for the synchronous SOAP over JMS endpoint listener
How to connect to WebSphere MQ
Windows Communication Foundation

This build: January 26, 2011 11:10:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts21390_

1.1.1. Integration of SOAP and WebSphere MQ

The WebSphere® MQ transport for SOAP extends SOAP, and Web services tools and run time, with WebSphere MQ as an alternative transport to
HTTP for SOAP. You do not need to modify existing Web services to use WebSphere MQ transport for SOAP as a transport. The transport uses a
custom URI format for SOAP/JMS. The W3C URI format for SOAP/JMS is supported in a limited way by Axis2 clients.

An additional line of code has to be added to clients in the .NET Framework 1, .NET Framework 2, and Axis 1.4 environments. No additional code is
required in Axis 2 and Windows Communication Foundation (WCF) clients. The WebSphere MQ SOAP listener runs services in the .NET Framework 1,
.NET Framework 2, and Axis 1.4 environments. The WebSphere MQ transport for SOAP is integrated into some other application server
environments, including WCF, CICS, and WebSphere Application Server.

What is SOAP?

SOAP1 describes the standardized format of the messages and interaction protocols that applications use to exchange requests, replies, and
datagrams. SOAP is independent of the transport used to transfer the messages, and of the application environment that sends and receives the
messages. The W3C defines SOAP Version 1.2 succinctly:

SOAP Version 1.2 provides the definition of the XML-based information which can be used for exchanging structured and typed information between

peers in a decentralized, distributed environment.2.

To use SOAP it must be bound to a transport, such as HTTP, e-mail, or WebSphere MQ.

A SOAP protocol binding framework is the set of rules for carrying a SOAP message on top of another protocol, such as HTTP. SOAP Version 1.2 Part
2: Adjuncts (Second Edition) describes the SOAP HTTP binding.

The W3C candidate recommendation, 4 June 2009, SOAP over Java Message Service 1.0, describes the recommendation for the SOAP JMS binding.
As JMS is an API specification, and not a transport protocol, the JMS SOAP recommendation does not describe the wire-format of SOAP JMS

Page 4 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

messages. It describes the SOAP interaction protocols and the JMS API binding. Consequently, when using the JMS SOAP recommendation you must
still use the same JMS implementation for the SOAP client and the SOAP server. It does enable a SOAP JMS application to be run on any
implementation of JMS. A JMS implementation can be plugged into a J2EE application server, if both the server and the JMS implementation comply
with the JCA specification. WebSphere MQ JMS complies with the JCA specification and can be plugged into a compliant application server.

WebSphere MQ transport for SOAP binding is like the proposed W3C standard, but it is not the same. Its usage is described in the topic MQRFH2
SOAP settings. Unlike the W3C candidate recommendation, the SOAP binding is not formally specified. Effectively, it is the HTTP binding, and the
service address takes the form, jms:/queue?name=value&name=value..., rather than http://authority/path?query#fragment. jms: is not an

officially registered IANA URI scheme.

What is a Web service?

SOAP enables programs written in different languages, running on different platforms, to communicate using various transport protocols. SOAP is the
protocol specification. A Web service is an application that provides a service through a SOAP interface that can be accessed using internet protocols.

An important goal of SOAP is to provide services that clients can use easily. Once you have designed a client to use a service, you can program the
call to invoke the service without reference to external documentation. Service interfaces are described in XML, in a WSDL document. The query,
http://authority/path?wsdl, returns the WSDL description of a SOAP service.

Tip: When you deploy a Web service to use WebSphere MQ, also deploy the service to HTTP so that the standard WSDL query works.

Developing Web services

Web services have a client and a service part. The service is written first, either starting from the interface description in WSDL, or by following the
rules for writing the service class. Web service toolkits have utilities to generate WSDL from the interface definition of a class; for example
java2wsdl or disco. They also have tools to generate or class skeletons from WSDL interface descriptions; for example wsdl2java, wsimport, or
wsdl. The former is known as bottom up development, and the latter top down.

The amqwdeployWMQService command in WebSphere MQ transport for SOAP uses these tools to generate WSDL, client stubs, and client proxies.

Web services are typically written using an integrated development environment targeted at a particular application server environment:

Eclipse IDE for Java EE Developers

Creates Web services for Axis 2. Supports JAX-RPC and JAX-WS

Rational® Application Developer V7.5

Creates Web services for WebSphere Application Server V7 and previous versions, and also for Axis. Supports JAX-RPC and JAX-WS.

WebSphere Integration Developer V6.2

Creates Web services for WebSphere Process Server and WebSphere ESB. Supports JAX-RPC and JAX-WS.

Visual Studio 2008 (Version 9)

Creates Web services for .NET Framework 3.5 and earlier (Windows Communication Foundation)

Visual Studio 2005 (Version 8)

Creates Web services for .NET Framework 2 and earlier

You can use any of these tools in combination with WebSphere MQ transport for SOAP. Once you have developed a service to use with HTTP, use the
amqwdeployWMQService tool to deploy the services to use WebSphere MQ as a transport. You can write a new client using the output from the
tool, or modify your existing clients to use the WebSphere MQ transport for SOAP.

If WebSphere MQ transport for SOAP is integrated into the application environment, then you do not need use the amqwdeployWMQService tool
or modify the client code. The client SOAP layer directs client requests that have a URI with the prefix jms: to the WebSphere MQ transport for

SOAP. The server SOAP layer calls WebSphere MQ transport for SOAP to wait for jms: SOAP requests, and returns responses to WebSphere MQ

transport for SOAP.

Typically, .NET services have been developed bottom up using Web service annotations in code, and Java services top down, using WSDL interface
definitions. The difference in approaches is narrowing, as Java Standard Edition Version 6 supports JAX-WS 2.0, and uses annotations to qualify the

definition of service interfaces. It is now as easy to develop Java services bottom up as top down. Which approach you choose is a matter of
development method.

The Web services client is written after the service, using the WSDL service definition and generated client stubs and proxies. In some applications,
the service definition is not known when the client is written. The client retrieves the service WSDL and creates service requests dynamically. More
commonly the service definition is known, but the address to which the service is deployed, is not. The Web service toolkit generates interfaces for
the client to use to make service requests. The client provides the service address when it is required. In the third case, the WSDL contains all the
information a client needs. The WSDL contains both the interface and address of the service. The code generated by the Web service toolkit has all
the information needed by the client to make requests of a service.

You can use any of these three styles with WebSphere MQ transport for SOAP.

Web service application environments

Web service toolkits require a mapping from the WSDL definition of a service to the streams of bytes that are transferred in SOAP requests and
responses. The byte stream is defined by the SOAP specification, and is contained in the SOAP envelope. The SOAP envelope is shown in Figure 1.

Figure 1. SOAP envelope

<?xml version='1.0'?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Header> <!-- optional -->

<!-- headers... -->

</soap:Header>

<soap:Body>

<!-- payload or fault message -->

</soap:Body>

</soap:Envelope>

Mapping from the SOAP envelope to the language binding and back is part standardized, and part proprietary. The mapping is fundamental to
the .NET architecture, and is provided as part of the Common Language Runtime (CLR). The mapping is standardized in Java by JAX specifications.
Because the Java mappings are standardized, Java Web service clients and services are portable between different Java-based application
environments. JAX-RPC (sometimes called JAX-WS 1.0) is the mapping most in use today. It is supported by Axis 1.4. JAX-WS (sometimes called
JAX-WS 2.0) is a greatly improved standard and is likely to replace JAX-RPC rapidly. JAX-WS is supported by Axis 2.0. WebSphere MQ 7.0.1 does not

Page 5 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

support JAX-WS and Axis 2.

WebSphere MQ transport for SOAP does not alter the contents of the SOAP envelope, and the contents do not affect the transport. The language
bindings do affect the WebSphere MQ transport for SOAP. WebSphere MQ 7.0.1 supports .NET Framework 1, .NET Framework 2, and Axis 1.4 using
the code and utilities shipped with WebSphere MQ transport for SOAP. Support for the WebSphere transport for SOAP in .NET Framework 3 and 3.5

is implemented using the WebSphere MQ custom channel for Windows Communication Foundation.

Other SOAP development and run time environments might ship support for WebSphere MQ transport for SOAP, and support different languages. For
example, Web services running on CICS® supports languages such as COBOL and PL/1.

Note: The mapping used makes no difference to the interoperability of Web services. You can mix and match clients and services written using .NET,
JAX-RPC, and JAX-WS mappings.

What is WebSphere MQ transport for SOAP?

WebSphere MQ transport for SOAP is a SOAP binding and a Web services toolkit. Together, they enable applications to exchange SOAP messages
using WebSphere MQ rather than HTTP. Figure 2 shows WebSphere MQ as an alternative to HTTP as a SOAP transport.

Figure 2. Overview of WebSphere MQ transport for SOAP

SOAP over HTTP is shown as (1) in the diagram. The client SOAP layer converts a request into a SOAP message and the HTTP component sends over
TCP/IP. The HTTP server component listens for HTTP requests, typically on the TCP/IP port 80. If the request is for a SOAP service, the HTTP server

component calls the SOAP layer to convert the SOAP request into method call. It then returns the response.

SOAP over WebSphere MQ is shown as (2). The client application registers the WebSphere MQ SOAP sender component as a handler for the jms:

protocol with the SOAP layer. The SOAP layer passes SOAP messages addressed to jms: to the WebSphere MQ SOAP sender. The sender uses the

URI in the message to place the message on the request queue with the required qualities of service. The corresponding WebSphere MQ SOAP
listener waits for messages on its request queue and calls the SOAP layer to process requests and return responses.

The SOAP sender and listener are normal WebSphere MQ programs. They can be connected to the same queue manager, as in Figure 3, or

connected to different queue managers; see Figure 4. The client can be connected by a client connection.

Figure 3. Queues used by SOAP/WebSphere MQ (single queue manager)

Figure 4. Queues used by SOAP/WebSphere MQ (separate queue managers)

Page 6 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

W3C candidate recommendation for binding SOAP to JMS.

The W3C candidate recommendation defines the SOAP over JMS binding; SOAP over Java Message Service 1.0. Also useful for its examples is URI

Scheme for Java(tm) Message Service 1.03.

Some application frameworks, such as WebSphere Application Server v7, have support for the W3C candidate recommendation. Send SOAP requests
formatted with a URI compatible with the W3C candidate recommendation using the Axis2 client; see W3C SOAP over JMS URI for the WebSphere
MQ Axis 2 client. The Axis2 client sends a SOAP request formatted with either a W3C or a WebSphere MQ transport for SOAP based on URI in the
SOAP request.

Axis2 client support for the W3C recommendation is introduced in the 7.0.1.3 fixpack. Support for other clients, and for the SOAP listeners provided
by WebSphere MQ is not provided.

Parent topic: Introduction to WebSphere MQ transport for SOAP

Related concepts

Implementation of WebSphere transport for SOAP on .NET Framework 1, .NET 2 and Axis 1.4
WebSphere MQ transport for SOAP and Web services reliable messaging

Related reference
SOAP Version 1.2 Part 2: Adjuncts (Second Edition)
SOAP over Java Message Service 1.0
MQRFH2 SOAP settings

Related information
Rational Application Developer for WebSphere Software Information Center
WebSphere Business Process Management Version 6.2 information center
Eclipse Galileo Packages
An Overview of Microsoft Visual Studio 2008
Creating a Web service for CICS

1 Historically, the acronym stood for Simple Object Access Protocol.

2 W3C: SOAP Version 1.2 Part 0

3 Look for URI Scheme for JMS, in the W3C specification references, for the latest draft.

This build: January 26, 2011 11:10:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts21392_

1.1.2. Implementation of WebSphere transport for SOAP on .NET Framework 1, .NET 2 and
Axis 1.4

You might want to write your own WebSphere® MQ SOAP sender and listener. Use the implementation of WebSphere MQ transport for SOAP on .NET
Framework 1, .NET Framework 2, and Axis 1.4 as a guide.

1. A client program uses the appropriate Web services framework in the same way as it would for the HTTP transport. It must also register the
jms: prefix. The prefix is registered using either the com.ibm.mq.soap.Register.extension() Java method or the

IBM.WMQSOAP.Register.Extension() CLR method.

2. The Axis 1.4 or .NET Framework 1 or 2 framework marshals the call into a SOAP request message exactly as for SOAP/HTTP.

3. A WebSphere MQ service is identified by a URI prefixed with jms:. When the framework identifies the jms: URI, it calls the WebSphere MQ

transport sender code; com.ibm.mq.soap.transport.jms.WMQSender (for Axis 1.4) or IBM.WMQSOAP.MQWebRequest (for .NET1 and 2). If the

framework encounters a URI with an http: prefix, it calls the standard SOAP over HTTP sender.

4. The SOAP message is transported by the WebSphere MQ SOAP sender using the request queue. The SimpleJavaListener (for Java) or
amqwSOAPNETListener (for .NET) receives the request message.

The WebSphere MQ SOAP listeners are stand-alone processes and are multithreaded with a customizable number of threads.

5. The WebSphere MQ SOAP listener reads the incoming SOAP request, and passes it to the appropriate Web service infrastructure.

6. The Web service infrastructure parses the SOAP request message and invokes the service. The procedure is the same as for a message that

Page 7 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

arrived on an HTTP transport.

7. The infrastructure formats the response into a SOAP response message and returns it to the WebSphere MQ SOAP listener.

8. The listener places the message on the response queue, and the message is transferred to the WebSphere MQ SOAP sender. The sender passes
it to the client Web service infrastructure.

9. The client infrastructure parses the response SOAP message and hands the result back to the client application.

Each application context is served by a separate WebSphere MQ request queue.

The application context is controlled in Axis 1.4 by ensuring that the WebSphere MQ SOAP listener and service execute in the appropriate directory.
Axis 1.4 sets the correct CLASSPATH for the directory.

Application context is controlled in .NET by the WebSphere MQ SOAP listener executing the service in a context created by a call to
ApplicationHost.CreateApplicationHost. The call specifies the target execution directory. Each service then operates in the directory in which it

was deployed.

amqwdeployWMQService generates the request and response queues. It also generates the infrastructure necessary for handling the queues and
deploying services to Axis 1.4.

Parent topic: Introduction to WebSphere MQ transport for SOAP

Related concepts
Integration of SOAP and WebSphere MQ
WebSphere MQ transport for SOAP and Web services reliable messaging

This build: January 26, 2011 11:10:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts21394_

1.1.3. WebSphere MQ transport for SOAP and Web services reliable messaging

Web services reliable messaging is a protocol for reliably exchanging Web service requests and responses over an unreliable connection. It is best-
suited to solve problems of short-lived connection disruption.

WebSphere® MQ for SOAP takes advantage of using a WebSphere MQ managed and reliable network for passing SOAP messages. Transports such
as HTTP and FTP are unmanaged. Unmanaged networks are ideal for unpredictable connections, where the difficulties and costs of managing
connections outweigh the benefits of not loosing requests and responses.

To overcome the problem of loosing files when connections break in unmanaged networks, services like managed FTP build a management layer on

top of FTP. The management layer takes over the burden of checking that files have transferred successfully from users, and retransmits missing
files if necessary. To use managed FTP, you must have the management software installed at both ends of the connection.

Web services reliable messaging (WSRM) takes a different approach to solving the problem of unreliable connections. Its goal is to transfer Web
service requests and responses reliably, without both ends of the connection having to use the same software. Any software, by implementing the
Web services reliable messaging protocol, can exchange messages reliably with other software.

When a connection fails, a sender and receiver must preserve the context of the WSRM message transfer, using a generated URI as a key. The
sender and receiver keep attempting to establish a new connection. If a new connection is successfully established, the transfer completes. The
WSRM specification does not specify how context is preserved, or when a new connection is attempted.

You might decide that only short-lived outages are of interest. For longer outages, you might be prepared to discard transfers that could not be

restarted after a time. Similarly, you might be prepared to discard transfers if either the client or service fails. Leaving the user responsible for
assuring transfers, places fewer demands on managing the coordination of client and service.

If network outages are long-lived, over 30 minutes or so, or if the client or server fails, there is an increased likelihood that some connections are
never re-established. You can no longer rely on WSRM restoring message transfer automatically in an unmanaged way. You have to consider
managing the failed WSRM connections, which implies developing software to manage the network of clients and services.

Using WSRM to overcome short outages might significantly reduce dealing with lost messages on a mobile network. If you do not have to assure
message delivery, the benefits of reducing message loss might justify the additional cost of developing a WSRM implementation.

SOAP over JMS provides assured message delivery and deals with longer duration outages of the client, the server, and the network. If you are
seeking a more reliable quality of service for SOAP than HTTP, which solution do you choose: WebSphere MQ transport for SOAP or WSRM? The

answer depends on many factors. Some of the factors to consider are listed:

1. Whether the unreliability is due to connection failure.

2. How long-loved connection failures are.

3. If you can manage both the client and server side of the connection.

4. If the user or an administrator is ultimately responsible for the delivery of messages.

Parent topic: Introduction to WebSphere MQ transport for SOAP

Related concepts
Integration of SOAP and WebSphere MQ
Implementation of WebSphere transport for SOAP on .NET Framework 1, .NET 2 and Axis 1.4

Related information
Reliable messaging

This build: January 26, 2011 11:10:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts21391_

Page 8 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

1.2. Installing WebSphere MQ Web transport for SOAP

Use these instructions to install the WebSphere® MQ Web transport for SOAP. The installation creates tools to run Web service clients or services
using WebSphere MQ as the SOAP transport. The tools are used in the .NET Framework 1, .NET 2, Axis 1.4, or Axis2 SOAP environments.

Before you begin

Check the prerequisite products at WebSphere MQ requirements. The installation process does not check for the presence and availability of the
prerequisite software. You must verify that the prerequisites are installed.

WebSphere MQ provides a copy of the Axis 1.4 run time. Use this version with WebSphere MQ rather than any other you might have installed.
IBM® does not provide technical support for Apache Axis. Contact the Apache Software Foundation if you have technical problems with it.

To run Web services in the .NET Framework 3 SOAP environment, WebSphere MQ uses Windows Communication Foundation. The WebSphere MQ
custom channel for Windows Communication Foundation runs Web service clients and services using WebSphere MQ as a transport for SOAP
messages.

About this task

You can install the WebSphere MQ Web transport for SOAP as either a WebSphere MQ Client or Server application. If you have already installed
WebSphere MQ as a client or a server on your computer, check that you have installed the components listed.

<mqmtop> represents the high-level directory in which WebSphere MQ is installed.

Carry out the following installation steps.

Procedure

1. Select the "Java and .Net Messaging and Web services" component for installation.

2. On Solaris and HP-UX, select the "Java Runtime environment" component for installation.

3. Select the Development toolkit for installation.

4. Install and verify WebSphere MQ as described in the Quick Beginning for your platform.

5. Copy the Apache Axis 1.4 run time, axis.jar from the prereqs/axis directory on the WebSphere MQ installation media. Copy it to the

installation directory described in Table 1, Table 2, or Table 3.

Windows

Copy D:\PreReqs\axis\axis.jar <mqmtop>\java\lib\soap

AIX®

cp -f PreReqs/axis/axis.jar <mqmtop>/java/lib/soap/axis.jar

chown mqm:mqm <mqmtop>/java/lib/soap/axis.jar

chmod 444 <mqmtop>/java/lib/soap/axis.jar

HP-UX, Solaris, and Linux (all platforms) installation directories

cp -f PreReqs/axis/axis.jar <mqmtop>/java/lib/soap/axis.jar

chown mqm:mqm <mqmtop>/java/lib/soap/axis.jar

chmod 444 <mqmtop>/java/lib/soap/axis.jar

6. On Windows 2003, run Aspnet_regiis.exe to update the script maps to point to the version of the Common Language Run time your are
using. Look for the Aspnet_regiis.exe utility in %SystemRoot%Microsoft.NET/Framework/version-number.

7. Set the environment variable, WMQSOAP_HOME, to point to the WebSphere MQ installation directory.

Results

What to do next

1. For .NET only, you must register the WebSphere MQ transport for SOAP files with the Global Assembly Cache. If .NET is already installed
when you install WebSphere MQ, registration is performed automatically at installation. If you install .NET after WebSphere MQ, the

registration is performed automatically when the IVT is first run.

You can run amqwregisterDotNet to perform registration. You can also run amqwregisterDotNet to force reregistration at any stage.
Once made, this registration survives system restarts and subsequent reregistration is not normally necessary.

2. Run the Installation Verification Test.

Table 1. Windows installation directories

Location Contents

<mqmtop>\programs\bin Binary, command, DLL, and executable files

<mqmtop>\programs\java\lib .jar files

<mqmtop>\programs\java\lib\soap SOAP .jar files

<mqmtop>\programs\tools\soap\samples Samples and IVT

Table 2. AIX installation directories

Location Contents

<mqmtop>/bin Shell scripts

<mqmtop>/java/lib .jar files

<mqmtop>/java/lib/soap axis.jar and other JAX-RPC .jar files

<mqmtop>/tools/samp/soap Samples and IVT

Table 3. HP-UX, Solaris, and Linux (all platforms) installation directories

Location Contents

<mqmtop>/bin Shell scripts

<mqmtop>/java/lib .jar files

<mqmtop>/java/lib/soap axis.jar and other JAX-RPC .jar files

<mqmtop>/tools/samp/soap Samples and IVT

Page 9 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

3. If you intend to develop Axis2 client, you must download Axis2 1.4.1 from Apache; see Developing a JAX-WS client for WebSphere transport
for SOAP using Eclipse.

Parent topic: WebSphere MQ transport for SOAP

Related tasks
Verifying the WebSphere MQ transport for SOAP

Related reference
amqwRegisterdotNet: register WebSphere MQ transport for SOAP to .NET
Apache software license

Related information
System requirements for WebSphere MQ

This build: January 26, 2011 11:09:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts20360_

1.3. Verifying the WebSphere MQ transport for SOAP

Verify the WebSphere® MQ transport for SOAP using the runivt command. The command runs a number of demonstration applications and ensures
that the environment is correctly set up after installation.

Before you begin

The runivt command changes the contents of the soap/samples directory. To keep the installation image unchanged, copy the samples directory

to a temporary location, and run the verification test from the temporary location.

You can run the installation verification as many times as you like.

About this task

Instead of running the verification test on both .NET and Axis, you might want to run the test only on Axis, or only on .NET.

If you run into problems with the tests and want to start again:

1. Stop the queue manager WMQSOAP.DEMO.QM using the immediate option.

2. Stop the listener that has been started in a different window.

3. Delete the queue manager.

4. Delete the temporary samples directory you created and start again.

On UNIX platforms, you must run the command using an X Window System session.

Carry out the following steps to verify the installation of WebSphere MQ transport for SOAP on .NET Framework 1, .NET Framework 2, and Axis 1.4:

Procedure

1. Copy the ./tools/soap/samples directory tree to a temporary location.

2. Start a command window with the temporary directory as the current directory.

3. Use the runivt command to start the installation test. You have a number of choices:

� Run all the tests: runivt

� Run a test on Axis only: runivt AxisWsdl

� Run a test on .NET only: runivt DotNet

The list of tests you can run is in the file ivttests.txt on Windows and ivttests_unix.txt on UNIX platforms.

Example

Note: Some output lines have been split, and only one test is run, to fit the browser window.

Figure 1. Running the AxisWsdl test on Windows

C:\IBM\ID\samples>runivt AxisWsdl

Services for demo not yet deployed.

Deploying now. This will take a few seconds, but will not need to be repeated

setup environment

clean up old directories and files

The system cannot find the file specified.

Could Not Find C:\IBM\ID\samples\server-config.wsdd

Could Not Find C:\IBM\ID\samples\RegisterDotNET.log

check MQ bits ready

crtmqm WMQSOAP.DEMO.QM completed OK.

strmqm WMQSOAP.DEMO.QM completed OK.

define qlocal(SYSTEM.SOAP.RESPONSE.QUEUE) BOTHRESH(3) completed OK.

define qmodel(SYSTEM.SOAP.MODEL.RESPONSE.QUEUE) BOTHRESH(3) DEFTYPE(PERMDYN)

DEFSOPT(SHARED)

SHARE completed OK.

define qlocal(SYSTEM.SOAP.SIDE.QUEUE) completed OK.

define channel(TESTCHANNEL) CHLTYPE(SVRCONN) TRPTYPE(TCP) REPLACE completed OK.

define channel(TESTSSLCHANNEL) CHLTYPE(SVRCONN) TRPTYPE(TCP) SSLCIPH(DES_SHA_EXPORT)

REPLACE completed OK.

deploy the Axis server (generate proxies, etc)

 1 file(s) copied.

deploy the dotNet server (generate proxies, etc)

 1 file(s) copied.

 1 file(s) copied.

Recompile the clients, using the proxies just generated

C:\IBM\MQ\Tools\soap\samples\java\clients\RunIvt.java

Page 10 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

C:\IBM\MQ\Tools\soap\samples\java\clients\SQAxis2Axis.java

C:\IBM\MQ\Tools\soap\samples\java\clients\SQAxis2DotNet.java

C:\IBM\MQ\Tools\soap\samples\java\clients\WsdlClient.java

 4 file(s) copied.

Could Not Find C:\IBM\ID\samples\soap\clients\SQAxis2AxisAsync*.java

Note: soap\clients\RunIvt.java uses or overrides a deprecated API.

Note: Recompile with -Xlint:deprecation for details.

Note: soap\clients\RunIvt.java uses unchecked or unsafe operations.

Note: Recompile with -Xlint:unchecked for details.

 1 file(s) copied.

The system cannot find the file specified.

Configure the client to make sure that Axis clients know about jms:xxx

24-Nov-2009 08:49:18 org.apache.axis.utils.JavaUtils isAttachmentSupported

WARNING: Unable to find required classes (

javax.activation.DataHandler and javax.mail.internet.MimeMultipart).

Attachment support is disabled.

<?xml version="1.0" encoding="UTF-8"?>

<Admin>Done processing</Admin>

C:\IBM\MQ\Tools\soap\samples\ivttests.txt

 1 file(s) copied.

 Demo regenerated

define channel(TESTCHANNEL) CHLTYPE(SVRCONN) TRPTYPE(TCP) REPLACE completed OK.

define channel(TESTSSLCHANNEL) CHLTYPE(SVRCONN) TRPTYPE(TCP)

SSLCIPH(DES_SHA_EXPORT) REPLACE completed OK.

-----[AxisWsdl]--------------------------------

WMQ transport test: Axis to Axis, using WSDL Axis calls

+++ server: generated\server\startWMQJListener.cmd

--- client: java soap.clients.WsdlClient

start WsdlClient demo, wsdl port soap.server.StockQuoteAxis_Wmq resolving uri to ...

24-Nov-2009 08:49:26 org.apache.axis.utils.JavaUtils isAttachmentSupported

WARNING: Unable to find required classes (javax.activation.DataHandler and

javax.mail.internet.MimeMultipart). Attachment support is disabled.

'jms:/queue?destination=SOAPJ.demos@WMQSOAP.DEMO.QM&

connectionFactory=(connectQueueManager(WMQSOAP.DEMO.QM))&

initialContextFactory=com.ibm.mq.jms.Nojndi&

targetService=soap.server.StockQuoteAxis.java&

replyDestination=SYSTEM.SOAP.RESPONSE.QUEUE'

Response: 55.25 OK.

C:\IBM\ID\samples>rem generated by DeployWMQService.java at 24-Nov-2009 08:48:51

C:\IBM\ID\samples>call amqwsetcp.cmd

C:\IBM\ID\samples>set CLASSPATH=generated\server [...]

C:\IBM\ID\samples>java com.ibm.mq.soap.util.EndWMQListener -m WMQSOAP.DEMO.QM -q SOAPJ.demos

===

1 tests run, of which 0 failed.

Parent topic: WebSphere MQ transport for SOAP

Related reference
runivt: WebSphere MQ transport for SOAP installation verification test

This build: January 26, 2011 11:09:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts20390_

1.4. Developing Web services for WebSphere MQ transport for SOAP

Use your normal Web service development environment to develop services for use with the WebSphere® MQ transport for SOAP.

Before you begin

1. If you are planning to use the command-line tools supplied with WebSphere MQ transport for SOAP:

a. Create a deployment directory for the service.

b. Start a command window in the directory.

c. For .NET, csc.exe and wsdl.exe must be in the path, and be from the same version of .NET Framework.

d. For Java,

i. Run the amqwsetcp command to set up the classpath.

ii. An IBM® JRE and a JDK at the same version level must be in the current path. The version level must be at least 1.4.2.

iii. Customize the classpath to include the locations of any additional .jar libraries, and directories containing .java packages,

including for the service you are developing. Put the current directory "." in the classpath.

iv. Create a directory, relative to the current directory of the command window, corresponding to the package name of the service
you are developing.

2. Alternatively, use workbench tools that support Web services development. The example development tasks use Microsoft Visual Studio
2008, Eclipse IDE for Java EE Developers and WebSphere Application Server Community Edition.

About this task

Existing Web services need no modification to work with WebSphere transport for SOAP. The tools supplied with WebSphere MQ transport for SOAP
deploy a Web service, and run it using a WebSphere MQ SOAP listener. The tools also generate WSDL, .NET client stubs, and .java proxy classes to

develop WebSphere MQ transport for SOAP clients.

Follow these steps to create a service, and prepare it for deployment and the generation of clients. Follow the steps in the related tasks to create a
service using Eclipse or Microsoft Visual Studio 2008.

Procedure

Page 11 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

1. Develop the service using your normal development environment.

2. Test the service using an HTTP Web services client

3. Follow these steps to prepare the deployment directory:

� For Java

a. Copy the .java file defining the service interface into the deployment directory.

b. Copy any .class files for the service into the directory corresponding to the package name.

c. Check that the classpath can locate all the classes that are required: compile the service .java file using javac.

� For .NET

a. Copy the .asmx file defining the service into the deployment directory, and

b. If you are using the code-behind model, copy any .dll files into a deployment directory\bin directory.

Developing a JAX-RPC service for WebSphere MQ transport for SOAP using Eclipse
Develop an Axis 1.4 Web service to run using WebSphere MQ as your service provider. Use your normal Web service development environment
to create a service for deployment to Axis 1.4.

Developing a .NET 1 or 2 service for WebSphere MQ transport for SOAP using Microsoft Visual Studio 2008
Develop the SampleStockQuote Web service for .NET 1 or .NET 2 using Microsoft Visual Studio 2008

Developing a JAX-WS EJB Web service for W3C SOAP over JMS
A Web service bound to the W3C candidate recommendation for SOAP over JMS must run in the EJB container of a JEE application server. This
task is step 2 of connecting an Axis2 Web service client and a Web service deployed to WebSphere Application server using the W3C SOAP over
JMS protocol.

Parent topic: WebSphere MQ transport for SOAP

Related reference
amqwdeployWMQService: deploy Web service utility
amqwclientconfig: create Axis 1.4 Web services client deployment descriptor for WebSphere MQ transport for SOAP
amqwRegisterdotNet: register WebSphere MQ transport for SOAP to .NET
amqswsdl: generate WSDL for .NET Framework 1 or 2 service
Transactions
URI syntax and parameters for Web service deployment

This build: January 26, 2011 11:09:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts20530_

1.4.1. Developing a JAX-RPC service for WebSphere MQ transport for SOAP using Eclipse

Develop an Axis 1.4 Web service to run using WebSphere MQ as your service provider. Use your normal Web service development environment to
create a service for deployment to Axis 1.4.

Before you begin

Take into account the requirements for deploying a Web server to the WebSphere® MQ SOAP listener for Axis 1.4.

� The WebSphere MQ SOAP listener for Axis 1.4 requires an IBM® JRE at version 1.4.2 or greater. The JRE, and JDK used for development,
must be at the same version level.

� The WebSphere MQ SOAP listener for Axis 1.4 requires the axis.jar installed with WebSphere MQ. Change the build path in your

development environment to reference the axis.jar file installed with WebSphere MQ, rather than the axis.jar files installed with the

development environment.

� Up to, and including, WebSphere MQ V7.0.1, the WSDL generated for the deployed service is RPC/encoded. From V7.1, you can also request

RPC/literal style WSDL. The generated WSDL is used only for deployment. You can define the service using WS-I compliant WSDL.

About this task

Create the service using your normal Web services development environment.

In this task, we use the freely availably open source Eclipse Java EE IDE for Web Developers, known as Galileo. For the application server, we use
WebSphere Application Server Community Edition v2.1 (Community Edition), based on Geronimo. See the related tasks for information about how to

obtain, install, and configure the IDE and server.

Test the service using HTTP as a transport using the Web Services Explorer provided in the IDE before verifying the service by deploying to the
WebSphere MQ transport for SOAP. Alternatively, generate an HTTP client proxy and test the service using your own client code.

You might follow these steps to develop a bottom-up Web service. Use the sample program StockQuoteAxis.java as an example.

Procedure

1. Start Eclipse IDE for Java EE Developers with a new workspace.

2. Configure the workspace to use Java50, WebSphere Application Server Community Edition 2.1.4 does not work with Java60.

a. Window > Preferences > Java > Installed JREs > Add... > Standard VM > Next > Directory ...

b. Browse to the install directory of Java50 > OK > Finish

c. Check the Java50 JRE > OK

3. Add the Community Edition runtime environment and start Community Edition.

a. Window > Preferences > Server > Runtime Environments > Add...

b. Select IBM WASCE v2.1 from the New Server Runtime Environment list > Check Create a new local server > Next If IBM

Page 12 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

WASCE 2.1 is not in the list you need to complete two other tasks:

i. Install WebSphere Application Server Community Edition.

ii. Install the Eclipse update for Community Edition.

Find the details at WebSphere Application Server Community Edition

c. Browse to the Application Server Installation Directory > OK > Finish > OK.

d. Right-click IBM WASCE v2.1 server in the servers view > Start

Tip: You can manage WASCE in Eclipse: Right-click IBM WASCE v2.1 server > Launch WASCE Console. the default
Username and Password are system and manager.

4. Set up the server and runtime for Web services.

a. Window > Preferences > Web services > Server and Runtime

b. Select IBM WASCE v2.1 Server as the server.

c. Leave Apache Axis as the Web service runtime.

5. Create a Dynamic Web Project.

a. File > New > Dynamic Web Project. Name the project StockQuoteAxis.

b. Check Add project to an EAR > New...

c. In the EAR Application Project page type the Project name StockQuoteAxisEAR > Finish Reply OK in response to the dialog box

suggesting you switch to the Java EE perspective, or stay Java perspective to follow these instructions exactly.

d. IBM WASCE 2.1 server is selected as the target runtime. Accept it, and the other defaults > Finish. Reply OK in response to the dialog

box suggesting you switch to the Java EE perspective, or stay Java perspective to follow these instructions exactly.

6. Import the StockQuoteAxis.java sample program

a. Open the StockQuoteAxis Web project > Right click the src folder > Import...

b. Select General > File System > Next

c. Browse to WMQ Install directory\tools\soap\samples\java\server > check StockQuoteAxis.java > Finish You must highlight the

server directory in the left window to see the files it contains, in the right window.

7. Correct the compile error by moving StockQuoteAxis.java into its correct package.

a. Open StockQuoteAxis.java and right click the problem > Quick Fix

b. Double click Move 'StockQuoteAxis.java' to package 'soap.server' > Save.

8. Create a Web service from StockQuoteAxis.java.

a. Right-click StockQuoteAxis.java > Web Services > Create Web service > Next. Accept the default configuration for the service:

Web service type

Bottom up Java beanWeb Service

Service implementation

soap.server.StockQuoteAxis

Server

IBM WASCE v2.1 server

Web service runtime

Apache Axis

Service project

StockQuoteAxis

Service EAR project

StockQuoteAxisEAR

Configuration

No client generation

9. Select the methods to access and the style of Web service > Next. Start the server if prompted.

a. Leave all the methods selected.

b. Select document/literal (wrapped) style.

10. Finish
When the service has deployed, look in the WebContent\wsdl folder in the StockQuoteAxis Web project and find the generated

StockQuoteAxis.wsdl file.

11. Test the service using HTTP with the Web Services Explorer.

a. Right-click StockQuoteAxis.wsdl > Test with Web Services Explorer.

b. Click the operation getQuote in the StockQuoteAxisSoapBinding actions in the Web Services Explorer window.

c. Type ibm in the symbol input field > Go

12. Test the service using WebSphere MQ transport for SOAP.

To deploy the service, use SimpleJavaListener, which is in com.ibm.mq.soap.jar. You have to add the WebSphere MQ Java and SOAP

libraries to the build path.

a. Right click the StockQuoteAxis Web project > Build Path > Configure Build Path...

b. Click the Libraries tab > Add External Jars.... Browse to WMQ Install directory\java\lib. and select all the .jar files > Open >

Add External Jars.... Browse to WMQ Install directory\java\lib\soap and select all the .jar files > Open > OK.

c. In the Project Explorer, Right click StockQuoteAxis\Referenced

Libraries\com.ibm.mq.soap.jar\com.ibm.mq.soap.transport.jms\SimpleJavaListener.class\ SimpleJavaListener > Run as...>

Run Configurations... Select Java Application in the navigator.

Tip:

If there is no configuration for SimpleJavaListener, click the New launch configuration icon on the Create,

manage, and run configurations page of the Run configurations wizard,

The SimpleJavaListener has no command to stop it. To monitor or stop SimpleJavaListener, open the Debug
perspective in Eclipse.

Page 13 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

d. Open the (x)= Arguments tab. In the Program arguments input area type the parameters to SimpleJavaListener.

For this example, type

-u "jms:/queue?destination=REQUESTAXIS@QM1&connectionFactory=()

&initialContextFactory=com.ibm.mq.jms.Nojndi

&targetService=StockQuoteAxis

&replyDestination=SYSTEM.SOAP.RESPONSE.QUEUE" -n 10

Note: The target service is StockQuoteAxis to match the target service name created in the service deployment descriptor,

StockQuoteAxis\WebContent\WEB-INF\server-config.wsdd. amqwdeployWMQService creates a target service called

soap.server.StockQuoteAxis. In this example, you are using the same StockQuoteAxis.class and service-config.wsdd as the HTTP

server.

e. On the same tab, configure Working directory to reference the server-config.wsdd file:

${workspace_loc:StockQuoteAxis/WebContent/WEB-INF}

a. Create the WebSphere MQ resources, if necessary.

The following resources required:

Queue manager

QM1

Request queue

REQUESTAXIS

Response queue

SYSTEM.SOAP.RESPONSE.QUEUE

b. Run

Errors are written to the console. If the console remains blank, SimpleJavaListener has started ok.

c. To test the deployment, run a StockQuoteAxis client, developed in the task, Developing a JAX-RPC client for WebSphere transport for
SOAP using Eclipse.

Example: StockQuoteAxis sample program

The sample Java Web service, StockQuoteAxis.java, is installed in WMQ install directory\tools\soap\samples\java\server.

StockQuoteAxis.java, Figure 1, has four methods:

1. float getQuote(String symbol)

2. void getQuoteOneWay(String symbol).

3. int asyncQuote(int delay)

4. float getQuoteTran(String symbol)

Figure 1. StockQuoteAxis

package soap.server;

import java.lang.Thread;

import java.io.FileWriter;

public class StockQuoteAxis {

 public float getQuote(String symbol) throws Exception {

 return ((float) 55.25);

 }

 public void getQuoteOneWay(String symbol) throws Exception {

 try {

 // Write the results for this service to a file

 FileWriter f = new FileWriter("getQuoteOneWay.txt", true);

 f.write("One way service result via proxy is: 44.44\n");

 f.close();

 } catch (Exception ee) {

 System.out.println("Error writing result file in getQuoteOneWay");

 ee.printStackTrace();

 }

 }

 public int asyncQuote(int delay) {

 try {

 Thread.sleep(delay);

 } catch (Exception e) {

 System.out.println("Exception in asyncQuote during sleep");

 }

 return delay;

 }

 public float getQuoteTran(String symbol) throws Exception {

 if (symbol.equalsIgnoreCase("ROLLBACK")) {

 System.out.println("Rollback was requested,

 exiting from service by calling System.exit().");

 System.exit(0);

 }

 return ((float) 55.25);

 }

}

What to do next

Deploy the service from the command line using the WebSphere MQ Transport for SOAP tools instead of Eclipse. Use the command
amqwdeployWMQService.

The command has an option, axisDeploy, which deploys the service by creating an Apache Axis 1.4 deployment descriptor. The WebSphere MQ

SOAP listener runs the service. The SOAP listener is called SimpleJavaListener and is supplied with the WebSphere MQ transport for SOAP.

Parent topic: Developing Web services for WebSphere MQ transport for SOAP

Related tasks
Developing a .NET 1 or 2 service for WebSphere MQ transport for SOAP using Microsoft Visual Studio 2008
Developing a JAX-WS EJB Web service for W3C SOAP over JMS

Related information

Page 14 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

IBM Redbooks: Experience Java EE! Using WebSphere Application Server Community Edition 2.1
WebSphere Application Server Community Edition
Eclipse Galileo Packages
Web services - Axis

This build: January 26, 2011 11:09:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

developingjax-rpcjavaservice

1.4.2. Developing a .NET 1 or 2 service for WebSphere MQ transport for SOAP using
Microsoft Visual Studio 2008

Develop the SampleStockQuote Web service for .NET 1 or .NET 2 using Microsoft Visual Studio 2008

About this task
Create the StockQuote service with a code-behind implementation using Visual Studio 2008.

Procedure

1. Create a template for the service, and check that it runs on HTTP.

a. Start Visual Studio 2008 > File > New > Project.... Select C# Project Type, ,NET Framework 2, and ASP.NET Web Service

Application. Type the Name: and Solution Name: StockQuoteDotNet > OK

b. Right click Service1.asmx in the Solution Explorer > Rename > StockQuote.asmx.

c. Change the code fragment public class Service1 to public class StockQuote.

d. Right click StockQuote.asmx in the Solution Explorer > Open with... > XML Editor. Change Class="StockQuoteDotNet.Service1" to

Class="StockQuoteDotNet.StockQuote"

e. Change the code fragment [WebService(Namespace = "http://tempuri.org/")] to [WebService(Namespace =

"http://stock.samples/")].

f. Remove the line of code [ToolboxItem(false)].

g. Check everything is correct so far: Debug > Start Debugging (F5). Verify the output in Explorer.

2. Add the methods from the sample SQDNNonInline.asmx.cs, and test the service on HTTP.

a. Open WMQ Install directory\tools\soap\samples\dotnet\SQDNNonInline.asmx.cs and replace the HelloWorld method with the

four Quote methods; see Figure 1.

b. Build > Rebuild the solution > Right click one of the Thread in error > Resolve > Using System.Threading.

c. Press F5 to start debugging. The service is not conformant to WS-I Basic Profile v1.1. You have the choice of either changing the
WebMethod annotation from [SoapRpcMethod] to [SoapDocumentMethod], or removing the annotation [WebServiceBinding(ConformsTo

= WsiProfiles.BasicProfile1_1)].

d. Press F5 to verify the implementation using HTTP.

3. Generate WSDL, clients, and run the service using WebSphere® MQ transport for SOAP.

a. Open a command window in the project directory tree, where the StockQuote.asmx is stored.

b. (Optional) Use amqwdeployWMQService to generate artifacts. The queue manager must be started:

amqswdeployWMQService -f StockQuote.asmx

-u "jms:/queue?initialContextFactory=com.ibm.mq.jms.Nojndi

&connectionFactory=()

&destination=REQUESTDOTNET@QM1

&targetService=StockQuote.asmx"

StockQuote.asmx StockQuote.wsdl

All artifacts are created in the ./generated directory tree.

c. (Optional) Generate just the WSDL for calling the service using WebSphere MQ transport for SOAP.

amqswsdl -u "jms:/queue?initialContextFactory=com.ibm.mq.jms.Nojndi

&connectionFactory=()

&destination=REQUESTDOTNET@QM1

&targetService=StockQuote.asmx"

StockQuote.asmx StockQuote.wsdl

a. Run the .NET listener. Either use .\generated\server\startWMQNListener.cmd or type the command:

amqSOAPNETListener -u "jms:/queue?initialContextFactory=com.ibm.mq.jms.Nojndi

&connectionFactory=()

&destination=REQUESTDOTNET@QM1

&targetService=StockQuote.asmx"

4. Test the service using a client generated from the WSDL, or using the clients generated by amqwdeployWMQService.

Sample code

The sample .NET Web service, StockQuoteDotNet, is installed in WMQ install directory\tools\soap\samples\dotnet. The Web service binding of

the published samples differ slightly from the binding used in the task. The task uses the defaults used in Visual Studio 2008.

There are two examples of .NET Framework 1 and .NET Framework 2 Web services. StockQuoteDotNet.asmx, is an inline service.

SQDNNoninline.asmx, is a code-behind Web service implemented by SQDNNoninline.asmx.cs.

StockQuoteDotNet has four methods:

1. float getQuote(String symbol)

2. void getQuoteOneWay(String symbol).

3. int asyncQuote(int delay)

4. float getQuoteDOC(String symbol)

Page 15 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

Figure 1. Inline service: StockQuoteDotNet.asmx

<%@ WebService Language="C#" Class="StockQuoteDotNet" %>

using System;

using System.Web.Services;

using System.Web.Services.Protocols;

using System.Web.Services.Description;

using System.Threading;

[WebService (Namespace="http://stock.samples")]

public class StockQuoteDotNet {

 [WebMethod] [SoapRpcMethod(OneWay=true)]

 public void getQuoteOneWay(String symbol) {

 if (symbol.ToUpper().Equals("DELAY")) Thread.Sleep(5000);

 System.Console.WriteLine("getQuoteOneWay was invoked.");

 }

 [WebMethod] [SoapRpcMethod]

 public float getQuote(String symbol) {

 if (symbol.ToUpper().Equals("DELAY")) Thread.Sleep(10000);

 return 88.88F;

 }

 [WebMethod] [SoapRpcMethod]

 public int asyncQuote(int delay) {

 Thread.Sleep(delay);

 return delay;

 }

 [WebMethod]

 public float getQuoteDOC(String symbol) {

 return 77.77F;

 }

}

Figure 2. Code-behind: Design SQDNNonInline.asmx

<%@ WebService Language="C#" Codebehind="SQDNNonInline.asmx.cs" Class="SQDNNonInline" %>

Figure 3. Code-behind: Implementation: SQDNNonInline.asmx.cs

using System;

using System.Web.Services;

using System.Web.Services.Protocols;

using System.Web.Services.Description;

using System.Threading;

[WebService(Namespace = "http://stock.samples")]

public class SQDNNonInline : System.Web.Services.Protocols.SoapHttpClientProtocol

{

 [WebMethod]

 [SoapRpcMethod(OneWay = true)]

 public void getNonInlineQuoteOneWay(String symbol)

 {

 if (symbol.ToUpper().Equals("DELAY")) Thread.Sleep(5000);

 System.Console.WriteLine("getNonInlineQuoteOneWay was invoked.");

 }

 [WebMethod]

 [SoapRpcMethod]

 public float getNonInlineQuote(String symbol)

 {

 if (symbol.ToUpper().Equals("DELAY")) Thread.Sleep(10000);

 return 88.88F;

 }

 [WebMethod]

 [SoapRpcMethod]

 public int asyncNonInlineQuote(int delay)

 {

 Thread.Sleep(delay);

 return delay;

 }

 [WebMethod]

 public float getNonInlineQuoteDOC(String symbol)

 {

 return 77.77F;

 }

}

Parent topic: Developing Web services for WebSphere MQ transport for SOAP

Related tasks
Developing a JAX-RPC service for WebSphere MQ transport for SOAP using Eclipse
Developing a JAX-WS EJB Web service for W3C SOAP over JMS

This build: January 26, 2011 11:09:50

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts20536_

1.4.3. Developing a JAX-WS EJB Web service for W3C SOAP over JMS

A Web service bound to the W3C candidate recommendation for SOAP over JMS must run in the EJB container of a JEE application server. This task is
step 2 of connecting an Axis2 Web service client and a Web service deployed to WebSphere® Application server using the W3C SOAP over JMS
protocol.

Before you begin

Use Rational® Application Developer to create the EJB Web service. The Web service wizard in Rational Application Developer has an option to

Page 16 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

create a Web service using the W3C candidate recommendation for the SOAP over JMS binding. Rational Application Developer 7.54 is required.
The exercise used Rational Application Developer included in Rational Software Architect for WebSphere Software v7.5.5.1,

The EJB is deployed to WebSphere Application Server from Rational Application Developer as part of this task. You must complete Configuring
WebSphere Application Server to use W3C SOAP over JMS

To create the WSDL actually used in the task, you must first complete the task, Developing a JAX-RPC service for WebSphere MQ transport for
SOAP using Eclipse. Then you can either import the WSDL from the Dynamic Web project in the Eclipse Galileo workspace, or from the running
HTTP Web service deployed to WASCE.

WebSphere Application Server might still be running as a result of doing Configure WebSphere Application Server resources. If it is not, you can

start it from the Servers view in RAD.

About this task

In this task, you redeploy the StockQuoteAxis service from running as a JAX-RPC Axis service run by the SimpleJavaListener using WebSphere MQ

transport for SOAP, to being a JAX-WS service running in WebSphere Application server using the W3C SOAP over JMS protocol.

There are two parts to migrating the service from the SimpleJavaListener to WebSphere Application Server:

1. Generate the Web service interface from the WSDL for the service using the Top-down EJB Web service wizard in Rational Application
Developer.

2. Implementing the service by importing the WebSphere MQ SOAP sample StockQuoteAxis.java.

An alternative approach would have been to generate the service bottom up, from the StockQuoteAxis.java. However, to be sure that the interface

to the migrated service is identical, the top-down approach is better, as it uses the same WSDL.

The Web service is developed for the EJB container and not the Web container because the JMS support is part of the EJB container.

Procedure

1. Start Rational Application Developer, and verify WebSphere Application Server is running.

a. Start Rational Application Developer in a new workspace.

b. Open the Java EE perspective.

c. Open the Servers tab at the bottom of the display, and check WebSphere Application Server is running.

� If there is no WebSphere Application Server v7.0 in the view, right-click in the view > New > Server. Follow the choices in the
wizard to create a WebSphere Application Server v7.0 instance.

� If the server is present, but not started, click the green arrow head on the right of the view to start it.

� To verify the properties and get quick access to the server logs, right-click WebSphere Application Server v7.0 at localhost >
Properties > WebSphere Application Server.

� To administer the server, either use an external browser and open the URL,
http://localhost:9061/ibm/console/unsecureLogon.jsp, or right-click WebSphere Application Server v7.0 at localhost >

Run administrative console.

� The default setting is to publish automatically. Many people prefer deploy updates to the server manually. Double-click WebSphere
Application Server v7.0 at localhost, and expand the Publishing twisty in the upper right corner of the Overview window. Click
Never publish automatically.

� Another default to alter is to clear the Terminate server on workbench shutdown checkbox in the lower left corner of the
Overview window.

2. Create the JEE projects You must create an Enterprise Application Project (EAR) and an Enterprise Java Bean (EJB) Project.

a. File > New > Enterprise Application Project. Name the project W3CJMSEAR > Finish.

The defaults must identify WebSphere Application Server v7.0 as the target runtime, and EAR version 5.0. The default configuration must
be selected.

b. File > New > EJB Project. Name the project W3CJMSEJB. Select W3CEARJMS as the EAR Project Name > Next.

The default EJB module version is 3.0 and the default configuration is used again.

c. Clear the Create an EJB Client JAR module checkbox > Finish.

3. Generate and deploy the EJB Web service from the StockQuoteAxis WSDL.

a. Run > Launch the Web Services Explorer.

b. Select the WSDL page using the icons in the upper right corner of the Web Services Explorer window > click WSDL main in the
Navigator.

c. In the Actions window, type in or browse to the WSDL URL for StockQuoteAxis.wsdl.

If you have WASCE running with StockQuoteAxis deployed as an HTTP service, the URL is:

http://localhost:8080/StockQuoteAxis/services/StockQuoteAxis?wsdl

If you have the WSDL in the file system, the URL might be:

File:\Dirpath\StockQuoteAxis\WebContent\wsdl\StockQuoteAxis.wsdl

d. Click the line containing the imported URL in the Navigator tree.

It is the line immediately following WSDL Main, if it is the first WSDL you have imported into Web Services Explorer.

e. In the Actions window, click Launch Web Service Wizard > Web Service Skeleton > Go

f. In the Web Service wizard, select Top down EJB Web Service

Select or verify the Configuration using information from Table 1 Check Overwrite files without warning > Next.

g. On the page subtitled, Specify options for creating a WebSphere JAX-WS EJB Top Down Web Service, check the Switch to JMS
bindingbox. Also check Enable Wrapper Style, Copy WSDL to project , and Generate Web Service Deployment Descriptor >
Next.

Table 1. Top down EJB Web service configuration

Field Value

Server WebSphere Application Server v7.0

Web service run time IBM WebSphere JAX-WS

Service project W3CJMSEJB

Service EAR project W3CJMSEAR

Configuration: No client generation

Page 17 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

h. On the page titled, WebSphere JAX-WS JMS Binding Configuration, check Use SOAP/JMS interoperability protocol and provide values
from Table 2, leaving other fields blank > Next.

a. On the page titled, WebSphere JAX-WS Router Project Configuration, type qm1as in the ActivationSpec JNDI name field > Next.

RAD takes about 30 seconds to a minute to generate and deploy the project.

b. Ignore the options in the Web Service Publication page > Finish.

4. Check the generated WSDL.

You asked for the service-specific WSDL to be generated and saved in the project.

a. In the Enterprise Explorer navigator, open the folder W3CJMSEJB > ejbmodule > META-INF > wsdl. Double click

StockQuoteAxis.wsdl to open it in the WSDL editor.

Inspect the binding; you see the JMS url:

jms:jndi:requestaxis?jndiConnectionFactoryName=qm1&targetService=StockQuoteAxis

5. Optional step: Bind the EJB to SOAP over HTTP using JAX-WS.

Providing two bindings to the EJB gives clients the choice of SOAP bindings to call the Web service. It also provides clients with the means to
query the Web server to obtain its WSDL, using HTTP.

The steps to bind an EJB to SOAP over HTTP are not included as part of the task.

6. Implement and redeploy StockQuoteAxis using the sample StockQuoteAxis.java

a. In the Enterprise Explorer navigator, open the folder W3CJMSEJB > Services Double click StockQuoteAxisService to open the

implementation class in a Java editor.

b. Open the StockQuoteAxis.java sample program in the WebSphere MQ Installation directory\tools\soap\samples\java\server

folder > Select all the methods, but not the class name > Copy.

c. In StockQuoteAxisSoapBindingImpl.java select all the methods, but not the class name, and paste in the methods from

StockQuoteAxis.java.

d. Add a print statement to output to the WebSphere Application Server console when the service is called. Change the getQuote(String
symbol) method:

public float getQuote(String symbol) {

 System.out.println("StockQuoteAxisSoapBindingImpl called with symbol: "

 + symbol);

 return ((float) 55.25);

e. Correct the imports: Source > Organize imports > Save.

f. Correct the three errors due to the implementation not matching the interface.

The errors are due to three of the methods in StockQuoteAxis.java throwing exceptions, and the WSDL for the service not containing

any fault messages. The problem is diagnosed as being a mismatch between the method signatures and the method Web service
annotations.

Either annotate the methods with @WebFault and regenerate the WSDL, or keep the interface unchanged, and remove the exceptions.

To keep the interface the same, remove the three throws exception from the method signatures > Save.

What to do next
Deploying to an Axis2 client using W3C SOAP over JMS

Parent topic: Developing Web services for WebSphere MQ transport for SOAP

Related tasks
Developing a JAX-RPC service for WebSphere MQ transport for SOAP using Eclipse
Developing a .NET 1 or 2 service for WebSphere MQ transport for SOAP using Microsoft Visual Studio 2008
Connect an Axis2 client to a JAX-WS service using W3C SOAP over JMS and WebSphere Application Server
Configuring WebSphere Application Server to use W3C SOAP over JMS
Deploying to an Axis2 client using W3C SOAP over JMS

This build: January 26, 2011 11:10:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts22551_

1.5. Developing WebSphere MQ Web service clients for WebSphere MQ transport for SOAP

Use your normal development environment to develop Web service clients for use with the WebSphere MQ transport for SOAP.

Before you begin

1. Create the service. You can use one of the examples in Developing Web services for WebSphere MQ transport for SOAP.

2. Make choices about how you are going to develop, deploy and use the clients, and where to go to get the WSDL for client generation.

1. Decide on your approach to developing clients and services for WebSphere MQ transport for SOAP.

There are two approaches.

a. Use standard development tools, develop an HTTP service and client, and then use the URL for WebSphere MQ transport for SOAP.

b. Use the tools and samples supplied with WebSphere MQ transport for SOAP.

If you take the HTTP route, you can run the service on an HTTP server and also run it using WebSphere MQ transport for SOAP. To run it
using WebSphere MQ transport for SOAP, configure the appropriate WebSphere MQ listener for SOAP and set up the paths and

Table 2. WebSphere JAX-WS JMS Binding Configuration

Field Value

JMS destination queue

Destination JNDI name: requestaxis

JMS connection factory qm1

Reply to Name W3CJMSEAR

Configuration: replyaxis

Page 18 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

deployment descriptors to run the service. The tools provided by WebSphere MQ transport for SOAP do the configuration for you.
Alternatively, you can configure the environment to run the listeners.

The tools supplied with WebSphere MQ transport for SOAP are useful in getting started and learning how to deploy the transport. For
production work, there are benefits in using standard tools, and deploying the same service accessible to different SOAP transports.

2. Decide on the type of client to develop

You must decide what type of Web service client to develop. The choice depends on whether you know the service interface and the
address of the service.

If the interface is known, use Axis or .NET tools to generate proxy client classes from the service interface. The proxy client classes make
it easier to write a client to call the service. If the location of the service is known when you develop the client, then use the static proxy
interface. If the location of the service changes, for example if the service is redeployed onto a production server, then use the dynamic
proxy interface.

If the service interface is not known at the time you develop a client, on Axis, you can create a Dynamic Invocation Interface (DII) client
for Axis 1.4. A DII client uses a generic interface to call any service. To pass parameters to a particular service correctly, you need to build
the specific service interface programmatically. Build the interface programmatically in the client, or by loading the WSDL for the service
into the client. On Axis2, you can create a Dispatch client. The Dispatch client uses a document model to describe the client request,
whereas a DII client uses a call model. Both work on building the request dynamically.

3. Obtain the WSDL for the service

Except for the case of the service interface being built programmatically, you must first obtain the service WSDL in order to create a Web
service client. The service WSDL is obtainable from three different sources:

a. Directly from the Web service implementation using a tool such as java2wsdl (Axis) or disco (.NET).

b. By querying the Web service using the URL: Web service http url?wsdl.

c. From a file, either on a file system, or from a registry such as UDDI or WebSphere Service Registry and Repository.

Note: If the service is not accessible using HTTP, then the WSDL query does not work. The service itself might only be available using the
WebSphere MQ transport for SOAP.

The WSDL generated by amqwdeployWMQService is not the same as WSDL generated using java2wsdl or disco. The generated WSDL
is also different to any WSDL you might have started with to create the service "Top Down". On Axis, the server-config.wsdd

deployment descriptor maps the SOAP message produced by a client to an operation and service. amqwdeployWMQService generates a
different deployment descriptor from Eclipse.

The WSDL you use to build clients depends on how the service is deployed:

Deployed using amqwdeployWMQService

Use the WSDL generated by amqwdeployWMQService. Specify the -w flag and select rpcLiteral WSDL. For compatibility, you can

select rpcEncoded WSDL. rpcEncoded WSDL works only with .NET and Axis 1.4 clients.

Manual deployment using SimpleJavaListener

Use one of the following WSDL files:

a. WSDL used to define the service, or stored in a repository.

b. WSDL generated from the service by java2wsdl.

c. WSDL queried using the URL Web service http url?wsdl, if available from an HTTP server. You might run a tool such as Web

Services Explorer to import the service definition directly into Eclipse.

You might need to change the URI for the service. Change it from the address of the HTTP service, to the URI for the WebSphere MQ
transport for SOAP.

Manual deployment using amqSOAPNETListener.

Use one of the following WSDL files:

a. WSDL used to define the service, or stored in a repository.

b. WSDL obtained from the .NET service class (.asmx). using disco.

c. WSDL queried using the URL Web service http url?wsdl, if available. You might run a tool such as Web Services Explorer to

import the service definition directly into Eclipse.

d. WSDL obtained by running amqswsdl against the .NET service class (.asmx).

You might need to change the URI for the service. Change it from the address of the HTTP service, to the URI for the WebSphere MQ
transport for SOAP.

Deployed to Windows Communication Foundation

Obtain the service WSDL by using the URL Web service http url?wsdl. The service must be defined with the serviceMetaData

behavior configuration as part of the service definition.

Deployment to a different server platform.

Follow the guidance provided with the platform about how to obtain the correct service WSDL.

About this task
Develop clients using standard development tools. The following tasks illustrate how to build clients for .NET 1 and 2, Axis 1.4 (JAX-RPC) and
Axis2 (JAX-WS). For Windows Communication Foundation, see the related tasks links.

Developing a JAX-RPC client for WebSphere transport for SOAP using Eclipse

Develop an Axis 1.4 Web service client to run using the WebSphere MQ transport for SOAP.

Developing a JAX-WS client for WebSphere transport for SOAP using Eclipse
Develop an Axis2 Web service client to run using the WebSphere MQ transport for SOAP. The sample Axis2 clients provided with WebSphere
MQ transport for SOAP are listed, and the wsimport command used to generate proxies.

Developing a .NET 1 or 2 client for WebSphere transport for SOAP using Microsoft Visual Studio 2008
Develop an .NET 1 or 2 Web service client to run using the WebSphere MQ transport for SOAP.

Parent topic: WebSphere MQ transport for SOAP

Related concepts

Simple request-reply client and server WCF sample

This build: January 26, 2011 11:09:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 19 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts20432_

1.5.1. Developing a JAX-RPC client for WebSphere transport for SOAP using Eclipse

Develop an Axis 1.4 Web service client to run using the WebSphere® MQ transport for SOAP.

Before you begin
You must have the service available. If you are following the task as a practical exercise, use the workspace and service you created in the task,
Developing a JAX-RPC service for WebSphere MQ transport for SOAP using Eclipse. You must have an application server running in eclipse that
supports Axis 1.4 Web services. In this task, we use the freely available WebSphere Application Server Community Edition Version 2.1.4. It is
configured as part of the task Developing a JAX-RPC service for WebSphere MQ transport for SOAP using Eclipse. You might also use Tomcat 6,
which is a smaller open source application server.

About this task

The task shows the development of three types of client for the sample StockQuoteAxis service using Eclipse running on Windows. The clients are a
static and dynamic client developed using the client proxy, and a DII client.

Two alternative approaches to generating the client proxies from WSDL are illustrated:

1. Generating client proxies using amqwdeployWMQService.

2. Importing WSDL into Eclipse, and using the Web service wizard to generate the client proxies.

Procedure

1. Start the Eclipse IDE for Java EE developers.

2. Create a Java project called StockQuoteAxisClient:

a. Switch to the Java perspective > File > New > Java Project. In the Project name field of the Create a Java Project page type,
StockQuoteAxisEclipseClient. Make sure that the execution environment is either J2SE-1.4 or J2SE-1.5 > Next.

b. On the Java Settings page, select the Libraries tab > Add External JARs...

c. Browse to WMQ program directory/java/lib and select all the .jar files > Open.

d. Browse to WMQ program directory/java/lib/soap and select all the .jar files > Open. You must have installed axis.jar from the

WebSphere MQ installation media into this directory.

e. The Library tab now references all the .jar files needed to build the client. Click Finish.

3. Follow one of these two approaches to create proxies in Eclipse for the sample StockQuoteAxis Web service:

� Generate the client proxies using amqwdeployWMQService.

a. Create a queue manager. For the task create QM1 as the default queue manager.

b. Create a working directory, samples. Copy the StockQuoteAxis.java sample program into samples/soap/server.

c. Modify amqwsetcp.cmd in WMQ install directory/bin to include the current directory in the class path.

d. Open a command window in samples and run the modified amqwsetcp command

e. Create WSDL for the StockQuoteAxis service by running the command,

amqwdeployWMQService -f soap/server/StockQuoteAxis.java -c genAxisWsdl

-u "jms:/queue?destination=REQUESTAXIS

&initialContextFactory=com.ibm.mq.jms.Nojndi

&connectionFactory=(connectQueueManager(QM1)binding(auto))"

Remember: Use "/", rather than "." or "\" when using Java commands.

Tip: Rather than import the generated proxies into Eclipse, you can import the generated WSDL
from .samples/generated. The resulting proxies differ in two ways:

i. The package names are different - which you can refactor.

ii. The Eclipse generated proxies include an additional helper class, StockQuoteAxisProxy.java

f. Create the client proxies for the StockQuoteAxis service by running the command:

amqwdeployWMQService -f soap/server/StockQuoteAxis.java -c genProxiestoAxis

-u "jms:/queue?destination=REQUESTAXIS

&initialContextFactory=com.ibm.mq.jms.Nojndi

&connectionFactory=(connectQueueManager(QM1)binding(auto))"

g. Import the client proxies into StockQuoteAxisClient:

i. Right click StockQuoteAxisClient\src > Select File System > Next > Browse... > find the
folder .\samples\generated\client\remote\soap\server > OK.

ii. Select server in the right pane of the Import page > Finish.

h. Refactor the package name to soap.server.

i. Right click the package containing the client proxies > Refactor > Rename. Type the New name: soap.server > leave the

selected defaults for the other choices > OK. All the errors are fixed.

� Generate the client proxies using Eclipse.

You have a choice of ways of obtaining the WSDL for the service. In this example, the service has been deployed to WebSphere
Application Server Community Edition and you obtain the WSDL from the Web server. The deployment is described in the task Developing
a JAX-RPC service for WebSphere MQ transport for SOAP using Eclipse,

a. In Eclipse, switch to the Web perspective, and check that the WebSphere Application Server Community Edition v2.1 Server is
running and StockQuoteAxis is deployed and synchronized.

b. Import the WSDL into Web Services Explorer:

i. Click the Web Services Explorer icon in the action-bar, or click Run > Launch the Web Services Explorer.

ii. Click the WSDL page icon in the upper right corner of the Web Services Explorer to switch to the WSDL page.

iii. Click WSDL Main in the Navigator window of the Web Services Explorer.

iv. Type in the URL of the Web service, followed by ?WSDL. The URL for StockQuoteAxis, deployed in the task Developing a JAX-

Page 20 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

RPC service for WebSphere MQ transport for SOAP using Eclipse, is:

http://localhost:8080/StockQuoteAxis/services/StockQuoteAxis?wsdl

c. Generate the client proxies:

i. In the Web Services Explorer navigator, click http://localhost:8080/StockQuoteAxis/services/StockQuoteAxis?wsdl .

ii. In the WSDL Details window, under Other Actions, click Launch Web Service Wizard > leave Web Service Client
selected > Go.

iii. On the first page of the wizard, click the Client project link in the configuration > Select the StockQuoteAxisClient client
project > OK.

Tip: The wizard window might lose focus. You must bring it back into focus manually.

iv. The Web service run time must be Apache Axis to generate a JAX-RPC client.

v. Click Finish.

vi. Change the static URL of the service to point to the WebSphere MQ transport for SOAP address for the StockQuoteAxis
service. You might choose to skip this step, until you have tested the client with an HTTP server.

1. Open StockQuoteAxisServiceLocator.java and find the declaration for StockQuoteAxis_address.

2. Change the URL to

"jms:/queue?destination=REQUESTAXIS

&initialContextFactory=com.ibm.mq.jms.Nojndi

&connectionFactory=(connectQueueManager(QM1)binding(auto))"

Tip: Eclipse automatically transforms & to &, and the reverse, when you copy and paste strings

into .java code.

d. Create three Java client classes, each with a main method:

i. Create package. Right click StockQuoteAxisClient/src > New Package. Name it soap.client > Finish.

ii. Select soap.client > New > Class. Name the class SQAStaticClient > Select public static void main(string [] args) >

Finish

iii. Repeat the procedure to create SQADynamicClient.java and SQADIIClient.java

e. Write the client code.

Figure 4 through Figure 8 provide examples of the three styles of client code. The examples use an HTTP URL to test the client
using the StockQuoteAxis service deployed to an HTTP server. To run the clients against the StockQuoteAxis service deployed using
WebSphere MQ transport for SOAP, change the URL to:

"jms:/queue?destination=REQUESTAXIS

connectionFactory=(connectQueueManager(QM1)binding(auto))

initialContextFactory=com.ibm.mq.jms.Nojndi

targetService=soap.server.StockQuoteAxis.java

replyDestination=SYSTEM.SOAP.RESPONSE.QUEUE"

� Figure 4 and Figure 6 use the proxy generated by Eclipse, which has the extra StockQuoteAxisproxy helper class that makes
coding a little easier.

� Figure 5 and Figure 7 use the proxy generated by amqwdeployWMQService.

� Figure 8 uses no proxy classes.

Each of the clients call com.ibm.mq.soap.Register.extension() to link to the WebSphere MQ transport for SOAP. The extension is

registered in the client deployment descriptor. Client deployment to Axis 1.4 is described in Deploying a Web service client to Axis
1.4 to use WebSphere MQ transport for SOAP.

f. Run the clients by sending the SOAP request to StockQuoteAxis hosted by the WebSphere Application Server Community Edition
server configured in the workspace.

i. Check that the server is running, StockQuoteAxis is deployed and synchronized.

ii. Select or open the client you want to test > Click Run in the action bar. Alternatively, click the green Run icon or right click
the client in the navigator > Run As > Run Configurations Configure the parameters you require to run the client.

g. Run the client using the WebSphere MQ transport for SOAP.

The procedure uses amqwdeployWMQService to deploy the service, and only works with the client that uses the WSDL or proxies

built by amqwdeployWMQService. To run the client using the original WSDL, or proxies built by eclipse, deploy the service with
its deployment descriptor built by Eclipse. Manually start SimpleJavaListener using the service port binding name as the
targetServiceName.

i. Follow the instructions in Deploying a service to Axis 1.4 to use for WebSphere transport for SOAP using
amqwdeployWMQService to deploy the service to the WebSphere MQ Simple Java SOAP listener. The service deployment
works only for the client using the WSDL or client proxies built by amqwdeployWMQService.

ii. In a command window, run amqwclientconfig to create the client deployment descriptor file, client-deploy.wsdd.

iii. Import client-deploy.wsdd into the root of the Java project you want to test using WebSphere MQ transport for SOAP.

1. Right click the Java project StockQuoteAxisEclipseClient > Import > File system > Next > Browse...

2. Browse to the directory containing client-deploy.wsdd > Open > Select the directory in the left pane of the Import

wizard page > Select client-deploy.wsdd in the right pane.

3. Verify Into folder: has StockQuoteAxisEclipseClient entered > Finish.

iv. Confirm that the working directory for running a Java application in this project is the StockQuoteAxisEclipseClient

directory:

Right click the Java project StockQuoteAxisEclipseClient > Run as.... > Run Configurations... > Select the (x)=
Arguments tab > Verify that in Working Directory the Default radio button is checked, and the path is
StockQuoteAxisEclipseClient. Alternatively make one of the following choices to select a different location or file containing

the client configuration:

� Select Other: > type a directory path of your choice.

� In the VM arguments window, type -Daxis.ClientConfigFile=full path to client deployment descriptor file

v. Make sure the URL is configured to point to the service deployed using WebSphere MQ transport for SOAP. Run the client as
described in step ii.

Tip: Typically, you might encounter one of these errors:

i. Exception: No client transport named 'jms' found!.

Page 21 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

ii. A JMS connection error.

iii. Exception: The AXIS engine could not find a target service to invoke! targetService is

soap.server.StockQuoteAxis.java

iv. Exception: java.lang.InstantiationException: soap.server.StockQuoteAxis

Explanations:

i. client-config.wsdd is not found, or does include the line <transport name="jms"

pivot="java:com.ibm.mq.soap.transport.jms.WMQSender"/> in client-config.wsdd.

ii. Possibly a build path problem - not including the .jar files in WebSphere MQ install directory/java/lib.

iii. Service deployment problem, either with server-config-wsdd, or with parameters passed to

SimpleSoapListener.

iv. Mismatch between deployment descriptor and the implementation of the service.

If you are having difficulty running the client in Eclipse, try using a command window:

i. Switch to the StockQuoteAxisEclipseClient\bin directory in the workspace directory tree.

ii. Run amqwsetcp and amqwclientconfig

iii. Run java soap/client/SQAStaticClient.

Sample JAX-RPC Web service clients

The sample Java Web service clients shipped with WebSphere MQ are installed in WMQ install directory\tools\soap\samples\java\clients.

SQAxis2Axis.java

SQAxis2Axis.java, Figure 1, is a dynamic proxy client to invoke the StockQuoteAxis service. You can override the URL of the service, which is

compiled into the dynamic proxy, by providing a URL on the command line.

SQAxis2DotNet.java

SQAxis2DotNet.java, Figure 2, is a dynamic proxy client to invoke the StockQuoteDotNet service. You can override the URL of the service, which

is compiled into the dynamic proxy, by providing a URL on the command line.

WsdlClient.java

WsdlClient.java, Figure 3, is a dynamic invocation client to invoke either the StockQuoteDotNet or StockQuoteAxis service. The client invokes

the StockQuoteAxis service by default. Add the command-line option -D to invoke the StockQuoteDotNet service and -w to provide a different

port to the port in .\generated\StockQuoteDotNet_Wmq.wsdl

Figure 1. SQAxis2Axis.java

package soap.clients;

import java.net.URL;

import soap.server.*;

public class SQAxis2Axis {

 public static void main(String[] args) {

 com.ibm.mq.soap.Register.extension();

 try {

 StockQuoteAxisService locator = new StockQuoteAxisServiceLocator();

 StockQuoteAxis service = null;

 if (args.length == 0)

 service = locator.getSoapServerStockQuoteAxis_Wmq();

 else

 service = locator.getSoapServerStockQuoteAxis_Wmq(

 new java.net.URL(args[0]));

 System.out.println("Response: " + service.getQuote("XXX"));

 } catch (Exception e) {

 System.out.println("\n>>> EXCEPTION WHILE RUNNING ProxyClient DEMO <<<\n");

 e.printStackTrace();

 System.exit(2);

 }

 }

Figure 2. SQAxis2DotNet.java

public class SQAxis2DotNet {

public static void main(String[] args) {

 com.ibm.mq.soap.Register.extension();

 try {

 StockQuoteDotNet locator = new StockQuoteDotNetLocator();

 StockQuoteDotNetSoap_PortType service = null;

 if (args.length == 0)

 service = locator.getStockQuoteDotNetSoap();

 else

 service = locator.getStockQuoteDotNetSoap(new java.net.URL(

 args[0]));

 System.out.println("Response: " + service.getQuoteDOC("XXX"));

 } catch (Exception e) {

 System.out.println("\n>>> EXCEPTION WHILE RUNNING ProxyClient DEMO <<<\n");

 e.printStackTrace();

 System.exit(2);

 }

 }

}

Figure 3. WsdlClient.java

package soap.clients;

import com.ibm.mq.soap.*;

import org.apache.axis.utils.Options;

import java.net.URL;

import javax.xml.rpc.Call;

import javax.xml.rpc.Service;

import javax.xml.rpc.ServiceFactory;

import javax.xml.namespace.QName;

public class WsdlClient {

Page 22 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

public static void main(String[] args) {

 String wsdlService, wsdlPort, namespace, wsdlSource, wsdlTargetURI, s;

 try {

 Register.extension();

 Options opts = new Options(args);

 if (opts.isFlagSet('D') != 0) {

 wsdlService = "StockQuoteDotNet";

 wsdlPort = "StockQuoteDotNetSoap";

 namespace = "http://stock.samples";

 wsdlSource = "file:generated/StockQuoteDotNet_Wmq.wsdl";

 } else {

 wsdlService = "StockQuoteAxisService";

 wsdlPort = "soap.server.StockQuoteAxis_Wmq";

 namespace = "soap.server.StockQuoteAxis_Wmq";

 wsdlSource = "file:generated/soap.server.StockQuoteAxis_Wmq.wsdl";

 }

 if (null != (s = (opts.isValueSet('w'))))

 wsdlPort = s;

 System.out.println("start WsdlClient demo, wsdl port " + wsdlPort

 + " resolving uri to ...");

 QName servQN = new QName(namespace, wsdlService);

 QName portQN = new QName(namespace, wsdlPort);

 Service service = ServiceFactory.newInstance().createService(

 new URL(wsdlSource), servQN);

 Call call = (Call) service.createCall(portQN, "getQuote");

 wsdlTargetURI = call.getTargetEndpointAddress().toString();

 System.out.println(" '" + wsdlTargetURI + "'");

 Object ret = call.invoke(new Object[] { "XXX" });

 System.out.println("Response: " + ret);

 } catch (Exception e) {

 System.out.println("\n>>> EXCEPTION WHILE RUNNING WsdlClient DEMO <<<\n");

 e.printStackTrace();

 System.exit(2);

 }

 }

}

The example clients used in this task:

Figure 4. Static client using Eclipse generated proxy

package soap.client;

import soap.server.StockQuoteAxisProxy;

public class SQAStaticClient {

 public static void main(String[] args) {

 try {

 com.ibm.mq.soap.Register.extension();

 StockQuoteAxisProxy sqa = new StockQuoteAxisProxy();

 System.out.println("Static client synchronous result is:"

 + sqa.getQuote("ibm"));

 } catch (Exception e) {

 System.out.println("Exception: " + e);

 }

 }

}

Figure 5. Static client using amqwdeployWMQService generated proxy

package soap.client;

import soap.server.StockQuoteAxis;

import soap.server.StockQuoteAxisService;

import soap.server.StockQuoteAxisServiceLocator;

public class SQAStaticClient {

 public static void main(String[] args) {

 try {

 com.ibm.mq.soap.Register.extension();

 StockQuoteAxisService locator = new StockQuoteAxisServiceLocator();

 StockQuoteAxis sqa = locator.getSoapServerStockQuoteAxis_Wmq();

 System.out.println("Static client synchronous result is: "

 + sqa.getQuote("ibm"));

 } catch (Exception e) {

 System.out.println("Exception: " + e);

 }

 }

}

Figure 6. Dynamic client using Eclipse generated proxy

package soap.client;

import soap.server.StockQuoteAxisProxy;

public class SQADynamicClient {

 public static void main(String[] args) {

 try {

 com.ibm.mq.soap.Register.extension();

 StockQuoteAxisProxy sqa = new StockQuoteAxisProxy(

 "http://localhost:8080/StockQuoteAxis/services/StockQuoteAxis");

 System.out.println("Dynamic client synchronous result is: "

 + sqa.getQuote("ibm"));

 } catch (Exception e) {

 System.out.println("Exception: " + e);

 }

 }

}

Figure 7. Dynamic client using amqwdeployWMQService generated proxy

package soap.client;

import java.net.URL;

import soap.server.StockQuoteAxis;

import soap.server.StockQuoteAxisService;

import soap.server.StockQuoteAxisServiceLocator;

Page 23 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

public class SQADynamicClient {

 public static void main(String[] args) {

 try {

 com.ibm.mq.soap.Register.extension();

 URL sqaURL = new URL(

 "http://localhost:8080/StockQuoteAxis/services/StockQuoteAxis");

 StockQuoteAxisService locator = new StockQuoteAxisServiceLocator();

 StockQuoteAxis sqa = locator.getSoapServerStockQuoteAxis_Wmq(sqaURL);

 System.out.println("Dynamic client synchronous result is: "

 + sqa.getQuote("ibm"));

 } catch (Exception e) {

 System.out.println("Exception: " + e);

 }

 }

}

Figure 8. DII client (No proxy)

package soap.client;

import java.net.URL;

import javax.xml.namespace.QName;

import javax.xml.rpc.Call;

import javax.xml.rpc.Service;

import javax.xml.rpc.ServiceFactory;

public class SQADIIClient {

 public static void main(String[] args) {

 try {

 com.ibm.mq.soap.Register.extension();

 URL wsdl = new URL(

 "http://localhost:8080/StockQuoteAxis/services/StockQuoteAxis?wsdl");

 Service SQAService = (ServiceFactory.newInstance()).createService(wsdl,

 new QName("http://server.soap", "StockQuoteAxisService"));

 Call SQACall = SQAService.createCall(new QName("http://server.soap",

 "StockQuoteAxis"), "getQuote");

 System.out.println("DII client synchronous result is "

 + SQACall.invoke(new Object[] { "ibm" }));

 } catch (Exception e) {

 System.out.println("Exception: " + e);

 }

 }

}

Parent topic: Developing WebSphere MQ Web service clients for WebSphere MQ transport for SOAP

Related tasks
Developing a JAX-WS client for WebSphere transport for SOAP using Eclipse
Developing a .NET 1 or 2 client for WebSphere transport for SOAP using Microsoft Visual Studio 2008
Developing a JAX-RPC service for WebSphere MQ transport for SOAP using Eclipse

Related information
Eclipse Galileo Packages

This build: January 26, 2011 11:09:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts20534_

1.5.2. Developing a JAX-WS client for WebSphere transport for SOAP using Eclipse

Develop an Axis2 Web service client to run using the WebSphere® MQ transport for SOAP. The sample Axis2 clients provided with WebSphere MQ
transport for SOAP are listed, and the wsimport command used to generate proxies.

Before you begin

Obtain the Axis2 libraries, and configure a development and test environment to run the client.

Note: The naming of versions and releases used by Axis causes confusion. Typically, Axis 1.4 refers to the JAX-RPC implementation, and Axis2 to
the JAX-WS implementation.

Axis 1.4 is a version level. If you search for Axis 1.4 on the internet, you are taken to http://ws.apache.org/axis/. The page contains a list of
preceding versions of Axis (1.2, 1.3) and the April 22, 2006, final release of Axis 1.4. There are later releases of Axis 1.4, that fix bugs, but they
are all known as Axis 1.4. It is one of these bug fix releases that is shipped with WebSphere MQ. For Axis 1.4, use the version of axis.jar that is

shipped with WebSphere MQ rather than the one obtainable from http://ws.apache.org/axis/.

The Axis Web site also refers to Axis 1.1 to refer to all the versions of what is more typically called Axis 1.4. Axis 1.2 is used to refer to what is
typically called Axis2.

Axis 1.5 is not a later release of Axis 1.4, it is an Axis2 release. If you search for Axis 1.5 you are directed to http://ws.apache.org/axis2/.
http://ws.apache.org/axis2/download.cgi contains a list of release versions of Axis2, labeled 0.9 to 1.5.1 (and including, confusingly version 1.4).
The release version of Axis2 to use with WebSphere MQ transport for SOAP is 1.4.1. Download Axis2 1.4.1 from
http://ws.apache.org/axis2/download/1_4_1/download.cgi.

You can choose to generate proxies for the Web service clients for WebSphere MQ transport for SOAP using either wsimport or the tooling
provided with an IDE. Eclipse IDE for Java EE Developer 3.5 SR1 uses wsdl2java.wsimport is supplied with Java 6. You can use Java 5 to run
client proxies generated either with wsimport or wsdl2java.

The sample Web service Axis2 clients provided with WebSphere MQ transport for SOAP were developed using wsimport; see Sample Axis2
clients.

The task that follows demonstrates how to generate and use the proxies produced by the Web services wizard that is packaged with Eclipse IDE

for Java EE Developers. The sample clients show how to use the proxies produced by wsimport.

To use the Web services wizard, you must add an application server that supports Axis2 to the workbench. The steps show how to configure
WASCE to support Axis2 using the workbench.

1. Configure the application server used in Eclipse IDE for Java EE Developers to support Axis2. In this example, configure the WASCE 2.1.4,
application server, which is part of the workspace created in Developing a JAX-RPC service for WebSphere MQ transport for SOAP using

Page 24 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

Eclipse.

a. Open the workspace preferences to configure the server: Open Window > Preferences.

b. Check the installed JRE is Java50: Click Installed JREs.

c. Add WASCE as the server: Click Server > Runtime environments > Add... > IBM > WASCE v2.1 > Next. The JRE must be Java50
> Browse to the WASCE installation directory > OK > Finish. You must have installed the WASCE plug-in for Eclipse Java EE IDE for
Web Developers.

d. Add Axis2: Click Web Services > Axis2 Preferences. On the Axis2 Runtime tab > Browse... Open the directory containing the
many Axis2 jar files > Apply.

e. Associate WASCE with Axis2: Click Web Services > Server and Runtime. Under Server select IBM WASCE v2.1 Server, and

under Web service runtime, select Apache Axis2 > Apply > OK

f. Start the server: Open the Web perspective and open the Servers view. Right click in the Servers view > New > Server. IBM
WASCE v2.1 Server is selected and configured > Finish. Start the server.

2. Check that you have deployed the StockQuoteAxis service to WASCE to run the Web service wizard.

3. To test the service with the WebSphere MQ transport for SOAP service, deploy the service to a WebSphere MQ transport for SOAP listener
for Axis 1.4; see Developing a JAX-RPC service for WebSphere MQ transport for SOAP using Eclipse.

About this task

The Eclipse IDE for Java EE Developers uses Java50 and the Web services wizard to generate the proxy classes for the service. The proxy classes are
different to the classes created by the wsimport tool provided with Java 6. An alternative approach is to generate the proxy classes using wsimport
and import the packages it creates into your Eclipse Java EE IDE for Web Developers.

The Web services wizard in the Eclipse IDE for Java EE Developers builds a Web service client in a Web project. You can run the client as a simple
Java application; it does not require an application server. You can also transfer the code to a Java project, and configure the build path to include
the Axis2 JAR files.

Procedure

1. Create a Web project in a new Enterprise project:

a. With nothing selected in the Project Explorer > Right-click the white space > New > Enterprise Application Project > Name it
StockQuoteAxis2EAR > Finish. Reply No to the window giving you the option of opening the Java EE perspective. The defaults are set to

use WASCE.

b. Right-click StockQuoteAxis2EAR > New > Dynamic Web Project. Name the project StockQuoteAxis2WebClient > Check the EAR

membership box to add the project to StockQuoteAxis2EAR. WASCE 2.1 is selected as the Target runtime.

c. In the Configuration section of the New Dynamic Web Project page > Modify... > Check the Axis2 Web services project facet. Dynamic
Web Module 2.5, Java 5.0, and WASCE deployment 1.2 are already checked. > OK > Finish. Reply No to the window giving you the

option of opening the Java EE perspective.

2. Add the Axis2 classes to the build path.

a. Right-click the project StockQuoteAxis2WebClient > Build Path > Configure Build Path...

b. Click Add External JARs and browse to the folder where you have unpacked Axis2. Select all the JAR files in Axis2 folder\lib > OK.

3. Import WSDL for the service into the workspace and generate the client proxy:

In this example, the WSDL document contains the HTTP service binding and becomes the target for the static Web client proxy. You can modify
the URL in the Web service binding to point to the WebSphere MQ transport for SOAP URL before generating the client proxy. The static Web
client proxy is then the service that is deployed to WebSphere MQ transport for SOAP.

a. Launch the Web Services Explorer: either use the icon in the action bar, or Run > Launch the Web Services Explorer.

b. Select the WSDL explorer by clicking the WSDL icon in the top right of the Web Services Explorer window > Click WSDL Main in the
Navigator window > Type the URL of the StockQuoteAxis WSDL file > Go. In this example, obtain the WSDL directly from the HTTP
service: http://localhost:8080/StockQuoteAxis/services/StockQuoteAxis?wsdl

c. In the Navigator, click the line with the URL of the Web service. In the WSDL Details window, under Other Actions, click Import WSDL
to Workbench > Select a StockQuoteAxis2WebClient as the Workbench project > Type the WSDL file name,

StockQuoteAxisHTTP.wsdl > Go.

d. Right-click StockQuoteAxisHTTP.wsdl > Web Services > Generate Client. Check the configuration information about the Web
services page of the wizard is as follows: Server: IBM® WASCE v2.1 Server, Web service runtime: Apache Axis2, Client project:
StockQuoteAxis2WebClient, Client EAR project: StockQuoteAxisEAR. To correct the configuration, click the lines that are wrong.

e. Click Next > verify the code generation settings > Finish. Notice that a new package, soap.server, is created and it contains the

proxies you require.

4. Configure the project to run WebSphere MQ transport for SOAP as the JMS transport. WebSphere MQ transport for SOAP provides a
transportSender, but no transportReceiver. In other words, WebSphere MQ transport for SOAP supports Axis2 clients. Currently it does not

support Axis2 services.

a. In the StockQuoteAxis2WebClient project, right-click WebContent\WEB-INF\conf\axis2.xml > Open with... > XML editor.

b. Search for the last transportSender (towards the end of the file) and find the commented out JMS transportSender > Right-click the

line > Add before... > transportSender.

c. Right-click transportSender > Add Attribute > Name > Right-click transportSender > Add Attribute > Class.

d. Right-click Name > Edit Attribute > Type the Value: jms

e. Right-click Class > Edit Attribute > Type the Value: com.ibm.mq.axis2.transport.jms.WMQJMSTransportSender. > Save.

f. Add com.ibm.mq.axis2.transport.jms.WMQJMSTransportSender to the build path: Right-click StockQuoteAxis2WebClient > Build

Path > Configure Build Path... > Click the Libraries tab > Add External JARs.... Select all the JARs in WMQ Install root\java\lib >

OK.

5. Create a synchronous static client, test it using HTTP, then convert the proxy to run the static client using WebSphere MQ transport for SOAP.

a. Right-click Java Resources: src > New > Package > Name the package soap.client > Finish

b. Right-click soap.client > New > Class > Name the class SQA2StaticClient > Finish.

c. Replace the class with the code in Figure 1 > Save.
Figure 1. SQA2StaticClient.java

package soap.client;

import soap.server.StockQuoteAxisServiceStub;

import soap.server.StockQuoteAxisServiceStub.GetQuote;

public class SQA2StaticClient {

Page 25 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

 public static void main(String[] args) {

 try {

 StockQuoteAxisServiceStub stub = new StockQuoteAxisServiceStub();

 GetQuote request = new GetQuote();

 request.setSymbol("ibm");

 System.out.println("Response is: "

 + (stub.getQuote(request)).getGetQuoteReturn());

 } catch (Exception e) {

 System.out.println("Exception: " + e.getMessage());

 e.printStackTrace();

 }

 }

}

6. Test the client with the StockQuoteAxis service deployed to WASCE, and with WebSphere MQ transport for SOAP.

a. In the Project Explorer, right-click SQA2StaticClient > Run as... > Java Application. The result, Response is 55.25, appears in the

Console view. You can also select the WASCE console window in the Console view, and see the output on the WASCE server,
StockQuoteAxis called with parameter: ibm.

b. The proxy was built with the service address, http://localhost:8080/StockQuoteAxis/services/StockQuoteAxis, and so the static

client calls the service running on HTTP. You can change the static client to call the service using WebSphere MQ transport for SOAP. The
following instructions change the service address in StockQuoteAxisServiceStub.java without rebuilding the proxy, and configure the

SQA2StaticClient runtime parameters to load axis2.xml. You configure axis2.xml to use WebSphere MQ transport for SOAP.

c. Open StockQuoteAxisServiceStub.java > Replace the two occurrences of

http://localhost:8080/StockQuoteAxis/services/StockQuoteAxis with,

jms:/queue?destination=REQUESTAXIS@QM1

&connectionFactory=()

&initialContextFactory=com.ibm.mq.jms.Nojndi

&targetService=StockQuoteAxis

&replyDestination=SYSTEM.SOAP.RESPONSE.QUEUE

If you run SQA2StaticClient now, it throws an exception because it has not found a transportSender configured for JMS or because the

transport sender does not support addressing. You need to make two more changes to the configuration:

d. In axis2.xml find the following setting, and comment it out as it says:

<!-- Comment this to disable Addressing -->

 <module ref="addressing"/>

e. In the Project Explorer, right-click SQA2StaticClient > Run as... > Run Configurations.... Switch to the (x)= Arguments tab, and in
the VM arguments input area, type the path to the axis2.conf file > Apply > Run. The VM argument is: -

Daxis2.xml=${workspace_loc:StockQuoteAxis2WebClient/WebContent/WEB-INF/conf}/axis2.xml. Or you can provide a standard

path to the Axis2 configuration file.

f. Run SQA2StaticClient again. On this run, you are using the WebSphere MQ transport for SOAP. Confirm it by checking there is no new

output in the WASCE console. Open the console or command window that is associated with SimpleJavaListener, and look for the output

from StockQuoteAxis called with parameter: ibm1.

7. Create a dynamic client for HTTP and WebSphere MQ transport for SOAP, and test it.

a. Right-click soap.client > New > Class > Name the class SQA2DynamicClient > Finish.

b. Replace the class with the code in Figure 2 > Save.
Figure 2. SQA2DynamicClient.java

package soap.client;

import soap.server.StockQuoteAxisServiceStub;

import soap.server.StockQuoteAxisServiceStub.GetQuote;

public class SQA2DynamicClient {

 public static void main(String[] args) {

 try {

 StockQuoteAxisServiceStub stub = new StockQuoteAxisServiceStub(

 "http://localhost:8080/StockQuoteAxis/services/StockQuoteAxis");

 GetQuote request = new GetQuote();

 request.setSymbol("ibm");

 System.out.println("HTTP Sync: "

 + (stub.getQuote(request)).getGetQuoteReturn());

 stub = new StockQuoteAxisServiceStub(

 "jms:/queue?destination=REQUESTAXIS@QM1"

 + "&connectionFactory=()&initialContextFactory=com.ibm.mq.jms.Nojndi"

 + "&targetService=StockQuoteAxis&replyDestination=SYSTEM.SOAP.RESPONSE.QUEUE");

 System.out.println("JMS sync: "

 + (stub.getQuote(request)).getGetQuoteReturn());

 } catch (Exception e) {

 System.out.println("Exception: " + e.getMessage());

 e.printStackTrace();

 }

 }

 }

c. Create a Run configuration for SQA2DynamicClient.java, and add the path to axis2.xml: -

Daxis2.xml=${workspace_loc:StockQuoteAxis2WebClient/WebContent/WEB-INF/conf}/axis2.xml

d. Run SQA2DynamicClient. Check the console output for the SQA2DynamicClient, WASCE and SimpleJavaListener.

8. Create an asynchronous client, and access the result in a callback handler, and in the main program thread.

The asynchronous client proxies created by the Web service wizard for Eclipse Java EE IDE for Web Developers differ from the proxies created
by wsimport. The wsimport proxies use Future, Response, and AsyncHandler generic types.

The Web service wizard for Eclipse Java EE IDE for Web Developers creates a StockQuoteAxisServiceCallbackHandler abstract class. You

must extend StockQuoteAxisServiceCallbackHandler and create a callback handler.

a. Right-click soap.client > New > Class > Name the class SQA2CallbackHandler > Finish.

b. Replace the class with the code in Figure 3.
Figure 3. SQA2CallbackHandler.java

package soap.client;

import soap.server.StockQuoteAxisServiceCallbackHandler;

import soap.server.StockQuoteAxisServiceStub.GetQuoteResponse;

public class SQA2CallbackHandler

 extends StockQuoteAxisServiceCallbackHandler {

 private boolean complete = false;

Page 26 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

 SQA2CallbackHandler() {

 super();

 System.out.println("Callback constructor");

 }

 public void receiveResultgetQuote(GetQuoteResponse response) {

 System.out.println("Result in Callback " + response.getGetQuoteReturn());

 super.clientData = response;

 complete = true;

 }

 public boolean isComplete() {

 return complete;

 }

}

c. Right-click soap.client > New > Class > Name the class SQA2AsyncClient > Finish.

d. Replace the class with the code in Figure 4.
Figure 4. SQA2AsyncClient.java

package soap.client;

import soap.server.StockQuoteAxisServiceStub;

import soap.server.StockQuoteAxisServiceStub.GetQuote;

import soap.server.StockQuoteAxisServiceStub.GetQuoteResponse;

import soap.server.StockQuoteAxisServiceCallbackHandler;

@SuppressWarnings("unused")

public class SQA2AsyncClient {

 public static void main(String[] args) {

 try {

 StockQuoteAxisServiceStub stub = new StockQuoteAxisServiceStub(

 "http://localhost:8080/StockQuoteAxis/services/StockQuoteAxis");

 GetQuote request = new GetQuote();

 request.setSymbol("ibm");

 System.out.println("HTTP Sync: "

 + (stub.getQuote(request)).getGetQuoteReturn());

 SQA2CallbackHandler callback = new SQA2CallbackHandler();

 stub.startgetQuote(request, callback);

 do {

 System.out.println("Waiting for HTTP callback");

 Thread.sleep(2000);

 } while (!callback.isComplete());

 System.out.println("HTTP poll: "

 + ((GetQuoteResponse) (callback.getClientData()))

 .getGetQuoteReturn());

 stub = new StockQuoteAxisServiceStub(

 "jms:/queue?destination=REQUESTAXIS@QM1"

 + "&connectionFactory=()&initialContextFactory=com.ibm.mq.jms.Nojndi"

 + "&targetService=StockQuoteAxis&replyDestination=SYSTEM.SOAP.RESPONSE.QUEUE");

 System.out.println("JMS Sync: "

 + (stub.getQuote(request)).getGetQuoteReturn());

 callback = new SQA2CallbackHandler();

 stub.startgetQuote(request, callback);

 while (!callback.isComplete()) {

 System.out.println("Waiting for JMS callback");

 Thread.sleep(2000);

 }

 System.out.println("JMS poll: "

 + ((GetQuoteResponse) (callback.getClientData())).getGetQuoteReturn());

 } catch (Exception e) {

 System.out.println("Exception: " + e.getMessage());

 e.printStackTrace();

 }

 }

 }

The console output is listed in Figure 5.

Figure 5. Console output from SQA2AsyncClient.java

HTTP Sync: 55.25

Callback constructor

Waiting for HTTP callback

Result in Callback 55.25

HTTP poll: 55.25

JMS Sync: 55.25

Callback constructor

Waiting for JMS callback

Result in Callback 55.25

JMS poll: 55.25

Sample Axis2 clients
The sample proxies are generated using the wsimport tool that is packaged with Java 6. Six samples are provided:

1. DynamicProxyClientSync.java

2. DynamicProxyClientAsyncPolling.java

3. DynamicProxyClientAsyncCallback.java

4. DispatchClientSync.java

5. DispatchClientAsyncPolling.java

6. DispatchClientAsyncCallback.java

The client samples are generated for the sample StockQuoteAxis server. Generate the WSDL with the amqwdepoyWMQServer command,

specifying the -w switch to select rpcLiteral style. Use the following command to generate the proxies for the samples:

wsimport soap.server.StockQuoteAxis_Wmq.wsdl -d generated -keep -p com.ibm.mq.axis2.samples

Figure 6. DynamicProxyClientSync.java

package com.ibm.mq.axis2.samples;

import com.ibm.mq.axis2.samples.proxy.StockQuoteAxis;

import com.ibm.mq.axis2.samples.proxy.StockQuoteAxisService;

Page 27 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

public class DynamicProxyClientSync {

 public static void main(String[] args) {

 try {

 System.out.println("Starting sample DynamicProxyClientSync");

 System.out.println("Creating proxy instance for service StockQuoteAxisService");

 StockQuoteAxisService stub = new StockQuoteAxisService();

 StockQuoteAxis service = stub.getSoapServerStockQuoteAxisWmq();

 System.out.println("Invoking getQuoteOneWay OneWay operation synchronously...");

 service.getQuoteOneWay("48");

 System.out.println(" > getQuoteOneWay has returned");

 System.out.println("Invoking getQuote Request Reply operation synchronously...");

 float result = service.getQuote("48");

 System.out.println(" > getQuote has returned result of " + result);

 System.out.println("End of sample");

 }

 catch (Exception fault) {

 // Identify the cause of the Axis Fault

 System.err.println(fault.toString());

 Throwable e = fault.getCause();

 for (int i = 1; e != null; i++) {

 // The toString method on an MQAxisException will cause the message, explanation and user

 // action.

 System.err.println("Exception(" + i + "): " + e.toString());

 if (e.getCause() != null) {

 e = e.getCause();

 }

 else {

 break;

 }

 } // end of for loop

 } // end of catch block

 }

}

Figure 7. DynamicProxyClientAsyncPolling.java

package com.ibm.mq.axis2.samples;

import java.util.concurrent.CancellationException;

import javax.xml.ws.Response;

import com.ibm.mq.axis2.samples.proxy.StockQuoteAxis;

import com.ibm.mq.axis2.samples.proxy.StockQuoteAxisService;

public class DynamicProxyClientAsyncPolling {

 public static void main(String[] args) {

 try {

 System.out.println("Starting sample DynamicProxyClientAsyncPolling");

 System.out.println("Creating proxy instance for service StockQuoteAxisService");

 StockQuoteAxisService stub = new StockQuoteAxisService();

 StockQuoteAxis service = stub.getSoapServerStockQuoteAxisWmq();

 System.out

 .println("Invoking getQuoteAsync Request Reply operation asynchronously by polling...");

 Response<Float> response = service.getQuoteAsync("49");

 /** Sleep main thread until response arrives **/

 System.out.println("Waiting for response to arrive...");

 while (!response.isDone()) {

 Thread.sleep(100);

 }

 System.out.println(" > Response received");

 /** Retrieve the result **/

 try {

 Float result = response.get();

 System.out.println(" > getQuoteAsync call has returned result of " + result);

 }

 catch (CancellationException ce) {

 // processing was cancelled via response.cancel()

 }

 System.out.println("End of sample");

 }

 catch (Exception fault) {

 // Identify the cause of the Axis Fault

 System.err.println(fault.toString());

 Throwable e = fault.getCause();

 for (int i = 1; e != null; i++) {

 // The toString method on an MQAxisException will cause the message, explanation and user

 // action.

 System.err.println("Exception(" + i + "): " + e.toString());

 if (e.getCause() != null) {

 e = e.getCause();

 }

 else {

 break;

 }

 } // end of for loop

 } // end of catch block

Page 28 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

 }

}

Figure 8. DynamicProxyClientAsyncCallback.java

package com.ibm.mq.axis2.samples;

import java.util.concurrent.Future;

import javax.xml.ws.AsyncHandler;

import javax.xml.ws.Response;

import com.ibm.mq.axis2.samples.proxy.StockQuoteAxis;

import com.ibm.mq.axis2.samples.proxy.StockQuoteAxisService;

public class DynamicProxyClientAsyncCallback implements AsyncHandler<Float> {

 public static void main(String[] args) {

 try {

 System.out.println("Starting sample DynamicProxyClientAsyncCallback");

 System.out.println("Creating proxy instance for service StockQuoteAxisService");

 StockQuoteAxisService stub = new StockQuoteAxisService();

 StockQuoteAxis service = stub.getSoapServerStockQuoteAxisWmq();

 DynamicProxyClientAsyncCallback handler = new DynamicProxyClientAsyncCallback();

 System.out

 .println("Invoking getQuoteAsync Request Reply operation asynchronously using a callback...");

 Future<?> monitor = service.getQuoteAsync("50", handler);

 System.out.println(" > Invoke call has returned");

 /** Sleep main thread until handler has been notified **/

 System.out.println("Waiting for handler to be called...");

 while (!monitor.isDone()) {

 Thread.sleep(100);

 }

 System.out.println("End of sample");

 }

 catch (Exception fault) {

 // Identify the cause of the Axis Fault

 System.err.println(fault.toString());

 Throwable e = fault.getCause();

 for (int i = 1; e != null; i++) {

 // The toString method on an MQAxisException will cause the message, explanation and user

 // action.

 System.err.println("Exception(" + i + "): " + e.toString());

 if (e.getCause() != null) {

 e = e.getCause();

 }

 else {

 break;

 }

 } // end of for loop

 } // end of catch block

 }

 public void handleResponse(Response<Float> response) {

 try {

 Float result = response.get();

 System.out.println(" > Async Handler has received a result of " + result);

 }

 catch (Exception fault) {

 // Identify the cause of the Axis Fault

 System.err.println("Exception in handleResponce");

 System.err.println(fault.toString());

 Throwable e = fault.getCause();

 for (int i = 1; e != null; i++) {

 // The toString method on an MQAxisException will cause the message, explanation and user

 // action.

 System.err.println("Exception(" + i + "): " + e.toString());

 if (e.getCause() != null) {

 e = e.getCause();

 }

 else {

 break;

 }

 } // end of for loop

 } // end of catch block

 }

}

Figure 9. DispatchClientSync.java

package com.ibm.mq.axis2.samples;

import javax.xml.namespace.QName;

import javax.xml.soap.MessageFactory;

import javax.xml.soap.SOAPBody;

import javax.xml.soap.SOAPConstants;

import javax.xml.soap.SOAPElement;

import javax.xml.soap.SOAPEnvelope;

import javax.xml.soap.SOAPHeader;

import javax.xml.soap.SOAPMessage;

import javax.xml.soap.SOAPPart;

import javax.xml.ws.Dispatch;

import javax.xml.ws.Service;

import javax.xml.ws.soap.SOAPBinding;

Page 29 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

public class DispatchClientSync {

 public static void main(String[] args) {

 try {

 System.out.println("Starting sample DispatchClientSync");

 String endpointUrl = "jms:/queue?destination=SOAPJ.demos@WMQSOAP.DEMO.QM&"

 + "connectionFactory=connectQueueManager(WMQSOAP.DEMO.QM)"

 + "&initialContextFactory=com.ibm.mq.jms.Nojndi&targetService=soap.server.StockQuoteAxis.java";

 QName serviceName = new QName("soap.server.StockQuoteAxis_Wmq", "StockQuoteAxisService");

 QName portName = new QName("soap.server.StockQuoteAxis_Wmq", "soap.server.StockQuoteAxis_Wmq");

 Service service = Service.create(serviceName);

 service.addPort(portName, SOAPBinding.SOAP11HTTP_BINDING, endpointUrl);

 /** Create a Dispatch instance from a service **/

 System.out.println("Creating dispatch instance for service StockQuoteAxisService");

 Dispatch<SOAPMessage> dispatch = service.createDispatch(portName, SOAPMessage.class,

 Service.Mode.MESSAGE);

 System.out.println(" > Dispatch instance created.");

 /*************************************

 * Create OneWay SOAPMessage request.

 *************************************/

 MessageFactory mf = MessageFactory.newInstance(SOAPConstants.SOAP_1_1_PROTOCOL);

 System.out.println("\nCreating a OneWay SOAP Message");

 SOAPMessage request = mf.createMessage();

 /** Obtain the SOAPEnvelope and header and body elements **/

 SOAPPart part = request.getSOAPPart();

 SOAPEnvelope env = part.getEnvelope();

 SOAPHeader header = env.getHeader();

 SOAPBody body = env.getBody();

 /** Construct the message payload **/

 SOAPElement operation = body.addChildElement("getQuoteOneWay", "ns1",

 "soap.server.StockQuoteAxis_Wmq");

 SOAPElement value = operation.addChildElement("in0");

 value.addAttribute(new QName("http://www.w3.org/2001/XMLSchema-instance", "type"), "string");

 value.addTextNode("XXX");

 request.saveChanges();

 System.out.println(" > SOAP Message created.");

 /** Invoke the service endpoint **/

 System.out.println("Invoking getQuoteOneWay OneWay operation synchronously...");

 dispatch.invokeOneWay(request);

 System.out.println(" > getQuoteOneWay call has returned");

 /**

 * Create Request Reply SOAPMessage request.

 **/

 mf = MessageFactory.newInstance(SOAPConstants.SOAP_1_1_PROTOCOL);

 System.out.println("\nCreating a Request Reply SOAP Message");

 request = mf.createMessage();

 /** Obtain the SOAPEnvelope and header and body elements **/

 part = request.getSOAPPart();

 env = part.getEnvelope();

 header = env.getHeader();

 body = env.getBody();

 /** Construct the message payload **/

 operation = body.addChildElement("getQuote", "ns1", "soap.server.StockQuoteAxis_Wmq");

 value = operation.addChildElement("in0");

 value.addAttribute(new QName("http://www.w3.org/2001/XMLSchema-instance", "type"), "string");

 value.addTextNode("XXX");

 request.saveChanges();

 System.out.println(" > SOAP Message created.");

 /** Invoke the service endpoint **/

 System.out.println("Invoking getQuote Request Reply operation synchronously...");

 SOAPMessage ans = dispatch.invoke(request);

 System.out.println(" > getQuote call has returned");

 /** Retrieve the result **/

 part = ans.getSOAPPart();

 env = part.getEnvelope();

 body = env.getBody();

 /** Define name of the SOAP folders we are interested in **/

 QName responseName = new QName("soap.server.StockQuoteAxis_Wmq", "getQuoteResponse");

 QName resultName = new QName("getQuoteReturn");

 /** Retrieve result from SOAP envelope **/

 System.out.println("Parsing SOAP response...");

 SOAPElement bodyElement = (SOAPElement) body.getChildElements(responseName).next();

 SOAPElement responseElement = (SOAPElement) bodyElement.getChildElements(resultName).next();

 String message = responseElement.getValue();

 System.out.println(" > Response contains result of " + message);

 System.out.println("End of sample");

 }

 catch (Exception fault) {

 // Identify the cause of the Axis Fault

 System.err.println(fault.toString());

 Throwable e = fault.getCause();

Page 30 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

 for (int i = 1; e != null; i++) {

 // The toString method on an MQAxisException will cause the message, explanation and user

 // action.

 System.err.println("Exception(" + i + "): " + e.toString());

 if (e.getCause() != null) {

 e = e.getCause();

 }

 else {

 break;

 }

 } // end of for loop

 } // end of catch block

 }

}

Figure 10. DispatchClientAsyncPolling.java

package com.ibm.mq.axis2.samples;

import javax.xml.namespace.QName;

import javax.xml.soap.MessageFactory;

import javax.xml.soap.SOAPBody;

import javax.xml.soap.SOAPConstants;

import javax.xml.soap.SOAPElement;

import javax.xml.soap.SOAPEnvelope;

import javax.xml.soap.SOAPHeader;

import javax.xml.soap.SOAPMessage;

import javax.xml.soap.SOAPPart;

import javax.xml.ws.Dispatch;

import javax.xml.ws.Response;

import javax.xml.ws.Service;

import javax.xml.ws.soap.SOAPBinding;

public class DispatchClientAsyncPolling {

 public static void main(String[] args) {

 try {

 System.out.println("Starting sample DispatchClientAsyncPolling");

 String endpointUrl = "jms:/queue?destination=SOAPJ.demos@WMQSOAP.DEMO.QM&"

 + "connectionFactory=connectQueueManager(WMQSOAP.DEMO.QM)"

 + "&initialContextFactory=com.ibm.mq.jms.Nojndi&targetService=soap.server.StockQuoteAxis.java";

 QName serviceName = new QName("soap.server.StockQuoteAxis_Wmq", "StockQuoteAxisService");

 QName portName = new QName("soap.server.StockQuoteAxis_Wmq", "soap.server.StockQuoteAxis_Wmq");

 Service service = Service.create(serviceName);

 service.addPort(portName, SOAPBinding.SOAP11HTTP_BINDING, endpointUrl);

 /** Create a Dispatch instance from a service.* */

 System.out.println("Creating dispatch instance for service StockQuoteAxisService");

 Dispatch<SOAPMessage> dispatch = service.createDispatch(portName, SOAPMessage.class,

 Service.Mode.MESSAGE);

 System.out.println(" > Dispatch instance created.");

 /** Create SOAPMessage request. * */

 MessageFactory mf = MessageFactory.newInstance(SOAPConstants.SOAP_1_1_PROTOCOL);

 System.out.println("Creating a Request Reply SOAP Message");

 SOAPMessage request = mf.createMessage();

 /** Obtain the SOAPEnvelope and header and body elements **/

 SOAPPart part = request.getSOAPPart();

 SOAPEnvelope env = part.getEnvelope();

 SOAPHeader header = env.getHeader();

 SOAPBody body = env.getBody();

 /** Construct the message payload **/

 SOAPElement operation = body.addChildElement("getQuote", "ns1",

 "soap.server.StockQuoteAxis_Wmq");

 SOAPElement value = operation.addChildElement("in0");

 value.addAttribute(new QName("http://www.w3.org/2001/XMLSchema-instance", "type"), "string");

 value.addTextNode("XXX");

 request.saveChanges();

 System.out.println(" > SOAP Message created.");

 /** Invoke the service endpoint **/

 System.out.println("Invoking getQuote Request Reply operation asynchronously by polling...");

 Response<SOAPMessage> response = dispatch.invokeAsync(request);

 System.out.println(" > getQuote call has returned");

 /** Sleep main thread until response arrives **/

 System.out.println("Waiting for response to arrive...");

 while (!response.isDone()) {

 Thread.sleep(100);

 }

 System.out.println(" > Response received");

 /** retrieve the result **/

 SOAPMessage ans = response.get();

 part = ans.getSOAPPart();

 env = part.getEnvelope();

 body = env.getBody();

 /** Define name of the SOAP folders we are interested in **/

 QName responseName = new QName("soap.server.StockQuoteAxis_Wmq", "getQuoteResponse");

 QName resultName = new QName("getQuoteReturn");

 /** Retrieve result from SOAP envelope **/

 SOAPElement bodyElement = (SOAPElement) body.getChildElements(responseName).next();

Page 31 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

 SOAPElement responseElement = (SOAPElement) bodyElement.getChildElements(resultName).next();

 String message = responseElement.getValue();

 System.out.println(" > Response contains result of " + message);

 System.out.println("End of sample");

 }

 catch (Exception fault) {

 // Identify the cause of the Axis Fault

 System.err.println(fault.toString());

 Throwable e = fault.getCause();

 for (int i = 1; e != null; i++) {

 // The toString method on an MQAxisException will cause the message, explanation and user

 // action.

 System.err.println("Exception(" + i + "): " + e.toString());

 if (e.getCause() != null) {

 e = e.getCause();

 }

 else {

 break;

 }

 } // end of for loop

 } // end of catch block

 }

}

Figure 11. DispatchClientAsyncCallback.java

package com.ibm.mq.axis2.samples;

import java.util.concurrent.Future;

import javax.xml.namespace.QName;

import javax.xml.soap.MessageFactory;

import javax.xml.soap.SOAPBody;

import javax.xml.soap.SOAPConstants;

import javax.xml.soap.SOAPElement;

import javax.xml.soap.SOAPEnvelope;

import javax.xml.soap.SOAPHeader;

import javax.xml.soap.SOAPMessage;

import javax.xml.soap.SOAPPart;

import javax.xml.ws.AsyncHandler;

import javax.xml.ws.Dispatch;

import javax.xml.ws.Response;

import javax.xml.ws.Service;

import javax.xml.ws.soap.SOAPBinding;

public class DispatchClientAsyncCallback implements AsyncHandler<SOAPMessage> {

 public static void main(String[] args) {

 try {

 System.out.println("Starting sample DispatchClientAsyncCallback");

 String endpointUrl = "jms:/queue?destination=SOAPJ.demos@WMQSOAP.DEMO.QM&"

 + "connectionFactory=connectQueueManager(WMQSOAP.DEMO.QM)"

 + "&initialContextFactory=com.ibm.mq.jms.Nojndi&targetService=soap.server.StockQuoteAxis.java";

 QName serviceName = new QName("soap.server.StockQuoteAxis_Wmq", "StockQuoteAxisService");

 QName portName = new QName("soap.server.StockQuoteAxis_Wmq", "soap.server.StockQuoteAxis_Wmq");

 Service service = Service.create(serviceName);

 service.addPort(portName, SOAPBinding.SOAP11HTTP_BINDING, endpointUrl);

 /** Create a Dispatch instance from a service.* */

 System.out.println("Creating dispatch instance for service StockQuoteAxisService");

 Dispatch<SOAPMessage> dispatch = service.createDispatch(portName, SOAPMessage.class,

 Service.Mode.MESSAGE);

 System.out.println(" > Dispatch instance created.");

 /** Create SOAPMessage request. * */

 MessageFactory mf = MessageFactory.newInstance(SOAPConstants.SOAP_1_1_PROTOCOL);

 System.out.println("Creating a Request Reply SOAP Message");

 SOAPMessage request = mf.createMessage();

 /** Obtain the SOAPEnvelope and header and body elements **/

 SOAPPart part = request.getSOAPPart();

 SOAPEnvelope env = part.getEnvelope();

 SOAPHeader header = env.getHeader();

 SOAPBody body = env.getBody();

 /** Construct the message payload. **/

 SOAPElement operation = body.addChildElement("getQuote", "ns1",

 "soap.server.StockQuoteAxis_Wmq");

 SOAPElement value = operation.addChildElement("in0");

 value.addAttribute(new QName("http://www.w3.org/2001/XMLSchema-instance", "type"), "string");

 value.addTextNode("XXX");

 request.saveChanges();

 System.out.println(" > SOAP Message created.");

 /** Invoke the service endpoint. **/

 DispatchClientAsyncCallback handler = new DispatchClientAsyncCallback();

 System.out

 .println("Invoking getQuote Request Reply operation asynchronously using a callback...");

 Future<?> monitor = dispatch.invokeAsync(request, handler);

 System.out.println(" > getQuote call has returned");

 /** Sleep main thread until handler has been notified **/

 System.out.println("Waiting for handler to be called...");

Page 32 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

 while (!monitor.isDone()) {

 Thread.sleep(100);

 }

 System.out.println("End of sample");

 }

 catch (Exception fault) {

 // Identify the cause of the Axis Fault

 System.err.println(fault.toString());

 Throwable e = fault.getCause();

 for (int i = 1; e != null; i++) {

 // The toString method on an MQAxisException will cause the message, explanation and user

 // action.

 System.err.println("Exception(" + i + "): " + e.toString());

 if (e.getCause() != null) {

 e = e.getCause();

 }

 else {

 break;

 }

 } // end of for loop

 } // end of catch block

 }

 public void handleResponse(Response<SOAPMessage> response) {

 try {

 // retrieve the result

 SOAPMessage ans = response.get();

 SOAPPart part = ans.getSOAPPart();

 SOAPEnvelope env = part.getEnvelope();

 SOAPBody body = env.getBody();

 /** Define name of the SOAP folders we are interested in **/

 QName responseName = new QName("soap.server.StockQuoteAxis_Wmq", "getQuoteResponse");

 QName resultName = new QName("getQuoteReturn");

 /** Retrieve result from SOAP envelope **/

 SOAPElement bodyElement = (SOAPElement) body.getChildElements(responseName).next();

 SOAPElement responseElement = (SOAPElement) bodyElement.getChildElements(resultName).next();

 String result = responseElement.getValue();

 System.out.println(" > Async Handler has received a result of " + result);

 }

 catch (Exception fault) {

 // Identify the cause of the Axis Fault

 System.err.println("Exception in handleResponce");

 System.err.println(fault.toString());

 Throwable e = fault.getCause();

 for (int i = 1; e != null; i++) {

 // The toString method on an MQAxisException will cause the message, explanation and user

 // action.

 System.err.println("Exception(" + i + "): " + e.toString());

 if (e.getCause() != null) {

 e = e.getCause();

 }

 else {

 break;

 }

 } // end of for loop

 } // end of catch block

 }

}

Parent topic: Developing WebSphere MQ Web service clients for WebSphere MQ transport for SOAP

Related tasks
Developing a JAX-RPC client for WebSphere transport for SOAP using Eclipse
Developing a .NET 1 or 2 client for WebSphere transport for SOAP using Microsoft Visual Studio 2008
Developing a JAX-RPC service for WebSphere MQ transport for SOAP using Eclipse

Related information
Eclipse Galileo Packages

1 Add the line: System.out.println("StockQuoteAxis called with parameter: " + symbol); to getQuote in StockQuoteAxis.java if you have

not modified the sample already. Restart SimpleJavaListener.

This build: January 26, 2011 11:09:48

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts20535_

1.5.3. Developing a .NET 1 or 2 client for WebSphere transport for SOAP using Microsoft
Visual Studio 2008

Develop an .NET 1 or 2 Web service client to run using the WebSphere® MQ transport for SOAP.

Before you begin
You can start the development of a .NET 1 or 2 client in a number of different ways:

1. Use amqwdeployWMQService to generate client stubs from a Web service and import them into Visual Studio.

Page 33 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

2. Use java2wsdl to generate WSDL from a Java implementation of a Web service, and then use wsdl.exe, which is shipped with .NET, to

generate client stubs.

3. Generate WSDL from a .NET .asmx implementation of the service using amqswsdl, and then use wsdl.exe.

4. If you have developed and deployed the service for HTTP, use the Add Web reference... wizard in Visual studio to configure the client to
access the HTTP service. Alter the URL to refer to the service deployed to WebSphere MQ transport for SOAP.

The task uses the service developed in Developing a .NET 1 or 2 service for WebSphere MQ transport for SOAP using Microsoft Visual Studio 2008.

About this task
Follow these steps to create a .NET 1 or 2 Client for HTTP and WebSphere MQ transport for SOAP.

Procedure

1. Create the client console application and modify it to invoke the StockQuote HTTP Web service.

a. Right click Solution 'StockQuoteDotNet' in the Solution Explorer > Add... > New Project. Select the C# Project Type, .NET
Framework 2.0, and Console Application. Name the project StockQuoteClientDotNet > OK

b. Right click Solution 'StockQuoteDotNet' in the Solution Explorer > Add... > New Project. Select the C# Project Type, .NET
Framework 2.0, and Console Application. Name the project StockQuoteClientDotNet > OK

c. Right-click StockQuoteClientDotNet > Set as Startup project.

d. Right-click StockQuoteClientDotNet > Add Web Reference... > Browse to Web services in this solution > Select StockQuote > Add
Reference. Notice you have added a Web reference to local host and a new configuration file app.config.

e. In the Solution Explorer, change the name of the console application from Program.cs to StockQuoteClientDotNet.cs > Click OK to

changing all the usages of Program.cs to StockQuoteClientDotNet.cs.

f. Replace the contents of StockQuoteClientDotNet.cs with the code in Figure 1.

Figure 1. HTTP StockQuoteClientDotNet program

using System;

using StockQuoteClientDotNet.localhost;

namespace StockQuoteClientDotNet {

 class StockQuoteClientDotNet {

 static void Main(string[] args) {

 try {

 StockQuote stockobj = new StockQuote();

 Console.WriteLine("http reply is: "

 + stockobj.getNonInlineQuote("http request");

 }

 catch (System.Exception e) {

 Console.WriteLine("Exception thrown: " + e.ToString());

 }

 Console.ReadLine();

 }

 }

}

g. Launch StockQuoteClientDotNet to test against the StockQuote.asmx service:

i. Press F5, click the green arrow in the action bar, or Debug > Start Debugging (F5).

If the StockQuoteDOtNet project is in the same solution, it starts automatically. Otherwise you need to start the service first.

The command window with the results opens behind the workspace. The Console.ReadLine(); statement prevents it from closing

until you press Enter.

Tip: Make sure StockQuote.asmx is the Start page in the StockQuoteDotNet project.

2. Modify StockQuoteClientDotNet to call the StockQuote.asmx service using WebSphere MQ transport for SOAP.

a. Add the lines shown in bold to the client.
Figure 2. Modified StockQuoteClientDotNet program

using System;

using StockQuoteClientDotNet.localhost;

namespace StockQuoteClientDotNet {

 class StockQuoteClientDotNet {

 static void Main(string[] args) {

 try {

 IBM.WMQSOAP.Register.Extension();
 StockQuote stockobj = new StockQuote();

 Console.WriteLine("http reply is: "

 + stockobj.getNonInlineQuote("http request");

 stockobj.Url = "jms:/queue?"

 + "initialContextFactory=com.ibm.mq.jms.Nojndi"

 + "&connectionFactory=()&destination=REQUESTDOTNET@QM1"
 + "&targetService=StockQuote.asmx";

 Console.WriteLine("jms reply is: "

 + stockobj.getNonInlineQuote("jms request")); }
 catch (System.Exception e) {

 Console.WriteLine("Exception thrown: " + e.ToString());

 }

 Console.ReadLine();

 }

 }

}

Alternatively, modify the default URL. Open StockQuoteClientDotNet > Properties > Settings.settings and change the value of the
StockQuoteClientDotNet_localhost_StockQuote property to the WebSphere MQ transport for SOAP URL.

b. Add a reference to amqsoap.dll

i. In the StockQuoteClientDotNet project in the Solution Explorer, right-click References > Add Reference... > Click the Browse
tab > browse to WMQ Install directory\bin > Select amqsoap.dll > OK.

3. Test the client with the StockQuote.asmx service using WebSphere MQ transport for SOAP.

a. Open a command window in the StockQuoteDotNet project directory: .\StockQuoteDotNet\StockQuoteDotNet > Verify

that .bin\StockQuoteDotNet.dll exists. If it does not, rebuild the solution.

b. Type the command amqwRegisterdotNet. You need only run amqwRegisterdotNet once per installation.

c. If you have run amqwdeployWMQServer with the genAsmxWMQBits, run the .NET SOAP Listener:

Page 34 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

generated\server\startWMQNListener

d. Alternatively run the listener directly:

amqwSOAPNETListener -u "jms:/queue?

destination=REQUESTDOTNET@QM1

&connectionFactory=()&initialContextFactory=com.ibm.mq.jms.Nojndi

&targetService=StockQuote.asmx&replyDestination=SYSTEM.SOAP.RESPONSE.QUEUE"

-w C:\IBM\ID\StockQuoteDotNet\StockQuoteDotNet -n 10

4. In Visual Studio 2008, press F5 to run StockQuoteClientDotNet.

.NET Framework 1 and .NET Framework 2 Web service clients

The sample .NET clients provided with the WebSphere MQ transport for SOAP use generated stubs to call the sample Axis and .NET services.

For .NET Framework 1 and .NET Framework 2 clients, WebSphere MQ provides access to web services using .NET clients. The
amqwdeployWMQService command has an option, genProxiestoDotNet, that generates .NET Framework 1 or .NET Framework 2 client stubs for a

Web service. You can also use client stubs generated by the .NET wsdl tool, or by Microsoft Visual Studio 2005, or 2008.

The sample .NET Framework 1 and .NET Web service clients are installed in WMQ install directory\tools\soap\samples\dotnet.

SQVB2Axis.vb

SQVB2Axis.vb, Figure 3, is the Visual Basic client to call the StockQuoteAxisService service.

SQVB2DotNet.vb

SQVB2DotNet.vb, Figure 4, Basic client to call the StockQuoteDotNet service.

SQCS2Axis.cs

SQCS2Axis.cs, Figure 5, is the C# client to call the StockQuoteAxisService service. You can override the URL of the service by providing a URL

on the command line.

SQCS2DotNet.cs

SQCS2DotNet.cs, Figure 6, is the C# client to call the StockQuoteDotNet service. You can override the URL of the service by providing a URL on

the command line.

Figure 3. SQVB2Axis

Module SQVB2Axis

 Function Main(ByVal CmdArgs() As String) As Integer

 IBM.WMQSOAP.Register.Extension()

 Dim obj As New StockQuoteAxisService()

 Dim res As Single = obj.getQuote("fromcs")

 System.Console.WriteLine("SQVB2Axis: reply is: '{0}'", res)

 End Function

End Module

Figure 4. SQVB2DotNet

Module SQVB2DotNet

 Function Main(ByVal CmdArgs() As String) As Integer

 IBM.WMQSOAP.Register.Extension()

 Dim obj as new StockQuoteDotNet()

 Dim res as Single = obj.getQuote("fromcs")

 System.Console.WriteLine("SQVB2DotNet: reply is: '{0}'", res)

 End Function

End Module

Figure 5. SQCS2Axis

using System;

class SQCS2Axis {

 [STAThread]

 static void Main(string[] args) {

 try {

 IBM.WMQSOAP.Register.Extension();

 StockQuoteAxisService stockobj = new StockQuoteAxisService();

 if (args.GetLength(0) >= 1)

 stockobj.Url = args[0];

 System.Single res = stockobj.getQuote("XXX");

 Console.WriteLine("SQCS2Axis RPC reply is: " + res);

 }

 catch (System.Exception e) {

 Console.WriteLine("\n>>> EXCEPTION WHILE RUNNING SQCS2Axis DEMO <<<\n"

 + e.ToString());

 }

 }

}

Figure 6. SQCS2DotNet

using System;

class SQCS2DotNet {

 [STAThread]

 static void Main(string[] args) {

 try {

 IBM.WMQSOAP.Register.Extension();

 StockQuoteDotNet stockobj = new StockQuoteDotNet();

 if (args.GetLength(0) >= 1)

 stockobj.Url = args[0];

 System.Single res = stockobj.getQuote("XXX");

 Console.WriteLine("RPC reply is: " + res);

 if (args.GetLength(0) == 0) {

 res = stockobj.getQuoteDOC("XXX");

 Console.WriteLine("DOC reply is: " + res);

 }

 }

 catch (System.Exception e) {

 Console.WriteLine("\n>>> EXCEPTION WHILE RUNNING SQCS2DotNet DEMO <<<\n"

 + e.ToString());

 }

Page 35 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

 }

}

Parent topic: Developing WebSphere MQ Web service clients for WebSphere MQ transport for SOAP

Related tasks
Developing a JAX-RPC client for WebSphere transport for SOAP using Eclipse
Developing a JAX-WS client for WebSphere transport for SOAP using Eclipse

This build: January 26, 2011 11:09:50

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts20538_

1.6. Deploying Web services using the WebSphere MQ transport for SOAP

Deploy a Web service to one of a number of different server environments and connect to it using WebSphere® MQ transport for SOAP.

Before you begin
Develop a Web service and test it using SOAP over HTTP in the target environment.

About this task

You can deploy a web service to run with WebSphere MQ transport for SOAP in a number of different SOAP run time environments. You can deploy a

service to Axis 1.4 using only the software installed with WebSphere MQ. For the other run time environments, you must install additional software.

You are not restricted to running WebSphere MQ transport for SOAP to the servers for which there are deployment instructions. Use the instructions
to deploy a service to one of the listed environments.

Note: Some integrated environments offer SOAP over JMS using the W3C recommended JMS SOAP binding, as well as the WebSphere MQ transport
for SOAP binding. Releases of WebSphere MQ, up to and including 7.0.1.2, support only the WebSphere MQ transport for SOAP binding. From 7.0.1.3
onwards you can deploy Axis2 clients using a URI that conforms to the W3C candidate recommendation for SOAP over JMS. See the tutorial, Develop
a SOAP/JMS JAX-WS Web services application with WebSphere Application Server V7 and Rational Application Developer V7.5.

Deploying a service to Axis 1.4 to use for WebSphere transport for SOAP using amqwdeployWMQService
Deploy an Axis 1.4 service to WebSphere MQ transport for SOAP by creating a deployment directory, running the amqwdeployWMQService
command, and starting the Axis 1.4 listener.

Deploying a service to .NET Framework 1 or 2 service to use WebSphere MQ transport for SOAP
Deploy a .NET Framework 1 or 2 service to WebSphere MQ transport for SOAP. Create a deployment directory, run the
amqwdeployWMQService command, and start the .NET listener.

Deploying a service to CICS Transaction Server to use WebSphere Transport for SOAP
WebSphere MQ transport for SOAP is integrated into CICS Transaction Server 4.1 Web services support.

Deploying a service to WebSphere Application Server to use WebSphere Transport for SOAP

WebSphere MQ transport for SOAP is integrated into the service integration bus on WebSphere Application Server.

Configuring WebSphere Application Server to use W3C SOAP over JMS
A Web service bound to the W3C candidate recommendation for SOAP over JMS must run in the EJB container of a JEE application server. This
task is step 1 of connecting an Axis2 Web service client and a Web service deployed to WebSphere Application server using the W3C SOAP over
JMS protocol. Configure the WebSphere MQ and WebSphere Application Server resources to develop and deploy Web service bound to W3C
SOAP over JMS as a transport.

Deploying a service to WebSphere ESB and Process Server service endpoint to use WebSphere Transport for SOAP
WebSphere MQ transport for SOAP is not directly supported by WebSphere ESB and Process Server. You must configure a custom Export.

Parent topic: WebSphere MQ transport for SOAP

This build: January 26, 2011 11:09:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts20400_

1.6.1. Deploying a service to Axis 1.4 to use for WebSphere transport for SOAP using
amqwdeployWMQService

Deploy an Axis 1.4 service to WebSphere® MQ transport for SOAP by creating a deployment directory, running the amqwdeployWMQService
command, and starting the Axis 1.4 listener.

Before you begin

1. Follow the instructions for installing WebSphere MQ transport for SOAP

2. Verify the installation and your environment using the runivt command.

3. To redeploy a service:

a. Delete the ./generated subdirectory, and all its subdirectories.

b. Remove requests from the destination queue and delete it.

c. Proceed with the instructions from step 2.

Page 36 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

About this task

These instructions are to deploy an Axis 1.4 service for the first time. To restart an Axis 1.4 service, rerun the Axis 1.4 SOAP listener: step 11.

Use the following instructions to deploy a new Axis 1.4 service to WebSphere MQ transport for SOAP:

Procedure

1. Create a directory deployDir to hold the deployment files. The deployment utility requires that each service is deployed from a separate

directory.

2. Open a command window on Windows, or a command shell using X Window System on UNIX, in deployDir to run amqwdeployWMQService.

3. Run amqwsetcp to set the classpath. The JRE and JDK must be in the classpath, at version 1.4.2 or later, and at the same version level.

4. Copy the class source, className.java, into deployDir

5. Copy all the Java source files in the same package as className into deployDir/packageName, where packageName is a directory tree

corresponding to the package name.

6. Run javac packageName.className. You might need to add a path to the current directory ".", or to the packageName directory for javac to

find the other classes.

7. Create the Axis WSDL for the service:

amqwdeployWMQService -f packageName.className.java -c genAxisWsdl

-v -u "jms:/queue?destination=queueName

&initialContextFactory=com.ibm.mq.jms.Nojndi

&connectionFactory=(connectQueueManager(QmgrName)binding(auto))"

8. Create the WebSphere MQ resources for the service:

amqwdeployWMQService -f packageName.className.java -c genAxisWMQBits

-v -u "jms:/queue?destination=queueName

&initialContextFactory=com.ibm.mq.jms.Nojndi

&connectionFactory=(connectQueueManager(QmgrName)binding(auto))"

Tip:

If you want to set up a new queue manager, and the resources it needs, to do development and testing, run setupWMQSOAP.

If you want set up the new queue manager as the default, take a copy of setupWMQSOAP from the
WMQ install directory\tools\soap\samples directory, and add the -q parameter to the line

call :try -q crtmqm %QMGR%

9. Create the Axis listener and deploy the service:

amqwdeployWMQService -f packageName.className.java -c AxisDeploy

-v -u "jms:/queue?destination=queueName

&initialContextFactory=com.ibm.mq.jms.Nojndi

&connectionFactory=(connectQueueManager(QmgrName)binding(auto))"

10. If you need to generate the WSDL for the service, generate client stubs, or client proxies, run amqwdeployWMQService with one of the
following parameters:

� genAsmxWsdl

� genAxisWsdl

� genProxiesToDotNet

� genProxiestoAxis

Note: You must generate WSDL before generating the proxies. The AllAxis option fails if the CLASSPATH is not set up to find all the classes

that are imported to compile className.java. If there are multiple Java files in the package containing className.java, you must compile

them first using javac. amqwdeployWMQService -f packageName.className.java -c CompileJava compiles only className.java.

11. Start the generated Axis listener.

.\generated\server\startWMQJListener.cmd

Parent topic: Deploying Web services using the WebSphere MQ transport for SOAP

Related reference
amqwdeployWMQService: deploy Web service utility
SimpleJavaListener: WebSphere MQ SOAP Listener for Axis 1.4
WebSphere MQ SOAP listeners

This build: January 26, 2011 11:09:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts20430_

1.6.2. Deploying a service to .NET Framework 1 or 2 service to use WebSphere MQ
transport for SOAP

Deploy a .NET Framework 1 or 2 service to WebSphere® MQ transport for SOAP. Create a deployment directory, run the amqwdeployWMQService
command, and start the .NET listener.

Before you begin

1. Follow the instructions for installing WebSphere MQ transport for SOAP

2. Verify the installation and your environment using the runivt command.

3. The path to the .NET framework files wsdl.exe and csc.exe must be set. The copies of wsdl.exe and csc.exe identified by the PATH

variable must be at the same level of the .NET framework. If you have multiple .NET frameworks installed, or are using Visual Studio, check
the PATH variable carefully.

4. To redeploy a service:

Page 37 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

a. Delete the ./generated subdirectory, and all its subdirectories

b. Remove requests from the destination queue and delete it.

c. Proceed with the instructions from step 2.

About this task

These instructions are to deploy a .NET service for the first time. To restart a .NET service, rerun the .NET SOAP listener, step 9.

Use the following instructions to deploy a new .NET Framework 1 or .NET Framework 2 service to WebSphere MQ transport for SOAP:

Procedure

1. Create a directory deployDir to hold the deployment files. The deployment utility requires that each service is deployed from a separate

directory.

2. Open a command window in deployDir to run amqwdeployWMQService.

C:\IBM\ID\QuoteClient>

3. Run amqwsetcp to set the classpath. A classpath is needed only for Axis clients.

4. Copy the .NET service, className.asmx, into deployDir

5. Build the service implementation into a library (.dll).

The inline service implementation is in className.asmx. The code-behind service implementation might be className.asmx.cs.

Figure 1 shows an example of a command to build a .NET Framework V2 service as a library.
Figure 1. Build command for .NET Framework V2 service

c:\WINDOWS\Microsoft.NET\Framework\v3.5\Csc.exe /noconfig /nowarn:1701,1702

/errorreport:prompt /warn:4 /define:TRACE

/reference:c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\System.configuration.dll

/reference:c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\System.Data.dll

/reference:c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\System.dll

/reference:c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\System.Drawing.dll

/reference:c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\System.Web.dll

/reference:c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\System.Web.Services.dll

/reference:c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\System.Xml.dll

/debug:pdbonly /filealign:512 /optimize+

/out:obj\Quote.dll /target:library Properties\AssemblyInfo.cs Quote.asmx.cs

6. Copy className.dll into deployDir\bin.

7. Set up the WebSphere MQ resources, and create the listener required for the service:

amqwdeployWMQService -f className.asmx -c genAsmxWMQBits

-v -u "jms:/queue?destination=queueName

&initialContextFactory=com.ibm.mq.jms.Nojndi

&connectionFactory=(connectQueueManager(QmgrName)binding(auto))

&targetService=className.asmx"

8. If you need to generate the WSDL for the service, generate client stubs, or client proxies, run amqwdeployWMQService with one of the
following parameters:

� genAsmxWsdl

� genAxisWsdl

� genProxiesToDotNet

� genProxiestoAxis

Note: You must generate WSDL before generating the proxies.

9. Start the generated .NET listener.

.\generated\server\startWMQNListener.cmd

Parent topic: Deploying Web services using the WebSphere MQ transport for SOAP

Related reference
amqwdeployWMQService: deploy Web service utility
amqwSOAPNETListener: WebSphere MQ SOAP listener for .NET Framework 1 or 2
WebSphere MQ SOAP listeners

This build: January 26, 2011 11:09:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts20410_

1.6.3. Deploying a service to CICS Transaction Server to use WebSphere Transport for
SOAP

WebSphere® MQ transport for SOAP is integrated into CICS® Transaction Server 4.1 Web services support.

Before you begin

Use the same tools to develop for a client or service for WebSphere MQ, as you would to develop for HTTP. CICS has tools corresponding to
Java2wsdl and wsdl2Java:

� DFHWS2LS takes a Web service description as a starting point. It uses the descriptions of the messages, and the data types used in those
messages, to construct high-level language data structures. You can use in the structures in application programs written in different
languages.

� DFHLS2WS takes a high-level language data structure as a starting point. It uses the structure to construct a Web services description that
contains descriptions of messages. It also creates schemas for the messages from the language data structure.

Follow the instructions, Creating a Web service in the CICS Information Center, to create a Web service.

Page 38 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

About this task
Follow the instructions, Configuring CICS to use the WebSphere MQ transport in the CICS Information Center. Using the instructions, you can deploy
the Web service to WebSphere MQ transport for SOAP.

Parent topic: Deploying Web services using the WebSphere MQ transport for SOAP

Related information
Configuring CICS to use the WebSphere MQ transport

This build: January 26, 2011 11:09:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts20470_

1.6.4. Deploying a service to WebSphere Application Server to use WebSphere Transport
for SOAP

WebSphere® MQ transport for SOAP is integrated into the service integration bus on WebSphere Application Server.

Before you begin

Use Rational® Application Developer, WebSphere Integration Developer, or a Web services toolkit to develop the Web service.

About this task
Use the following instructions to deploy a service using WebSphere MQ transport for SOAP as a SOAP transport on WebSphere Application Server.

Procedure

1. Configure WebSphere MQ as the JMS messaging provider for the service integration bus on WebSphere Application Server.

2. Configure the WebSphere MQ resources required by the service.

3. Follow the instructions, Configuring JMS resources for the synchronous SOAP over JMS endpoint listener, in the WebSphere Application Server
Network Deployment Information Center. There are corresponding instructions for other WebSphere Application Server platforms.

4. Modify the service URI to conform to the WebSphere MQ transport for SOAP URI.

5. Deploy the service to WebSphere Application Server.

What to do next
Deploy the service with HTTP as a transport so that clients can query the service and receive the WSDL in response.

Parent topic: Deploying Web services using the WebSphere MQ transport for SOAP

Related information
Configuring JMS resources for the synchronous SOAP over JMS endpoint listener

This build: January 26, 2011 11:09:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts20440_

1.6.5. Configuring WebSphere Application Server to use W3C SOAP over JMS

A Web service bound to the W3C candidate recommendation for SOAP over JMS must run in the EJB container of a JEE application server. This task is
step 1 of connecting an Axis2 Web service client and a Web service deployed to WebSphere® Application server using the W3C SOAP over JMS
protocol. Configure the WebSphere MQ and WebSphere Application Server resources to develop and deploy Web service bound to W3C SOAP over
JMS as a transport.

Before you begin

The task requires WebSphere Application Server v7.0.0.9 and WebSphere MQ v7.0.1.3.

About this task
The task has two steps:

Procedure

1. Configure WebSphere MQ resources

2. Configure WebSphere Application Server resources

What to do next
Configure WebSphere MQ resources

Parent topic: Deploying Web services using the WebSphere MQ transport for SOAP

Related tasks
Connect an Axis2 client to a JAX-WS service using W3C SOAP over JMS and WebSphere Application Server
Developing a JAX-WS EJB Web service for W3C SOAP over JMS
Deploying to an Axis2 client using W3C SOAP over JMS

Configure WebSphere MQ resources

Page 39 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

Before you begin
For Axis2 support you required WebSphere MQ 7.0.1.3 or later.

About this task

For simplicity, the task assumes WebSphere MQ is installed on the same workstation as the other software, and uses bindings connections. The
WebSphere Application Server and the Axis2 client configurations work with client connections. To run with task using client connections check that
you can put and get messages to and from the request and reply queues from both the Axis2 client and the WebSphere Application Server
computers.

Again, for simplicity, no security configuration is used. The user ID has full mqm authority.

Procedure

1. Create a default queue manager, QM1.

Use WebSphere MQ Explorer to create QM1 as a default queue manager. Configure it to start automatically and select the option to create a

listener. Alternatively use the following commands:

crtmqm -q -sa QM1

strmqm

echo define listener (LISTENER.TCP) trptype(tcp) ipaddr(localhost) port(1414)

 control(qmgr) replace | runmqsc

echo start listener(LISTENER.TCP) | runmqsc

2. Define a request queue, REQUESTAXIS, and a reply queue, REPLYAXIS. Use the Explorer, or the following commands:

echo define ql(REQUESTAXIS) replace | runmqsc

echo define ql(REPLYAXIS) replace | runmqsc

What to do next
Configure WebSphere Application Server resources

Configure WebSphere Application Server resources

Before you begin

For W3C SOAP over JMS support you require WebSphere Application Server v7. This configuration was performed on WebSphere Application
Server Version 7.0 Test Environment v7.0.0.9 Update 1. WebSphere Application Server was supplied with Rational Software Architect for
WebSphere Software 7.5.4. Rational Software Architect was updated to v7.5.5.1, by applying the latest updates that were available.

As part of the installation process, create a profile for WebSphere Application Server. In the task, administrative security is not enabled. The
default profile name is was70profile1, and the server is server1.

About this task

Configure the WebSphere Application Server. You can either start the server from Rational Application Developer, and start the administrative
console from the Servers view, or you can start the server using a command file and administer the server using a browser. The task uses the second
method.

The server command files are in the folder, Rational Installation Root\SDP\runtimes\base_v7\profiles\was70profile1\bin. The log files you

might want to inspect are in Rational Installation Root\SDP\runtimes\base_v7\profiles\was70profile1\logs\server1.

As a convention, all WebSphere MQ object names are uppercase, and all JNDI names referencing the WebSphere MQ objects are lowercase.

Procedure

1. Start the server.

startServer server1

2. Start a browser, open the administration console, and login.

http://localhost:9061/ibm/console/unsecureLogon.jsp

Type any string into the user ID field.

3. Create a connection factory, qm1

a. In the navigator, open Resources > JMS > Connection factories.

b. In the Connection factories window, select scope Node=nodename, click New.

c. Select WebSphere MQ messaging provider > OK.

d. Provide the queue manager connection information from Table 1 > Next.

e. Select Enter all the required information into this wizard as the connection method > Next.

f. Type QM1 as the queue connection details > Next.

g. Enter the connection details from Table 2 > Next.

h. Test connection > Next > Finish > Save.

Table 1. Queue manager connection information

Field name Value

Name qm1

JNDI name qm1

Table 2. Connection details

Field name Value

Transport Bindings, then client

Hostname localhost

Port 1414

Server connection channel SYSTEM.DEF.SVRCONN

Page 40 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

4. Create the JMS request queue, requestaxis.

a. In the Navigator, open Resources > JMS > Queues.

b. In the Connection factories window, select scope Node=nodename, click New.

c. Select WebSphere MQ messaging provider > OK.

d. Enter the queue details from Table 3 > OK > Save.

5. Repeat step 4 to create the JMS reply queue, replyaxis.

6. Create an activation specification, qm1as.

The activation specification triggers the Web service router Message Driven Bean (MDB) when a message arrives on the request queue. The
MDB is defined in the deployment descriptor of the Web service that is created by the Rational Application Developer Web service wizard.

a. In the Navigator, open Resources > JMS > Activation specifications.

b. In the Connection factories window, select scope Node=nodename, click New.

c. Select WebSphere MQ messaging provider > OK.

d. Enter the basic attributes of the activation specification from Table 4 > Next.

e. Specify its MDB information from Table 5 > Next.

f. Select Enter all the required information into this wizard as the connection method > Next.

g. Type QM1 as the queue connection details > Next.

h. Enter the connection details from Table 6 > Next.

i. Test connection > Next > Finish > Save.

7. Create a queue connection factory, jms/WebServicesReplyQCF, for the reply queue.

The Web services router uses a queue connection factory to access a reply queue. In the deployment descriptor of the Web service the queue
connection factory is given the default JNDI name of jms/WebServicesReplyQCF. You can change the name in the deployment descriptor. In

this task, add the default name to the JMS resource definitions.

a. In the Navigator, open Resources > JMS > Queue connection factories.

b. In the Connection factories window, select scope Node=nodename, click New.

c. Select WebSphere MQ messaging provider > OK.

d. Enter the basic attributes of the queue connection factory from Table 7 > Next.

e. Select Enter all the required information into this wizard as the connection method > Next.

f. Type QM1 as the queue connection details > Next.

g. Enter the connection details from Table 6 > Next.

h. Test connection > Next > Finish > Save.

Table 3. Queue details

Field name Value

Name requestaxis

JNDI name requestaxis

Queue name REQUESTAXIS

Queue manager name QM1

Table 4. Activation specification name

Field name Value

Name qm1as

JNDI name qm1as

Table 5. MDB information

Field name Value

Destination JNDI name requestaxis

Message selector Left blank

Destination type Queue

Table 6. Connection details

Field name Value

Transport Bindings, then client

Hostname localhost

Port 1414

Server connection channel SYSTEM.DEF.SVRCONN

Table 7. Queue connection factory name

Field name Value

Name WebServicesReplyQCF

JNDI name jms/WebServicesReplyQCF

Table 8. Connection details

Field name Value

Transport Bindings, then client

Hostname localhost

Port 1414

Server connection channel SYSTEM.DEF.SVRCONN

Page 41 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

What to do next
Developing a JAX-WS EJB Web service for W3C SOAP over JMS

This build: January 26, 2011 11:10:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts22552_

1.6.6. Deploying a service to WebSphere ESB and Process Server service endpoint to use
WebSphere Transport for SOAP

WebSphere® MQ transport for SOAP is not directly supported by WebSphere ESB and Process Server. You must configure a custom Export.

About this task

WebSphere Integration Developer provides a SOAP data transformation that you can bind to the WebSphere MQ JMS Export to create a custom
WebSphere MQ JMS SOAP Export.

Follow the instructions to create a customized Export to receive SOAP requests over WebSphere MQ transport for SOAP.

Procedure

1. Read Overview of imports and exports and How to connect to WebSphere MQ in the WebSphere Process Server for Multiplatforms V6.2
Information Center.

2. Follow the task, Generating an MQ JMS export binding in the WebSphere Integration Developer, Version 6.2 Information Center. Use the SOAP
data-binding described in Prepackaged JMS data format transformations to format the SOAP message.

Parent topic: Deploying Web services using the WebSphere MQ transport for SOAP

Related information
How to connect to WebSphere MQ

This build: January 26, 2011 11:09:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts20450_

1.7. Deploying Web service clients to use WebSphere MQ transport for SOAP

Deploy a Web service client to one of a number of different client environments and connect to a service using WebSphere® MQ transport for SOAP.

Before you begin
Develop the Web service and deploy it to use WebSphere MQ transport for SOAP.

About this task

You can deploy a web service client to run with WebSphere MQ transport for SOAP in a number of different client environments. You can deploy a
Java client to Axis 1.4 using only the software installed with WebSphere MQ. For the other client environments, you must install additional software.

You are not restricted to running WebSphere transport for SOAP in the client environments for which there are deployment instructions. Use the
instructions to deploy a client to one of the supported environments.

Note: Some integrated environments offer SOAP over JMS using the W3C recommended JMS SOAP binding, as well as the WebSphere MQ transport
for SOAP binding. Releases of WebSphere MQ, up to and including 7.0.1.2, support only the WebSphere MQ transport for SOAP binding. From 7.0.1.3
onwards you can deploy Axis2 clients using a URI that conforms to the W3C candidate recommendation for SOAP over JMS. See the tutorial, Develop
a SOAP/JMS JAX-WS Web services application with WebSphere Application Server V7 and Rational Application Developer V7.5.

Deploying a Web service client to Axis 1.4 to use WebSphere MQ transport for SOAP
Prepare a deployment directory and deployment descriptor for the client. Provide the client proxies and client class, and set up the CLASSPATH.

Configure WebSphere MQ queues and channels, start the service and test the client.

Deploying a Web service client to Axis2 to use WebSphere MQ transport for SOAP
Prepare a deployment directory and Axis2 configuration file for the client. Provide the client proxies and client class, and set up the
CLASSPATH. Configure WebSphere MQ queues and channels, start the service and test the client.

Deploying to an Axis2 client using W3C SOAP over JMS
A Web service bound to the W3C candidate recommendation for SOAP over JMS must run in the EJB container of a JEE application server. This
task is step 4 of connecting an Axis2 Web service client and a Web service deployed to WebSphere Application Server using the W3C SOAP over
JMS protocol. Modify the URL in the Axis2 client developed for WebSphere MQ transport for SOAP to use the W3C candidate recommendation
for SOAP over JMS.

Deploying a Web service client to .NET Framework 1 and 2 to use WebSphere MQ transport for SOAP
Prepare a deployment directory and deployment descriptor for the client. Provide the client proxy and client class. Configure WebSphere MQ
queues and channels, start the service and test the client.

Parent topic: WebSphere MQ transport for SOAP

This build: January 26, 2011 11:09:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

Page 42 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

This topic's URL:

ts20500_

1.7.1. Deploying a Web service client to Axis 1.4 to use WebSphere MQ transport for SOAP

Prepare a deployment directory and deployment descriptor for the client. Provide the client proxies and client class, and set up the CLASSPATH.

Configure WebSphere® MQ queues and channels, start the service and test the client.

Before you begin

Tip: Deploy the service to HTTP, develop and test the client for HTTP, and then modify the client for WebSphere MQ transport for
SOAP:

1. Add the Register.extension() call to the client.

2. Change the static web service address in the client proxy locator class to use the URI for the WebSphere MQ transport for
SOAP.

About this task

Deploying an Axis 1.4 client to use WebSphere MQ transport for SOAP requires one additional deployment step compared to an HTTP client. You must
create a client deployment descriptor, client-config.wsdd, to map the jms: transport to the sender class

com.ibm.mq.soap.transport.jms.WMQSender.

If you use the command amqwdeployWMQService to generate client proxies, you can deploy the client using the directories the command
generates.

Procedure

1. Create a directory deployDir to hold the client deployment files.

2. Open a command window on Windows, or a command shell using X Window System on UNIX, in deployDir.

3. Run the amqwsetcp.cmd command to set the CLASSPATH

4. Run the amqwclientconfig.cmd command to create an Axis 1.4 client deployment descriptor, client-config.wsdd in deployDir.

5. Make sure the classes in the client package, the client proxy classes, and the libraries the client uses, are in the CLASSPATH.

amqwdeployWMQService places the .NET client proxies into ./generated/server/soap/client/remote/dotnetService and the Axis 1.4

proxies into ./generated/server/soap/client/remote/client package.

Example

The example shows the configuration and output, Figure 3, from an Axis 1.4 Java client. The client, Figure 2, calls a Web service that echoes its input
parameter. The service definition, Figure 1, shows the URI taken from the service WSDL.

Figure 1. Service definition

<wsdl:service name="QuoteSOAPImplService">

 wsdl:port binding="intf:org.example.www.QuoteSOAPImplBindingSoap"

 name="org.example.www.QuoteSOAPImpl_Wmq">

 <wsdlsoap:address location="jms:/queue?destination=REQUESTAXIS

 &connectionFactory=(connectQueueManager(QM1)binding(server))

 &initialContextFactory=com.ibm.mq.jms.Nojndi

 &targetService=org.example.www.QuoteSOAPImpl.java

 &replyDestination=SYSTEM.SOAP.RESPONSE.QUEUE" />

 </wsdl:port>

</wsdl:service>

Figure 2. Axis 1.4 Java client

package org.example.www;

import com.ibm.mq.soap.Register;

public class QuoteClient {

 public static void main(String[] args) {

 try {

 Register.extension();

 QuoteSOAPImplServiceLocator locator = new QuoteSOAPImplServiceLocator();

 System.out.println("Response = "

 + locator.getOrgExampleWwwQuoteSOAPImpl_Wmq().getQuote("IBM"));

 } catch (Exception e) {

 System.out.println("Exception = " + e.getMessage());

 }

 }

}

Figure 3. Client configuration and output

C:\IBM\ID\Test>dir /s /b

C:\IBM\ID\Test\client-config.wsdd

C:\IBM\ID\Test\org

C:\IBM\ID\Test\org\example

C:\IBM\ID\Test\org\example\www

C:\IBM\ID\Test\org\example\www\GetQuoteFaultMsg.class

C:\IBM\ID\Test\org\example\www\OrgExampleWwwQuoteSOAPImplBindingSoapStub.class

C:\IBM\ID\Test\org\example\www\QuoteClient.class

C:\IBM\ID\Test\org\example\www\QuoteSOAPImpl.class

C:\IBM\ID\Test\org\example\www\QuoteSOAPImplService.class

C:\IBM\ID\Test\org\example\www\QuoteSOAPImplServiceLocator.class

C:\IBM\ID\Test>amqwsetcp

C:\IBM\ID\Test>java org.example.www.QuoteClient.class

Response = IBM

What to do next

Page 43 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

1. If you are deploying the client as a WebSphere MQ client, configure the client and server connection channel.

2. If you are deploying the client to a different queue manager to the service, you must make the destination queue available to the client.
Configure the destination queue on the service queue manager as a cluster queue, or on the client queue manager as a remote queue
definition.

Parent topic: Deploying Web service clients to use WebSphere MQ transport for SOAP

Related tasks
Deploying a Web service client to Axis2 to use WebSphere MQ transport for SOAP
Deploying to an Axis2 client using W3C SOAP over JMS

Deploying a Web service client to .NET Framework 1 and 2 to use WebSphere MQ transport for SOAP
Deploying a service to Axis 1.4 to use for WebSphere transport for SOAP using amqwdeployWMQService

Related reference
amqwdeployWMQService: deploy Web service utility
amqwclientconfig: create Axis 1.4 Web services client deployment descriptor for WebSphere MQ transport for SOAP
WebSphere MQ transport for SOAP sender
Use a channel definition table with the WebSphere MQ SOAP transport for SOAP sender

Related information
Web services - Axis

This build: January 26, 2011 11:10:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts21510_

1.7.2. Deploying a Web service client to Axis2 to use WebSphere MQ transport for SOAP

Prepare a deployment directory and Axis2 configuration file for the client. Provide the client proxies and client class, and set up the CLASSPATH.
Configure WebSphere® MQ queues and channels, start the service and test the client.

Before you begin

Tip: Deploy the service to HTTP. Develop and test the client for HTTP, and then modify the URL to reference the service using
WebSphere MQ transport for SOAP.

The task shows how to deploy an unmanaged Axis2 client to Java Standard Edition. You might want to deploy an Axis2 client to a Web container.
In Developing a JAX-WS client for WebSphere transport for SOAP using Eclipse, you developed a client in a Web container and deployed it to
WebSphere Application Server Community Edition. As part of the server configuration, you enabled the Axis2 facet and included the facet in the
configuration of the Web container. To configure Web containers on other application servers, refer to the Axis2 documentation,
http://ws.apache.org/axis2/1_4_1/installationguide.html#servlet_container, or the documentation supplied with the Web server.

Note: Axis2 use the term, Servlet container. A Servlet container is the same as a Web container.

About this task

Deploying an Axis2 client to use WebSphere MQ transport for SOAP is like deploying an Axis2 client to use HTTP. Additional steps are required to
provide a classpath to the WebSphere MQ JAR files, and to modify the Axis2 configuration file. The Axis2 configuration file requires an additional
entry for JMS. The entry refers to the WebSphere MQ transport for SOAP JAR file that implements the JMS transportSender.

Axis2 provides a script, axis2.bat or axis2.sh, which simplifies client deployment; see the examples in Figure 4 and Figure 5.

Note:

1. axis2.bat has a bug that must be corrected. The string -Djava.ext.dirs="%AXIS2_HOME%\lib\" must be changed to -Djava.ext.dirs="%

AXIS2_HOME%\lib\\".

2. In axis2.bat and axis2.sh, -Djava.ext.dirs is used as a quick way to reference all the Axis2 JAR files, instead of adding them separately to

the classpath. Unfortunately this approach is flawed, and only works with some JREs. It does not work with the IBM® JREs.

The JVM parameter, -Djava.ext.dirs="%AXIS2_HOME%\lib\\", makes the Axis JAR files available to the JVM. The JVM attempts to instantiate

some of the Axis JAR files, and leads to an error, the details of which depend on the JVM. Typically, you might see one of the following lines in
the stack trace: org.apache.axiom.om.util.UUIDGenerator.getInitialUUID(UUIDGenerator.java:76) or
org.apache.axis2.deployment.DeploymentException: java.security.NoSuchAlgorithmException: MD5 MessageDigest not available

The correct way to run an unmanaged Axis2 client is to add the Axis2 JAR files to the classpath. The classpath is available only to the client

application and not to the JVM.

The procedure describes the general steps to run an unmanaged Axis2 client without using the axis2 script. The examples in Figure 2 and Figure 3
are scripts for Windows and Linux.

Procedure

1. Download Axis2 1.4.1 from http://ws.apache.org/axis2/download/1_4_1/download.cgi and unpack into a folder, Axis2-1.4.1.

2. Update axis2.xml in Axis2-1.4.1\conf.

a. Update axis2.xml in Axis2-1.4.1\conf. Add WebSphere MQ transport for SOAP as a transportSender:

<transportSender name="jms"

class="com.ibm.mq.axis2.transport.jms.WMQJMSTransportSender"/>

b. If required, alter the size of the connection pool from the default of 10.

<transportSender name="jms"

class="com.ibm.mq.axis2.transport.jms.WMQJMSTransportSender">

<parameter name="ResourcePoolCapacity">20</parameter>

</transportSender>

ResourcePoolCapacity defines how many service endpoint entries are kept in the cache. The value must be at least 1. If the number of

service endpoint entries exceeds the cache size, entries are deleted to make room for new entries. The size of an endpoint entry varies.

Page 44 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

Set a number that is large enough to avoid the cache thrashing.

See step 3 in Developing a JAX-WS client for WebSphere transport for SOAP using Eclipse.

3. Create a directory deployDir. Under this directory copy the folder structure containing the client and client proxies. deployDir is equivalent to

the project\bin folder in an Eclipse Java project.

4. Open a command window on Windows, or a command shell using X Window System on UNIX, in deployDir.

5. Update the classpath to include the current directory, Axis2 JAR files, com.ibm.mqjms.jar and com.ibm.mq.axis2.jar. com.ibm.mqjms.jar

references all the other WebSphere MQ JAR files that are required.

6. Use the Java command to start the client program.

Examples

Four example of running an Axis2 client are listed in Figure 3 to Figure 5. Figure 1 shows the output from running the asynchronous client listed in
Figure 4.
Figure 1. Output from running SQA2AsyncClient

cd C:\IBM\ID\Workspaces\Axis2docs\StockQuoteAxis2PojoClient\bin>

runpojo soap/client/SQA2AsyncClient

HTTP Sync: 55.25

Callback constructor

Waiting for HTTP callback

Result in Callback 55.25

HTTP poll: 55.25

JMS: Sync: 55.25

Callback constructor

Waiting for JMS callback

Result in Callback 55.25

JMS poll: 55.25

Press any key to continue . . .

Figure 2. runpojo.bat: Windows, using a classpath

@echo off

set AXIS2_HOME=C:\OpenSource\axis2-1.4.1

set JAVA_HOME=C:\IBM\Java50

set WMQ_HOME=C:\IBM\MQ\java\lib

setlocal EnableDelayedExpansion

set CLASSPATH=

set AXIS2_CLASS_PATH=

FOR %%c in ("%AXIS2_HOME%\lib*.jar") DO set AXIS2_CLASS_PATH=!AXIS2_CLASS_PATH!;%%c

"%JAVA_HOME%\bin\java" -Daxis2.repo="%AXIS2_HOME%\repository"

-Daxis2.xml="%AXIS2_HOME%\conf\axis2.xml" -cp

".;%WMQ_HOME%\com.ibm.mqjms.jar;%WMQ_HOME%\com.ibm.mq.axis2.jar;%AXIS2_CLASS_PATH%" %1

pause

Figure 3. runpojo.sh: Linux, using a classpath.

export AXIS2_HOME=/home/OpenSource/axis2-1.4.1

export JAVA_HOME=/usr/lib/j2sdk1.5-ibm

update classpath

AXIS2_CLASSPATH=""

for f in "$AXIS2_HOME"/lib/*.jar

do

 AXIS2_CLASSPATH="$AXIS2_CLASSPATH":$f

done

AXIS2_CLASSPATH="$AXIS2_HOME":"$JAVA_HOME/lib/tools.jar":"$AXIS2_CLASSPATH":"$CLASSPATH"

java -cp /home/alex/dev/sandbox/Soap/axis2:/opt/mqm/java/lib/com.ibm.mqjms.jar:

/opt/mqm/java/lib/com.ibm.mq.axis2.jar:$AXIS2_CLASSPATH

-Daxis2.xml=/home/alex/dev/sandbox/axis2-1.4.1/conf/axis2.xml %1

Figure 4. runaxis2.bat: Windows, using axis2.batNote

@echo off

set AXIS2_HOME=C:\OpenSource\axis2-1.4.1

set JAVA_HOME=C:\IBM\Java50

set WMQ_HOME=C:\IBM\MQ\java\lib

%AXIS2_HOME%\bin\axis2 -cp .;%WMQ_HOME%\com.ibm.mqjms.jar;%WMQ_HOME%\com.ibm.mq.axis2.jar; %1

pause

Figure 5. runaxis2.sh: Linux, using axis2.shNote

export AXIS2_HOME=/home/OpenSource/axis2-1.4.1

export JAVA_HOME=/usr/lib/j2sdk1.5-ibm

%AXIS2_HOME%\bin\axis2 -cp .;%WMQ_HOME%\com.ibm.mqjms.jar;%WMQ_HOME%\com.ibm.mq.axis2.jar; %1

Parent topic: Deploying Web service clients to use WebSphere MQ transport for SOAP

Related tasks
Deploying a Web service client to Axis 1.4 to use WebSphere MQ transport for SOAP
Deploying to an Axis2 client using W3C SOAP over JMS
Deploying a Web service client to .NET Framework 1 and 2 to use WebSphere MQ transport for SOAP
Deploying a service to Axis 1.4 to use for WebSphere transport for SOAP using amqwdeployWMQService

Related information
Welcome to Apache Axis2/Java

This build: January 26, 2011 11:10:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts21512_

Page 45 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

1.7.3. Deploying to an Axis2 client using W3C SOAP over JMS

A Web service bound to the W3C candidate recommendation for SOAP over JMS must run in the EJB container of a JEE application server. This task is
step 4 of connecting an Axis2 Web service client and a Web service deployed to WebSphere® Application Server using the W3C SOAP over JMS
protocol. Modify the URL in the Axis2 client developed for WebSphere MQ transport for SOAP to use the W3C candidate recommendation for SOAP
over JMS.

Before you begin

You must first complete the task, Developing a JAX-WS client for WebSphere transport for SOAP using Eclipse to call SimpleJavaListener using
an Axis2 client and the WebSphere MQ transport for SOAP protocol.

You must also have created the Web service and configured WebSphere MQ and WebSphere Application Server in the previous tasks:

1. Configure WebSphere MQ resources.

2. Configure WebSphere Application Server resources.

3. Developing a JAX-WS EJB Web service for W3C SOAP over JMS.

In the task, the client runs in Eclipse Galileo. You might run the client from the command line by modifying the Axis2.bat file shipped with Axis2.

About this task

The only change you must make to the existing Axis2 StockQuoteAxis static client to call the StockQuoteAxis service hosted by WebSphere

Application Server is to change the URL passed to the client. Since the WSDL has not changed, you can use the same proxy classes in the
soap.server package.

You have two approaches to defining the URL to pass to the client. You might use the same URL as in the generated StockQuoteAxis.wsdl. You

must add the jndiInitialContextFactory and the jndiURL parameters to access the WebSphere Application Server JNDI directory. Another

approach is to change the URL and give the client direct access to the REQUESTAXIS and REPLYAXIS queues on QM1, without using a JNDI lookup.

The connection parameters you define in the URL passed to the Axis2 client are used to connect to the WebSphere MQ queue manager and queues
required to send and receive SOAP messages. The connection parameters passed to the Axis2 client are not necessarily used by the service. You can
use the distributed queuing capabilities of WebSphere MQ to decouple the client and service from using the same queue manager, or the same name
server.

Procedure

1. Save the URL from the generated StockQuoteAxis.wsdl and close down Rational® Application Developer to save on memory.

If you did not change the server configuration, closing Rational Application Developer stops the application server. In which case start the
server with the command:

startserver server1

2. Open Eclipse Galileo in the workspace with the Axis2 client project.

3. Open SQA2StaticClient.java.

See SQA2StaticClient.java.

4. Call the service using the queue variant of the URI.

a. Modify the URL. The new URI is:

jms:queue:REQUESTAXIS

 ?replyToName=REPLYAXIS

 &connectionFactory=connectQueueManager(QM1)Bind(Server)

 &targetService=StockQuoteAxis;

Compare this to the URL from StockQuoteAxis.wsdl:

Figure 1. URL from StockQuoteAxis.wsdl

jms:jndi:requestaxis

 ?jndiConnectionFactoryName=qm1

 &targetService=StockQuoteAxis

� REQUESTAXIS is now uppercase as it is a queue name and not a JNDI name.

� The connection to QM1 is straightforward.

� The URI does not contain the name of the Reply to destination. The client must define the queue it expects replies on.

b. Run SQA2StaticClient.java using the same Run as... configuration as you did in the task, Developing a JAX-WS client for WebSphere

transport for SOAP using Eclipse.

5. Call the service using the jndi variant of the URI, using WebSphere Application Server as the naming server.

a. Use the URL from StockQuoteAxis.wsdl, Figure 1, providing the missing parameters to use the naming service in WebSphere Application

Server.

The missing parameters and values you must provide are:

jms:jndi:requestaxis?

 &jndiURL=iiop//localhost:2810

 &jndiConnectionFactoryName=qm1

 &jndiInitialContextFactory=com.ibm.websphere.naming.WsnInitialContextFactory

 &targetService=StockQuoteAxis

 &replyToName=replyaxis;

Table 1. Additional JNDI parameters

Parameter Value used in this example Description

&jndiURL iiop://localhost:2810

or
corbaname:iiop:localhost:2810

URI of naming provider. For WebSphere Application

Server the value defaults to 2809. It is also known as the
port number of the RMI connector, and the bootstrap

port. The value is listed in the SystemOut.log

00000000 NameServerImp A NMSV0018I:

Name server available on bootstrap port 2810

&jndiInitialContextFactory com.ibm.websphere.naming.
WsnInitialContextFactory

The name of the initial context factory used by

WebSphere Application Server.

&replyToName replyaxis JNDI name of REPLYAXIS queue.

Page 46 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

b. Add the JAR files required by the JNDI lookup.

In this configuration, the following JAR files were added to the build path to run the task using the jndi variant of the JMS url:

� com.ibm.jaxws.thinclient_7.0.0.jar from Rational install directory\SDP\runtimes\base_v7\runtimes.

� com.ibm.ws.runtime.jar from Rational install directory\SDP\runtimes\base_v7\plugins

For a different JNDI provider you require different JAR files.

The other JAR files in the build path are:

i. All the JAR files in WebSphere MQ Install directory\java\lib.

ii. All the JAR files in Axis2-1.5.1\lib.

iii. Java 1.5 JRE.

c. Run SQA2StaticClient.java using the same Run as... configuration as you did in the task, Developing a JAX-WS client for WebSphere

transport for SOAP using Eclipse.

Results

In both cases the reply from the service is displayed in the client console view.

Parent topic: Deploying Web service clients to use WebSphere MQ transport for SOAP

Related tasks

Deploying a Web service client to Axis 1.4 to use WebSphere MQ transport for SOAP
Deploying a Web service client to Axis2 to use WebSphere MQ transport for SOAP
Deploying a Web service client to .NET Framework 1 and 2 to use WebSphere MQ transport for SOAP
Connect an Axis2 client to a JAX-WS service using W3C SOAP over JMS and WebSphere Application Server
Developing a JAX-WS EJB Web service for W3C SOAP over JMS
Configuring WebSphere Application Server to use W3C SOAP over JMS
Developing a JAX-WS client for WebSphere transport for SOAP using Eclipse

This build: January 26, 2011 11:10:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts22553_

1.7.4. Deploying a Web service client to .NET Framework 1 and 2 to use WebSphere MQ
transport for SOAP

Prepare a deployment directory and deployment descriptor for the client. Provide the client proxy and client class. Configure WebSphere® MQ
queues and channels, start the service and test the client.

Before you begin

Tip: Develop and test the service and the client using Visual Studio. Then modify the client for WebSphere MQ transport for SOAP.

1. If you are deploying a service using .NET Framework 1 or 2, build the service as a library (.dll). Deploy using WebSphere MQ

transport for SOAP.

2. Add the Register.Extension() call to the client.

3. Add a reference to amqsoap.dll, which is located in MQ_Install\bin.

4. Change the static Url property in the client proxy class constructor to the jms:/ URI, for WebSphere MQ transport for SOAP.

About this task

Deploying a Web service client for .NET Framework 1 or 2 to use WebSphere MQ transport for SOAP requires an additional deployment step. You
need to register amqsoap.dll with the .NET Framework. amqsoap.dll is automatically registered as part of installing WebSphere MQ transport for

SOAP, but you might need to register it again.

If you use the command amqwdeployWMQService to generate client proxies, you can deploy the client using the directories the command
generates.

Procedure

1. Create a directory deployDir to hold the client deployment files.

2. Open a command window in deployDir.

3. Run amqwsetcp to set the CLASSPATH if the service is to run on Axis 1.4.

4. If necessary, run amqwRegisterDotNet to register amqsoap.dll with the .NET Framework.

Example

The example shows the configuration and output, Figure 3, from an .NET Framework V2 client. The client, Figure 2, calls a Web service that echoes
its input parameter. The static Url definition, Figure 1, shows the constructor for the client proxy.

Figure 1. Static client proxy constructor

public Quote() {

 this.Url = "jms:/queue?destination=REQUESTDOTNET

 &connectionFactory=(connectQueueManager(QM1)binding(server))

 &initialContextFactory=com.ibm.mq.jms.Nojndi

 &targetService=Quote.asmx

 &replyDestination=SYSTEM.SOAP.RESPONSE.QUEUE";

}

Figure 2. Client program

Page 47 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

using System;

namespace QuoteClientProgram {

 class QuoteMain {

 static void Main(string[] args) {

 try {

 IBM.WMQSOAP.Register.Extension();

 Quote q = new Quote();

 Console.WriteLine("Response is: " + q.getQuote("ibm"));

 } catch (Exception e) {

 Console.WriteLine("Exception is: " + e);

 }

 }

 }

}

Figure 3. Configuration and output

C:\IBM\ID\DotNet\QuoteClientProgram\QuoteClientProgram>dir /s /b

C:\IBM\ID\DotNet\QuoteClientProgram\QuoteClientProgram\QuoteClientProgram.exe

C:\IBM\ID\DotNet\QuoteClientProgram\QuoteClientProgram>quoteclientprogram

Response is: IBM

What to do next

1. If you are deploying the client as a WebSphere MQ client, configure the client and server connection channel.

2. If you are deploying the client to a different queue manager to the service, you must make the destination queue available to the client.
Configure the destination queue on the service queue manager as a cluster queue, or on the client queue manager as a remote queue
definition.

Parent topic: Deploying Web service clients to use WebSphere MQ transport for SOAP

Related tasks
Deploying a Web service client to Axis 1.4 to use WebSphere MQ transport for SOAP
Deploying a Web service client to Axis2 to use WebSphere MQ transport for SOAP
Deploying to an Axis2 client using W3C SOAP over JMS

Related reference
amqwdeployWMQService: deploy Web service utility
amqwRegisterdotNet: register WebSphere MQ transport for SOAP to .NET
WebSphere MQ transport for SOAP sender
Use a channel definition table with the WebSphere MQ SOAP transport for SOAP sender

This build: January 26, 2011 11:10:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts21520_

1.8. Connect an Axis2 client to a JAX-WS service using W3C SOAP over JMS and
WebSphere Application Server

When you complete this task you will have called a JAX-WS Web service running in WebSphere® Application Server from an Axis2 client. The Axis2
client and WebSphere Application Server use the W3C candidate recommendation for the SOAP over JMS protocol running on WebSphere MQ. Use
Eclipse Galileo and Rational® Application Developer to build the Web service client and Web service, respectively.

Before you begin

The task requires version 7 of Rational Software Development Environment and WebSphere Application Server. The task was created using the
Rational Application Developer packaged with Rational Software Architect for WebSphere Software v7.5.5.1, and WebSphere Application Server
Version 7.0 Test Environment v7.0.0.9 Update 1. You also require WebSphere MQ v7.0.1.3.

The task builds on two other tasks, Developing a JAX-RPC service for WebSphere MQ transport for SOAP using Eclipse, and Developing a JAX-WS
client for WebSphere transport for SOAP using Eclipse. To complete these tasks your development environment already has Eclipse Galileo,
WASCE, the Eclipse plugin for WASCE, and Axis2 1.4.1 installed. You do not require WASCE for this task.

Some of the steps are complex. The steps assume some familiarity with developing Web service applications for WebSphere Application Server
using Rational Application Developer. The processor and memory demands of the task are large. The task was performed in a VMWare Windows
XP SP3 virtual machine allocated 1.8GB of memory.

Install all the software before starting the task. The software takes about a day to download and a day to install, depending on bandwidth. The
task takes at least half a day.

About this task

The scenario for this task is that you have developed a stock quotation Web service, StockQuoteAxis, using an open source tool, Eclipse Galileo.

StockQuoteAxis is deployed using SOAP over HTTP running on an open source server, WASCE.

You want to bind the Web services you deploy to a standards-based messaging transport, such as SOAP over JMS, or to Web services reliable
messaging, as well as to SOAP over HTTP. You want both the client and service to use standards-based interfaces. For this reason, although your
future projects development team have implemented a solution using WebSphere MQ transport for SOAP, you have not gone into production.

The Axis2 client has removed the problem that the SOAP client for the WebSphere MQ transport for SOAP required a change from the HTTP client.
The problem still remained that the service connected by the WebSphere MQ transport for SOAP is hosted by a special listener provided by
WebSphere MQ: SimpleJavaListener.

With the W3C SOAP over JMS standard in candidate recommendation status, some vendors are providing support for W3C SOAP over JMS. The
support enables you to deploy a Web service to an application server and connect to the same service using a variety of connectivity protocols. The
support provided by WebSphere Application Server v7 removes problem of having to host the Web service separately in order to use a message-
based SOAP transport. The use of a standards-based message transport interface, JMS, means you can develop solutions using tools from different
vendors. You hope the Web services tools in Eclipse will include SOAP over JMS bindings in the future.

Most of the steps are performed using Eclipse, or the management tools provided with the WebSphere products. The steps are described for a

Page 48 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

Windows environment. With slight modifications to some commands, you can perform the steps on other platforms.

The preliminary steps creating the HTTP Web service, and connecting to it using Axis2 are listed. The client, and WSDL, from these steps are used to
create the solution

Procedure

1. Connect to the StockQuoteAxis Web service using an Axis2 client and WebSphere MQ transport for SOAP

a. Developing a JAX-RPC service for WebSphere MQ transport for SOAP using Eclipse

b. Developing a JAX-WS client for WebSphere transport for SOAP using Eclipse

c. Deploying a Web service client to Axis2 to use WebSphere MQ transport for SOAP

2. Connect to the StockQuoteAxis Web service using an Axis2 client and the W3C candidate recommendation for SOAP over JMS.

a. Configure WebSphere MQ resources

b. Configure WebSphere Application Server resources

c. Developing a JAX-WS EJB Web service for W3C SOAP over JMS

d. Deploying to an Axis2 client using W3C SOAP over JMS

Parent topic: WebSphere MQ transport for SOAP

This build: January 26, 2011 11:10:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts22550_

1.9. Reference

WebSphere MQ transport for SOAP reference information arranged alphabetically.

amqwSOAPNETListener: WebSphere MQ SOAP listener for .NET Framework 1 or 2
Syntax and parameters for the WebSphere MQ SOAP listener for .NET Framework 1 or 2.

amqswsdl: generate WSDL for .NET Framework 1 or 2 service
amqswsdl takes a Web service written for .NET Framework 1 or 2, and generates the WSDL for the class, inserting the URI you provide for the
WebSphere MQ transport for SOAP into the generated WSDL.

amqwclientconfig: create Axis 1.4 Web services client deployment descriptor for WebSphere MQ transport for SOAP
amqwclientconfig creates the client-config.wsdd Axis 1.4 client deployment descriptor file.

amqwdeployWMQService: deploy Web service utility
The deployment utility prepares a service class for use as a Web service using WebSphere MQ as the transport.

amqwRegisterdotNet: register WebSphere MQ transport for SOAP to .NET
Register WebSphere MQ transport for SOAP to the global assembly cache on .NET.

Apache software license

Apache License Version 2.0, January 2004 http://www.apache.org/licenses/

MQMD SOAP settings
The WebSphere MQ SOAP sender and WebSphere MQ SOAP listener create a message descriptor (MQMD). The topic describes the fields you
must set in the MQMD if you create your own SOAP sender or listener.

MQRFH2 SOAP settings
The WebSphere MQ SOAP senders and listeners create an MQRFH2 with the following settings to send a SOAP message.

runivt: WebSphere MQ transport for SOAP installation verification test
An installation verification test suite (IVT) is provided with WebSphere MQ transport for SOAP. runivt runs a number of demonstration
applications and ensures that the environment is correctly set up after installation.

Secure Web services over WebSphere MQ transport for SOAP
You might secure Web services that use the WebSphere MQ transport for SOAP in one of two ways. Either create an SSL channel between the
client and server, or use Web services security.

SimpleJavaListener: WebSphere MQ SOAP Listener for Axis 1.4
Syntax and parameters for the WebSphere MQ SOAP listener for Axis 1.4.

WebSphere MQ SOAP listeners
A WebSphere MQ SOAP listener reads an incoming SOAP request from the queue specified as the destination in the URI. It checks the format of
the request message and then invokes a Web service using the Web services infrastructure. A WebSphere MQ SOAP listener returns any
response or error from a Web service using the reply destination queue in the URI. It returns WebSphere MQ reports to the reply queue.

WebSphere MQ transport for SOAP sender
Sender classes are provided for Axis and .NET Framework 1 and .NET Framework 2. The sender constructs a SOAP request and puts it on a
queue, it then blocks until it has read a response from the response queue. You can alter the behavior of the classes by passing different URIs
from a SOAP client. For .NET Framework 3 use WebSphere MQ custom channel for Microsoft Windows Communication Foundation (WCF).

Transactions
Use the -x option when starting the listener, to run Web services transactionally. Select the integrity of messages by setting the persistence

option in the service URI.

URI syntax and parameters for Web service deployment
The syntax and parameters to deploy a WebSphere MQ Web service are defined in a URI. The deployment utility generates a default URI based
on the name of the Web service. You can override the defaults by defining your own URI as a parameter to the deployment utility. The

Page 49 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

deployment utility incorporates the URI in the generated Web service client stubs.

W3C SOAP over JMS URI for the WebSphere MQ Axis 2 client
Define a W3C SOAP over JMS URI to call a Web service from an Axis 2 client using WebSphere MQ JMS as the SOAP transport. The Web service
must be provided by a server that supports WebSphere MQ JMS and the W3C SOAP over JMS candidate recommendation for the SOAP/JMS
binding.

Supported Web services
Code that has been written to run as a Web service does not need to be modified to use the WebSphere MQ transport for SOAP. You do need to
deploy services differently to run with the WebSphere MQ transport for SOAP rather than using HTTP.

WebSphere MQ transport for SOAP Web service clients
You can reuse an existing SOAP over HTTP client with WebSphere MQ transport for SOAP. You must make some small modifications to the code
and build process to convert the client to work with WebSphere MQ transport for SOAP.

Parent topic: WebSphere MQ transport for SOAP

This build: January 26, 2011 11:09:36

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts20100_

1.9.1. amqwSOAPNETListener: WebSphere MQ SOAP listener for .NET Framework 1 or 2

Syntax and parameters for the WebSphere® MQ SOAP listener for .NET Framework 1 or 2.

Purpose
Starts the WebSphere MQ SOAP listener for .NET Framework 1 or 2.

.NET

|--amqwSOAPNETListener--+-| URI (.NET) |-+---------------------->

 +-| URI (Java) |-+

 '- -? -----------'

>--+---+------>

 | .-DefaultMsgIntegrity--+-------------------+-. |

 | | | .-onePhase-. | | |

 | | '- -x -+-twophase-+-' | |

 '- -a -+-HighMsgIntegrity--+-------------------+----+-'

 | | .-onePhase-. | |

 | '- -x -+-twophase-+-' |

 '-LowMsgIntegrity--+-------------------+-----'

 | .-onePhase-. |

 '- -x -+-twophase-+-'

 '-none-----'

>--+----------------+--+----------------------+----------------->

 | .- -1---. | | .-passContext-. |

 '- -d -+-msecs-+-' '- -i -+-ownContext--+-'

>--+---------------------+--+-----+----------------------------->

 | .-10---------. | '- -v '

 '- -n -+-numThreads-+-'

>--+--------------------------+--------------------------------->

 '- -w -c:\inetpub\wwwroot\ '

>--+-------------------------------------+----------------------|

 | .-onePhase-------------------. |

 '- -x -+-twophase-------------------+-'

 '-none-- -a -LowMsgIntegrity-'

Required parameters

URI platform

See URI syntax and parameters for Web service deployment.

-?

Print out help text describing how the command is used.

Optional parameters

-a integrityOption

integrityOption specifies the behavior of WebSphere MQ SOAP listeners if it is not possible to put a failed request message on the dead-letter
queue. integrityOption can take one of the following values:

DefaultMsgIntegrity

For non-persistent messages, the listener displays a warning message and continues to execute with the original message being discarded. For
persistent messages, it displays an error message, backs out the request message so it remains on the request queue and exits.
DefaultMsgIntegrity applies if the -a option is omitted, or if integrityOption is not specified.

LowMsgIntegrity

For both persistent and non-persistent messages, the listener displays a warning and continues to execute, discarding the message.

HighMsgIntegrity

For both persistent and non-persistent messages, the listener displays an error message, backs out the request message so it remains on the
request queue and exits.

Page 50 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

The deployment utility checks for the compatibility of the -x and -a flags. If -x none is specified, then -a LowMsgIntegrity must be specified. If the
flags are incompatible the deployment utility exits with an error message and with no deployment steps having been undertaken.

-d msecs

msecs specifies the number of milliseconds for the WebSphere MQ SOAP listener to stay alive if request messages have been received on any
thread. If msecs is set to -1, the listener stays alive indefinitely.

-i Context

Context specifies whether the listeners pass identity context. Context takes the following values:

passContext

Set the identity context of the original request message into the response message. The SOAP listener checks that it has authority to save the
context from the request queue and to pass it to the response queue. It makes the checks at run time when opening the request queue to save
context, and the response queue to pass context. If it does not have the required authority, or the MQOPEN call fails, and the response message is

not processed. The response message is put on the dead-letter queue with the dead-letter header containing the return code from the failed
MQOPEN. The listener then continues to process subsequent incoming messages as normal.

ownContext

The SOAP listener does not pass context. The returned context reflects the user ID under which the listener is running rather than the user ID

which created the original request message.
The fields in the origin context are set by the queue manager, and not by the SOAP listener.

-n numThreads

numThreads specifies the number of threads in the generated startup scripts for the WebSphere MQ SOAP listener. The default is 10. Consider
increasing this number if you have high message throughput.

-v

-v sets verbose output from external commands. Error messages are always displayed. Use -v to output commands that you can tailor to create
customized deployment scripts.

-w serviceDirectory

serviceDirectory is the directory containing the web service.

-x transactionality

transactionality specifies the type of transactional control for the listener. transactionality can be set to one of the following values:

onePhase

WebSphere MQ one-phase support is used. If the system fails during processing, the request message is redelivered to the application.
WebSphere MQ transactions ensure that the response messages are written exactly once.

twoPhase

Two-phase support is used. If the service is written appropriately the message is delivered exactly once, coordinated with other resources, within
a single committed execution of the service. This option applies to server bindings connections only.

none

No transactional support. If the system fails during processing, the request message can be lost, even if persistent. The service might or might
not have executed, and response, report or dead-letter messages might or might not be written.

The deployment utility checks for the compatibility of the -x and -a flags. See the description of the -a flag for details.

.NET Example

amqwSOAPNETlistener

-u "jms:/queue?destination=myQ&connectionFactory=()

&targetService=myService&initialContextFactory=com.ibm.mq.jms.Nojndi"

-w C:/wmqsoap/demos

-n 20

Parent topic: Reference

Related reference
WebSphere MQ SOAP listeners

This build: January 26, 2011 11:09:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts20130_

1.9.2. amqswsdl: generate WSDL for .NET Framework 1 or 2 service

amqswsdl takes a Web service written for .NET Framework 1 or 2, and generates the WSDL for the class, inserting the URI you provide for the
WebSphere® MQ transport for SOAP into the generated WSDL.

Purpose
Use amqswsdl to generate WSDL containing the URI of the service deployed to WebSphere MQ. Use the WSDL to generate client proxies.

>>-amqswsdl-- -escapedUri-- -className--.asmx-- -className--.wsdl-><

Parameters

escapedUri (Input)

The URI of the service, with all "&" escaped to "&.". For example:

"jms:/queue?destination=REQUESTDOTNET

&.initialContextFactory=com.ibm.mq.jms.Nojndi

&.connectionFactory=(connectQueueManager(QM1)binding(server))

&.targetService=Quote.asmx"

className.asmx (Input)

The service class.

Page 51 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

className.wsdl (Output)

The service WSDL.

Description

If the class is implemented using the code-behind programming model, you must build className.dll and store it in ./bin.

Parent topic: Reference

Related tasks

Developing Web services for WebSphere MQ transport for SOAP

Related reference
Supported Web services

This build: January 26, 2011 11:09:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts20480_

1.9.3. amqwclientconfig: create Axis 1.4 Web services client deployment descriptor for
WebSphere MQ transport for SOAP

amqwclientconfig creates the client-config.wsdd Axis 1.4 client deployment descriptor file.

Purpose
It adds the jms:/ transport to the descriptor, and registers java:com.ibm.mq.soap.transport.jms.WMQSender as the class to handle SOAP requests

for the jms: transport.

Syntax

>>-amqwclientconfig--><

Description
amqwclientconfig calls amqwsetcp to set the CLASSPATH and runs the command:

java org.apache.axis.utils.Admin client "%WMQSOAP_HOME%\bin\amqwclientTransport.wsdd"

Parent topic: Reference

Related tasks
Deploying a Web service client to Axis 1.4 to use WebSphere MQ transport for SOAP

Related reference
WebSphere MQ transport for SOAP Web service clients

This build: January 26, 2011 11:09:36

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts20110_

1.9.4. amqwdeployWMQService: deploy Web service utility

The deployment utility prepares a service class for use as a Web service using WebSphere® MQ as the transport.

Purpose

Use the deployment utility to generate the files that are needed to deploy an Axis 1.4, .NET Framework 1 or .NET Framework 2 service. Use the files
to deploy a service invoked by WebSphere MQ. The files generated by amqwdeployWMQService are shown in Output files from
amqwdeployWMQService.

Syntax diagram

>>---><

UNIX

|--./amqwdeployWMQService.sh--+- -f -className-+---------------->

 '- -? -----------'

>--+-----------------------------+--| Optional parameters |-----|

 | .-allAxis------------. |

 '- -c -+-compileJava--------+-'

 +-genAxisWsdl--------+

 +-axisDeploy---------+

 +-genProxiestoAxis---+

 +-genProxiesToDotNet-+

 +-genAxisWMQBits-----+

 '-startWMQMonitor----'

Windows

|--amqwdeployWMQService--+- -f -className-+--------------------->

Page 52 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

 '- -? -----------'

>--+-----------------------------+--| Optional parameters |-----|

 | .-allAsmx------------. |

 '- -c -+-compileJava--------+-'

 +-genAxisWsdl--------+

 +-genAsmxWsdl--------+

 +-genProxiestoAxis---+

 +-genProxiesToDotNet-+

 +-genAsmxWMQBits-----+

 '-startWMQMonitor----'

Optional parameters

|--+---+------>

 | .-DefaultMsgIntegrity--+-------------------+-. |

 | | | .-onePhase-. | | |

 | | '- -x -+-twophase-+-' | |

 '- -a -+-HighMsgIntegrity--+-------------------+----+-'

 | | .-onePhase-. | |

 | '- -x -+-twophase-+-' |

 '-LowMsgIntegrity--+-------------------+-----'

 | .-onePhase-. |

 '- -x -+-twophase-+-'

 '-none-----'

>--+-------------------+--+----------------------+-------------->

 | .-3--------. | | .-passContext-. |

 '- -b -+-bothresh-+-' '- -i -+-ownContext--+-'

>--+---------------------+--+-----+--+-----+-------------------->

 | .-10---------. | '- -r ' '- -s '

 '- -n -+-numThreads-+-'

>--+------------------------+--+----------------------+--------->

 | .-runmqtrm----. | '- -tmq -initQueueName-'

 '- -tmp -+-programName-+-'

>--+----------------+--+-----+--+---------------------+--------->

 +-| URI (.NET) |-+ '- -v ' | .-rpcEncoded-. |

 '-| URI (Java) |-' '- -w -+-rpcLiteral-+-'

>--+-------------------------------------+----------------------|

 | .-onePhase-------------------. |

 '- -x -+-twophase-------------------+-'

 '-none-- -a -LowMsgIntegrity-'

Required parameters

-f className

className is the name of the class to be deployed. For Axis services className is the Java source file, and for .NET services, the .asmx file. Figure

1 illustrates the deployment of an Axis service and Figure 2 of a .NET service.

Figure 1. Example deployment of Axis service

amqwdeployWMQService -f javaDemos/service/StockQuoteAxis.java

Figure 2. Example deployment of .NET service

amqwdeployWMQService -f StockQuoteDotNet.asmx

For Java, className must be fully qualified by the package name. It can be specified as a path name with directory separators or as a class name
with period separators. The generated class is located in ./generated/client/remote/path name. For a .NET service, although the directory can

be specified, generated Java proxies are always located in ./generated/client/remote/dotNetService.

If you specify a URI with the -u option and within the URI specify targetService, the deployment utility checks the className. className must
match targetService. If the class and service do not match, the deployment utility displays an error message and exits.

-?

Print out help text describing how the command is used.

Optional parameters

-a integrityOption

integrityOption specifies the behavior of WebSphere MQ SOAP listeners if it is not possible to put a failed request message on the dead-letter
queue. integrityOption can take one of the following values:

DefaultMsgIntegrity

For non-persistent messages, the listener displays a warning message and continues to execute with the original message being discarded. For
persistent messages, it displays an error message, backs out the request message so it remains on the request queue and exits.
DefaultMsgIntegrity applies if the -a option is omitted, or if integrityOption is not specified.

LowMsgIntegrity

For both persistent and non-persistent messages, the listener displays a warning and continues to execute, discarding the message.

HighMsgIntegrity

For both persistent and non-persistent messages, the listener displays an error message, backs out the request message so it remains on the
request queue and exits.

The deployment utility checks for the compatibility of the -x and -a flags. If -x none is specified, then -a LowMsgIntegrity must be specified. If the
flags are incompatible the deployment utility exits with an error message and with no deployment steps having been undertaken.

-b bothresh

bothresh specifies the backout threshold setting for the request queue. The default is 3.

-c operation

operation specifies which part of the deployment process to execute. operation is one of the following options:

Page 53 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

allAxis

Perform all compile and setup steps for an Axis or Java service1.

compileJava

Compile the Java service: .java to .class.

genAxisWsdl

Generate WSDL: .class to .wsdl.

axisDeploy

Deploy the class file: .wsdl to .wsdd, apply .wsdd.

genProxiestoAxis

Generate proxies: .wsdl to .java and .class.

genAxisWMQBits

Set up WebSphere MQ queues, WebSphere MQ SOAP listeners and triggers for an Axis service.

allAsmx

Perform all setup steps for a .NET service2.

genAsmxWsdl

Generate WSDL: .asmx to .wsdl.

genProxiesToDotNet

Generate proxies: .wsdl to .java, .class, .cs and .vb.

genAsmxWMQBits

Set up WebSphere MQ queues, WebSphere MQ SOAP listeners and triggers

startWMQMonitor

Start the trigger monitor for WebSphere MQ SOAP services.

Note: runmqtrm runs under the mqm user ID. If security is an issue, you must ensure that the listeners are started under appropriate user IDs.

-i Context

Context specifies whether the listeners pass identity context. Context takes the following values:

passContext

Set the identity context of the original request message into the response message. The SOAP listener checks that it has authority to save the
context from the request queue and to pass it to the response queue. It makes the checks at run time when opening the request queue to save
context, and the response queue to pass context. If it does not have the required authority, or the MQOPEN call fails, and the response message is

not processed. The response message is put on the dead-letter queue with the dead-letter header containing the return code from the failed
MQOPEN. The listener then continues to process subsequent incoming messages as normal.

ownContext

The SOAP listener does not pass context. The returned context reflects the user ID under which the listener is running rather than the user ID
which created the original request message.

The fields in the origin context are set by the queue manager, and not by the SOAP listener.

-n numThreads

numThreads specifies the number of threads in the generated startup scripts for the WebSphere MQ SOAP listener. The default is 10. Consider
increasing this number if you have high message throughput.

-r

-r specifies that any existing request or trigger monitor queue definitions are replaced. Trigger monitor queues are replaced only if -tmq is also
specified. Queues are re-created with standard default attributes and existing messages on the queues are deleted. If the -r option is not used then
any existing queue definitions are not altered and existing messages are not deleted. By not specifying -r, you ensure that any customized queue
attributes are preserved.

-s

Configure the listener to run as a WebSphere MQ service. If -s and -tmq are both specified, the deployment utility displays an error message and
exits.

-tmp programName

programName specifies the name of a trigger monitor program. Use -tmp programName in a UNIX environment as an alternative to using
runmqtrm. Programs it initiates run under mqm authority.

For example:

amqwdeployWMQService -f javaDemos/service/StockQuoteAxis.java

-tmq trigger.monitor.queue -tmp trigmon

-tmq queueName

queueName specifies a trigger monitor queue name. WebSphere MQ process definitions are created to configure automatic triggering of
WebSphere MQ SOAP listeners with the associated trigger monitor queue name. If the option is not specified then no triggering configuration is
defined by the deployment utility. If -s and -tmq are both specified, the deployment utility displays an error message and exits.

URI platform

See URI syntax and parameters for Web service deployment.

-v

-v sets verbose output from external commands. Error messages are always displayed. Use -v to output commands that you can tailor to create
customized deployment scripts.

-w

-w controls the style of WSDL to generate. The default is rpcEncloded, for compatibility with previous releases of WebSphere MQ transport for
SOAP. Use rpcLiteral to create WSDL compatible with Axis2 client proxy generation. rpcEncoded is not compatible with WS-I recommendations.

-x transactionality

transactionality specifies the type of transactional control for the listener. transactionality can be set to one of the following values:

onePhase

WebSphere MQ one-phase support is used. If the system fails during processing, the request message is redelivered to the application.
WebSphere MQ transactions ensure that the response messages are written exactly once.

twoPhase

Page 54 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

Two-phase support is used. If the service is written appropriately the message is delivered exactly once, coordinated with other resources, within
a single committed execution of the service. This option applies to server bindings connections only.

none

No transactional support. If the system fails during processing, the request message can be lost, even if persistent. The service might or might
not have executed, and response, report or dead-letter messages might or might not be written.

The deployment utility checks for the compatibility of the -x and -a flags. See the description of the -a flag for details.

Errors

On Windows, if errors are reported from amqswsdl, try issuing the following command to register .asmx files as services.

%windir%/Microsoft.NET/Framework/version number/aspnet_regiis.exe -ir

The problem typically occurs on systems where IIS has not been installed, or IIS has been installed after NET. The problem is encountered when

amqswsdl generates the .wsdl files.

Note: The registry keys are also required to permit the listener to invoke the services. If you use your own customized deployment procedures, you
might not encounter the problem until run time.

Output files from amqwdeployWMQService
A list of the directories and files output from amqwdeployWMQService

Usage notes for amqwdeployWMQService
Describes the tasks performed by amqwdeployWMQService.

Parent topic: Reference

Related tasks
Deploying Web services using the WebSphere MQ transport for SOAP

Related reference
URI syntax and parameters for Web service deployment

Secure Web services over WebSphere MQ transport for SOAP

Related information
System requirements for WebSphere MQ

1 Default if className has a .java extension

2 Default if className has a .asmx extension.

This build: January 26, 2011 11:09:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts20730_

1.9.4.1. Output files from amqwdeployWMQService

A list of the directories and files output from amqwdeployWMQService

Table 1. Output files from amqwdeployWMQService

Outputs Description Output directory Filename

.class Compiled Java
source file

./generated/server/server package classname.class

.wsdl Service

description

./generated classNameAxis_Wmq.wsdl
classNameDotNet_Wmq.wsdl

.wsdd Axis client

and service

deployment

files

./ client-config.wsdd
server-config.wsdd

./generated/server/server package className_deploy.wsdd
className_undeploy.wsdd

Client

source

(.vb, .cs,

.java)

.Net client

stubs to Axis

service

./generated/client classnameAxisService.cs
classnameAxisService.vb

.Net client

stubs to .Net

service

./generated/client classnameDotNet.cs
classnameDotNet.vb

Client

helper

(.java

and .class)

Java client

proxies

to .Net

service

./generated/server/soap/client/remote/dotnetService classNameDotNet.class

classNameDotNet.java

classNameDotNetLocator.class

classNameDotNetLocator.java

classNameDotNetSoap12Stub.class

classNameDotNetSoap12Stub.java

classNameDotNetSoap_BindingStub.class

classNameDotNetSoap_BindingStub.java

classNameDotNetSoap_PortType.class

classNameDotNetSoap_PortType.java

Java client

proxies to

Axis service

./generated/server/soap/client/remote/client

package
SoapServerclassNameAxisBindingSoapStub.class

SoapServerclassNameAxisBindingSoapStub.java

classNameAxis.class

classNameAxis.java

classNameAxisService.class

classNameAxisService.java

classNameAxisServiceLocator.class

classNameAxisServiceLocator.java

Page 55 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

Parent topic: amqwdeployWMQService: deploy Web service utility

This build: January 26, 2011 11:09:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts20732_

1.9.4.2. Usage notes for amqwdeployWMQService

Describes the tasks performed by amqwdeployWMQService.

The deployment utility performs the following actions.

1. Checks paths to the following files:

� axis.jar.

� WMQSOAP_HOME/java/lib/com.ibm.mq.soap.jar.

� On Windows, csc.exe

2. On Windows, uses either %SystemRoot%\Microsoft.NET\Framework\v1.1.432 or, if the C# compiler is installed, the path to csc.exe as the

path to the .NET Framework.

Note: If you have Microsoft Visual Studio 2008 installed (Version 9), wsdl.exe is not in the path to csc.exe. You need to add the path to

the .NET framework to your Path variable; for example:

Set Path=C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727;%Path%

3. Creates the ./generated directory, and required subdirectories, if they do not exist.

4. For Java services, compiles the source into className.class.

5. Generates WSDL.

6. For Java services, creates deployment descriptor files className_deploy.wsdd and className_undeploy.wsdd

7. For Java services, creates or updates the Axis deployment descriptor file, server-config.wsdd.

8. Generates the client proxies for Java, C# and Visual Basic from the WSDL.

Note: On Windows, the deploy utility generates proxies for Visual Basic and C# regardless of the language in which the service is written. The
WSDL and the proxies generated from it include the appropriate URI to call the service:

a. Figure 1. Example URI in generated .NET client to call .NET service

jms:/queue?destination=SOAPN.demos@WMQSOAP.DEMO.QM

&connectionFactory=(connectQueueManager(WMQSOAP.DEMO.QM))

&initialContextFactory=com.ibm.mq.jms.Nojndi

&targetService=StockQuoteDotNet.asmx

&replyDestination=SYSTEM.SOAP.RESPONSE.QUEUE

b. Figure 2. Example URI in generated .NET client to call Axis 1 service

jms:/queue?destination=SOAPJ.demos@WMQSOAP.DEMO.QM

&connectionFactory=(connectQueueManager(WMQSOAP.DEMO.QM))

&initialContextFactory=com.ibm.mq.jms.Nojndi

&targetService=soap.server.StockQuoteAxis.java

&replyDestination=SYSTEM.SOAP.RESPONSE.QUEUE

9. Compiles the Java proxies.

10. Creates a WebSphere® MQ queue, requestQueue to hold requests for the service. The default queue name is of the form SOAPJ.directory, or

you can specify requestQueue in the -u URI option.

11. Creates command and shell script files to start the WebSphere MQ SOAP listeners that process the request queue.

12. If the -tmq option has been used, the deployment utility creates WebSphere MQ definitions to trigger WebSphere MQ SOAP listener processes
automatically.

� The deployment utility uses the APPLICID attribute of the runmqsc DEFINE PROCESS command to contain a command to start the

listener. The command has the name of the deployment directory embedded in it. The APPLICID field has a maximum length of 256,

which limits the maximum length of the deployment directory. The directory limit for Java services is as follows:

� UNIX: 218

� Windows: 197 minus the length of the request queue name.

For .NET services, the directory limit is as follows:

� Windows: 209 minus length of the service name, minus the .asmx extension.

� The deployment utility checks whether the limit for APPLICID is exceeded. If the limit is exceeded, the utility does not attempt to define

the triggering process. It displays an error message and the deployment process fails without performing any deployment steps.

The following examples show the configuration and start commands generated by the deployment utility to start a WebSphere MQ SOAP
listener.

Figure 3. WebSphere MQ configuration commands to trigger a SOAP listener.

DEFINE PROCESS(requestQueue) APPLICID(applicIDStr) REPLACE

ALTER QLOCAL (requestQueue) TRIGTYPE(FIRST) TRIGGER

 PROCESS(requestQueue) INITQ(initQueueName) TRIGMPRI(0)

Figure 4. Starting Axis SOAP listener on Windows

applicIDStr = start "Java WMQSoapListener -requestQueue"

 /min .\generated\server\startWMQJListener.cmd;

Scripts

(.cmd

and .sh)

Listener

scripts

/generated/server startWMQJListener.cmd
startWMQJListener.sh
startWMQNListener.cmd
endWMQJListener.cmd
endWMQJListener.sh
endWMQNListener.cmd

Page 56 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

Figure 5. Starting .NET SOAP listener on Windows

applicIDStr = start "WMQAsmxListener -className\

 /min .\generated\server\startWMQNListener.cmd;

Figure 6. Starting Axis SOAP listener on UNIX

applicIDStr = xterm -iconic -T \"Java WMQSoapListener_requestQueue\"

 -e ./generated/server/startWMQJListener.sh & #

Parent topic: amqwdeployWMQService: deploy Web service utility

This build: January 26, 2011 11:09:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts20734_

1.9.5. amqwRegisterdotNet: register WebSphere MQ transport for SOAP to .NET

Register WebSphere® MQ transport for SOAP to the global assembly cache on .NET.

Purpose
amqwRegisterdotNet registers the WebSphere MQ SOAP sender, SOAP listener, and WSDL processor with .NET Framework 1 or 2.

Syntax

>>-amqwRegisterdotNet--><

Description

amqwRegisterdotNet is run automatically during installation. You do not need to run it again if the .NET Framework you are using was installed
before WebSphere MQ transport for SOAP. You can run it as many times as you want. Use it to reregister WebSphere MQ transport for SOAP with
different .NET Framework versions.

Note: On Windows 2003 Server, you must also run the aspnet_regiis utility, even if you are not deploying to Internet Information Server (IIS). The
location of the aspnet_regiis.exe utility might vary with different versions of the Microsoft .NET Framework, but it is typically located in: %

SystemRoot%/Microsoft.NET/Framework/version number/aspnet_regiis. If multiple versions are installed, use aspnet_regiis for the version

of .NET Framework you are using.

Parent topic: Reference

Related tasks
Installing WebSphere MQ Web transport for SOAP

This build: January 26, 2011 11:09:36

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts20120_

1.9.6. Apache software license

Apache License Version 2.0, January 2004 http://www.apache.org/licenses/

http://www.apache.org/licenses/

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical

Page 57 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications

 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but

 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,

 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You

 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must

 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and

Page 58 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed

 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,

 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a

 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and

 limitations under the License.

Parent topic: Reference

This build: January 26, 2011 11:10:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts21201_

1.9.7. MQMD SOAP settings

The WebSphere® MQ SOAP sender and WebSphere MQ SOAP listener create a message descriptor (MQMD). The topic describes the fields you must
set in the MQMD if you create your own SOAP sender or listener.

Page 59 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

Purpose
The values set in the MQMD control the exchange of messages between the WebSphere MQ SOAP sender, the WebSphere MQ SOAP listener, and the
SOAP client program. If you create your own SOAP sender or listener, follow the rules in Table 1.

Description

Table 1 describes how the MQMD fields are set by the WebSphere MQ SOAP sender and WebSphere MQ SOAP listener. If you write your own sender
or listener you must set these fields in accordance with the rules for exchanging messages. The WebSphere MQ SOAP listener conforms to typical
WebSphere MQ message exchange protocols. If you write your own sender to work with the WebSphere MQ SOAP listeners, you can set different
MQMD values.

In Table 1, the values in the Setting column are organized as follows:

Request, One way

Settings made by WebSphere MQ SOAP sender.

Response, Report

Settings made by WebSphere MQ SOAP listener in response to WebSphere MQ SOAP sender request.

ALL

Settings made by both the WebSphere MQ SOAP sender and WebSphere MQ SOAP listener.

Customized sender

You can write your own sender. Typically, a customized sender overrides the standard report options.

Table 1. MQMD SOAP settings

Field name Setting Values

StrucId
ALL

MQMD_STRUC_ID

'MD � � '1

Version
ALL

MQMD_VERSION_2

2

Report
ALL

MQRO_NONE + MQRO_NEW_MSG_ID +

MQRO_COPY_MSG_ID_TO_CORREL_ID + MQRO_EXCEPTION

+ MQRO_EXPIRY + MQRO_DISCARD

Customized sender

See Customized report options

52428800

MsgType
Request

MQMT_REQUEST

Response

MQMT_REPLY

Report

MQMT_REPORT

One way

MQMT_DATAGRAM

MQMT_REQUEST

1

MQMT_REPLY

2

MQMT_REPORT

4

MQMT_DATAGRAM

8

Expiry
Request, One way

Specified by Expiry option in URI. Defaults to
MQEI_UNLIMITED.

Response

Value of Expiry in request message

Report

MQEI_UNLIMITED

MQEI_UNLIMITED

-1

Feedback
Request, Response, One way

MQFB_NONE.

Report

� Generated by queue manager - value set

according to normal rules.

� Generated by WebSphere MQ SOAP Listener:

MQRC_BACKOUT_THRESHOLD_REACHED

Backout threshold for multiple attempts

exceeded.

MQRCCF_MD_FORMAT_ERROR

The message is not recognized as having an
MQRFH2 header.

MQRC_RFH_PARM_MISSING

A required parameter, for example,

SoapAction, in MQRFH2 is missing.

MQRC_RFH_FORMAT_ERROR

A basic integrity check of the MQRFH2 failed,

for example, internal lengths are corrupted.

MQRC_RFH_ERROR

The MQRFH2 passed an integrity check, but

the body of the message is not set to

MQFMT_NONE.

MQFB_NONE

0

MQRC_BACKOUT_THRESHOLD_REACHED

2362

MQRCCF_MD_FORMAT_ERROR

3023

MQRC_RFH_PARM_MISSING

2339

MQRC_RFH_FORMAT_ERROR

2421

MQRC_RFH_ERROR

2334

Encoding Depends on environment

Page 60 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

ALL

MQENC_NATIVE

CodedCharSetId
ALL

Set to UTF-8

1208

Format
Request, Response, One way

MQFMT_RF_HEADER_2

Report

Queue manager reports

Follows WebSphere MQ rules

WebSphere MQ SOAP listener reports

Format of the original request message.

MQFMT_RF_HEADER_2

"MQHRF2 "

Priority
Request, One way

Specified by Priority option in URI. Defaults to

MQPRI_PRIORITY_AS_Q_DEF.

Response, Report

Value of Priority in the request message.

MQPRI_PRIORITY_AS_Q_DEF

-1

Persistence
Request, One way

MQPER_PERSISTENCE_AS_Q_DEF.

Response, Report

Value of Persistence in the request message.

MQPER_PERSISTENCE_AS_Q_DEF

2

MsgId
Request, One way

Generated by the queue manager.

Response, Report

The WebSphere MQ SOAP sender sets

MQRO_NEW_MSG_ID and MsgId is generated

Generated

Unique value generated by the queue
manager

CorrelId
Request, One way, Report

MQCI_NONE

Response, Report

The WebSphere MQ SOAP sender sets

MQRO_COPY_MSG_ID_TO_CORREL_ID and the listener

copies MsgId from the request message.

MQCI_NONE

0

BackoutCount
ALL

Not used

0

ReplyToQ
Request

Specified by replyDestination option in URI. Defaults to

SYSTEM.SOAP.RESPONSE.QUEUE.

Response, One way, Report

Left blank

ReplyToQMgr
ALL

Field left blank

Generated by the queue manager; see

Reply-to-queue and queue manager.

UserIdentifier
Request, One way, Report

Left blank

Response

Depends on the -i passContext option supplied to the

listener, and the authority the listener is running
under.

Request, One way, Report

Generated by the queue manager;

see UserIdentifier

Response

Variable

AccountingToken
ALL

MQACT_NONE

MQACT_NONE

Null string or blanks

Set by the queue manager; see

AccountingToken

ApplIdentityData
ALL

None

Null string or blanks2

PutApplType
ALL

MQAT_NO_CONTEXT

MQAT_NO_CONTEXT

0

Value generated by queue manager;

see PutApplType (MQLONG).

PutApplName
ALL

None

Value generated by queue manager;

see PutApplName (MQLONG).

PutDate
ALL

None

Value generated by queue manager;

see PutApplDate (MQCHAR8).

PutTime
ALL

None

Value generated by queue manager;

see PutApplTime (MQCHAR8).

ApplOriginData
ALL

None

Null string or blanks2

GroupId Nulls

Page 61 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

Customized report options

You can write your own SOAP sender and use it with the supplied listeners. Typically you might write a sender to change the choice of report options.
The WebSphere MQ SOAP listeners support most combinations of report options, as described in the following lists.

� Report options supported by WebSphere MQ SOAP listeners:

� MQRO_EXCEPTION

� MQRO_EXCEPTION_WITH_DATA

� MQRO_EXCEPTION_WITH_FULL_DATA

� MQRO_DEAD_LETTER_Q

� MQRO_DISCARD_MSG

� MQRO_NONE

� MQRO_NEW_MSG_ID

� MQRO_PASS_MSG_ID

� MQRO_COPY_MSG_ID_TO_CORREL_ID

� MQRO_PASS_CORREL_ID

� Report options supported by the queue manager:

� MQRO_COA

� MQRO_COA_WITH_DATA

� MQRO_COA_WITH_FULL_DATA

� MQRO_COD

� MQRO_COD_WITH_DATA

� MQRO_COD_WITH_FULL_DATA

� MQRO_EXPIRATION

� MQRO_EXPIRATION_WITH_DATA

� MQRO_EXPIRATION_WITH_FULL_DATA

� The following report options are not supported by the WebSphere MQ SOAP listeners.

� MQRO_PAN

� MQRO_NAN

The behavior of WebSphere MQ SOAP listeners in response to combinations of MQRO_EXCEPTION_* and MQRO_DISCARD is described in Table 2.

The notation MQRO_EXCEPTION_* indicates the use of either MQRO_EXCEPTION, MQRO_EXCEPTION_WITH_DATA or MQRO_EXCEPTION_WITH_FULL_DATA.

Request, One way, Report

MQGI_NONE

Response

Field is copied from the request message

MsgSeqNumber
Request, One way, Report

Not used

Response

Field is copied from the request message

Generated by the queue manager; see

MQPUT options relating to messages in

groups and segments of logical

messages.

Offset
Request, One way, Report

Not used

Response

Field is copied from the request message

0

MsgFlags
Request, One way, Report

MQMF_NONE

Response

Field is copied from the request message

MQMF_NONE

0

See MsgFlags (MQLONG)

OriginalLength
Request, One way, Response

MQOL_UNDEFINED

Report

Length of original request message

MQOL_UNDEFINED

-1

Notes:

1. The symbol � represents a single blank character.

2. The value Null string or blanks denotes the null string in C, and blank characters in other programming languages.

Table 2. Listener behavior resulting from MQRO_EXCEPTION_* and MQRO_DISCARD settings

 MQRO_DISCARD enabled MQRO_DISCARD not enabled

MQRO_EXCEPTION_*

enabled

Default behavior. Report messages are
automatically generated if necessary and the

original request discarded. If a report message

could not be returned to the response queue the

report message is sent to the dead letter queue.

Report messages are automatically generated if
necessary and the original message is sent to the

dead letter queue. If the report message could not be

returned to the response queue it is also be sent to

the dead-letter queue. In this case there are therefore

two dead letter queue entries for the failed request.

MQRO_EXCEPTION_*

not enabled

Report messages are not automatically generated

when the incoming format is not recognized or the

number of backout attempts is exceeded. The

Report messages are not automatically generated

when the incoming format is not recognized or the

number of backout attempts is exceeded. The original

Page 62 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

Parent topic: Reference

Related information
MQMD – Message descriptor

This build: January 26, 2011 11:10:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts20990_

1.9.8. MQRFH2 SOAP settings

The WebSphere MQ SOAP senders and listeners create an MQRFH2 with the following settings to send a SOAP message.

Purpose
The WebSphere MQ SOAP senders and listeners add a <usr> folder to the <mcd> and <jms> MQRFH2 folders created by WebSphere MQ JMS. The

<usr> folder contains information required by the SOAP container in the target environment.

Syntax diagram

 .-----------.

 V |

>>-MQRFH2 fixed parameters--length--| � |----+-------+-+-------->

 | (1) |

 '- -----'

 .-----------. .-----------.

 V | V |

>--length--| � |----+-------+-+--length--| � |----+-------+-+--><

 | (1) | | (1) |

 '- -----' '- -----'

mcd folder

|--<mcd>--+-----------------------+--</mcd>---------------------|

 '-mcd folder parameters-'

jms folder

|--<jms>--+-----------------------+--</jms>---------------------|

 '-jms folder parameters-'

usr folder

|--<usr>--contentType--=--"--text/xml; charset=utf-8--"--------->

>--endpointURL--=--URI--+-----------------------------------+--->

 | (2) |

 '-targetService--=--serviceName-----'

>--+--------------------------------+--transportVersion--=--1--->

 | (3) |

 '-soapAction--=--serviceName-----'

>--</usr>---|

Notes:

1. Pad with blanks to a length that is a multiple of four.

2. targetService is required for .NET Framework 1 or 2, and not used on Axis 1.4.

3. soapAction is optional for .NET Framework 1 or 2, and not used on Axis 1.4.

Fixed parameters

Note:

1. The symbol � represents a single blank character.

message is not sent to the dead letter queue. No

notification is returned that the client can inspect,
and the original request message is lost.

request message is however written to the dead letter

queue when a report would otherwise have been
generated.

Table 1. Field settings for a SOAP message in the fixed part of the MQRFH2 structure

Field name Name of constant Value of constant

StrucId MQRFH_STRUC_ID 'RFH� '
1

Version MQRFH_VERSION_2 2

StrucLength Variable Total length of header
including all NameValueLength

and NameValueData fields.

Encoding MQENC_NATIVE Depends on the environment

CodedCharSetId (UTF-8) 1208

Format MQFMT_NONE '��������'

Flags MQRFH_NONE 0

NameValueCCSID (UTF-8) 1208

Page 63 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

Variable parameters

The variable portion of an WebSphere MQ SOAP MQRFH2 header is an extension of the WebSphere MQ JMS MQRFH2 header. It must contain an
<mcd>, <jms> and a <usr> folder, and the folders must occur in that order. Each folder is contained within the NameValueData field of the variable

part of the MQRFH2 header.

length

Length of the mcd, jms or usr, folder and any trailing blanks. length must be a multiple of four.

mcd folder parameters

Queue manager defined following rules for WebSphere MQ JMS applications.

jms folder parameters

Queue manager defined following rules for WebSphere MQ JMS applications.

contentType

contentType always contains the string text/xml; charset=utf-8.

endpointURL

See URI syntax and parameters for Web service deployment.

targetService

1On Axis, serviceName is the fully qualified name of a Java service, for example: targetService=javaDemos.service.StockQuoteAxis. If

targetService is not specified, a service is loaded using the default Axis mechanism.
2On .NET, serviceName is the name of a .NET service located in the deployment directory, for example: targetService=myService.asmx. In

the .NET environment, the targetService parameter makes it possible for a single WebSphere MQ SOAP listener to be able to process requests for
multiple services. These services must be deployed from the same directory.

soapAction

transportVersion

transportVersion is always set to 1.

Example

The example shows an MQRFH2 and the following SOAP message. The lengths of the folders are shown in decimal.

Note: & in the URI is encoded as &

52464820 00000002 000002B0 00000001 RFH� 0002 1208 0001

000004B8 20202020 20202020 00000000 1208 � � � � � � � � 0000

000004B8 1208

32 <mcd>

 <Msd>jms_bytes</Msd>

 </mcd>�

208 <jms>

 <Dst>queue://queue://SOAPJ.demos</Dst>

 <Rto>queue://WMQSOAP.DEMO.QM/SYSTEM.SOAP.RESPONSE.QUEUE</Rto>

 <Tms>1157388516465</Tms>

 <Cid>ID:00</Cid>

 <Dlv>1</Dlv>

 </jms>

400 <usr>

 <contentType>text/xml; charset=utf-8</contentType>

 <transportVersion>1</transportVersion>

 <endpointURL>

 jms:/queue?destination=SOAPJ.demos@WMQSOAP.DEMO.QM

 &connectionFactory=connectQueueManager(WMQSOAP.DEMO.QM)

 clientConnection(localhost%25289414%2529)

 clientChannel(TESTCHANNEL)

 &replyDestination=SYSTEM.SOAP.RESPONSE.QUEUE

 &initialContextFactory=com.ibm.mq.jms.Nojndi

 </endpointURL>

 </usr>

<?xml version="1.0" encoding="UTF-8"?>•

 <soapenv:Envelope

 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Body>

 <ns1:getQuote

 soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:ns1="soap.server.StockQuoteAxis_Wmq">

 <in0 xsi:type="xsd:string">XXX</in0>

 </ns1:getQuote>

 </soapenv:Body>

 </soapenv:Envelope>

Parent topic: Reference

Related information
MQRFH2 – Rules and formatting header 2

1 Java service only

2 .NET service only

This build: January 26, 2011 11:10:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts21000_

Page 64 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

1.9.9. runivt: WebSphere MQ transport for SOAP installation verification test

An installation verification test suite (IVT) is provided with WebSphere® MQ transport for SOAP. runivt runs a number of demonstration applications
and ensures that the environment is correctly set up after installation.

Purpose

The runivt command uses the sample programs provided with the WebSphere MQ transport for SOAP to send Web service requests from clients to
services. It runs tests for Axis 1.4, .NET Framework 1, and .NET Framework 2. The tests are configured in a test script file. The default test script file
for Windows runs a combination of tests between Java and .NET clients and services.

Description

runivt must be run from its own directory.

The command starts listeners in a different command window. For this reason, you must run the command from an X Window System session on
UNIX.

runivt syntax

 (2)

 .- -c ivttests_unix.txt-----.

 | (1) | .-�------------.

 +- -c ivttests.txt----------+ .- hold---. V |

>>-runivt--+-----+--+---------------------------+--+---------+----+----------+-+-><

 '- -v ' '- -c -configFile-----------' '-killall-' '-testName-'

Notes:

1. Default on Windows

2. Default on UNIX

runivt parameters

-v

Verbose mode. Write fuller error messages to the console.

-c configFile

A configuration file defining the tests to be run. The default configuration file supplied with Windows or UNIX is used by default.

hold

Leave the listener running after the tests complete

killall

End the listener when the tests complete

testName

A space separated list of the tests to run. The test names are selected from the configuration file. If no names are specified then all the tests in the
configuration file are run.

Configuration file

Each configuration file parameter is a separate line of the file. Leave a blank line between each group of parameters.

The parameters in the ivttests.txt parameter file are listed.

configFile syntax

>>-+-testName--¶--testDescription--¶--testCommand--¶--testResponse--¶--testListener-----------------------------+-><

 +-AxisWsdl--¶--tD--¶--java soap.clients.WsdlClient--¶--Response: 55.25--¶--JMSax-----------------------------+

 +-AxisProxy--¶--tD--¶--java soap.clients.SQAxis2Axis--¶--Response: 55.25--¶--JMSax---------------------------+

 +-AxisProxyClient--¶--tD--¶--java soap.clients.SQAxis2Axis -| URLClient2Axis |--¶--Response: 55.25--¶--JMSax-+

 | .-RPC reply is: 88.88-. |

 +-Dotnet--¶--tD--¶--SQCS2DotNet -| URL2.NET |--¶--+-DOC reply is: 77.77-+--¶--dotnet-------------------------+

 +-DotnetClient--¶--tD--¶--SQCS2DotNet -| URLClient2.NET |--¶--RPC reply is: 88.88--¶--dotnet-----------------+

 +-DotnetVB--¶--tD--¶--SQVB2DotNet--¶--SQVB2DotNet: reply is: '88.88'--¶--dotnet------------------------------+

 +-Dotnet2Axis--¶--tD--¶--SQCS2Axis--¶--SQCS2Axis RPC reply is: 55.25--¶--JMSax-------------------------------+

 +-Dotnet2AxisClient--¶--tD--¶--SQCS2Axis -| URLClient2Axis |--¶--SQCS2Axis RPC reply is: 55.25--¶--JMSax-----+

 +-DotnetVB2Axis--¶--tD--¶--SQCS2Axis--¶--SQCS2Axis RPC reply is: 55.25--¶--JMSax-----------------------------+

 +-Axis2DotNetWsdl--¶--tD--¶--java soap.clients.WsdlClient -D--¶--Response: 88.88--¶--dotnet------------------+

 '-Axis2DotNetProxy--¶--tD--¶--java soap.clients.SQAxis2DotNet -| URL2.NET |--¶--Response: 77.77--¶--dotnet---'

URLClient2Axis

|--| Common URL |--| Client connection |------------------------|

URL2.NET

|--| Common URL |--| Target service |---------------------------|

URLClient2.NET

|--| Common URL |--| Target service |--| Client connection |----|

Common URL

|--jms:/queue?destination=SOAPJ.demos@WMQSOAP.DEMO.QM----------->

>--&--initialContextFactory--=--com.ibm.mq.jms.Nojndi----------->

>--&--connectionFactory--=--connectQueueManager--(--WMQSOAP.DEMO.QM--)--|

Page 65 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

Client connection

|--clientConnection--(--localhost%25289414WMQSOAP.DEMO.QM%2529--)-->

>--clientChannel--(--TESTCHANNEL--)-----------------------------|

Target service

|--&--targetService--=--StockQuoteDotNet.asmx-------------------|

configFile parameters

testName

The name of the test. Use testName in the runivt command

testDescription

Documentation about the test

testCommand

The command executed by the runivt command to make the client request.

testResponse

The exact response string returned by the client request to the console. For the test to succeed testResponse must match the actual response.

testListener

The name of the WebSphere MQ SOAP listener that is started by runivt to process the SOAP request. dotnet and JMSax are synonyms for the
supplied listeners, amqwSOAPNETlistener and SimpleJavaListener.

Examples

Figure 1. run all the default tests

runivt

Figure 2. run a specific test from the default tests

runivt dotnet

Figure 3. run a set of custom tests

runivt -c mytests.txt

Parent topic: Reference

Related tasks
Verifying the WebSphere MQ transport for SOAP

This build: January 26, 2011 11:09:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts20380_

1.9.10. Secure Web services over WebSphere MQ transport for SOAP

You might secure Web services that use the WebSphere MQ transport for SOAP in one of two ways. Either create an SSL channel between the client
and server, or use Web services security.

SSL and the WebSphere MQ transport for SOAP
The WebSphere® MQ transport for SOAP provides several SSL options that can be specified for use with client channel configured to run in SSL
mode. The options differ between the .NET and Java environments. The WebSphere MQ SOAP senders and listeners process only the SSL
options that are applicable to their particular environment. They ignore options that are not applicable.

SSL connection factory parameters in the WebSphere MQ Web services URI
Add SSL options to the list of connection factory options in the WebSphere MQ Web services URI.

Parent topic: Reference

Related reference
URI syntax and parameters for Web service deployment

This build: January 26, 2011 11:10:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts21060_

1.9.10.1. SSL and the WebSphere MQ transport for SOAP

The WebSphere® MQ transport for SOAP provides several SSL options that can be specified for use with client channel configured to run in SSL
mode. The options differ between the .NET and Java environments. The WebSphere MQ SOAP senders and listeners process only the SSL options
that are applicable to their particular environment. They ignore options that are not applicable.

The presence or absence of the sslCipherSpec option for .NET clients and the sslCipherSuite option for Java clients determines whether SSL is

used or not. If the option is not specified in the URI then by default SSL is not used and all other SSL options are ignored. All SSL options are
optional except where indicated.

Page 66 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

For WebSphere MQ clients, set the SSL attributes in the URI or channel definition table. On the server, set the attributes using the facilities of
WebSphere MQ.

By default, the standard WebSphere MQ SSL option, SSLCAUTH, is set when enabling SSL on the channel. Clients must authenticate themselves

before SSL communication can commence. If SSLCAUTH is not set, SSL communications are established without client authentication.

To authenticate themselves, clients must have a certificate assigned in their key repository that is acceptable to the queue manager. For additional
security, WebSphere MQ channels can be configured to accept only certificates from a restricted list. The list is restricted by checking the
distinguished name of the certificate against the peer name attribute of the channel.

If you use Java, the first SSL connection from a WebSphere MQ SOAP client causes the following SSL parameters to be fixed. The same values are
used in subsequent connections using the same client process:

� sslKeyStore

� sslKeyStorePassword

� sslTrustStore

� sslTrustStorePassword

� sslFipsRequired

� sslLDAPCRLservers

The effect of varying these parameters on subsequent connections from this client is undefined.

If you use .NET, the first SSL connection from a WebSphere MQ SOAP client causes the following SSL parameters to be fixed. The same values are
used in subsequent connections using the same client process:

� sslKeyRepository

� sslCryptoHardware

� sslFipsRequired

� sslLDAPCRLservers

The effect of varying these parameters on subsequent connections from this client is undefined. These parameters are reset if all SSL connections
become inactive and a new SSL connection is made.

The following properties can also be specified as system properties:

� sslKeyStore

� sslKeyStorePassword

� sslTrustStore

� sslTrustStorePassword

If they are specified both as system properties and in the URI, and the values differ, the deployment utility displays a warning. The URI values take
precedence.

Parent topic: Secure Web services over WebSphere MQ transport for SOAP

Related reference
SSL connection factory parameters in the WebSphere MQ Web services URI

This build: January 26, 2011 11:10:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts21030_

1.9.10.2. SSL connection factory parameters in the WebSphere MQ Web services URI

Add SSL options to the list of connection factory options in the WebSphere® MQ Web services URI.

Purpose
You can use a secure connection between a WebSphere MQ Web services client and the queue manager hosting the web service. The SSL options
control how SSL is configured on the WebSphere MQ client-server channel connection.

Syntax diagram

>>---><

SSL (Java)

|--sslCipherSuite--(--CipherSuite--)---------------------------->

>--sslKeyStore--(--KeyStoreName--)------------------------------>

>--sslKeyPassword--(--KeyStorePassword--)----------------------->

>--sslTrustStore--(--TrustStore--)------------------------------>

>--sslTrustStorePassword--(--TrustStorePassword--)-------------->

>--| SSL (Common) |---|

SSL (.NET)

|--sslCipherSpec--(--CipherSpec--)------------------------------>

>--sslKeyRepository--(--KeyRepository--)--| CryptoHardware |---->

>--| SSL (Common) |---|

SSL (Common)

Page 67 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

|--sslCipherPeerName--(--PeerName--)---------------------------->

>--+---------------------------------------+-------------------->

 | .-0---------. |

 '-sslKeyResetCount--(--+-bytecount-+--)-'

>--+--------------------------------+--------------------------->

 | .-NO--. |

 '-sslFipsRequired--(--+-YES-+--)-'

>--+--+--|

 | .-�-------------------------------------. |

 | V | |

 '-sslLDAPCRLServe--(----+-----------------------------------+-+--)-'

 | .-[--389--]--. |

 '-ldap://--hostname--+------------+-'

 '-[--port--]-'

CryptoHardware

|--sslCryptoHardware--=--PKCS #11 Path and file name--;--------->

>--PKCS #11 token label--;--PKCS #11 token password--;---------->

>--symmetric cipher setting--;----------------------------------|

Required SSL parameters (Common)

sslPeerName(peerName)

peerName specifies the sslPeerName used on the channel. See Channel parameters - SSLPeer.

Required SSL parameters (Java)

sslCipherSuite(CipherSuite)

CipherSuite specifies the sslCipherSuite used on the channel. The CipherSuite specified by the client must match the CipherSuite specified on the
server connection channel.

sslKeyStore(KeyStoreName)

KeyStoreName specifies the sslKeyStoreName used on the channel. The keystore holds the private key of the client used to authenticate the client
to the server. The key store is optional if the SSL connection is configured to accept anonymous client connections.

sslKeyStorePassword(KeyStorePassword)

KeyStorePassword specifies the sslKeyStorePassword used on the channel.

sslTrustStore(TrustStoreName)

TrustStoreName specifies the sslTrustStoreName used on the channel. The trust store holds the public certificate of the server, or its key chain, to
authenticate the server to the client. The truststore is optional if the root certificate of a certificate authority is used to authenticate the server. In
Java, root certificates are held in the JRE certificate store, cacerts.

sslTrustStorePassword(TrustStorePassword)

TrustStorePassword specifies the sslTrustStorePassword used on the channel.

Required SSL parameters (.NET)

sslCipherSpec(CipherSpec)

CipherSpec specifies the sslCipherSpec used on the channel. If the option is specified then SSL is used on the client channel.

sslKeyRepository(KeyRepository)

KeyRepository specifies the sslCipherSpec used on the channel where SSL keys and certificates are stored. KeyRepository is specified in stem
format, that is, a full path with file name but with the file extension omitted. The effect of setting sslKeyRepository is the same as setting the
KeyRepository field in the MQSCO structure on an MQCONNX call.

Optional SSL parameters (.NET)

sslCryptoHardware(CryptoHardware)

CryptoHardware specifies the sslCryptoHardware used on the channel. The possible values for this field, and the effect of setting it, are the same as
for the CryptoHardware field of the MQSCO structure on an MQCONNX.

Optional SSL parameters (Common)

sslKeyResetCount(bytecount)

bytecount specifies the number of bytes passed across an SSL channel before the SSL secret key must be renegotiated. To disable the

renegotiation of SSL keys omit the field or set it to zero. Zero is the only value supported in some environments, see Renegotiating the secret key
in WebSphere(r) MQ classes for Java. The effect of setting sslKeyResetCount is the same as setting the KeyResetCount field in the MQSCO

structure on an MQCONNX call.

sslFipsRequired(fipsCertified)

fipsCertified specifies whether CipherSpec or CipherSuite must use FIPS-certified cryptography in WebSphere MQ on the channel. The effect of
setting fipsCertified is the same as setting the FipsRequired field of the MQSCO structure on an MQCONNX call.

sslLDAPCRLServers(LDAPServerList)

LDAPServerList specifies a list of LDAP servers to be used for Certificate Revocation List checking. the sslCryptoHardware used on the channel.

For SSL enabled client connections, LDAPServerList is a list of LDAP servers to be used for Certificate Revocation List (CRL) checking. The
certificate provided by the queue manager is checked against one of the listed LDAP CRL servers; if found, the connection fails. Each LDAP server is
tried in turn until connectivity is established to one of them. If it is impossible to connect to any of the servers, the certificate is rejected. Once a
connection has been successfully established to one of them, the certificate is accepted or rejected depending on the CRLs present on that LDAP
server.

Page 68 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

If LDAPServerList is blank, the certificate belonging to the queue manager is not checked against a Certificate Revocation List. An error message is
displayed if the supplied list of LDAP URIs is not valid. The effect of setting this field is the same as that of including MQAIR records and accessing

them from an MQSCO structure on an MQCONNX.

Parent topic: Secure Web services over WebSphere MQ transport for SOAP

Related reference
SSL and the WebSphere MQ transport for SOAP

Related information
SSL CipherSpecs and CipherSuites
Making changes to the JSSE keystore or truststore
KeyRepository (MQCHAR256)

CryptoHardware (MQCHAR256)
Channel parameters - SSLPEER(string)
KeyResetCount (MQLONG)
Renegotiating the secret key used for encryption
MQAIR – Authentication information record

This build: January 26, 2011 11:10:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts21040_

1.9.11. SimpleJavaListener: WebSphere MQ SOAP Listener for Axis 1.4

Syntax and parameters for the WebSphere® MQ SOAP listener for Axis 1.4.

Purpose
Starts the WebSphere MQ SOAP listener for Axis 1.4.

Java

|--java -com.ibm.mq.soap.transport.jms.SimpleJavaListener--+-| URI (.NET) |-+-->

 +-| URI (Java) |-+

 '- -? -----------'

>--+---+------>

 | .-DefaultMsgIntegrity--+-------------------+-. |

 | | | .-onePhase-. | | |

 | | '- -x -+-twophase-+-' | |

 '- -a -+-HighMsgIntegrity--+-------------------+----+-'

 | | .-onePhase-. | |

 | '- -x -+-twophase-+-' |

 '-LowMsgIntegrity--+-------------------+-----'

 | .-onePhase-. |

 '- -x -+-twophase-+-'

 '-none-----'

>--+----------------+--+----------------------+----------------->

 | .- -1---. | | .-passContext-. |

 '- -d -+-msecs-+-' '- -i -+-ownContext--+-'

>--+---------------------+--+-----+----------------------------->

 | .-10---------. | '- -v '

 '- -n -+-numThreads-+-'

>--+-------------------------------------+----------------------|

 | .-onePhase-------------------. |

 '- -x -+-twophase-------------------+-'

 '-none-- -a -LowMsgIntegrity-'

Required parameters

URI platform

See URI syntax and parameters for Web service deployment.

-?

Print out help text describing how the command is used.

Optional parameters

-a integrityOption

integrityOption specifies the behavior of WebSphere MQ SOAP listeners if it is not possible to put a failed request message on the dead-letter
queue. integrityOption can take one of the following values:

DefaultMsgIntegrity

For non-persistent messages, the listener displays a warning message and continues to execute with the original message being discarded. For
persistent messages, it displays an error message, backs out the request message so it remains on the request queue and exits.
DefaultMsgIntegrity applies if the -a option is omitted, or if integrityOption is not specified.

LowMsgIntegrity

For both persistent and non-persistent messages, the listener displays a warning and continues to execute, discarding the message.

HighMsgIntegrity

For both persistent and non-persistent messages, the listener displays an error message, backs out the request message so it remains on the
request queue and exits.

The deployment utility checks for the compatibility of the -x and -a flags. If -x none is specified, then -a LowMsgIntegrity must be specified. If the

Page 69 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

flags are incompatible the deployment utility exits with an error message and with no deployment steps having been undertaken.

-d msecs

msecs specifies the number of milliseconds for the WebSphere MQ SOAP listener to stay alive if request messages have been received on any

thread. If msecs is set to -1, the listener stays alive indefinitely.

-i Context

Context specifies whether the listeners pass identity context. Context takes the following values:

passContext

Set the identity context of the original request message into the response message. The SOAP listener checks that it has authority to save the
context from the request queue and to pass it to the response queue. It makes the checks at run time when opening the request queue to save
context, and the response queue to pass context. If it does not have the required authority, or the MQOPEN call fails, and the response message is

not processed. The response message is put on the dead-letter queue with the dead-letter header containing the return code from the failed
MQOPEN. The listener then continues to process subsequent incoming messages as normal.

ownContext

The SOAP listener does not pass context. The returned context reflects the user ID under which the listener is running rather than the user ID
which created the original request message.

The fields in the origin context are set by the queue manager, and not by the SOAP listener.

-n numThreads

numThreads specifies the number of threads in the generated startup scripts for the WebSphere MQ SOAP listener. The default is 10. Consider
increasing this number if you have high message throughput.

-v

-v sets verbose output from external commands. Error messages are always displayed. Use -v to output commands that you can tailor to create
customized deployment scripts.

-w serviceDirectory

serviceDirectory is the directory containing the web service.

-x transactionality

transactionality specifies the type of transactional control for the listener. transactionality can be set to one of the following values:

onePhase

WebSphere MQ one-phase support is used. If the system fails during processing, the request message is redelivered to the application.
WebSphere MQ transactions ensure that the response messages are written exactly once.

twoPhase

Two-phase support is used. If the service is written appropriately the message is delivered exactly once, coordinated with other resources, within
a single committed execution of the service. This option applies to server bindings connections only.

none

No transactional support. If the system fails during processing, the request message can be lost, even if persistent. The service might or might
not have executed, and response, report or dead-letter messages might or might not be written.

The deployment utility checks for the compatibility of the -x and -a flags. See the description of the -a flag for details.

Java Example

java com.ibm.mq.soap.transport.jms.SimpleJavaListener

-u "jms:/queue?destination=myQ&connectionFactory=()

&initialContextFactory=com.ibm.mq.jms.Nojndi"

-n 20

Parent topic: Reference

Related reference
WebSphere MQ SOAP listeners

This build: January 26, 2011 11:09:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts20150_

1.9.12. WebSphere MQ SOAP listeners

A WebSphere® MQ SOAP listener reads an incoming SOAP request from the queue specified as the destination in the URI. It checks the format of the

request message and then invokes a Web service using the Web services infrastructure. A WebSphere MQ SOAP listener returns any response or
error from a Web service using the reply destination queue in the URI. It returns WebSphere MQ reports to the reply queue.

The term listener is used here in its standard Web services sense. It is distinct from the standard WebSphere MQ listener invoked by the runmqlsr
command.

Description

The Java SOAP listener is implemented as a Java class and run services using Axis 1.4. The .NET listener is a console application and runs .NET
Framework 1 or .NET Framework 2 services. For .NET Framework 3 services, use the WebSphere MQ custom channel for Microsoft Windows
Communication Foundation (WCF).

The deployment utility creates scripts to start Java or .NET SOAP listeners automatically. A SOAP Listener can be started manually using either the
amqSOAPNETListener command, or by calling the SimpleJavaListener class. You can configure the WebSphere MQ SOAP listener to be started as

a WebSphere MQ service by setting the -s option in the deployment utility. Alternatively, start listeners using triggering, or use the start and end
listener scripts generated by the deployment utility. You can configure triggering manually, or use the -tmq and -tmp deployment options to
configure triggering automatically. You can end a listener by setting the request queue to GET(DISABLED).

Table 1. Command scripts generated by the deployment utility

Web service Infrastructure UNIX Windows Java Windows .NET

Start listener startWMQJListener.sh startWMQJListener.cmd startWMQNListener.cmd

Stop listener endWMQJListener.sh endWMQJListener.cmd endWMQNListener.cmd

Page 70 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

The WebSphere MQ SOAP listener passes the endpointURL and soapAction fields from the SOAP message to the SOAP infrastructure. The listener

invokes the service through the Web Services infrastructure and waits for the response. The listener does not validate endpointURL and soapAction.

The fields are set by the WebSphere MQ SOAP sender from the data that is provided in the URI set by a SOAP client.

The listener creates the response message and sends it to the reply destination supplied in the request message URI. In addition, the listener sets
the correlation ID in the response message according to the report option in the request message. It returns the expiry, persistence, and priority
settings from the request message. The listener also sends report messages back to clients in some circumstances.

If there are format errors in the SOAP request, the listener returns a report message to the client using the reply destination queue. The queue

manager also returns report messages to the client using the reply destination queue, if a report has been requested. Full report messages are
written to the response queue, in response to a number of events:

� An exception.

� Message expiry.

� Format of the request message is not recognized.

� Failure of the integrity check of the MQRFH2 header.

� The format of the main message body is not MQFMT_NONE.

� The backout/retry threshold is exceeded while the WebSphere MQ SOAP listener is processing the request.

The WebSphere MQ SOAP sender sets MQRO_EXCEPTION_WITH_FULL_DATA and MQRO_EXPIRATION_WITH_FULL_DATA report options. As a result of the

report options set by the WebSphere MQ SOAP sender, the report message contains the entire originating request message. The WebSphere MQ
SOAP sender also sets the MQRO_DISCARD option, which causes the message to be discarded after a report message has been returned. If the report

options do not meet your requirements, write your own senders to use different MQRO_EXCEPTION and MQRO_DISCARD report options. If the SOAP

request is sent by a different sender that did not set MQRO_DISCARD, the failing message is written to the dead letter queue (DLQ).

If the listener generates a report message but fails in the process of sending the report, the report message is sent to the DLQ. Ensure that your DLQ
handler handles these messages correctly.

If an error occurs when attempting to write to the dead-letter queue a message is written to the WebSphere MQ error log. Whether the listener
continues to process more messages depends on which message persistence and transactional options are selected. If the listener is running in one-
phase transactional mode and is processing a non-persistent request message, the original message is discarded. The WebSphere MQ SOAP listener
continues to execute. If the request message is persistent the request message is backed out to the request queue and the listener exits. The
request queue is set to get-inhibited to prevent an accidental triggered restart.

Syntax diagram

>>---><

.NET

|--amqwSOAPNETListener--+-| URI (.NET) |-+---------------------->

 +-| URI (Java) |-+

 '- -? -----------'

>--+---+------>

 | .-DefaultMsgIntegrity--+-------------------+-. |

 | | | .-onePhase-. | | |

 | | '- -x -+-twophase-+-' | |

 '- -a -+-HighMsgIntegrity--+-------------------+----+-'

 | | .-onePhase-. | |

 | '- -x -+-twophase-+-' |

 '-LowMsgIntegrity--+-------------------+-----'

 | .-onePhase-. |

 '- -x -+-twophase-+-'

 '-none-----'

>--+----------------+--+----------------------+----------------->

 | .- -1---. | | .-passContext-. |

 '- -d -+-msecs-+-' '- -i -+-ownContext--+-'

>--+---------------------+--+-----+----------------------------->

 | .-10---------. | '- -v '

 '- -n -+-numThreads-+-'

>--+--------------------------+--------------------------------->

 '- -w -c:\inetpub\wwwroot\ '

>--+-------------------------------------+----------------------|

 | .-onePhase-------------------. |

 '- -x -+-twophase-------------------+-'

 '-none-- -a -LowMsgIntegrity-'

Java

|--java -com.ibm.mq.soap.transport.jms.SimpleJavaListener--+-| URI (.NET) |-+-->

 +-| URI (Java) |-+

 '- -? -----------'

>--+---+------>

 | .-DefaultMsgIntegrity--+-------------------+-. |

 | | | .-onePhase-. | | |

 | | '- -x -+-twophase-+-' | |

 '- -a -+-HighMsgIntegrity--+-------------------+----+-'

 | | .-onePhase-. | |

 | '- -x -+-twophase-+-' |

 '-LowMsgIntegrity--+-------------------+-----'

 | .-onePhase-. |

 '- -x -+-twophase-+-'

 '-none-----'

Define listener service defineWMQJListener.sh defineWMQJListener.cmd defineWMQNListener.cmd

Page 71 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

>--+----------------+--+----------------------+----------------->

 | .- -1---. | | .-passContext-. |

 '- -d -+-msecs-+-' '- -i -+-ownContext--+-'

>--+---------------------+--+-----+----------------------------->

 | .-10---------. | '- -v '

 '- -n -+-numThreads-+-'

>--+-------------------------------------+----------------------|

 | .-onePhase-------------------. |

 '- -x -+-twophase-------------------+-'

 '-none-- -a -LowMsgIntegrity-'

Required parameters

URI platform

See URI syntax and parameters for Web service deployment.

-?

Print out help text describing how the command is used.

Optional parameters

-a integrityOption

integrityOption specifies the behavior of WebSphere MQ SOAP listeners if it is not possible to put a failed request message on the dead-letter
queue. integrityOption can take one of the following values:

DefaultMsgIntegrity

For non-persistent messages, the listener displays a warning message and continues to execute with the original message being discarded. For
persistent messages, it displays an error message, backs out the request message so it remains on the request queue and exits.
DefaultMsgIntegrity applies if the -a option is omitted, or if integrityOption is not specified.

LowMsgIntegrity

For both persistent and non-persistent messages, the listener displays a warning and continues to execute, discarding the message.

HighMsgIntegrity

For both persistent and non-persistent messages, the listener displays an error message, backs out the request message so it remains on the
request queue and exits.

The deployment utility checks for the compatibility of the -x and -a flags. If -x none is specified, then -a LowMsgIntegrity must be specified. If the
flags are incompatible the deployment utility exits with an error message and with no deployment steps having been undertaken.

-d msecs

msecs specifies the number of milliseconds for the WebSphere MQ SOAP listener to stay alive if request messages have been received on any
thread. If msecs is set to -1, the listener stays alive indefinitely.

-i Context

Context specifies whether the listeners pass identity context. Context takes the following values:

passContext

Set the identity context of the original request message into the response message. The SOAP listener checks that it has authority to save the

context from the request queue and to pass it to the response queue. It makes the checks at run time when opening the request queue to save
context, and the response queue to pass context. If it does not have the required authority, or the MQOPEN call fails, and the response message is

not processed. The response message is put on the dead-letter queue with the dead-letter header containing the return code from the failed
MQOPEN. The listener then continues to process subsequent incoming messages as normal.

ownContext

The SOAP listener does not pass context. The returned context reflects the user ID under which the listener is running rather than the user ID
which created the original request message.

The fields in the origin context are set by the queue manager, and not by the SOAP listener.

-n numThreads

numThreads specifies the number of threads in the generated startup scripts for the WebSphere MQ SOAP listener. The default is 10. Consider
increasing this number if you have high message throughput.

-v

-v sets verbose output from external commands. Error messages are always displayed. Use -v to output commands that you can tailor to create
customized deployment scripts.

-w serviceDirectory

serviceDirectory is the directory containing the web service.

-x transactionality

transactionality specifies the type of transactional control for the listener. transactionality can be set to one of the following values:

onePhase

WebSphere MQ one-phase support is used. If the system fails during processing, the request message is redelivered to the application.
WebSphere MQ transactions ensure that the response messages are written exactly once.

twoPhase

Two-phase support is used. If the service is written appropriately the message is delivered exactly once, coordinated with other resources, within
a single committed execution of the service. This option applies to server bindings connections only.

none

No transactional support. If the system fails during processing, the request message can be lost, even if persistent. The service might or might
not have executed, and response, report or dead-letter messages might or might not be written.

The deployment utility checks for the compatibility of the -x and -a flags. See the description of the -a flag for details.

.NET Example

amqwSOAPNETlistener

-u "jms:/queue?destination=myQ&connectionFactory=()

&targetService=myService&initialContextFactory=com.ibm.mq.jms.Nojndi"

-w C:/wmqsoap/demos

Page 72 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

-n 20

Java Example

java com.ibm.mq.soap.transport.jms.SimpleJavaListener

-u "jms:/queue?destination=myQ&connectionFactory=()

&initialContextFactory=com.ibm.mq.jms.Nojndi"

-n 20

Parent topic: Reference

Related reference
amqwSOAPNETListener: WebSphere MQ SOAP listener for .NET Framework 1 or 2

SimpleJavaListener: WebSphere MQ SOAP Listener for Axis 1.4

This build: January 26, 2011 11:10:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts20830_

1.9.13. WebSphere MQ transport for SOAP sender

Sender classes are provided for Axis and .NET Framework 1 and .NET Framework 2. The sender constructs a SOAP request and puts it on a queue, it
then blocks until it has read a response from the response queue. You can alter the behavior of the classes by passing different URIs from a SOAP
client. For .NET Framework 3 use WebSphere® MQ custom channel for Microsoft Windows Communication Foundation (WCF).

Purpose

The WebSphere MQ SOAP sender puts a SOAP request to invoke a Web service onto a WebSphere MQ request queue. The sender sets fields in the
MQRFH2 header according to options specified in the URI, or according to defaults.

If you need to change the behavior of a sender beyond what is possible using the URI options, write your own sender. Your sender can work with the
WebSphere MQ transport for SOAP listeners, or with other SOAP environments. Your sender must construct SOAP messages in the format defined by
WebSphere MQ. The format is supported by the WebSphere MQ SOAP listener, and also SOAP listeners provided by WebSphere Application Server
and CICS®. Your sender must follow the rules for an WebSphere MQ requestor. The WebSphere MQ SOAP listener returns reply and report
messages. See MQMD SOAP settings for details how to set the report options in the MQMD. The report options control the report messages returned
by the WebSphere MQ SOAP listener.

Description

The WebSphere MQ SOAP Java sender is registered with the Axis host environment for the jms: URI prefix. The sender is implemented in the class

com.ibm.mq.soap.transport.jms.WMQSender, which is derived from org.apache.axis.handlers.BasicHandler. If the Axis host environment

detects a jms: URI prefix it invokes the com.ibm.mq.soap.transport.jms.WMQSender class. The class blocks after placing the message until it has

read a response from the response queue. If no response is received within a timeout interval the sender throws an exception. If a response is
received within the timeout interval the response message is returned to the client using the Axis framework. Your client application must be able to
handle these response messages.

For Microsoft® .NET Framework 1 and .NET Framework 2 services, the WebSphere MQ SOAP sender is implemented in the class
IBM.WMQSOAP.MQWebRequest, which is derived from System.Net.WebRequest and System.Net.IwebRequestCreate. If .NET Framework 1 or .NET

Framework 2 detects a jms: URI prefix it invokes the IBM.WMQSOAP.MQWebRequest class. The sender creates an MQWebResponse object to read the

response message from the response queue and return it to the client.

com.ibm.mq.soap.transport.jms.WMQSender is a final class, and IBM.WMQSOAP.MQWebRequest is sealed. You cannot modify their behavior by

creating subclasses.

Parameters

Set the URI to control the behavior of the WebSphere MQ SOAP sender in a Web service SOAP client. The deployment utility creates Web service
client stubs incorporating the URI options supplied to the deployment utility.

Use a channel definition table with the WebSphere MQ SOAP transport for SOAP sender
A client connection channel definition is an alternative to setting connection properties in the ConnectionFactory attribute of the Web service
URI. The connection properties are clientChannel, clientConnection, and SSL parameters.

Parent topic: Reference

Related concepts
Using WebSphere MQ custom channels for WCF

Related reference
MQMD SOAP settings
URI syntax and parameters for Web service deployment

This build: January 26, 2011 11:09:38

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts20340_

1.9.13.1. Use a channel definition table with the WebSphere MQ SOAP transport for SOAP
sender

A client connection channel definition is an alternative to setting connection properties in the ConnectionFactory attribute of the Web service URI. The
connection properties are clientChannel, clientConnection, and SSL parameters.

Page 73 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

Description

Create the client channel description table by defining client connections. Even if a Web services client connects to different queue managers, create
all the connections in the connection table on a single queue manager. The default name and location of the connection table is queue manager

directory/@ipcc/AMQCLCHL.TAB.

Pass the location of the connection table to a Java client by setting the com.ibm.mq.soap.transport.jms.mqchlurl system property.

Pass the location of the connection table to a .NET client by setting the MQCHLLIB and MQCHLTAB environment variables.

You might provide both a channel connection table and channel connection parameters in the ConnectionFactory attribute of the Web service URI.
The values set in the ConnectionFactory take precedence over the values in the channel definition table.

Using a channel definition table in Java

Figure 1. Starting Java client using a configuration file

java -Dcom.ibm.msg.client.config.location=file:/C:/mydir/myjms.config MyAppClass

Figure 2. myjms.config

com.ibm.mq.soap.transport.jms.mqchlurl=file:/C:/ibm/wmq/qmgrs/QM1/@ipcc/AMQCLCHL.TAB

Parent topic: WebSphere MQ transport for SOAP sender

This build: January 26, 2011 11:10:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts20860_

1.9.14. Transactions

Use the -x option when starting the listener, to run Web services transactionally. Select the integrity of messages by setting the persistence option

in the service URI.

Web services
Use the -x option when starting the listener, to run Web services transactionally. On .NET Framework 1 and 2 the SOAP listener uses Microsoft

Transaction Coordinator (MTS). On Axis 1.4, the SOAP listener uses queue manager coordinated transactions.

Web service clients
The SOAP senders are not transactional.

WebSphere MQ bindings
You can set the binding type for the SOAP sender. It can connect as a WebSphere MQ server application, or as a client application. You can also bind
the SOAP sender as an XA-client on .NET.

Message persistence

Select the level of persistence by setting the Persistence option in the URI.

Web service transactions
You can use Web service transactions, because the SOAP sender is not transactional. If you write your own SOAP sender, and intend to use Web
service transactions, do not create a transactional SOAP sender. You cannot send the request message and receive the reply message in the same
transaction. The send and receive must not be coordinated by the Web service transaction.

Parent topic: Reference

This build: January 26, 2011 11:10:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts21050_

1.9.15. URI syntax and parameters for Web service deployment

The syntax and parameters to deploy a WebSphere MQ Web service are defined in a URI. The deployment utility generates a default URI based on
the name of the Web service. You can override the defaults by defining your own URI as a parameter to the deployment utility. The deployment
utility incorporates the URI in the generated Web service client stubs.

Purpose
A web service is specified using a Universal Resource Identifier (URI). The syntax diagram specifies the URI that is supported in the WebSphere® MQ
transport for SOAP. The URI controls over WebSphere MQ-specific SOAP parameters and options used to access target services. The URI is
compatible with Web services hosted by .NET, Apache Axis 1, WebSphere Application Server and CICS®.

Description
The URI is incorporated into the Web service client classes generated by the deployment utility. The client passes the URI to WebSphere MQ SOAP
Sender in a WebSphere MQ message. The URI controls the processing performed by both the WebSphere MQ SOAP Sender and WebSphere MQ SOAP
listener.

Syntax

The URI syntax is as follows:

jms:/queue?name=value&name=value...

where name is a parameter name and value is an appropriate value, and the name=value element can be repeated any number of times with the
second and subsequent occurrences being preceded by an ampersand (&).

Page 74 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

Parameter names are case sensitive, as are names of WebSphere MQ objects. If any parameter is specified more than once, the final occurrence of
the parameter takes effect. Client applications can override a generated parameter by appending another copy of the parameter to the URI. If any
additional unrecognized parameters are included, they are ignored.

If you store a URI in an XML string, you must represent the ampersand character as &. Similarly, if a URI is coded in a script, take care to

escape characters such as & that would otherwise be interpreted by the shell.

Syntax diagram

>>---><

URI (.NET service)

 (1)

 .-SOAPN--.--className-----.

|-- -u -jms:--/--queue--?--destination--=--+-queue-------------------+-->

>--&--targetService--=--serviceName--| URI (Common) |-----------|

URI (Java service)

 (1)

 .-SOAPJ--.--className-----.

|-- -u -jms:--/--queue--=--+-destination-------------+---------->

 .-Default Axis mechanism-----------.

>--+----------------------------------+--| URI (Common) |-------|

 '-&--targetService--=--serviceName-'

URI (Common)

|--&--initialContextFactory--=--com.ibm.mq.jms.Nojndi----------->

>--&--connectionFactory--=--+-(--)----------------+------------->

 | .-----------------. |

 | V | |

 '---| Name(value) |-+-'

>--+--------------------------+--------------------------------->

 | .-0-. |

 '-&--persistence--=--+-1-+-'

 '-2-'

>--+-----------------------------------+------------------------>

 | .-0-------------. |

 '-&--priority--=--+-priorityValue-+-'

>--+--+--->

 | .-SYSTEM.SOAP.RESPONSE.QUEUE-. |

 '-&--replyDestination--=--+-replyQueue-----------------+-'

>--+------------------------------+----------------------------->

 | .-inherited-. |

 '-&--timeout--=--+-waitTime--+-'

>--+----------------------------------+-------------------------|

 | .-0----------. |

 '-&--timeToLive--=--+-expiryTime-+-'

Name(value)

|--+---+------------------>

 | .-�--------. |

 '-connectQueueManager--(--+-qMgrName-+--)-'

>--+---------------------------------+-------------------------->

 | (2) |

 | .-auto---------. |

 '-binding--(--+-client-------+--)-'

 +-server-------+

 | (3) |

 '-xaclient-----'

>--+--+--------------->

 | .-null--------------. |

 '-clientChannel--(--+-clientChannelName-+--)-'

>--+---+------------------>

 '-clientConnection--(--+-IPV4Address-+--)-'

 +-IPV6Address-+

 '-Hostname----'

>--+----------------+---|

 +-| SSL (.NET) |-+

 '-| SSL (Java) |-'

Notes:

1. The queue manager transforms className to a queue name following the steps described in Destination to queue name transformation

2. client is the default if other options appropriate for a client are specified; for example clientConnection.

3. xaclient applies to .NET only

Destination to queue name transformation

1. className is prefixed with SOAPJ. for Java services or with SOAPN. for .NET services.

Page 75 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

2. The file extension is removed from the full path name given in the className parameter.

3. The resulting string is truncated to no more than 48 characters

4. Directory separator characters are replaced with period characters.

5. Embedded spaces are replaced with underscore characters.

6. The colon following a drive prefix letter is replaced with a period for a .NET service.

Note: In some environments, a queue name generated by the deployment utility might not be unique. The deployment utility makes checks whether
to create the queue. You might choose to override the deployment utility by restructuring the deployment directory hierarchy, or by customizing the
supplied deployment process.

Required URI parameters

destination=queue

queue is the name of the request destination. It can be a queue or a queue alias. If it is queue alias, the alias can resolve to a topic.

� If the -u parameter is omitted queue is generated from classname using the steps described in Destination to queue name transformation.

� If the-u parameter is specified queue is required and must be the first parameter of the URI after the initial jms:/queue? string. Specify
either a WebSphere MQ queue name, or a queue name and queue manager name connected by an @ symbol, for example
SOAPN.trandemos@WMQSOAP.DEMO.QM.

� The deployment utility checks whether the queue name, generated or provided, matches the name of an existing queue. The action taken is
described in Table 1.

&connectionFactory=Name(value)

Name is one of the following parameters:

� connectQueueManager

� binding

� clientChannel

� clientConnection

� SSL parameters

See Connection factory parameters for a description of the values of these parameters.

&targetService=serviceName

1On .NET, serviceName is the name of a .NET service located in the deployment directory, for example: targetService=myService.asmx. In

the .NET environment, the targetService parameter makes it possible for a single WebSphere MQ SOAP listener to be able to process requests for
multiple services. These services must be deployed from the same directory.

Optional URI parameters

&initialContextFactory=contextFactory

contextFactory is required and must be set to com.ibm.mq.jms.Nojndi. Make sure Nojndi.jar is in the class path for a WebSphere Application

Server Web services client. Nojndi.jar returns Java objects based on the contents of the connectionFactory and destination parameters,

rather than by reference to a directory.

&targetService=serviceName

2On Axis, serviceName is the fully qualified name of a Java service, for example: targetService=javaDemos.service.StockQuoteAxis. If

targetService is not specified, a service is loaded using the default Axis mechanism.

&persistence=messagePersistence

messagePersistence takes one of the following values:

0

Persistence is inherited from the queue definition.

1

The message is non-persistent.

2

The message is persistent

&priority=priorityValue

Table 1. queue validation

Listener

script

exists?

Listener script exists in the ./generated/server directory Listener script does not exist

in the ./generated/server

directory

Queue in

listener

script

matches

queue?

queue does not match

request queue being used in

listener script

queue matches request

queue being used in listener

script

queue

exists
� Deployment exits with an

error.

� The service has already been

deployed
in ./generated/server, but

using a different queue.

� Deployment continues
normally.

� The service has already been

deployed
in ./generated/server

� Deployment exits with an
error.

� The listener startup script is

not found
in ./generated/server, but

queue is in use by a different

service or application.

queue does

not exist
� Deployment continues

with a warning.

� The previous deployment

might have failed, because

the startup is valid, but queue

is missing.

� Deployment continues

normally.

� No service has been deployed

from this directory.

Page 76 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

priorityValue is in the range 0 - 9. 0 is low priority. The default value is environment-specific, which in the case of WebSphere MQ is 0.

&replyDestination=replyToQueue

The queue at the client side to be used for the response message. The default reply queue is SYSTEM.SOAP.RESPONSE.QUEUE.

� Run the setupWMQSOAP script to create the default WebSphere MQ SOAP objects.

� Specify a model queue for replyToQueue to create either a temporary or permanent dynamic response queue. For both temporary and

permanent dynamic response queues, a separate instance of dynamic queue is created for each request. If any of the following events
happen the queue is deleted:

� The response arrives and is processed.

� The request times out.

� The requesting program terminates.

For the best performance, use temporary dynamic queues rather than permanent dynamic queues. Do not send a persistent request message
to a URI with a temporary dynamic queue. The WebSphere MQ listener SOAP fails to process the message and outputs an error. The client
times out waiting for the reply.

� The setupWMQSOAP script creates a default permanent dynamic model queue called SYSTEM.SOAP.MODEL.RESPONSE.QUEUE.

&timeout=waitTime

The time, in milliseconds, that the client waits for a response message. waitTime overrides values set by the infrastructure or client application. If
not specified the application value, if specified, or infrastructure default is inherited.

Note: No relationship is enforced between timeout and timeToLive.

&timeToLive=expiryTime

expiryTime is the time, specified in milliseconds, before the message expires. The default is zero, which indicates an unlimited lifetime.

Note: No relationship is enforced between timeout and timeToLive.

Connection factory parameters

connectQueueManager(qMgrName)

qMgrName specifies the queue manager to which the client connects. The default is blank.

binding(bindingType)

bindingType specifies how the client is connected to qMgrName. The default is auto. bindingType takes the following values:

auto

The sender tries the following connection types, in order:

1. If other options appropriate to a client connection are specified, the sender uses a client binding. The other options are clientConnection or
clientChannel.

2. Use a server connection.

3. Use a client connection.

Use binding(auto) in the URI if there is no local queue manager at the SOAP client. A client connection is built for the SOAP client.

client

Use binding(client) in the URI to build a client configuration for the SOAP sender.

server

Use binding(server) in the URI to build a server configuration for the SOAP sender. If the connection has client type parameters the connection

fails and an error is displayed by the WebSphere MQ SOAP sender. Client type parameters are clientConnection, clientChannel, or SSL
parameters.

xaclient

xaclient is applicable only on .NET and not for Java clients. Use an XA-client connection.

clientChannel(channel)

The SOAP client uses channel to make a WebSphere® MQ client connection. channel must match the name of a server connection channel,
unless channel auto definition is enabled at the server. clientChannel is a required parameter, unless you have provided a Client Connection
Definition table (CCDT).

Provide a CCDT in Java by setting com.ibm.mq.soap.transport.jms.mqchlurl. In .NET set the MQCHLLIB and MQCHLTAB environment

variables; see Use a channel definition table with the WebSphere(r) MQ SOAP transport for SOAP sender.

clientConnection(connection)

The SOAP client uses connection to make a WebSphere® MQ client connection. The default hostname is localhost, and default port is 1414. If

connection is a TCP/IP address, it takes one of three formats, and can be suffixed with a port number.

IPV4 address

For example, 192.0.2.0.

IPV6 address

For example, 2001:DB8:0:0:0:0:0:0.

Host name

For example, www.example.com(1687).

SSL platform

See SSL parameters

Sample URIs

Note:

1. & in the URI is encoded as &

2. All the parameter listed previously are applicable to the clients.

3. Only destination, connectionFactory and initialContextFactory are applicable to the WCF service.

Figure 1. URI for an Axis service, supplying only required parameters

jms:/queue?destination=myQ&connectionFactory=()&initialContextFactory=com.ibm.mq.jms.Nojndi

Page 77 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

Figure 2. URI for a .NET service, supplying only required parameters

jms:/queue?destination=myQ&connectionFactory=()&targetService=MyService.asmx

&initialContextFactory=com.ibm.mq.jms.Nojndi

Figure 3. URI for an Axis service, supplying some optional connectionFactory parameters

jms:/queue?destination=myQ@myRQM&connectionFactory=connectQueueManager(myconnQM)

binding(client)clientChannel(myChannel)clientConnection(myConnection)

&initialContextFactory=com.ibm.mq.jms.Nojndi

Figure 4. URI for an Axis service, supplying the sslPeerName option of the connectionFactory parameter

jms:/queue?destination=myQ@myRQM&connectionFactory=connectQueueManager(myconnQM)

binding(client)clientChannel(myChannel)clientConnection(myConnection)

sslPeerName(CN=MQ Test 1,O=IBM,S=Hampshire,C=GB)

&initialContextFactory=com.ibm.mq.jms.Nojndi

The Nojndi mechanism
The Nojndi mechanism enables JMS programs, which use JNDI interfaces, to use the same URI as WebSphere MQ programs, which do not use

JNDI.

Parent topic: Reference

Related reference
Secure Web services over WebSphere MQ transport for SOAP
W3C SOAP over JMS URI for the WebSphere MQ Axis 2 client

1 .NET service only

2 Java service only

This build: January 26, 2011 11:09:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts20640_

1.9.15.1. The Nojndi mechanism

The Nojndi mechanism enables JMS programs, which use JNDI interfaces, to use the same URI as WebSphere® MQ programs, which do not use

JNDI.

You can use the WebSphere MQ transport for SOAP to invoke Web services on WebSphere Application Server. WebSphere Application Server SOAP
over JMS looks up the JMS resources using JNDI. The Web service client might be running on .NET, or using Axis 1.4, to invoke the Web service and
not using JNDI. To use the same URL for the client and server, it must provide the same information whether the environment is using JNDI or not.

The URI passed to the WebSphere MQ transport for SOAP by a Web service client contains a specific WebSphere MQ queue manager and queue
names. These names are parsed and used directly by WebSphere MQ SOAP support.

The Nojndi mechanism directs the initialContextFactory used by a JMS program to com.ibm.mq.jms.Nojndi. The com.ibm.mq.jms.Nojndi class is

an implementation of the JNDI interface that returns the connectionFactory and destination from the URL as ConnectionFactory and Queue Java
objects. If the JMS implementation is WebSphere MQ, MQConnectionFactory and MQQueue inherit from the ConnectionFactory and Queue classes.

By using the Nojndi mechanism, you are able to provide the same connection information to WebSphere Application server and .NET using the same

URL.

Parent topic: URI syntax and parameters for Web service deployment

This build: January 26, 2011 11:09:38

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts20301_

1.9.16. W3C SOAP over JMS URI for the WebSphere MQ Axis 2 client

Define a W3C SOAP over JMS URI to call a Web service from an Axis 2 client using WebSphere® MQ JMS as the SOAP transport. The Web service
must be provided by a server that supports WebSphere MQ JMS and the W3C SOAP over JMS candidate recommendation for the SOAP/JMS binding.

Description

The W3C candidate recommendation defines the SOAP over JMS binding; SOAP over Java Message Service 1.0. Also useful for its examples is URI

Scheme for Java(tm) Message Service 1.01.

Use the syntax diagram to create W3C SOAP over JMS URIs that are syntactically correct, and are accepted by the WebSphere MQ Axis 2 client. It is
limited to defining the URI that is accepted by the WebSphere MQ Axis 2 client. It is a subset of the W3C recommendation in two respects:

1. The jms-variant topic is not supported, and must not be specified in a URI passed to the WebSphere MQ Axis 2 client.

2. The following properties are omitted from the syntax diagram because they are JMS properties, and not part of the URI.

a. bindingVersion

b. contentType

c. soapAction

d. requestURI

e. isFault

The JMS properties are set by the Axis 2 client or the server.

Page 78 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

The diagram extends the W3C recommendation by defining a custom parameter, connectionFactory. connectionFactory is used as an alternative to
JNDI to specify how the Axis 2 client connects to a queue manager using a queue.

The WebSphere MQ Axis 2 client only accepts properties as part of the URI passed to the client by the client application or as environment variables.
The WebSphere MQ Axis 2 client has no capability to process a WSDL document. The client application or a development tool might process the
WSDL and create the URI to pass to the Axis 2 client. An WebSphere MQ Axis 2 client application cannot set the JMS message properties directly.

Syntax

In accordance with the W3C recommendation, all the parameters can be obtained from environment variables. The environment variable names are
formed by prefacing the parameter name with soapjms_. The syntax is: soapjms_parameterName; for example,

set soapjms_targetServer=com.example.org.stockquote

If a parameter is set using an environment variable it overrides the value set in the URI.

In accordance with the W3C recommendation, all the parameters can be repeated. The last instance of a parameter is used, unless overridden by an
environment variable.

jms-uri

>>-jms:--+-queue--:--queueName--+--+----------------+-><

 | | .-&-----------------------------------. | |

 | | V | | |

 | '-?----+-| Other properties |------------+-+-' |

 | '-| Connection factory property |-' |

 | .-&-------------------. .-&------------------------. |

 | V | V | |

 '-jndi--:--destinationName--?----| JNDI properties |-+----+----------------------+-+-'

 '-| Other properties |-'

Other properties

|--+---+----------|

 | .-Server specific default-. |

 +-targetService--=--+-serviceName-------------+---+

 | .-PERSISTENT-----. |

 +-deliveryMode--=--+-NON_PERSISTENT-+-------------+

 | .-0------------. |

 +-timeToLive--=--+-milliseconds-+-----------------+

 | .-4---------. |

 +-priority--=--+-1--...--9-+----------------------+

 | .- SYSTEM.SOAP.RESPONSE.QUEUE-. |

 +-replyToName--=--+-replyToDestination----------+-+

 '-CustomParameter--=--customParameterValue--------'

JNDI properties

 (1)

|------+-jndiConnectionFactoryName--=--connectionFactoryName---+--|

 +-jndiInitialContextFactory--=--contextFactoryName------+

 +-jndiURL--=--providerURL-------------------------------+

 '-+---+-'

 '-jndi—--ContextParameter--=--contextParameterValue-'

Connection factory property

|--+---+--|

 | .-connectionFactory--=--()---. |

 | | .---. | |

 | | V .- --------. | | |

 '-+-connectionFactory--=----+-connectQueueManager--(--+-qMgrName-+--)-+-+-+-'

 +-| Binding |-----------------------------+

 '-| SSL property |------------------------'

Binding

 .---------------------------------.

 V |

 .-(--auto--)----+-----------------------------+-+-.

 | '-| Client binding property |-' |

 | .-----------------------------. |

 | V | |

|--binding--+-(--client--)----| Client binding property |-+---+--|

 '-(--server--)------------------------------------'

Client binding property

|--clientChannel--(--channel--)--------------------------------->

>--+---+--|

 | .-localhost----. |

 '-clientConnection--(--+-hostname-----+--+-----------------------+--)-'

 +-IPV4 address-+ | .-1414--------. |

 '-IPV6 address-' '-(--+-port number-+--)-'

SSL property

|--sslCipherSuite--(--cipherSuite--)---------------------------->

>--+-----------------------------+------------------------------>

 '-sslPeerName--(--peerName--)-'

>--+--+-->

 '-sslKeyStore--(--KeyStoreName--)--sslKeyStorePassword--(--KeyStorePassword--)-'

>--+---+-->

 '-sslTrustStore--(--TrustStoreName--)--sslTrustPassword--(--TrustStorePassword--)-'

Page 79 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

>--+-----------------------------------+------------------------>

 '-sslKeyResetCount--(--byteCount--)-'

>--+--------------------------------------+--------------------->

 '-sslFipsRequired--(--fipsCertified--)-'

>--+---+------------------|

 '-sslLDAPCRLServers--(--LDAPServerList--)-'

Notes:

1. jndiConnectionFactoryName, jndiConnectionFactoryName and jndiURL are all required parameters. jndi—ContextParameter is optional.

Parameters

connectionFactory=connectionFactoryParameterList

connectionFactoryParameterList are parameters that qualify how the Axis 2 client connects to a queue manager when the destination variant
is queue.

connectionFactory must not be specified with the jndi destination variant.

The parameters are not passed to the server in the request URI.

If connectionFactory is omitted, the queue must belong to a default queue manager running on the same server as the Axis 2 client.

The connectionFactoryParameterList:

binding(bindingType)

bindingType specifies how the client is connected to qMgrName. The default is auto. bindingType takes the following values:

auto

The sender tries the following connection types, in order:

1. If other options appropriate to a client connection are specified, the sender uses a client binding. The other options are clientConnection
or clientChannel.

2. Use a server connection.

3. Use a client connection.

Use binding(auto) in the URI if there is no local queue manager at the SOAP client. A client connection is built for the SOAP client.

client

Use binding(client) in the URI to build a client configuration for the SOAP sender.

server

Use binding(server) in the URI to build a server configuration for the SOAP sender. If the connection has client type parameters the

connection fails and an error is displayed by the WebSphere MQ SOAP sender. Client type parameters are clientConnection, clientChannel, or
SSL parameters.

xaclient

xaclient is applicable only on .NET and not for Java clients. Use an XA-client connection.

clientChannel(channel)

The SOAP client uses channel to make a WebSphere® MQ client connection. channel must match the name of a server connection channel,

unless channel auto definition is enabled at the server. clientChannel is a required parameter, unless you have provided a Client Connection
Definition table (CCDT).

Provide a CCDT in Java by setting com.ibm.mq.soap.transport.jms.mqchlurl. In .NET set the MQCHLLIB and MQCHLTAB environment

variables; see Use a channel definition table with the WebSphere(r) MQ SOAP transport for SOAP sender.

clientConnection(connection)

The SOAP client uses connection to make a WebSphere® MQ client connection. The default hostname is localhost, and default port is 1414. If
connection is a TCP/IP address, it takes one of three formats, and can be suffixed with a port number.

IPV4 address

For example, 192.0.2.0.

IPV6 address

For example, 2001:DB8:0:0:0:0:0:0.

Host name

For example, www.example.com(1687).

sslCipherSuite(CipherSuite)

CipherSuite specifies the sslCipherSuite used on the channel. The CipherSuite specified by the client must match the CipherSuite specified on the
server connection channel.

sslFipsRequired(fipsCertified)

fipsCertified specifies whether CipherSpec or CipherSuite must use FIPS-certified cryptography in WebSphere MQ on the channel. The effect of
setting fipsCertified is the same as setting the FipsRequired field of the MQSCO structure on an MQCONNX call.

sslKeyStore(KeyStoreName)

KeyStoreName specifies the sslKeyStoreName used on the channel. The keystore holds the private key of the client used to authenticate the
client to the server. The key store is optional if the SSL connection is configured to accept anonymous client connections.

sslKeyResetCount(bytecount)

bytecount specifies the number of bytes passed across an SSL channel before the SSL secret key must be renegotiated. To disable the
renegotiation of SSL keys omit the field or set it to zero. Zero is the only value supported in some environments, see Renegotiating the secret
key in WebSphere(r) MQ classes for Java(tm). The effect of setting sslKeyResetCount is the same as setting the KeyResetCount field in the

MQSCO structure on an MQCONNX call.

sslKeyStorePassword(KeyStorePassword)

KeyStorePassword specifies the sslKeyStorePassword used on the channel.

sslLDAPCRLServers(LDAPServerList)

LDAPServerList specifies a list of LDAP servers to be used for Certificate Revocation List checking. the sslCryptoHardware used on the channel.

Page 80 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

For SSL enabled client connections, LDAPServerList is a list of LDAP servers to be used for Certificate Revocation List (CRL) checking. The
certificate provided by the queue manager is checked against one of the listed LDAP CRL servers; if found, the connection fails. Each LDAP server
is tried in turn until connectivity is established to one of them. If it is impossible to connect to any of the servers, the certificate is rejected. Once
a connection has been successfully established to one of them, the certificate is accepted or rejected depending on the CRLs present on that
LDAP server.

If LDAPServerList is blank, the certificate belonging to the queue manager is not checked against a Certificate Revocation List. An error message
is displayed if the supplied list of LDAP URIs is not valid. The effect of setting this field is the same as that of including MQAIR records and

accessing them from an MQSCO structure on an MQCONNX.

sslPeerName(peerName)

peerName specifies the sslPeerName used on the channel. See Channel parameters - SSLPeer.

sslTrustStore(TrustStoreName)

TrustStoreName specifies the sslTrustStoreName used on the channel. The trust store holds the public certificate of the server, or its key chain,
to authenticate the server to the client. The truststore is optional if the root certificate of a certificate authority is used to authenticate the server.
In Java, root certificates are held in the JRE certificate store, cacerts.

sslTrustStorePassword(TrustStorePassword)

TrustStorePassword specifies the sslTrustStorePassword used on the channel.

CustomParameter=customParameterValue

CustomParameter is the user-defined name of a custom parameter, and customParameterValue is the value of the parameter.

Custom parameters that are not used by the Axis 2 client are sent by the Axis 2 client to the SOAP server. Consult the server documentation.
connectionFactory is a custom parameter that is used by the Axis 2 client and is not passed to the server.

CustomParameter must not match the name of an existing parameter.

If CustomParameter starts with the string jndi— it is used in looking up a JNDI destination; see jndi—.

deliveryMode=deliveryMode

deliveryMode sets the message persistence. The default is PERSISTENT.

jndi:destinationName

destinationName is a JNDI destination name that maps to a JMS queue. If the jndi destination variant is specified, you must provide a
destinationName.

jndiConnectionFactoryName=connectionFactoryName

connectionFactoryName sets the JNDI name of the connection factory. If the destination variant is jndi, connectionFactoryName must be provided.

jndiInitialContextFactory=contextFactoryName

contextFactoryName sets the JNDI name of the initial context factory. If the destination variant is jndi, contextFactoryName must be provided. See
Using JNDI to retrieve administered objects in a JMS application.

jndiURL=providerURL

jndiURL sets the URL name of the JNDI provider. If the destination variant is jndi, jndiURL must be specified.

jndi—ContextParameter=contextParameterValue

jndi—ContextParameter is the user-defined name of a custom parameter that used to pass information to the JNDI provider.
contextParameterValue is the information that is passed.

priority=priorityValue

priorityValue sets the JMS message priority. 0 is low, 9 is high. The default value is 4.

queue:queueName

queueName is the name of a JMS queue on which the SOAP request is placed. If the queue variant is specified, a queue name must be provided. If
the queue does not belong to a default queue manager on the same server as the client, set the connectionFactory parameter.

replyToName=replyToDestination

replyToDestination sets the destination queue name. If the destination variant is jndi, the name is a JNDI name that must map to a queue. If the
variant is queue the name is a JMS queue. The default value is SYSTEM.SOAP.RESPONSE.QUEUE.

targetService=serviceName

The name used by the SOAP server to start the target Web service.

On Axis, serviceName is the fully qualified name of a Java service, for example: targetService=www.example.org.StockQuote. If

targetService is not specified, a service is loaded using the default Axis mechanism.

timeToLive=milliseconds

Set milliseconds to the time before the message expires. The default, 0, is the message never expires.

Examples

Figure 1. Use jms:jndi to send a SOAP/JMS request

jms:jndi:REQUESTQ

 ?jndiURL=file:/C:/JMSAdmin

 &jndiInitialContextFactory=com.sun.jndi.fscontext.RefFSContextFactory

 &jndiConnectionFactoryName=ConnectionFactory

 &replyToName=RESPONSEQ

 &deliveryMode(NON_PERSISTENT)

Figure 2. Use jms:queue to send a SOAP/JMS request

jms:queue:SOAPJ.demos

 ?connectionFactory=connectQueueManager(QM1)

 Bind(Client)

 ClientChannel(SOAPClient)

 ClientConnection(www.example.org(1418))

 &deliveryMode(NON_PERSISTENT)

Parent topic: Reference

Related tasks
Connect an Axis2 client to a JAX-WS service using W3C SOAP over JMS and WebSphere Application Server

Related reference

Page 81 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

URI syntax and parameters for Web service deployment

1 Look for URI Scheme for JMS, in the W3C specification references, for the latest draft.

This build: January 26, 2011 11:09:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts20642_

1.9.17. Supported Web services

Code that has been written to run as a Web service does not need to be modified to use the WebSphere® MQ transport for SOAP. You do need to
deploy services differently to run with the WebSphere MQ transport for SOAP rather than using HTTP.

Description

The WebSphere MQ transport for SOAP provides a SOAP listener to run services for .NET Framework 1 and .NET 2, and for Axis 1.4. The WebSphere
MQ custom channel for Microsoft Windows Communication Foundation runs services for .NET Framework 3. WebSphere Application Server and
CICS® provide support for running services over WebSphere MQ transport for SOAP. Create a custom Export to use WebSphere Enterprise Service
Bus or WebSphere Process Server.

The WebSphere MQ SOAP listener can process SOAP requests transactionally. Run amqwdeployWMQService using the -x option. The two-phase
option is only supported for listeners using server bindings. Other environments might provide transactional support for the WebSphere MQ transport
for SOAP. Consult their documentation.

WebSphere MQ transport for SOAP currently does not support the emerging industry standard SOAP over JMS protocol that has been submitted to
W3C. You can distinguish a SOAP/JMS message written to the new standard by looking for the JMS BindingVersion property. WebSphere MQ
transport for SOAP does not set the BindingVersion property.

Axis 1.4

A Java class can typically be used without modification. The types of any arguments to the methods in the web service must be supported by the
Axis engine. Refer to Axis documentation for further details. If the service uses a complex object as an argument, or returns one, that object must
comply to the Java bean specification. See the examples in Figure 3, Figure 4, and Figure 5:

1. Have a public parameter-less constructor.

2. Any complex types of the bean must have public getters and setters of the form:

>>-+-get-+--complex-type---------------------------------------><

 '-set-'

Prepare the service for deployment the service using the amqwdeployWMQService utility. The service is invoked by the WebSphere MQ SOAP
listener which uses axis.jar to run the service.

The only two-phase transaction manager supported for Axis 1.4 is WebSphere MQ.

The supplied deployment utility does not support the case where a service returns an object in a different package to the service itself. To use an
object returned in a different package, write your own deployment utility. You can base your deployment utility on the supplied sample, or capture

the commands it produces, using the -v option. Amend the commands to produce a tailored script.

If the service uses classes that are external to the Axis infrastructure and the WebSphere MQ SOAP run time environment, you must set the correct
CLASSPATH. To change CLASSPATH, amend the generated script that starts or defines the listeners to include the services required, in one of the

following ways:

� Amend the CLASSPATH directly in the script after the call to amqwsetcp.

� Create a service-specific script to customize the CLASSPATH and invoke this script in the generated script after the call to amqwsetcp.

� Create a customized deployment process to customize the CLASSPATH in the generated script automatically.

.NET Framework 1 and .NET Framework 2

A service that has already been prepared as an HTTP Web service does not need to be modified for use as a WebSphere MQ Web service. It needs to
be deployed using the amqwdeployWMQService utility.

The only two-phase transaction manager supported for .NET Framework 1 and .NET 2 is Microsoft Transaction Server (MTS).

If the service code has not been prepared as an HTTP Web service you must convert it to a Web service. Declare the class as a web service and
identify how the parameters of each method are formatted. You must check that any arguments to the methods of the service are compatible with
the environment. Figure 1 and Figure 2 show a .NET class that has been prepared as a web service. The additions made are shown in bold type.

Figure 1 uses the code-behind programming model for a .NET Web service. In the code-behind model, the source for the service is separated from
the .asmx file. The .asmx file declares the name of the associated source file with the Codebehind keyword. WebSphere MQ has samples of both

inline and code-behind .NET Web services.

.NET Web services source must be compiled before deployment by the amqwdeployWMQService deployment utility. The service is compiled into a
library (.dll). The library must be placed in the ./bin subdirectory of the deployment directory.

.NET Framework 3
Create a WebSphere MQ custom channel for Microsoft Windows Communication Foundation (WCF) to invoke services deployed to .NET Framework 3.

See WebSphere MQ custom channel for Microsoft Windows Communication Foundation (WCF) for a description of how to configure WCF to use the
WebSphere MQ transport for SOAP.

WebSphere Application Server

You can invoke Web services hosted by WebSphere Application Server using the WebSphere MQ Transport for SOAP; see Using SOAP over JMS to

transport Web services.

Page 82 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

You need to modify the WSDL generated by deployment of a JMS service to WebSphere Application Server in order to generate a Web services client.
The WSDL created by deployment to WebSphere Application Server includes a URI with a JNDI reference to the JMS InitialContextFactory. You

need to modify the JNDI reference to Nojndi and provide connection attributes as described in URI syntax and parameters for Web service
deployment.

CICS
You can invoke CICS applications using the WebSphere MQ Transport for SOAP; see Configuring your CICS system for Web services.

WebSphere Enterprise Service Bus and WebSphere Process Server for Multiplatforms
WebSphere ESB and WebSphere Process Server for Multiplatforms support SOAP over JMS, with a ready built binding, only when using the default
WebSphere Application Server messaging provider. Create a custom binding for JMS to support WebSphere MQ transport for SOAP. See JMS data
bindings and Web services with SOAP over JMS in IBM® WebSphere Process Server or IBM WebSphere Enterprise Service Bus, Part 2: Using the IBM
WebSphere MQ JMS provider.

Example
Figure 1. Service definition for .NET Framework 2: Quote.asmx

<%@ WebService Language="C#" CodeBehind="Quote.asmx.cs" Class="Quote.QuoteDotNet" %>

Figure 2. Service implementation for .NET Framework 2: Quote.asmx.cs

<%@ WebService Language="C#" CodeBehind="Quote.asmx.cs" Class="Quote.QuoteDotNet" %>

using System;

using System.Web;

using System.Web.Services;

using System.Web.Services.Protocols;

namespace Quote {

 [WebService(Namespace = "http://www.example.org/")]

 [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]

 public class QuoteDotNet : System.Web.Services.WebService {

 [WebMethod]

 public string getQuote(String symbol){

 return symbol.ToUpper();

 }

 }

}

Figure 3. Java JAX-RPC service interface using a complex type

package org.example.www;

public interface CustomerInfoInterface extends java.rmi.Remote {

 public org.example.www.CustomerRecord

 getCustomerName(org.example.www.CustomerRecord request)

 throws java.rmi.RemoteException, org.example.www.GetCustomerName_faultMsg;

}

Figure 4. Java JAX-RPC service implementation using a complex type

package org.example.www;

public class CustomerInfoPortImpl implements org.example.www.CustomerInfoInterface{

 public org.example.www.CustomerRecord

 getCustomerName(org.example.www.CustomerRecord request)

 throws java.rmi.RemoteException, org.example.www.GetCustomerName_faultMsg {

 request.setName(request.getID().toString());

 return request;

 }

}

Figure 5. Java JAX-RPC service bean implementation of a complex type

package org.example.www;

public class CustomerRecord {

 private java.lang.String name;

 private java.lang.Integer ID;

 public CustomerRecord() {}

 public java.lang.String getName() {

 return name; }

 public void setName(java.lang.String name) {

 this.name = name; }

 public java.lang.Integer getID() {

 return ID; }

 public void setID(java.lang.Integer ID) {

 this.ID = ID; }

}

Parent topic: Reference

Related tasks
Deploying a service to Axis 1.4 to use for WebSphere transport for SOAP using amqwdeployWMQService
Deploying a service to .NET Framework 1 or 2 service to use WebSphere MQ transport for SOAP
Deploying a service to CICS Transaction Server to use WebSphere Transport for SOAP

Deploying a service to WebSphere Application Server to use WebSphere Transport for SOAP
Deploying a service to WebSphere ESB and Process Server service endpoint to use WebSphere Transport for SOAP
Developing Web services for WebSphere MQ transport for SOAP

Related reference
Sample JAX-RPC Java service
Sample .NET services

This build: January 26, 2011 11:09:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts20610_

Page 83 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

1.9.18. WebSphere MQ transport for SOAP Web service clients

You can reuse an existing SOAP over HTTP client with WebSphere MQ transport for SOAP. You must make some small modifications to the code and
build process to convert the client to work with WebSphere MQ transport for SOAP.

Coding

JAX-RPC clients must be written in Java. .NET Framework 1 and 2 clients can be written in any language that uses the Common Language Runtime.
Code examples are provided in C# and Visual Basic.

The level of transactional support depends on the client environment and the pattern of the SOAP interaction. The SOAP request and SOAP reply can
not be part of the same atomic transaction.

You must call IBM.WMQSOAP.Register.Extension() in a .NET Framework 1, .NET Framework 2 client. In a JAX-RPC Java Web service client call

com.ibm.mq.soap.Register.extension to register the WebSphere MQ SOAP sender. The method registers the WebSphere MQ transport for SOAP

sender as the handler for SOAP messages using the jms: protocol.

To create a .NET Framework 3 client, generate a Windows Communication Foundation client proxy using the svcutil tool; see Generating a WCF
client proxy and application configuration files using the svcutil tool with metadata from a running service.

Libraries required to build and run .NET Framework 1 and 2 clients

� amqsoap

� System

� System.Web.Services

� System.Xml

Libraries required to build and run Axis 1.4 clients

� MQ_Install\java\lib\com.ibm.mq.soap.jar;

� MQ_Install\java\lib\com.ibm.mq.commonservices.jar;

� MQ_Install\java\lib\soap\axis.jar;

� MQ_Install\java\lib\soap\jaxrpc.jar

� MQ_Install\java\lib\soap\saaj.jar;

� MQ_Install\java\lib\soap\commons-logging-1.0.4.jar;

� MQ_Install\java\lib\soap\commons-discovery-0.2.jar;

� MQ_Install\java\lib\soap\wsdl4j-1.5.1.jar;

� MQ_Install\java\jre\lib\xml.jar;

� MQ_Install\java\lib\soap\servlet.jar;

� MQ_Install\java\lib\com.ibm.mq.jar;

� MQ_Install\java\lib\com.ibm.mq.headers.jar;

� MQ_Install\java\lib\com.ibm.mq.pcf.jar;

� MQ_Install\java\lib\com.ibm.mq.jmqi.jar;

� MQ_Install\java\lib\com.ibm.mq.jmqi.remote.jar;

� MQ_Install\java\lib\com.ibm.mq.jmqi.local.jar;

� MQ_Install\java\lib\connector.jar;

� MQ_Install\java\lib\jta.jar;

� MQ_Install\java\lib\jndi.jar;

� MQ_Install\java\lib\ldap.jar

Register SOAP extension

>>-+-| Java |---------+--><

 +-| C# |-----------+

 '-| Visual Basic |-'

Java

|--com.ibm.mq.soap.Register.extension()-------------------------|

C#

|--IBM.WMQSOAP.Register.Extension();----------------------------|

Visual Basic

|--IBM.WMQSOAP.Register.Extension-------------------------------|

Client examples

Figure 1 is an example of a .NET Framework 1 or .NET Framework 2 C# client that uses the inline programming model. The
IBM.WMQSOAP.Register.Extension() method registers the WebSphere MQ SOAP sender with .NET as the jms: protocol handler.

Figure 1. C# Web service client sample

using System;

namespace QuoteClientProgram {

 class QuoteMain {

 static void Main(string[] args) {

 try {

 IBM.WMQSOAP.Register.Extension();

 Quote q = new Quote();

Page 84 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

 Console.WriteLine("Response is: " + q.getQuote("ibm"));

 } catch (Exception e) {

 Console.WriteLine("Exception is: " + e);

 }

 }

 }

}

Figure 2 is an example of an Java client that uses the JAX-RPC static proxy client interface. The com.ibm.mq.soap.Register.extension(); method

registers the WebSphere MQ SOAP sender with the service proxy to handle the jms: protocol.

Figure 2. Java Web service client example

package org.example.www;

import com.ibm.mq.soap.Register;

public class QuoteClient {

 public static void main(String[] args) {

 try {

 Register.extension();

 QuoteSOAPImplServiceLocator locator = new QuoteSOAPImplServiceLocator();

 System.out.println("Response = "

 + locator.getOrgExampleWwwQuoteSOAPImpl_Wmq().getQuote("IBM"));

 } catch (Exception e) {

 System.out.println("Exception = " + e.getMessage());

 }

 }

}

Parent topic: Reference

Related tasks

Deploying a Web service client to Axis 1.4 to use WebSphere MQ transport for SOAP
Deploying a Web service client to .NET Framework 1 and 2 to use WebSphere MQ transport for SOAP
Developing Web services for WebSphere MQ transport for SOAP

Related reference
Sample JAX-RPC Java clients
Sample .NET clients

This build: January 26, 2011 11:09:51

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts20550_

2. WebSphere MQ bridge for HTTP

With WebSphere® MQ bridge for HTTP, client applications can exchange messages with WebSphere MQ without the need to install a WebSphere MQ
client. You can call WebSphere MQ from any platform or language with HTTP capabilities.

Introduction to WebSphere MQ bridge for HTTP
The WebSphere MQ bridge for HTTP is a Java, Enterprise Environment (JEE) Web application. HTTP clients can send POST, GET, and DELETE
requests to it to put, browse and delete messages from WebSphere MQ queues. The WebSphere MQ bridge for HTTP is not suitable for use with
messages, if guaranteed delivery is required.

Installing, configuring, and verifying WebSphere MQ bridge for HTTP
Obtain WebSphere MQ bridge for HTTP by installing "Java Messaging and Web Services" from either the WebSphere MQ client or server
installation materials. Deploy WebSphere MQ bridge for HTTP to a suitable application server.

Publish/subscribe using the WebSphere MQ bridge for HTTP
WebSphere MQ bridge for HTTP uses the WebSphere MQ classes for JMS publish/subscribe interface. HTTP POST creates a publication. HTTP
DELETE creates a non-durable managed subscription. You must configure publish/subscribe for JMS before using the topic URI.

Running the WebSphere MQ bridge for HTTP samples
The WebSphere MQ bridge for HTTP samples are available for use on only the Windows operating system. The samples show you how to submit
HTTP POST and HTTP DELETE commands to WebSphere MQ bridge for HTTP from Java programs.

Security considerations for WebSphere bridge for HTTP
Standard Web security considerations apply to authenticating a Web browser client. Authorization to WebSphere MQ resources is at the level of
the user running the WebSphere Bridge for HTTP servlet, and not the individual Web browser client. Standard WebSphere MQ security
consideration apply to WebSphere MQ.

Reference material for WebSphere MQ bridge for HTTP
Reference topics for WebSphere MQ bridge for HTTP, arranged alphabetically

Parent topic: WebSphere MQ transport for SOAP and WebSphere MQ bridge for HTTP

This build: January 26, 2011 11:10:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts12000_

2.1. Introduction to WebSphere MQ bridge for HTTP

The WebSphere® MQ bridge for HTTP is a Java, Enterprise Environment (JEE) Web application. HTTP clients can send POST, GET, and DELETE
requests to it to put, browse and delete messages from WebSphere MQ queues. The WebSphere MQ bridge for HTTP is not suitable for use with
messages, if guaranteed delivery is required.

Benefits

Page 85 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

With the WebSphere MQ bridge for HTTP you can send and receive WebSphere MQ messages using HTTP from a wide variety of environments:

� Environments that support HTTP, but not WebSphere MQ.

� Environments that have insufficient storage space to install a WebSphere MQ client.

� Environments that are too numerous to install the WebSphere MQ client on each system that requires access to WebSphere MQ.

� Web-based applications from which you want to send or receive messages without coding your own bridge to WebSphere MQ.

� Web-based applications that you want to enhance, using asynchronous techniques such as AJAX. WebSphere MQ bridge for HTTP makes
WebSphere MQ queues and topics available using Representation State Transfer (REST) over HTTP.

HTTP support can be used with both point-to-point and publish/subscribe messaging topologies.

How does HTTP support work?

Figure 1. WebSphere MQ bridge for HTTP

The WebSphere MQ bridge for HTTP Web application receives HTTP requests from one or more clients. It interacts with WebSphere MQ on their
behalf, and returns HTTP responses to them.

The WebSphere MQ bridge for HTTP is a JEE servlet that is connected to WebSphere MQ using a resource adapter. The HTTP servlet handles three
different types of HTTP requests: POST, GET, and DELETE.

HTTP POST example

HTTP POST puts a message to a queue, or a publication to a topic. The HTTPPOST Java sample is an example an HTTP POST request of a message
to a queue. Instead of using Java, you could create an HTTP POST request using a browser form, or an AJAX toolkit instead.

Figure 2 shows an HTTP request to put a message on a queue called myQueue. This request contains the HTTP header x-msg-correlId to set the

correlation ID of the WebSphere MQ message.

Figure 2. Example of an HTTP POST request to a queue

POST /msg/queue/myQueue/ HTTP/1.1

Host: www.example.org

Content-Type: text/plain

x-msg-correlID: 1234567890

Content-Length: 50

Here's my message body that will appear on the queue.

Figure 3 shows the response sent back to the client. There is no response content.

Figure 3. Example of an HTTP POST response

HTTP/1.1 200 OK

Date: Wed, 2 Jan 2007 22:38:34 GMT

Server: Apache-Coyote/1.1 WMQ-HTTP/1.1 JEE-Bridge/1.1

Content-Length: 0

HTTP DELETE example

HTTP DELETE gets a message from a queue and deletes the message, or retrieves and deletes a publication. The HTTPDELETE Java sample is an

example an HTTP DELETE request reading a message from a queue. Instead of using Java, you could create an HTTP DELETE request using a
browser form, or an AJAX toolkit instead.

Figure 4 is an HTTP request to delete the next message on queue called myQueue. In response, the message body is returned to the client. In

WebSphere MQ terms, HTTP DELETE is a destructive get.

The request contains the HTTP request header x-msg-wait, which instructs WebSphere MQ bridge for HTTP how long to wait for a message to arrive

on the queue. The request also contains the x-msg-require-headers request header, which specifies that the client is to receive the message

correlation ID in the response.

Figure 4. Example of an HTTP DELETE request

DELETE /msg/queue/myQueue/ HTTP/1.1

Host: www.example.org

x-msg-wait: 10

x-msg-require-headers: correlID

Figure 5, is the response returned to the client. The correlation ID is returned to the client, as requested in x-msg-require-headers of the request.

Figure 5. Example of an HTTP DELETE response

HTTP/1.1 200 OK

Date: Wed, 2 Jan 2007 22:38:34 GMT

Server: Apache-Coyote/1.1 WMQ-HTTP/1.1 JEE-Bridge/1.1

Content-Length: 50

Content-Type: text/plain; charset=utf-8

x-msg-correlId: 1234567890

Table 1. WebSphere MQ bridge for HTTP verbs

HTTP

Request

Result

POST Puts a message on a queue or topic.

GET Browses the first message on a queue. In line with the HTTP protocol, GET does not delete the message from the

queue. Do not use GET with publish/subscribe messaging.

DELETE Gets and deletes a message from a queue or topic.

Page 86 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

Here's my message body that will appear on the queue.

HTTP GET example

HTTP GET gets a message from a queue. The message remains on the queue. In WebSphere MQ terms, HTTP GET is a browse request. You could
create an HTTP DELETE request using a Java client, a browser form, or an AJAX toolkit.

Figure 6 is an HTTP request to browse the next message on queue called myQueue.

The request contains the HTTP request header x-msg-wait, which instructs WebSphere MQ bridge for HTTP how long to wait for a message to arrive

on the queue. The request also contains the x-msg-require-headers request header, which specifies that the client is to receive the message

correlation ID in the response.

Figure 6. Example of an HTTP GET request

GET /msg/queue/myQueue/ HTTP/1.1

Host: www.example.org

x-msg-wait: 10

x-msg-require-headers: correlID

Figure 7 is the response returned to the client. The correlation ID is returned to the client, as requested in x-msg-require-headers of the request.

Figure 7. Example of an HTTP GET response

HTTP/1.1 200 OK

Date: Wed, 2 Jan 2007 22:38:34 GMT

Server: Apache-Coyote/1.1 WMQ-HTTP/1.1 JEE-Bridge/1.1

Content-Length: 50

Content-Type: text/plain; charset=utf-8

x-msg-correlId: 1234567890

Here's my message body that will appear on the queue.

Parent topic: WebSphere MQ bridge for HTTP

Related tasks

Running the WebSphere MQ bridge for HTTP samples

Related reference
Reference material for WebSphere MQ bridge for HTTP

This build: January 26, 2011 11:10:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts11370_

2.2. Installing, configuring, and verifying WebSphere MQ bridge for HTTP

Obtain WebSphere® MQ bridge for HTTP by installing "Java Messaging and Web Services" from either the WebSphere MQ client or server installation
materials. Deploy WebSphere MQ bridge for HTTP to a suitable application server.

Before you begin

Check the prerequisite products at WebSphere MQ requirements. The installation process does not check for the presence and availability of the
prerequisite software for running WebSphere MQ bridge for HTTP. You must verify that the prerequisites are installed.

WebSphere MQ bridge for HTTP runs on any JEE 1.4 compliant application server, by installing the WebSphere MQ resource adapter. You can also
run WebSphere MQ bridge for HTTP on a WebSphere Application Server release earlier than version 6.0.2.1. Use the WebSphere Application Server
Message Listener Port (MLP) to integrate WebSphere MQ as the JMS provider.

Support for WebSphere MQ bridge for HTTP is provided only for the following application servers:

� WebSphere Application Server 6.0.2.1 and later.

� WebSphere Application Server Community Edition Version 1.1 and later.

About this task

WebSphere MQ bridge for HTTP is supplied as a .war file, WMQHTTP.war.

� On platforms other than z/OS®,

� WMQHTTP.war is included as part of the "Java Messaging and Web Services" install option. The option is available in both the client and

server installation materials.

� WMQHTTP.war is installed to <mqmtop>/java/http. <mqmtop> is the directory where WebSphere MQ is installed.

� On z/OS,

� WMQHTTP.war is included as part of the WebSphere MQ z/OS UNIX System Services Components feature.

� WMQHTTP.war is installed to PathPrefix/usr/lpp/mqm/V7R0M0/HTTPBridge/, where PathPrefix is an optional customer defined prefix.

Carry out the following installation steps to install WebSphere MQ bridge for HTTP, deploy, and configure it, and verify the configuration. The details of
the configuration steps vary on different application servers. Use Deploying and verifying WebSphere MQ bridge for HTTP on WebSphere Application
Server V6.1.0.9 as a template for the steps to follow on your application server.

Procedure

1. Obtain WMQHTTP.war by installing either the WebSphere MQ client or server.

2. Copy WMQHTTP.war to a server from which it can be deployed to an application server.

Page 87 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

3. Deploy WMQHTTP.war to an application server.

4. If necessary, install WebSphere MQ as a resource adapter on your application server. Find out if WebSphere MQ is already configured as a
messaging provider on your application server. Use the administration or management tool supplied with your application server, to look for
WebSphere MQ. WebSphere MQ might be found under the following path, Resources > JMS > Messaging providers.

5. Configure a connection factory on the application server to connect to a queue manager using the WebSphere MQ client transport1.

6. Configure the WMQHTTP.war Web application on the application server to use the connection factory

7. Verify the configuration.

a. Set up the queue manager named in the connection factory and a local queue.

b. Place a message on the local queue.

c. Create the server-connection channel named in the connection factory, with authority to read and write to the local queue.

d. Start the queue manager and the listener.

e. Start the application server and WMQHTTP.war, if they are not already running.

f. Open a browser and type http://hostname:web port/Context root/msg/queue/local queue

Results
The browser window displays the message you placed on the local queue.

What to do next

1. Try the example, Deploying and verifying WebSphere MQ bridge for HTTP on WebSphere Application Server V6.1.0.9.

2. Run the sample HTTP Java applications.

Deploying and verifying WebSphere MQ bridge for HTTP on WebSphere Application Server V6.1.0.9
Use the following example to prepare a deployment of WebSphere MQ bridge for HTTP to run the sample HTTP Java programs. The deployment
is on WebSphere Application Server V6.1.0.9.

Configuring WebSphere MQ Bridge for HTTP
After installing the WebSphere MQ Bridge for HTTP and deploying WMQHTTP.war to your application server, configure the WebSphere MQ
Bridge for HTTP so that it can implement diagnostic tracing and use your connection factory.

Parent topic: WebSphere MQ bridge for HTTP

Related tasks
Running the WebSphere MQ bridge for HTTP samples

Related information
The WebSphere MQ resource adapter
WebSphere MQ Provider connection factory settings for application clients, V6.1
WebSphere MQ messaging provider connection factory settings, V7.0

1 Initially, at least, configure the client transport. Some application servers can connect to WebSphere MQ using direct, or bindings mode
connections.

This build: January 26, 2011 11:10:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts21160_

2.2.1. Deploying and verifying WebSphere MQ bridge for HTTP on WebSphere Application
Server V6.1.0.9

Use the following example to prepare a deployment of WebSphere® MQ bridge for HTTP to run the sample HTTP Java programs. The deployment is
on WebSphere Application Server V6.1.0.9.

Before you begin

1. Follow the instructions in Installing, configuring, and verifying WebSphere MQ bridge for HTTP, to copy WMQHTTP.war onto a server

accessible to your installation of WebSphere Application Server.

2. Configure a queue manager, and a queue, to use to test the configuration:

� In the example, the queue manager is configured as using the values in Table 1:

3. Start the queue manager and the listener

4. Place a test message onto HTTPTESTQ. For example:

a. Start WebSphere MQ Explorer.

b. In the list of local queues for QM1, right-click HTTPTESTQ > Put test message > type First Message > Put message > Close

5. Start the application server and sign on to the Integrated Solutions Console.

Table 1. Queue manager configuration

Object Value

Host name itso-01

Queue manager QM1

Local queue HTTPTESTQ

Server connection channel MYSVRCON. Configure an MCA user ID with sufficient authority to read and write to

HTTPTESTQ.

Listener port 1414

Page 88 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

About this task

The example shows the steps to take if you are running WebSphere Application Server V6.1.0.9 as your application server. If you are running a
different version of WebSphere Application Server, or running a different application server, the steps are different. WebSphere Application Server
V6.1.0.9 is pre-configured with WebSphere MQ installed as a message provider, using the WebSphere MQ client libraries. If WebSphere MQ is not
pre-configured as a messaging provider, or if you want to use WebSphere MQ server bindings, you need to install and configure the WebSphere MQ
resource adapter for JEE into your application server.

Follow the instructions to deploy WebSphere MQ bridge for HTTP onto WebSphere Application Server V6.1.0.9, and verify the deployment using a
browser:

Procedure

1. In the navigation pane, click Resources > JMS providers > WebSphere MQ messaging provider.

You can configure at either Node, Cell, or Server level, depending on your WebSphere Application Server deployment. The example uses Server
level deployment.

2. Under Additional properties, click Connection factories > New.

3. In the JMS providers form, provide the information in Table 2, or alternatives of your choosing, click Apply > Save.

4. In the navigation pane, click Applications > Install New Application.

5. Insert the path to WMQHTTP.war into the form, and provide a Context root, click Next.

a. The Context root is optional. mq is the default Context root for the sample HTTP applications.

b. The Context root forms part of the URI identifying WebSphere MQ bridge for HTTP. You can omit the Context root, or change it later.

6. On the Select installation options page of the installation wizard, you do not have to change any of the defaults, click Next.

7. On the Map modules to servers page, select a Cluster or Server, check the Select box, click Apply > Next.

8. On the Map resource references to resources page, in the javax.jms.ConnectionFactory form, click Browse... on the IBM® WebSphere MQ

bridge for HTTP row.

9. On the Enterprise Applications > Available resources page, select WMQHTTPBridge, click Apply.

10. Back in the javax.jms.ConnectionFactory form, select the authentication method.

a. For the example, choose None, click Apply. The other options require additional configuration.

11. Check the Select check box for IBM WebSphere MQ bridge for HTTP, click Next > Next > Finish > Save

12. In the navigation pane, click Applications > Enterprise Applications.

13. Check the selection box for WMQHTTP.war, click Start.

14. Open a browser window. Type http://itso-01:9080/mq/msg/queue/HTTPTESTQ, using the appropriate host name and port.

Results

The browser window displays First Message, if the configuration is successful.

What to do next

Run the sample HTTP Java applications.

Parent topic: Installing, configuring, and verifying WebSphere MQ bridge for HTTP

This build: January 26, 2011 11:10:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts21162_

2.2.2. Configuring WebSphere MQ Bridge for HTTP

After installing the WebSphere® MQ Bridge for HTTP and deploying WMQHTTP.war to your application server, configure the WebSphere MQ Bridge
for HTTP so that it can implement diagnostic tracing and use your connection factory.

The WebSphere MQ Bridge for HTTP has two sets of properties:

� Properties associated with diagnostic tracing. These properties are described in Configuring WebSphere MQ Bridge for HTTP to implement
diagnostic tracing.

� Properties associated with the resource adapter connection factory reference. How to configure these properties is described in Configuring
your connection factory.

Configuring WebSphere MQ Bridge for HTTP to implement diagnostic tracing
A number of properties exist which are associated with diagnostic tracing in the WebSphere MQ Bridge for HTTP.

Configuring your connection factory

Enable WebSphere MQ Bridge for HTTP to communicate with WebSphere MQ by configuring a connection factory. The procedure varies
depending on the application server you are using.

Table 2. Set or modify the following fields

Field Value

Name WMQHTTPBridge

JNDI Name jms/WMQHTTPJCAConnectionFactory

Queue manager QM1

Host itso-01

Port 1414

Channel MYSVRCON

Transport type CLIENT

Page 89 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

Parent topic: Installing, configuring, and verifying WebSphere MQ bridge for HTTP

This build: January 26, 2011 11:09:35

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts11420_

2.2.2.1. Configuring WebSphere MQ Bridge for HTTP to implement diagnostic tracing

A number of properties exist which are associated with diagnostic tracing in the WebSphere MQ Bridge for HTTP.

Table 1 lists the properties of the WebSphere MQ Bridge for HTTP that are associated with diagnostic tracing.

Table 2 describes the levels of detail for diagnostic tracing.

If diagnostic tracing is turned off, error and warning messages are written to the system error stream. If diagnostic tracing is turned on, error

messages are written to the system error stream and to the trace destination, but warning messages are written only to the trace destination.
However, the trace contains warning messages only if the trace level is WARNINGS or higher.

Parent topic: Configuring WebSphere MQ Bridge for HTTP

This build: January 26, 2011 11:09:35

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts11430_

2.2.2.2. Configuring your connection factory

Enable WebSphere MQ Bridge for HTTP to communicate with WebSphere MQ by configuring a connection factory. The procedure varies depending on
the application server you are using.

Before you begin
You have installed the WebSphere® MQ Bridge for HTTP and deployed WMQHTTP.war to your application server.

About this task
To enable the WebSphere MQ Bridge for HTTP to communicate with WebSphere MQ, specify the connection factory you want to use and configure
that connection factory.

Procedure

1. Optional: If you are using WebSphere Application Server Version 6 or later, complete the following step:

a. Set the connection factory Broker version property to Basic to use Only character wildcards for consistency with applications that

previously used Broker Version 1, or set it to Advanced (the default) to use Only topic wildcards which are used in Broker Version 2.
For more information about the Broker version property, see your WebSphere Application Server documentation

2. Optional: If you are using the WebSphere MQ resource adapter as your WebSphere MQ JMS provider with WebSphere Application Server
Community Edition, complete the following steps:

a. Locate and open your deployment plan. The deployment plan you use to deploy your resource adapter will be specific to the application

Table 1. Properties of the WebSphere MQ Bridge for HTTP that are associated with diagnostic tracing

Name of property Type Default value Description

traceEnabled String false A flag to enable or disable diagnostic tracing. If the value is false,

tracing is turned off. If the value is true, a trace is sent to the location

specified by the traceDestination property.

traceDestination String System.err The location to where a diagnostic trace is sent. If the value is

System.out, the trace is directed to the system output stream.

traceLevel String WARNINGS The level of detail in a diagnostic trace. The value can be in the range

NONE, which produces no trace, to ALL, which provides the most

detail. See Table 2 for a description of each level.

Table 2. The levels of detail for diagnostic tracing

Level Level of detail

NONE No trace.

EXCEPTIONS The trace contains error messages.

WARNINGS The trace contains error and warning messages.

INFO The trace contains error, warning, and information messages.

ENTRYEXIT The trace contains error, warning, and information messages, and entry and exit information for methods.

DATA The trace contains error, warning, and information messages, entry and exit information for methods, and

diagnostic data.

ALL The trace contains all trace information.

Note: Specifying a trace level includes all trace statements at that level and above. For example, specifying a trace level of WARNINGS

will cause all WARNINGS and EXCEPTIONS to be traced.

Page 90 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

server you are using.

b. Define a resource called jms/WMQHTTPJCAConnectionFactory with a value of the name of your ConnectionFactory object. Ensure that
your ConnectionFactory is configured with the name of the WebSphere MQ queue manager that you want to connect to, if a user ID is
required to access that queue manager ensure that this is configured on your ConnectionFactory.

What to do next
If you are using WebSphere Application Server MLP with WebSphere Application Server, complete the following step:

1. Using the WebSphere Application Server admin console, create a ConnectionFactory object called jms/WMQHTTPJCAConnectionFactory. For
information about how to do this refer to the WebSphere Application Server information center,
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?/topic=/com.ibm.websphere.express.doc/info/exp/ae/tmm_ep.html.

If a connection factory called jms/WMQHTTPJCAConnectionFactory does not exist when the Servlet is invoked for the first time (when it receives
the first HTTP request), an MQHTTP00002 error will occur and will be logged in you application server error log.

To confirm that the WebSphere MQ Bridge for HTTP in installed and configured correctly, in a web-browser navigate to
http://hostname:port/context_root/msg/queue/myqueue, where myqueue is an empty WebSphere MQ queue. HTTP error 504 'Message retrieval
timed out' will be displayed in the browser window if the WebSphere MQ Bridge for HTTP and JMS resource adapter are configured correctly.

Parent topic: Configuring WebSphere MQ Bridge for HTTP

This build: January 26, 2011 11:09:35

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts11170_

2.3. Publish/subscribe using the WebSphere MQ bridge for HTTP

WebSphere® MQ bridge for HTTP uses the WebSphere MQ classes for JMS publish/subscribe interface. HTTP POST creates a publication. HTTP
DELETE creates a non-durable managed subscription. You must configure publish/subscribe for JMS before using the topic URI.

Publish/subscribe is fully integrated into WebSphere MQ in version 7. Before version 7, a separate publish/subscribe broker handled publications and
subscriptions. It is called "queued" publish/subscribe, to distinguish it from the fully integrated publish/subscribe in version 7. Version 7 emulates
queued publish subscribe using integrated publish/subscribe. The emulation enables existing queued publish/subscribe applications to coexist with
integrated applications running on the same queue manager. Queued publish/subscribe applications can also interoperate with integrated
applications, sharing the same topics. In version 6, the broker was shipped with WebSphere MQ; before version 6 it was available as a SupportPack.

Configuration

The WebSphere MQ bridge for HTTP uses the JMS interface to publish and subscribe. In version 7, you can control whether the WebSphere MQ
classes for JMS use queued or integrated publish/subscribe, using the PROVIDERVERSION JMS property.

An additional consideration is that you can use either WebSphere MQ client libraries with WebSphere MQ bridge for HTTP, or server libraries. Version
6 client libraries only support queued publish/subscribe, whereas version 7 libraries support both queued and integrated publish/subscribe. Most Web
or application servers that use WebSphere MQ as a messaging provider do so using client libraries. In order to use integrated publish/subscribe, both
the WebSphere MQ client and server libraries must be at least at version 7. If either is running an earlier version of WebSphere than 7, then you
must configure queued publish/subscribe; see Table 1. Check what libraries are installed or configured with the Web server or application server you
are using.

Publish

Send an HTTP POST request with the URI:

http://hostname:port/context_root/msg/topic/topicString

The message contents are published using the topic string topicString.

Subscribe

Send an HTTP DELETE request with the URI:

http://hostname:port/context_root/msg/topic/topicString

WebSphere MQ bridge for HTTP creates a managed non-durable subscription to the topic string topicString. The subscription is deleted as soon as

a publication is returned, or until the wait-interval set by the custom entity-header, x-msg-wait, expires.

Parent topic: WebSphere MQ bridge for HTTP

Related information
Properties of WebSphere MQ classes for JMS objects
The WebSphere MQ classes for JMS configuration file
When to use PROVIDERVERSION

This build: January 26, 2011 11:10:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

Table 1. Publish/subscribe configuration modes

Client V6 or earlier Client V7 or later

Server V6 or

earlier
1. Run the \java\bin\MQJMS_PSQ.mqsc

script

Not supported

Server V7 or

later
1. Run the \java\bin\MQJMS_PSQ.mqsc

script

2. Set the queue manager to

PSMODE=ENABLED

1. If PROVIDERVERSION = 7

a. Set the queue manager to PSMODE=ENABLED or

PSMODE=COMPAT

2. If PROVIDERVERSION = 6

a. Set the queue manager to PSMODE=ENABLED

Page 91 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

ts21166_

2.4. Running the WebSphere MQ bridge for HTTP samples

The WebSphere® MQ bridge for HTTP samples are available for use on only the Windows operating system. The samples show you how to submit
HTTP POST and HTTP DELETE commands to WebSphere MQ bridge for HTTP from Java programs.

Before you begin

Verify your WebSphere MQ bridge for HTTP installation by running step 7 in Installing, configuring, and verifying WebSphere MQ bridge for HTTP.

The HTTP samples are installed to the directories shown in Table 1. In each case, source code is installed to the /src subdirectory.

About this task

The samples simulate the WebSphere MQ AMQSPUT and AMQSGET sample applications. They illustrate the following functions in a point-to-point
messaging environment:

� HTTPPOST - Sends HTTP POST requests in a Java application to put messages to a WebSphere MQ queue, using the WebSphere MQ bridge
for HTTP and handles the responses.

� HTTPDELETE - Sends HTTP DELETE requests in a Java application to get messages from a WebSphere MQ queue, using the WebSphere MQ
bridge for HTTP and handles the responses containing the WebSphere MQ message.

Parameters for HTTPPOST and HTTPDELETE

 .-SYSTEM.DEFAULT.LOCAL.QUEUE-. .-localhost:8080-.

>>-+----------------------------+--+----------------+----------->

 '-queueName------------------' '-hostName-------'

 .-mq----------.

>--+-------------+---><

 '-contextRoot-'

To run the HTTPPOST sample, complete the following steps:

Procedure

1. In a command window, navigate to the HTTP samples directory.

2. Run the HTTPPOST sample.

java -classpath . HTTPPOST [parameters]

When the HTTPPOST sample starts, the following output is displayed:

HTTP POST Sample start

Target server is 'hostName'

Target queue is 'queueName'

Target context-root is 'contextRoot'

3. In the command prompt, type the text that you want to form your message body.

4. Press enter to post the message to the WebSphere MQ queue.

a. If you want to send another message, enter some more text. The texts forms the body of a second WebSphere MQ message.

b. Press enter to post the message to the WebSphere MQ queue.

5. Press enter twice to end HTTPPOST. The following output is displayed:

HTTP POST Sample end

What to do next

The HTTPDELETE sample performs a destructive get of all the messages you placed on the WebSphere MQ queue.

Run the HTTPDELETE sample by completing the following steps:

1. In a command window, navigate to WMQ InstallDir/tools/samples.

2. Run the HTTPDELETE sample.

java -classpath . HTTPPOST [parameters]

When the HTTPDELETE sample starts, the following output is displayed:

HTTP DELETE Sample start

Target server is 'host:port'

Target queue is 'your queue name'

Target context-root is 'your context-root'

message

message

...

Parent topic: WebSphere MQ bridge for HTTP

Related tasks
Installing, configuring, and verifying WebSphere MQ bridge for HTTP

This build: January 26, 2011 11:10:14

Table 1. Location of HTTP samples

Platform Location

Windows mqmtop/tools/http/samples

z/OS PathPrefix/usr/lpp/mqm/V7R0M0/http/samples

i5/OS mqmtop/java/samples/http

All other platforms mqmtop/samp/http

Page 92 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts11310_

2.5. Security considerations for WebSphere bridge for HTTP

Standard Web security considerations apply to authenticating a Web browser client. Authorization to WebSphere® MQ resources is at the level of the

user running the WebSphere Bridge for HTTP servlet, and not the individual Web browser client. Standard WebSphere MQ security consideration
apply to WebSphere MQ.

Data flowing from a Web browser to a WebSphere MQ application using WebSphere bridge for HTTP, and back, takes a three steps:

Client connection

From the browser to the WebSphere Bridge for HTTP over a TCP/IP connection using HTTP.

Resource adapter connection to WebSphere MQ

The connection is from the WebSphere Bridge for HTTP to a WebSphere MQ queue manager. The connection is either a client connection, over
TCP/IP, or a local WebSphere MQ bindings connection. Once the connection is made, the HTTP request is placed on a standard local queue or a
transmission queue.

From the WebSphere MQ local queue over one or more channels, to the target queue.

Apply standard techniques for securing queues, topics, queue managers, and channels.

The reply takes the steps in reverse.

Client connection
Secure connections between HTTP clients and the application server using the Web container. Use standard HTTP server techniques, such as using
HTTPS. Refer to the documentation for your application server for information.

Resource adapter connection to WebSphere MQ

The connection between the resource adapter and queue manager is authorized using only a single user ID. Assign a single user ID to identify

requests from the WebSphere Bridge for HTTP. The user ID must have restricted WebSphere MQ authorizations only to the resources external users
must have access. You must authenticate the actual client separately, and establish trust for successive interactions with the client, using standard
techniques for Web security.

Secure the connection between the resource adapter and the queue manager using the single user ID. Restrict the authorities the user ID has to no
more than needed to read and write messages to queues and topics. The WebSphere Bridge for HTTP is a point of attack between the internet and
your intranet.

How you secure the connection between your resource adapter and WebSphere MQ is dependent on your specific resource adapter. Refer to the
documentation for the resource adapter.

Parent topic: WebSphere MQ bridge for HTTP

This build: January 26, 2011 11:10:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts21150_

2.6. Reference material for WebSphere MQ bridge for HTTP

Reference topics for WebSphere® MQ bridge for HTTP, arranged alphabetically

HTTP DELETE: WebSphere MQ bridge for HTTP command
The HTTP DELETE operation gets a message from a WebSphere MQ queue, or retrieves a publication from a topic. The message is removed
from the queue. If the publication is retained, it is not removed. A response message is sent back to the client including information about the
message.

HTTP GET: WebSphere MQ bridge for HTTP command
The HTTP GET operation gets a message from a WebSphere MQ queue. The message is left on the queue. The HTTP GET operation is
equivalent to browsing a WebSphere MQ queue.

HTTP POST: WebSphere MQ bridge for HTTP command
The HTTP POST operation puts a message on a WebSphere MQ queue, or publishes a message to a topic.

HTTP headers
The WebSphere MQ bridge for HTTP supports custom request and entity HTTP headers, and a subset of standard HTTP headers.

HTTP return codes

List of return codes from the WebSphere MQ bridge for HTTP

Message types and message mappings for WebSphere Bridge for HTTP
WebSphere MQ bridge for HTTP supports four message classes, TEXT, BYTES, STREAM and MAP. The message classes are mapped to JMS

message types and HTTP Content-Type.

URI Format
URIs intercepted by WebSphere MQ bridge for HTTP.

Parent topic: WebSphere MQ bridge for HTTP

This build: January 26, 2011 11:10:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 93 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts22001_

2.6.1. HTTP DELETE: WebSphere MQ bridge for HTTP command

The HTTP DELETE operation gets a message from a WebSphere® MQ queue, or retrieves a publication from a topic. The message is removed from

the queue. If the publication is retained, it is not removed. A response message is sent back to the client including information about the message.

Syntax

Request

>>-+-DELETE-+-- --| Path |-- --HTTP version--CRLF--------------->

 '-GET----'

 .-CRLF---------------. .-CRLF---------------.

 V | V |

>----+----------------+-+----+----------------+-+--------------->

 '-general-header-' '-request-header-'

 .-CRLF----------------------------.

 V |

>----+-----------------------------+-+-------------------------><

 '-| Entity-header (Request) |-'

Path

|--/--contextRoot--/-->

>--msg/--+-queue/--queueName--+-------------+-+--/--------------|

 | '-@--qMgrName-' |

 '-topic/--topicName------------------'

entity-header (Request)

|--+--+-------------|

 +-standard entity-header-- --entity-value------+

 +-x-msg-correlId - --correlation ID------------+

 +-x-msg-msgId - --message ID-------------------+

 +-x-msg-range-- --range------------------------+

 +-x-msg-require-headers-- --entity header name-+

 '-x-msg-wait - --wait time---------------------'

Note:

1. If a question mark (?) is used it must be substituted with %3f. For example, orange?topic should be specified as orange%3ftopic.

2. @qMgrName is only valid on an HTTP POST

Response

>>-HTTP version-- --HTTP Status-Code-- --HTTP Reason-Phrase--CRLF-->

 .-CRLF---------------. .-CRLF----------------.

 V | V |

>----+----------------+-+----+-----------------+-+-------------->

 '-general-header-' '-response-header-'

 .-CRLF-----------------------------.

 V |

>----+------------------------------+-+--+---------------+-----><

 '-| Entity-header (Response) |-' '-CRLF--Message-'

entity-header (Response)

|--+---+------------------|

 +-standard entity-header-- --entity-value-+

 +-x-msg-class-- --message type------------+

 +-x-msg-correlId-- --correlation ID-------+

 +-x-msg-encoding-- --encoding type--------+

 +-x-msg-expiry-- --duration---------------+

 +-x-msg-format-- --message format---------+

 +-x-msg-msgId-- --message ID--------------+

 +-x-msg-persistence-- --persistence-------+

 +-x-msg-priority-- --priority class-------+

 +-x-msg-replyTo-- --reply-to queue--------+

 +-x-msg-timestamp-- --HTTP-date-----------+

 '-x-msg-usr-- --user properties-----------'

Request parameters

Path

See URI Format.

HTTP version

HTTP version; for example, HTTP/1.1

general-header

See HTTP/1.1 - 4.5 General Header Fields.

request-header

Page 94 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

See HTTP/1.1 - 5.3 Request Header Fields. The Host field is mandatory on an HTTP/1.1 request. It is often automatically inserted by the tool you
use to create a client request.

entity-header (Request)

See HTTP/1.1 - 7.1 Entity Header Fields. One of the entity headers listed in the Request syntax diagram.

Response parameters

Path

See URI Format.

HTTP version

HTTP version; for example, HTTP/1.1

general-header

See HTTP/1.1 - 4.5 General Header Fields.

response-header

See HTTP/1.1 - 6.2 Response Header Fields.

entity-header (Response)

See HTTP/1.1 - 7.1 Entity Header Fields. One of the entity or response headers listed in the Response syntax diagram.The Content–Length is

always present in a response. It is set to zero if there is no message body.

Message

Message body.

Description

If the HTTP DELETE request is successful, the response message contains the data retrieved from the WebSphere MQ queue. The number of bytes in
the body of the message is returned in the HTTP Content-Length header. The status code for the HTTP response is set to 200 OK. If x-msg-range is

specified as 0, or 0-0, then the status code of the HTTP response is 204 No Content.

If the HTTP DELETE request is unsuccessful, the response includes a WebSphere MQ bridge for HTTP error message and an HTTP status code.

HTTP DELETE example

HTTP DELETE gets a message from a queue and deletes the message, or retrieves and deletes a publication. The HTTPDELETE Java sample is an
example an HTTP DELETE request reading a message from a queue. Instead of using Java, you could create an HTTP DELETE request using a
browser form, or an AJAX toolkit instead.

Figure 1 is an HTTP request to delete the next message on queue called myQueue. In response, the message body is returned to the client. In

WebSphere MQ terms, HTTP DELETE is a destructive get.

The request contains the HTTP request header x-msg-wait, which instructs WebSphere MQ bridge for HTTP how long to wait for a message to arrive

on the queue. The request also contains the x-msg-require-headers request header, which specifies that the client is to receive the message

correlation ID in the response.

Figure 1. Example of an HTTP DELETE request

DELETE /msg/queue/myQueue/ HTTP/1.1

Host: www.example.org

x-msg-wait: 10

x-msg-require-headers: correlID

Figure 2, is the response returned to the client. The correlation ID is returned to the client, as requested in x-msg-require-headers of the request.

Figure 2. Example of an HTTP DELETE response

HTTP/1.1 200 OK

Date: Wed, 2 Jan 2007 22:38:34 GMT

Server: Apache-Coyote/1.1 WMQ-HTTP/1.1 JEE-Bridge/1.1

Content-Length: 50

Content-Type: text/plain; charset=utf-8

x-msg-correlId: 1234567890

Here's my message body that will appear on the queue.

Parent topic: Reference material for WebSphere MQ bridge for HTTP

Related reference

correlId: HTTP x-msg-correlId entity-header
msgId: HTTP x-msg-msgId entity-header
range: HTTP x-msg-range request-header
require-headers: HTTP x-msg-require-headers request-header
wait: HTTP x-msg-wait request-header
HTTP return codes
URI Format

Related information

Hypertext Transfer Protocol -- HTTP/1.1
HTTP/1.1 - 4.5 General Header Fields
HTTP/1.1 - 5.3 Request Header Fields
HTTP/1.1 - 6.2 Response Header Fields
HTTP/1.1 - 7.1 Entity Header Fields

This build: January 26, 2011 11:10:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

Page 95 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

ts21240_

2.6.2. HTTP GET: WebSphere MQ bridge for HTTP command

The HTTP GET operation gets a message from a WebSphere® MQ queue. The message is left on the queue. The HTTP GET operation is equivalent to
browsing a WebSphere MQ queue.

Syntax

Request

>>-+-DELETE-+-- --| Path |-- --HTTP version--CRLF--------------->

 '-GET----'

 .-CRLF---------------. .-CRLF---------------.

 V | V |

>----+----------------+-+----+----------------+-+--------------->

 '-general-header-' '-request-header-'

 .-CRLF----------------------------.

 V |

>----+-----------------------------+-+-------------------------><

 '-| Entity-header (Request) |-'

Path

|--/--contextRoot--/-->

>--msg/--+-queue/--queueName--+-------------+-+--/--------------|

 | '-@--qMgrName-' |

 '-topic/--topicName------------------'

entity-header (Request)

|--+--+-------------|

 +-standard entity-header-- --entity-value------+

 +-x-msg-correlId - --correlation ID------------+

 +-x-msg-msgId - --message ID-------------------+

 +-x-msg-range-- --range------------------------+

 +-x-msg-require-headers-- --entity header name-+

 '-x-msg-wait - --wait time---------------------'

Note:

1. If a question mark (?) is used it must be substituted with %3f. For example, orange?topic should be specified as orange%3ftopic.

2. @qMgrName is only valid on an HTTP POST

Response

>>-HTTP version-- --HTTP Status-Code-- --HTTP Reason-Phrase--CRLF-->

 .-CRLF---------------. .-CRLF----------------.

 V | V |

>----+----------------+-+----+-----------------+-+-------------->

 '-general-header-' '-response-header-'

 .-CRLF-----------------------------.

 V |

>----+------------------------------+-+--+---------------+-----><

 '-| Entity-header (Response) |-' '-CRLF--Message-'

entity-header (Response)

|--+---+------------------|

 +-standard entity-header-- --entity-value-+

 +-x-msg-class-- --message type------------+

 +-x-msg-correlId-- --correlation ID-------+

 +-x-msg-encoding-- --encoding type--------+

 +-x-msg-expiry-- --duration---------------+

 +-x-msg-format-- --message format---------+

 +-x-msg-msgId-- --message ID--------------+

 +-x-msg-persistence-- --persistence-------+

 +-x-msg-priority-- --priority class-------+

 +-x-msg-replyTo-- --reply-to queue--------+

 +-x-msg-timestamp-- --HTTP-date-----------+

 '-x-msg-usr-- --user properties-----------'

Request parameters

Path

See URI Format.

HTTP version

HTTP version; for example, HTTP/1.1

general-header

See HTTP/1.1 - 4.5 General Header Fields.

request-header

See HTTP/1.1 - 5.3 Request Header Fields. The Host field is mandatory on an HTTP/1.1 request. It is often automatically inserted by the tool you
use to create a client request.

entity-header (Request)

Page 96 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

See HTTP/1.1 - 7.1 Entity Header Fields. One of the entity headers listed in the Request syntax diagram.

Response parameters

Path

See URI Format.

HTTP version

HTTP version; for example, HTTP/1.1

general-header

See HTTP/1.1 - 4.5 General Header Fields.

response-header

See HTTP/1.1 - 6.2 Response Header Fields.

entity-header (Response)

See HTTP/1.1 - 7.1 Entity Header Fields. One of the entity or response headers listed in the Response syntax diagram.The Content–Length is

always present in a response. It is set to zero if there is no message body.

Message

Message body.

Description

If the HTTP GET request is successful, the response message contains the data retrieved from the WebSphere MQ queue. The number of bytes in the
body of the message is returned in the HTTP Content-Length header. The status code for the HTTP response is set to 200 OK. If x-msg-range is

specified as 0, or 0-0, then the status code of the HTTP response is 204 No Content.

If the HTTP GET request is unsuccessful, the response includes a WebSphere MQ bridge for HTTP error message and an HTTP status code.

HTTP GET example

HTTP GET gets a message from a queue. The message remains on the queue. In WebSphere MQ terms, HTTP GET is a browse request. You could
create an HTTP DELETE request using a Java client, a browser form, or an AJAX toolkit.

Figure 1 is an HTTP request to browse the next message on queue called myQueue.

The request contains the HTTP request header x-msg-wait, which instructs WebSphere MQ bridge for HTTP how long to wait for a message to arrive

on the queue. The request also contains the x-msg-require-headers request header, which specifies that the client is to receive the message

correlation ID in the response.

Figure 1. Example of an HTTP GET request

GET /msg/queue/myQueue/ HTTP/1.1

Host: www.example.org

x-msg-wait: 10

x-msg-require-headers: correlID

Figure 2 is the response returned to the client. The correlation ID is returned to the client, as requested in x-msg-require-headers of the request.

Figure 2. Example of an HTTP GET response

HTTP/1.1 200 OK

Date: Wed, 2 Jan 2007 22:38:34 GMT

Server: Apache-Coyote/1.1 WMQ-HTTP/1.1 JEE-Bridge/1.1

Content-Length: 50

Content-Type: text/plain; charset=utf-8

x-msg-correlId: 1234567890

Here's my message body that will appear on the queue.

Parent topic: Reference material for WebSphere MQ bridge for HTTP

Related reference
correlId: HTTP x-msg-correlId entity-header
msgId: HTTP x-msg-msgId entity-header
range: HTTP x-msg-range request-header
require-headers: HTTP x-msg-require-headers request-header
wait: HTTP x-msg-wait request-header
HTTP return codes
URI Format

Related information
Hypertext Transfer Protocol -- HTTP/1.1
HTTP/1.1 - 4.5 General Header Fields
HTTP/1.1 - 5.3 Request Header Fields
HTTP/1.1 - 6.2 Response Header Fields
HTTP/1.1 - 7.1 Entity Header Fields

This build: January 26, 2011 11:10:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts21230_

2.6.3. HTTP POST: WebSphere MQ bridge for HTTP command

The HTTP POST operation puts a message on a WebSphere® MQ queue, or publishes a message to a topic.

Page 97 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

Syntax

Request

>>-POST-- --| Path |-- --HTTP version--CRLF--------------------->

 .-CRLF---------------. .-CRLF---------------.

 V | V |

>----+----------------+-+----+----------------+-+--------------->

 '-general-header-' '-request-header-'

 .-CRLF----------------------------. .-CRLF----.

 V | V |

>----+-----------------------------+-+--CRLF----Message-+------><

 '-| entity header (Request) |-'

Path

|--/--contextRoot--/-->

>--msg/--+-queue/--queueName--+-------------+-+--/--------------|

 | '-@--qMgrName-' |

 '-topic/--topicName------------------'

entity-header (Request)

|--+--+-------------|

 +-standard entity-header-- --entity-value------+

 +-x-msg-class-- --message type-----------------+

 +-x-msg-correlId-- --correlation ID------------+

 +-x-msg-encoding-- --encoding type-------------+

 +-x-msg-expiry-- --duration--------------------+

 +-x-msg-format-- --message format--------------+

 +-x-msg-msgId-- --message ID-------------------+

 +-x-msg-persistence-- --persistence------------+

 +-x-msg-priority-- --priority class------------+

 +-x-msg-replyTo-- --reply-to queue-------------+

 +-x-msg-require-headers-- --entity header name-+

 '-x-msg-usr-- --user properties----------------'

Note:

1. If a question mark (?) is used it must be substituted with %3f. For example, orange?topic should be specified as orange%3ftopic.

2. @qMgrName is only valid on an HTTP POST

Response

>>-HTTP version-- --HTTP Status-Code-- --HTTP Reason-Phrase--CRLF-->

 .-CRLF---------------. .-CRLF----------------.

 V | V |

>----+----------------+-+----+-----------------+-+-------------->

 '-general-header-' '-response-header-'

 .-CRLF-----------------------------.

 V |

>----+------------------------------+-+------------------------><

 '-| entity-header (Response) |-'

entity-header (Response)

|--+---+------------------|

 +-standard entity-header-- --entity-value-+

 +-x-msg-class-- --message type------------+

 +-x-msg-correlId-- --correlation ID-------+

 +-x-msg-encoding-- --encoding type--------+

 +-x-msg-expiry-- --duration---------------+

 +-x-msg-format-- --message format---------+

 +-x-msg-msgId-- --message ID--------------+

 +-x-msg-persistence-- --persistence-------+

 +-x-msg-priority-- --priority class-------+

 +-x-msg-replyTo-- --reply-to queue--------+

 +-x-msg-timestamp-- --HTTP-date-----------+

 '-x-msg-usr-- --user properties-----------'

Request parameters

Path

See URI Format.

HTTP version

HTTP version; for example, HTTP/1.1

general-header

See HTTP/1.1 - 4.5 General Header Fields.

request-header

See HTTP/1.1 - 5.3 Request Header Fields. The Host field is mandatory on an HTTP/1.1 request. It is often automatically inserted by the tool you
use to create a client request.

entity-header (Request)

See HTTP/1.1 - 7.1 Entity Header Fields. One of the entity headers listed in the Request syntax diagram.The Content-Length and Content-Type

Page 98 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

should be inserted in a request, and are often inserted automatically by the tool you use to create a client request. The Content-Type must match

the type defined in the x-msg-class custom entity-header, if it is specified.

Message

Message to put onto the queue, or publication to post to a topic.

Response parameters

Path

See URI Format.

HTTP version

HTTP version; for example, HTTP/1.1

general-header

See HTTP/1.1 - 4.5 General Header Fields.

response-header

See HTTP/1.1 - 6.2 Response Header Fields.

entity-header (Response)

See HTTP/1.1 - 7.1 Entity Header Fields. One of the entity or response headers listed in the Response syntax diagram.The Content–Length is

always present in a response. It is set to zero if there is no message body.

Description

If no x-msg-usr header is included, and message class is BYTES or TEXT, the message put on the queue does not have an MQRFH2.

Use HTTP entity and request headers in the HTTP POST request to set the properties of the message that is put onto the queue. You can also use x-

msg-require-headers to request which headers are returned in the response message.

If the HTTP POST request is successful, the entity of the response message is empty and its Content-Length is zero. The HTTP status code is 200 OK.

If the HTTP POST request is unsuccessful, the response includes a WebSphere MQ bridge for HTTP error message and an HTTP status code. The
WebSphere MQ message is not put on the queue or topic.

HTTP POST example

HTTP POST puts a message to a queue, or a publication to a topic. The HTTPPOST Java sample is an example an HTTP POST request of a message
to a queue. Instead of using Java, you could create an HTTP POST request using a browser form, or an AJAX toolkit instead.

Figure 1 shows an HTTP request to put a message on a queue called myQueue. This request contains the HTTP header x-msg-correlId to set the

correlation ID of the WebSphere MQ message.

Figure 1. Example of an HTTP POST request to a queue

POST /msg/queue/myQueue/ HTTP/1.1

Host: www.example.org

Content-Type: text/plain

x-msg-correlID: 1234567890

Content-Length: 50

Here's my message body that will appear on the queue.

Figure 2 shows the response sent back to the client. There is no response content.

Figure 2. Example of an HTTP POST response

HTTP/1.1 200 OK

Date: Wed, 2 Jan 2007 22:38:34 GMT

Server: Apache-Coyote/1.1 WMQ-HTTP/1.1 JEE-Bridge/1.1

Content-Length: 0

Parent topic: Reference material for WebSphere MQ bridge for HTTP

Related reference
class: HTTP x-msg-class entity-header
correlId: HTTP x-msg-correlId entity-header

encoding: HTTP x-msg-encoding entity-header
expiry: HTTP x-msg-expiry entity-header
format: HTTP x-msg-format entity-header
msgId: HTTP x-msg-msgId entity-header
persistence: HTTP x-msg-persistence entity-header
priority: HTTP x-msg-priority entity-header
replyTo: HTTP x-msg-replyTo entity-header
require-headers: HTTP x-msg-require-headers request-header
usr: HTTP x-msg-usr entity-header
HTTP return codes
Message types and message mappings for WebSphere Bridge for HTTP
URI Format

Related information
Hypertext Transfer Protocol -- HTTP/1.1
HTTP/1.1 - 4.5 General Header Fields
HTTP/1.1 - 5.3 Request Header Fields
HTTP/1.1 - 6.2 Response Header Fields
HTTP/1.1 - 7.1 Entity Header Fields

This build: January 26, 2011 11:10:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 99 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts21220_

2.6.4. HTTP headers

The WebSphere® MQ bridge for HTTP supports custom request and entity HTTP headers, and a subset of standard HTTP headers.

HTTP practice is to prefix all custom headers with x-, the WebSphere MQ Bridge for HTTP headers are prefixed with x-msg-. For example, to set the

priority header use x-msg-priority.

Note:

� Most header values are case sensitive. For example, when using the msgId header, NONE is a keyword, whereas none is a msgID.

� Misspelled headers are ignored.

Custom entity headers

The custom entity headers contain information about WebSphere MQ messages. Using entity headers, you can set values in the message descriptor
(MQMD), or query values in the MQMD. An additional entity header, x-msg-usr, sets and returns any user property information you want to associate

with a request.

You can use entity headers in different HTTP request contexts:

DELETE

You can only use the x-msg-correlId, or x-msg-msgId, or both, entity headers with a DELETE HTTP request. The effect of the headers is to select

a particular message by MsgId and CorrelId in an MQGET, and to delete the message from its queue.

GET

You can only use the x-msg-correlId, or x-msg-msgId, or both, entity headers with a GET HTTP request. The effect of the headers is to select a

particular message by MsgId and CorrelId in an MQGET for browse.

POST

You can use any entity header in a POST HTTP request, except x-msg-timestamp.

x-msg-require-headers

On any GET, POST or DELETE HTTP request, you can add multiple entity headers inside the x-msg-require-headers request header, separated

by commas. The effect is to return the specified entity headers in the HTTP response message, containing the value of the associated message
property.

The description of each header lists in which contexts the header is processed by WebSphere MQ bridge for HTTP. For example, in Table 1, the
header is processed by WebSphere MQ bridge for HTTP in an HTTP POST request, or in the x-msg-require-headers request header in either an

HTTP POST, GET, or DELETE request. If the header is included in a context it is not allowed in, the header is ignored. No error is reported.

You can put any standard HTTP headers into requests to be processed by the Web server, or other request handlers. Similarly, the response might
contain other standard HTTP headers inserted by the Web server or other response handlers.

Custom request headers

The three custom request headers, x-msg-range, x-msg-require-headers, and x-msg-wait, pass additional information about the HTTP request to

the server. They act as request modifiers. With x-msg-range, you can restrict the amount of message data returned in a response. With x-msg-

require-headers, you can request the response to contain information about the result of the request. With x-msg-wait, you can modify the time

the client waits for an HTTP response.

Standard HTTP headers

The Host standard HTTP request-header must be specified in an HTTP/1.1 request.

The Content-Length and Content-Type standard HTTP entity headers can be specified in a request.

The Content-Length, Content-Location, Content-Range, Content-Type, and Server standard HTTP entity headers can be returned in response to

a request. Specify one or more of the standard HTTP headers in the x-msg-request-header header in the request message.

Alphabetic list of headers

class: HTTP x-msg-class entity-header
Set or return the message type.

Content-Length: HTTP entity-header
Set or return the length, in bytes, of the body of the message.

Content-Location: HTTP entity-header
Returns the queue or topic referenced in the request, in the standard Content-Location header in the HTTP response message.

Content-Range: HTTP entity-header
Return the range of bytes selected from a WebSphere MQ message in the Content-Range header in an HTTP response.

Content-Type: HTTP entity-header
Set or return the class of the JMS message in a WebSphere MQ message according the to HTTP content-type.

correlId: HTTP x-msg-correlId entity-header
Set or return the correlation identifier.

encoding: HTTP x-msg-encoding entity-header

Table 1. Example of how the allowed contexts is documented.

Valid in HTTP request message POST, x-msg-require-headers

Page 100 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

Set or return the message encoding.

expiry: HTTP x-msg-expiry entity-header
Set or return the message expiry duration.

format: HTTP x-msg-format entity-header
Set or return the WebSphere MQ message format.

msgId: HTTP x-msg-msgId entity-header
Set or return the message identifier.

persistence: HTTP x-msg-persistence entity-header

Set or return the message persistence.

priority: HTTP x-msg-priority entity-header
Set or return the message priority.

range: HTTP x-msg-range request-header
Return a range of bytes from a message.

replyTo: HTTP x-msg-replyTo entity-header
Set or return the message reply-to queue and queue manager name.

Server: HTTP response-header
Returns information about the server and protocol the client is connected to.

require-headers: HTTP x-msg-require-headers request-header
Set which headers to return in the HTTP response message.

timestamp: HTTP x-msg-timestamp entity-header
Return the message time stamp.

usr: HTTP x-msg-usr entity-header
Set or return the user properties.

wait: HTTP x-msg-wait request-header
Set the period of time to wait for a message to arrive, before returning an HTTP 504 Gateway Timeout response message.

Parent topic: Reference material for WebSphere MQ bridge for HTTP

Related information
Hypertext Transfer Protocol -- HTTP/1.1

This build: January 26, 2011 11:10:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts21250_

2.6.4.1. class: HTTP x-msg-class entity-header

Set or return the message type.

Description

� In an HTTP POST request, sets the type of the message created.

� Specifying the class header on a GET or DELETE returns a 400 Bad Request with entity body of MQHTTP40007.

� Specified in x-msg-require-headers, sets x-msg-class in the HTTP response message to the type of a message.

� If an invalid value is specified for this header a MQHTTP40005 message is returned.

� If the x-msg-class header is not specified and the content-type of the message is application/x-www-form-urlencoded, the data is assumed

to be a JMS map object.

Parent topic: HTTP headers

This build: January 26, 2011 11:10:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts22010_

Type Description

HTTP header name x-msg-class

HTTP header type Entity-header

Valid in HTTP request message POST, x-msg-require-headers

Allowed values
BYTES

MAP

STREAM

TEXT

Default value BYTES

Page 101 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

2.6.4.2. Content-Length: HTTP entity-header

Set or return the length, in bytes, of the body of the message.

Description

� The Content-Length is optional in an HTTP request. For a GET or DELETE the length must be zero. For POST, if Content-Length is specified

and it does not match the length of the message-line, the message is either truncated, or padded with nulls to the specified length.

� The Content-Length is always returned in the HTTP response even when there is no content, in which case the value is zero.

Parent topic: HTTP headers

Related information
HTTP/1.1 - 14.13 Content-Length

This build: January 26, 2011 11:10:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts22162_

2.6.4.3. Content-Location: HTTP entity-header

Returns the queue or topic referenced in the request, in the standard Content-Location header in the HTTP response message.

Description

� When requested in x-msg-require-headers, the Content-Location entity-header returns the queue or topic referenced in the HTTP request.

Parent topic: HTTP headers

Related information
HTTP/1.1 - 14.14 Content-Location

This build: January 26, 2011 11:10:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts22150_

2.6.4.4. Content-Range: HTTP entity-header

Return the range of bytes selected from a WebSphere MQ message in the Content-Range header in an HTTP response.

Description

�

� The Content-Range is only returned in the HTTP response when Content-Range is specified in a GET or DELETE request that contains an x-

msg-range request header.

� If x-msg-range is specified on a GET or DELETE request, the range of bytes specified in the Content-Range header are returned in the

response. For example, if x-msg-range: 0-60 is used in a request for a message containing 100 bytes, the content-range header holds the

string 0-60/100

Type Description

HTTP header name Content-Length

HTTP header type Entity-header

Valid in HTTP request message x-msg-require-headers

Allowed and returned value
Integer value

Length in bytes of the message body.

Type Description

HTTP header name Content-Location

HTTP header type Entity-header

Valid in HTTP request message x-msg-require-headers

Returned value URI in the format,

/msg/queue/queuename

or

/msg/topic/topicname

Type Description

HTTP header name Content-Range

HTTP header type Entity-header

Valid in HTTP request

message

x-msg-require-headers

Returned value
String

Returns the lower limit, m and upper limit, n of the returned substring, and length of the whole

message. For example,

m—n/length

Page 102 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

� An x-msg-range request also returns the content range in the x-msg-range header in the HTTP response.

Parent topic: HTTP headers

Related information
HTTP/1.1 - 14.16 Content-Range

This build: January 26, 2011 11:10:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts22160_

2.6.4.5. Content-Type: HTTP entity-header

Set or return the class of the JMS message in a WebSphere® MQ message according the to HTTP content-type.

Description

� On an HTTP POST request, specify either the Content-Type or the x-msg-class. If you specify both, they must be consistent or an HTTP Bad

Request exception, Status code 400 is returned. If you omit both, the Content-Type and the x-msg-class, a Content-Type of text/* is

assumed.

� The Content-Type is always set in the response to an HTTP GET or DELETE that has a message body. The Content-Type is set according to

the rules in Table 2.

Parent topic: HTTP headers

Related information
HTTP/1.1 - 14.17 Content-Type
HTTP/1.1 - 3.7 media-type

This build: January 26, 2011 11:10:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts22160_

2.6.4.6. correlId: HTTP x-msg-correlId entity-header

Set or return the correlation identifier.

Type Description

HTTP header name Content-Type

HTTP header type Entity-header

Valid in HTTP request message POST, x-msg-require-headers

Allowed or returned value
media-type

For media-types that are supported see Table 1.

Table 1. Mapping between x-msg-class and HTTP Content-Type

x-msg-class HTTP Content-Type

BYTES
application/octet-stream
application/xml

TEXT
text/*

MAP
application/x-www-form-urlencoded

application/xml (optional)

STREAM
application/xml (optional)

Table 2. Mapping message types to x-msg-class and Content-Type

Message format JMS Message type x-msg-class Content-Type

Anything except MQFMT_STRING None BYTES application/octet-stream

MQFMT_STRING None TEXT text/plain

MQFMT_NONE jms_bytes BYTES application/octet-stream

MQFMT_NONE jms_text TEXT text/plain

MQFMT_NONE jms_map MAP application/xml

MQFMT_NONE jms_stream STREAM application/xml

Type Description

HTTP header name x-msg-correlId

HTTP header type Entity-header

Valid in HTTP request

message

DELETE, GET, POST, x-msg-require-headers

Allowed values
String value

For example:

x-msg-correlId: mycorrelationid

Strings enclosed in double quotation marks are permitted; for example:

Page 103 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

Description

� On an HTTP POST request, sets the correlation ID of the message created.

� On an HTTP GET or DELETE request, selects the message from the queue or topic. If no message exists with the specified correlation ID, an
HTTP 504 Gateway Timeout response is returned. x-msg-correlId can be used with x-msg-msgID to select a message from a queue or topic

that matches both selectors.

� Specified in x-msg-require-headers, sets x-msg-corelId in the HTTP response message to the correlation ID of a message.

� Horizontal white space is allowed after the 0x: prefix.

Note:

� Specifying x-msg-correlId without a value on an HTTP GET or DELETE request; for example, "x-msg-correlId:", returns the next message

on the queue or topic regardless of its correlation ID.

� If you specify a selector of 24 characters or fewer, or 0x: followed by 48 characters or fewer, WebSphere® MQ bridge for HTTP uses an
optimized selector for improved performance.

� A JMS message selector containing JMSCorrelationID is used when selecting messages from the queue. This selector behaves as described in
Selection Behavior.

Parent topic: HTTP headers

This build: January 26, 2011 11:10:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts22020_

2.6.4.7. encoding: HTTP x-msg-encoding entity-header

Set or return the message encoding.

Description

� On an HTTP POST request, specifies the encoding of the message created.

� On an HTTP GET or DELETE request, the x-msg-encoding header is ignored.

� Specified in x-msg-require-headers, sets x-msg-encoding in the HTTP response message to the encoding property of a message.

Parent topic: HTTP headers

This build: January 26, 2011 11:10:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts22030_

2.6.4.8. expiry: HTTP x-msg-expiry entity-header

Set or return the message expiry duration.

x-msg-correlId: "my id"

Hex value

A hex value prefixed with 0x:; for example:

x-msg-correlId: 0x:43c1d23a

The hex value following 0x: is limited to 48 characters representing 24 bytes. Additional data is

ignored.

Default value Not applicable

Type Description

HTTP header name x-msg-encoding

HTTP header type Entity-header

Valid in HTTP request message POST, x-msg-require-headers

Allowed values A comma-separated list of the following values:

DECIMAL_NORMAL

DECIMAL_REVERSED

FLOAT_IEEE_NORMAL

FLOAT_IEEE_REVERSED

FLOAT_S390

INTEGER_NORMAL

INTEGER_REVERSED

For example,

x-msg-encoding: INTEGER_NORMAL,DECIMAL_NORMAL,FLOAT_IEEE_NORMAL

Note: The value is case-sensitive

Default value DECIMAL_NORMAL, FLOAT_IEEE_NORMAL, INTEGER_NORMAL

Type Description

HTTP header name x-msg-expiry

Page 104 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

Description

� When set on an HTTP POST request, the request message expires in the time specified.

� On an HTTP GET or DELETE request, the x-msg-expiry header is ignored.

� Specified in x-msg-require-headers, sets x-msg-expiry in the HTTP response message to the expiry time of a message.

� UNLIMITED specifies that the message never expires.

� The expiry of a message starts from the time the message arrives on the queue, as a result network latency is ignored.

� The maximum value is limited by WebSphere® MQ to 214748364700 milliseconds. If a value greater than this is specified then the maximum
possible expiry time is assumed.

Parent topic: HTTP headers

This build: January 26, 2011 11:10:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts22040_

2.6.4.9. format: HTTP x-msg-format entity-header

Set or return the WebSphere MQ message format.

Description

� When set on an HTTP POST request, set the request message format.

� On an HTTP GET or DELETE request, the x-msg-format header is ignored.

� Specified in x-msg-require-headers, sets x-msg-format in the HTTP response message to the format of a message.

� NONE is case sensitive, and indicates that the message format is blank.

� The value of x-msg-format is used, even if it contradicts the media-type of the HTTP request. See Table 1.

Parent topic: HTTP headers

This build: January 26, 2011 11:10:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts22050_

HTTP header type Entity-header

Valid in HTTP request message POST, x-msg-require-headers

Allowed values
UNLIMITED

For example;

x-msg-expiry: UNLIMITED

Integer value

Milliseconds before expiry.
For example;

x-msg-expiry: 10000

Default value UNLIMITED

Type Description

HTTP header name x-msg-format

HTTP header type Entity-header

Valid in HTTP request message POST, x-msg-require-headers

Allowed values
NONE

For example,

x-msg-format: NONE

String value

Any user-defined value of up to eight characters. For example,

x-msg-format: myformat

Default value None

Table 1. Mapping content-type and x-msg-class to message format

x-msg-
class

Content-type Message format on queue/topic

BYTES
� application/octet-stream

� application/xml

WebSphere® MQ message: MQFMT set to MQC.MQFMT_NONE

TEXT
� text/* WebSphere MQ message: MQFMT set to

MQC.MQFMT_STRING

MAP
� application/x-www-form-urlencoded

� application/xml (optional)

JMSMap

STREAM
� application/xml (optional)

JMSStream

Page 105 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

2.6.4.10. msgId: HTTP x-msg-msgId entity-header

Set or return the message identifier.

Description

� On an HTTP POST request, sets the message ID of the message created.

� On an HTTP GET or DELETE request, selects the message from the queue or topic. If no message exists with the specified message ID, an
HTTP 504 Gateway Timeout response is returned. x-msg-msgId can be used with x-msg-correlID to select a message from a queue or topic

that matches both selectors.

� Specified in x-msg-require-headers, returns x-msg-msgId in the HTTP response to the message ID of a message.

� Horizontal white space is allowed after the 0x:prefix.

Note: Specifying x-msg-msgId without a value on an HTTP GET or DELETE request; for example, "x-msg-msgId:", returns the next message on the

queue or topic regardless of its message ID.

A JMS message selector containing JMSMessageID is used when selecting messages from the queue. This selector behaves as described in Selection
behavior.

Parent topic: HTTP headers

This build: January 26, 2011 11:10:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts22060_

2.6.4.11. persistence: HTTP x-msg-persistence entity-header

Set or return the message persistence.

Description

� When set on an HTTP POST request, set the request message persistence.

� On an HTTP GET or DELETE request, the x-msg-persistence header is ignored.

� Specified in x-msg-require-headers, sets x-msg-persistence in the HTTP response message to the persistence of a message.

Parent topic: HTTP headers

This build: January 26, 2011 11:10:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts22090_

Type Description

HTTP header name x-msg-msgId

HTTP header type Entity-header

Valid in HTTP request message DELETE, GET, POST, x-msg-require-headers

Allowed values
String value

For example,

x-msg-msgId: mymsgid

Strings enclosed in quotation marks for example, x-msg-msgId: "my id"

Hex value

A hex value prefixed with 0x:; for example,

x-msg-msgId: 0x:43c1d23a

Default value Not applicable

Type Description

HTTP header name x-msg-persistence

HTTP header type Entity-header

Valid in HTTP request message POST, x-msg-require-headers

Allowed values
NON_PERSISTENT

The message does not survive system failures or queue manager restarts.

For example,

x-msg-persistence: NON_PERSISTENT

PERSISTENT

The message survives system failures and restarts of the queue manager.

For example,

x-msg-persistence: PERSISTENT

AS_DESTINATION

Applies to POST only.

Use the default persistence of the destination as determined by the message provider.

Note: Case sensitive

Default value NON_PERSISTENT

Page 106 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

2.6.4.12. priority: HTTP x-msg-priority entity-header

Set or return the message priority.

Description

� When set on an HTTP POST request, set the request message priority.

� On an HTTP GET or DELETE request, the x-msg-priority header is ignored.

� Specified in x-msg-require-headers, sets x-msg-priority in the HTTP response message to the priority of a message.

Parent topic: HTTP headers

This build: January 26, 2011 11:10:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts22100_

2.6.4.13. range: HTTP x-msg-range request-header

Return a range of bytes from a message.

Description

� On an HTTP POST, the x-msg-range header is ignored.

� On an HTTP GET or DELETE, x-msg-range specifies the range of bytes returned in the response message. The range of bytes is returned in the

x-msg-range header in the response message. For example, if x-msg-range: 0-60 is used in a request for a message containing 100 bytes,

the content-range header holds the string 0-60/100.

� If no data is requested, using x-msg-range: 0 or x-msg-range: 0-0, the result is an HTTP 204 – No Content” response.

� If an invalid range is specified, for example, if n is greater than m, or the syntax is incorrect, the result is an HTTP 400 Bad Request error with

entity body MQHTTP40005.

� If x-msg-range is specified on anything but a GET or DELETE request, the result is an HTTP 400 Bad Request error with entity body

MQHTTP40007.

� If a valid range is specified on a GET or DELETE request, the result is an HTTP 1.1 Content-Range header as specified in the HTTP 1.1

specification.

Parent topic: HTTP headers

Type Description

HTTP header name x-msg-priority

HTTP header type Entity-header

Valid in HTTP request message POST, x-msg-require-headers

Allowed values
LOW

For example,

x-msg-priority: LOW

MEDIUM

This priority is equal to a WebSphere® MQ priority level of 4. For example,

x-msg-priority: MEDIUM

HIGH

For example,

x-msg-priority: HIGH

Integer value

A string representation of an integer between 0 - 9; for example,

x-msg-priority: 3

AS_DESTINATION

Applies to POST only.

Use the default priority of the destination as determined by the message provider.

Note: Case sensitive

Default value MEDIUM

Type Description

HTTP header name x-msg-range

HTTP header type Request-header

Valid in HTTP request message GET, DELETE

Allowed value
Integer value n

Returns the first n bytes of the message.

If n = 0, the result is an HTTP 204 – No Content response code.

Integer values n—m

n<m

Returns a range of bytes from the message content, from n bytes to m bytes inclusive.

ALL

The whole of the message content is returned in the response message.

Default value Not applicable

Page 107 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

This build: January 26, 2011 11:10:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts22110_

2.6.4.14. replyTo: HTTP x-msg-replyTo entity-header

Set or return the message reply-to queue and queue manager name.

Description

� When set on an HTTP POST request, set the request message replyTo destination.

� On an HTTP GET or DELETE request, the x-msg-replyTo header is ignored.

� Specified in x-msg-require-headers, sets x-msg-replyTo in the HTTP response message to the reply-to queue and queue manager name of a

message.

Note: The URI in the HTTP response can include the name of the queue manager to which the WebSphere® MQ bridge for HTTP is connected.

Parent topic: HTTP headers

Related reference
URI Format

This build: January 26, 2011 11:10:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts22080_

2.6.4.15. Server: HTTP response-header

Returns information about the server and protocol the client is connected to.

Description

� If WebSphere® MQ Bridge for HTTP is deployed to an application server, the WebSphere MQ bridge for HTTP details is appended to the server
response header. For example, the WebSphere MQ bridge for HTTP deployed to WebSphere Application Server Community Edition, called

Apache-Coyote, gives the response:

 Server: Apache-Coyote/1.1 WMQ-HTTP/1.1 JEE-Bridge/1.1

Parent topic: HTTP headers

Related information
HTTP/1.1 - 14.38 Server

This build: January 26, 2011 11:10:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts22180_

2.6.4.16. require-headers: HTTP x-msg-require-headers request-header

Set which headers to return in the HTTP response message.

Type Description

HTTP header name x-msg-replyTo

HTTP header type Entity-header

Valid in HTTP request message POST, x-msg-require-headers

Allowed values
URI

A point-to-point URI; for example,

x-msg-replyTo: /msg/queue/myReplyQueue

x-msg-replyTo: /msg/queue/myReplyQueue@myReplyQueueManager

Note: Case sensitive

Default value MEDIUM

Type Description

HTTP header name Server

HTTP header type Response-header

Valid in HTTP request message x-msg-require-headers

Returned value WMQ-HTTP/1.1 JEE-Bridge/1.1

or

Server: Product-token WMQ-HTTP/1.1 JEE-Bridge/1.1

Type Description

Page 108 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

Description

� The value of x-msg-require-headers is not case-sensitive, except in the cases of the ALL, NO_require-headers, and ALL-USR constants, and

the property-name variable.

Parent topic: HTTP headers

Related reference
class: HTTP x-msg-class entity-header
Content-Location: HTTP entity-header
Content-Range: HTTP entity-header
correlId: HTTP x-msg-correlId entity-header
encoding: HTTP x-msg-encoding entity-header
expiry: HTTP x-msg-expiry entity-header
format: HTTP x-msg-format entity-header
msgId: HTTP x-msg-msgId entity-header
persistence: HTTP x-msg-persistence entity-header
priority: HTTP x-msg-priority entity-header
replyTo: HTTP x-msg-replyTo entity-header
Server: HTTP response-header
timestamp: HTTP x-msg-timestamp entity-header
usr: HTTP x-msg-usr entity-header
URI Format

This build: January 26, 2011 11:10:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts22140_

2.6.4.17. timestamp: HTTP x-msg-timestamp entity-header

Return the message time stamp.

HTTP header name x-msg-require-headers

HTTP header type Request-header

Valid in HTTP request message POST, GET, DELETE

Allowed values A comma-separated list of the entity header names:

ALL

ALL-USR

class

content-location

correlId

encoding

expiry

format

msgId

NO_require-headers

persistence

priority

replyTo

server

timestamp

usr-property name

For example,

x-msg-require-headers: msgId

or,

x-msg-require-headers: expiry,correlId,timestamp

To request a specific property:

x-msg-require-headers: usr-myCustomProperty

To request all properties:

x-msg-require-headers: ALL-USR, ALL

Default value NO_require-headers

Type Description

HTTP header name x-msg-timestamp

HTTP header type Entity-header

Valid in HTTP request message x-msg-require-headers

Returned value
HTTP-date

A date in the format; day, date month year time time-zone; for example,

Sun, 06 Nov 1994 08:49:37 GMT

Defined by RFC 822, and updated in RFC 1123.

Default value Not applicable

Page 109 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

Description

� On an HTTP POST, GET or DELETE request, the x-msg-timestamp header is ignored.

� Specified in x-msg-require-headers, sets x-msg-timestamp in the HTTP response message to the timestamp of a message.

Parent topic: HTTP headers

Related information
HTTP/1.1 - 14.18 Date

This build: January 26, 2011 11:10:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts22070_

2.6.4.18. usr: HTTP x-msg-usr entity-header

Set or return the user properties.

Description

� When set on an HTTP POST request, set the request message user properties.

� On an HTTP GET or DELETE request, the x-msg-usr header is ignored.

� Specified in x-msg-require-headers, sets x-msg-usr in the HTTP response message to user properties of a message.

� Multiple properties can be set on a message. Specify multiple comma-separated properties in a single x-msg-usr header, or by using two or

more separate instances of the x-msg-usr header.

� You can request a specific property to be returned in the response to a GET or DELETE request. Specify the name of the property in the x-

msg-require-headers header of the request, using the prefix usr-. For example,

x-msg-require-headers: usr-myProp1

� To request that all user properties are returned in a response, use the ALL-USR constant. For example,

x-msg-require-headers: ALL-USR

Syntax

 .-,----------------------.

 V |

>>-x-msg-usr:----| usr-property-value |-+----------------------><

usr-property-value

|--| property-name |--;--| usr-value |--;--| usr-type |---------|

property-name

|--string---|

usr-value

|--+-| boolean |-+--|

 +-| i1 |------+

 +-| i2 |------+

 +-| i4 |------+

 +-| i8 |------+

 +-| r4 |------+

 +-| r8 |------+

 '-| qstring |-'

usr-type

|--+-boolean-+--|

 +-i1------+

 +-i2------+

 +-i4------+

 +-i8------+

 +-r4------+

 +-r8------+

 '-string--'

boolean

|--+-TRUE--+--|

 '-FALSE-'

i1

Type Description

HTTP header name x-msg-usr

HTTP header type Entity-header

Valid in HTTP request message POST, x-msg-require-headers

Allowed values See Syntax; for example,

x-msg-usr: myProp1;5;i1,

x-msg-usr: myProp2;"My String";string

Default value Not applicable

Page 110 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

|-- -128-- ≤ n ≤ --+127---|

i2

|-- -32768-- ≤ n ≤ --+32767-------------------------------------|

i4

|-- -2147483648-- ≤ n ≤ --+2147483647---------------------------|

i8

|-- -9223372036854775808-- ≤ n ≤ --+92233720368547750807--------|

r4

|-- -1.4E-45-- ≤ n ≤ --+3.4028235E38----------------------------|

r8

|-- -4.9E-324-- ≤ n ≤ --+1.7976931348623157E308-----------------|

qstring

|--"--string--"---|

Parent topic: HTTP headers

This build: January 26, 2011 11:10:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts22120_

2.6.4.19. wait: HTTP x-msg-wait request-header

Set the period of time to wait for a message to arrive, before returning an HTTP 504 Gateway Timeout response message.

Description

� On an HTTP POST request, the x-msg-wait header is ignored.

� On an HTTP GET or DELETE request, x-msg-wait specifies time to wait for a message to arrive before returning an HTTP 504 Gateway

Timeout response.

� NO_WAIT is case-sensitive.

� The default maximum wait time is 35000. You can change the default by setting the maximum_wait_time parameter of the servlet. See the

Installing, configuring, and verifying WebSphere MQ bridge for HTTP section for more information.

� If you set a value greater than maximum_wait_time, maximum_wait_time is used instead.

Parent topic: HTTP headers

This build: January 26, 2011 11:10:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts22130_

2.6.5. HTTP return codes

List of return codes from the WebSphere® MQ bridge for HTTP

The WebSphere MQ bridge for HTTP returns four types of error:

Servlet errors

MQHTTP0001 and MQHTTP0002 are servlet errors. They are logged, but not returned to the HTTP client.

Successful operations

An HTTP status code in the range 200 - 299 indicates a successful operation.

Client errors

Type Description

HTTP header name x-msg-wait

HTTP header type Request-header

Valid in HTTP request

message

GET, DELETE

Allowed value
NO_WAIT

For example,

x-msg-wait: NO_WAIT

Integer value

The number of milliseconds that the WebSphere MQ bridge for HTTP waits for a message to arrive; for

example,

x-msg-wait: 8

Default value NO_WAIT

Page 111 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

An HTTP status code in the range 400 - 499 indicates a client error. WebSphere MQ Bridge for HTTP return codes in the range MQHTTP40001 -
MQHTTP49999 correspond to client errors.

Server errors

An HTTP status code in the range 500 - 599 indicates a server error. WebSphere MQ Bridge for HTTP return codes in the range MQHTTP50001 -
MQHTTP59999 correspond to server errors.

If a server error occurs, a complete stack trace is output to the application server error log. The stack trace is also returned to the HTTP client in
the HTTP response. Handle the stack trace in the client application or refer it to the application server administrator to resolve the problem.

If the stack trace contains resource adapter errors, refer to the documentation for your resource adapter.

Alphabetic list of return codes

HTTP 200: OK
This class of status code indicates that the request was successfully received, understood and accepted.

HTTP 204: No content
Sent following a successful HTTP GET or DELETE and x-msg-range: 0 was sent in the request.

MQHTTP0001: No connection factory specified in the Servlet context
Servlet error

MQHTTP0002: Could not get connection manager for queueOrTopic using the JNDI name of jndiNameTried
Servlet error

MQHTTP40001: Reserved
Reserved

MQHTTP40002: URI is not valid for WebSphere MQ transport for HTTP
The URI specified in the HTTP request is not valid.

MQHTTP40003: URI is not valid. @qmgr is only valid on POST
The @qmgr URI option has been specified in a URI for an HTTP request that is not a POST request.

MQHTTP40004: Invalid Content-Type specified
The Content-Type header field specified on a POST request is not compatible with the x-msg-class header value.

MQHTTP40005: Bad message header value
A supported header field has been specified with a value that is not valid for the specified request.

MQHTTP40006: Header_name is not a valid request header
A header that is valid only in an HTTP response message has been specified in an HTTP request message.

MQHTTP40007: Header_name is only valid on ...
A header has been specified in an HTTP request, but the header field is not valid for the given request verb.

MQHTTP40008: Header_name maximum length is ...

The maximum length for the given header field has been exceeded.

MQHTTP40009: Header field header_field is not valid for ...
A header field specified in an HTTP request is not supported by the messaging provider to which the WebSphere MQ bridge for HTTP is
connected.

MQHTTP40010: Message with Content-Type content_type could not be parsed
The content of the HTTP request is not compatible with the Content-Type of the request.

MQHTTP40301: You are forbidden from accessing ...
The WebSphere MQ bridge for HTTP has been unable to authenticate itself for the specified destination.

MQHTTP40302: You are forbidden from ...
The WebSphere MQ bridge for HTTP has been unable to connect to the queue manager.

MQHTTP40401: The destination destination_name could not be found
The destination specified in the HTTP request URI cannot be found by the WebSphere MQ bridge for HTTP.

MQHTTP40501: Method method_namenot allowed
The method specified in the HTTP request is not supported by the WebSphere MQ bridge for HTTP.

MQHTTP41301: The message being posted was too large for the destination
The destination specified in the HTTP POST request URI cannot accept messages that are as long as the message specified in the HTTP request.

MQHTTP41501: The media type character set is unsupported
The character set specified in the Content-Type header field is not supported by the WebSphere MQ bridge for HTTP.

MQHTTP41502: Media-type media-type is not supported ...
The media-type specified in the HTTP request is not supported by the WebSphere MQ bridge for HTTP for the specified HTTP verb.

MQHTTP41503: Media-type media-type is not supported ...
The media-type specified in the HTTP request is not supported by the WebSphere MQ bridge for HTTP for the specified x-msg-class header

field.

MQHTTP41701: The HTTP header Expect is not supported
The WebSphere MQ bridge for HTTP does not support the Expect header field.

MQHTTP50001: There has been an unexpected problem ...

Page 112 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

An error has occurred in the WebSphere MQ bridge for HTTP.

MQHTTP50201: An error has occurred between the WebSphere MQ bridge for HTTP and the queue manager
An error has occurred between the WebSphere MQ bridge for HTTP and the queue manager

MQHTTP50401: Message retrieval timed out
No message matching the specified request parameters in an HTTP GET or HTTP DELETE was returned in the timeout period.

MQHTTP50501: HTTP 1.1 and upwards ...
The HTTP protocol used in the HTTP request is not supported by the WebSphere MQ bridge for HTTP.

Parent topic: Reference material for WebSphere MQ bridge for HTTP

This build: January 26, 2011 11:10:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts21340_

2.6.5.1. HTTP 200: OK

This class of status code indicates that the request was successfully received, understood and accepted.

HTTP status code
200 OK

Parent topic: HTTP return codes

This build: January 26, 2011 11:09:35

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts200m0_

2.6.5.2. HTTP 204: No content

Sent following a successful HTTP GET or DELETE and x-msg-range: 0 was sent in the request.

HTTP status code
204 No Content

Parent topic: HTTP return codes

This build: January 26, 2011 11:09:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts204m0_

2.6.5.3. MQHTTP0001: No connection factory specified in the Servlet context

Servlet error

Explanation
Servlet error

HTTP status code
None

Programmer response
Where these errors are logged is specific to your application server. Refer to the documentation for your application server.

Parent topic: HTTP return codes

This build: January 26, 2011 11:09:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts00001_

2.6.5.4. MQHTTP0002: Could not get connection manager for queueOrTopic using the JNDI

name of jndiNameTried

Servlet error

Explanation
Servlet error

HTTP status code
None

Programmer response

Page 113 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

Where these errors are logged is specific to your application server. Refer to the documentation for your application server.

Parent topic: HTTP return codes

This build: January 26, 2011 11:09:34

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts00002_

2.6.5.5. MQHTTP40001: Reserved

Reserved

HTTP status code
400 Bad Request

Parent topic: HTTP return codes

This build: January 26, 2011 11:10:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts40001_

2.6.5.6. MQHTTP40002: URI is not valid for WebSphere MQ transport for HTTP

The URI specified in the HTTP request is not valid.

Explanation
The URI specified in the HTTP request is not valid.

HTTP status code
400 Bad Request

Programmer response
Confirm that the format and syntax of the specified URI are correct.

Parent topic: HTTP return codes

This build: January 26, 2011 11:10:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts40002_

2.6.5.7. MQHTTP40003: URI is not valid. @qmgr is only valid on POST

The @qmgr URI option has been specified in a URI for an HTTP request that is not a POST request.

Explanation
The @qmgr URI option has been specified in a URI for an HTTP request that is not a POST request.

HTTP status code
400 Bad Request

Programmer response
If you are attempting to put a message by using the POST verb, change the HTTP request to a POST request. If you are attempting to get a
message by using the DELETE or GET verbs, remove @qmgr from the URI.

Parent topic: HTTP return codes

This build: January 26, 2011 11:10:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts40003_

2.6.5.8. MQHTTP40004: Invalid Content-Type specified

The Content-Type header field specified on a POST request is not compatible with the x-msg-class header value.

Explanation
The Content-Type header field specified on a POST request is not compatible with the x-msg-class header value.

HTTP status code
400 Bad Request

Programmer response
Change the Content-Type header field to one that is supported. The Content-Type header must be compatible with the specified x-msg-class

header field.

Parent topic: HTTP return codes

Page 114 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

This build: January 26, 2011 11:10:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts40004_

2.6.5.9. MQHTTP40005: Bad message header value

A supported header field has been specified with a value that is not valid for the specified request.

Explanation
A supported header field has been specified with a value that is not valid for the specified request.

HTTP status code
400 Bad Request

Programmer response
Change the value specified for the given header field to a value which is valid. Check the case of the value specified, as some header fields have
case-sensitive values.

Parent topic: HTTP return codes

This build: January 26, 2011 11:10:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts40005_

2.6.5.10. MQHTTP40006: Header_name is not a valid request header

A header that is valid only in an HTTP response message has been specified in an HTTP request message.

Explanation
A header which is valid only in an HTTP response message has been specified in an HTTP request message.

HTTP status code
400 Bad Request

Programmer response
Remove any headers from the HTTP request which are only valid in an HTTP response; for example, x-msg-timestamp.

Parent topic: HTTP return codes

This build: January 26, 2011 11:10:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts40006_

2.6.5.11. MQHTTP40007: Header_name is only valid on ...

A header has been specified in an HTTP request, but the header field is not valid for the given request verb.

Explanation
A header has been specified in an HTTP request, but the header field is not valid for the given request verb.

HTTP status code
400 Bad Request

Programmer response
Remove any headers from the HTTP request which are not valid for the given request verb. For example, x-msg-encoding is valid for HTTP POST

requests, but not valid for HTTP GET or HTTP DELETE requests.

Parent topic: HTTP return codes

This build: January 26, 2011 11:10:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts40007_

2.6.5.12. MQHTTP40008: Header_name maximum length is ...

The maximum length for the given header field has been exceeded.

Explanation
The maximum length for the given header field has been exceeded.

HTTP status code
400 Bad Request

Page 115 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

Programmer response
Change the value of the header field to a value which is within the range permitted for the header field.

Parent topic: HTTP return codes

This build: January 26, 2011 11:10:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts40008_

2.6.5.13. MQHTTP40009: Header field header_field is not valid for ...

A header field specified in an HTTP request is not supported by the messaging provider to which the WebSphere MQ bridge for HTTP is connected.

Explanation
A header field specified in an HTTP request is not supported by the messaging provider to which the WebSphere MQ bridge for HTTP is connected.
The error occurs if a messaging provider is used that cannot support all the features of the WebSphere MQ bridge for HTTP.

HTTP status code
400 Bad Request

Programmer response
Remove the unsupported header from the HTTP request.

Parent topic: HTTP return codes

This build: January 26, 2011 11:10:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts40009_

2.6.5.14. MQHTTP40010: Message with Content-Type content_type could not be parsed

The content of the HTTP request is not compatible with the Content-Type of the request.

Explanation
The content of the HTTP request is not compatible with the Content-Type of the request. A common cause is badly formed application/x-www-

form-urlencoded or application/xml data.

HTTP status code
400 Bad Request

Programmer response
Correct the content of the HTTP request so that it is in the correct format for the Content-Type of the request.

Parent topic: HTTP return codes

This build: January 26, 2011 11:10:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts40010_

2.6.5.15. MQHTTP40301: You are forbidden from accessing ...

The WebSphere MQ bridge for HTTP has been unable to authenticate itself for the specified destination.

Explanation
The WebSphere MQ bridge for HTTP has been unable to authenticate itself for the specified destination.

HTTP status code
403 Forbidden

Programmer response
Change the authentication properties of the destination so that the WebSphere MQ Bridge for HTTP is authorized to connect to it. Alternatively,
specify a destination to which the WebSphere MQ bridge for HTTP is authorized to connect.

Parent topic: HTTP return codes

This build: January 26, 2011 11:10:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts40301_

2.6.5.16. MQHTTP40302: You are forbidden from ...

The WebSphere MQ bridge for HTTP has been unable to connect to the queue manager.

Page 116 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

Explanation
The WebSphere MQ bridge for HTTP has been unable to connect to the queue manager. The WebSphere MQ bridge for HTTP security configuration is
incorrect.

HTTP status code
403 Forbidden

Programmer response
Change the authentication configuration of the queue manager so that the WebSphere MQ Bridge for HTTP is authorized to connect to it.
Alternatively, configure the WebSphere MQ bridge for HTTP to connect to a queue manager to which it is authorized to connect.

Parent topic: HTTP return codes

This build: January 26, 2011 11:10:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts40302_

2.6.5.17. MQHTTP40401: The destination destination_name could not be found

The destination specified in the HTTP request URI cannot be found by the WebSphere MQ bridge for HTTP.

Explanation
The destination specified in the HTTP request URI cannot be found by the WebSphere MQ bridge for HTTP.

HTTP status code
404 Not found

Programmer response
Check that the destination specified in the HTTP request URI exists, or specify an alternative destination.

Parent topic: HTTP return codes

This build: January 26, 2011 11:10:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts40401_

2.6.5.18. MQHTTP40501: Method method_namenot allowed

The method specified in the HTTP request is not supported by the WebSphere MQ bridge for HTTP.

Explanation
The method specified in the HTTP request is not supported by the WebSphere MQ bridge for HTTP.

HTTP status code
405 Method not allowed

Programmer response
Change the method specified in the HTTP request to one which is supported by the WebSphere MQ bridge for HTTP.

Parent topic: HTTP return codes

This build: January 26, 2011 11:10:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts40501_

2.6.5.19. MQHTTP41301: The message being posted was too large for the destination

The destination specified in the HTTP POST request URI cannot accept messages that are as long as the message specified in the HTTP request.

Explanation
The destination specified in the HTTP POST request URI cannot accept messages that are as long as the message specified in the HTTP request.

HTTP status code
413 Request entity too large

Programmer response
Reduce the size of the message specified in the HTTP request. Alternatively, specify a destination which can support messages of the wanted length.

Parent topic: HTTP return codes

This build: January 26, 2011 11:10:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts41301_

Page 117 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

2.6.5.21. MQHTTP41501: The media type character set is unsupported

The character set specified in the Content-Type header field is not supported by the WebSphere MQ bridge for HTTP.

Explanation
The character set specified in the Content-Type header field is not supported by the WebSphere MQ bridge for HTTP.

HTTP status code
415 Unsupported media type

Programmer response
Change the character set of the Content-Type header field to one that is supported by the WebSphere MQ bridge for HTTP.

Parent topic: HTTP return codes

This build: January 26, 2011 11:10:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts41501_

2.6.5.22. MQHTTP41502: Media-type media-type is not supported ...

The media-type specified in the HTTP request is not supported by the WebSphere MQ bridge for HTTP for the specified HTTP verb.

Explanation
The media-type specified in the HTTP request is not supported by the WebSphere MQ bridge for HTTP for the specified HTTP verb.

HTTP status code
415 Unsupported media type

Programmer response
Change the media-type specified in the HTTP request to one that is supported by the WebSphere MQ Bridge for HTTP for the specified HTTP verb.

Parent topic: HTTP return codes

This build: January 26, 2011 11:10:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts41502_

2.6.5.23. MQHTTP41503: Media-type media-type is not supported ...

The media-type specified in the HTTP request is not supported by the WebSphere MQ bridge for HTTP for the specified x-msg-class header field.

Explanation
The media-type specified in the HTTP request is not supported by the WebSphere MQ bridge for HTTP for the specified x-msg-class header field.

HTTP status code
415 Unsupported media type

Programmer response
Change the media-type specified in the HTTP request to one that is supported by the WebSphere MQ Bridge for HTTP for the specified x-msg-class

header field.

Parent topic: HTTP return codes

This build: January 26, 2011 11:10:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts41503_

2.6.5.24. MQHTTP41701: The HTTP header Expect is not supported

The WebSphere MQ bridge for HTTP does not support the Expect header field.

Explanation
The Expect header has been specified in an HTTP request. The WebSphere MQ bridge for HTTP does not support the Expect header field.

HTTP status code
417 Expectation failed

Programmer response
Remove the Expect header from the HTTP request.

Parent topic: HTTP return codes

This build: January 26, 2011 11:10:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

Page 118 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

This topic's URL:

ts41701_

2.6.5.25. MQHTTP50001: There has been an unexpected problem ...

An error has occurred in the WebSphere® MQ bridge for HTTP.

Explanation
An error has occurred in the WebSphere MQ bridge for HTTP.

HTTP status code
500 Internal server error

Programmer response
Contact the system administrator of the WebSphere MQ Bridge for HTTP.

Parent topic: HTTP return codes

This build: January 26, 2011 11:10:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts50001_

2.6.5.26. MQHTTP50201: An error has occurred between the WebSphere MQ bridge for
HTTP and the queue manager

An error has occurred between the WebSphere MQ bridge for HTTP and the queue manager

Explanation
An error has occurred between the WebSphere MQ bridge for HTTP and the queue manager

HTTP status code
502 Bad Gateway

Programmer response
Contact the system administrator of the WebSphere® MQ Bridge for HTTP.

Parent topic: HTTP return codes

This build: January 26, 2011 11:10:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts50201_

2.6.5.27. MQHTTP50401: Message retrieval timed out

No message matching the specified request parameters in an HTTP GET or HTTP DELETE was returned in the timeout period.

Explanation
No message matching the specified request parameters in an HTTP GET or HTTP DELETE was returned in the timeout period. The return code
indicates that no suitable message was available at any time during the life of the HTTP request.

HTTP status code
504 Gateway timeout

Programmer response
If a message was expected, check the header fields of the HTTP request such as x-msg-correlId and x-msg-msgid. Check that the destination

specified in the HTTP request URI is correct. Try extending the wait time of the HTTP request using the x-msg-wait header field.

Parent topic: HTTP return codes

This build: January 26, 2011 11:10:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts50401_

2.6.5.28. MQHTTP50501: HTTP 1.1 and upwards ...

The HTTP protocol used in the HTTP request is not supported by the WebSphere® MQ bridge for HTTP.

Explanation
The HTTP protocol used in the HTTP request is not supported by the WebSphere MQ bridge for HTTP.

HTTP status code
505 HTTP version not supported

Programmer response
Change the HTTP request to use HTTP protocol V1.1 or higher.

Parent topic: HTTP return codes

Page 119 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

This build: January 26, 2011 11:10:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts50501_

2.6.6. Message types and message mappings for WebSphere Bridge for HTTP

WebSphere® MQ bridge for HTTP supports four message classes, TEXT, BYTES, STREAM and MAP. The message classes are mapped to JMS message

types and HTTP Content-Type.

HTTP POST

The message type that arrives at the destination depends on the value of the x-msg-class header or the Content-Type of the HTTP request. Table 1

shows the HTTP Content-Type type that corresponds to each x-msg-class. Either field can be used to set the message type and message format. If

both fields are set, and are set inconsistently, then a Bad Request exception is returned (HTTP 400, MQHTTP20004).

If the JMS message type is set in the MQRFH2 header, it is mapped according to Table 2.

The JMS message type is always set for a message class of MAP or STREAM. It is not always set for a message class of BYTES or TEXT. If a MQRFH2 is to

be created for the request, the JMS message type is always set. Otherwise, if no MQRFH2 is created, no JMS message type is set. An MQRFH2 is created

if user properties are set in the request, using the x-msg-usr header.

If the JMS message type is set, then the message format is set to MQFMT_NONE, see Table 4:

HTTP GET or DELETE

The message type or format retrieved determines the value of the x-msg-class header and the Content-Type of the HTTP response. The x-msg-

class header is returned only if requested in a x-msg-headers request.

Table 4 describes the mappings between x-msg-class and Content-Type, and the message type retrieved from the queue or topic.

MAP and STREAM message class serialization

MAP and STREAM message classes are serialized back to the client in the HTTP response in the same way as a message is serialized to a queue.

For MAP, the XML name, type, and value triplets are encoded as:

<map>

 <elt name="elementname1" dt="datatype1">value1</elt>

 <elt name="elementname2" dt="datatype2">value2</elt>

 ...

</map>

STREAM is like MAP, but it does not have element names:

<stream>

 <elt dt="datatype1">value1</elt>

Table 1. Mapping between x-msg-class and HTTP Content-Type

x-msg-class HTTP Content-Type

BYTES
application/octet-stream
application/xml

TEXT
text/*

MAP
application/x-www-form-urlencoded

application/xml (optional)

STREAM
application/xml (optional)

Table 2. Mapping between x-msg-class and JMS message types.

x-msg-class JMS message type

BYTES jms_bytes

TEXT jms_text

MAP jms_map

STREAM jms_stream

Table 3. Mapping between x-msg-class and WebSphere MQ message format

x-msg-class Message format with MQRFH2 present in

message

Message format with no MQRFH2 present in

message

BYTES MQFMT_NONE MQFMT_NONE

TEXT MQFMT_NONE MQFMT_STRING

MAP MQFMT_NONE Not possible

STREAM MQFMT_NONE Not possible

Table 4. Mapping message types to x-msg-class and Content-Type

Message format JMS Message type x-msg-class Content-Type

Anything except MQFMT_STRING None BYTES application/octet-stream

MQFMT_STRING None TEXT text/plain

MQFMT_NONE jms_bytes BYTES application/octet-stream

MQFMT_NONE jms_text TEXT text/plain

MQFMT_NONE jms_map MAP application/xml

MQFMT_NONE jms_stream STREAM application/xml

Page 120 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

 <elt dt="datatype2">value2</elt>

 ...

</stream>

Note: datatype is one of the data types defined for defining user-defined properties and listed in usr: HTTP x-msg-usr entity-header. The attribute

dt="string" is omitted for string elements because the default data type is string.

Parent topic: Reference material for WebSphere MQ bridge for HTTP

This build: January 26, 2011 11:10:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts11280_

2.6.7. URI Format

URIs intercepted by WebSphere® MQ bridge for HTTP.

Syntax

>>-http:--//--hostname--+---------+--| Path |------------------><

 '-:--port-'

Path

|--/--contextRoot--/-->

>--msg/--+-queue/--queueName--+-------------+-+--/--------------|

 | '-@--qMgrName-' |

 '-topic/--topicName------------------'

Note:

1. If a question mark (?) is used it must be substituted with %3f. For example, orange?topic should be specified as orange%3ftopic.

2. @qMgrName is only valid on an HTTP POST

Description
Deploy the WebSphere MQ bridge for HTTP servlet to your JEE application server with a context root of contextRoot. Requests to

http://hostname:port/context_root/msg/queue/queueName@qMgrName

and

http://hostname:port/context_root/msg/topic/topicString

are intercepted by WebSphere MQ bridge for HTTP.

Parent topic: Reference material for WebSphere MQ bridge for HTTP

This build: January 26, 2011 11:10:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ts21200_

Page 121 of 121Web services

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzau.doc/ts10120...

