
Using Java

Contents

1. Terms used in this book
2. What is new in Version 7.0?
3. Should I use WebSphere MQ classes for Java or WebSphere MQ classes for JMS?
4. WebSphere MQ classes for JMS
4.1. Getting started
4.1.1. What is WebSphere MQ classes for JMS?
4.1.2. Why should I use WebSphere MQ classes for JMS?
4.1.3. Prerequisites

4.2. Installation and configuration
4.2.1. What is installed
4.2.1.1. Installation directories
4.2.1.2. Environment variables
4.2.1.3. The Java Native Interface (JNI) libraries
4.2.1.4. The WebSphere MQ classes for JMS configuration file
4.2.1.5. STEPLIB configuration on z/OS

4.2.2. Running WebSphere MQ classes for JMS applications under the Java security manager
4.2.3. The WebSphere MQ resource adapter
4.2.3.1. Other required documentation
4.2.3.2. Installation
4.2.3.2.1. WebSphere Application Server, Version 6.0 and the WebSphere MQ resource adapter

4.2.3.3. Configuration
4.2.3.3.1. Configuration of the ResourceAdapter object
4.2.3.3.2. Configuration for inbound communication
4.2.3.3.3. Configuration for outbound communication

4.2.3.4. Limitations
4.2.4. WebSphere MQ JMS Extended Transactional Client

4.3. Using WebSphere MQ classes for JMS
4.3.1. Post installation setup
4.3.1.1. Queues that require authorization for non-privileged users
4.3.1.2. Connection modes
4.3.1.3. Configuring your queue manager to accept client connections

4.3.2. The point-to-point installation verification test
4.3.3. The publish/subscribe installation verification test
4.3.4. The installation verification test program for the WebSphere MQ resource adapter
4.3.5. Scripts provided with WebSphere MQ classes for JMS
4.3.6. Support for OSGi
4.3.7. Solving problems
4.3.7.1. Tracing programs
4.3.7.1.1. Tracing using MQJMS_TRACE_LEVEL

4.3.7.2. Logging
4.3.8. Problem determination for the WebSphere MQ resource adapter
4.3.8.1. Problems in deploying the resource adapter
4.3.8.2. Problems in deploying MDBs
4.3.8.3. Problems in creating connections for outbound communication

4.4. Introduction for programmers
4.4.1. Introduction to WebSphere MQ classes for JMS
4.4.2. What is new in WebSphere MQ Version 7.0

4.5. Writing applications
4.5.1. The JMS model
4.5.2. JMS messages
4.5.2.1. Message selectors
4.5.2.2. Mapping JMS messages onto WebSphere MQ messages
4.5.2.2.1. The MQRFH2 header
4.5.2.2.2. JMS fields and properties with corresponding MQMD fields
4.5.2.2.3. Mapping JMS fields onto WebSphere MQ fields (outgoing messages)
4.5.2.2.3.1. Mapping JMS header fields at send() or publish()
4.5.2.2.3.2. Mapping JMS property fields
4.5.2.2.3.3. Mapping JMS provider-specific fields

4.5.2.2.4. Mapping WebSphere MQ fields onto JMS fields (incoming messages)
4.5.2.2.5. Exchanging messages between a JMS application and a traditional WebSphere MQ application
4.5.2.2.6. Message body

4.5.3. Creating and configuring connection factories and destinations
4.5.3.1. Using JNDI to retrieve administered objects
4.5.3.2. Using the IBM JMS extensions
4.5.3.3. Using the WebSphere MQ JMS extensions

4.5.4. Building a connection
4.5.5. Creating a session
4.5.5.1. Transacted sessions
4.5.5.2. Acknowledgement modes

4.5.6. Creating destinations
4.5.7. Sending messages
4.5.8. Receiving messages
4.5.9. Closing down
4.5.10. Handling errors
4.5.10.1. Handling poison messages in WebSphere MQ classes for JMS
4.5.10.2. Exceptions
4.5.10.3. Logging errors
4.5.10.4. First failure support technology (FFST)

4.5.11. Accessing WebSphere MQ features
4.5.11.1. Reading and writing the message descriptor
4.5.11.1.1. Destination object properties
4.5.11.1.2. Message object properties

4.5.11.2. Accessing WebSphere MQ message data
4.5.11.2.1. Destination property WMQ_MESSAGE_BODY

4.5.11.3. JMS persistent messages
4.5.11.4. Using Secure Sockets Layer (SSL)
4.5.11.4.1. SSL administrative properties
4.5.11.4.1.1. SSLCIPHERSUITE object property
4.5.11.4.1.2. SSLFIPSREQUIRED object property
4.5.11.4.1.3. SSLPEERNAME object property
4.5.11.4.1.4. SSLCERTSTORES object property
4.5.11.4.1.5. SSLRESETCOUNT object property
4.5.11.4.1.6. SSLSocketFactory object property

Page 1 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

4.5.11.4.1.7. Making changes to the JSSE keystore or truststore
4.5.11.4.2. SSL CipherSpecs and CipherSuites

4.5.11.5. Using channel exits
4.5.11.5.1. Writing channel exits in Java
4.5.11.5.2. Assigning channel exits
4.5.11.5.3. Specifying the user data to be passed to channel exits

4.5.11.6. Using a client channel definition table
4.5.11.7. Automatic client reconnection
4.5.11.8. Sharing a TCP/IP connection
4.5.11.9. Specifying a range of ports for client connections
4.5.11.10. Channel compression
4.5.11.11. Putting messages asynchronously
4.5.11.12. Using read ahead
4.5.11.13. Retained publications

4.5.12. XA support
4.5.13. Using a real-time connection to a broker
4.5.13.1. Configuring a broker
4.5.13.2. Configuring WebSphere MQ classes for JMS

4.6. Application Server Facilities (ASF)
4.6.1. ConnectionConsumer
4.6.2. Planning an application with ASF
4.6.2.1. General principles for point-to-point messaging
4.6.2.2. General principles for publish/subscribe messaging
4.6.2.3. Removing messages from the queue
4.6.2.4. Handling poison messages in ASF

4.6.3. Error handling
4.6.3.1. Recovering from error conditions
4.6.3.2. Reason and feedback codes

4.6.4. The function of a server session pool
4.7. Using the WebSphere MQ JMS administration tool
4.7.1. Invoking the administration tool
4.7.2. Configuration
4.7.2.1. Using an unlisted InitialContextFactory
4.7.2.2. Security

4.7.3. Administration commands
4.7.4. Manipulating subcontexts
4.7.5. Administering JMS objects
4.7.5.1. Object types
4.7.5.2. Verbs used with JMS objects
4.7.5.3. Creating objects
4.7.5.3.1. LDAP naming considerations

4.7.5.4. Sample error conditions
4.8. Using WebSphere MQ Explorer for JMS configuration
4.9. Properties of objects
4.9.1. Property dependencies
4.9.2. The ENCODING property
4.9.3. SSL properties
4.9.4. Rules for selecting WebSphere MQ messaging provider mode
4.9.5. When to use PROVIDERVERSION

4.10. WebSphere MQ classes for JMS
5. WebSphere MQ classes for Java
5.1. Getting started
5.1.1. What are WebSphere MQ classes for Java?
5.1.2. Why should I use WebSphere MQ classes for Java?
5.1.3. Connection options
5.1.4. Prerequisites

5.2. Installation and configuration
5.2.1. What is installed
5.2.1.1. Installation directories
5.2.1.2. Environment variables
5.2.1.3. The WebSphere MQ classes for Java libraries
5.2.1.4. STEPLIB configuration on z/OS

5.2.2. Running applications under the Java 2 Security Manager
5.2.3. Running under CICS Transaction Server

5.3. Using WebSphere MQ classes for Java
5.3.1. Configuring your queue manager to accept client connections
5.3.2. Verifying with the sample application
5.3.3. Solving WebSphere MQ classes for Java problems

5.4. Introduction for programmers
5.4.1. The WebSphere MQ classes for Java interface
5.4.2. What is new in Websphere MQ Version 7.0?

5.5. Writing WebSphere MQ classes for Java applications
5.5.1. Connection differences
5.5.1.1. Client connections
5.5.1.2. Bindings mode
5.5.1.3. Defining which connection to use

5.5.2. Operations on queue managers
5.5.2.1. Setting up the WebSphere MQ environment
5.5.2.2. Connecting to a queue manager
5.5.2.3. Using a client channel definition table
5.5.2.4. Specifying a range of ports for client connections

5.5.3. Accessing queues, topics, and processes
5.5.4. Handling messages
5.5.4.1. Improving the performance of nonpersistent messages
5.5.4.2. Putting messages asynchronously using WebSphere MQ classes for Java

5.5.5. Publish/subscribe in WebSphere MQ classes for Java
5.5.6. Handling message headers
5.5.6.1. Printing all the headers in a message
5.5.6.2. Skipping over the headers in a message
5.5.6.3. Finding the reason code in a dead-letter message
5.5.6.4. Reading and removing the MQDLH from a dead-letter message
5.5.6.5. Printing the content of a message
5.5.6.6. Finding a specific type of header in a message
5.5.6.7. Analyzing an MQRFH2 header
5.5.6.8. Reading and writing byte streams other than MQMessage objects
5.5.6.9. Creating classes for new header types

5.5.7. Handling PCF messages
5.5.8. Handling message properties

Page 2 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

5.5.9. Handling errors
5.5.10. Getting and setting attribute values
5.5.11. Multithreaded programs
5.5.12. Using channel exits
5.5.12.1. Creating a channel exit
5.5.12.2. Assigning a channel exit
5.5.12.3. Passing data to a channel exit
5.5.12.4. Using channel exits not written in Java
5.5.12.5. Using a sequence of channel send or receive exits

5.5.13. Channel compression
5.5.14. Sharing a TCP/IP connection in WebSphere MQ classes for Java
5.5.15. Connection pooling
5.5.15.1. Controlling the default connection pool
5.5.15.2. The default connection pool and multiple components
5.5.15.3. Supplying a different connection pool
5.5.15.4. Supplying your own ConnectionManager

5.5.16. JTA/JDBC coordination using WebSphere MQ base Java
5.5.16.1. Configuring JTA/JDBC coordination
5.5.16.1.1. Configuring on Windows
5.5.16.1.2. Configuring on the other platforms

5.5.16.2. Using JTA/JDBC coordination
5.5.16.3. Known problems and limitations

5.5.17. Secure Sockets Layer (SSL) support
5.5.17.1. Enabling SSL
5.5.17.2. Using the distinguished name of the queue manager
5.5.17.3. Using certificate revocation lists
5.5.17.4. Renegotiating the secret key used for encryption
5.5.17.5. Supplying a customized SSLSocketFactory
5.5.17.6. Making changes to the JSSE keystore or truststore
5.5.17.7. Error handling when using SSL
5.5.17.8. SSL CipherSpecs and CipherSuites

5.5.18. Running WebSphere MQ classes for Java applications
5.5.19. Tracing WebSphere MQ classes for Java programs

5.6. Environment-dependent behavior
5.6.1. Core classes
5.6.2. Restrictions and variations for core classes
5.6.2.1. MQGMO_* values
5.6.2.2. MQPMRF_* values
5.6.2.3. MQPMO_* values
5.6.2.4. MQCNO_* values
5.6.2.5. MQRO_* values
5.6.2.6. Miscellaneous differences with z/OS

5.6.3. Features outside the core
5.6.3.1. MQQueueManager constructor option
5.6.3.2. MQQueueManager.begin() method
5.6.3.3. MQGetMessageOptions fields
5.6.3.4. Distribution lists
5.6.3.5. MQPutMessageOptions fields
5.6.3.6. MQMD fields

5.6.4. Restrictions under CICS Transaction Server
5.6.5. Running WebSphere MQ classes for Java applications within Java EE

5.7. WebSphere MQ classes for Java

Using Java

Terms used in this book
The following terms are used in this collection of topics, with the following meanings.

What is new in Version 7.0?
WebSphere® MQ classes for Java and WebSphere MQ classes for JMS, as supplied in WebSphere MQ Version 7.0, contain a number of enhancements
compared to previous releases.

Should I use WebSphere MQ classes for Java or WebSphere MQ classes for JMS?
A Java application can use either WebSphere MQ classes for Java or WebSphere MQ classes for JMS to access WebSphere MQ resources. Each
approach has its advantages.

WebSphere MQ classes for JMS
This collection of topics contains the documentation for WebSphere MQ classes for JMS.

WebSphere MQ classes for Java
This collection of topics contains the documentation for WebSphere MQ classes for Java.

This build: January 26, 2011 11:30:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uj10120_

1. Terms used in this book

The following terms are used in this collection of topics, with the following meanings.

The term i5/OS® means any release of i5/OS or OS/400® supported by the current version of WebSphere® MQ for i5/OS.

The term z/OS® means any release of z/OS supported by the current version of WebSphere MQ for z/OS.

Linux is used as a general term for any of the following platforms:

� Linux (POWER® platform)

� Linux (x86 platform)

� Linux (x86-64 platform)

Page 3 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

� Linux (zSeries® s390x platform)

UNIX system is used as a general term for any of the following platforms:

� AIX®

� HP-UX

� Linux

� Solaris

Windows system, or just Windows, is used as a general term for any of the following platforms:

� Windows 2000

� Windows Server 2003

� Windows XP

� Windows Vista

� Windows Server 2008

The term real-time connection to a broker refers to a connection between an application and a broker of WebSphere Event Broker or WebSphere Message
Broker in which the application and the broker exchange messages using WebSphere MQ Real-Time Transport. Depending on the configuration, messages
might also be delivered to the application using WebSphere MQ Multicast Transport.

The term IP address means either an Internet Protocol Version 4 (IPv4) address, expressed as a sequence of decimal numbers separated by dots, or an
Internet Protocol Version 6 (IPv6) address, expressed as a sequence of hexadecimal numbers separated by colons.

Parent topic: Using Java

This build: January 26, 2011 11:30:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uj10180_

2. What is new in Version 7.0?

WebSphere® MQ classes for Java and WebSphere MQ classes for JMS, as supplied in WebSphere MQ Version 7.0, contain a number of enhancements
compared to previous releases.

Enhancements to WebSphere MQ classes for JMS include:

� A layered architecture for generic IBM® JMS providers such as Lotus® Expeditor micro broker, with specific features for Websphere MQ classes for
JMS

� Embedded publish/subscribe function

� Asynchronous message consumption

� Message selection performed within the queue manager

� Multiple connections to the queue manager using the same MQI channel can share a single TCP connection

� Read ahead for nonpersistent messages on a client connection

� Sending messages on a client connection without determining whether the queue manager has received the message safely

� New channel exit interfaces are provided, which offer improved functionality and performance

� Better access to JMS properties in a WebSphere MQ application

� Serviceability improvements

In WebSphere MQ Version 7.0, the implementation of WebSphere MQ classes for JMS is no longer dependent on WebSphere MQ classes for Java. WebSphere
MQ classes for Java and WebSphere MQ classes for JMS are now peers that use a common Java interface to the MQI.

Enhancements to WebSphere MQ classes for Java include:

� Extensions to the API to support publish/subscribe applications

� Asynchronous message consumption

� Asynchronous message put

� Message selection performed within the queue manager

� Multiple connections to the queue manager using the same MQI channel can share a single TCP connection

� Read ahead for nonpersistent messages on a client connection

� Java classes to process various types of message header

� Java classes to process PCF-structured messages

� Properties can be added to any message.

� New channel exit interfaces are provided, which offer improved functionality and performance

� A client configuration file can be used to specify client configuration options.

For more information, see the appropriate related topic.

Parent topic: Using Java

Related concepts
What is new in WebSphere MQ Version 7.0?

Related reference
What is new in WebSphere MQ Version 7.0?

This build: January 26, 2011 11:30:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uj41020_

3. Should I use WebSphere MQ classes for Java or WebSphere MQ classes for JMS?

Page 4 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

A Java application can use either WebSphere® MQ classes for Java or WebSphere MQ classes for JMS to access WebSphere MQ resources. Each approach
has its advantages.

WebSphere MQ classes for Java encapsulates the Message Queue Interface (MQI), the native WebSphere MQ API, and uses the same object model as other
object-oriented interfaces, whereas WebSphere MQ classes for Java Message Service implements Sun's Java Message Service (JMS) interfaces.

If you are familiar with WebSphere MQ in environments other than Java, using either procedural or object-oriented languages, you can transfer your existing
knowledge to the Java environment by using WebSphere MQ classes for Java. You can also exploit the full range of features of WebSphere MQ, not all of
which are available in WebSphere MQ classes for JMS.

If you are not familiar with Websphere MQ, or already have JMS experience, you might find it easier to use the familiar JMS API to access WebSphere MQ
resources, by using WebSphere MQ classes for JMS. JMS is also an integral part of the Java Platform, Enterprise Edition (Java EE) platform. Java EE
applications can use message-driven beans (MDBs) to process messages asynchronously, and MDBs can process only JMS messages. JMS is also the
standard mechanism for Java EE to interact with asynchronous messaging systems such as WebSphere MQ. Every application server that is Java EE
compliant must include a JMS provider, therefore you can use JMS to communicate between different application servers or you can port an application from
one JMS provider to another without any change to the application.

See the linked topics for more information about the advantages of each approach.

Parent topic: Using Java

Related concepts
Why should I use WebSphere MQ classes for Java?
Why should I use WebSphere MQ classes for JMS?

This build: January 26, 2011 11:30:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uj41050_

4. WebSphere MQ classes for JMS

This collection of topics contains the documentation for WebSphere® MQ classes for JMS.

Getting started with WebSphere MQ classes for JMS
This topic provides an overview of WebSphere MQ classes for JMS and tells you what you need to know before using WebSphere MQ classes for JMS.

Installation and configuration of WebSphere MQ classes for JMS
This topic describes the directories and files that are created when you install WebSphere MQ classes for JMS and tells you how to configure
WebSphere MQ classes for JMS after installation.

Using WebSphere MQ classes for JMS
This topic describes how to run WebSphere MQ classes for JMS applications. It tells you how to configure WebSphere MQ, and how to run the
installation verification test programs. It describes the scripts provided with WebSphere MQ classes for JMS and the support for OSGi, and provides
guidance on solving problems.

Introduction to WebSphere MQ classes for JMS for programmers
This topic introduces WebSphere MQ classes for JMS from the point of view of the programmer. It also summarizes the main enhancements that are
contained in the latest release of WebSphere MQ classes for JMS.

Writing WebSphere MQ classes for JMS applications
After a brief introduction to the JMS model, this topic provides detailed guidance on how to write WebSphere MQ classes for JMS applications.

WebSphere MQ classes for JMS Application Server Facilities
This topic describes how WebSphere MQ classes for JMS implements the ConnectionConsumer class and advanced functionality in the Session class. It
also summarizes the function of a server session pool.

Using the WebSphere MQ JMS administration tool

Using WebSphere MQ Explorer for JMS configuration
Use the WebSphere MQ Explorer graphical user interface to create JMS objects from WebSphere MQ objects, and WebSphere MQ objects from JMS
objects, as well as for administering and monitoring other WebSphere MQ objects.

Properties of WebSphere MQ classes for JMS objects
All objects in WebSphere MQ classes for JMS have properties. Different properties apply to different object types. Different properties have different
allowable values, and symbolic property values differ between the administration tool and program code.

WebSphere MQ classes for JMS

Parent topic: Using Java

This build: January 26, 2011 11:29:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm10120_

4.1. Getting started with WebSphere MQ classes for JMS

This topic provides an overview of WebSphere® MQ classes for JMS and tells you what you need to know before using WebSphere MQ classes for JMS.

What is WebSphere MQ classes for JMS?
WebSphere MQ classes for Java Message Service (WebSphere MQ classes for JMS) is the JMS provider that is supplied with WebSphere MQ. As well as
implementing the interfaces defined in the javax.jms package, WebSphere MQ classes for JMS provides two sets of extensions to the JMS API.

Why should I use WebSphere MQ classes for JMS?

Page 5 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

A Java application can use either WebSphere MQ classes for Java or WebSphere MQ classes for JMS to access WebSphere MQ resources. Using
WebSphere MQ classes for JMS has a number of advantages.

Prerequisites for WebSphere MQ classes for JMS
To develop and run WebSphere MQ classes for JMS applications, you need certain software components as prerequisites.

Parent topic: WebSphere MQ classes for JMS

This build: January 26, 2011 11:29:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm10230_

4.1.1. What is WebSphere MQ classes for JMS?

WebSphere® MQ classes for Java Message Service (WebSphere MQ classes for JMS) is the JMS provider that is supplied with WebSphere MQ. As well as
implementing the interfaces defined in the javax.jms package, WebSphere MQ classes for JMS provides two sets of extensions to the JMS API.

The JMS specification defines a set of interfaces that applications can use to perform messaging operations. The latest version of the specification is Version
1.1. The javax.jms package defines the JMS interfaces, and a JMS provider implements these interfaces for a specific messaging product. WebSphere MQ
classes for JMS is a JMS provider that implements the JMS interfaces for WebSphere MQ.

The JMS specification expects ConnectionFactory and Destination objects to be administered objects. An administrator creates and maintains administered
objects in a central repository, and a JMS application retrieves these objects using the Java Naming and Directory Interface (JNDI). WebSphere MQ classes
for JMS supports the use of administered objects, and an administrator can use either the WebSphere MQ JMS administration tool or WebSphere MQ
Explorer to create and maintain administered objects.

WebSphere MQ classes for JMS also provides two sets of extensions to the JMS API. The main focus of these extensions concerns creating and configuring
connection factories and destinations dynamically at run time, but the extensions also provide function that is not directly related to messaging, such as
function for problem determination.

The WebSphere MQ JMS extensions

Previous releases of WebSphere MQ classes for JMS contain extensions that are implemented in objects such as MQConnectionFactory, MQQueue, and
MQTopic objects. These objects have properties and methods that are specific to WebSphere MQ. The objects can be administered objects, or an
application can create the objects dynamically at run time. This release of WebSphere MQ classes for JMS maintains these extensions, which are now
known as the WebSphere MQ JMS extensions. You can continue to use, without change, any applications that use these extensions.

The IBM® JMS extensions

This release of WebSphere MQ classes for JMS provides a more generic set of extensions to the JMS API, which are not specific to WebSphere MQ as the
messaging system. These extensions are known as the IBM JMS extensions and have the following broad objectives:

� To provide a greater level of consistency across IBM JMS providers

� To make it easier to write a bridge application between two IBM messaging systems

� To make it easier to port an application from one IBM JMS provider to another

The IBM JMS extensions are also implemented in Lotus® Expeditor micro broker.

The extensions provide function that is similar to that provided in Message Service Client for C/C++ and Message Service Client for .NET.

Parent topic: Getting started with WebSphere MQ classes for JMS

This build: January 26, 2011 11:29:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm10250_

4.1.2. Why should I use WebSphere MQ classes for JMS?

A Java application can use either WebSphere® MQ classes for Java or WebSphere MQ classes for JMS to access WebSphere MQ resources. Using WebSphere
MQ classes for JMS has a number of advantages.

Consider the following advantages:

� You can reuse JMS skills.

WebSphere MQ classes for JMS is a JMS provider that implements the JMS interfaces for WebSphere MQ as the messaging system. If your organization
is new to WebSphere MQ, but already has JMS application development skills, you might find it easier to use the familiar JMS API to access WebSphere
MQ resources rather than one of the other APIs provided with WebSphere MQ.

� JMS is an integral part of Java Platform, Enterprise Edition (Java EE).

JMS is the natural API to use for messaging on the Java EE platform. Every application server that is Java EE compliant must include a JMS provider.
You can use JMS in application clients, servlets, JavaServer pages (JSPs), enterprise Java beans (EJBs), and message driven beans (MDBs). Note in
particular that Java EE applications use MDBs to process messages asynchronously, and all messages are delivered to MDBs as JMS messages.

� An administrator can create and maintain JMS administered objects in a central repository, and WebSphere MQ classes for JMS applications can
retrieve these objects using the Java Naming and Directory Interface (JNDI).

JMS connection factories and destinations encapsulate WebSphere MQ specific information such as queue manager names, channel names, connection
options, queue names, and topic names. If connection factories and destinations are stored as administered objects, this information is not hard coded
into an application. This arrangement therefore provides the application with a degree of independence from the underlying WebSphere MQ
configuration.

� JMS is an industry standard API that can provide application portability.

A JMS application can use JNDI to retrieve connection factories and destinations that are stored as administered objects, and use only the interfaces
defined in the javax.jms package to perform messaging operations. The application is then entirely independent of any JMS provider, such as
WebSphere MQ classes for JMS, and can be ported from one JMS provider to another without any change to the application.

If JNDI is not available in a particular application environment, a WebSphere MQ classes for JMS application can use extensions to the JMS API to
create and configure connection factories and destinations dynamically at run time. The application is then completely self contained, but is tied to
WebSphere MQ classes for JMS as the JMS provider.

� Bridge applications might be easier to write using JMS.

A bridge application is an application that receives messages from one messaging system and sends them to another messaging system. Writing a
bridge application can be complicated using product specific APIs and message formats. Instead, you can write a bridge application using two JMS
providers, one for each messaging system. The application then uses only one API, the JMS API, and processes only JMS messages.

Parent topic: Getting started with WebSphere MQ classes for JMS

Page 6 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

This build: January 26, 2011 11:29:48

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm35100_

4.1.3. Prerequisites for WebSphere MQ classes for JMS

To develop and run WebSphere® MQ classes for JMS applications, you need certain software components as prerequisites.

For the latest information about the prerequisites for WebSphere MQ classes for JMS, see the WebSphere MQ readme file.

To develop WebSphere MQ classes for JMS applications, you need a Java 2 Software Development Kit (SDK). Details of the JDKs supported with your
operating system can be found on the WebSphere MQ system requirements page at http://www.ibm.com/software/integration/wmq/requirements/.

To run WebSphere MQ classes for JMS applications, you need the following software components:

� A WebSphere MQ queue manager

� A Java Runtime Environment (JRE), for each system on which you run applications

� For i5/OS®, QShell, which is option 30 of the operating system

� For z/OS®, UNIX System Services (USS)

If you require SSL connections to use cryptographic modules that are FIPS 140-2 certified, you need the IBM® Java JSSE FIPS provider (IBMJSSEFIPS).
Every IBM Java 2 SDK and JRE at Version 1.4.2 or later contains IBMJSSEFIPS.

You can use Internet Protocol Version 6 (IPv6) addresses in your WebSphere MQ classes for JMS applications provided IPv6 addresses are supported by your
Java virtual machine (JVM) and the TCP/IP implementation on your operating system. The WebSphere MQ JMS administration tool (see Using the
WebSphere MQ JMS administration tool) also accepts IPv6 addresses.

The WebSphere MQ JMS administration tool and WebSphere MQ Explorer use the Java Naming and Directory Interface (JNDI) to access a directory service,
which stores administered objects. WebSphere MQ classes for JMS applications can also use JNDI to retrieve administered objects from a directory service. A
service provider is code that provides access to a directory service by mapping JNDI calls to calls to the directory service. The following service providers are
supplied with WebSphere MQ classes for JMS:

� A Lightweight Directory Access Protocol (LDAP) service provider in the files ldap.jar and providerutil.jar. The LDAP service provider provides access to a
directory service based on an LDAP server.

� A file system service provider in the files fscontext.jar and providerutil.jar. The file system service provider provides access to a directory service based
on the local file system.

If you intend to use a directory service based on an LDAP server, you must install and configure an LDAP server, or have access to an existing LDAP server.
In particular, you must configure the LDAP server to store Java objects. For information about how to install and configure your LDAP server, see the
documentation that is supplied with the server.
Parent topic: Getting started with WebSphere MQ classes for JMS

This build: January 26, 2011 11:29:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm10290_

4.2. Installation and configuration of WebSphere MQ classes for JMS

This topic describes the directories and files that are created when you install WebSphere® MQ classes for JMS and tells you how to configure WebSphere
MQ classes for JMS after installation.

What is installed for WebSphere MQ classes for JMS
A number of files and directories are created when you install WebSphere MQ classes for JMS. On Windows some configuration is performed during
installation by automatically setting environment variables. On other platforms, and in certain Windows environments, you must set environment
variables before you can run WebSphere MQ classes for JMS applications.

Running WebSphere MQ classes for JMS applications under the Java security manager
WebSphere MQ classes for JMS can run with the Java security manager enabled. To run applications successfully with the security manager enabled,
you must configure your Java virtual machine (JVM) with a suitable policy configuration file.

The WebSphere MQ resource adapter
The resource adapter allows applications running in an application server to access WebSphere MQ resources. It supports inbound and outbound
communication.

WebSphere MQ JMS Extended Transactional Client
In bindings mode, WebSphere MQ classes for JMS use the XA functions of WebSphere MQ. In client mode, you need the Extended Transactional Client
unless you are using Websphere Application Server.

Parent topic: WebSphere MQ classes for JMS

This build: January 26, 2011 11:29:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm10300_

4.2.1. What is installed for WebSphere MQ classes for JMS

A number of files and directories are created when you install WebSphere® MQ classes for JMS. On Windows some configuration is performed during
installation by automatically setting environment variables. On other platforms, and in certain Windows environments, you must set environment variables
before you can run WebSphere MQ classes for JMS applications.

WebSphere MQ classes for JMS is installed as an optional component when you install WebSphere MQ. See the following documentation for information
about installing WebSphere MQ:

Page 7 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

WebSphere MQ for AIX Quick Beginnings

WebSphere MQ for HP-UX Quick Beginnings

WebSphere MQ for i5/OS Quick Beginnings

WebSphere MQ for Linux Quick Beginnings

WebSphere MQ for Solaris Quick Beginnings

WebSphere MQ for Windows Quick Beginnings

WebSphere MQ for z/OS Program Directory

Installation directories for WebSphere classes for JMS lists the installation directories by platform into which the WebSphere MQ classes for JMS are installed.
Do not move or copy the .jar files to other directories.

The installation provides some additional scripts, JAR files and libraries in addition to the JAR files and native libraries that implement the WebSphere MQ
classes for JMS. The scripts are described in Scripts provided with WebSphere MQ classes for JMS and are located in the java\bin directory. Support for

Open Services Grid Initiative (OSGi) is installed in the java\lib\OSGi directory and described in Support for OSGi. Additional resources for SOAP, HTTP, JCA

and symbols for debugging applications on Windows are installed in other java\lib subdirectories.

After installation you might need to perform some configuration tasks to compile and run applications. Environment variables used by WebSphere MQ
classes for JMS describes the classpath required to run simple WebSphere MQ classes for JMS applications. It also describes additional JAR files that need to
be referenced in special circumstances and the environment variables that you must set to run the scripts provided with WebSphere MQ classes for JMS.
Should you need your WebSphere MQ classes for JMS application to link to code written in languages other than Java (for example to use the bindings mode
connection to the Queue Manager), then The Java Native Interface (JNI) libraries required by WebSphere MQ classes for JMS applications explains where to
find the location of the Java Native Interface (JNI) libraries to specify as a parameter of the java command. To control properties such as tracing and
logging of an application you need to provide a configuration properties file. The WebSphere MQ classes for JMS configuration properties file is described in
The WebSphere MQ classes for JMS configuration file. On z/OS you need to configure the STEPLIB used at runtime: see STEPLIB configuration on z/OS.

The Javadoc tool has been used to generate the HTML pages containing the specifications of the WebSphere MQ classes for JMS API. The HTML pages are in
the doc/WMQJMSClasses subdirectory of the WebSphere MQ classes for JMS installation directory. On UNIX systems and Windows, this subdirectory contains

the individual HTML pages but, on i5/OS® and z/OS®, the HTML pages are in a file called wmqjms_javadoc.jar.

Installation directories for WebSphere classes for JMS
On each platform, the WebSphere MQ classes for JMS files are installed in one directory. The sample applications, which include the installation
verification programs (IVPs), are installed in a different directory.

Environment variables used by WebSphere MQ classes for JMS
Before you can compile and run WebSphere MQ classes for JMS applications, the setting for your CLASSPATH environment variable must include the
WebSphere MQ classes for JMS Java archive (JAR) file. Depending on your requirements, you might need to add other JAR files to your class path. To
run the scripts provided with WebSphere MQ classes for JMS, other environment variables must be set.

The Java Native Interface (JNI) libraries required by WebSphere MQ classes for JMS applications
When you start WebSphere MQ classes for JMS applications that connect in bindings mode, or that connect in client mode and use channel exit
programs written in languages other than Java, you must specify the location of the Java Native Interface (JNI) libraries as a parameter on the java
command.

The WebSphere MQ classes for JMS configuration file
A WebSphere MQ classes for JMS configuration file specifies properties that are used to configure WebSphere MQ classes for JMS.

STEPLIB configuration on z/OS

Parent topic: Installation and configuration of WebSphere MQ classes for JMS

This build: January 26, 2011 11:29:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm10310_

4.2.1.1. Installation directories for WebSphere classes for JMS

On each platform, the WebSphere® MQ classes for JMS files are installed in one directory. The sample applications, which include the installation verification
programs (IVPs), are installed in a different directory.

Table 1 shows where the WebSphere MQ classes for JMS files are installed on each platform.

Some sample applications, such as the installation verification programs (IVPs), are supplied with WebSphere MQ classes for JMS. Table 2 shows where the
sample applications are installed on each platform.

Table 1. WebSphere MQ classes for JMS installation directories

Platform Directory

AIX® /usr/mqm/java

HP-UX, Linux, and Solaris /opt/mqm/java

i5/OS® /QIBM/ProdData/mqm/java

Windows install_dir\java

z/OS® install_dir/mqm/V7R0M0/java

Note: install_dir is the directory where you installed WebSphere MQ. On Windows, this directory is normally C:\Program Files\IBM\WebSphere

MQ. On z/OS, this directory is likely to be /usr/lpp.

Table 2. Samples directories

Platform Directory

AIX /usr/mqm/samp/jms

HP-UX, Linux, and Solaris /opt/mqm/samp/jms

i5/OS /QIBM/ProdData/mqm/java/samples/jms

Windows install_dir\tools\jms

z/OS install_dir/mqm/V7R0M0/java/samples/jms

Note: install_dir is the directory where you installed WebSphere MQ. On Windows, this directory is normally C:\Program Files\IBM\WebSphere

Page 8 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Parent topic: What is installed for WebSphere MQ classes for JMS

This build: January 26, 2011 11:29:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm10320_

4.2.1.2. Environment variables used by WebSphere MQ classes for JMS

Before you can compile and run WebSphere® MQ classes for JMS applications, the setting for your CLASSPATH environment variable must include the
WebSphere MQ classes for JMS Java archive (JAR) file. Depending on your requirements, you might need to add other JAR files to your class path. To run
the scripts provided with WebSphere MQ classes for JMS, other environment variables must be set.

To compile and run WebSphere MQ classes for JMS applications, use the CLASSPATH setting for your platform as shown in Table 1. The setting includes the
samples directory, so that you can compile and run the WebSphere MQ classes for JMS sample applications. Alternatively, you can specify the class path on
the java command instead of using the environment variable.

The manifest of the JAR file com.ibm.mqjms.jar contains references to most of the other JAR files required by WebSphere MQ classes for JMS applications,
and so you do not need to add these JAR files to your class path. These JAR files include those required by applications that use the Java Naming and
Directory Interface (JNDI) to retrieve administered objects from a directory service and by applications that use the Java Transaction API (JTA).

However, you must include additional JAR files in your class path in the following circumstances:

� If your application performs XA operations in client mode, you must add the extended transactional client JAR file, com.ibm.mqetclient.jar, to your
class path.

� If you are using channel exit classes that implement the channel exit interfaces defined in the com.ibm.mq package, instead of those defined in the
com.ibm.mq.exits package, you must add the Websphere MQ classes for Java JAR file, com.ibm.mq.jar, to your class path.

� If you compile your Java code using a Java 2 Software Development Kit (SDK) at Version 1.4.2, you must add the following JAR files to your class
path:

� jms.jar

� com.ibm.mq.jmqi.jar

Additionally, if your application uses JNDI to retrieve administered objects from a directory service, you must also add the following JAR files to your
class path:

� fscontext.jar

� jndi.jar

� ldap.jar

� providerutil.jar

And if your application uses the JTA, you must also add jta.jar to your class path.

Note that these additional JAR files are required only for compiling your applications, not for running them.

The scripts provided with WebSphere MQ classes for JMS use the following environment variables:

MQ_JAVA_DATA_PATH

This environment variable specifies the directory for log and trace output.

MQ_JAVA_INSTALL_PATH

This environment variable specifies the directory where WebSphere MQ classes for JMS is installed, as shown in Table 1.

MQ_JAVA_LIB_PATH

This environment variable specifies the directory where the WebSphere MQ classes for JMS libraries are stored, as shown in Table 1.

On Windows, all the environment variables are set automatically during installation. On any other platform, you must set them yourself. On a UNIX system,
you can use the script setjmsenv (if you are using a 32-bit JVM) or setjmsenv64 (if you are using a 64-bit JVM) to set the environment variables. On AIX,
these scripts are in the /usr/mqm/java/bin directory and, on HP-UX, Linux, and Solaris, they are in the /opt/mqm/java/bin directory.

On i5/OS, you must set the environment variable QIBM_MULTI_THREADED to Y. You can then run multithreaded applications in the same way that you run

single threaded applications.

Parent topic: What is installed for WebSphere MQ classes for JMS

This build: January 26, 2011 11:29:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm10330_

MQ. On z/OS, this directory is likely to be /usr/lpp.

Table 1. CLASSPATH setting to compile and run WebSphere MQ classes for JMS applications, including the sample applications

Platform CLASSPATH setting

AIX®
CLASSPATH=/usr/mqm/java/lib/com.ibm.mqjms.jar:

/usr/mqm/samp/jms:

HP-UX, Linux, and Solaris
CLASSPATH=/opt/mqm/java/lib/com.ibm.mqjms.jar:

/opt/mqm/samp/jms:

i5/OS®
CLASSPATH=/QIBM/ProdData/mqm/java/lib/com.ibm.mqjms.jar:

/QIBM/ProdData/mqm/java/samples/jms:

Windows
CLASSPATH=install_dir\java\lib\com.ibm.mqjms.jar;

install_dir\tools\jms;

z/OS®
CLASSPATH=install_dir/mqm/V7R0M0/java/lib/com.ibm.mqjms.jar:

install_dir/mqm/V6R0M0/java/samples/jms:

Note: install_dir is the directory where you installed WebSphere MQ. On Windows, this directory is normally C:\Program Files\IBM\WebSphere

MQ. On z/OS, this directory is likely to be /usr/lpp.

Page 9 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

4.2.1.3. The Java Native Interface (JNI) libraries required by WebSphere MQ classes for JMS
applications

When you start WebSphere® MQ classes for JMS applications that connect in bindings mode, or that connect in client mode and use channel exit programs
written in languages other than Java, you must specify the location of the Java Native Interface (JNI) libraries as a parameter on the java command.

To specify the location of the Java Native Interface (JNI) libraries, start your application using a java command with the following format:

java -Djava.library.path=library_path application_name

where library_path is the path to the directory containing the WebSphere MQ classes for JMS libraries. The JNI libraries are in the same directory. Table 1
shows the location of the WebSphere MQ classes for JMS libraries for each platform.

Notes:

1. On AIX, HP-UX, Linux (Power platform), or Solaris, use either the 32 bit libraries or the 64 bit libraries. Use the 64 bit libraries only if you are running
your application in a 64 bit Java virtual machine (JVM) on a 64 bit platform. Otherwise, use the 32 bit libraries.

2. On Windows, you can use the PATH environment variable to specify the location of the WebSphere MQ classes for JMS libraries instead of specifying
their location on the java command. The directory containing the WebSphere MQ classes for JMS libraries is automatically added to the system path
during the installation of WebSphere MQ classes for JMS.

3. To use WebSphere MQ classes for JMS in bindings mode on i5/OS®, make sure that the library QMQMJAVA is in your library list.

4. On z/OS, you can use either a 31 bit or 64 bit Java virtual machine (JVM). You do not have to specify which JNI libraries to use; WebSphere MQ
classes for JMS can determine for itself which JNI libraries to load.

Parent topic: What is installed for WebSphere MQ classes for JMS

This build: January 26, 2011 11:29:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm10340_

4.2.1.4. The WebSphere MQ classes for JMS configuration file

A WebSphere® MQ classes for JMS configuration file specifies properties that are used to configure WebSphere MQ classes for JMS.

The format of a WebSphere MQ classes for JMS configuration file is that of a standard Java properties file. A sample configuration file called jms.config is
supplied in the bin subdirectory of the WebSphere MQ classes for JMS installation directory. This file documents all the supported properties and their

default values.

You can choose the name and location of a WebSphere MQ classes for JMS configuration file. When you start your application, use a java command with the
following format:

java -Dcom.ibm.msg.client.config.location=config_file_url application_name

In the command, config_file_url is a uniform resource locator (URL) that specifies the name and location of the WebSphere MQ classes for JMS configuration
file. URLs of the following types are supported: http, file, ftp, and jar.

Here is an example of a java command:

java -Dcom.ibm.msg.client.config.location=file:/D:/mydir/myjms.config MyAppClass

This command identifies the WebSphere MQ classes for JMS configuration file as the file D:\mydir\mjms.config on the local Windows system.

When an application starts, WebSphere MQ classes for JMS reads the contents of the configuration file and stores the specified properties in an internal
property store. If the java command does not identify a configuration file, or if the configuration file cannot be found, WebSphere MQ classes for JMS uses
the default values for all the properties. If required, you can override any property in the configuration file by specifying it as a system property on the java
command.

A WebSphere MQ classes for JMS configuration file can be used with any of the supported transports between an application and a queue manager or broker.

Note that you cannot specify startup trace by setting a property in the WebSphere MQ classes for JMS configuration file. You can specify startup trace only
by setting a system property on the java command, as shown in the following example:

java -Dcom.ibm.msg.client.commonservices.trace.startup=true

 -Dcom.ibm.msg.client.config.location=file:/D:/mydir/myjms.config

 MyAppClass

Overriding properties specified in a WebSphere MQ client configuration file

A WebSphere MQ client configuration file can also specify properties that are used to configure WebSphere MQ classes for JMS. However, properties specified
in a WebSphere MQ client configuration file apply only when an application connects to a queue manager in client mode.

If required, you can override any attribute in a WebSphere MQ configuration file by specifying it as a property in a WebSphere MQ classes for JMS
configuration file. To override an attribute in a WebSphere MQ client configuration file, use an entry with the following format in the WebSphere MQ classes

Table 1. The location of the WebSphere MQ classes for JMS libraries for each platform

Platform Directory containing the WebSphere MQ classes for JMS

libraries

AIX®
/usr/mqm/java/lib (32 bit libraries)

/usr/mqm/java/lib64 (64 bit libraries)

HP-UX

Linux (POWER®, x86-64
and zSeries® s390x platforms)

Solaris (x86-64 and SPARC platforms)

/opt/mqm/java/lib (32 bit libraries)

/opt/mqm/java/lib64 (64 bit libraries)

Linux (x86 platform)

Linux (zSeries platform)

/opt/mqm/java/lib

Windows
install_dir\java\lib (32 bit libraries)

install_dir\java\lib64 (64 bit libraries)

z/OS®
install_dir/mqm/V7R0M0/java/lib

(31 bit and 64 bit libraries)

Note: install_dir is the directory where you installed WebSphere MQ. On Windows, this directory is normally C:\Program Files\IBM\WebSphere

MQ. On z/OS, this directory is likely to be /usr/lpp.

Page 10 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

for JMS configuration file:

com.ibm.mq.cfg.stanza.propName=propValue

The variables in the entry have the following meanings:

stanza

The name of the stanza in the WebSphere MQ client configuration file that contains the attribute

propName

The name of the attribute as specified in the WebSphere MQ client configuration file

propValue

The value of the property that overrides the value of the attribute specified in the WebSphere MQ client configuration file

Alternatively, you can override an attribute in a WebSphere MQ client configuration file by specifying the property as a system property on the java
command. Use the preceding format to specify the property as a system property.

Only the following attributes in a WebSphere MQ client configuration file are relevant to WebSphere MQ classes for JMS. If you specify or override other
attributes, it has no effect.

Parent topic: What is installed for WebSphere MQ classes for JMS

Related information
WebSphere MQ client configuration file

This build: January 26, 2011 11:30:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm41100_

4.2.1.5. STEPLIB configuration on z/OS

On z/OS®, the STEPLIB used at runtime must contain the WebSphere® MQ SCSQAUTH and SCSQANLE libraries. From UNIX System Services, you can add
these using a line in your .profile as shown below, replacing thlqual with the high level data set qualifier that you chose when installing WebSphere MQ:

export STEPLIB=thlqual.SCSQAUTH:thlqual.SCSQANLE:$STEPLIB

In other environments, you typically need to edit the startup JCL to include SCSQAUTH and SCSQANLE on the STEPLIB concatenation:

STEPLIB DD DSN=thlqual.SCSQAUTH,DISP=SHR

 DD DSN=thlqual.SCSQANLE,DISP=SHR

Parent topic: What is installed for WebSphere MQ classes for JMS

This build: January 26, 2011 11:29:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm10350_

4.2.2. Running WebSphere MQ classes for JMS applications under the Java security manager

WebSphere® MQ classes for JMS can run with the Java security manager enabled. To run applications successfully with the security manager enabled, you
must configure your Java virtual machine (JVM) with a suitable policy configuration file.

The simplest way to do this is to change the policy configuration file supplied with your Java Runtime Environment (JRE). On most systems, this file is in the
directory lib/security/java.policy relative to your JRE directory. You can edit the policy configuration file using your preferred editor or the policytool

program supplied with your JRE.

Here is an example of two entries in a policy configuration file that allow WebSphere MQ classes for JMS to run successfully under the default security
manager:

grant codeBase "file:/opt/mqm/java/lib/com.ibm.mq.jmqi.jar" {

 //Required

 permission java.util.PropertyPermission "user.name","read";

 permission java.util.PropertyPermission "os.name","read";

 //Required if mqclient.ini/mqs.ini configuration files are used

 permission java.io.FilePermission "/var/mqm/mqclient.ini","read";

 permission java.io.FilePermission "/var/mqm/mqs.ini","read";

 //For the client transport type.

 permission java.net.SocketPermission "*","connect";

 //For the bindings transport type.

 permission java.lang.RuntimePermission "loadLibrary.*";

 //For applications that use CCDT tables (access to the CCDT

AMQCLCHL.TAB)

 permission java.io.FilePermission

"/var/mqm/qmgrs/QMGR/@ipcc/AMQCLCHL.TAB","read";

 //For applications that use User Exits

 permission java.io.FilePermission "/var/mqm/exits/*","read";

 permission java.lang.RuntimePermission "createClassLoader";

Stanza Attribute

ClientExitPath ExitsDefaultPath

ClientExitPath ExitsDefaultPath64

ClientExitPath JavaExitsClasspath

MessageBuffer MaximumSize

MessageBuffer PurgeTime

MessageBuffer UpdatePercentage

TCP ClntRcvBufSize

TCP ClntSndBufSize

TCP Connect_Timeout

TCP KeepAlive

Page 11 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

 //Required for the z/OS platform

 permission java.util.PropertyPermission

"com.ibm.vm.bitmode","read";

};

grant codeBase "file:/opt/mqm/java/lib/com.ibm.mqjms.jar" {

 permission java.util.PropertyPermission "user.name","read";

 permission java.util.PropertyPermission "os.name","read";

 permission java.util.PropertyPermission "console.encoding","read";

 permission java.lang.RuntimePermission "setContextClassLoader";

 //tracing permissions

 permission java.util.PropertyPermission

"com.ibm.msg.client.commonservices.*","read";

 permission java.util.PropertyPermission

"MQJMS_TRACE_LEVEL","read";

 permission java.util.logging.LoggingPermission "control";

 //Wherever trace output is expected

 permission java.io.FilePermission "/tmp/*","read,write";

 //Required for the z/OS platform

 permission java.util.PropertyPermission

"com.ibm.vm.bitmode","read";

};

In the example, the first grant statement contains the permissions required by WebSphere MQ classes for JMS, and the second grant statement contains

the permissions required by a WebSphere MQ classes for JMS application. In the first grant statement, the permission:

permission java.io.FilePermission "/opt/mqtest/-", "read";

is needed to allow WebSphere MQ classes for JMS to access the Java archive (JAR) files of an application. To use these grant statements in your policy
configuration file, you might need to modify the path names depending on where you have installed WebSphere MQ classes for JMS and where you store
your applications.

The sample applications supplied with WebSphere MQ classes for JMS, and scripts to run them, do not enable the security manager.

Parent topic: Installation and configuration of WebSphere MQ classes for JMS

This build: January 26, 2011 11:29:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm10360_

4.2.3. The WebSphere MQ resource adapter

The resource adapter allows applications running in an application server to access WebSphere MQ resources. It supports inbound and outbound
communication.

The Java Platform, Enterprise Edition (Java EE) Connector Architecture (JCA) provides a standard way of connecting applications running in a Java EE
environment to an Enterprise Information System (EIS) such as WebSphere® MQ or DB2®. The WebSphere MQ resource adapter implements the JCA 1.5
interfaces, and allows JMS applications and message driven beans (MDBs), running in an application server, to access the resources of a WebSphere MQ
queue manager. The resource adapter supports both the point-to-point domain and the publish/subscribe domain.

The WebSphere MQ resource adapter supports two types of communication between an application and a queue manager:

Outbound communication

An application starts a connection to a queue manager, and then sends JMS messages to JMS destinations and receives JMS messages from JMS
destinations in a synchronous manner.

Inbound communication

A JMS message arriving at a JMS destination is delivered to an MDB, which processes the message asynchronously.

The WebSphere MQ resource adapter is supported on all WebSphere MQ Version 7.0 platforms except z/OS®. It is additionally supported on z/OS when
installed as part of WebSphere Application Server Version 7.0. You can install it on any application server that is certified as compliant with the JEE 1.4
specification. Using the resource adapter, an application can connect to a WebSphere MQ Version 7.0 queue manager in either client mode or bindings
mode, or to a WebSphere MQ Version 6.0 or WebSphere MQ Version 5.3 queue manager in client mode only.

Note: If you are using WebSphere Application Server versions earlier than Version 7.0 (on any platform), do not use the WebSphere MQ resource adapter.
If you are using WebSphere Application Server Version 7.0 or later (on any platform), use the WebSphere MQ resource adapter that is shipped as part of
WebSphere Application Server and only apply service fixes that are issued against WebSphere Application Server, not service fixes that are issued against
WebSphere MQ or against the WebSphere MQ client.

Other required documentation

Installation of the WebSphere MQ resource adapter

Configuration of the WebSphere MQ resource adapter
To configure the WebSphere MQ resource adapter, you define various JCA resources and system properties.

Limitations of the WebSphere MQ resource adapter
When you use the WebSphere MQ resource adapter, some features of WebSphere MQ are unavailable or limited.

Parent topic: Installation and configuration of WebSphere MQ classes for JMS

This build: January 26, 2011 11:29:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm40010_

4.2.3.1. Other required documentation

Every application server provides its own set of administration interfaces. Some application servers provide graphical user interfaces to define JCA resources,
but others require the administrator to write XML deployment plans. It is therefore beyond the scope of this documentation to provide information about how
to configure the WebSphere® MQ resource adapter for each application server. This documentation focuses only on what you need to configure, and you
must refer to your application server's own documentation for information about how to configure a JCA resource adapter.

Page 12 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

To understand this documentation, you must be familiar with JMS and WebSphere MQ classes for JMS. Many of the properties used to configure the
WebSphere MQ resource adapter are equivalent to properties of WebSphere MQ classes for JMS objects and have the same function.

Parent topic: The WebSphere MQ resource adapter

This build: January 26, 2011 11:29:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm40050_

4.2.3.2. Installation of the WebSphere MQ resource adapter

The WebSphere® MQ resource adapter is supplied as a resource archive (RAR) file called wmq.jmsra.rar. This file is installed with WebSphere MQ classes for
JMS in the directory shown in Table 1.

The RAR file contains WebSphere MQ classes for JMS and the WebSphere MQ implementation of the JCA interfaces.

You must install the WebSphere MQ resource adapter RAR file in your application server, but the way you do this depends on the application server. See the
documentation for your application server for information about how to install a resource adapter RAR file.

For non-transacted client connections, no other files are required.

For bindings connections on UNIX systems, you must ensure that the directory containing the Java Native Interface (JNI) libraries is in the system path. For
the location of this directory, which also contains the WebSphere MQ classes for JMS libraries, see Table 1. On Windows, this directory is automatically added
to the system path during the installation of WebSphere MQ classes for JMS.

Distributed transactions are supported by default in bindings mode, but in client mode they are supported only if the extended transactional client JAR file,
com.ibm.mqetclient.jar, is in the class path.

Table 2 summarizes the support for non-transacted and transacted connections. For an explanation of client and bindings modes, see Connection modes for
WebSphere MQ classes for JMS.

The WebSphere MQ resource adapter and the version of WebSphere MQ classes for JMS used by the resource adapter must be at the same release level.

WebSphere Application Server, Version 6 and the WebSphere MQ resource adapter

Parent topic: The WebSphere MQ resource adapter

This build: January 26, 2011 11:29:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm40060_

4.2.3.2.1. WebSphere Application Server, Version 6 and the WebSphere MQ resource adapter

Do not use the WebSphere® MQ resource adapter within WebSphere Application Server, Version 6. To access the resources of a WebSphere MQ queue
manager from within WebSphere Application Server from a JMS application, use the WebSphere MQ messaging provider, which contains a version of the
WebSphere MQ classes for JMS.

WebSphere Application Server, version 7, includes a version of the WebSphere MQ V7 Resource Adapter.

Parent topic: Installation of the WebSphere MQ resource adapter

This build: January 26, 2011 11:30:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm40100_

4.2.3.3. Configuration of the WebSphere MQ resource adapter

To configure the WebSphere® MQ resource adapter, you define various JCA resources and system properties.

Define JCA resources in the following categories:

� The properties of the ResourceAdapter object, which represent the global properties of the resource adapter, such as the level of diagnostic tracing.
These properties are described in Configuration of the ResourceAdapter object.

� The properties of an ActivationSpec object, which determine how an MDB is activated for inbound communication. These properties are described in
Configuration for inbound communication.

Table 1. The directory containing wmq.jmsra.rar for each platform

Platform Directory

AIX® /usr/mqm/java/lib/jca

HP-UX, Linux, and Solaris /opt/mqm/java/lib/jca

i5/OS® /QIBM/ProdData/mqm/java/lib/jca

Windows install_dir\java\lib\jca

Note: install_dir is the directory where you installed the WebSphere MQ server or WebSphere MQ client. The default directory is C:\Program

Files\IBM\WebSphere MQ, but you might have chosen a different directory.

Table 2. Support for non-transacted and transacted connections

Type of connection Non-transacted connections Transacted connections

Client mode Supported by default Supported if com.ibm.mqetclient.jar is in the class

path

Bindings mode Supported if the JNI libraries are in the system path Supported if the JNI libraries are in the system path

Page 13 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

� The properties of a ConnectionFactory object, which the application server uses to create a JMS ConnectionFactory object for outbound communication.
These properties are described in Configuration for outbound communication.

� The properties of an administered destination object, which the application server uses to create a JMS Queue object or JMS Topic object for outbound
communication. These properties are also described in Configuration for outbound communication.

The WebSphere MQ resource adapter RAR file contains a file called META-INF/ra.xml, which contains a deployment descriptor for the resource adapter. This
deployment descriptor is defined by the XML schema at http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd and contains information about the resource
adapter and the services that it provides. An application server might also require a deployment plan for the resource adapter. This deployment plan is
specific to the application server. For example, WebSphere Application Server Community Edition requires a deployment plan called geronimo-ra.xml.

If you are using Secure Sockets Layer (SSL), specify the locations of the key store file and trust store file as JVM system properties, as in the following
example:

java ... -Djavax.net.ssl.keyStore=key_store_location

 -Djavax.net.ssl.trustStore=trust_store_location

 -Djavax.net.ssl.keyStorePassword=key_store_password

These properties cannot be properties of an ActivationSpec or ConnectionFactory object, and you cannot specify more than one key store for an application
server. The properties apply to the whole JVM, and might therefore affect the application server if other applications, running in the application server, are
using SSL connections. The application server might also reset these properties to different values. For more information about using SSL with WebSphere
MQ classes for JMS, see Using Secure Sockets Layer (SSL) with WebSphere MQ classes for JMS.

An installation verification test (IVT) program is supplied with the WebSphere MQ resource adapter, but you must configure the resource adapter before you
can run the program. For information about what you need to configure in order to run the IVT program, see The installation verification test program for
the WebSphere MQ resource adapter.

Configuration of the ResourceAdapter object

Configuration for inbound communication
To configure inbound communication, define the properties of one or more ActivationSpec objects.

Configuration for outbound communication
To configure outbound communication, define the properties of a ConnectionFactory object and an administered destination object.

Parent topic: The WebSphere MQ resource adapter

This build: January 26, 2011 11:29:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm40070_

4.2.3.3.1. Configuration of the ResourceAdapter object

The ResourceAdapter object encapsulates the global properties of the WebSphere® MQ resource adapter. The object has two sets of properties:

� Properties associated with diagnostic tracing

� Properties associated with the connection pool managed by the resource adapter

The way you define these properties depends on the administration interfaces provided by your application server.

Table 1 lists the properties of the ResourceAdapter object that are associated with diagnostic tracing.

Table 2 describes the levels of detail for diagnostic tracing.

If diagnostic tracing is turned off, error and warning messages are written to the system error stream. If diagnostic tracing is turned on, error messages are
written to the system error stream and to the trace destination, but warning messages are written only to the trace destination. However, the trace contains
warning messages only if the trace level is 3 or higher.

The resource adapter manages an internal connection pool of JMS connections that are used to deliver messages to MDBs. Table 3 lists the properties of the
ResourceAdapter object that are associated with the connection pool.

Table 1. Properties of the ResourceAdapter object that are associated with diagnostic tracing

Name of property Type Default value Description

traceEnabled String false A flag to enable or disable diagnostic tracing. If the value is false, tracing

is turned off.

traceLevel String 3 The level of detail in a diagnostic trace. The value can be in the range 0,

which produces no trace, to 10, which provides the most detail. See Table

2 for a description of each level.

logWriterEnabled String true A flag to enable or disable the sending of a diagnostic trace to a LogWriter

object provided by the application server. If the value is true, the trace is

sent to a LogWriter object. If the value is false, any LogWriter object
provided by the application server is not used.

Table 2. The levels of detail for diagnostic tracing

Level

number

Level of detail

0 No trace.

1 The trace contains error messages.

3 The trace contains error and warning messages.

6 The trace contains error, warning, and information messages.

8 The trace contains error, warning, and information messages, and entry and exit information for methods.

9 The trace contains error, warning, and information messages, entry and exit information for methods, and diagnostic data.

10 The trace contains all trace information.

Note: Any level that is not included in this table is equivalent to the next lowest level. For example, specifying a trace level of 4 is equivalent to

specifying a trace level of 3. However, the levels that are not included might be used in future releases of the WebSphere MQ resource adapter,

so it is better to avoid using these levels.

Table 3. Properties of the ResourceAdapter object that are associated with the connection pool

Name of property Type Default value Description

maxConnections String 10 The maximum number of connections to a WebSphere MQ

Page 14 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

When an MDB is deployed in the application server, the resource adapter attempts to use an existing JMS connection from the connection pool. Each
connection can supply more than one MDB up to the maximum specified by the connectionConcurrency property. If there are no connections in the pool, or
if all the connections are fully utilized, a new connection is created provided the maximum number of connections specified by the maxConnections property
is not exceeded. The maximum number of MDBs that can be deployed is therefore equal to the product of the maxConnections and connectionConcurrency
properties, which is 50 by default. If the number of deployed MDBs reaches the maximum, any attempt to deploy another MDB fails. If an MDB is stopped,
its connection can be used by another MDB.

If MDBs are likely to receive a high volume of messages, you might need to reduce the value of the connectionConcurrency property. If you need to limit the
number of connections, because of restrictions imposed by a firewall for example, you might need to increase the value of the connectionConcurrency
property. In general, if many MDBs are to be deployed, increase the value of the maxConnections property.

The reconnectionRetryCount and reconnectionRetryInterval properties govern the behavior of the resource adapter when connections to a WebSphere MQ
queue manager fail, because of a network failure for example. When a connection fails, the resource adapter suspends the delivery of messages to all MDBs
supplied by that connection for an interval specified by the reconnectionRetryInterval property. The resource adapter then attempts to reconnect to the
queue manager. If the attempt fails, the resource adapter makes further attempts to reconnect at intervals specified by the reconnectionRetryInterval
property until the limit imposed by the reconnectionRetryCount property is reached. If all attempts fail, delivery is stopped permanently until the MDBs are
restarted manually.

In general, the ResourceAdapter object requires no administration. However, to enable diagnostic tracing on a UNIX system for example, you can set the
following properties:

traceEnabled: true

traceLevel: 10

These properties have no effect if the resource adapter has not been started, which is the case, for example, when applications using WebSphere MQ
resources are running only in the client container. In this situation, you can set the properties for diagnostic tracing as Java Virtual Machine (JVM) system
properties. You can do this by using the -D flag on the java command, as in the following example:

java ... -DtraceEnabled=true -DtraceLevel=6

You do not need to define all the properties of the ResourceAdapter object. Any properties left unspecified take their default values. In a managed
environment, it is better not to mix the two ways of specifying properties. If you do mix them, the JVM system properties take precedence over the
properties of the ResourceAdapter object.

Parent topic: Configuration of the WebSphere MQ resource adapter

This build: January 26, 2011 11:30:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm40190_

4.2.3.3.2. Configuration for inbound communication

To configure inbound communication, define the properties of one or more ActivationSpec objects.

The properties of an ActivationSpec object determine how a message drive bean (MDB) receives JMS messages from a WebSphere® MQ queue. The
transactional behavior of the MDB is defined in its deployment descriptor.

An ActivationSpec object has two sets of properties:

� Properties that are used to create a JMS connection to a WebSphere MQ queue manager

� Properties that are used to create a JMS connection consumer that delivers messages asynchronously as they arrive on a specified queue

The way in which you define the properties of an ActivationSpec object depends on the administration interfaces provided by your application server.

Table 1 lists the properties of an ActivationSpec object that are used to create a JMS connection to a WebSphere MQ queue manager.

queue manager.

connectionConcurrency String 5 The maximum number of MDBs that can be supplied by each

connection.

reconnectionRetryCount String 5 The maximum number of attempts made by the resource

adapter to reconnect to a WebSphere MQ queue manager if a

connection fails.

reconnectionRetryInterval String 300 000 The time, in milliseconds, that the resource adapter waits

before making another attempt to reconnect to a WebSphere

MQ queue manager.

Table 1. Properties of an ActivationSpec object that are used to create a JMS connection

Name of property Type Valid values (default value in bold) Description

brokerCCDurSubQueue1 String
� SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE

� A queue name

The name of the queue from

which a connection consumer

receives durable subscription

messages

brokerCCSubQueue1 String
� SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE

� A queue name

The name of the queue from

which a connection consumer

receives nondurable

subscription messages

brokerControlQueue1 String
� SYSTEM.BROKER.CONTROL.QUEUE

� A queue name

The name of the broker

control queue

brokerQueueManager1 String
� "" (empty string)

� A queue manager name

The name of the queue

manager on which the broker

is running

brokerSubQueue1 String
� SYSTEM.JMS.ND.SUBSCRIBER.QUEUE

� A queue name

The name of the queue from

which a nondurable message
consumer receives messages

brokerVersion1 String
� unspecified - After the broker has been migrated from

V6 to V7, set this property so that RFH2 headers are no

longer used. After migration this property is no longer

relevant.

� V1 - To use a WebSphere MQ Publish/Subscribe broker,

or to use a broker of WebSphere MQ Integrator,

WebSphere Event Broker, WebSphere Business

The version of the broker

being used

Page 15 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Integration Event Broker, or WebSphere Business

Integration Message Broker in compatibility mode. This is

the default value if TRANSPORT is set to BIND or CLIENT.

� V2 - To use a broker of WebSphere MQ Integrator,

WebSphere Event Broker, WebSphere Business

Integration Event Broker, or WebSphere Business

Integration Message Broker in native mode. This is the

default value if TRANSPORT is set to DIRECT or

DIRECTHTTP.

ccdtURL String
� null

� A uniform resource locator (URL)

A URL that identifies the

name and location of the file

containing the client channel

definition table and specifies

how the file can be accessed

CCSID String
� 819

� A coded character set identifier supported by the Java

virtual machine (JVM)

The coded character set

identifier for a connection

channel String
� SYSTEM.DEF.SVRCONN

� The name of an MQI channel

The name of the MQI channel

to use

cleanupInterval1 int
� 3 600 000

� A positive integer

The interval, in milliseconds,

between background runs of

the publish/subscribe cleanup

utility

cleanupLevel1 String
� SAFE

� NONE

� STRONG

� FORCE

� NONDUR

The cleanup level for a broker

based subscription store

clientID String
� null

� A client identifier

The client identifier for a

connection

cloneSupport String
� DISABLED - Only one instance of a durable topic

subscriber can run at a time.

� ENABLED - Two or more instances of the same durable

topic subscriber can run simultaneously, but each
instance must run in a separate Java virtual machine

(JVM).

Whether two or more

instances of the same durable

topic subscriber can run

simultaneously

failIfQuiesce boolean
� true

� false

Whether calls to certain

methods fail if the queue

manager is in a quiescing

state

headerCompression String
� NONE

� SYSTEM - RLE message header compression is performed

A list of the techniques that

can be used for compressing

header data on a connection

hostName String
� localhost

� A host name

� An IP address

The host name or IP address

of the system on which the
queue manager resides

localAddress String
� null

� A string in the format:

[host_name][(low_port[,high_port])]

where host_name is a host name or IP address, low_port

and high_port are TCP port numbers, and brackets denote

an optional component

For a connection to a queue

manager, this property

specifies either or both of the

following:

� The local network

interface to be used

� The local port, or range

of local ports, to be

used

messageCompression String
� NONE

� A list of one or more of the following values separated by

blank characters:

RLE

ZLIBFAST

ZLIBHIGH

A list of the techniques that

can be used for compressing

message data on a connection

messageRetention1 boolean
� true - Unwanted messages remain on the input queue

� false - Unwanted messages are dealt with according to

their disposition options

Whether the connection

consumer keeps unwanted

messages on the input queue

messageSelection1 String
� CLIENT

� BROKER

Determines whether message

selection is done by

WebSphere MQ classes for

JMS or by the broker.
Message selection by the

broker is not supported when

brokerVersion has the value

1.

password String
� null

� A password

The default password to use

when creating a connection to

the queue manager

pollingInterval1 int
� 5000

� Any positive integer

If each message listener

within a session has no

suitable message on its

queue, this is the maximum

interval, in milliseconds, that

elapses before each message

listener tries again to get a

Page 16 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

message from its queue. If it

frequently happens that no

suitable message is available

for any of the message

listeners in a session,

consider increasing the value

of this property. This property

is relevant only if TRANSPORT

has the value BIND or

CLIENT.

port int
� 1414

� A TCP port number

The port on which the queue

manager listens

providerVersion string
� unspecified

� A string in one of the following formats

� V.R.M.F

� V.R.M

� V.R

� V

where V, R, M and F are integer values greater than or

equal to zero.

The version, release,
modification level and fix pack

of the queue manager to

which the MDB intends to

connect.

queueManager String
� "" (empty string)

� A queue manager name

The name of the queue

manager to connect to

receiveExit String
� null

� A string comprising one or more items separated by

commas, where each item is the fully qualified name of a

class that implements the WebSphere MQ classes for Java

interface, MQReceiveExit

Identifies a channel receive

exit program, or a sequence

of receive exit programs to be

run in succession

receiveExitInit String
� null

� A string comprising one or more items of user data

separated by commas

The user data that is passed

to channel receive exit

programs when they are

called

rescanInterval1 int
� 5000

� Any positive integer

When a message consumer in

the point-to-point domain

uses a message selector to

select which messages it

wants to receive, WebSphere

MQ classes for JMS searches

the WebSphere MQ queue for
suitable messages in the

sequence determined by the

MsgDeliverySequence

attribute of the queue. When

WebSphere MQ classes for

JMS finds a suitable message
and delivers it to the

consumer, WebSphere MQ

classes for JMS resumes the

search for the next suitable

message from its current

position in the queue.

WebSphere MQ classes for

JMS continues to search the

queue in this way until it

reaches the end of the queue,

or until the interval of time in

milliseconds, as determined

by the value of this property,

has expired. In each case,
WebSphere MQ classes for

JMS returns to the beginning

of the queue to continue its

search, and a new time

interval commences.

securityExit String
� null

� The fully qualified name of a class that implements the

WebSphere MQ classes for Java interface, MQSecurityExit

Identifies a channel security

exit program

securityExitInit String
� null

� A string of user data

The user data that is passed

to a channel security exit

program when it is called

sendExit String
� null

� A string comprising one or more items separated by

commas, where each item is the fully qualified name of a
class that implements the WebSphere MQ classes for Java

interface, MQSendExit

Identifies a channel send exit

program, or a sequence of

send exit programs to be run

in succession

sendExitInit String
� null

� A string comprising one or more items of user data

separated by commas

The user data that is passed

to channel send exit

programs when they are

called

shareConvAllowed boolean
� false - A client connection cannot share its socket.

� true - A client connection can share its socket.

Whether a client connection

can share its socket with

other top-level JMS
connections from the same

process to the same queue

manager, if the channel

definitions match

sparseSubscriptions1 boolean
� false - Subscriptions receive frequent matching

messages.

� true - Subscriptions receive infrequent matching

Controls the message

retrieval policy of a

TopicSubscriber object

Page 17 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Table 2 lists the properties of an ActivationSpec object that are used to create a JMS connection consumer.

messages. This value requires that the subscription queue

can be opened for browse.

sslCertStores String
� null

� A string of one or more LDAP URLs separated by blanks.

Each LDAP URL has the format:

ldap://host_name[:port]

where host_name is a host name or IP address, port is a

TCP port number, and brackets denote an optional

component.

The Lightweight Directory
Access Protocol (LDAP)

servers that hold certificate

revocation lists (CRLs) for use

on an SSL connection

sslCipherSuite String
� null

� The name of a CipherSuite

The CipherSuite to use for an

SSL connection

sslFipsRequired2 boolean
� false

� true

Whether an SSL connection

must use a CipherSuite that is

supported by the IBM® Java

JSSE FIPS provider
(IBMJSSEFIPS)

sslPeerName String
� null

� A template for distinguished names

For an SSL connection, a

template that is used to check

the distinguished name in the

digital certificate provided by

the queue manager

sslResetCount int
� 0

� An integer in the range 0 to 999 999 999

The total number bytes sent

and received by an SSL

connection before the secret

keys used by SSL are

renegotiated

sslSocketFactory String A string representing the fully-qualified class name of a class

providing an implementation of the

javax.net.ssl.SSLSocketFactory interface, optionally including an

argument to be passed to the constructor method, enclosed in

parentheses.

Any connections established

in the scope of the

administered object use

sockets obtained from this

implementation of the

SSLSocketFactory interface.

statusRefreshInterval1 int
� 60000

� Any positive integer

The interval, in milliseconds,

between refreshes of the long

running transaction that

detects when a subscriber
loses its connection to the

queue manager. This property

is relevant only if

subscriptionStore has the

value QUEUE.

subscriptionStore1 String
� BROKER

� MIGRATE

� QUEUE

Determines where WebSphere

MQ classes for JMS stores

persistent data about active

subscriptions

transportType String
� CLIENT

� BINDINGS

� BINDINGS_THEN_CLIENT

Whether a connection to

a queue manager uses

client mode or bindings

mode. If the

value BINDINGS_

THEN_CLIENT is

specified, the resource

adapter first tries

to make a connection
in bindings mode, and

if this fails then tries

to make a client

mode connection.

username String
� null

� A user name

The default user name to use

when creating a connection to

a queue manager

wildcardFormat String
� CHAR- Recognizes character wildcards only, as used in

broker version 1

� TOPIC - Recognizes topic level wildcards only, as used in

broker version 2

Which version of wildcard

syntax is to be used

Notes:

1. This property can be used with Version 7.0 of WebSphere MQ classes for JMS but has no effect for an application connected to a Version

7.0 queue manager unless the providerVersion property is set to a version number less than 7.

2. For important information about using the sslFipsRequired property, see Limitations of the WebSphere MQ resource adapter.

Table 2. Properties of an ActivationSpec object that are used to create a JMS connection consumer

Name of property Type Valid values (default value in bold) Description

destination String A destination name The destination from which to receive messages. The

useJNDI property determines how the value of this

property is interpreted.

destinationType String
� javax.jms.Queue

� javax.jms.Topic

The type of destination, a queue or a topic

maxMessages int
� 1

� A positive integer

The maximum number of messages that can be

assigned to a server session at one time

maxPoolDepth int
� 10

� A positive integer

The maximum number of server sessions in the server

session pool used by the connection consumer

messageSelector String
� null A message selector expression specifying which

Page 18 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

The ActivationSpec properties called destination and destinationType must be defined explicitly. All the other properties are optional.

An ActivationSpec object can have conflicting properties. For example, you can specify SSL properties for a connection in bindings mode. In this case, the
behavior is determined by the transport type and the messaging domain, which is either point-to-point or publish/subscribe as determined by the
destinationType property. Any properties that are not applicable to the specified transport type or messaging domain are ignored.

If you define a property that requires other properties to be defined, but you do not define these other properties, the ActivationSpec object throws an
InvalidPropertyException exception when its validate() method is called during the deployment of an MDB. The exception is reported to the administrator of
the application server in a manner that depends on the application server. For example, if you set the subscriptionDurability property to Durable, indicating
that you want use durable subscriptions, you must also define the subscriptionName property.

If the properties called ccdtURL and channel are both defined, an InvalidPropertyException exception is thrown. However, if you define the ccdtURL property
only, leaving the property called channel with its default value of SYSTEM.DEF.SVRCONN, no exception is thrown, and the client channel definition table
identified by the ccdtURL property is used to start a JMS connection.

Most of the properties of an ActivationSpec object are equivalent to properties of WebSphere MQ classes for JMS objects or parameters of WebSphere MQ
classes for JMS methods. However, three tuning properties, and one usability property, have no equivalents in WebSphere MQ classes for JMS:

startTimeout

The time, in milliseconds, that the work manager of the application server waits for resources to become available after the resource adapter schedules a
Work object to deliver a message to an MDB. If this period of time elapses before delivery of the message starts, the Work object times out, the message
is rolled back onto the queue, and the resource adapter can then make another attempt to deliver the message. A warning is written to diagnostic trace, if
enabled, but this does not otherwise affect the process of delivering messages. You might expect this condition to occur only at times when the application
server is experiencing a very high load. If the condition occurs regularly, consider increasing the value of this property to give the work manager longer to
schedule message delivery.

maxPoolDepth

The maximum number of server sessions in the server session pool used by a connection consumer. The connection consumer uses a server session to
deliver a message to an MDB. A larger pool depth allows more messages to be delivered concurrently in high volume situations, but uses more resources
of the application server. If many MDBs are to be deployed, consider making the pool depth smaller in order to maintain the load on the application server
at a manageable level. Note that each connection consumer uses its own server session pool, so that this property does not define the total number of
server sessions available to all connection consumers.

poolTimeout

The period of time, in milliseconds, that an unused server session is held open in the server session pool before being closed due to inactivity. A transient
increase in the message workload causes additional server sessions to be created in order to distribute the load but, after the message workload returns to
normal, the additional server sessions remain in the pool and are not used.

Every time a server session is used, it is marked with a timestamp. Periodically a scavenger thread checks that each server session has been used within
the period specified by this property. If a server session has not been used, it is closed and removed from the server session pool. A server session might
not be closed immediately after the specified period has elapsed, this property represents the minimum period of inactivity before removal.

� An SQL92 message selector

expression

messages are to be delivered

poolTimeout int
� 300 000

� A positive integer

The period of time, in milliseconds, that an unused

server session is held open in the server session pool

before being closed due to inactivity

readAheadAllowed int
� DESTINATION - Determine whether
read ahead is allowed by referring to

the queue or topic definition.

� DISABLED - Read ahead is not

allowed.

� ENABLED - Read ahead is allowed.

� QUEUE - Determine whether read

ahead is allowed by referring to the

queue definition.

� TOPIC - Determine whether read

ahead is allowed by referring to the

topic definition.

Whether the MDB is allowed to use read ahead to get

nonpersistent messages from the destination into an

internal buffer before receiving them

readAheadClosePolicy int
� ALL - All messages in the internal
read ahead buffer are delivered to

the MDB before it stops.

� CURRENT - Only the current MDB
invocation completes, potentially

leaving messages in the internal

read ahead buffer, which are then

discarded.

What happens to messages in the internal read ahead

buffer when the MDB is stopped by the administrator.

startTimeout int
� 10 000

� A positive integer

The period of time, in milliseconds, within which

delivery of a message to an MDB must start after the

work to deliver the message has been scheduled. If
this period of time elapses, the message is rolled back

onto the queue.

subscriptionDurability String
� NonDurable - A nondurable

subscription is used to deliver

messages to an MDB subscribing to

the topic.

� Durable - A durable subscription is

used to deliver messages to an MDB

subscribing to the topic.

Whether a durable or nondurable subscription is used

to deliver messages to an MDB subscribing to the topic

subscriptionName String
� "" (empty string)

� A subscription name

The name of the durable subscription

useJNDI boolean
� false - The property called

destination is interpreted as the

name of a WebSphere MQ queue or

a topic.

� true - The property called destination

is interpreted as the name of a

javax.jms.Queue object or

javax.jms.Topic object in the

application server's JNDI namespace.

Determines how the value of the property called

destination is interpreted

Page 19 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

useJNDI

For a description of this property, see Table 2.

To deploy an MDB, first define the properties of an ActivationSpec object, specifying the properties that the MDB requires. The following example is a typical
set of properties that you might define explicitly:

channel: SYSTEM.DEF.SVRCONN

destination: SYSTEM.DEFAULT.LOCAL.QUEUE

destinationType: javax.jms.Queue

hostName: 192.168.0.42

messageSelector: color='red'

port: 1414

queueManager: ExampleQM

transportType: CLIENT

The application server uses the properties to create an ActivationSpec object, which is then associated with an MDB. The properties of the ActivationSpec
object determine how messages are delivered to the MDB. Deployment of the MDB fails if the MDB requires distributed transactions but the resource adapter
does not support distributed transactions. For information about how to install the resource adapter so that distributed transactions are supported, see
Installation of the WebSphere MQ resource adapter.

If more than one MDB is receiving messages from the same destination, then a message sent in the point-to-point domain is received by only one MDB,
even if other MDBs are eligible to receive the message. In particular, if two MDBs are using different message selectors, and an incoming message matches
both message selectors, only one of the MDBs receives the message. The MDB chosen to receive a message is undefined, and you cannot rely on a specific
MDB receiving the message. Messages sent in the publish/subscribe domain are received by all eligible MDBs.

Inbound poison message handling in the Resource Adapter

In some circumstances, a message delivered to an MDB might be rolled back onto a WebSphere® MQ queue. This can happen, for example, if a message is
delivered within a unit of work that is subsequently rolled back. A message that is rolled back is generally delivered again, but a badly formatted message
might repeatedly cause an MDB to fail and therefore cannot be delivered. Such a message is called a poison message. You can configure WebSphere MQ so
that WebSphere MQ classes for JMS automatically transfers a poison message to another queue for further investigation or discards the message.

For details on how to handle poison messages, see Handling poison messages in WebSphere MQ classes for JMS.

Parent topic: Configuration of the WebSphere MQ resource adapter

This build: January 26, 2011 11:30:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm40080_

4.2.3.3.3. Configuration for outbound communication

To configure outbound communication, define the properties of a ConnectionFactory object and an administered destination object.

When using outbound communication, an application running in an application server starts a connection to a queue manager, and then sends messages to
its queues and receives messages from its queues in a synchronous manner. For example, the following servlet method, doGet(), uses outbound
communication:

protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

...

// Look up ConnectionFactory and Queue objects from the JNDI namespace

 InitialContext ic = new InitialContext();

 ConnectionFactory cf = (javax.jms.ConnectionFactory) ic.lookup("myCF");

 Queue q = (javax.jms.Queue) ic.lookup("myQueue");

// Create and start a connection

 Connection c = cf.createConnection();

 c.start();

// Create a session and message producer

 Session s = c.createSession(false, Session.AUTO_ACKNOWLEDGE);

 MessageProducer pr = s.createProducer(q);

// Create and send a message

 Message m = s.createTextMessage("Hello, World!");

 pr.send(m);

// Create a message consumer and receive the message just sent

 MessageConsumer co = s.createConsumer(q);

 Message mr = co.receive(5000);

// Close the connection

 c.close();

}

When the servlet receives an HTTP GET request, it retrieves a ConnectionFactory object and a Queue object from the JNDI namespace, and uses the objects
to send a message to a WebSphere® MQ queue. The servlet then receives the message that it has just sent.

To configure outbound communication, define JCA resources in the following categories:

� The properties of a ConnectionFactory object, which the application server uses to create a JMS ConnectionFactory object.

� The properties of an administered destination object, which the application server uses to create a JMS Queue object or JMS Topic object.

The way you define these properties depends on the administration interfaces provided by your application server. ConnectionFactory, Queue, and Topic
objects created by the application server are bound into a JNDI namespace from where they can be retrieved by an application.

Typically, you define one ConnectionFactory object for each queue manager that applications might need to connect to, one Queue object for each queue

Page 20 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

that applications might need to access in the point-to-point domain, and one Topic object for each topic that applications might want to publish or subscribe
to. A ConnectionFactory object can be domain independent. Alternatively, it can be domain specific, a QueueConnectionFactory object for the point-to-point
domain or a TopicConnectionFactory object for the publish/subscribe domain.

Table 1 lists the properties of a ConnectionFactory object.

Table 1. Properties of a ConnectionFactory object

Name of property Type Valid values (default value in bold) Description

brokerCCSubQueue1 String
� SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE

� A queue name

The name of the queue from which a

connection consumer receives

nondurable subscription messages

brokerControlQueue1 String
� SYSTEM.BROKER.CONTROL.QUEUE

� A queue name

The name of the broker control queue

brokerPubQueue1 String
� SYSTEM.BROKER.DEFAULT.STREAM

� A queue name

The name of the queue where

published messages are sent (the

stream queue)

brokerQueueManager1 String
� "" (empty string)

� A queue manager name

The name of the queue manager on

which the broker is running

brokerSubQueue1 String
� SYSTEM.JMS.ND.SUBSCRIBER.QUEUE

� A queue name

The name of the queue from which a

nondurable message consumer

receives messages

brokerVersion1 String
� unspecified - After the broker has been migrated

from V6 to V7, set this property so that RFH2 headers

are no longer used. After migration this property is no

longer relevant.

� V1 - To use a WebSphere MQ Publish/Subscribe

broker, or to use a broker of WebSphere MQ

Integrator, WebSphere Event Broker, WebSphere

Business Integration Event Broker, or WebSphere

Business Integration Message Broker in compatibility

mode. This is the default value if TRANSPORT is set to

BIND or CLIENT.

� V2 - To use a broker of WebSphere MQ Integrator,

WebSphere Event Broker, WebSphere Business

Integration Event Broker, or WebSphere Business

Integration Message Broker in native mode. This is the

default value if TRANSPORT is set to DIRECT or

DIRECTHTTP.

The version of the broker being used

ccdtURL String
� null

� A uniform resource locator (URL)

A URL that identifies the name and

location of the file containing the

client channel definition table and

specifies how the file can be accessed

CCSID String
� 819

� A coded character set identifier supported by the Java

virtual machine (JVM)

The coded character set identifier for

a connection

channel String
� SYSTEM.DEF.SVRCONN

� The name of an MQI channel

The name of the MQI channel to use

cleanupInterval1 int
� 3 600 000

� A positive integer

The interval, in milliseconds, between

background runs of the

publish/subscribe cleanup utility

cleanupLevel1 String
� SAFE

� NONE

� STRONG

� FORCE

� NONDUR

The cleanup level for a broker based

subscription store

clientID String
� null

� A client identifier

The client identifier for a connection

cloneSupport String
� DISABLED - Only one instance of a durable topic
subscriber can run at a time.

� ENABLED - Two or more instances of the same durable

topic subscriber can run simultaneously, but each
instance must run in a separate Java virtual machine

(JVM).

Whether two or more instances of the

same durable topic subscriber can

run simultaneously

failIfQuiesce boolean
� true

� false

Whether calls to certain methods fail

if the queue manager is in a

quiescing state

headerCompression String
� NONE

� SYSTEM - RLE message header compression is

performed.

A list of the techniques that can be

used for compressing header data on

a connection

hostName String
� localhost

� A host name

� An IP address

The host name or IP address of the

system on which the queue manager

resides

localAddress String
� null

� A string in the format:

[host_name][(low_port[,high_port])]

where host_name is a host name or IP address,

low_port and high_port are TCP port numbers, and

brackets denote an optional component

For a connection to a queue manager,

this property specifies either or both

of the following:

� The local network interface to

be used

� The local port, or range of local

ports, to be used

messageCompression String
� NONE A list of the techniques that can be

used for compressing message data

Page 21 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

� A list of one or more of the following values separated

by blank characters:

RLE

ZLIBFAST

ZLIBHIGH

on a connection

messageSelection1 String
� CLIENT

� BROKER

Determines whether message

selection is done by WebSphere MQ

classes for JMS or by the broker.

Message selection by the broker is

not supported when brokerVersion

has the value 1.

password String
� null

� A password

The default password to use when

creating a connection to the queue

manager

pollingInterval1 int
� 5000

� Any positive integer

If each message listener within a

session has no suitable message on

its queue, this is the maximum

interval, in milliseconds, that elapses
before each message listener tries

again to get a message from its

queue. If it frequently happens that

no suitable message is available for

any of the message listeners in a

session, consider increasing the value

of this property. This property is

relevant only if TRANSPORT has the

value BIND or CLIENT.

port int
� 1414

� A TCP port number

The port on which the queue

manager listens

providerVersion string
� unspecified

� A string in one of the following formats

� V.R.M.F

� V.R.M

� V.R

� V

where V, R, M and F are integer values greater than or

equal to zero.

The version, release, modification

level and fix pack of the queue

manager to which the application

intends to connect.

pubAckInterval1 int
� 25

� A positive integer

The number of messages published

by a publisher before WebSphere MQ

classes for JMS requests an
acknowledgement from the broker.

queueManager String
� "" (empty string)

� A queue manager name

The name of the queue manager to
connect to

receiveExit String
� null

� A string comprising one or more items separated by

commas, where each item is the fully qualified name

of a class that implements the WebSphere MQ classes

for Java interface, MQReceiveExit

Identifies a channel receive exit

program, or a sequence of receive

exit programs to be run in succession

receiveExitInit String
� null

� A string comprising one or more items of user data

separated by commas

The user data that is passed to

channel receive exit programs when

they are called

rescanInterval1 int
� 5000

� Any positive integer

When a message consumer in the

point-to-point domain uses a

message selector to select which

messages it wants to receive,

WebSphere MQ classes for JMS

searches the WebSphere MQ queue

for suitable messages in the

sequence determined by the

MsgDeliverySequence attribute of

the queue. When WebSphere MQ

classes for JMS finds a suitable

message and delivers it to the

consumer, WebSphere MQ classes for

JMS resumes the search for the next

suitable message from its current
position in the queue. WebSphere MQ

classes for JMS continues to search

the queue in this way until it reaches

the end of the queue, or until the

interval of time in milliseconds, as

determined by the value of this

property, has expired. In each case,

WebSphere MQ classes for JMS

returns to the beginning of the queue

to continue its search, and a new

time interval commences.

securityExit String
� null

� The fully qualified name of a class that implements the

WebSphere MQ classes for Java interface,

MQSecurityExit

Identifies a channel security exit

program

securityExitInit String
� null

� A string of user data

The user data that is passed to a

channel security exit program when it
is called

sendCheckCount int
� 0 The number of send calls to allow

between checking for asynchronous

Page 22 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

� Any positive integer put errors, within a single non-

transacted JMS session

sendExit String
� null

� A string comprising one or more items separated by

commas, where each item is the fully qualified name

of a class that implements the WebSphere MQ classes
for Java interface, MQSendExit

Identifies a channel send exit

program, or a sequence of send exit

programs to be run in succession

sendExitInit String
� null

� A string comprising one or more items of user data

separated by commas

The user data that is passed to

channel send exit programs when

they are called

shareConvAllowed boolean
� NO - A client connection cannot share its socket.

� YES - A client connection can share its socket.

Whether a client connection can

share its socket with other top-level

JMS connections from the same

process to the same queue manager,

if the channel definitions match

sparseSubscriptions1 boolean
� false - Subscriptions receive frequent matching

messages.

� true - Subscriptions receive infrequent matching

messages. This value requires that the subscription

queue can be opened for browse.

Controls the message retrieval policy
of a TopicSubscriber object

sslCertStores String
� null

� A string of one or more LDAP URLs separated by

blanks. Each LDAP URL has the format:

ldap://host_name[:port]

where host_name is a host name or IP address, port is

a TCP port number, and brackets denote an optional

component.

The Lightweight Directory Access

Protocol (LDAP) servers that hold

certificate revocation lists (CRLs) for

use on an SSL connection

sslCipherSuite String
� null

� The name of a CipherSuite

The CipherSuite to use for an SSL
connection

sslFipsRequired2 boolean
� false

� true

Whether an SSL connection must use

a CipherSuite that is supported by

the IBM® Java JSSE FIPS provider

(IBMJSSEFIPS)

sslPeerName String
� null

� A template for distinguished names

For an SSL connection, a template

that is used to check the

distinguished name in the digital

certificate provided by the queue

manager

sslResetCount int
� 0

� An integer in the range 0 to 999 999 999

The total number bytes sent and

received by an SSL connection before

the secret keys used by SSL are

renegotiated

sslSocketFactory String A string representing the fully-qualified class name of a class

providing an implementation of the

javax.net.ssl.SSLSocketFactory interface, optionally

including an argument to be passed to the constructor

method, enclosed in parentheses.

Any connections established in the

scope of the administered destination

object use sockets obtained from this

implementation of the

SSLSocketFactory interface.

statusRefreshInterval1 int
� 60000

� Any positive integer

The interval, in milliseconds, between

refreshes of the long running

transaction that detects when a
subscriber loses its connection to the

queue manager. This property is

relevant only if SUBSTORE has the

value QUEUE.

subscriptionStore1 String
� BROKER

� MIGRATE

� QUEUE

Determines where WebSphere MQ

classes for JMS stores persistent data

about active subscriptions

targetClientMatching boolean
� true

� false

Whether a reply message, sent to the

queue identified by the JMSReplyTo

header field of an incoming message,

has an MQRFH2 header only if the

incoming message has an MQRFH2

header

temporaryModel String
� SYSTEM.DEFAULT.MODEL.QUEUE

� Any string

The name of the model queue from

which JMS temporary queues are

created

tempQPrefix String
� "" (empty string)

� A prefix that can be used to form the name of a

WebSphere MQ dynamic queue. The rules for forming
the prefix are the same as those for forming the

contents of the DynamicQName field in a WebSphere

MQ object descriptor, structure MQOD, but the last

non blank character must be an asterisk (*). If the

value of the property is the empty string, WebSphere

MQ classes for JMS uses the value AMQ.* when
creating a dynamic queue.

The prefix that is used to form the

name of a WebSphere MQ dynamic

queue.

tempTopicPrefix String Any non-null string consisting only of valid characters for a

WebSphere MQ topic string

When creating temporary topics, JMS

will generate a topic string of the

form

“TEMP/TEMPTOPICPREFIX/unique_id”,

or if this property is left with the

default value, just “TEMP/unique_id”.
Specifying a non-empty

TEMPTOPICPREFIX allows specific

model queues to be defined for

creating the managed queues for

subscribers to temporary topics

Page 23 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

The following example shows a typical set of properties of a ConnectionFactory object:

channel: SYSTEM.DEF.SVRCONN

hostName: 192.168.0.42

port: 1414

queueManager: ExampleQM

transportType: CLIENT

Table 2 lists the properties that are common to a Queue object and a Topic object.

created under this connection.

transportType String
� CLIENT

� BINDINGS

� BINDINGS_THEN_CLIENT

Whether a connection to a queue

manager uses client mode or bindings

mode.If the value

BINDINGS_THEN_CLIENT is specified,

the resource adapter first tries to

make a connection in bindings mode,

and if this fails then tries to make a

client mode connection.

username String
� null

� A user name

The default user name to use when

creating a connection to a queue

manager

wildcardFormat int
� CHAR- Recognizes character wildcards only, as used in

broker version 1

� TOPIC - Recognizes topic level wildcards only, as used

in broker version 2

Which version of wildcard syntax is to

be used

Notes:

1. This property can be used with Version 7.0 of WebSphere MQ classes for JMS but has no effect for an application connected to a Version

7.0 queue manager unless the providerVersion property is set to a version number less than 7.

2. For important information about using the sslFipsRequired property, see Limitations of the WebSphere MQ resource adapter.

Table 2. Properties that are common to a Queue object and a Topic object

Name of property Type Valid values (default value in bold) Description

CCSID String
� 1208

� A coded character set identifier supported by the

Java virtual machine (JVM)

The coded character set identifier for

the destination

encoding String
� NATIVE

� A string of three characters:

� The first character specifies the

representation of binary integers:

� N denotes normal encoding.

� R denotes reverse encoding.

� The second character specifies the

representation of packed decimal integers:

� N denotes normal encoding.

� R denotes reverse encoding.

� The third character specifies the

representation of floating point numbers:

� N denotes standard IEEE encoding.

� R denotes reverse IEEE encoding.

� 3 denotes zSeries® encoding.

NATIVE is equivalent to the string NNN.

The representation of binary

integers, packed decimal integers,

and floating point numbers for the

destination.

expiry String
� APP - The expiry time of a message is determined

by the message producer.

� UNLIM - A message never expires.

� 0 - A message never expires.

� A positive integer representing the expiry time of a

message in milliseconds.

The expiry time of a message sent to

the destination

failIfQuiesce String
� true

� false

Whether an attempt to access the

destination fails if the queue
manager is in a quiescing state

persistence String
� APP - The persistence of a message is determined

by the message producer.

� QDEF - The persistence of a message is determined

by the DefPersistence attribute of the WebSphere

MQ queue.

� PERS - A message is persistent.

� NON - A message is nonpersistent.

� HIGH - The persistence of a message is determined

by the NonPersistentMessageClass attribute of

the WebSphere MQ queue according to the

explanation in JMS persistent messages.

The persistence of a message sent to
the destination

priority String
� APP - The priority of a message is determined by

the message producer.

� QDEF - The priority of a message is determined by

the DefPriority attribute of the WebSphere MQ

queue.

� An integer in the range 0, lowest priority, to 9,

highest priority.

The priority of a message sent to the

destination

readAheadAllowed int
� DESTINATION - Determine whether read ahead is

allowed by referring to the queue or topic definition.

Whether message consumers and

queue browsers are allowed to use

Page 24 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Table 3 lists the properties that are specific to a Queue object.

Table 4 lists the properties that are specific to a Topic object.

The following example shows a set of properties of a Queue object:

expiry: UNLIM

persistence: QDEF

baseQueueManagerName: ExampleQM

baseQueueName: SYSTEM.DEFAULT.LOCAL.QUEUE

The following example shows a set of properties of a Topic object:

expiry: UNLIM

persistence: NON

baseTopicName: myTestTopic

Parent topic: Configuration of the WebSphere MQ resource adapter

This build: January 26, 2011 11:30:04

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm40120_

4.2.3.4. Limitations of the WebSphere MQ resource adapter

When you use the WebSphere® MQ resource adapter, some features of WebSphere MQ are unavailable or limited.

The WebSphere MQ resource adapter has the following limitations:

� The WebSphere MQ resource adapter is supported on all WebSphere MQ platforms, except z/OS®.

� The WebSphere MQ resource adapter does not support real-time connections to a broker. It supports only connections to a WebSphere MQ queue
manager in client or bindings mode.

� DISABLED - Read ahead is not allowed.

� ENABLED - Read ahead is allowed.

� QUEUE - Determine whether read ahead is allowed

by referring to the queue definition.

� TOPIC - Determine whether read ahead is allowed

by referring to the topic definition.

read ahead to get nonpersistent

messages from the destination into

an internal buffer before receiving

them

targetClient String
� JMS - The target of a message is a JMS application.

� MQ - The target of a message is a non-JMS

WebSphere MQ application.

Whether the target of a message

sent to the destination is a JMS

application. A message whose target
is a JMS application contains an

MQRFH2 header.

Table 3. Properties that are specific to a Queue object

Name of property Type Valid values (default value in bold) Description

baseQueueManagerName String
� "" (empty string)

� A queue manager name

The name of the queue manager that owns the

underlying WebSphere MQ queue

baseQueueName String
� "" (empty string)

� A queue name

The name of the underlying WebSphere MQ queue

Table 4. Properties that are specific to a Topic object

Name of property Type Valid values (default value in bold) Description

baseTopicName String
� "" (empty string)

� A topic name

The name of the underlying topic

brokerCCDurSubQueue1 String
� SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE

� A queue name

The name of the queue from which a

connection consumer receives durable

subscription messages

brokerDurSubQueue1 String
� SYSTEM.JMS.D.SUBSCRIBER.QUEUE

� A queue name

The name of the queue from which a

durable topic subscriber receives

messages

brokerPubQueue1 String
� Not set

� A queue name

The name of the queue where

published messages are sent (the

stream queue). The value of this

property overrides the value of the
brokerPubQueue property of the

ConnectionFactory object. However, if

you do not set the value of this

property, the value of the

brokerPubQueue property of the

ConnectionFactory object is used

instead.

brokerPubQueueManager1 String
� "" (empty string)

� A queue manager name

The name of the queue manager that

owns the queue where messages

published on the topic are sent

brokerVersion1 String
� Not set

� 1

� 2

The version of the broker being used.

The value of this property overrides

the value of the brokerVersion

property of the ConnectionFactory

object. However, if you do not set the

value of this property, the value of the

brokerVersion property of the

ConnectionFactory object is used
instead.

Note:

1. This property can be used with Version 7.0 of WebSphere MQ classes for JMS but has no effect for an application connected to a Version

7.0 queue manager unless the providerVersion property of the ConnectionFactory object is set to a version number less than 7.

Page 25 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

� The WebSphere MQ resource adapter does not support channel exit programs that are written in languages other than Java.

� While an application server is running, the value of the sslFipsRequired property must be true for all JCA resources or false for all JCA resources. This is
a requirement even if the JCA resources are not used concurrently. If the sslFipsRequired property has different values for different JCA resources,
WebSphere MQ issues the reason code MQRC_UNSUPPORTED_CIPHER_SUITE, even if an SSL connection is not being used.

� You cannot specify more than one key store for an application server. If connections are made to more than one queue manager, all the connections
must use the same key store. This limitation does not apply to WebSphere Application Server.

� If you use a client channel definition table (CCDT) with more than one suitable client connection channel definition, in the event of a failure the
resource adapter might select a different channel definition and therefore a different queue manager from the CCDT, which would cause problems for
transaction recovery. The resource adapter does not take any action to prevent such a configuration from being used, and it is your responsibility to
avoid configurations that may cause problems for transaction recovery.

� The connection retry functionality introduced in WebSphere MQ 7.0.1 is not supported for outbound connections when running in a JEE container
(EJB/Servlet). Connection retry is not supported at all for outbound JMS when the adapter is used in a JEE container context, regardless of transaction
configuration or for non-transacted use.

Parent topic: The WebSphere MQ resource adapter

This build: January 26, 2011 11:30:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm40140_

4.2.4. WebSphere MQ JMS Extended Transactional Client

In bindings mode, WebSphere® MQ classes for JMS use the XA functions of WebSphere MQ. In client mode, you need the Extended Transactional Client
unless you are using Websphere Application Server.

For general information about extended transactional clients, see What is an extended transactional client?.

In bindings mode, WebSphere MQ classes for JMS connects directly to the queue manager using the Java Native Interface (JNI). The XA functions of
WebSphere MQ are therefore available to your JMS application.

In client mode, WebSphere MQ classes for JMS behave like any other WebSphere MQ client. Therefore, to use XA functions you must install the WebSphere
MQ Extended Transactional Client. However, if you are using WebSphere MQ classes for JMS within WebSphere Application Server, Version 6.0 or later, the
application server provides Extended Transaction Client ability, provided that you have configured the WebSphere MQ classes for JMS using the specifically
named option, rather than as a generic provider. Other application servers require the use of the JMS Extended Transactional Client.

Parent topic: Installation and configuration of WebSphere MQ classes for JMS

This build: January 26, 2011 11:30:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm41230_

4.3. Using WebSphere MQ classes for JMS

This topic describes how to run WebSphere® MQ classes for JMS applications. It tells you how to configure WebSphere MQ, and how to run the installation
verification test programs. It describes the scripts provided with WebSphere MQ classes for JMS and the support for OSGi, and provides guidance on solving
problems.

Post installation setup for WebSphere MQ classes for JMS applications
This topic tells you what authorities WebSphere MQ classes for JMS applications need in order to access the resources of a queue manager. It also
introduces connection modes and describes how to configure a queue manager so that applications can connect in client mode.

The point-to-point installation verification test for WebSphere MQ classes for JMS
A point-to-point installation verification test (IVT) program is supplied with WebSphere MQ classes for JMS. The program connects to a queue manager
in either bindings or client mode, sends a message to the queue called SYSTEM.DEFAULT.LOCAL.QUEUE, and then receives the message from the
queue. The program can create and configure all the objects that it requires dynamically at run time, or it can use JNDI to retrieve administered
objects from a directory service.

The publish/subscribe installation verification test for WebSphere MQ classes for JMS
A publish/subscribe installation verification test (IVT) program is supplied with WebSphere MQ classes for JMS. The program connects to a queue
manager in either bindings or client mode, subscribes to a topic, publishes a message on the topic, and then receives the message that it has just
published. The program can create and configure all the objects that it requires dynamically at run time, or it can use JNDI to retrieve administered
objects from a directory service.

The installation verification test program for the WebSphere MQ resource adapter

Scripts provided with WebSphere MQ classes for JMS
A number of scripts are provided to assist with common tasks that need to be performed when using WebSphere MQ classes for JMS.

Support for OSGi
The Open Services Gateway Initiative (OSGi) provides a framework that supports the deployment of applications as bundles. Nine OSGi bundles are
supplied as part of WebSphere MQ classes for JMS.

Solving problems

Problem determination for the WebSphere MQ resource adapter

Parent topic: WebSphere MQ classes for JMS

This build: January 26, 2011 11:29:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

Page 26 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

jm10450_

4.3.1. Post installation setup for WebSphere MQ classes for JMS applications

This topic tells you what authorities WebSphere® MQ classes for JMS applications need in order to access the resources of a queue manager. It also
introduces connection modes and describes how to configure a queue manager so that applications can connect in client mode.

Remember to check the WebSphere MQ readme file. It might contain information that supersedes the information in this topic.

Objects that require authorization for non-privileged users
Non-privileged users need authorization granted to access the queues used by JMS. Every JMS application needs authorization to the queue manager
with which it works.

Connection modes for WebSphere MQ classes for JMS
A WebSphere MQ classes for JMS application can connect to a queue manager in either client or bindings mode. In client mode, WebSphere MQ classes
for JMS connects to the queue manager over TCP/IP. In bindings mode, WebSphere MQ classes for JMS connects directly to the queue manager using
the Java Native Interface (JNI).

Configuring your queue manager so that WebSphere MQ classes for JMS applications can connect in client mode
To configure your queue manager so that WebSphere MQ classes for JMS applications can connect in client mode, you must create a server connection
channel definition and start a listener.

Parent topic: Using WebSphere MQ classes for JMS

This build: January 26, 2011 11:29:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm10640_

4.3.1.1. Objects that require authorization for non-privileged users

Non-privileged users need authorization granted to access the queues used by JMS. Every JMS application needs authorization to the queue manager with
which it works.

For details about access control in WebSphere® MQ, see WebSphere MQ security.

WebSphere MQ classes for JMS applications need connect and inq authority to the queue manager. You can set appropriate authorizations using the

setmqaut control command, for example:

setmqaut -m QM1 -t qmgr -g jmsappsgroup +connect +inq

For the point-to-point domain, the following authorities are required:

� Queues that are used by MessageProducer objects need put authority.

� Queues that are used by MessageConsumer and QueueBrowser objects need get, inq, and browse authorities.

� The QueueSession.createTemporaryQueue() method needs access to the model queue specified by the TEMPMODEL property of the
QueueConnectionFactory object. By default this model queue is SYSTEM.DEFAULT.MODEL.QUEUE.

For the publish/subscribe domain, the following queues are used if WebSphere MQ classes for JMS is in WebSphere MQ messaging provider migration mode:

� SYSTEM.JMS.ADMIN.QUEUE

� SYSTEM.JMS.REPORT.QUEUE

� SYSTEM.JMS.MODEL.QUEUE

� SYSTEM.JMS.PS.STATUS.QUEUE

� SYSTEM.JMS.ND.SUBSCRIBER.QUEUE

� SYSTEM.JMS.D.SUBSCRIBER.QUEUE

� SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE

� SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE

� SYSTEM.BROKER.CONTROL.QUEUE

Additionally, if WebSphere MQ classes for JMS is in this mode, any application that publishes messages needs access to the stream queue specified by the
TopicConnectionFactory or topic object. By default, this queue is SYSTEM.BROKER.DEFAULT.STREAM.

If you use ConnectionConsumer, additional authorization might be needed. Queues to be read by the ConnectionConsumer must have get, inq, and browse

authorities. The system dead-letter queue, and any backout-requeue queue or report queue used by the ConnectionConsumer must have put and passall

authorities.

Parent topic: Post installation setup for WebSphere MQ classes for JMS applications

This build: January 26, 2011 11:29:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm10670_

4.3.1.2. Connection modes for WebSphere MQ classes for JMS

A WebSphere® MQ classes for JMS application can connect to a queue manager in either client or bindings mode. In client mode, WebSphere MQ classes for
JMS connects to the queue manager over TCP/IP. In bindings mode, WebSphere MQ classes for JMS connects directly to the queue manager using the Java
Native Interface (JNI).

An application running in WebSphere Application Server on z/OS® can connect to a queue manager in either bindings or client mode, but an application
running in any other environment on z/OS can connect to a queue manager only in bindings mode. An application running on any other platform can connect
to a queue manager in either bindings or client mode.

The following sections describe each of the connection modes in more detail.

Page 27 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Client mode

To connect to a queue manager in client mode, a WebSphere MQ classes for JMS application can run on the same system on which the queue manager is
running, or on a different system. In each case, WebSphere MQ classes for JMS connects to the queue manager over TCP/IP.

Bindings mode

To connect to a queue manager in bindings mode, a WebSphere MQ classes for JMS application must run on the same system on which the queue manager
is running. WebSphere MQ classes for JMS connects directly to the queue manager using the Java Native Interface (JNI). In some environments, connecting
in bindings mode can provide better performance than connecting in client mode.

Parent topic: Post installation setup for WebSphere MQ classes for JMS applications

This build: January 26, 2011 11:29:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm10260_

4.3.1.3. Configuring your queue manager so that WebSphere MQ classes for JMS applications
can connect in client mode

To configure your queue manager so that WebSphere® MQ classes for JMS applications can connect in client mode, you must create a server connection
channel definition and start a listener.

On z/OS®, the Client Attachment feature must be installed.

Creating a server connection channel definition

On all platforms, you can use the MQSC command DEFINE CHANNEL to create a server connection channel definition. See the following example:

DEFINE CHANNEL(JAVA.CHANNEL) CHLTYPE(SVRCONN) TRPTYPE(TCP)

On i5/OS®, you can use the CL command CRTMQMCHL instead, as in the following example:

CRTMQMCHL CHLNAME(JAVA.CHANNEL) CHLTYPE(*SVRCN)

 TRPTYPE(*TCP)

 MQMNAME(QMGRNAME)

In this command, QMGRNAME is the name of your queue manager.

You can also create a server connection channel definition using WebSphere MQ Explorer, which runs on Linux and Windows, or the operations and control
panels on z/OS.

The name of the channel (JAVA.CHANNEL in the previous examples) must be the same as the channel name specified by the CHANNEL property of the
connection factory that your application uses to connect to the queue manager. The default value of the CHANNEL property is SYSTEM.DEF.SVRCONN.

Starting a listener

You must start a listener for your queue manager if one is not already started.

On all platforms, you can use the MQSC command START LISTENER to start a listener but, except on z/OS, you must first create a listener object by using
the MQSC command DEFINE LISTENER. See the following example:

DEFINE LISTENER(LISTENER.TCP) TRPTYPE(TCP) PORT(1414)

START LISTENER(LISTENER.TCP)

On z/OS, you use only the START LISTENER command, as in the following example, but note that the channel initiator address space must be started before
you can start a listener:

START LISTENER TRPTYPE(TCP) PORT(1414)

On i5/OS, you can also use the CL command STRMQMLSR to start a listener, as in the following example:

STRMQMLSR PORT(1414) MQMNAME(QMGRNAME)

In this command, QMGRNAME is the name of your queue manager.

On UNIX systems and Windows, you can also use the control command runmqlsr to start a listener, as in the following example:

runmqlsr -t tcp -p 1414 -m QMgrName

In this command, QMgrName is the name of your queue manager.

You can also start a listener using WebSphere MQ Explorer, which runs on Linux and Windows, or the operations and control panels on z/OS.

The number of the port on which the listener is listening must be the same as the port number specified by the PORT property of the connection factory that
your application uses to connect to the queue manager. The default value of the PORT property is 1414.

Parent topic: Post installation setup for WebSphere MQ classes for JMS applications

This build: January 26, 2011 11:29:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm10390_

4.3.2. The point-to-point installation verification test for WebSphere MQ classes for JMS

A point-to-point installation verification test (IVT) program is supplied with WebSphere® MQ classes for JMS. The program connects to a queue manager in
either bindings or client mode, sends a message to the queue called SYSTEM.DEFAULT.LOCAL.QUEUE, and then receives the message from the queue. The
program can create and configure all the objects that it requires dynamically at run time, or it can use JNDI to retrieve administered objects from a directory
service.

Run the installation verification test without using JNDI first because the test is self contained and does not require the use of a directory service. For a
description of administered objects, see Object types.

The point-to-point installation verification test without using JNDI

In this test, the IVT program creates and configures all the objects that it requires dynamically at run time and does not use JNDI.

Page 28 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

A script is provided to run the IVT program. The script is called IVTRun on UNIX systems and IVTRun.bat on Windows, and is in the bin subdirectory of the

WebSphere MQ classes for JMS installation directory.

To run the test in bindings mode, enter the following command:

IVTRun -nojndi [-m qmgr] [-v providerVersion] [-t]

To run the test in client mode, enter the following command:

IVTRun -nojndi -client -m qmgr -host hostname [-port port] [-channel channel]

 [-v providerVersion] [-ccsid ccsid] [-t]

The parameters on the commands have the following meanings:

-m qmgr

The name of the queue manager to which the IVT program connects. If you run the test in bindings mode and omit this parameter, the IVT program
connects to the default queue manager.

-host hostname

The host name or IP address of the system on which the queue manager is running.

-port port

The number of the port on which the listener of the queue manager is listening. The default value is 1414.

-channel channel

The name of the MQI channel that the IVT program uses to connect to the queue manager. The default value is SYSTEM.DEF.SVRCONN.

-v providerVersion

The release level of the queue manager to which the IVT program expects to connect.

This parameter is used to set the PROVIDERVERSION property of an MQQueueConnectionFactory object and has the same valid values as those of the
PROVIDERVERSION property. For more information about this parameter therefore, including its valid values, see the description of the
PROVIDERVERSION property in Properties of WebSphere MQ classes for JMS objects.

The default value is unspecified.

-ccsid ccsid

The identifier (CCSID) of the coded character set, or code page, to be used by the connection. The default value is 819.

-t

Tracing is switched on. By default, tracing is switched off.

A successful test produces output similar to the following sample output:

5724-H72, 5655-R36, 5724-L26, 5655-L82 (c) Copyright IBM Corp. 2008. All Rights Reserved.

Websphere MQ classes for Java(tm) Message Service 7.0

Installation Verification Test

Creating a QueueConnectionFactory

Creating a Connection

Creating a Session

Creating a Queue

Creating a QueueSender

Creating a QueueReceiver

Creating a TextMessage

Sending the message to SYSTEM.DEFAULT.LOCAL.QUEUE

Reading the message back again

Got message

 JMSMessage class: jms_text

 JMSType: null

 JMSDeliveryMode: 2

 JMSExpiration: 0

 JMSPriority: 4

 JMSMessageID: ID:414d5120514d5f6d627720202020202001edb14620005e03

 JMSTimestamp: 1187170264000

 JMSCorrelationID: null

 JMSDestination: queue:///SYSTEM.DEFAULT.LOCAL.QUEUE

 JMSReplyTo: null

 JMSRedelivered: false

 JMSXUserID: mwhite

 JMS_IBM_Encoding: 273

 JMS_IBM_PutApplType: 28

 JMSXAppID: WebSphere MQ Client for Java

 JMSXDeliveryCount: 1

 JMS_IBM_PutDate: 20070815

 JMS_IBM_PutTime: 09310400

 JMS_IBM_Format: MQSTR

 JMS_IBM_MsgType: 8

A simple text message from the MQJMSIVT

Reply string equals original string

Closing QueueReceiver

Closing QueueSender

Closing Session

Closing Connection

IVT completed OK

IVT finished

The point-to-point installation verification test using JNDI

In this test, the IVT program uses JNDI to retrieve administered objects from a directory service.

Before you can run the test, you must configure a directory service that is based on a Lightweight Directory Access Protocol (LDAP) server or the local file
system. You must also configure the WebSphere MQ JMS administration tool so that it can use the directory service to store administered objects. For more
information about these prerequisites, see Prerequisites for WebSphere MQ classes for JMS. For information about how to configure the WebSphere MQ JMS
administration tool, see Configuration.

The IVT program must be able to use JNDI to retrieve an MQQueueConnectionFactory object and an MQQueue object from the directory service. A script is
provided to create these administered objects for you. The script is called IVTSetup on UNIX systems and IVTSetup.bat on Windows, and is in the bin

subdirectory of the WebSphere MQ classes for JMS installation directory. To run the script, enter the following command:

IVTSetup

Page 29 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

The script invokes the WebSphere MQ JMS administration tool to create the administered objects.

The MQQueueConnectionFactory object is bound with the name ivtQCF and is created with the default values for all its properties, which means that the IVT
program runs in bindings mode and connects to the default queue manager. If you want the IVT program to run in client mode, or connect to a queue
manager other than the default queue manager, you must use the WebSphere MQ JMS administration tool or WebSphere MQ Explorer to change the
appropriate properties of the MQQueueConnectionFactory object. For information about how to use the WebSphere MQ JMS administration tool, see Using
the WebSphere MQ JMS administration tool. For information about how to use WebSphere MQ Explorer, see the help provided with WebSphere MQ Explorer.

The MQQueue object is bound with the name ivtQ and is created with the default values for all its properties, except for the QUEUE property, which has the
value SYSTEM.DEFAULT.LOCAL.QUEUE.

When you have created the administered objects, you can run the IVT program. To run the test using JNDI, enter the following command:

IVTRun -url "providerURL" [-icf initCtxFact] [-t]

The parameters on the command have the following meanings:

-url "providerURL"

The uniform resource locator (URL) of the directory service. The URL can have one of the following formats:

� ldap://hostname/contextName, for a directory service based on an LDAP server

� file:/directoryPath, for a directory service based on the local file system

Note that you must enclose the URL in quotation marks (").

-icf initCtxFact

The class name of the initial context factory, which must be one of the following values:

� com.sun.jndi.ldap.LdapCtxFactory, for a directory service based on an LDAP server. This is the default value.

� com.sun.jndi.fscontext.RefFSContextFactory, for a directory service based on the local file system.

-t

Tracing is switched on. By default, tracing is switched off.

A successful test produces output similar to that for a successful test without using JNDI. The main difference is that the output indicates that the test is
using JNDI to retrieve an MQQueueConnectionFactory object and an MQQueue object.

Although not strictly necessary, it is good practice to tidy up after the test by deleting the administered objects created by the IVTSetup script. A script is
provided for this purpose. The script is called IVTTidy on UNIX systems and IVTTidy.bat on Windows, and is in the bin subdirectory of the WebSphere MQ

classes for JMS installation directory.

Problem determination for the point-to-point installation verification test

The installation verification test might fail for the following reasons:

� If the IVT program writes a message indicating that it cannot find a class, check that your class path is set correctly, as described in Environment
variables used by WebSphere MQ classes for JMS.

� The test might fail with the following message:

Failed to connect to queue manager 'qmgr' with connection mode 'connMode'

and host name 'hostname'

and an associated reason code of 2059. The variables in the message have the following meanings:

qmgr

The name of the queue manager to which the IVT program is trying to connect. This message insert is blank if the IVT program is trying to connect
to the default queue manager in bindings mode.

connMode

The connection mode, which is either Bindings or Client.

hostname

The host name or IP address of the system on which the queue manager is running.
This message means that the queue manager to which the IVT program is trying to connect is not available. Check that the queue manager is running
and, if the IVT program is trying to connect to the default queue manager, make sure that the queue manager is defined as the default queue
manager for your system.

� The test might fail with the following message:

Failed to open MQ queue 'SYSTEM.DEFAULT.LOCAL.QUEUE'

This message means that the queue SYSTEM.DEFAULT.LOCAL.QUEUE does not exist on the queue manager to which the IVT program is connected.
Alternatively, if the queue does exist, the IVT program cannot open the queue because it is not enabled for putting and getting messages. Check that
the queue exists and that it is enabled for putting and getting messages.

� The test might fail with the following message:

Unable to bind to object

This message means that there is a connection to the LDAP server, but that the LDAP server is not correctly configured. Either the LDAP server is not
configured for storing Java objects, or the permissions on the objects or the suffix are not correct. For more help in this situation, see the
documentation for your LDAP server.

Parent topic: Using WebSphere MQ classes for JMS

This build: January 26, 2011 11:29:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm10680_

4.3.3. The publish/subscribe installation verification test for WebSphere MQ classes for JMS

A publish/subscribe installation verification test (IVT) program is supplied with WebSphere® MQ classes for JMS. The program connects to a queue manager
in either bindings or client mode, subscribes to a topic, publishes a message on the topic, and then receives the message that it has just published. The
program can create and configure all the objects that it requires dynamically at run time, or it can use JNDI to retrieve administered objects from a directory
service.

Run the installation verification test without using JNDI first because the test is self contained and does not require the use of a directory service. For a
description of administered objects, see Object types.

The publish/subscribe installation verification test without using JNDI

Page 30 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

In this test, the IVT program creates and configures all the objects that it requires dynamically at run time and does not use JNDI.

A script is provided to run the IVT program. The script is called PSIVTRun on UNIX systems and PSIVTRun.bat on Windows, and is in the bin subdirectory of

the WebSphere MQ classes for JMS installation directory.

To run the test in bindings mode, enter the following command:

PSIVTRun -nojndi [-m qmgr] [-bqm brokerQmgr] [-v providerVersion] [-t]

To run the test in client mode, enter the following command:

PSIVTRun -nojndi -client -m qmgr -host hostname [-port port] [-channel channel]

 [-bqm brokerQmgr] [-v providerVersion] [-ccsid ccsid] [-t]

The parameters on the commands have the following meanings:

-m qmgr

The name of the queue manager to which the IVT program connects. If you run the test in bindings mode and omit this parameter, the IVT program
connects to the default queue manager.

-host hostname

The host name or IP address of the system on which the queue manager is running.

-port port

The number of the port on which the listener of the queue manager is listening. The default value is 1414.

-channel channel

The name of the MQI channel that the IVT program uses to connect to the queue manager. The default value is SYSTEM.DEF.SVRCONN.

-bqm brokerQmgr

The name of the queue manager on which the broker is running. The default value is the name of the queue manager to which the IVT program connects.

This parameter is relevant only if the -v parameter specifies a queue manager version number less than 7 and you are using WebSphere Event Broker or
WebSphere Message Broker as the publish/subscribe broker.

-v providerVersion

The release level of the queue manager to which the IVT program expects to connect.

This parameter is used to set the PROVIDERVERSION property of an MQTopicConnectionFactory object and has the same valid values as those of the
PROVIDERVERSION property. For more information about this parameter therefore, including its valid values, see the description of the
PROVIDERVERSION property in Properties of WebSphere MQ classes for JMS objects.

The default value is unspecified.

-ccsid ccsid

The identifier (CCSID) of the coded character set, or code page, to be used by the connection. The default value is 819.

-t

Tracing is switched on. By default, tracing is switched off.

A successful test produces output similar to the following sample output:

5724-H72, 5655-R36, 5724-L26, 5655-L82 (c) Copyright IBM Corp. 2008. All Rights Reserved.

Websphere MQ classes for Java(tm) Message Service 7.0

Publish/Subscribe Installation Verification Test

Creating a TopicConnectionFactory

Creating a Connection

Creating a Session

Creating a Topic

Creating a TopicPublisher

Creating a TopicSubscriber

Creating a TextMessage

Adding text

Publishing the message to topic://MQJMS/PSIVT/Information

Waiting for a message to arrive [5 secs max]...

Got message:

 JMSMessage class: jms_text

 JMSType: null

 JMSDeliveryMode: 2

 JMSExpiration: 0

 JMSPriority: 4

 JMSMessageID: ID:414d5120514d5f6d627720202020202001edb14620006706

 JMSTimestamp: 1187182520203

 JMSCorrelationID: ID:414d5120514d5f6d627720202020202001edb14620006704

 JMSDestination: topic://MQJMS/PSIVT/Information

 JMSReplyTo: null

 JMSRedelivered: false

 JMSXUserID: mwhite

 JMS_IBM_Encoding: 273

 JMS_IBM_PutApplType: 26

 JMSXAppID: QM_mbw

 JMSXDeliveryCount: 1

 JMS_IBM_PutDate: 20070815

 JMS_IBM_ConnectionID: 414D5143514D5F6D627720202020202001EDB14620006601

 JMS_IBM_PutTime: 12552020

 JMS_IBM_Format: MQSTR

 JMS_IBM_MsgType: 8

A simple text message from the MQJMSPSIVT program

Reply string equals original string

Closing TopicSubscriber

Closing TopicPublisher

Closing Session

Closing Connection

PSIVT finished

The publish/subscribe installation verification test using JNDI

In this test, the IVT program uses JNDI to retrieve administered objects from a directory service.

Before you can run the test, you must configure a directory service that is based on a Lightweight Directory Access Protocol (LDAP) server or the local file

Page 31 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

system. You must also configure the WebSphere MQ JMS administration tool so that it can use the directory service to store administered objects. For more
information about these prerequisites, see Prerequisites for WebSphere MQ classes for JMS. For information about how to configure the WebSphere MQ JMS
administration tool, see Configuration.

The IVT program must be able to use JNDI to retrieve an MQTopicConnectionFactory object and an MQTopic object from the directory service. A script is
provided to create these administered objects for you. The script is called IVTSetup on UNIX systems and IVTSetup.bat on Windows, and is in the bin

subdirectory of the WebSphere MQ classes for JMS installation directory. To run the script, enter the following command:

IVTSetup

The script invokes the WebSphere MQ JMS administration tool to create the administered objects.

The MQTopicConnectionFactory object is bound with the name ivtTCF and is created with the default values for all its properties, which means that the IVT
program runs in bindings mode, connects to the default queue manager, and uses the embedded publish/subscribe function. If you want the IVT program to
run in client mode, connect to a queue manager other than the default queue manager, or use WebSphere Event Broker or WebSphere Message Broker
instead of the embedded publish/subscribe function, you must use the WebSphere MQ JMS administration tool or WebSphere MQ Explorer to change the
appropriate properties of the MQTopicConnectionFactory object. For information about how to use the WebSphere MQ JMS administration tool, see Using the
WebSphere MQ JMS administration tool. For information about how to use WebSphere MQ Explorer, see the help provided with WebSphere MQ Explorer.

The MQTopic object is bound with the name ivtT and is created with the default values for all its properties, except for the TOPIC property, which has the
value MQJMS/PSIVT/Information.

When you have created the administered objects, you can run the IVT program. To run the test using JNDI, enter the following command:

PSIVTRun -url "providerURL" [-icf initCtxFact] [-t]

The parameters on the command have the following meanings:

-url "providerURL"

The uniform resource locator (URL) of the directory service. The URL can have one of the following formats:

� ldap://hostname/contextName, for a directory service based on an LDAP server

� file:/directoryPath, for a directory service based on the local file system

Note that you must enclose the URL in quotation marks (").

-icf initCtxFact

The class name of the initial context factory, which must be one of the following values:

� com.sun.jndi.ldap.LdapCtxFactory, for a directory service based on an LDAP server. This is the default value.

� com.sun.jndi.fscontext.RefFSContextFactory, for a directory service based on the local file system.

-t

Tracing is switched on. By default, tracing is switched off.

A successful test produces output similar to that for a successful test without using JNDI. The main difference is that the output indicates that the test is
using JNDI to retrieve an MQTopicConnectionFactory object and an MQTopic object.

Although not strictly necessary, it is good practice to tidy up after the test by deleting the administered objects created by the IVTSetup script. A script is
provided for this purpose. The script is called IVTTidy on UNIX systems and IVTTidy.bat on Windows, and is in the bin subdirectory of the WebSphere MQ

classes for JMS installation directory.

Problem determination for the publish/subscribe installation verification test

The installation verification test might fail for the following reasons:

� If the IVT program writes a message indicating that it cannot find a class, check that your class path is set correctly, as described in Environment
variables used by WebSphere MQ classes for JMS.

� The test might fail with the following message:

Failed to connect to queue manager 'qmgr' with

connection mode 'connMode' and host name 'hostname'

and an associated reason code of 2059. The variables in the message have the following meanings:

qmgr

The name of the queue manager to which the IVT program is trying to connect. This message insert is blank if the IVT program is trying to connect
to the default queue manager in bindings mode.

connMode

The connection mode, which is either Bindings or Client.

hostname

The host name or IP address of the system on which the queue manager is running.
This message means that the queue manager to which the IVT program is trying to connect is not available. Check that the queue manager is running
and, if the IVT program is trying to connect to the default queue manager, make sure that the queue manager is defined as the default queue
manager for your system.

� The test might fail with the following message:

Unable to bind to object

This message means that there is a connection to the LDAP server, but that the LDAP server is not correctly configured. Either the LDAP server is not
configured for storing Java objects, or the permissions on the objects or the suffix are not correct. For more help in this situation, see the
documentation for your LDAP server.

Parent topic: Using WebSphere MQ classes for JMS

This build: January 26, 2011 11:29:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm10720_

4.3.4. The installation verification test program for the WebSphere MQ resource adapter

The installation verification test (IVT) program is supplied as an enterprise archive (EAR) file called wmq.jmsra.ivt.ear. This file is installed with WebSphere®
MQ classes for JMS in the same directory as the WebSphere MQ resource adapter RAR file, wmq.jmsra.rar. For information about where these files are
installed, see Installation of the WebSphere MQ resource adapter.

You must deploy the IVT program on your application server. The IVT program runs as a servlet and tests that a message can be sent to, and received from,
a WebSphere MQ classes for JMS Queue or Topic object. Optionally, you can use the IVT program to verify that the WebSphere MQ resource adapter has

Page 32 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

been correctly configured to support distributed transactions.

Before you can run the IVT program, you must define the properties of a ConnectionFactory object and a Queue or Topic object as JCA resources, and
ensure that your application server creates JMS objects from these definitions and binds them into a JNDI namespace. You can choose the properties of the
objects, but the following set of properties is a simple example:

ConnectionFactory object

channel: SYSTEM.DEF.SVRCONN

hostName: 192.168.0.42

port: 1414

queueManager: ExampleQM

transportType: CLIENT

Queue object

baseQueueManagerName: ExampleQM

baseQueueName: SYSTEM.DEFAULT.LOCAL.QUEUE

By default, the IVT program expects a ConnectionFactory object to be bound in the JNDI namespace with the name IVTCF and a Queue object to be bound
with the name IVTQueue. You can use different names, and you can use a Topic object instead of a Queue object as a destination. But if you do, you must
enter the names of the objects on the initial page of the IVT program.

After you have deployed the IVT program, and the application server has created the JMS objects and bound them into the JNDI namespace, you can start
the IVT program by entering a URL in the following format into your Web browser:

http://app_server_host:port/WMQ_IVT/

where app_server_host is the IP address or host name of the system on which your application server is running, and port is the number of the TCP port on
which the application server is listening. Here is an example:

http://localhost:9080/WMQ_IVT/

Figure 1 shows the initial page of the IVT program.
Figure 1. The initial page of the IVT program

On the initial page, the Connection Factory field already contains the name IVTCF and the Destination field already contains the name IVTQueue. If you

want to run the IVT program using a ConnnectionFactory object and a Queue or Topic object that are bound in the JNDI namespace with different names,
you must enter the JNDI names of the objects into these fields, replacing the existing contents.

If you want to verify that the WebSphere MQ resource adapter can support distributed transactions, select the Transactional Test check box.

The Transactional EJB Name field specifies the JNDI name of the enterprise Java bean (EJB) to be used for the transactional test. By default, the IVT
program expects the EJB to be bound with the name ejb/ejbs/WMQ_TransactedIVT, and this name is the initial value of the field. However, application
servers use different naming conventions, and this name might not match the JNDI name used by your application server. The IVT program attempts to use
some common variations of the default name but, if none of these variations are valid, the IVT program fails with a javax.naming.NameNotFoundException
exception. If this happens, you must set this field to the JNDI name used by your application server, replacing the existing contents of the field. To help you
work out the JNDI name used by your application server, the file ejb-jar.xml contains the following definition for the EJB:

<display-name>WMQ_TransactedIVT</display-name>

<enterprise-beans>

 <session id="WMQ_TransactedIVT">

 <ejb-name>WMQ_TransactedIVT</ejb-name>

 <home>ejbs.WMQ_TransactedIVTHome</home>

 <remote>ejbs.WMQ_TransactedIVT</remote>

 <ejb-class>ejbs.WMQ_TransactedIVTBean</ejb-class>

 <session-type>Stateless</session-type>

 <transaction-type>Container</transaction-type>

 </session>

</enterprise-beans>

To run the test, click Run IVT. Figure 2 shows the page that is displayed if the IVT is successful.
Figure 2. Page showing the results of a successful IVT

Page 33 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

If the IVT fails, a page similar to that shown in Figure 3 is displayed. To obtain further information about the cause of the failure, click View Stack Trace.
Figure 3. Page showing the results of an IVT that failed

Parent topic: Using WebSphere MQ classes for JMS

This build: January 26, 2011 11:30:04

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm40130_

4.3.5. Scripts provided with WebSphere MQ classes for JMS

A number of scripts are provided to assist with common tasks that need to be performed when using WebSphere® MQ classes for JMS.

Table 1 lists all the scripts and their uses. The scripts are in the bin subdirectory of the WebSphere MQ classes for JMS installation directory.

Table 1. Scripts provided with WebSphere MQ classes for JMS

Utility Use

Cleanup1 This script is maintained for compatibility with previous releases but performs no function.

DefaultConfiguration Runs the default configuration application on platforms other than Windows.

formatLog1 This script is maintained for compatibility with previous releases but performs no function.

IVTRun1

IVTSetup1

Used in the point-to-point installation verification test, as described in The point-to-point

installation verification test for WebSphere MQ classes for JMS.

Page 34 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Parent topic: Using WebSphere MQ classes for JMS

This build: January 26, 2011 11:29:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm34650_

4.3.6. Support for OSGi

The Open Services Gateway Initiative (OSGi) provides a framework that supports the deployment of applications as bundles. Nine OSGi bundles are
supplied as part of WebSphere® MQ classes for JMS.

OSGi provides a general purpose, secure, and managed Java framework, which supports the deployment of applications that come in the form of bundles.
OSGi-compliant devices can download and install bundles, and remove them when they are no longer required. The framework manages the installation and
update of bundles in a dynamic and scalable fashion.

WebSphere MQ classes for JMS includes the following OSGi bundles. The bundles are in the java/lib/OSGi subdirectory of your WebSphere MQ

installation, or the Java\lib\OSGi folder on Windows.

com.ibm.msg.client.osgi.jms_7.0.1.0.jar

The common layer of code in WebSphere MQ classes for JMS. For information about the layered architecture of WebSphere MQ classes for JMS, see A
layered architecture.

com.ibm.msg.client.osgi.jms.prereq_7.0.1.0.jar

The prerequisite Java archive (JAR) files for the common layer.

com.ibm.msg.client.osgi.commonservices.j2se_7.0.1.0.jar

Common services for Java Platform, Standard Edition (Java SE) applications.

com.ibm.msg.client.osgi.nls_7.0.1.0.jar

Messages for the common layer.

com.ibm.msg.client.osgi.wmq_7.0.1.0.jar

The WebSphere MQ messaging provider in WebSphere MQ classes for JMS. For information about the layered architecture of WebSphere MQ classes for
JMS, see A layered architecture.

com.ibm.msg.client.osgi.wmq.prereq_7.0.1.0.jar

The prerequisite JAR files for the WebSphere MQ messaging provider.

com.ibm.msg.client.osgi.wmq.nls_7.0.1.0.jar

Messages for the WebSphere MQ messaging provider.

com.ibm.mq.osgi.directip_7.0.1.0.jar

The JAR files to allow the WebSphere MQ messaging provider to create a real-time connection to a broker.

com.ibm.mq.osgi.xa_7.0.1.0.jar

The JAR files to enable Extended Transactional Client Support (XA).

These bundles have been written to the OSGi Release 4 specification. They do not work in an OSGi Release 3 environment.

You must set your system path or library path correctly so that the OSGi runtime environment can find any required DLL files or shared libraries.

If you use the OSGi bundles for WebSphere MQ classes for JMS, temporary topics do not work. In addition, channel exit classes written in Java are not
supported because of an inherent problem in loading classes in a multiple class loader environment such as OSGi. A user bundle can be aware of the
WebSphere MQ classes for JMS bundles, but the WebSphere MQ classes for JMS bundles are not aware of any user bundle. As a result, the class loader used
in a WebSphere MQ classes for JMS bundle cannot load a channel exit class that is in a user bundle.

For more information about OSGi, see the OSGi Alliance Web site at http://www.osgi.org.

Parent topic: Using WebSphere MQ classes for JMS

This build: January 26, 2011 11:29:48

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm35080_

4.3.7. Solving problems

If a program does not complete successfully, run one of the installation verification programs, as described in The point-to-point installation verification test
for WebSphere MQ classes for JMS and The publish/subscribe installation verification test for WebSphere MQ classes for JMS, and follow the advice given in
the diagnostic messages.

IVTTidy1

JMSAdmin1 Runs the WebSphere MQ JMS administration tool, as described in Invoking the administration

tool.

JMSAdmin.config The configuration file for the WebSphere MQ JMS administration tool, as described in

Configuration.

PSIVTRun1 Runs the publish/subscribe installation verification test program, as described in The

publish/subscribe installation verification test for WebSphere MQ classes for JMS.

PSReportDump.class This class is maintained for compatibility with previous releases, but performs no function.

setjmsenv Sets the environment variables for running a WebSphere MQ classes for JMS application in a

32-bit Java virtual machine (JVM) on a UNIX system, as described in Environment variables

used by WebSphere MQ classes for JMS.

setjmsenv64 Sets the environment variables for running a WebSphere MQ classes for JMS application in a
64-bit JVM on a UNIX system, as described in Environment variables used by WebSphere MQ

classes for JMS.

Note:

1. On Windows, the file name has the extension .bat .

Page 35 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Tracing programs
The WebSphere MQ classes for JMS trace facility is provided to help IBM® staff to diagnose customer problems. Various properties are provided to
control its behavior.

Logging

Parent topic: Using WebSphere MQ classes for JMS

This build: January 26, 2011 11:29:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm10760_

4.3.7.1. Tracing programs

The WebSphere® MQ classes for JMS trace facility is provided to help IBM® staff to diagnose customer problems. Various properties are provided to control
its behavior.

Trace is turned off by default, because the output rapidly becomes large, and is unlikely to be of use in normal circumstances.

Except where otherwise stated, all the properties described in the following information are set in the WebSphere MQ classes for JMS configuration file. For
information about this file, see The WebSphere MQ classes for JMS configuration file.

If you are asked to provide trace output, turn tracing on by setting the property com.ibm.msg.client.commonservices.trace.status to ON. To turn tracing off,

set the property com.ibm.msg.client.commonservices.trace.status to OFF.

Configure the trace output using the following properties:

com.ibm.msg.client.commonservices.trace.outputName

The directory and file name to which trace output will be sent.

Defaults to a file named mqjms_PID.trc in the current working directory where PID is the current process ID. If a process ID is not available, a random
number is generated and prefixed with the letter f. To include the process ID in a file name you specify, use the string %PID%. Any directory referenced
must already exist, and you must have write permission for this directory. If you do not have write permission, the trace output is written to System.err.

com.ibm.msg.client.commonservices.trace.include

A list of packages and classes that will be traced, or the special values ALL or NONE.

Separate package or class names with a semicolon (;). Defaults to ALL and traces all packages and classes in WebSphere MQ classes for JMS.

Note that you can include a package but then exclude subpackages of that package. For example, if you include package "a.b" and exclude package
"a.b.x", the trace includes everything in "a.b.y", "a.b.z" and so on, but not "a.b.x" or "a.b.x.1".

com.ibm.msg.client.commonservices.trace.exclude

A list of packages and classes that will not be traced, or the special values ALL or NONE.

Separate package or class names with a semicolon (;). Defaults to NONE and therefore excludes no packages and classes in WebSphere MQ classes for
JMS from being traced.

Note that you can exclude a package but then include subpackages of that package. For example, if you exclude package "a.b" and include package
"a.b.x", the trace includes everything in "a.b.x" and "a.b.x.1" and so on, but not "a.b.y" or "a.b.z".

Any package or class that is specified, at the same level, as both included and excluded is included.

com.ibm.msg.client.commonservices.trace.maxBytes

The maximum number of bytes that will be traced from any byte arrays.

If set to a positive integer, when a byte array is formatted to be written out to the trace file, it will be truncated at this number of bytes rather than the
whole array being output. This allows for the amount of data being written to the trace file to be reduced, especially in cases where large byte arrays are
being traced out, and therefore helps to reduce both the size of the resulting trace file and the performance impact of tracing the application.

A value of 0 for this property means that none of the contents of any byte arrays will be sent to the trace file.

The default value is -1, which indicates that the amount of data to be output is unlimited.

com.ibm.msg.client.commonservices.trace.limit

The maximum number of bytes to be written to a trace output file.

This property works in conjunction with the com.ibm.msg.client.commonservices.trace.count property. When the number of bytes of trace output that is
approximately equal to the specified maximum have been written to a trace output file, the file is closed and a new trace output file is started.

A value of 0 means that a trace output file has zero length. The default value is -1, which means that the amount of data to be written to a trace output
file is unlimited.

com.ibm.msg.client.commonservices.trace.count

The number of trace output files to cycle through.

When the current trace output file reaches the maximum size as specified by the com.ibm.msg.client.commonservices.trace.limit property, the file is
closed and further trace output is written to the next trace output file in sequence. Each trace output file is distinguished by a numeric suffix appended to
the file name. The current or most recent trace output file is mqjms.trc.0, the next most recent trace output file is mqjms.trc.1, and so on.

The default value is 1, which means that, when the current trace output file reaches the maximum size, the file is closed and deleted, and a new trace
output file with the same name is started. Therefore, only one trace output file exists at a time.

com.ibm.msg.client.commonservices.trace.parameter

Controls whether method parameters and return values are included in the trace.

Defaults to TRUE. If set to FALSE then only method signatures are traced.

com.ibm.msg.client.commonservices.trace.startup

Page 36 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

There is a an initialization phase of WebSphere MQ classes for JMS during which resources are allocated, which includes the initialization of the main trace
facility.

If set to TRUE, startup trace is used, that is, trace information is produced immediately and therefore includes the setup of all components, including the
trace facility itself. This information can be used to help diagnose configuration problems. Startup trace information is always written to System.err.

Defaults to FALSE.

Because this property is checked before initialization is complete, the property can be specified only on the command line as a Java system property, not
within the WebSphere MQ classes for JMS configuration file.

com.ibm.msg.client.commonservices.trace.compress

Whether trace output is compressed.

The default is FALSE.

If set to TRUE, the trace output is compressed. The default file name will have a .trz extension. If compression is set to FALSE, the default value, the file
will have a .trc extension to indicate it is uncompressed. However if the file name for the trace output has been specified in
com.ibm.msg.client.commonservices.trace.outputName that name is used instead; no suffix will be applied to the file.

Compressed trace output is smaller than uncompressed and, because there is less I/O to be performed, it can be written out faster than uncompressed
trace, meaning tracing will have less impact on the performance of WebSphere MQ classes for JMS.

If the com.ibm.msg.client.commonservices.trace.limit or com.ibm.msg.client.commonservices.trace.count properties are also set, this results in multiple
compressed trace files being created in place of multiple flat files.

The nature of the trace compression algorithm means that if WebSphere MQ classes for JMS ends in an uncontrolled manner, the file might not be
correctly completed and closed. For this reason, trace compression should be used only in cases where WebSphere MQ classes for JMS can close down in a
controlled manner (that is, when the problems being investigated do not cause the JVM itself to stop unexpectedly). Do not use trace compression when
diagnosing problems that can result in System.Halt() shutdowns or abnormal, uncontrolled JVM terminations.

com.ibm.msg.client.commonservices.trace.level

Specifies a filtering level for the trace. The defined trace levels are as follows:

Each trace level includes all lower levels. For example, if trace level is set at TRACE_INFO, then any trace point with a defined level of TRACE_EXCEPTION,
TRACE_WARNING, or TRACE_INFO appears in trace. All other trace points will be excluded.

com.ibm.msg.client.commonservices.trace.standalone

Controls whether the WebSphere MQ JMS client tracing service is used in a WebSphere Application Server environment.

If set to TRUE, the WebSphere MQ JMS client tracing properties are used to determine the trace configuration.

If set to FALSE, and the WebSphere MQ JMS client is executed within a WebSphere Application Server, the WebSphere Application Server trace service is
used. The trace information that is generated depends upon the trace settings of the application server.

The default is FALSE.

To dynamically enable or disable trace from within an application, or to change the trace level, use the methods of the com.ibm.msg.client.services.Trace
class.

setOn()

Turns the trace facility on.

setOff()

Turns the trace facility off.

setStatus(boolean traceOn)

Turns the trace facility on or off, depending on the value of traceOn.

isOn()

Checks whether the trace facility is on.

setTraceLevel(int newTraceLevel)

Sets the tracing detail level.

getTraceLevel()

Returns the tracing detail level.

If a severe or unrecoverable error occurs, first-failure support technology (FFST™) information is recorded in a file with a name of the format
JMSCCxxxx.FDC, where xxxx is an incrementing, four-digit count used to differentiate subsequent .FDC files. .FDC files are always written to a directory
called FDC. If trace is active and the com.ibm.msg.client.commonservices.trace.outputName property is set, the FDC directory is created as a subdirectory of

the directory to which the trace file is being written. If trace is not active or com.ibm.msg.client.commonservices.trace.outputName is not set, the FDC
directory is created as a subdirectory of the current working directory.

The JSE common services uses java.util.logging as its trace and logging infrastructure. The root object of this infrastructure is the 'LogManager'. The log
manager has a reset method, which closes all handlers and sets the log level to null - in effect turning off all the trace. If your application or application
server calls java.util.logging.LogManager.getLogManager().reset(); it will close all trace, which might prevent you from diagnosing any problems. To avoid
this, create a LogManager class with an overridden reset() class that does nothing, as in the following example:

package com.ibm.javaut.tests;

import java.util.logging.LogManager;

TRACE_NONE 0

TRACE_EXCEPTION 1

TRACE_WARNING 3

TRACE_INFO 6

TRACE_ENTRYEXIT 8

TRACE_DATA 9

TRACE_ALL Integer.MAX_VALUE

Page 37 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

public class JmsLogManager extends LogManager {

 // final shutdown hook to ensure that the trace is finally shutdown

 // and that the lock file is cleaned-up

 public class ShutdownHook extends Thread{

 public void run(){

 doReset();

 }

 }

 public JmsLogManager(){

 // add shutdown hook to ensure final cleanup

 Runtime.getRuntime().addShutdownHook(new ShutdownHook());

 }

 public void reset() throws SecurityException {

 // does nothing

 }

 public void doReset(){

 super.reset();

 }

}

The shutdown hook is necessary to ensure that trace is properly shutdown on JVM termination. To use this log manager instead of the default one, add a
system property to the JVM startup, as follows

java -Djava.util.logging.manager=com.mycompany.logging.LogManager ...

Note: When trace is activated, it creates a file named mqjms.trc.lck. If you use a version of Java earlier than Java 5, this file is not removed when trace
ends. This is caused by a defect in the Java class libraries. You can delete this file manually after the trace file has been closed.

Tracing using MQJMS_TRACE_LEVEL
To maintain backwards compatibility, the trace parameters used by versions of WebSphere MQ classes for JMS earlier than Version 7.0 are still
supported. However, these should be considered deprecated for any new application.

Parent topic: Solving problems

This build: January 26, 2011 11:29:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm10770_

4.3.7.1.1. Tracing using MQJMS_TRACE_LEVEL

To maintain backwards compatibility, the trace parameters used by versions of WebSphere® MQ classes for JMS earlier than Version 7.0 are still supported.
However, these should be considered deprecated for any new application.

You can enable trace by setting the Java property MQJMS_TRACE_LEVEL to one of the following values:

on

In versions earlier than Version 7.0, this value traces WebSphere MQ classes for JMS calls only

base

In versions earlier than Version 7.0, this value traces both WebSphere MQ classes for JMS calls and the underlying WebSphere MQ classes for Java calls

In Version 7.0, both these values behave as if the com.ibm.msg.client.commonservices.trace.status property is set to ON.

To disable trace, you can set MQJMS_TRACE_LEVEL to off.

Setting MQJMS_TRACE_DIR to /somepath/tracedir is equivalent to setting the com.ibm.msg.client.commonservices.trace.outputName property
to /somepath/tracedir/mqjms_%PID%.trc.

Parent topic: Tracing programs

This build: January 26, 2011 11:30:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm41080_

4.3.7.2. Logging

The WebSphere® MQ classes for JMS log facility is provided to report serious problems, particularly those that might indicate configuration errors rather
than programming errors. By default, log output is sent to the System.err stream, which usually appears on the stderr of the console in which the JVM is

run.

You can redirect log output to a file by setting the property com.ibm.msg.client.commonservices.log.outputName. If the value of the property identifies a
directory, log output is written to a file called mqjms.log in that directory. If the value of the property identifies a specific file, log output is written to that
file.

You can set this property in the WebSphere MQ classes for JMS configuration file or as a system property on the java command. In the following example,
the property is set as a system property and identifies a specific file:

java -Djava.library.path=library_path

 -Dcom.ibm.msg.client.commonservices.log.outputName=/mydir/mylog.txt

 MyAppClass

In the command, library_path is the path to the directory containing the WebSphere MQ classes for JMS libraries (see The Java Native Interface (JNI)
libraries required by WebSphere MQ classes for JMS applications).

You can disable log output by setting the property com.ibm.msg.client.commonservices.log.status to OFF. The default value of this property is ON.

Page 38 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Parent topic: Solving problems

This build: January 26, 2011 11:29:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm10780_

4.3.8. Problem determination for the WebSphere MQ resource adapter

When using the WebSphere® MQ resource adapter, most errors cause exceptions to be thrown, and these exceptions are reported to the user in a manner
that depends on the application server. The resource adapter makes extensive use of linked exceptions to report problems. Typically, the first exception in a
chain is a high level description of the error, and subsequent exceptions in the chain provide the more detailed information that is required to diagnose the
problem.

For example, if the IVT program fails to obtain a connection to a WebSphere MQ queue manager, the following exception might be thrown:

javax.jms.JMSException: MQJCA0001: An exception occurred in the JMS layer.

 See the linked exception for details.

Linked to this exception is a second exception:

javax.jms.JMSException: MQJMS2005: failed to create an MQQueueManager for

 'localhost:ExampleQM'

This exception is thrown by WebSphere MQ classes for JMS and has a further linked exception:

com.ibm.mq.MQException: MQJE001: An MQException occurred: Completion Code 2,

 Reason 2059

This final exception indicates the source of the problem. Reason code 2059 is MQRC_Q_MGR_NOT_AVAILABLE, which indicates that the queue manager
specified in the definition of the ConnectionFactory object might not have been started.

If the information provided by exceptions is not sufficient to diagnose a problem, you might need to request a diagnostic trace. For information about how to
enable diagnostic tracing, see Configuration of the WebSphere MQ resource adapter.

Configuration problems commonly occur in the following areas:

Problems in deploying the resource adapter

Problems in deploying MDBs

Problems in creating connections for outbound communication

Parent topic: Using WebSphere MQ classes for JMS

This build: January 26, 2011 11:30:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm40150_

4.3.8.1. Problems in deploying the resource adapter

Failures in deploying the resource adapter are generally caused by not configuring JCA resources correctly. For example, a property of the ResourceAdapter
object might not be specified correctly, or the deployment plan required by the application server might not be written correctly. Failures might also occur
when the application server attempts to create objects from the definitions of JCA resources and bind the objects into the JNDI namespace, but certain
properties are not specified correctly or the format of a resource definition is incorrect.

The resource adapter can also fail to deploy because it loaded incorrect versions of JCA or WebSphere® MQ classes for JMS classes from JAR files in the
class path. This kind of failure can commonly occur on a system where WebSphere MQ is already installed. On such a system, the application server might
find existing copies of the WebSphere MQ classes for JMS JAR files and load classes from them in preference to the classes supplied in the WebSphere MQ
resource adapter RAR file. If the extended transactional client JAR file, com.ibm.mqetclient.jar, cannot be loaded when the resource adapter is deployed, a
warning is written to the diagnostic trace, if enabled, but this does not cause deployment to fail.

Parent topic: Problem determination for the WebSphere MQ resource adapter

This build: January 26, 2011 11:30:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm40160_

4.3.8.2. Problems in deploying MDBs

Failures might occur when the application server attempts to start message delivery to an MDB. This kind of failure is typically caused by an error in the
definition of the associated ActivationSpec object, or because the resources referenced in the definition are not available. For example, the queue manager
might not be running, or a specified queue might not exist.

An ActivationSpec object attempts to validate its properties when the MDB is deployed, and deployment fails if the ActivationSpec object has any properties
that are mutually exclusive or does not have all the required properties. However, not all problems associated with the properties of the ActivationSpec
object can be detected at this time.

Deployment might also fail if an MDB is transacted and the connection is in client mode, but distributed transactions are not available because the extended
transactional client JAR file, com.ibm.mqetclient.jar, is not in the class path.

Failures to start message delivery are reported to the user in a manner that depends on the application server. Typically, these failures are reported in the
logs and diagnostic trace of the application server. If enabled, the diagnostic trace of the WebSphere® MQ resource adapter also records these failures.

Parent topic: Problem determination for the WebSphere MQ resource adapter

This build: January 26, 2011 11:30:05

Page 39 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm40170_

4.3.8.3. Problems in creating connections for outbound communication

Failures in outbound communication commonly occur when an application attempts to look up and use a ConnectionFactory object in a JNDI namespace. A
JNDI exception is thrown if the ConnectionFactory object cannot be found in the namespace. A ConnectionFactory object might not be found for the following
reasons:

� The application specified an incorrect name for the ConnectionFactory object.

� The application server was not able to create the ConnectionFactory object and bind it into the namespace. In this case, the startup logs of the
application server usually contain information about the failure.

If the application successfully retrieves the ConnectionFactory object from the JNDI namespace, an exception might still be thrown when the application calls
the ConnectionFactory.createConnection() method. An exception in this context indicates that it is not possible to create a connection to a WebSphere® MQ
queue manager. Here are some common reasons why an exception might be thrown:

� The queue manager is not available, or cannot be found using the properties of the ConnectionFactory object. For example, the queue manager is not
running, or the specified host name, IP address, or port number of the queue manager is incorrect.

� The user is not authorized to connect to the queue manager. For a client connection, if the createConnection() call does not specify a user name, and
the application server supplies no user identity information, the JVM process ID is passed to the queue manager as the user name. For the connection
to succeed, this process ID must be a valid user name in the system on which the queue manager is running.

� The application is a transacted EJB and therefore the connection must be transacted, but distributed transactions are not available because the
extended transactional client JAR file, com.ibm.mqetclient.jar, is not in the class path.

� The ConnectionFactory object has a property called ccdtURL and a property called channel. These properties are mutually exclusive.

� On an SSL connection, the SSL related properties, or the SSL related attributes in the server connection channel definition, have not been specified
correctly.

� The sslFipsRequired property has different values for different JCA resources. For more information about this limitation, see Limitations of the
WebSphere MQ resource adapter.

Parent topic: Problem determination for the WebSphere MQ resource adapter

This build: January 26, 2011 11:30:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm40180_

4.4. Introduction to WebSphere MQ classes for JMS for programmers

This topic introduces WebSphere® MQ classes for JMS from the point of view of the programmer. It also summarizes the main enhancements that are
contained in the latest release of WebSphere MQ classes for JMS.

Introduction to WebSphere MQ classes for JMS
WebSphere MQ classes for JMS is the JMS provider that is supplied with WebSphere MQ. As well as implementing the interfaces defined in the
javax.jms package, WebSphere MQ classes for JMS provides two sets of extensions to the JMS API. Both Java Platform, Standard Edition (Java SE) and
Java Platform, Enterprise Edition (Java EE) applications can use WebSphere MQ classes for JMS.

What is new in WebSphere MQ Version 7.0?
WebSphere MQ classes for JMS, as supplied in WebSphere MQ Version 7.0, contains a number of enhancements compared to previous releases. Some
of these enhancements are as a result of changes to the implementation of WebSphere MQ classes for JMS, and some are as a result of WebSphere
MQ classes for JMS exploiting changes to the underlying WebSphere MQ function.

Parent topic: WebSphere MQ classes for JMS

This build: January 26, 2011 11:29:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm35130_

4.4.1. Introduction to WebSphere MQ classes for JMS

WebSphere® MQ classes for JMS is the JMS provider that is supplied with WebSphere MQ. As well as implementing the interfaces defined in the javax.jms
package, WebSphere MQ classes for JMS provides two sets of extensions to the JMS API. Both Java Platform, Standard Edition (Java SE) and Java Platform,
Enterprise Edition (Java EE) applications can use WebSphere MQ classes for JMS.

The JMS specification defines a set of interfaces that applications can use to perform messaging operations. The latest version of the specification is Version
1.1. The javax.jms package specifies the details of the JMS interfaces, and a JMS provider implements these interfaces for a specific messaging product.
WebSphere MQ classes for JMS is a JMS provider that implements the JMS interfaces for WebSphere MQ.

The flow of logic within a JMS application starts with ConnectionFactory and Destination objects. The application uses a ConnectionFactory object to create a
Connection object, which represents the application's active connection to a messaging server. The application uses the Connection object to create a
Session object, which is a single threaded context for producing and consuming messages. The application can then use the Session object and a Destination
object to create a MessageProducer object, which the application uses to send messages to the specified destination. The destination is either a queue or a
topic in the messaging system and is encapsulated by the Destination object. The application can also use the Session object and a Destination object to
create a MessageConsumer object, which the application uses to receive messages that have been sent to the specified destination.

The JMS specification expects ConnectionFactory and Destination objects to be administered objects. An administrator creates and maintains administered
objects in a central repository, and a JMS application retrieves these objects using the Java Naming and Directory Interface (JNDI). The repository of
administered objects can range from a simple file to a Lightweight Directory Access Protocol (LDAP) directory.

WebSphere MQ classes for JMS supports the use of administered objects. An application can use all the features of WebSphere MQ that are exposed through
WebSphere MQ classes for JMS without having any WebSphere MQ specific information hard coded into the application itself. This arrangement provides the
application with a degree of independence from the underlying WebSphere MQ configuration. To achieve this, the application can use JNDI to retrieve
connection factories and destinations that are stored as administered objects, and use only the interfaces defined in the javax.jms package to perform
messaging operations. An administrator can use the WebSphere MQ JMS administration tool or WebSphere MQ Explorer to create and maintain administered

Page 40 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

objects in a central repository. An application server, however, typically provides its own repository for administered objects and its own tools for creating
and maintaining the objects. A Java EE application can therefore use JNDI to retrieve administered objects either from the applications server's own
repository or from a central repository.

WebSphere MQ classes for JMS also provides extensions to the JMS API. Previous releases of WebSphere MQ classes for JMS contain extensions that are
implemented in MQConnectionFactory, MQQueue, and MQTopic objects. These objects have properties and methods that are specific to WebSphere MQ. The
objects can be administered objects, or an application can create the objects dynamically at run time. This release of WebSphere MQ classes for JMS
maintains these extensions, and you can continue to use, without change, any applications that use these extensions. These extensions are known as the
WebSphere MQ JMS extensions. Note that, in this set of documentation, objects that are created dynamically by an application at run time are not
considered to be administered objects.

In addition to the WebSphere MQ JMS extensions, this release of WebSphere MQ classes for JMS provides a more generic set of extensions to the JMS API.
These extensions are known as the IBM® JMS extensions, and have the following broad objectives:

� To provide a greater level of consistency across IBM JMS providers

� To make it easier to write a bridge application between two IBM messaging systems

� To make it easier to port an application from one IBM JMS provider to another

The main focus of these extensions concerns creating and configuring connection factories and destinations dynamically at run time, but the extensions also
provide function that is not directly related to messaging, such as function for problem determination. The IBM JMS extensions are also implemented in
Lotus® Expeditor micro broker.

Both Java SE and Java EE applications can use WebSphere MQ classes for JMS. On the Java EE platform, WebSphere MQ classes for JMS supports two types
of communication between a component of an application and a WebSphere MQ queue manager:

Outbound communication

Using the JMS API directly, an application component creates a connection to a queue manager, and then sends and receives messages.

For example, the application component can be an application client, a servlet, a JavaServer page (JSP), an enterprise Java bean (EJB), or a message
driven bean (MDB). In this type of communication, the application server container provides only low level functions in support of messaging operations,
such as connection pooling and thread management.

Inbound communication

A message arriving at a destination is delivered to an MDB, which then processes the message.

Java EE applications use MDBs to process messages asynchronously. An MDB acts as a JMS message listener and is implemented by an onMessage()
method, which defines how a message is processed. An MDB is deployed in the EJB container of an application server. The precise way in which an MDB is
configured depends on which application server you are using, but the configuration information must specify which queue manager to connect to, how to
connect to the queue manager, which destination to monitor for messages, and the transactional behavior of the MDB. This information is then used by
the EJB container. When a message satisfying the MDB's selection criteria arrives at the specified destination, the EJB container uses WebSphere MQ
classes for JMS to retrieve the message from the queue manager, and then delivers the message to the MDB by calling its onMessage() method.

Parent topic: Introduction to WebSphere MQ classes for JMS for programmers

This build: January 26, 2011 11:29:48

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm35110_

4.4.2. What is new in WebSphere MQ Version 7.0?

WebSphere® MQ classes for JMS, as supplied in WebSphere MQ Version 7.0, contains a number of enhancements compared to previous releases. Some of
these enhancements are as a result of changes to the implementation of WebSphere MQ classes for JMS, and some are as a result of WebSphere MQ classes
for JMS exploiting changes to the underlying WebSphere MQ function.

The following sections summarize the key enhancements.

A layered architecture

In previous releases of WebSphere MQ, the implementation of WebSphere MQ classes for JMS has been entirely specific to WebSphere MQ. Other IBM®
products that provide messaging systems have also included JMS providers, but these JMS providers have very little or nothing in common with the
implementation of WebSphere MQ classes for JMS.

In WebSphere MQ V7.0, WebSphere MQ classes for JMS now has a layered architecture. The top layer of code is a common layer that can be used by any
IBM JMS provider. Lotus Expeditor micro broker is such a JMS provider, and uses this common layer. When an application calls a JMS method, any
processing of the call that is not specific to a messaging system is performed by the common layer, which also provides a consistent response to the call.
Any processing of the call that is specific to a messaging system is delegated to a lower layer. Figure 1 shows the layered architecture.

Figure 1. The layered architecture for IBM JMS providers

Moving to a layered architecture has following objectives:

� To improve the consistency of behavior of the various IBM JMS providers

� To make it easier to write an bridge application between two IBM messaging systems

� To make it easier to port an application from one IBM JMS provider to another

Page 41 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

This implementation of WebSphere MQ classes for JMS also introduces a new set of extensions to the JMS API. These extensions are known as the IBM JMS
extensions. The main focus of these extensions concerns creating and configuring connection factories and destinations dynamically at run time. The IBM
JMS extensions are also implemented in Lotus Expeditor micro broker.

An application using the IBM JMS extensions starts by creating a JmsFactoryFactory object, specifying as a parameter a constant that identifies the chosen
messaging system. The application uses the JmsFactoryFactory object to create connection factories and destinations that have the correct specialized
classes for the chosen messaging system.

The application can then configure the connection factories and destinations by setting their properties. The IBM JMS extensions provide a set of methods to
set properties. These methods are independent of any messaging system. Each data type has its own set method, and each property is identified by a name,
which is defined as a static final member of the WMQConstants class. When an application calls one of these methods, one of the parameters on the call is
the name of the property, and the other parameter is the value of the property.

For example, if WebSphere MQ is the messaging system, one of the properties of a connection factory is the name of the queue manager to connect to.
Using the IBM JMS extensions, an application sets the name of the queue manager to JUPITER by calling the following method:

JmsConnectionFactory myCF;

...

myCF.setStringProperty(WMQConstants.WMQ_QUEUE_MANAGER, "JUPITER");

By contrast, an application can perform the same function by calling the following method:

MQConnectionFactory myCF;

...

myCF.setQueueManager("JUPITER");

This method is a WebSphere MQ JMS extension and is specific to WebSphere MQ as the messaging system. The use of this method therefore makes the
application potentially less easy to port to another IBM JMS provider.

The relationship between WebSphere MQ classes for JMS and WebSphere MQ classes for Java

In previous releases of WebSphere MQ, WebSphere MQ classes for JMS was implemented almost entirely as a layer of code on top of WebSphere MQ classes
for Java. This arrangement has caused some confusion among application developers because setting fields or calling methods in the MQEnvironment class
can cause unwanted and unexpected effects on the runtime behavior of code that is written using WebSphere MQ classes for JMS. In addition, the
implementation of WebSphere MQ classes for JMS had some constraints in areas where the JMS API is not a natural fit on top of WebSphere MQ classes for
Java, and these constraints have led to some issues regarding runtime performance.

In WebSphere MQ V7.0, the implementation of WebSphere MQ classes for JMS is no longer dependent on WebSphere MQ classes for Java. WebSphere MQ
classes for Java and WebSphere MQ classes for JMS are now peers that use a common Java interface to the MQI. This arrangement allows more scope for
optimizing performance, and means that setting fields or calling methods in the MQEnvironment class has no effect on the runtime behavior of code that is
written using WebSphere MQ classes for JMS. Figure 2 shows the relationship between WebSphere MQ classes for JMS and WebSphere MQ classes for Java
in previous releases of WebSphere MQ and in WebSphere MQ V7.0.

Figure 2. The relationship between WebSphere MQ classes for JMS and WebSphere MQ classes for Java

In order to maintain compatibility with earlier releases, channel exit classes written in Java can still use the WebSphere MQ classes for Java interfaces, even
if the channel exit classes are called from WebSphere MQ classes for JMS. However, using the WebSphere MQ classes for Java interfaces means that your
applications are still dependent on the WebSphere MQ classes for Java JAR file, com.ibm.mq.jar. If you do not want com.ibm.mq.jar in your class path, you
can use the new set of interfaces in the com.ibm.mq.exits package instead.

You can now create and configure JMS administered objects with the WebSphere MQ Explorer.

Publish/subscribe messaging

WebSphere MQ V7.0 contains embedded publish/subscribe function. This function replaces WebSphere MQ Publish/Subscribe, which was supplied with
WebSphere MQ V6.0.

WebSphere MQ classes for JMS applications can use the embedded publish/subscribe function, and can use it instead of using WebSphere Event Broker or
WebSphere Message Broker for publish/subscribe messaging with WebSphere MQ as the transport. Configuring WebSphere MQ classes for JMS to use the
new function is simpler than configuring WebSphere MQ classes for JMS to use WebSphere MQ Publish/Subscribe, WebSphere Event Broker, or WebSphere
Message Broker. Administrators and application developers no longer need to manage publication queues, subscriber queues, subscription stores, and
subscriber cleanup. In addition, ConnectionFactory and Topic objects have a smaller number of properties.

The embedded publish/subscribe function also provides some additional features such as retained publications and a choice of two wildcard schemes for
specifying a range of topics to which an application wants to subscribe.

An application can still use a real-time connection to a broker of WebSphere Event Broker or WebSphere Message Broker for publish/subscribe messaging.
This support is unchanged.

Applications using WebSphere MQ Publish/Subscribe can use the embedded publish/subscribe function without change when the queue manager to which
they are connected is upgraded. Properties that are set by an application, but are not required by the embedded publish/subscribe function, are ignored.

WebSphere MQ messaging provider

The WebSphere MQ messaging provider has two modes of operation:

� WebSphere MQ messaging provider normal mode

� WebSphere MQ messaging provider migration mode

The WebSphere MQ messaging provider normal mode uses all the features of the WebSphere MQ Version 7.0 queue managers to implement JMS. This mode
is used only to connect to a WebSphere MQ queue manager and can connect to WebSphere MQ Version 7.0 queue managers in either client or bindings
mode. This mode is optimized to use the new WebSphere MQ Version 7.0 function.

The WebSphere MQ messaging provider migration mode is based on WebSphere MQ Version 6.0 function and uses only features that were available in the

Page 42 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

WebSphere MQ Version 6.0 queue manager to implement JMS. You can connect to a WebSphere MQ Version 7.0 queue manager using WebSphere MQ
messaging provider migration mode but you cannot use any of the Version 7.0 optimizations. This mode allows connections to either of the following queue
manager versions:

1. WebSphere MQ Version 7.0 queue manager in bindings or client mode, but this mode uses only those features that were available to a WebSphere MQ
Version 6.0 queue manager

2. WebSphere MQ Version 6.0 or earlier queue manager in client mode

If you want to connect to WebSphere Event Broker or WebSphere Message Broker using either WebSphere MQ Enterprise Transport, use the WebSphere MQ
messaging provider migration mode. If you use WebSphere MQ Real-Time Transport, the WebSphere MQ messaging provider migration mode is
automatically selected, because you have explicitly selected properties in the connection factory object. Connection to WebSphere Event Broker or
WebSphere Message Broker using the WebSphere MQ Enterprise Transport follows the general rules for mode selection described in Rules for selecting the
WebSphere MQ messaging provider mode .

Asynchronous message consumption

WebSphere MQ V7.0 supports asynchronous message consumption. An application can register a callback function for a destination. When a suitable
message is sent to the destination, WebSphere MQ calls the function and passes the message as a parameter. The function then processes the message
asynchronously. In previous releases of WebSphere MQ, this feature was available only when using WebSphere MQ classes for JMS.

WebSphere MQ classes for JMS has been changed to exploit this new feature in WebSphere MQ V7.0. The implementation of JMS message listeners is now a
more natural fit with WebSphere MQ, and WebSphere MQ classes for JMS no longer has to poll a destination to check whether a suitable message has been
sent to the destination. The performance of JMS message listeners is improved as a result, particularly when an application uses multiple message listeners
in a session to monitor multiple destinations. Message throughput is increased, and the time taken to deliver a message to a message listener after it has
arrived at a destination is reduced.

Message driven beans (MDBs) have similar performance improvements. In addition, because of another enhancement to WebSphere MQ function, multiple
MDBs that are consuming messages from the same destination now experience reduced contention on the messages.

Message selection

With the exception of selecting messages by message identifier or correlation identifier, all message selection in previous releases of WebSphere MQ was
done by WebSphere MQ classes for JMS. In WebSphere MQ V7.0, all message selection is done by the queue manager.

As a result, message throughput is increased for applications that consume messages using message selection. The performance improvement is greater for
an application that connects in client mode because only those messages that satisfy the selection criteria are transported over the network, and WebSphere
MQ classes for JMS handles only those messages that it delivers to the application.

Sharing a communications connection

In previous releases of WebSphere MQ, if a WebSphere MQ client application connected to a queue manager more than once using the same MQI channel,
each instance of the MQI channel required a separate TCP connection. In WebSphere MQ V7.0, each connection to the queue manager using the same MQI
channel can share a single TCP connection. This arrangement means that fewer network resources are required and the total time taken to create multiple
connections to the queue manager is reduced, particularly when using SSL because the SSL handshake takes place only once at the start of the TCP
connection.

WebSphere MQ classes for JMS exploits this enhancement. For an application that connects to a queue manager in client mode, WebSphere MQ classes for
JMS might create more than one connection to a queue manager using the MQI channel whose name is specified as a property of the ConnectionFactory
object. Each of these connections to the queue manager can now share a single TCP connection.

Read ahead on client connections

If an application uses a client connection to consume nonpersistent messages from a destination, the destination can be configured so that WebSphere MQ
classes for JMS uses a buffer to store the messages of interest before delivering them to the application. This optimization is called read ahead and can be
used by applications that consume messages synchronously by calling the receive() method, and by message listeners and MDBs, which consume messages
asynchronously. Read ahead is particularly effective for destinations with a large number of messages that need to be consumed rapidly.

Read ahead does not apply to persistent messages because, if persistent messages were read into a buffer, the queue manager would no longer be able to
recover the messages following a failure. However, an application that consumes messages from a destination with a mixture of persistent and nonpersistent
messages can still use read ahead. The order of the messages is preserved, but the runtime benefits of read ahead apply only to the nonpersistent
messages.

When deciding whether to use read ahead, consider the following points:

� If an application is consuming messages from a destination that is configured for read ahead, and the application ends for any reason, any
nonpersistent messages that are currently stored in the buffer are discarded.

� If all the following conditions are true, messages sent to a queue in a session might not be received in the order in which they were sent:

� An application uses two message consumers in the same session to consume the messages from the queue.

� Each message consumer uses a different Destination object for the queue.

� Any or both of the Destination objects are configured for read ahead.

Sending messages

When an application sends messages to a destination, the destination can be configured so that, when the application calls send(), WebSphere MQ classes
for JMS forwards the message to the queue manager and returns control back to the application without determining whether the queue manager has
received the message safely. WebSphere MQ classes for JMS can work in this way only for nonpersistent messages and for persistent messages sent in a
transacted session.

For persistent messages sent in a transacted session, the application ultimately determines whether the queue manager has received the messages safely
when it calls commit(). For any messages sent in a session that is not transacted, the SENDCHECKCOUNT property of the ConnectionFactory object specifies
how many messages are to be sent before WebSphere MQ classes for JMS checks that the queue manager has received the messages safely.

This optimization is of most benefit to an application that connects to a queue manager in client mode and needs to send a sequence of messages in rapid
succession, but does not require immediate feedback from the queue manager for each message sent.

Channel exits

When called from WebSphere MQ classes for JMS, channel exit programs written in C or C++ now behave in the same way as when they are called from a
Websphere MQ client. The performance of channel exit classes written in Java has been improved, and you can now write channel exit classes using a new
set of interfaces in the com.ibm.mq.exits package instead of using the interfaces in WebSphere MQ classes for Java.

Message properties

A JMS message consists of a set of header fields, a set of properties, and a body that contains the application data. As a minimum, a WebSphere MQ
message consists of a message descriptor and the application data.

Page 43 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

When a WebSphere MQ classes for JMS application sends a JMS message, WebSphere MQ classes for JMS maps the JMS message into a WebSphere MQ
message. Some of the JMS header fields and properties are mapped into fields in the message descriptor, and some are mapped into fields in an additional
WebSphere MQ header called an MQRFH2 header. When a WebSphere MQ classes for JMS application receives a JMS message, WebSphere MQ classes for
JMS performs the reverse mapping.

An application that is using the MQI to receive messages from a WebSphere MQ classes for JMS application must therefore be able to handle an MQRFH2
header. If the application cannot handle an MQRFH2 header, the TARGCLIENT property of the Destination object can be set to tell WebSphere MQ classes for
JMS not to include an MQRFH2 header in the WebSphere MQ messages. However, by excluding the MQRFH2 header, the information held in some of the JMS
header fields and properties is lost.

Similarly, an application that is using the MQI to send messages to a WebSphere MQ classes for JMS application must include an MQRFH2 header in each
message. If an MQRFH2 header is not included, WebSphere MQ classes for JMS can set only those JMS header fields and properties that can be derived from
the fields in a message descriptor.

WebSphere MQ V7.0 provides some additional support for applications that use the MQI to receive messages from, and send messages to, WebSphere MQ
classes for JMS applications.

When an application calls MQGET to receive a message from a WebSphere MQ classes for JMS application, the application can choose to receive the message
in one of the following ways:

1. The message is delivered with a message descriptor, an MQRFH2 header that contains data derived from JMS header fields and properties, and the
application data.

2. The message is delivered with a message descriptor, the application data, and a set of message properties.

In option 2, each message property represents a JMS header field or property that was originally mapped by WebSphere MQ classes for JMS into a field in an
MQRFH2 header. After the MQGET call, the application can use the MQINQMP call to get the values of the message properties. Using option 2 instead of
option 1 to receive a message simplifies the application logic in the following ways:

� The application does not have to parse the variable portion of the MQRFH2 header, which contains the JMS header field and property data encoded in
an XML-like format.

� The application does not have to convert the character data in the variable portion of the MQRFH2 header.

Correspondingly, before an application calls MQPUT to send a message to a WebSphere MQ classes for JMS application, the application can use the
MQSETMP call to set the values of message properties instead of constructing an MQRFH2 header.

Serviceability

WebSphere MQ classes for JMS contains a number of improvements related to serviceability:

� Tracing.

WebSphere MQ classes for JMS contains a class that an application can use to control tracing. An application can start and stop tracing, specify the
required level of detail in a trace, and customize trace output in various ways..

� Logging.

WebSphere MQ classes for JMS maintains a log file, which contains messages about errors that you need to correct. The messages are written in plain
text. WebSphere MQ classes for JMS contains a class that an application can use to specify the location of the log file and its maximum size.

� First Failure Support Technology™ (FFST™).

If a serious failure occurs, WebSphere MQ classes for JMS generates an FFST report in an FDC file. The FFST report contains information that IBM
Service can use to diagnose the problem more quickly.

� Version information.

WebSphere MQ classes for JMS contains a class that an application can use to query the version of WebSphere MQ classes for JMS.

� Exception messages.

Exception messages have been enhanced to provide more information about the causes of errors and the actions required to correct errors.

� Application servers.

The integration of the serviceability features of WebSphere MQ classes for JMS with those of WebSphere Application Server has been improved.

MQC is replaced by MQConstants

A new package, com.ibm.mq.constants, is supplied with WebSphere MQ Version 7.0. This package contains the class MQConstants, which implements a
number of interfaces. MQConstants contains definitions of all the constants that were in the MQC interface and a number of new constants. The interfaces in
this package closely follow the names of the constants header files used in WebSphere MQ.

For example, the interface CMQC contains a constant MQOO_INPUT_SHARED; this interface corresponds to the header file cmqc.h and the constant

MQOO_INPUT_SHARED.

com.ibm.mq.constants can be used with both WebSphere MQ classes for Java and WebSphere MQ classes for JMS.

MQC is still present, and has the constants it previously had; however, for any new applications, you must use the com.ibm.mq.constants package.

Parent topic: Introduction to WebSphere MQ classes for JMS for programmers

This build: January 26, 2011 11:29:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm35120_

4.5. Writing WebSphere MQ classes for JMS applications

After a brief introduction to the JMS model, this topic provides detailed guidance on how to write WebSphere® MQ classes for JMS applications.

The JMS model
The JMS model defines a set of interfaces that Java applications can use to perform messaging operations. WebSphere MQ classes for JMS, as a JMS
provider, defines how JMS objects are related to WebSphere MQ concepts. The JMS specification expects certain JMS objects to be administered
objects.

JMS messages

Creating and configuring connection factories and destinations in a WebSphere MQ classes for JMS application
A WebSphere MQ classes for JMS application can create connection factories and destinations by retrieving them as administered objects from a Java
Naming and Directory Interface (JNDI) namespace, by using the IBM® JMS extensions, or by using the WebSphere MQ JMS extensions. An application

Page 44 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

can also use the IBM JMS extensions or WebSphere MQ JMS extensions to set the properties of connection factories and destinations.

Building a connection in a JMS application
To build a connection, a JMS application uses a ConnectionFactory object to create a Connection object and then starts the connection.

Creating a session in a JMS application
To create a session, a JMS application uses the createSession() method of a Connection object.

Creating destinations in a JMS application
Instead of retrieving destinations as administered objects from a Java Naming and Directory Interface (JNDI) namespace, a JMS application can use a
session to create destinations dynamically at run time. An application can use a uniform resource identifier (URI) to identify a WebSphere MQ queue or
a topic and, optionally, to specify one or more properties of a Queue or Topic object.

Sending messages in a JMS application
Before a JMS application can send messages to a destination, it must first create a MessageProducer object for the destination. To send a message to
the destination, the application creates a Message object and then calls the send() method of the MessageProducer object.

Receiving messages in a JMS application
An application uses a message consumer to receive messages. A durable topic subscriber is a message consumer that receives all messages sent to a
destination, including those sent while the consumer is inactive. An application can select which messages it wants to receive by using a message
selector, and can receive messages asynchronously by using a message listener.

Closing down a WebSphere MQ classes for JMS application
It is important for a WebSphere MQ classes for JMS application to close certain JMS objects explicitly before stopping. Finalizers might not be called, so
do not rely on them to free resources. Do not allow an application to terminate with compressed trace active.

Handling errors in WebSphere MQ classes for JMS
This topic describes the exceptions that can be thrown by JMS API calls or delivered to an exception handler, and how an application can obtain
information from exceptions. It also tells you about the WebSphere MQ classes for JMS error log and the first failure support technology (FFST™)
information that is generated if a serious internal error occurs.

Accessing WebSphere MQ features from a WebSphere MQ classes for JMS application
WebSphere MQ classes for JMS provides facilities to exploit a number of features of WebSphere MQ.

XA support in WebSphere MQ classes for JMS
JMS supports XA-compliant transactions in bindings mode. In client mode, XA is available only if you use the Extended Transactional Client or within an
application server environment.

Using a real-time connection to a broker of WebSphere Event Broker or WebSphere Message Broker
A WebSphere MQ classes for JMS application can use a real-time connection to a broker of WebSphere Event Broker or WebSphere Message Broker for
publish/subscribe messaging. Both the broker and WebSphere MQ classes for JMS must be configured to enable a real-time connection.

Parent topic: WebSphere MQ classes for JMS

This build: January 26, 2011 11:29:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm24320_

4.5.1. The JMS model

The JMS model defines a set of interfaces that Java applications can use to perform messaging operations. WebSphere® MQ classes for JMS, as a JMS
provider, defines how JMS objects are related to WebSphere MQ concepts. The JMS specification expects certain JMS objects to be administered objects.

The JMS specification and the javax.jms package define a set of interfaces that Java applications can use to perform messaging operations. The following list
summarizes the main JMS interfaces:

Destination

A destination is where an application sends messages, or it is a source from which an application receives messages, or both.

ConnectionFactory

A ConnectionFactory object encapsulates a set of configuration properties for a connection. An application uses a connection factory to create a connection.

Connection

A Connection object encapsulates an application’s active connection to a messaging server. An application uses a connection to create sessions.

Session

A session is a single threaded context for sending and receiving messages. An application uses a session to create messages, message producers, and
message consumers. A session is either transacted or not transacted.

Message

A Message object encapsulates a message that an application sends or receives.

MessageProducer

An application uses a message producer to send messages to a destination.

MessageConsumer

An application uses a message consumer to receive messages sent to a destination.

Figure 1 shows these objects and their relationships.

Figure 1. JMS objects and their relationships

Page 45 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

A Destination, ConnectionFactory, or Connection object can be used concurrently by different threads of a multithreaded application, but a Session,
MessageProducer, or MessageConsumer object cannot be used concurrently by different threads. The simplest way of ensuring that a Session,
MessageProducer, or MessageConsumer object is not used concurrently is to create a separate Session object for each thread.

JMS support two styles of messaging:

� Point-to-point messaging

� Publish/subscribe messaging

These styles of messaging are also referred to as messaging domains, and you can combine both styles of messaging in an application. In the point-to-point
domain, a destination is a queue and, in the publish/subscribe domain, a destination is a topic.

With versions of JMS before JMS 1.1, programming for the point-to-point domain uses one set of interfaces and methods, and programming for the
publish/subscribe domain uses another set. The two sets are similar, but separate. With JMS 1.1, you can use a common set of interfaces and methods that
support both messaging domains. The common interfaces provide a domain independent view of each messaging domain. Table 1 lists the JMS domain
independent interfaces and their corresponding domain specific interfaces.

JMS 1.1 retains all the domain specific interfaces, and so existing applications can still use these interfaces. For new applications, however, consider using
the domain independent interfaces.

In WebSphere MQ classes for JMS, JMS objects are related to WebSphere MQ concepts in the following ways:

� A Connection object has properties that are derived from the properties of the connection factory that was used to create the connection. These
properties control how an application connects to a queue manager. Examples of these properties are the name of the queue manager and, for an
application that connects to the queue manager in client mode, the host name or IP address of the system on which the queue manager is running.

� A Session object encapsulates a WebSphere MQ connection handle, which therefore defines the transactional scope of the session.

� A MessageProducer object and a MessageConsumer object each encapsulates a WebSphere MQ object handle.

When using WebSphere MQ classes for JMS, all the normal rules of WebSphere MQ apply. Note, in particular, that an application can send a message to a
remote queue but it can receive a message only from a queue that is owned by the queue manager to which the application is connected.

The JMS specification expects ConnectionFactory and Destination objects to be administered objects. An administrator creates and maintains administered
objects in a central repository, and a JMS application retrieves these objects using the Java Naming and Directory Interface (JNDI).

In WebSphere MQ classes for JMS, the implementation of the Destination interface is an abstract superclass of Queue and Topic, and so an instance of
Destination is either a Queue object or a Topic object. The domain independent interfaces treat a queue or a topic as a destination. The messaging domain
for a MessageProducer or MessageConsumer object is determined by whether the destination is a queue or a topic.

In WebSphere MQ classes for JMS therefore, objects of the following types can be administered objects:

� ConnectionFactory

� QueueConnectionFactory

� TopicConnectionFactory

� Queue

� Topic

� XAConnectionFactory

� XAQueueConnectionFactory

� XATopicConnectionFactory

Parent topic: Writing WebSphere MQ classes for JMS applications

This build: January 26, 2011 11:29:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm24330_

4.5.2. JMS messages

JMS messages are composed of the following parts:

Header

All messages support the same set of header fields. Header fields contain values that are used by both clients and providers to identify and route
messages.

Table 1. The JMS domain independent and domain specific interfaces

Domain independent interfaces Domain specific interfaces for the

point-to-point domain

Domain specific interfaces for the

publish/subscribe domain

ConnectionFactory QueueConnectionFactory TopicConnectionFactory

Connection QueueConnection TopicConnection

Destination Queue Topic

Session QueueSession TopicSession

MessageProducer QueueSender TopicPublisher

MessageConsumer
QueueReceiver

QueueBrowser

TopicSubscriber

Page 46 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Properties

Each message contains a built-in facility to support application-defined property values. Properties provide an efficient mechanism to filter application-
defined messages.

Body

JMS defines several types of message body that cover the majority of messaging styles currently in use.

JMS defines five types of message body:

Stream

A stream of Java primitive values. It is filled and read sequentially.

Map

A set of name-value pairs, where names are strings and values are Java primitive types. The entries can be accessed sequentially or randomly by name.
The order of the entries is undefined.

Text

A message containing a java.lang.String.

Object

A message that contains a serializable Java object

Bytes

A stream of uninterpreted bytes. This message type is for literally encoding a body to match an existing message format.

The JMSCorrelationID header field is used to link one message with another. It typically links a reply message with its requesting message. JMSCorrelationID
can hold a provider-specific message ID, an application-specific String, or a provider-native byte[] value.

Message selectors

Mapping JMS messages onto WebSphere MQ messages

Parent topic: Writing WebSphere MQ classes for JMS applications

This build: January 26, 2011 11:29:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25410_

4.5.2.1. Message selectors

A message contains a built-in facility to support application-defined property values. In effect, this provides a mechanism to add application-specific header
fields to a message. Properties allow an application, using message selectors, to have a JMS provider select or filter messages on its behalf, using
application-specific criteria. Application-defined properties must obey the following rules:

� Property names must obey the rules for a message selector identifier.

� Property values can be boolean, byte, short, int, long, float, double, and String.

� The JMSX and JMS_ name prefixes are reserved.

Property values are set before sending a message. When a client receives a message, the message properties are read-only. If a client attempts to set
properties at this point, a MessageNotWriteableException is thrown. If clearProperties is called, the properties can now be both read from, and written to.

A property value might duplicate a value in a message's body. JMS does not define a policy for what might be made into a property. However, application
developers must be aware that JMS providers probably handle data in a message's body more efficiently than data in a message's properties. For best
performance, applications must use message properties only when they need to customize a message's header. The primary reason for doing this is to
support customized message selection.

A JMS message selector allows a client to specify the messages that it is interested in by using the message header. Only messages whose headers match
the selector are delivered.

Message selectors cannot refer to message body values.

A message selector matches a message when the selector evaluates to true when the message's header field and property values are substituted for their
corresponding identifiers in the selector.

A message selector is a String, whose syntax is based on a subset of the SQL92 conditional expression syntax. The order in which a message selector is
evaluated is from left to right within a precedence level. You can use parentheses to change this order. Predefined selector literals and operator names are
written here in upper case; however, they are not case-sensitive.

A selector can contain:

� Literals

� A string literal is enclosed in single quotes. A doubled single quote represents a single quote. Examples are 'literal' and 'literal''s'. Like Java string
literals, these use the Unicode character encoding.

� An exact numeric literal is a numeric value without a decimal point, such as 57, -957, and +62. Numbers in the range of Java long are
supported.

� An approximate numeric literal is a numeric value in scientific notation, such as 7E3 or -57.9E2, or a numeric value with a decimal, such as 7., -
95.7, or +6.2. Numbers in the range of Java double are supported.

� The boolean literals TRUE and FALSE.

� Identifiers:

� An identifier is an unlimited length sequence of Java letters and Java digits, the first of which must be a Java letter. A letter is any character for
which the method Character.isJavaLetter returns true. This includes _ and $. A letter or digit is any character for which the method
Character.isJavaLetterOrDigit returns true.

� Identifiers cannot be the names NULL, TRUE, or FALSE.

� Identifiers cannot be NOT, AND, OR, BETWEEN, LIKE, IN, or IS.

� Identifiers are either header field references or property references.

� Identifiers are case-sensitive.

� Message header field references are restricted to:

Page 47 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

� JMSDeliveryMode

� JMSPriority

� JMSMessageID

� JMSTimestamp

� JMSCorrelationID

� JMSType

JMSMessageID, JMSTimestamp, JMSCorrelationID, and JMSType values can be null, and if so, are treated as a NULL value.

� Any name beginning with JMSX is a JMS-defined property name.

� Any name beginning with JMS_ is a provider-specific property name.

� Any name that does not begin with JMS is an application-specific property name. If there is a reference to a property that does not exist in a
message, its value is NULL. If it does exist, its value is the corresponding property value.

� White space is the same as it is defined for Java: space, horizontal tab, form feed, and line terminator.

� Expressions:

� A selector is a conditional expression. A selector that evaluates to true matches; a selector that evaluates to false or unknown does not match.

� Arithmetic expressions are composed of themselves, arithmetic operations, identifiers (whose value is treated as a numeric literal), and numeric
literals.

� Conditional expressions are composed of themselves, comparison operations, and logical operations.

� Standard bracketing (), to set the order in which expressions are evaluated, is supported.

� Logical operators in precedence order: NOT, AND, OR.

� Comparison operators: =, >, >=, <, <=, <> (not equal).

� Only values of the same type can be compared. One exception is that it is valid to compare exact numeric values and approximate numeric
values. (The type conversion required is defined by the rules of Java numeric promotion.) If there is an attempt to compare different types, the
selector is always false.

� String and boolean comparison is restricted to = and <>. Two strings are equal only if they contain the same sequence of characters.

� Arithmetic operators in precedence order:

� +, - unary.

� *, /, multiplication, and division.

� +, -, addition, and subtraction.

� Arithmetic operations on a NULL value are not supported. If they are attempted, the complete selector is always false.

� Arithmetic operations must use Java numeric promotion.

� arithmetic-expr1 [NOT] BETWEEN arithmetic-expr2 and arithmetic-expr3 comparison operator:

� Age BETWEEN 15 and 19 is equivalent to age >= 15 AND age <= 19.

� Age NOT BETWEEN 15 and 19 is equivalent to age < 15 OR age > 19.

� If any of the expressions of a BETWEEN operation are NULL, the value of the operation is false. If any of the expressions of a NOT BETWEEN
operation are NULL, the value of the operation is true.

� identifier [NOT] IN (string-literal1, string-literal2,...) comparison operator where identifier has a String or NULL value.

� Country IN ('UK', 'US', 'France') is true for 'UK' and false for 'Peru'. It is equivalent to the expression (Country = 'UK') OR (Country = 'US') OR
(Country = 'France').

� Country NOT IN ('UK', 'US', 'France') is false for 'UK' and true for 'Peru'. It is equivalent to the expression NOT ((Country = 'UK') OR (Country =
'US') OR (Country = 'France')).

� If the identifier of an IN or NOT IN operation is NULL, the value of the operation is unknown.

� identifier [NOT] LIKE pattern-value [ESCAPE escape-character] comparison operator, where identifier has a string value. pattern-value is a string
literal, where _ stands for any single character and % stands for any sequence of characters (including the empty sequence). All other characters
stand for themselves. The optional escape-character is a single character string literal, whose character is used to escape the special meaning of the _
and % in pattern-value.

� phone LIKE '12%3' is true for 123 and 12993 and false for 1234.

� word LIKE 'l_se' is true for lose and false for loose.

� underscored LIKE '_%' ESCAPE '\' is true for _foo and false for bar.

� phone NOT LIKE '12%3' is false for 123 and 12993 and true for 1234.

� If the identifier of a LIKE or NOT LIKE operation is NULL, the value of the operation is unknown.

� identifier IS NULL comparison operator tests for a null header field value, or a missing property value.

� prop_name IS NULL.

� identifier IS NOT NULL comparison operator tests for the existence of a non-null header field value or a property value.

� prop_name IS NOT NULL.

The following message selector selects messages with a message type of car, color of blue, and weight greater than 2500 lbs:

"JMSType = 'car' AND color = 'blue' AND weight > 2500"

As noted above, property values can be NULL. The evaluation of selector expressions that contain NULL values is defined by SQL 92 NULL semantics. The
following is a brief description of these semantics:

� SQL treats a NULL value as unknown.

� Comparison or arithmetic with an unknown value always yields an unknown value.

� The IS NULL and IS NOT NULL operators convert an unknown value into the respective TRUE and FALSE values.

Although SQL supports fixed decimal comparison and arithmetic, JMS message selectors do not. This is why exact numeric literals are restricted to those
without a decimal. It is also why there are numerics with a decimal as an alternate representation for an approximate numeric value.

SQL comments are not supported.

Parent topic: JMS messages

This build: January 26, 2011 11:29:38

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

Page 48 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

This topic's URL:

jm25420_

4.5.2.2. Mapping JMS messages onto WebSphere MQ messages

This section describes how the JMS message structure that is described in the first part of this chapter is mapped onto a WebSphere® MQ message. It is of
interest to programmers who want to transmit messages between JMS and traditional WebSphere MQ applications. It is also of interest to people who want
to manipulate messages transmitted between two JMS applications, for example, in a message broker implementation.

This section does not apply if an application uses a real-time connection to a broker. When an application uses a real-time connection, all communication is
performed directly over TCP/IP; no WebSphere MQ queues or messages are involved.

WebSphere MQ messages are composed of three components:

� The WebSphere MQ Message Descriptor (MQMD)

� A WebSphere MQ MQRFH2 header

� The message body.

The MQRFH2 is optional, and its inclusion in an outgoing message is governed by a flag in the JMS Destination class. You can set this flag using the
WebSphere MQ JMS administration tool. Because the MQRFH2 carries JMS-specific information, always include it in the message when the sender knows that
the receiving destination is a JMS application. Normally, omit the MQRFH2 when sending a message directly to a non-JMS application. This is because such
an application does not expect an MQRFH2 in its WebSphere MQ message.

If an incoming message does not have an MQRFH2 header, the Queue or Topic object derived from the JMSReplyTo header field of the message, by default,
has this flag set so that a reply message sent to the queue or topic also does not have an MQRFH2 header. You can switch off this behavior of including an
MQRFH2 header in a reply message only if the original message has an MQRFH2 header by setting the TARGCLIENTMATCHING property of the connection
factory to NO.

Figure 1 shows how the structure of a JMS message is transformed to a WebSphere MQ message and back again:

Figure 1. How messages are transformed between JMS and WebSphere MQ using the MQRFH2 header

The structures are transformed in two ways:

Mapping

Where the MQMD includes a field that is equivalent to the JMS field, the JMS field is mapped onto the MQMD field. Additional MQMD fields are exposed as
JMS properties, because a JMS application might need to get or set these fields when communicating with a non-JMS application.

Copying

Where there is no MQMD equivalent, a JMS header field or property is passed, possibly transformed, as a field inside the MQRFH2.

The MQRFH2 header
This collection of topics describes the MQRFH Version 2 header, which carries JMS-specific data that is associated with the message content. The
MQRFH2 Version 2 is an extensible header, and can also carry additional information that is not directly associated with JMS. However, this section
covers only its use by JMS.

JMS fields and properties with corresponding MQMD fields

Mapping JMS fields onto WebSphere MQ fields (outgoing messages)

Mapping WebSphere MQ fields onto JMS fields (incoming messages)

Exchanging messages between a JMS application and a traditional WebSphere MQ application

Message body
This topic discusses the encoding of the message body itself. The encoding depends on the type of JMS message.

Parent topic: JMS messages

This build: January 26, 2011 11:29:38

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25430_

4.5.2.2.1. The MQRFH2 header

This collection of topics describes the MQRFH Version 2 header, which carries JMS-specific data that is associated with the message content. The MQRFH2
Version 2 is an extensible header, and can also carry additional information that is not directly associated with JMS. However, this section covers only its use
by JMS.

There are two parts of the header, a fixed portion and a variable portion.

Fixed portion

The fixed portion is modeled on the standard WebSphere® MQ header pattern and consists of the following fields:

StrucId (MQCHAR4)

Structure identifier.

Must be MQRFH_STRUC_ID (value: "RFH ") (initial value).

Page 49 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

MQRFH_STRUC_ID_ARRAY (value: "R","F","H"," ") is also defined.

Version (MQLONG)

Structure version number.

Must be MQRFH_VERSION_2 (value: 2) (initial value).

StrucLength (MQLONG)

Total length of MQRFH2, including the NameValueData fields.

The value set into StrucLength must be a multiple of 4 (the data in the NameValueData fields can be padded with space characters to achieve this).

Encoding (MQLONG)

Data encoding.

Encoding of any numeric data in the portion of the message following the MQRFH2 (the next header, or the message data following this header).

CodedCharSetId (MQLONG)

Coded character set identifier.

Representation of any character data in the portion of the message following the MQRFH2 (the next header, or the message data following this header).

Format (MQCHAR8)

Format name.

Format name for the portion of the message following the MQRFH2.

Flags (MQLONG)

Flags.

MQRFH_NO_FLAGS =0. No flags set.

NameValueCCSID (MQLONG)

The coded character set identifier (CCSID) for the NameValueData character strings contained in this header. The NameValueData can be coded in a
character set that differs from the other character strings that are contained in the header (StrucID and Format).

If the NameValueCCSID is a 2 byte Unicode CCSID (1200, 13488, or 17584), the byte order of the Unicode is the same as the byte ordering of the
numeric fields in the MQRFH2. (For example, Version, StrucLength, and NameValueCCSID itself.)

The NameValueCCSID takes values from the following table:

Variable portion

The variable portion follows the fixed portion. The variable portion contains a variable number of MQRFH2 folders. Each folder contains a variable number
of elements or properties. Folders group related properties. The MQRFH2 headers created by JMS can contain any of the following folders:

The <mcd> folder

This folder contains properties that describe the shape or format of the message. For example, the Msd property identifies the message as being Text,

Bytes, Stream, Map, Object, or null. This folder is always present in a JMS MQRFH2.

The <jms> folder

This folder is used to transport JMS header fields, and JMSX properties that cannot be fully expressed in the MQMD. This folder is always present in a
JMS MQRFH2.

The <usr> folder

This folder is used to transport any application-defined properties associated with the message. This folder is present only if the application has set some
application-defined properties.

The <mqext> folder

This folder is used to transport IBM® defined properties that are used only by WebSphere Application Server. This folder is present only if the application
has set at least one of these properties.

The <mqps> folder

This folder is used for WebSphere MQ publish/subscribe properties. This folder is present only if the application has set at least one of these properties.

Table 2 shows a full list of property names.

Table 1. Possible values for NameValueCCSID field

Value Meaning

1200 UCS2 open-ended

1208 UTF8

13488 UCS2 2.0 subset

17584 UCS2 2.1 subset (includes Euro symbol)

Table 2. MQRFH2 folders and properties used by JMS

JMS field name Java type MQRFH2 folder

name

Property name Type/values

JMSDestination Destination jms Dst string

JMSExpiration long jms Exp i8

JMSPriority int jms Pri i4

JMSDeliveryMode int jms Dlv i4

JMSCorrelationID String jms Cid string

JMSReplyTo Destination jms Rto string

JMSTimestamp long jms Tms i8

JMSType String mcd Type, Set, Fmt string

JMSXGroupID String jms Gid string

JMSXGroupSeq int jms Seq i4

xxx (user defined) Any usr xxx any

 mcd Msd
jms_none

jms_text

jms_bytes

Page 50 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

The syntax used to express the properties in the variable portion is as follows:

NameValueLength (MQLONG)

Length in bytes of the NameValueData string that immediately follows this length field (it does not include its own length).

NameValueData (MQCHARn)

A single character string, whose length in bytes is given by the preceding NameValueLength field. It contains a folder holding a sequence of properties.
Each property is a name/type/value triplet, contained within an XML element whose name is the folder name, as follows:

 <foldername> triplet1 triplet2 tripletn </foldername>

The closing </foldername> tag can be followed by spaces as padding characters. Each triplet is encoded using an XML-like syntax:

 <name dt='datatype'>value</name>

The dt='datatype' element is optional and is omitted for many properties, because the data type is predefined. If it is included, one or more space

characters must be included before the dt= tag.

name

is the name of the property; see Table 2.

datatype

must match, after folding, one of the data types listed in Table 3.

value

is a string representation of the value to be conveyed, using the definitions in Table 3.

A null value is encoded using the following syntax:

<name dt='datatype' xsi:nil='true'></name>

Do not use xsi:nil='false'.

A string value can contain spaces. You must use the following escape sequences in a string value:

� & for the & character

� < for the < character

You can use the following escape sequences, but they are not required:

� > for the > character

� ' for the ' character

� " for the " character

Parent topic: Mapping JMS messages onto WebSphere MQ messages

This build: January 26, 2011 11:29:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25440_

4.5.2.2.2. JMS fields and properties with corresponding MQMD fields

Table 1 lists the JMS header fields and Table 2 lists the JMS properties that are mapped directly to MQMD fields. Table 3 lists the provider specific properties
and the MQMD fields that they are mapped to.

jms_map

jms_stream

jms_object

Table 3. Property data types

Data type Definition

string Any sequence of characters excluding < and &

boolean The character 0 or 1 (0 = false, 1 = true)

bin.hex Hexadecimal digits representing octets

i1 A number, expressed using digits 0..9, with optional sign (no fractions or exponent). Must lie in the range -128 to 127

inclusive

i2 A number, expressed using digits 0..9, with optional sign (no fractions or exponent). Must lie in the range -32768 to

32767 inclusive

i4 A number, expressed using digits 0..9, with optional sign (no fractions or exponent). Must lie in the range -2147483648

to 2147483647 inclusive

i8 A number, expressed using digits 0..9, with optional sign (no fractions or exponent). Must lie in the range -

9223372036854775808 to 92233720368547750807 inclusive

int A number, expressed using digits 0..9, with optional sign (no fractions or exponent). Must lie in the same range as i8.

This can be used in place of one of the i* types if the sender does not want to associate a particular precision with the

property

r4 Floating point number, magnitude <= 3.40282347E+38, >= 1.175E-37 expressed using digits 0..9, optional sign,

optional fractional digits, optional exponent

r8 Floating point number, magnitude <= 1.7976931348623E+308, >= 2.225E-307 expressed using digits 0..9, optional

sign, optional fractional digits, optional exponent

Table 1. JMS header fields mapping to MQMD fields

JMS header field Java

type

MQMD field C type

JMSDeliveryMode int Persistence MQLONG

JMSExpiration long Expiry MQLONG

JMSPriority int Priority MQLONG

JMSMessageID String MsgID MQBYTE24

JMSTimestamp long
PutDate

PutTime

MQCHAR8

MQCHAR8

Page 51 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Parent topic: Mapping JMS messages onto WebSphere MQ messages

This build: January 26, 2011 11:29:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25450_

4.5.2.2.3. Mapping JMS fields onto WebSphere® MQ fields (outgoing messages)

Table 1 shows how the JMS header fields are mapped into MQMD/RFH2 fields at send() or publish() time. Table 2 shows how JMS properties and Table 3
shows how JMS provider specific properties are mapped to MQMD fields at send() or publish() time,

For fields marked Set by Message Object, the value transmitted is the value held in the JMS message immediately before the send() or publish() operation.
The value in the JMS message is left unchanged by the operation.

For fields marked Set by Send Method, a value is assigned when the send() or publish() is performed (any value held in the JMS message is ignored). The
value in the JMS message is updated to show the value used.

Fields marked as Receive-only are not transmitted and are left unchanged in the message by send() or publish().

JMSCorrelationID String CorrelId MQBYTE24

Note:

1. JMS_IBM_Character_Set property value is a String value that contains the Java character set equivalent for the numeric

CodedCharacterSetId value. MQMD field CodedCharacterSetId is a numeric value that contains the equivalent of the Java character set

string specified by the JMS_IBM_Character_Set property.

Table 2. JMS properties mapping to MQMD fields

JMS property Java

type

MQMD field C type

JMSXUserID String UserIdentifier MQCHAR12

JMSXAppID String PutApplName MQCHAR28

JMSXDeliveryCount int BackoutCount MQLONG

JMSXGroupID String GroupId MQBYTE24

JMSXGroupSeq int MsgSeqNumber MQLONG

Table 3. JMS provider specific properties mapping to MQMD fields

JMS provider specific property Java

type

MQMD field C type

JMS_IBM_Report_Exception int Report MQLONG

JMS_IBM_Report_Expiration int Report MQLONG

JMS_IBM_Report_COA int Report MQLONG

JMS_IBM_Report_COD int Report MQLONG

JMS_IBM_Report_PAN int Report MQLONG

JMS_IBM_Report_NAN int Report MQLONG

JMS_IBM_Report_Pass_Msg_ID int Report MQLONG

JMS_IBM_Report_Pass_Correl_ID int Report MQLONG

JMS_IBM_Report_Discard_Msg int Report MQLONG

JMS_IBM_MsgType int MsgType MQLONG

JMS_IBM_Feedback int Feedback MQLONG

JMS_IBM_Format String Format1 MQCHAR8

JMS_IBM_PutApplType int PutApplType MQLONG

JMS_IBM_Encoding int Encoding MQLONG

JMS_IBM_Character_Set String CodedCharacterSetId2 MQLONG

JMS_IBM_PutDate String PutDate MQCHAR8

JMS_IBM_PutTime String PutTime MQCHAR8

JMS_IBM_Last_Msg_In_Group boolean MsgFlags MQLONG

Note:

1. JMS_IBM_Format represents the format of the message body. This can be defined by the application setting the JMS_IBM_Format

property of the message (note that there is an 8 character limit), or can default to the WebSphere® MQ format of the message body
appropriate to the JMS message type. JMS_IBM_Format maps to the MQMD Format field only if the message contains no RFH or RFH2

sections. In a typical message, it will map to the Format field of the RFH2 immediately preceding the message body.

2. JMS_IBM_Character_Set property value is a String value that contains the Java character set equivalent for the numeric

CodedCharacterSetId value. MQMD field CodedCharacterSetId is a numeric value that contains the equivalent of the Java character set
string specified by the JMS_IBM_Character_Set property.

Table 1. Outgoing message field mapping

JMS header field name MQMD field used for

transmission

Header Set by

JMSDestination MQRFH2 Send Method

JMSDeliveryMode Persistence MQRFH2 Send Method

JMSExpiration Expiry MQRFH2 Send Method

JMSPriority Priority MQRFH2 Send Method

JMSMessageID MsgID Send Method

JMSTimestamp PutDate/PutTime Send Method

JMSCorrelationID CorrelId MQRFH2 Message Object

JMSReplyTo ReplyToQ/ReplyToQMgr MQRFH2 Message Object

JMSType MQRFH2 Message Object

Page 52 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Mapping JMS header fields at send() or publish()
These notes relate to the mapping of JMS fields at send() or publish().

Mapping JMS property fields

Mapping JMS provider-specific fields

Parent topic: Mapping JMS messages onto WebSphere MQ messages

This build: January 26, 2011 11:29:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25460_

4.5.2.2.3.1. Mapping JMS header fields at send() or publish()

These notes relate to the mapping of JMS fields at send() or publish().

JMSDestination to MQRFH2

This is stored as a string that serializes the salient characteristics of the destination object, so that a receiving JMS can reconstitute an equivalent
destination object. The MQRFH2 field is encoded as URI (see Uniform resource identifiers (URIs) for details of the URI notation).

JMSReplyTo to MQMD.ReplyToQ, ReplyToQMgr, MQRFH2

The queue and queue manager name are copied to the MQMD.ReplyToQ and ReplyToQMgr fields respectively. The destination extension information (other
useful details that are kept in the destination object) is copied into the MQRFH2 field. The MQRFH2 field is encoded as a URI (see Uniform resource
identifiers (URIs) for details of the URI notation).

JMSDeliveryMode to MQMD.Persistence

The JMSDeliveryMode value is set by the send() or publish() Method or MessageProducer, unless the Destination Object overrides it. The JMSDeliveryMode
value is mapped to the MQMD.Persistence field as follows:

� JMS value PERSISTENT is equivalent to MQPER_PERSISTENT

� JMS value NON_PERSISTENT is equivalent to MQPER_NOT_PERSISTENT

If the MQQueue persistence property is not set to WMQConstants.WMQ_PER_QDEF, the delivery mode value is also encoded in the MQRFH2.

JMSExpiration to/from MQMD.Expiry, MQRFH2

JMSExpiration stores the time to expire (the sum of the current time and the time to live), whereas MQMD stores the time to live. Also, JMSExpiration is in
milliseconds, but MQMD.Expiry is in tenths of a second.

� If the send() method sets an unlimited time to live, MQMD.Expiry is set to MQEI_UNLIMITED, and no JMSExpiration is encoded in the MQRFH2.

� If the send() method sets a time to live that is less than 214748364.7 seconds (about 7 years), the time to live is stored in MQMD.Expiry, and the
expiration time (in milliseconds), is encoded as an i8 value in the MQRFH2.

� If the send() method sets a time to live greater than 214748364.7 seconds, MQMD.Expiry is set to MQEI_UNLIMITED. The true expiration time in
milliseconds is encoded as an i8 value in the MQRFH2.

JMSPriority to MQMD.Priority

Directly map JMSPriority value (0-9) onto MQMD priority value (0-9). If JMSPriority is set to a non-default value, the priority level is also encoded in the
MQRFH2.

JMSRedelivered Receive-only

Note:

1. MQMD field CodedCharacterSetId is a numeric value that contains the equivalent of the Java character set string specified by the

JMS_IBM_Character_Set property.

Table 2. Outgoing message JMS property mapping

JMS property name MQMD field used for

transmission

Header Set by

JMSXUserID UserIdentifier Send Method

JMSXAppID PutApplName Send Method

JMSXDeliveryCount Receive-only

JMSXGroupID GroupId MQRFH2 Message Object

JMSXGroupSeq MsgSeqNumber MQRFH2 Message Object

Table 3. Outgoing message JMS provider specific property mapping

JMS provider specific property name MQMD field used for

transmission

Header Set by

JMS_IBM_Report_Exception Report Message Object

JMS_IBM_Report_Expiration Report Message Object

JMS_IBM_Report_COA/COD Report Message Object

JMS_IBM_Report_NAN/PAN Report Message Object

JMS_IBM_Report_Pass_Msg_ID Report Message Object

JMS_IBM_Report_Pass_Correl_ID Report Message Object

JMS_IBM_Report_Discard_Msg Report Message Object

JMS_IBM_MsgType MsgType Message Object

JMS_IBM_Feedback Feedback Message Object

JMS_IBM_Format Format Message Object

JMS_IBM_PutApplType PutApplType Send Method

JMS_IBM_Encoding Encoding Message Object

JMS_IBM_Character_Set CodedCharacterSetId Message Object

JMS_IBM_PutDate PutDate Send Method

JMS_IBM_PutTime PutTime Send Method

JMS_IBM_Last_Msg_In_Group MsgFlags Message Object

Page 53 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

JMSMessageID from MQMD.MessageID

All messages sent from JMS have unique message identifiers assigned by WebSphere® MQ. The value assigned is returned in the MQMD.MessageId field
after the MQPUT call, and is passed back to the application in the JMSMessageID field. The WebSphere MQ messageId is a 24-byte binary value, whereas
the JMSMessageID is a string. The JMSMessageID is composed of the binary messageId value converted to a sequence of 48 hexadecimal characters,
prefixed with the characters ID:. JMS provides a hint that can be set to disable the production of message identifiers. This hint is ignored, and a unique
identifier is assigned in all cases. Any value that is set into the JMSMessageId field before a send() is overwritten.

JMSTimestamp to MQRFH2

During a send, the JMSTimestamp field is set according to the JVM's clock. This value is set into the MQRFH2. Any value that is set into the JMSTimestamp
field before a send() is overwritten. See also the JMS_IBM_PutDate and JMS_IBM_PutTime properties.

JMSType to MQRFH2

This string is set into the MQRFH2 mcd.Type field. If it is in URI format, it can also affect mcd.Set and mcd.Fmt fields. See also Using a real-time
connection to a broker of WebSphere Event Broker or WebSphere Message Broker.

JMSCorrelationID to MQMD.CorrelId, MQRFH2

The JMSCorrelationID can hold one of the following:

A provider specific message ID

This is a message identifier from a message previously sent or received, and so should be a string of 48 lowercase hexadecimal digits that are prefixed
with ID: The prefix is removed, the remaining characters are converted into binary, and then they are set into the MQMD.CorrelId field. No CorrelId
value is encoded in the MQRFH2.

A provider-native byte[] value

The value is copied into the MQMD.CorrelId field - padded with nulls, or truncated to 24 bytes if necessary. No CorrelId value is encoded in the MQRFH2.

An application-specific string

The value is copied into the MQRFH2. The first 24 bytes of the string, in UTF8 format, are written into the MQMD.CorrelID.

Parent topic: Mapping JMS fields onto WebSphere MQ fields (outgoing messages)

This build: January 26, 2011 11:29:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25470_

4.5.2.2.3.2. Mapping JMS property fields

These notes refer to the mapping of JMS property fields in WebSphere® MQ messages:

JMSXUserID from MQMD UserIdentifier

JMSXUserID is set on return from send call.

JMSXAppID from MQMD PutApplName

JSMXAppID is set on return from send call.

JMSXGroupID to MQRFH2 (point-to-point)

For point-to-point messages, the JMSXGroupID is copied into the MQMD GroupID field. If the JMSXGroupID starts with the prefix ID:, it is converted into
binary. Otherwise, it is encoded as a UTF8 string. The value is padded or truncated if necessary to a length of 24 bytes. The MQMF_MSG_IN_GROUP flag is
set.

JMSXGroupID to MQRFH2 (publish/subscribe)

For publish/subscribe messages, the JMSXGroupID is copied into the MQRFH2 as a string.

JMSXGroupSeq MQMD MsgSeqNumber (point-to-point)

For point-to-point messages, the JMSXGroupSeq is copied into the MQMD MsgSeqNumber field. The MQMF_MSG_IN_GROUP flag is set.

JMSXGroupSeq MQMD MsgSeqNumber (publish/subscribe)

For publish/subscribe messages, the JMSXGroupSeq is copied into the MQRFH2 as an i4.

Parent topic: Mapping JMS fields onto WebSphere MQ fields (outgoing messages)

This build: January 26, 2011 11:29:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25480_

4.5.2.2.3.3. Mapping JMS provider-specific fields

The following notes refer to the mapping of JMS provider-specific fields into WebSphere® MQ messages:

JMS_IBM_Report_<name> to MQMD Report

A JMS application can set the MQMD Report options, using the following JMS_IBM_Report_XXX properties. The single MQMD is mapped to several
JMS_IBM_Report_XXX properties. The application must set the value of these properties to the standard WebSphere MQ MQRO_ constants (included in
com.ibm.mq.MQC). So, for example, to request COD with full Data, the application must set JMS_IBM_Report_COD to the value
CMQC.MQRO_COD_WITH_FULL_DATA.

JMS_IBM_Report_Exception

MQRO_EXCEPTION or
MQRO_EXCEPTION_WITH_DATA or
MQRO_EXCEPTION_WITH_FULL_DATA

JMS_IBM_Report_Expiration

MQRO_EXPIRATION or
MQRO_EXPIRATION_WITH_DATA or
MQRO_EXPIRATION_WITH_FULL_DATA

JMS_IBM_Report_COA

MQRO_COA or
MQRO_COA_WITH_DATA or

Page 54 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

MQRO_COA_WITH_FULL_DATA

JMS_IBM_Report_COD

MQRO_COD or
MQRO_COD_WITH_DATA or
MQRO_COD_WITH_FULL_DATA

JMS_IBM_Report_PAN

MQRO_PAN

JMS_IBM_Report_NAN

MQRO_NAN

JMS_IBM_Report_Pass_Msg_ID

MQRO_PASS_MSG_ID

JMS_IBM_Report_Pass_Correl_ID

MQRO_PASS_CORREL_ID

JMS_IBM_Report_Discard_Msg

MQRO_DISCARD_MSG

JMS_IBM_MsgType to MQMD MsgType

Value maps directly onto MQMD MsgType. If the application has not set an explicit value of JMS_IBM_MsgType, a default value is used. This default value
is determined as follows:

� If JMSReplyTo is set to a WebSphere MQ queue destination, MSGType is set to the value MQMT_REQUEST

� If JMSReplyTo is not set, or is set to anything other than a WebSphere MQ queue destination, MsgType is set to the value MQMT_DATAGRAM

JMS_IBM_Feedback to MQMD Feedback

Value maps directly onto MQMD Feedback.

JMS_IBM_Format to MQMD Format

Value maps directly onto MQMD Format.

JMS_IBM_Encoding to MQMD Encoding

If set, this property overrides the numeric encoding of the Destination Queue or Topic.

JMS_IBM_Character_Set to MQMD CodedCharacterSetId

If set, this property overrides the coded character set property of the Destination Queue or Topic.

JMS_IBM_PutDate from MQMD PutDate

The value of this property is set, during send, directly from the PutDate field in the MQMD. Any value that is set into the JMS_IBM_PutDate property before
a send is overwritten. This field is a String of eight characters, in the WebSphere MQ Date format of YYYYMMDD. This property can be used with the
JMS_IBM_PutTime property to determine the time the message was put according to the queue manager.

JMS_IBM_PutTime from MQMD PutTime

The value of this property is set, during send, directly from the PutTime field in the MQMD. Any value that is set into the JMS_IBM_PutTime property
before a send is overwritten. This field is a String of eight characters, in the WebSphere MQ Time format of HHMMSSTH. This property can be used with
the JMS_IBM_PutDate property to determine the time the message was put according to the queue manager.

JMS_IBM_Last_Msg_In_Group to MQMD MsgFlags

For point-to-point messaging, this boolean value maps to the MQMF_LAST_MSG_IN_GROUP flag in the MQMD MsgFlags field. It is normally used with the
JMSXGroupID and JMSXGroupSeq properties to indicate to a legacy WebSphere MQ application that this message is the last message in a group. This
property is ignored for publish/subscribe messaging.

Parent topic: Mapping JMS fields onto WebSphere MQ fields (outgoing messages)

This build: January 26, 2011 11:29:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25490_

4.5.2.2.4. Mapping WebSphere® MQ fields onto JMS fields (incoming messages)

Table 1 shows how JMS header fields and Table 2 shows how JMS property fields are mapped into MQMD/MQRFH2 fields at send() or publish() time. Table 3
shows how JMS provider specific properties are mapped.

Table 1. Incoming message JMS header field mapping

JMS header field name MQMD field retrieved from MQRFH2 field retrieved

from

JMSDestination jms.Dst or mqps.Top1

JMSDeliveryMode Persistence2 jms.Dlv2

JMSExpiration jms.Exp

JMSPriority Priority

JMSMessageID MsgID

JMSTimestamp
PutDate2

PutTime2

jms.Tms2

JMSCorrelationID CorrelId2 jms.Cid2

JMSReplyTo
ReplyToQ2

ReplyToQMgr2

jms.Rto2

JMSType mcd.Type, mcd.Set, mcd.Fmt

JMSRedelivered BackoutCount

Note:

1. If both jms.Dst and mqps.Top are set, the value in jms.Dst is used.

2. For properties that can have values retrieved from the MQRFH2 or the MQMD, if both are available, the setting in the MQRFH2 is used.

3. JMS_IBM_Character_Set property value is a String value that contains the Java character set equivalent for the numeric

Page 55 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Parent topic: Mapping JMS messages onto WebSphere MQ messages

This build: January 26, 2011 11:29:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25500_

4.5.2.2.5. Exchanging messages between a JMS application and a traditional WebSphere MQ
application

This section describes what happens when a JMS application exchanges messages with a traditional WebSphere® MQ application that has no knowledge of
the MQRFH2 header. Figure 1 shows the mapping.

The administrator indicates that the JMS application is communicating with such an application by setting the TARGCLIENT property of the destination to MQ.
This indicates that no MQRFH2 header is to be produced. Note that, if this is not done, the receiving application must be able to handle the MQRFH2 header.

The mapping from JMS to MQMD targeted at a traditional WebSphere MQ application is the same as mapping from JMS to MQMD targeted at a JMS
application. If WebSphere MQ classes for JMS receives a WebSphere MQ message with the MQMD Format field set to other than MQFMT_RFH2, data is being

received from a non-JMS application. If the format is MQFMT_STRING, the message is received as a JMS text message. Otherwise, it is received as a JMS
bytes message. Because there is no MQRFH2, only those JMS properties that are transmitted in the MQMD can be restored.

If WebSphere MQ classes for JMS receives a message that does not have an MQRFH2 header, the TARGCLIENT property of the Queue or Topic object derived
from the JMSReplyTo header field of the message is set to MQ by default. This means that a reply message sent to the queue or topic also does not have an
MQRFH2 header. You can switch off this behavior of including an MQRFH2 header in a reply message only if the original message has an MQRFH2 header by
setting the TARGCLIENTMATCHING property of the connection factory to NO.

Figure 1. How JMS messages are transformed to WebSphere MQ messages with no MQRFH2 header

Parent topic: Mapping JMS messages onto WebSphere MQ messages

This build: January 26, 2011 11:29:42

Notices | Trademarks | Downloads | Library | Support | Feedback

CodedCharacterSetId value.

Table 2. Incoming message property mapping

JMS property name MQMD field retrieved from MQRFH2 field retrieved

from

JMSXUserID UserIdentifier

JMSXAppID PutApplName

JMSXDeliveryCount BackoutCount

JMSXGroupID GroupId1 jms.Gid1

JMSXGroupSeq MsgSeqNumber1 jms.Seq1

Note:

1. For properties that can have values retrieved from the MQRFH2 or the MQMD, if both are available, the setting in the MQRFH2 is used.

The properties will only be set from the MQMD values if the MQMF_MSG_IN_GROUP or MQMF_LAST_MSG_IN_GROUP message flags are

set.

Table 3. Incoming message provider specific JMS property mapping

JMS property name MQMD field retrieved from MQRFH2 field retrieved

from

JMS_IBM_Report_Exception Report

JMS_IBM_Report_Expiration Report

JMS_IBM_Report_COA Report

JMS_IBM_Report_COD Report

JMS_IBM_Report_PAN Report

JMS_IBM_Report_NAN Report

JMS_IBM_Report_ Pass_Msg_ID Report

JMS_IBM_Report_Pass_Correl_ID Report

JMS_IBM_Report_Discard_Msg Report

JMS_IBM_MsgType MsgType

JMS_IBM_Feedback Feedback

JMS_IBM_Format Format

JMS_IBM_PutApplType PutApplType

JMS_IBM_Encoding 1 Encoding

JMS_IBM_Character_Set 1 CodedCharacterSetId

JMS_IBM_PutDate PutDate

JMS_IBM_PutTime PutTime

JMS_IBM_Last_Msg_In_Group MsgFlags

1. Only set if the incoming message is a Bytes Message.

Page 56 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25510_

4.5.2.2.6. Message body

This topic discusses the encoding of the message body itself. The encoding depends on the type of JMS message.

ObjectMessage

An ObjectMessage is an object serialized by the Java Runtime in the normal way.

TextMessage

A TextMessage is an encoded string. For an outgoing message, the string is encoded in the character set given by the destination object. This defaults to
UTF8 encoding (the UTF8 encoding starts with the first character of the message; there is no length field at the start). It is, however, possible to specify
any other character set supported by WebSphere® MQ classes for JMS. Such character sets are used mainly when you send a message to a non-JMS
application.

If the character set is a double-byte set (including UTF16), the destination object's integer encoding specification determines the order of the bytes.

An incoming message is interpreted using the character set and encoding that are specified in the message itself. These specifications are in the last
WebSphere MQ header (or MQMD if there are no headers). For JMS messages, the last header is usually the MQRFH2.

BytesMessage

A BytesMessage is, by default, a sequence of bytes as defined by the JMS 1.0.2 specification and associated Java documentation.

For an outgoing message that was assembled by the application itself, the destination object's encoding property can be used to override the encodings of
integer and floating point fields contained in the message. For example, you can request that floating point values are stored in S/390® rather than IEEE
format).

An incoming message is interpreted using the numeric encoding specified in the message itself. This specification is in the rightmost WebSphere MQ
header (or MQMD if there are no headers). For JMS messages, the rightmost header is usually the MQRFH2.

If a BytesMessage is received, and is re-sent without modification, its body is transmitted byte for byte, as it was received. The destination object's
encoding property has no effect on the body. The only string-like entity that can be sent explicitly in a BytesMessage is a UTF8 string. This is encoded in
Java UTF8 format, and starts with a 2-byte length field. The destination object's character set property has no effect on the encoding of an outgoing
BytesMessage. The character set value in an incoming WebSphere MQ message has no effect on the interpretation of that message as a JMS
BytesMessage.

Non-Java applications are unlikely to recognize the Java UTF8 encoding. Therefore, for a JMS application to send a BytesMessage that contains text data,
the application itself must convert its strings to byte arrays, and write these byte arrays into the BytesMessage.

MapMessage

A MapMessage is a string containing XML name/type/value triplets encoded as:

<map>

 <elt name="elementname1" dt="datatype1">value1</elt>

 <elt name="elementname2" dt="datatype2">value2</elt>

 ...

</map>

where datatype is one of the data types listed in Table 3. The default data type is string, and so the attribute dt="string" is omitted for string

elements.

The character set used to encode or interpret the XML string that forms the body of a map message is determined according to the rules that apply to a
text message.

Versions of WebSphere MQ classes for JMS earlier than Version 5.3 encoded the body of a map message in the following format:

<map>

 <elementname1 dt="datatype1">value1</elementname1>

 <elementname2 dt="datatype2">value2</elementname2>

 ...

</map>

Version 5.3 and later versions of WebSphere MQ classes for JMS can interpret either format, but versions of WebSphere MQ classes for JMS earlier than
Version 5.3 cannot interpret the current format.

If an application needs to send map messages to another application that is using a version of WebSphere MQ classes for JMS earlier than Version 5.3, the
sending application must call the connection factory method setMapNameStyle(WMQConstants.WMQ_MAP_NAME_STYLE_COMPATIBLE) to specify that the map

messages are sent in the previous format. By default, all map messages are sent in the current format.

StreamMessage

A StreamMessage is like a map message, but without element names:

<stream>

 <elt dt="datatype1">value1</elt>

 <elt dt="datatype2">value2</elt>

 ...

</stream>

where datatype is one of the data types listed in Table 3. The default data type is string, and so the attribute dt="string" is omitted for string

elements.

The character set used to encode or interpret the XML string that makes up the StreamMessage body is determined following the rules that apply to a
TextMessage.

The MQRFH2.format field is set as follows:

MQFMT_NONE

for ObjectMessage, BytesMessage, or messages with no body.

MQFMT_STRING

for TextMessage, StreamMessage, or MapMessage.

Parent topic: Mapping JMS messages onto WebSphere MQ messages

This build: January 26, 2011 11:29:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 57 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25520_

4.5.3. Creating and configuring connection factories and destinations in a WebSphere MQ
classes for JMS application

A WebSphere® MQ classes for JMS application can create connection factories and destinations by retrieving them as administered objects from a Java
Naming and Directory Interface (JNDI) namespace, by using the IBM® JMS extensions, or by using the WebSphere MQ JMS extensions. An application can
also use the IBM JMS extensions or WebSphere MQ JMS extensions to set the properties of connection factories and destinations.

Connection factories and destinations are starting points in the flow of logic of a JMS application. An application uses a ConnectionFactory object to create a
connection to a messaging server, and uses a Queue or Topic object as a target to send messages to or a source from which to receive messages. An
application therefore needs to create at least one connection factory and one or more destinations. Having created a connection factory or destination, the
application might then need to configure the object by setting one or more of its properties.

In summary, an application can create and configure connection factories and destinations in the following ways:

Using JNDI to retrieve administered objects

An administrator can use the WebSphere MQ JMS administration tool or WebSphere MQ Explorer to create and configure connection factories and
destinations as administered objects in a JNDI namespace. An application can then retrieve the administered objects from the JNDI namespace. Having
retrieved an administered object, the application can, if required, set or change one or more of its properties by using either the IBM JMS extensions or the
WebSphere MQ JMS extensions.

Using the IBM JMS extensions

An application can use the IBM JMS extensions to create connection factories and destinations dynamically at run time. The application first creates a
JmsFactoryFactory object, and then uses methods of this object to create connection factories and destinations. Having created a connection factory or
destination, the application can use methods inherited from the JmsPropertyContext interface to set its properties. Alternatively, the application can use a
uniform resource identifier (URI) to specify one or more properties of a destination when it creates the destination.

Using the WebSphere MQ JMS extensions

An application can also use the WebSphere MQ JMS extensions to create connection factories and destinations dynamically at run time. The application
uses the supplied constructors to create connection factories and destinations. Having created a connection factory or destination, the application can use
methods of the object to set its properties. Alternatively, the application can use a URI to specify one or more properties of a destination when it creates
the destination.

Using JNDI to retrieve administered objects in a JMS application
To retrieve administered objects from a Java Naming and Directory Interface (JNDI) namespace, a JMS application must create an initial context and
then use the lookup() method to retrieve the objects.

Using the IBM JMS extensions
WebSphere MQ classes for JMS contains a set of extensions to the JMS API called the IBM JMS extensions. An application can use these extensions to
create connection factories and destinations dynamically at run time, and to set the properties of WebSphere MQ classes for JMS objects. The
extensions can be used with any messaging provider.

Using the WebSphere MQ JMS extensions
WebSphere MQ classes for JMS contains a set of extensions to the JMS API called the WebSphere MQ JMS extensions. An application can use these
extensions to create connection factories and destinations dynamically at run time, and to set the properties of connection factories and destinations.

Parent topic: Writing WebSphere MQ classes for JMS applications

This build: January 26, 2011 11:29:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm35140_

4.5.3.1. Using JNDI to retrieve administered objects in a JMS application

To retrieve administered objects from a Java Naming and Directory Interface (JNDI) namespace, a JMS application must create an initial context and then
use the lookup() method to retrieve the objects.

Before an application can retrieve administered objects from a JNDI namespace, an administrator must first create the administered objects. The
administrator can use the WebSphere® MQ JMS administration tool or WebSphere MQ Explorer to create and maintain administered objects in a JNDI
namespace. For information about how to use the WebSphere MQ JMS administration tool, see Using the WebSphere MQ JMS administration tool. For
information about how to use WebSphere MQ Explorer, see the help provided with WebSphere MQ Explorer. An application server, however, typically
provides its own repository for administered objects and its own tools for creating and maintaining the objects.

To retrieve administered objects from a JNDI namespace, an application must first create an initial context, as shown in the following example:

import javax.jms.*;

import javax.naming.*;

import javax.naming.directory.*;

.

.

.

String url = "ldap://server.company.com/o=company_us,c=us";

String icf = "com.sun.jndi.ldap.LdapCtxFactory";

.

java.util.Hashtable environment = new java.util.Hashtable();

environment.put(Context.PROVIDER_URL, url);

environment.put(Context.INITIAL_CONTEXT_FACTORY, icf);

Context ctx = new InitialDirContext(environment);

In this code, the String variables url and icf have the following meanings:

url

The uniform resource locator (URL) of the directory service. The URL can have one of the following formats:

� ldap://hostname/contextName, for a directory service based on an LDAP server

� file:/directoryPath, for a directory service based on the local file system

icf

Page 58 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

The class name of the initial context factory, which can be one of the following values:

� com.sun.jndi.ldap.LdapCtxFactory, for a directory service based on an LDAP server

� com.sun.jndi.fscontext.RefFSContextFactory, for a directory service based on the local file system

Note that some combinations of a JNDI package and a Lightweight Directory Access Protocol (LDAP) service provider can cause LDAP error 84 to occur. To
resolve this problem, insert the following line of code before the call to InitialDirContext():

environment.put(Context.REFERRAL, "throw");

After an initial context is obtained, the application can retrieve administered objects from the JNDI namespace by using the lookup() method, as shown in
the following example:

ConnectionFactory factory;

Queue queue;

Topic topic;

.

.

.

factory = (ConnectionFactory)ctx.lookup("cn=myCF");

queue = (Queue)ctx.lookup("cn=myQ");

topic = (Topic)ctx.lookup("cn=myT");

This code retrieves the following objects from an LDAP based namespace:

� A ConnectionFactory object bound with the name myCF

� A Queue object bound with the name myQ

� A Topic object bound with the name myT

For more information about using JNDI, see the JNDI documentation provided by Sun Microsystems, Inc..

Parent topic: Creating and configuring connection factories and destinations in a WebSphere MQ classes for JMS application

This build: January 26, 2011 11:29:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm24350_

4.5.3.2. Using the IBM JMS extensions

WebSphere® MQ classes for JMS contains a set of extensions to the JMS API called the IBM® JMS extensions. An application can use these extensions to
create connection factories and destinations dynamically at run time, and to set the properties of WebSphere MQ classes for JMS objects. The extensions can
be used with any messaging provider.

The IBM JMS extensions are a set of interfaces and classes in the following packages:

� com.ibm.msg.client.jms

� com.ibm.msg.client.services

These extensions provide the following function:

� A factory based mechanism for creating connection factories and destinations dynamically at run time, instead of retrieving them as administered
objects from a Java Naming and Directory Interface (JNDI) namespace

� A set of methods for setting the properties of WebSphere MQ classes for JMS objects

� A set of exception classes with methods for obtaining detailed information about a problem

� A set of methods for controlling tracing

� A set of methods for obtaining version information about WebSphere MQ classes for JMS

With regard to creating connection factories and destinations dynamically at run time, and setting and getting their properties, the IBM JMS extensions
provide an alternative set of interfaces to the WebSphere MQ JMS extensions. However, whereas the WebSphere MQ JMS extensions are specific to the
WebSphere MQ messaging provider, the IBM JMS extensions are not specific to WebSphere MQ and can be used with any messaging provider within the
layered architecture described in A layered architecture.

The interface com.ibm.msg.client.wmq.WMQConstants contains the definitions of constants, which an application can use when setting the properties of
WebSphere MQ classes for JMS objects using the IBM JMS extensions. The interface contains constants for the WebSphere MQ messaging provider and JMS
constants that are independent of any messaging provider.

The examples of code that follow assume that the following import statements have been run:

import com.ibm.msg.client.jms.*;

import com.ibm.msg.client.services.*;

import com.ibm.msg.client.wmq.WMQConstants;

Creating connection factories and destinations

Before an application can create connection factories and destinations using the IBM JMS extensions, it must first create a JmsFactoryFactory object. To
create a JmsFactoryFactory object, the application calls the getInstance() method of the JmsFactoryFactory class, as shown in the following example:

JmsFactoryFactory ff = JmsFactoryFactory.getInstance(JmsConstants.WMQ_PROVIDER);

The parameter on the getInstance() call is a constant that identifies the WebSphere MQ messaging provider as the chosen messaging provider. The
application can then use the JmsFactoryFactory object to create connection factories and destinations.

To create a connection factory, the application calls the createConnectionFactory() method of the JmsFactoryFactory object, as shown in the following
example:

JmsConnectionFactory factory = ff.createConnectionFactory();

This statement creates a JmsConnectionFactory object with the default values for all its properties, which means that the application connects to the default
queue manager in bindings mode. If you want an application to connect in client mode, or connect to a queue manager other than the default queue
manager, the application must set the appropriate properties of the JmsConnectionFactory object before creating the connection. For information about how
to do this, see Setting the properties of WebSphere MQ classes for JMS objects.

The JmsFactoryFactory class also contains methods to create connection factories of the following types:

� JmsQueueConnectionFactory

� JmsTopicConnectionFactory

� JmsXAConnectionFactory

� JmsXAQueueConnectionFactory

� JmsXATopicConnectionFactory

Page 59 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

To create a Queue object, the application calls the createQueue() method of the JmsFactoryFactory object, as shown in the following example:

JmsQueue q1 = ff.createQueue("Q1");

This statement creates an JmsQueue object with the default values for all its properties. The object represents a WebSphere MQ queue called Q1 that
belongs to the local queue manager. This queue can be a local queue, an alias queue, or a remote queue definition.

The createQueue() method can also accept a queue uniform resource identifier (URI) as a parameter. A queue URI is a string that specifies the name of a
WebSphere MQ queue and, optionally, the name of the queue manager that owns the queue, and one or more properties of the JmsQueue object. The
following statement contains an example of a queue URI:

JmsQueue q2 = ff.createQueue("queue://QM2/Q2?persistence=2&priority=5");

The JmsQueue object created by this statement represents a WebSphere MQ queue called Q2 that is owned by queue manager QM2, and all messages sent
to this destination are persistent and have a priority of 5. For more information about queue URIs, see Uniform resource identifiers (URIs). For an alternative
way of setting the properties of a JmsQueue object, see Setting the properties of WebSphere MQ classes for JMS objects.

To create a Topic object, an application can use the createTopic() method of the JmsFactoryFactory object, as shown in the following example:

JmsTopic t1 = ff.createTopic("Sport/Football/Results");

This statement creates a JmsTopic object with the default values for all its properties. The object represents a topic called Sport/Football/Results.

The createTopic() method can also accept a topic URI as a parameter. A topic URI is a string that specifies the name of a topic and, optionally, one or more
properties of the JmsTopic object. The following statements contain an example of a topic URI:

String s1 = "topic://Sport/Tennis/Results?persistence=1&priority=0";

JmsTopic t2 = ff.createTopic(s1);

The JmsTopic object created by these statements represents a topic called Sport/Tennis/Results, and all messages sent to this destination are nonpersistent
and have a priority of 0. For more information about topic URIs, see Uniform resource identifiers (URIs). For an alternative way of setting the properties of a
JmsTopic object, see Setting the properties of WebSphere MQ classes for JMS objects.

After an application has created a connection factory or destination, that object can be used only with the selected messaging provider.

Setting the properties of WebSphere MQ classes for JMS objects

To set the properties of WebSphere MQ classes for JMS objects using the IBM JMS extensions, an application uses the methods of the
com.ibm.msg.client.JmsPropertyContext interface.

For each Java data type, the JmsPropertyContext interface contains a method to set the value of a property with that data type, and a method to get to get
the value of a property with that data type. For example, an application calls the setIntProperty() method to set a property with an integer value, and calls
the getIntProperty() method to get a property with an integer value.

Instances of classes in the com.ibm.mq.jms package also inherit the methods of the JmsPropertyContext interface. An application can therefore use these
methods to set the properties of MQConnectionFactory, MQQueue, and MQTopic objects.

When an application creates a WebSphere MQ classes for JMS object, any properties with default values are set automatically. When an application sets a
property, the new value replaces any previous value the property had. After a property has been set, it cannot be deleted, but its value can be changed.

If an application attempts to set a property to a value that is not valid value for the property, WebSphere MQ classes for JMS throws a JMSException
exception. If an application attempts to get a property that has not been set, the behavior is as described in the JMS specification. WebSphere MQ classes
for JMS throws a NumberFormatException exception for primitive data types and returns null for referenced data types.

In addition to the predefined properties of a WebSphere MQ classes for JMS object, an application can set its own properties. These application defined
properties are ignored by WebSphere MQ classes for JMS.

For more information about the properties of WebSphere MQ classes for JMS objects, see Properties of WebSphere MQ classes for JMS objects.

The following code is an example of how to set properties using the IBM JMS extensions. The code sets five properties of a connection factory.

factory.setIntProperty(WMQConstants.WMQ_CONNECTION_MODE,

 WMQConstants.WMQ_CM_CLIENT);

factory.setStringProperty(WMQConstants.WMQ_QUEUE_MANAGER, "QM1");

factory.setStringProperty(WMQConstants.WMQ_HOST_NAME, "HOST1");

factory.setIntProperty(WMQConstants.WMQ_PORT, 1415);

factory.setStringProperty(WMQConstants.WMQ_CHANNEL, "QM1.SVR");

The effect of setting these properties is that the application connects to queue manager QM1 in client mode using an MQI channel called QM1.SVR. The
queue manager is running on a system with host name HOST1, and the listener for the queue manager is listening in port number 1415.

The JmsPropertyContext interface also contains the setObjectProperty() method, which an application can use to set properties. The second parameter of the
method is an object that encapsulates the value of the property. For example, the following code creates an Integer object that encapsulates the integer
1415, and then calls setObjectProperty() to set the PORT property of a connection factory to the value 1415:

Integer port = new Integer(1415);

factory.setObjectProperty(WMQConstants.WMQ_PORT, port);

This code is therefore equivalent to the following statement:

factory.setIntProperty(WMQConstants.WMQ_PORT, 1415);

Conversely, the getObjectProperty() method returns an object that encapsulates the value of a property.

Implicit conversion of a property value from one data type to another

When an application uses a method of the JmsPropertyContext interface to set or get the property of a WebSphere MQ classes for JMS object, the value of
the property can be implicitly converted from one data type to another.

For example, the following statement sets the PRIORITY property of the JmsQueue object q1:

q1.setStringProperty(WMQConstants.WMQ_PRIORITY, "5");

The PRIORITY property has an integer value, and so the setStringProperty() call implicitly converts the string "5" (the source value) to the integer 5 (the
target value), which then becomes the value of the PRIORITY property.

Conversely, the following statement gets the PRIORITY property of the JmsQueue object q1:

String s1 = q1.getStringProperty(WMQConstants.WMQ_PRIORITY);

The integer 5 (the source value), which is the value of the PRIORITY property, is implicitly converted to the string "5" (the target value) by the
getStringProperty() call.

The conversions supported by WebSphere MQ classes for JMS are shown in Table 1.

Table 1. Supported conversions from one data type to another

Source data type Supported target data types

boolean String

byte int, long, short, String

Page 60 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

The general rules governing the supported conversions are as follows:

� Numeric values can be converted from one data type to another provided no data is lost during the conversion. For example, a value with data type
int can be converted into a value with data type long, but cannot be converted into a value with data type short.

� A value of any data type can be converted into a string.

� A string can be converted to a value of any other data type (except char) provided the string is in the correct format for the conversion. If an

application attempts to convert a string that is not in the correct format, WebSphere MQ classes for JMS throws a NumberFormatException exception.

� If an application attempts a conversion that is not supported, WebSphere MQ classes for JMS throws a MessageFormatException exception.

The specific rules for converting a value from one data type to another are as follows:

� When converting a boolean value to a string, the value true is converted to the string "true", and the value false is converted to the string "false".

� When converting a string to a boolean value, the string "true" (not case sensitive) is converted to true, and the string "false" (not case sensitive) is

converted to false. Any other string is converted to false.

� When converting a string to a value with data type byte, int, long, or short, the string must have the following format:

[blanks][sign]digits

The meanings of the components of the string are as follows:

blanks

Optional leading blank characters.

sign

An optional plus sign (+) or minus sign (-).

digits

A contiguous sequence of digits (0-9). At least one digit must be present.

After the sequence of digits, the string can contain other characters that are not digits, but the conversion stops as soon as the first of these
characters is reached. The string is assumed to represent a decimal integer.

If the string is not in the correct format, WebSphere MQ classes for JMS throws a NumberFormatException exception.

� When converting a string to a value with data type double or float, the string must have the following format:

[blanks][sign]digits[e_char[e_sign]e_digits]

The meanings of the components of the string are as follows:

blanks

Optional leading blank characters.

sign

An optional plus sign (+) or minus sign (-).

digits

A contiguous sequence of digits (0-9). At least one digit must be present.

e_char

An exponent character, which is either E or e.

e_sign

An optional plus sign (+) or minus sign (-) for the exponent.

e_digits

A contiguous sequence of digits (0-9) for the exponent. At least one digit must be present if the string contains an exponent character.

After the sequence of digits, or the optional characters representing an exponent, the string can contain other characters that are not digits, but the
conversion stops as soon as the first of these characters is reached. The string is assumed to represent a decimal floating point number with an
exponent that is a power of 10.

If the string is not in the correct format, WebSphere MQ classes for JMS throws a NumberFormatException exception.

� When converting a numeric value (including a value with data type byte) to a string, the value is converted to the string representation of the value as

a decimal number, not the string containing the ASCII character for that value. For example, the integer 65 is converted to the string "65", not the
string "A".

Setting more than one property in a single call

The JmsPropertyContext interface also contains the setBatchProperties() method, which an application can use to set more than one property in a single call.
The parameter of the method is a Map object that encapsulates a set of property name-value pairs.

For example, the following code uses the setBatchProperties() method to set the same five properties of a connection factory as shown in Setting the
properties of WebSphere MQ classes for JMS objects. The code creates an instance of the HashMap class, which implements the Map interface.

HashMap batchProperties = new HashMap();

batchProperties.put(WMQConstants.WMQ_CONNECTION_MODE,

 new Integer(WMQConstants.WMQ_CM_CLIENT));

batchProperties.put(WMQConstants.WMQ_QUEUE_MANAGER, "QM1");

batchProperties.put(WMQConstants.WMQ_WMQ_HOST_NAME, "HOST1");

batchProperties.put(WMQConstants.WMQ_PORT, "1414");

batchProperties.put(WMQConstants.WMQ_CHANNEL, "QM1.SVR");

factory.setBatchProperties(batchProperties);

Note that the second parameter of the Map.put() method must be an object. Therefore a property value with a primitive data type must be encapsulated
within an object or represented by a string, as shown in the example.

The setBatchProperties() method validates each property. If the setBatchProperties() method cannot set a property because, for example, its value is not
valid, none of the specified properties are set.

Property names and values

If an application uses the methods of the JmsPropertyContext interface to set and get the properties of WebSphere MQ classes for JMS objects, the
application can specify the names and values of properties in any of the following ways. Each of the accompanying examples shows how to set the PRIORITY
property of the JmsQueue object q1 so that a message sent to the queue has the priority specified on the send() call.

char String

double String

float double, String

int long, String

long String

short int, long, String

String boolean, byte, double, float, int, long, short

Page 61 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Using the property names and values that are defined as constants in the com.ibm.msg.client.wmq.WMQConstants interface

The following statement is an example of how to specify the names and values of properties in this way:

q1.setIntProperty(WMQConstants.WMQ_PRIORITY, WMQConstants.WMQ_PRI_APP);

Using the property names and values that can be used in queue and topic uniform resource identifiers (URIs)

The following statement is an example of how to specify the names and values of properties in this way:

q1.setIntProperty("priority", -2);

Only the names and values of properties of destinations can be specified in this way.

Using the property names and values that are recognized by the WebSphere MQ JMS administration tool

The following statement is an example of how to specify the names and values of properties in this way:

q1.setStringProperty("PRIORITY", "APP");

The short form of the property name is also acceptable, as shown in the following statement:

q1.setStringProperty("PRI", "APP");

When an application gets a property, the value returned depends on the way in which the application specifies the name of the property. For example, if an
application specifies the constant WMQConstants.WMQ_PRIORITY as the property name, the value returned is the integer -2:

int n1 = getIntProperty(WMQConstants.WMQ_PRIORITY);

The same value is returned if the application specifies the string "priority" as the property name:

int n2 = getIntProperty("priority");

However, if the application specifies the string "PRIORITY" or "PRI" as the property name, the value returned is the string "APP":

String s1 = getStringProperty("PRI");

Internally, WebSphere MQ classes for JMS stores property names and values as the literal values defined in the com.ibm.msg.client.wmq.WMQConstants
interface. This is the defined canonical format for property names and values. As a general rule, if an application sets properties using one of the other two
ways of specifying property names and values, WebSphere MQ classes for JMS has to convert the names and values from the specified input format into the
canonical format. Similarly, if an application gets properties using one of the other two ways of specifying property names and values, WebSphere MQ
classes for JMS must convert the names from the specified input format into the canonical format, and convert the values from the canonical format into the
required output format. Having to perform these conversions might have implications for performance.

Property names and values returned by exceptions, in trace files, or in the WebSphere MQ classes for JMS log are always in the canonical format.

Using the Map interface

The JmsPropertyContext interface extends the java.util.Map interface. An application can therefore use the methods of the Map interface to access the
properties of a WebSphere MQ classes for JMS object.

For example, the following code prints out the names and values of all the properties of a connection factory. The code uses only the methods of the Map
interface to get the names and values of the properties.

// Get the names of all the properties

Set propNames = factory.keySet();

// Loop round all the property names and get the property values

Iterator iterator = propNames.iterator();

while (iterator.hasNext()){

 String pName = (String)iterator.next();

 System.out.println(pName+"="+factory.get(pName));

}

Using the methods of the Map interface does not bypass any property validations or conversions.

Parent topic: Creating and configuring connection factories and destinations in a WebSphere MQ classes for JMS application

This build: January 26, 2011 11:29:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm35150_

4.5.3.3. Using the WebSphere MQ JMS extensions

WebSphere® MQ classes for JMS contains a set of extensions to the JMS API called the WebSphere MQ JMS extensions. An application can use these
extensions to create connection factories and destinations dynamically at run time, and to set the properties of connection factories and destinations.

WebSphere MQ classes for JMS contains a set of classes in the packages com.ibm.jms and com.ibm.mq.jms. These classes implement the JMS interfaces
and contain the WebSphere MQ JMS extensions. The examples of code that follow assume that these packages have been imported by the following
statements:

import com.ibm.jms.*;

import com.ibm.mq.jms.*;

An application can use the WebSphere MQ JMS extensions to perform the following functions:

� Create connection factories and destinations dynamically at run time, instead of retrieving them as administered objects from a Java Naming and
Directory Interface (JNDI) namespace

� Set the properties of connection factories and destinations

Creating connection factories

To create a connection factory, an application can use the MQConnectionFactory constructor, as shown in the following example:

MQConnectionFactory factory = new MQConnectionFactory();

This statement creates an MQConnectionFactory object with the default values for all its properties, which means that the application connects to the default
queue manager in bindings mode. If you want an application to connect in client mode, or connect to a queue manager other than the default queue
manager, the application must set the appropriate properties of the MQConnectionFactory object before creating the connection. For information about how
to do this, see Setting the properties of connection factories.

An application can create connection factories of the following types in a similar way:

� MQQueueConnectionFactory

� MQTopicConnectionFactory

� MQXAConnectionFactory

Page 62 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

� MQXAQueueConnectionFactory

� MQXATopicConnectionFactory

Setting the properties of connection factories

An application can set the properties of a connection factory by calling the appropriate methods of the connection factory. The connection factory can either
be an administered object or an object created dynamically at run time.

Consider the following code, for example:

MQConnectionFactory factory = new MQConnectionFactory();

.

factory.setTransportType(WMQConstants.WMQ_CM_CLIENT);

factory.setQueueManager("QM1");

factory.setHostName("HOST1");

factory.setPort(1415);

factory.setChannel("QM1.SVR");

This code creates an MQConnectionFactory object and then sets five properties of the object. The effect of setting these properties is that the application
connects to queue manager QM1 in client mode using an MQI channel called QM1.SVR. The queue manager is running on a system with host name HOST1,
and the listener for the queue manager is listening in port number 1415.

For a real-time connection to a broker, an application can use the following code:

MQConnectionFactory factory = new MQConnectionFactory();

.

factory.setTransportType(WMQConstants.WMQ_CM_DIRECT);

factory.setHostName("HOST2");

factory.setPort(1507);

This code assumes that the broker is running on a system with host name HOST2 and listening on port number 1507.

An application that uses a real-time connection to a broker can use only the publish/subscribe style of messaging. It cannot use the point-to-point style of
messaging.

Only certain combinations of properties of a connection factory are valid. For information about which combinations are valid, see Property dependencies.

For more information about the properties of a connection factory, and the methods used to set its properties, see Properties of WebSphere MQ classes for
JMS objects.

Creating destinations

To create a Queue object, an application can use the MQQueue constructor, as shown in the following example:

MQQueue q1 = new MQQueue("Q1");

This statement creates an MQQueue object with the default values for all its properties. The object represents a WebSphere MQ queue called Q1 that
belongs to the local queue manager. This queue can be a local queue, an alias queue, or a remote queue definition.

An alternative form of the MQQueue constructor has two parameters, as shown in the following example:

MQQueue q2 = new MQQueue("QM2", "Q2");

The MQQueue object created by this statement represents a WebSphere MQ queue called Q2 that is owned by queue manager QM2. The queue manager
identified in this way can be the local queue manager or a remote queue manager. If it is a remote queue manager, WebSphere MQ must be configured so
that, when the application sends a message to this destination, Websphere MQ can route the message from the local queue manager to the remote queue
manager.

The MQQueue constructor can also accept a queue uniform resource identifier (URI) as a single parameter. A queue URI is a string that specifies the name of
a WebSphere MQ queue and, optionally, the name of the queue manager that owns the queue, and one or more properties of the MQQueue object. The
following statement contains an example of a queue URI:

MQQueue q3 = new MQQueue("queue://QM3/Q3?persistence=2&priority=5");

The MQQueue object created by this statement represents a WebSphere MQ queue called Q3 that is owned by queue manager QM3, and all messages sent
to this destination are persistent and have a priority of 5. For more information about queue URIs, see Uniform resource identifiers (URIs). For an alternative
way of setting the properties of an MQQueue object, see Setting the properties of destinations.

To create a Topic object, an application can use the MQTopic constructor, as shown in the following example:

MQTopic t1 = new MQTopic("Sport/Football/Results");

This statement creates an MQTopic object with the default values for all its properties. The object represents a topic called Sport/Football/Results.

The MQTopic constructor can also accept a topic URI as a parameter. A topic URI is a string that specifies the name of a topic and, optionally, one or more
properties of the MQTopic object. The following statement contains an example of a topic URI:

MQTopic t2 = new MQTopic("topic://Sport/Tennis/Results?persistence=1&priority=0");

The MQTopic object created by this statement represents a topic called Sport/Tennis/Results, and all messages sent to this destination are nonpersistent and
have a priority of 0. For more information about topic URIs, see Uniform resource identifiers (URIs). For an alternative way of setting the properties of an
MQTopic object, see Setting the properties of destinations.

Setting the properties of destinations

An application can set the properties of a destination by calling the appropriate methods of the destination. The destination can either be an administered
object or an object created dynamically at run time.

Consider the following code, for example:

MQQueue q1 = new MQQueue("Q1");

.

q1.setPersistence(WMQConstants.WMQ_PER_PER);

q1.setPriority(5);

This code creates an MQQueue object and then sets two properties of the object. The effect of setting these properties is that all messages sent to the
destination are persistent and have a priority of 5.

An application can set the properties of MQTopic object in a similar way, as shown in the following example:

MQTopic t1 = new MQTopic("Sport/Football/Results");

.

t1.setPersistence(WMQConstants.WMQ_PER_NON);

t1.setPriority(0);

This code creates an MQTopic object and then sets two properties of the object. The effect of setting these properties is that all messages sent to the
destination are nonpersistent and have a priority of 0.

For more information about the properties of a destination, and the methods used to set its properties, see Properties of WebSphere MQ classes for JMS
objects.

Parent topic: Creating and configuring connection factories and destinations in a WebSphere MQ classes for JMS application

Page 63 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

This build: January 26, 2011 11:29:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm24370_

4.5.4. Building a connection in a JMS application

To build a connection, a JMS application uses a ConnectionFactory object to create a Connection object and then starts the connection.

To create a Connection object, an application uses the createConnection() method of a ConnectionFactory object, as shown in the following example:

ConnectionFactory factory;

Connection connection;

.

.

.

connection = factory.createConnection();

The QueueConnectionFactory interface and the TopicConnectionFactory interface each inherits the createConnection() method from the ConnectionFactory
interface. You can therefore use the createConnection() method to create a domain specific object, as shown in the following example:

QueueConnectionFactory qcf;

Connection connection;

.

.

.

connection = qcf.createConnection();

This fragment of code creates a QueueConnection object. An application can now perform a domain independent operation on this object, or an operation
that is applicable only to the point-to-point domain. However, if the application attempts to perform an operation that is applicable only to the
publish/subscribe domain, an IllegalStateException exception is thrown with the following message:

JMSMQ1112: Operation for a domain specific object was not valid.

 Operation createProducer() is not valid for type com.ibm.mq.jms.MQTopic

This is because the connection was created from a domain specific connection factory.

Note: Note that the application process ID is used as the default user identity to be passed to the queue manager. If the application is running in client
transport mode then this process ID must exist, with the relevant authorizations, on the server. If you want a different identity to be used, then use the
createConnection(username, password) method.

The JMS specification states that a connection is created in the stopped state. Until a connection starts, a message consumer that is associated with the

connection cannot receive any messages. To start a connection, an application uses the start() method of a Connection object, as shown in the following
example:

connection.start();

Parent topic: Writing WebSphere MQ classes for JMS applications

This build: January 26, 2011 11:29:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm24340_

4.5.5. Creating a session in a JMS application

To create a session, a JMS application uses the createSession() method of a Connection object.

The createSession() method has two parameters:

1. A parameter that specifies whether the session is transacted or not transacted

2. A parameter that specifies the acknowledgement mode for the session

For example, the following code creates a session that is not transacted and has an acknowledgement mode of AUTO_ACKNOWLEDGE:

Session session;

.

boolean transacted = false;

session = connection.createSession(transacted, Session.AUTO_ACKNOWLEDGE);

A Session object, and any MessageProducer or MessageConsumer object created from it, cannot be used concurrently by different threads of a multithreaded
application. The simplest way of ensuring that these objects are not used concurrently is to create a separate Session object for each thread.

Transacted sessions
JMS applications can run local transactions by first creating a transacted session. An application can commit or roll back a transaction.

Acknowledgement modes
Every session that is not transacted has an acknowledgement mode that determines how messages received by the application are acknowledged.
Three acknowledgement modes are available, and the choice of acknowledgement mode affects the design of the application.

Parent topic: Writing WebSphere MQ classes for JMS applications

This build: January 26, 2011 11:29:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm24410_

4.5.5.1. Transacted sessions

JMS applications can run local transactions by first creating a transacted session. An application can commit or roll back a transaction.

JMS applications can run local transactions. A local transaction is a transaction that involves changes only to the resources of the queue manager to which
the application is connected. To run local transactions, an application must first create a transacted session by calling the createSession() method of a
Connection object, specifying as a parameter that the session is transacted. Subsequently, all messages sent and received within the session are grouped

Page 64 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

into a sequence of transactions. A transaction ends when the application commits or rolls back the messages it has sent and received since the transaction
began.

To commit a transaction, an application calls the commit() method of the Session object. When a transaction is committed, all messages sent within the
transaction become available for delivery to other applications, and all messages received within the transaction are acknowledged so that the messaging
server does not attempt to deliver them to the application again. In the point-to-point domain, the messaging server also removes the received messages
from their queues.

To roll back a transaction, an application calls the rollback() method of the Session object. When a transaction is rolled back, all messages sent within the
transaction are discarded by the messaging server, and all messages received within the transaction become available for delivery again. In the point-to-
point domain, the messages that were received are put back on their queues and become visible to other applications again.

A new transaction starts automatically when an application creates a transacted session or calls the commit() or rollback() method. Therefore, a transacted
session always has an active transaction.

When an application closes a transacted session, an implicit rollback occurs. When an application closes a connection, an implicit rollback occurs for all the
connection's transacted sessions.

If an application ends without closing a connection, an implicit rollback also occurs for all the connection's transacted sessions.

A transaction is wholly contained within a transacted session. A transaction cannot span sessions. This means that it is not possible for an application to send
and receive messages in two or more transacted sessions and then commit or roll back all these actions as a single transaction.

Parent topic: Creating a session in a JMS application

This build: January 26, 2011 11:30:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm41210_

4.5.5.2. Acknowledgement modes

Every session that is not transacted has an acknowledgement mode that determines how messages received by the application are acknowledged. Three
acknowledgement modes are available, and the choice of acknowledgement mode affects the design of the application.

If a session is not transacted, the way that messages received by the application are acknowledged is determined by the acknowledgement mode of the
session. The three acknowledgement modes are described in the following paragraphs:

AUTO_ACKNOWLEDGE

The session automatically acknowledges each message received by the application.

If messages are delivered synchronously to the application, the session acknowledges receipt of a message every time a Receive call completes
successfully. If messages are delivered asynchronously, the session acknowledges receipt of a message every time a call to the onMessage() method of a
message listener completes successfully.

If the application receives a message successfully, but a failure prevents acknowledgement from occurring, the message becomes available for delivery
again. The application must therefore be able to handle a message that is re-delivered.

DUPS_OK_ACKNOWLEDGE

The session acknowledges the messages received by the application at times it selects.

Using this acknowledgement mode reduces the amount of work the session must do, but a failure that prevents message acknowledgement might result in
more than one message becoming available for delivery again. The application must therefore be able to handle messages that are re-delivered.

Restriction: In AUTO_ACKNOWLEDGE and DUPS_OK_ACKNOWLEDGE modes, JMS does not support an application throwing an unhandled exception in a
message listener. This means that messages are always acknowledged when the message listener returns, regardless of whether it was processed
successfully (provided any failures are non-fatal and do not prevent the application from continuing). If you require finer control of message
acknowledgement, use the CLIENT_ACKNOWLEDGE or transacted modes, which give the application full control of the acknowledgement functions.

CLIENT_ACKNOWLEDGE

The application acknowledges the messages it receives by calling the Acknowledge method of the Message class.

The application can acknowledge the receipt of each message individually, or it can receive a batch of messages and call the Acknowledge method only for
the last message it receives. When the Acknowledge method is called all messages received since the last time the method was called are acknowledged.

In conjunction with any of these acknowledgement modes, an application can stop and restart the delivery of messages in a session by calling the Recover
method of the Session class. Messages whose receipt was previously unacknowledged are re-delivered. However, they might not be delivered in the same
sequence in which they were previously delivered. In the meantime, higher priority messages might have arrived, and some of the original messages might
have expired. In the point-to-point domain, some of the original messages might have been consumed by another application.

An application can determine whether a message is being re-delivered by examining the contents of the JMSRedelivered header field of the message. The
application does this by calling the Get JMSRedelivered method of the Message class.

Parent topic: Creating a session in a JMS application

This build: January 26, 2011 11:30:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm41200_

4.5.6. Creating destinations in a JMS application

Instead of retrieving destinations as administered objects from a Java Naming and Directory Interface (JNDI) namespace, a JMS application can use a
session to create destinations dynamically at run time. An application can use a uniform resource identifier (URI) to identify a WebSphere® MQ queue or a
topic and, optionally, to specify one or more properties of a Queue or Topic object.

Using a session to create Queue objects

Page 65 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

To create a Queue object, an application can use the createQueue() method of a Session object, as shown in the following example:

Session session;

.

Queue q1 = session.createQueue("Q1");

This code creates a Queue object with the default values for all its properties. The object represents a WebSphere MQ queue called Q1 that belongs to the
local queue manager. This queue can be a local queue, an alias queue, or a remote queue definition.

The createQueue() method also accepts a queue URI as a parameter. A queue URI is a string that specifies the name of a WebSphere MQ queue and,
optionally, the name of the queue manager that owns the queue and one or more properties of the Queue object. The following statement contains an
example of a queue URI:

Queue q2 = session.createQueue("queue://QM2/Q2?persistence=2&priority=5");

The Queue object created by this statement represents a WebSphere MQ queue called Q2 that is owned by a queue manager called QM2, and all messages
sent to this destination are persistent and have a priority of 5. The queue manager identified in this way can be the local queue manager or a remote queue
manager. If it is a remote queue manager, WebSphere MQ must be configured so that, when the application sends a message to this destination, Websphere
MQ can route the message from the local queue manager to queue manager QM2. For more information about URIs, see Uniform resource identifiers (URIs).

Note that the parameter on the createQueue() method contains provider specific information. Therefore, using the createQueue() method to create a Queue
object, instead of retrieving a Queue object as an administered object from a JNDI namespace, might make your application less portable.

An application can create a TemporaryQueue object by using the createTemporaryQueue() method of a Session object, as shown in the following example:

TemporaryQueue q3 = session.createTemporaryQueue();

Although a session is used to create a temporary queue, the scope of a temporary queue is the connection that was used to create the session. Any of the
connection’s sessions can create message producers and message consumers for the temporary queue. The temporary queue remains until the connection
ends or the application explicitly deletes the temporary queue by using the TemporaryQueue.delete() method, whichever is the sooner.

When an application creates a temporary queue, WebSphere MQ classes for JMS creates a dynamic queue in the queue manager to which the application is
connected. The TEMPMODEL property of the connection factory specifies the name of the model queue that is used to create the dynamic queue, and the
TEMPQPREFIX property of the connection factory specifies the prefix that is used to form the name of the dynamic queue.

Using a session to create Topic objects

To create a Topic object, an application can use the createTopic() method of a Session object, as shown in the following example:

Session session;

.

Topic t1 = session.createTopic("Sport/Football/Results");

This code creates an Topic object with the default values for all its properties. The object represents a topic called Sport/Football/Results.

The createTopic() method also accepts a topic URI as a parameter. A topic URI is a string that specifies the name of a topic and, optionally, one or more
properties of the Topic object. The following code contains an example of a topic URI:

String uri = "topic://Sport/Tennis/Results?persistence=1&priority=0";

Topic t2 = session.createTopic(uri);

The Topic object created by this code represents a topic called Sport/Tennis/Results, and all messages sent to this destination are nonpersistent and have a
priority of 0. For more information about topic URIs, see Uniform resource identifiers (URIs).

Note that the parameter on the createTopic() method contains provider specific information. Therefore, using the createTopic() method to create a Topic
object, instead of retrieving a Topic object as an administered object from a JNDI namespace, might make your application less portable.

An application can create a TemporaryTopic object by using the createTemporaryTopic() method of a Session object, as shown in the following example:

TemporaryTopic t3 = session.createTemporaryTopic();

Although a session is used to create a temporary topic, the scope of a temporary topic is the connection that was used to create the session. Any of the
connection’s sessions can create message producers and message consumers for the temporary topic. The temporary topic remains until the connection
ends or the application explicitly deletes the temporary topic by using the TemporaryTopic.delete() method, whichever is the sooner.

When an application creates a temporary topic, WebSphere MQ classes for JMS creates a topic whose name commences with the characters
TEMP/tempTopicPrefix, where tempTopicPrefix is the value of the TEMPTOPICPREFIX property of the connection factory.

Uniform resource identifiers (URIs)

A queue URI is a string that specifies the name of a WebSphere MQ queue and, optionally, the name of the queue manager that owns the queue and one or
more properties of the Queue object created by the application. A topic URI is a string that specifies the name of a topic and, optionally, one or more
properties of the Topic object created by the application.

A queue URI has the following format:

queue://[qMgrName]/qName[?propertyName1=propertyValue1

 &propertyName2=propertyValue2

 &...]

A topic URI has the following format:

topic://topicName[?propertyName1=propertyValue1

 &propertyName2=propertyValue2

 &...]

The variables in these formats have the following meanings:

qMgrName

The name of the queue manager that owns the queue identified by the URI.

The queue manager can the local queue manager or a remote queue manager. If it is a remote queue manager, WebSphere MQ must be configured so
that, when an application sends a message to the queue, Websphere MQ can route the message from the local queue manager to the remote queue
manager.

If no name is specified, the local queue manager is assumed.

qName

The name of the WebSphere MQ queue.

The queue can be a local queue, an alias queue, or a remote queue definition.

For the rules for creating queue names, see Rules for naming WebSphere MQ objects.

topicName

The name of the topic.

For the rules for creating topic names, see Rules for naming WebSphere MQ objects. Avoid the use of the wildcard characters +, #, *, and ? in topic
names. Topic names containing these characters can cause unexpected results when you subscribe to them. See Using topic strings.

Page 66 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

propertyName1, propertyName2, ...

The names of the properties of the Queue or Topic object created by the application. Table 1 lists the valid property names that can be used in a URI.

If no properties are specified, the Queue or Topic object has the default values for all its properties.

propertyValue1, propertyValue2, ...

The values of the properties of the Queue or Topic object created by the application. Table 1 lists the valid property values that can be used in a URI.

Brackets ([]) denotes an optional component, and the ellipsis (...) means that the list of property name-value pairs, if present, can contain one or more
name-value pairs.

Table 1 lists the valid property names and valid values that can be used in queue and topic URIs. Although the WebSphere MQ JMS administration tool uses
symbolic constants for the values of properties, URIs cannot contain symbolic constants.

For example, the following URI identifies a WebSphere MQ queue called Q1 that is owned by the local queue manager. A Queue object created using this URI
has the default values for all its properties.

queue:///Q1

The following URI identifies a WebSphere MQ queue called Q2 that is owned by a queue manager called QM2. All messages sent to this destination have a
priority of 6. The remaining properties of the Queue object created using this URI have their default values.

queue://QM2/Q2?priority=6

The following URI identifies a topic called Sport/Athletics/Results. All messages sent to this destination are nonpersistent and have a priority of 0. The
remaining properties of the Topic object created using this URI have their default values.

topic://Sport/Athletics/Results?persistence=1&priority=0

Parent topic: Writing WebSphere MQ classes for JMS applications

This build: January 26, 2011 11:29:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25070_

4.5.7. Sending messages in a JMS application

Before a JMS application can send messages to a destination, it must first create a MessageProducer object for the destination. To send a message to the
destination, the application creates a Message object and then calls the send() method of the MessageProducer object.

Table 1. Property names and valid values for use in queue and topic URIs

Property name Description Valid values

CCSID How the character data in the body of a message is

represented when WebSphere MQ classes for JMS

forwards the message to the destination

� Any coded character set identifier supported by

WebSphere MQ.

encoding How the numerical data in the body of a message is

represented when WebSphere MQ classes for JMS

forwards the message to the destination

� Any valid value for the Encoding field in a

WebSphere MQ message descriptor.

expiry The time to live for messages sent to the destination
� -2 - As specified on the send() call or, if not

specified on the send() call, the default time to

live of the message producer.

� 0 - A message sent to the destination never

expires.

� A positive integer specifying the time to live in

milliseconds.

multicast The multicast setting for a topic when using a real-

time connection to a broker

The following list contains the valid values. Associated

with each value is the corresponding value of the

MULTICAST property as used in the WebSphere MQ

JMS administration tool. For a description of the
MULTICAST property and its valid values, see

Properties of WebSphere MQ classes for JMS objects.

� -1 - ASCF

� 0 - DISABLED

� 3 - NOTR

� 5 - RELIABLE

� 7 - ENABLED

persistence The persistence of messages sent to the destination
� -2 - As specified on the send() call or, if not

specified on the send() call, the default

persistence of the message producer.

� -1 - As specified by the DefPersistence attribute

of the WebSphere MQ queue or topic.

� 1 - Nonpersistent.

� 2 - Persistent.

� 3 - Equivalent to the value HIGH for the
PERSISTENCE property as used in the

WebSphere MQ JMS administration tool. For an

explanation of this value, see JMS persistent

messages.

priority The priority of messages sent to the destination
� -2 - As specified on the send() call or, if not

specified on the send() call, the default priority

of the message producer.

� -1 - As specified by the DefPriority attribute of

the WebSphere MQ queue or topic.

� An integer in the range 0-9 specifying the

priority of messages sent to the destination.

targetClient Whether messages sent to the destination contain an
MQRFH2 header

� 0 - Messages contain an MQRFH2 header.

� 1 - Messages do not contain an MQRFH2 header.

Page 67 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

An application uses a MessageProducer object to send messages. An application normally creates a MessageProducer object for a specific destination, which
can be a queue or a topic, so that all messages sent using the message producer are sent to the same destination. Therefore, before an application can
create a MessageProducer object, it must first create a Queue or Topic object. For information about how to create a Queue or Topic object, see the following
topics:

� Using JNDI to retrieve administered objects in a JMS application

� Using the IBM JMS extensions

� Using the WebSphere MQ JMS extensions

� Creating destinations in a JMS application

To create a MessageProducer object, an application uses the createProducer() method of a Session object, as shown in the following example:

MessageProducer producer = session.createProducer(destination);

The parameter destination is a Queue or Topic object that the application has created previously.

Before an application can send a message, it must create a Message object. The body of a message contains the application data, and JMS defines five types
of message body:

� Bytes

� Map

� Object

� Stream

� Text

Each type of message body has its own JMS interface, which is a sub-interface of the Message interface, and a method in the Session interface for creating a
message with that type of body. For example, the interface for a text message is called TextMessage, and an application uses the createTextMessage()
method of a Session object to create a text message, as shown in the following statement:

TextMessage outMessage = session.createTextMessage(outString);

For more information about messages and message bodies, see JMS messages.

To send a message, an application uses the send() method of a MessageProducer object, as shown in the following example:

producer.send(outMessage);

An application can use the send() method to send messages in either messaging domain. The nature of the destination determines which messaging domain
is used. However, TopicPublisher, the sub-interface of MessageProducer that is specific to the publish/subscribe domain, also has a publish() method, which
can be used instead of the send() method. The two methods are functionally the same.

An application can create a MessageProducer object with no specified destination. In this case, the application must specify the destination when calling the
send() method.

If an application sends a message within a transaction, the message is not delivered to its destination until the transaction is committed. This means that an
application cannot send a message and receive a reply to the message within the same transaction.

A destination can be configured so that when an application sends messages to it, WebSphere MQ classes for JMS forwards the message and returns control
back to the application without determining whether the queue manager has received the message safely. This is sometimes referred to as asynchronous
put. For more information, see Putting messages asynchronously in Websphere MQ classes for JMS.

Parent topic: Writing WebSphere MQ classes for JMS applications

This build: January 26, 2011 11:29:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25080_

4.5.8. Receiving messages in a JMS application

An application uses a message consumer to receive messages. A durable topic subscriber is a message consumer that receives all messages sent to a
destination, including those sent while the consumer is inactive. An application can select which messages it wants to receive by using a message selector,
and can receive messages asynchronously by using a message listener.

An application uses a MessageConsumer object to receive messages. An application creates a MessageConsumer object for a specific destination, which can
be a queue or a topic, so that all messages received using the message consumer are received from the same destination. Therefore, before an application
can create a MessageConsumer object, it must first create a Queue or Topic object. For information about how to create a Queue or Topic object, see the
following topics:

� Using JNDI to retrieve administered objects in a JMS application

� Using the IBM JMS extensions

� Using the WebSphere MQ JMS extensions

� Creating destinations in a JMS application

To create a MessageConsumer object, an application uses the createConsumer() method of a Session object, as shown in the following example:

MessageConsumer consumer = session.createConsumer(destination);

The parameter destination is a Queue or Topic object that the application has created previously.

The application then uses the receive() method of the MessageConsumer object to receive a message from the destination, as shown in the following
example:

Message inMessage = consumer.receive(1000);

The parameter on the receive() call specifies how long in milliseconds the method waits for a suitable message to arrive if no message is available
immediately. If you omit this parameter, the call blocks indefinitely until a suitable message arrives. If you do not want the application to wait for a
message, use the receiveNoWait() method instead.

The receive() method returns a message of a specific type. For example, when an application receives a text message, the object returned by the receive()
call is a TextMessage object.

However, the declared type of object returned by a receive() call is a Message object. Therefore, in order to extract the data from the body of a message
that has just been received, the application must cast from the Message class to the more specific subclass, such as TextMessage. If the type of the
message is not known, the application can use the instanceof operator to determine the type. It is always good practice for an application to determine the

type of a message before casting so that errors can be handled gracefully.

The following code uses the instanceof operator and shows how to extract the data from the body of a text message:

if (inMessage instanceof TextMessage) {

Page 68 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

 String replyString = ((TextMessage) inMessage).getText();

 .

 .

 .

} else {

 // Print error message if Message was not a TextMessage.

 System.out.println("Reply message was not a TextMessage");

}

If an application sends a message within a transaction, the message is not delivered to its destination until the transaction is committed. This means that an
application cannot send a message and receive a reply to the message within the same transaction.

If a message consumer receives messages from a destination that is configured for read ahead, any nonpersistent messages that are in the read ahead
buffer when the application ends are discarded.

In the publish/subscribe domain, JMS identifies two types of message consumer, nondurable topic subscriber and durable topic subscriber, which are
described in the following two sections.

Nondurable topic subscribers

A nondurable topic subscriber receives only those messages that are published while the subscriber is active. A nondurable subscription starts when an
application creates a nondurable topic subscriber and ends when the application closes the subscriber, or when the subscriber falls out of scope. As an
extension in WebSphere MQ classes for JMS, a nondurable topic subscriber also receives retained publications, but not when using a real-time connection to
a broker.

To create a nondurable topic subscriber, an application can use the domain independent createConsumer() method, specifying a Topic object as the
destination. Alternatively, an application can use the domain specific createSubscriber() method, as shown in the following example:

TopicSubscriber subscriber = session.createSubscriber(topic);

The parameter topic is a Topic object that the application has created previously.

Durable topic subscribers

Restriction: An application cannot create durable topic subscribers when using a real-time connection to a broker.

A durable topic subscriber receives all messages that are published during the life of a durable subscription. These messages include all those that are
published while the subscriber is not active. As an extension in WebSphere MQ classes for JMS, a durable topic subscriber also receives retained publications.

To create a durable topic subscriber, an application uses the createDurableSubscriber() method of a Session object, as shown in the following example:

TopicSubscriber subscriber = session.createDurableSubscriber(topic, "D_SUB_000001");

On the createDurableSubscriber() call, the first parameter is a Topic object that the application has created previously, and the second parameter is a name
that is used to identify the durable subscription.

The session used to create a durable topic subscriber must have an associated client identifier. The client identifier associated with a session is the same as
the client identifier for the connection that is used to create the session. The client identifier can be specified by setting the CLIENTID property of the
ConnectionFactory object. Alternatively, an application can specify the client identifier by calling the setClientID() method of the Connection object.

The name that is used to identify a durable subscription must be unique only within the client identifier, and therefore the client identifier forms part of the
full, unique identifier of a durable subscription. To continue using a durable subscription that was created previously, an application must create a durable
topic subscriber using a session with the same client identifier as that associated with the durable subscription, and using the same subscription name.

A durable subscription starts when an application creates a durable topic subscriber using a client identifier and subscription name for which no durable
subscription currently exists. However, a durable subscription does not end when the application closes the durable topic subscriber. To end a durable
subscription, an application must call the unsubscribe() method of a Session object that has the same client identifier as that associated with the durable
subscription. The parameter on the unsubscribe() call is the subscription name, as shown in the following example:

session.unsubscribe("D_SUB_000001");

The scope of a durable subscription is a queue manager. If a durable subscription exists on one queue manager, and an application connected to another
queue manager creates a durable subscription with the same client identifier and subscription name, the two durable subscriptions are completely
independent.

Message selectors

An application can specify that only those messages that satisfy certain criteria are returned by successive receive() calls. When creating a
MessageConsumer object, the application can specify a Structured Query Language (SQL) expression that determines which messages are retrieved. This
SQL expression is called a message selector. The message selector can contain the names of JMS message header fields and message properties. For
information about how to construct a message selector, see Message selectors.

The following example shows how an application can select messages based on a user defined property called myProp:

MessageConsumer consumer;

.

consumer = session.createConsumer(destination, "myProp = 'blue'");

The JMS specification does not allow an application to change the message selector of a message consumer. After an application creates a message
consumer with a message selector, the message selector remains for the life of that consumer. If an application requires more than one message selector,
the application must create a message consumer for each message selector.

Note that, when an application is connected to a Version 7 queue manager, the MSGSELECTION property of the connection factory has no effect. To
optimize performance, all message selection is done by the queue manager.

Suppressing local publications

An application can create a message consumer that ignores publications published on the consumer's own connection. The application does this by setting
the third parameter on a createConsumer() call to true, as shown in the following example:

MessageConsumer consumer = session.createConsumer(topic, null, true);

On a createDurableSubscriber() call, the application does this by setting the fourth parameter to true, as shown in the following example

String selector = "company = 'IBM'";

TopicSubscriber subscriber = session.createDurableSubscriber(topic, "D_SUB_000001",

 selector, true);

Asynchronous delivery of messages

An application can receive messages asynchronously by registering a message listener with a message consumer. The message listener has a method called
onMessage, which is called asynchronously when a suitable message is available and whose purpose is to process the message. The following code illustrates
the mechanism:

Page 69 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

import javax.jms.*;

public class MyClass implements MessageListener

{

 // The method that is called asynchronously when a suitable message is available

 public void onMessage(Message message)

 {

 System.out.println("Message is "+message);

 // The code to process the message

 .

 .

 .

 }

}

.

.

.

// Main program (possibly in another class)

.

// Creating the message listener

MyClass listener = new MyClass();

// Registering the message listener with a message consumer

consumer.setMessageListener(listener);

// The main program now continues with other processing

An application can use a session either for receiving messages synchronously using receive() calls, or for receiving messages asynchronously using message
listeners, but not for both. If an application needs to receive messages synchronously and asynchronously, it must create separate sessions.

Receiving poison messages

An application can receive a message that cannot be processed. There can be several reasons why the message cannot be processed, for example the
message might have an incorrect format. Such messages are described as poison messages and require special handling to prevent the message being
recursively processed.

For details on how to handle poison messages, see Handling poison messages in WebSphere MQ classes for JMS.

Parent topic: Writing WebSphere MQ classes for JMS applications

This build: January 26, 2011 11:29:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm24450_

4.5.9. Closing down a WebSphere MQ classes for JMS application

It is important for a WebSphere® MQ classes for JMS application to close certain JMS objects explicitly before stopping. Finalizers might not be called, so do
not rely on them to free resources. Do not allow an application to terminate with compressed trace active.

Garbage collection alone cannot release all WebSphere MQ classes for JMS and WebSphere MQ resources in a timely manner, especially if an application
creates many short lived JMS objects at the session level or lower. It is therefore important for an application to close a Connection, Session,
MessageConsumer, or MessageProducer object when it is no longer required.

If an application ends without closing a Connection, an implicit rollback occurs for all the connection's transacted sessions. To ensure any changes made by
the application are committed, close the Connection explicitly before closing the application.

Do not use finalizers in an application to close JMS objects. Because finalizers might not be called, resources might not be freed. When a Connection is
closed it closes all the Sessions that were created from it. Similarly, the MessageConsumers and MessageProducers created from a Session are closed when
the Session is closed. However, consider closing Sessions, MessageConsumers, and MessageProducers explicitly to ensure resources are freed in a timely
manner.

If trace compression is activated, System.Halt() shutdowns and abnormal, uncontrolled JVM terminations are likely to result in a corrupt trace file. Where
possible, turn off the trace facility when you have collected the trace information you need. If you are tracing an application up to an abnormal end, use
uncompressed trace output.

Parent topic: Writing WebSphere MQ classes for JMS applications

This build: January 26, 2011 11:29:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25250_

4.5.10. Handling errors in WebSphere MQ classes for JMS

This topic describes the exceptions that can be thrown by JMS API calls or delivered to an exception handler, and how an application can obtain information
from exceptions. It also tells you about the WebSphere® MQ classes for JMS error log and the first failure support technology (FFST™) information that is
generated if a serious internal error occurs.

Handling poison messages in WebSphere MQ classes for JMS
A poison message is one which cannot be processed by a receiving MDB application. If a poison message is encountered, the JMS MessageConsumer
and ConnectionConsumer objects can requeue it according to two queue properties, BOQUEUE, and BOTHRESH.

Exceptions in WebSphere MQ classes for JMS
A WebSphere MQ classes for JMS application must be able to handle exceptions that are thrown by a JMS API calls or delivered to an exception
handler. Compared to previous versions, most exception messages and error codes have changed in Version 7 of WebSphere MQ classes for JMS. If
your application parses or tests exception messages and error codes, it probably needs to be modified in order to use Version 7.

Page 70 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Logging errors in WebSphere MQ classes for JMS
Information about runtime problems that might require corrective action by the user is written to the WebSphere MQ classes for JMS log.

First failure support technology (FFST) in WebSphere MQ classes for JMS
If a serious internal error occurs within WebSphere MQ classes for JMS, first failure support technology (FFST) information is generated.

Parent topic: Writing WebSphere MQ classes for JMS applications

This build: January 26, 2011 11:29:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm35160_

4.5.10.1. Handling poison messages in WebSphere MQ classes for JMS

A poison message is one which cannot be processed by a receiving MDB application. If a poison message is encountered, the JMS MessageConsumer and
ConnectionConsumer objects can requeue it according to two queue properties, BOQUEUE, and BOTHRESH.

Sometimes, a badly-formatted message arrives on a queue. In this context, badly-formatted means that the receiving application cannot process the
message correctly. Such a message can cause the receiving application to fail and to back out this badly-formatted message. The message can then be
repeatedly delivered to the input queue and repeatedly backed out by the application. These messages are known as poison messages. The JMS
MessageConsumer object detects poison messages and reroutes them to an alternative destination.

The WebSphere® MQ queue manager keeps a record of the number of times that each message has been backed out. When this number reaches a
configurable threshold value, the message consumer requeues the message to a named backout queue. If this re-queuing fails for any reason, the message
is removed from the input queue and either requeued to the dead-letter queue, or discarded. See Removing messages from the queue in ASF for more
details.

There is a difference between the way in which poison messages are requeued by MessageConsumers and ConnectionConsumers. ConnectionConsumers
are able to requeue poison messages without affecting message delivery. The requeue process takes place outside of any unit of work associated with actual
message delivery to application code. This is possible because of the multi-threaded nature of ConnectionConsumer operation.

MessageConsumers, however, are single threaded below the Session level, and any requeuing of poison messages takes place within the current unit of
work. This does not affect the operation of the application, however when poison messages are requeued under a transacted or Client_acknowledge Session,
the requeue action itself will not be committed until the current unit of work is committed by the application code or, if appropriate, the application container
code.

JMS ConnectionConsumer objects handle poison messages in the same way and using the same queue properties. If multiple connection consumers are
monitoring the same queue, it is possible that the poison message may be delivered to an application more times than the threshold value before the
requeue occurs. This behavior is due to the way individual connection consumers monitor queues and requeue poison messages.

The threshold value and the name of the back out queue are attributes of a WebSphere MQ queue. The names of the attributes are BackoutThreshold and
BackoutRequeueQName. The queue they apply to is as follows:

� For point-to-point messaging, this is the underlying local queue. This is important when message consumers and connection consumers use queue
aliases.

� For publish/subscribe messaging in WebSphere MQ messaging provider normal mode, it is the model queue from which the Topic's managed queue is
created.

� For publish/subscribe messaging in WebSphere MQ messaging provider migration mode, it is the CCSUB queue defined on the TopicConnectionFactory
object, or the CCDSUB queue defined on the Topic object.

To set the BackoutThreshold and BackoutRequeueQName attributes, issue the following MQSC command:

ALTER QLOCAL(your.queue.name) BOTHRESH(threshold value) BOQUEUE(your.backout.queue.name)

If the BackoutThreshold attribute is set to a value other than zero, to avoid unexpected behaviour set the BackoutRequeueQName attribute to a valid queue
name.

For publish/subscribe messaging, if your system creates a dynamic queue for each subscription, these attribute values are obtained from the WebSphere MQ
classes for JMS model queue, SYSTEM.JMS.MODEL.QUEUE. To alter these settings, use:

ALTER QMODEL(SYSTEM.JMS.MODEL.QUEUE) BOTHRESH(threshold value) BOQUEUE(your.backout.queue.name)

If the backout threshold value is zero, poison message handling is disabled, and poison messages remain on the input queue. Otherwise, when the backout
count reaches the threshold value, the message is sent to the named backout queue. If the backout count reaches the threshold value, but the message
cannot go to the backout queue, the message is sent to the dead-letter queue or it is discarded. This situation occurs if the backout queue is not defined, or
if the MessageConsumer object cannot send the message to the backout queue. See Removing messages from the queue in ASF for further details.

Parent topic: Handling errors in WebSphere MQ classes for JMS

This build: January 26, 2011 11:29:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm35205_

4.5.10.2. Exceptions in WebSphere MQ classes for JMS

A WebSphere® MQ classes for JMS application must be able to handle exceptions that are thrown by a JMS API calls or delivered to an exception handler.
Compared to previous versions, most exception messages and error codes have changed in Version 7 of WebSphere MQ classes for JMS. If your application
parses or tests exception messages and error codes, it probably needs to be modified in order to use Version 7.

WebSphere MQ classes for JMS reports runtime problems by throwing exceptions. JMSException is the root class for exceptions thrown by JMS methods, and
catching JMSException exceptions provides a generic way of handling all JMS related exceptions.

Every JMSException exception encapsulates the following information:

� A provider specific exception message, which an application obtains by calling the Throwable.getMessage() method.

� A provider specific error code, which an application obtains by calling the JMSException.getErrorCode() method.

� A linked exception. An exception thrown by a JMS API call is often the result of a lower level problem, which is reported by another exception linked to

Page 71 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

this exception. An application obtains a linked exception by calling the JMSException.getLinkedException() or the Throwable.getCause() method.

Most exceptions thrown by WebSphere MQ classes for JMS are instances of subclasses of JMSException. These subclasses implement the
com.ibm.msg.client.jms.JmsExceptionDetail interface, which provides the following additional information:

� An explanation of the exception message, which an application obtains by calling the JmsExceptionDetail.getExplanation() method.

� A recommended user response to the exception, which an application obtains by calling the JmsExceptionDetail.getUserAction() method.

� The keys for the message inserts in the exception message. An application obtains an iterator for all the keys by calling the
JmsExceptionDetail.getKeys() method.

� The message inserts in the exception message. For example, a message insert might be the name of the queue that caused the exception, and it
might be useful for an application to be able to access that name. An application obtains the message insert corresponding to a specified key by calling
the JmsExceptionDetail.getValue() method.

All the methods in the JmsExceptionDetail interface might return null if no details are available.

For example, if an application tries to create a message producer for a WebSphere MQ queue that does not exist, an exception is thrown with the following
information:

Message : JMSWMQ2008: Failed to open MQ queue 'Q_test'.

Class : class com.ibm.msg.client.jms.DetailedInvalidDestinationException

Error Code : JMSWMQ2008

Explanation : JMS attempted to perform an MQOPEN, but WebSphere MQ reported an

 error.

User Action : Use the linked exception to determine the cause of this error. Check

 that the specified queue and queue manager are defined correctly.

The exception thrown, com.ibm.msg.client.jms.DetailedInvalidDestinationException, is a subclass of javax.jms.InvalidDestinationException and implements
the com.ibm.msg.client.jms.JmsExceptionDetail interface.

Linked exceptions

A linked exception provides further information about a runtime problem. Therefore, for each JMSException exception that is thrown, an application should
check the linked exception. The linked exception itself might have another linked exception, and so the linked exceptions form a chain leading back to the
original underlying problem. A linked exception is implemented by using the chained exception mechanism of the java.lang.Throwable class, and an
application obtains a linked exception by calling the Throwable.getCause() method. For a JMSException exception, the getLinkedException() method actually
delegates to the Throwable.getCause() method.

For example, if an application specifies an incorrect port number when connecting to a queue manager, the exceptions form the following chain:

com.ibm.msg.client.jms.DetailIllegalStateException

 |

 +--->com.ibm.mq.MQException

 |

 +--->com.ibm.mq.jmqi.JmqiException

 |

 +--->java.net.ConnectionException

Typically, each exception in a chain is thrown from a different layer in the code. For example, the exceptions in the preceding chain are thrown by the
following layers:

� The first exception, an instance of a subclass of JMSException, is thrown by the common layer in WebSphere MQ classes for JMS.

� The next exception, an instance of com.ibm.mq.MQException, is thrown by the WebSphere MQ messaging provider.

� The next exception, an instance of com.ibm.mq.jmqi.JmqiException, is thrown by the common Java interface to the MQI.

� The final exception, an instance of java.net.ConnectionException, is thrown by the Java class library.

For more information about the layered architecture of WebSphere MQ classes for JMS, see A layered architecture.

Using code similar to the following code, an application can iterate through this chain to extract all the appropriate information:

import com.ibm.msg.client.jms.JmsExceptionDetail;

import com.ibm.mq.MQException;

import com.ibm.mq.jmqi.JmqiException;

import javax.jms.JMSException;

.

.

.

catch (JMSException je) {

 System.err.println("Caught JMSException");

 // Check for linked exceptions in JMSException

 Throwable t = je;

 while (t != null) {

 // Write out the message that is applicable to all exceptions

 System.err.println("Exception Msg: " + t.getMessage());

 // Write out the exception stack trace

 t.printStackTrace(System.err);

 // Add on specific information depending on the type of exception

 if (t instanceof JMSException) {

 JMSException je1 = (JMSException) t;

 System.err.println("JMS Error code: " + je1.getErrorCode());

 if (t instanceof JmsExceptionDetail){

 JmsExceptionDetail jed = (JmsExceptionDetail)je1;

 System.err.println("JMS Explanation: " + jed.getExplanation());

 System.err.println("JMS Explanation: " + jed.getUserAction());

 }

 } else if (t instanceof MQException) {

 MQException mqe = (MQException) t;

 System.err.println("WMQ Completion code: " + mqe.getCompCode());

 System.err.println("WMQ Reason code: " + mqe.getReason());

 } else if (t instanceof JmqiException){

 JmqiException jmqie = (JmqiException)t;

 System.err.println("WMQ Log Message: " + jmqie.getWmqLogMessage());

 System.err.println("WMQ Explanation: " + jmqie.getWmqMsgExplanation());

 System.err.println("WMQ Msg Summary: " + jmqie.getWmqMsgSummary());

 System.err.println("WMQ Msg User Response: "

 + jmqie.getWmqMsgUserResponse());

 System.err.println("WMQ Msg Severity: " + jmqie.getWmqMsgSeverity());

 }

 // Get the next cause

 t = t.getCause();

 }

}

Note that an application should always check the type of each exception in a chain because the type of exception can vary and exceptions of different types

Page 72 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

encapsulate different information.

Obtaining WebSphere MQ specific information about a problem

Instances of com.ibm.mq.MQException and com.ibm.mq.jmqi.JmqiException encapsulate WebSphere MQ specific information about a problem.

An MQException exception encapsulates the following information:

� A completion code, which an application obtains by calling the getCompCode() method

� A reason code, which an application obtains by calling the getReason() method

A JmqiException exception also encapsulates a completion code and a reason code. Additionally, however, a JmqiException exception encapsulates the
information in an AMQnnnn or CSQnnnn message, if one is associated with the exception. By calling the appropriate methods of the exception, an application
can obtain the various components of this message, such as the severity, explanation, and user response.

For examples of how to use of the methods mentioned in this section, see the sample code in Linked exceptions.

Upgrading from previous versions of WebSphere MQ classes for JMS

Compared to previous versions of WebSphere MQ classes for JMS, most error codes and exception messages have changed in Version 7. The reason for
these changes is that WebSphere MQ classes for JMS now has a layered architecture and exceptions are thrown from different layers in the code.

For example, if an application tries to connect to a queue manager that does not exist, a previous version of WebSphere MQ classes for JMS threw a
JMSException exception with the following information:

MQJMS2005: Failed to create MQQueueManager for 'localhost:QM_test'.

This exception contained a linked MQException exception with the following information:

MQJE001: Completion Code 2, Reason 2058

By comparison in the same circumstances, Version 7 of WebSphere MQ classes for JMS throws a JMSException exception with the following information:

Message : JMSWMQ0018: Failed to connect to queue manager 'QM_test' with

 connection mode 'Client' and host name 'localhost'.

Class : class com.ibm.msg.client.jms.DetailedJMSException

Error Code : JMSWMQ0018

Explanation : null

User Action : Check the queue manager is started and if running in client mode,

 check there is a listener running. Please see the linked exception

 for more information.

This exception contains a linked MQException exception with the following information:

Message : JMSCMQ0001: WebSphere MQ call failed with compcode '2' ('MQCC_FAILED')

 reason '2058' ('MQRC_Q_MGR_NAME_ERROR').

Class : class com.ibm.mq.MQException

Completion Code : 2

Reason Code : 2058

If your application parses or tests exception messages returned by the Throwable.getMessage() method, or error codes returned by the
JMSException.getErrorCode() method, your application probably needs to be modified in order to use Version 7 of WebSphere MQ classes for JMS.

Exception listeners

An application can register an exception listener with a Connection object. Subsequently, if a problem occurs that makes the connection unusable,
WebSphere MQ classes for JMS delivers an exception to the exception listener by calling its onException() method. The application then has the opportunity
to reestablish the connection.

By default, WebSphere MQ classes for JMS also delivers an exception to the exception listener if a problem occurs while trying to deliver a message
asynchronously. However, this behavior is more than that required by the JMS specification. To be consistent with the JMS specification, you must ensure
that the ASYNCEXCEPTION property of the connection factory is set to ASYNC_EXCEPTIONS_CONNECTIONBROKEN. Then, if a problem occurs while trying to
deliver a message asynchronously, WebSphere MQ classes for JMS writes an exception to its log and does not deliver an exception to the exception listener.

For any other type of problem, a JMSException exception is thrown by the current JMS API call.

If an application does not register an exception listener with a Connection object, any exceptions that would have been delivered to the exception listener
are written to the WebSphere MQ classes for JMS log.

Parent topic: Handling errors in WebSphere MQ classes for JMS

This build: January 26, 2011 11:29:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm35210_

4.5.10.3. Logging errors in WebSphere MQ classes for JMS

Information about runtime problems that might require corrective action by the user is written to the WebSphere® MQ classes for JMS log.

For example, if an application attempts to set a property of a connection factory, but the name of the property is not recognized, WebSphere MQ classes for
JMS writes information about the problem to its log.

By default, the file containing the log is called mqjms.log and is in the current working directory. However, you can change the name and location of the log
file by setting the com.ibm.msg.client.commonservices.log.outputName property in the WebSphere MQ classes for JMS configuration file. For information
about the WebSphere MQ classes for JMS configuration file, see The WebSphere MQ classes for JMS configuration file.

Parent topic: Handling errors in WebSphere MQ classes for JMS

This build: January 26, 2011 11:29:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm35220_

4.5.10.4. First failure support technology (FFST) in WebSphere MQ classes for JMS

Page 73 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

If a serious internal error occurs within WebSphere® MQ classes for JMS, first failure support technology (FFST™) information is generated.

The FFST information is written to a file is called JMSCnnnn.FDC, where nnnn is a four digit number. This file is in a directory called FDC, which is a
subdirectory of the directory to which trace output is written. By default, trace output is written to the current working directory, but you can redirect trace
output to a different directory by setting the com.ibm.msg.client.commonservices.trace.outputName property in the WebSphere MQ classes for JMS
configuration file. For information about the WebSphere MQ classes for JMS configuration file, see The WebSphere MQ classes for JMS configuration file.

If tracing is enabled when FFST information is generated, the FFST information is also be written to the trace file.

Parent topic: Handling errors in WebSphere MQ classes for JMS

This build: January 26, 2011 11:29:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm35230_

4.5.11. Accessing WebSphere MQ features from a WebSphere MQ classes for JMS application

WebSphere® MQ classes for JMS provides facilities to exploit a number of features of WebSphere MQ.

Attention: These features are outside the JMS specification or, in certain cases, violate the JMS specification. If you use them, your application is unlikely to
be compatible with other JMS providers. Those features which do not comply with the JMS specification are labeled with an Attention notice.

Reading and writing the message descriptor from a WebSphere MQ classes for JMS application
You control the ability to access the message descriptor (MQMD) by setting properties on a Destination and a Message.

Accessing WebSphere MQ Message data from a WebSphere MQ classes for JMS application
You can access the complete WebSphere MQ message data including the MQRFH2 header (if present) and any other WebSphere MQ headers (if
present) within a WebSphere MQ classes for JMS application as the body of a JMSBytesMessage.

JMS persistent messages

Using Secure Sockets Layer (SSL) with WebSphere MQ classes for JMS
WebSphere MQ classes for JMS applications can use SSL encryption. To do this they require a JSSE provider.

Using channel exits with WebSphere MQ classes for JMS
This topic describes how to write channel exits in Java, how to assign channel exits, and how to pass user data to channel exits when they are called.
The topic also describes how to use channel exits written in C and C++, and how to assign a sequence of send and receive exits that are run in
succession.

Using a client channel definition table with WebSphere MQ classes for JMS
A WebSphere MQ classes for JMS application can use client connection channel definitions that are stored in a client channel definition table (CCDT).
You configure a ConnectionFactory object to use the CCDT. There are some restrictions on its use.

Automatic client reconnection
Configure your JMS client to reconnect automatically following a network, queue manager, or server failure.

Sharing a TCP/IP connection
Multiple instances of an MQI channel can be made to share a single TCP/IP connection

Specifying a range of ports for client connections
Use the LOCALADDRESS property to specify a range of ports that your application can bind to.

Channel compression

Putting messages asynchronously in Websphere MQ classes for JMS
Normally, when an application sends messages to a destination, the application has to wait for the queue manager to confirm that it has processed the
request. You can improve messaging performance in some circumstances by choosing instead to put messages asynchronously. When an application
puts a message asynchronously, the queue manager does not return the success or failure of each call, but you can instead check for errors
periodically.

Using read ahead with WebSphere MQ classes for JMS
A WebSphere MQ classes for JMS client can be configured to use read ahead. Read ahead allows messages to be sent to a client before an application
requests them.

Retained publications in WebSphere MQ classes for JMS
A WebSphere MQ classes for JMS client can be configured to use retained publications.

Parent topic: Writing WebSphere MQ classes for JMS applications

This build: January 26, 2011 11:30:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm41020_

4.5.11.1. Reading and writing the message descriptor from a WebSphere MQ classes for JMS
application

You control the ability to access the message descriptor (MQMD) by setting properties on a Destination and a Message.

The function described in this topic is not available for publish/subscribe messaging when you are either connecting to a WebSphere® MQ V6 queue
manager, or when the PROVIDERVERSION is "6".

Some WebSphere MQ applications require specific values to be set in the MQMD of messages sent to them. WebSphere MQ classes for JMS provides
message attributes that allow JMS applications to set MQMD fields and so enable JMS applications to "drive" WebSphere MQ applications.

Page 74 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

You must set the Destination object property WMQ_MQMD_WRITE_ENABLED to true for the setting of MQMD properties to have any effect. You can then use
the property setting methods of the message (for example setStringProperty) to assign values to the MQMD fields. All MQMD fields are exposed except
StrucId and Version; BackoutCount can be read but not written to.

This example results in a message being put to a queue or topic with MQMD.UserIdentifier set to “JoeBloggs”.

 // Create a ConnectionFactory, connection, session, producer, message

 // ...

 // Create a destination

 // ...

 // Enable MQMD write

 dest.setBooleanProperty(WMQConstants.WMQ_MQMD_WRITE_ENABLED, true);

 // Optionally, set a message context if applicable for this MD field

 dest.setIntProperty(WMQConstants.WMQ_MQMD_MESSAGE_CONTEXT,

 WMQConstants.WMQ_MDCTX_SET_IDENTITY_CONTEXT);

 // On the message, set property to provide custom UserId

 msg.setStringProperty("JMS_IBM_MQMD_UserIdentifier", "JoeBloggs");

 // Send the message

 // ...

It is necessary to set WMQ_MQMD_MESSAGE_CONTEXT before setting JMS_IBM_MQMD_UserIdentifier. For more information about the use of
WMQ_MQMD_MESSAGE_CONTEXT, see Message object properties.

Similarly, you can extract the contents of the MQMD fields by setting WMQ_MQMD_READ_ENABLED to true before receiving a message and then using the
get methods of the message, such as getStringProperty. Any properties received are read-only.

This example results in the value field holding the value of the MQMD.ApplIdentityData field of a message got from a queue or a topic.

 // Create a ConnectionFactory, connection, session, consumer

 // ...

 // Create a destination

 // ...

 // Enable MQMD read

 dest.setBooleanProperty(WMQConstants.WMQ_MQMD_READ_ENABLED, true);

 // Receive a message

 // ...

 // Get MQMD field value using a property

 String value = rcvMsg.getStringProperty("JMS_IBM_MQMD_ApplIdentityData");

Destination object properties
Two properties of the Destination object control access to the MQMD from JMS, and a third controls message context.

Message object properties
Message object properties prefixed JMS_IBM_MQMD allow you to set or read the corresponding MQMD field.

Parent topic: Accessing WebSphere MQ features from a WebSphere MQ classes for JMS application

This build: January 26, 2011 11:30:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm41030_

4.5.11.1.1. Destination object properties

Two properties of the Destination object control access to the MQMD from JMS, and a third controls message context.

Table 1. Property names and descriptions

Property Short

form

Description

WMQ_MQMD_WRITE_ENABLED MDW Whether a JMS application can set the values of MQMD fields

WMQ_MQMD_READ_ENABLED MDR Whether a JMS application can extract the values of MQMD fields

WMQ_MQMD_MESSAGE_

CONTEXT

MDCTX What level of message context is to be set by the JMS application. The application must be

running with appropriate context authority for this property to take effect

Table 2. Property names, values, and set methods

Property Valid values in administration

tool (defaults in bold)

Valid values in programs Set method

WMQ_MQMD_WRITE_ENABLED � NO

All JMS_IBM_MQMD* properties

are ignored and their values are

not copied into the underlying

MQMD structure.

� YES

JMS_IBM_MQMD* properties are
processed. Their values are copied

into the underlying MQMD

structure.

� False

� True

setMQMDWriteEnabled

WMQ_MQMD_READ_ENABLED � NO

When sending messages, the

JMS_IBM_MQMD* properties on a

sent message are not updated to

reflect the updated field values in

the MQMD.

When receiving messages, none of

the JMS_IBM_MQMD* properties

� False

� True

setMQMDReadEnabled

Page 75 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Parent topic: Reading and writing the message descriptor from a WebSphere MQ classes for JMS application

Related information
Context authority
Options (MQLONG) - input
Options (MQLONG)

This build: January 26, 2011 11:30:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm41040_

4.5.11.1.2. Message object properties

Message object properties prefixed JMS_IBM_MQMD allow you to set or read the corresponding MQMD field.

Sending messages
All MQMD fields except StrucId and Version are represented. These properties refer only to the MQMD fields; where a property occurs both in the MQMD and
in the MQRFH2 header, the version in the MQRFH2 is not set or extracted.

Any of these properties can be set, except JMS_IBM_MQMD_BackoutCount. Any value set for JMS_IBM_MQMD_BackoutCount is ignored.

If a property has a maximum length and you supply a value that is too long, the value is truncated.

For certain properties, you must also set the WMQ_MQMD_MESSAGE_CONTEXT property on the Destination object. The application must be running with
appropriate context authority for this property to take effect. If you do not set WMQ_MQMD_MESSAGE_CONTEXT to an appropriate value, the property value
is ignored. If you set WMQ_MQMD_MESSAGE_CONTEXT to an appropriate value but you do not have sufficient context authority for the queue manager, a
JMSException is issued. Properties requiring specific values of WMQ_MQMD_MESSAGE_CONTEXT are as follows.

The following properties require WMQ_MQMD_MESSAGE_CONTEXT to be set to WMQ_MDCTX_SET_IDENTITY_CONTEXT or
WMQ_MDCTX_SET_ALL_CONTEXT:

� JMS_IBM_MQMD_UserIdentifier

� JMS_IBM_MQMD_AccountingToken

� JMS_IBM_MQMD_ApplIdentityData

The following properties require WMQ_MQMD_MESSAGE_CONTEXT to be set to WMQ_MDCTX_SET_ALL_CONTEXT :

� JMS_IBM_MQMD_PutApplType

� JMS_IBM_MQMD_PutApplName

� JMS_IBM_MQMD_PutDate

� JMS_IBM_MQMD_PutTime

� JMS_IBM_MQMD_ApplOriginData

Receiving messages
All these properties are available on a received message if WMQ_MQMD_READ_ENABLED property is set to true, irrespective of the actual properties the
producing application has set. An application cannot modify the properties of a received message unless all properties are cleared first, according to the JMS
specification. The received message can be forwarded without modifying the properties.

Attention: If your application receives a message from a destination with WMQ_MQMD_READ_ENABLED property set to true, and forwards it to a
destination with WMQ_MQMD_WRITE_ENABLED set to true, this results in all the MQMD field values of the received message being copied into the forwarded
message.

Table of properties
This table lists the properties of the Message object representing the MQMD fields. See the links for full descriptions of the fields and their allowable values.

are available on a received

message, even if the sender had

set some or all of them.

� YES

When sending messages, all of the

JMS_IBM_MQMD* properties on a

sent message are updated to

reflect the updated field values in

the MQMD, including those that

the sender did not set explcitly.

When receiving messages, all of

the JMS_IBM_MQMD* properties

are available on a received

message, including those that the

sender did not set explicitly.

WMQ_MQMD_MESSAGE_CONTEXT � DEFAULT

The MQOPEN API call and the

MQPMO structure will specify no

explicit message context options.

� SET_IDENTITY_CONTEXT

The MQOPEN API call specifies the

message context option

MQOO_SET_IDENTITY_CONTEXT

and the MQPMO structure specifies

MQPMO_SET_IDENTITY_CONTEXT.

� SET_ALL_CONTEXT

The MQOPEN API call specifies the

message context option

MQOO_SET_ALL_CONTEXT and

the MQPMO structure specifies

MQPMO_SET_ALL_CONTEXT

respectively.

� WMQ_MDCTX_DEFAULT

� WMQ_MDCTX_SET_IDENTITY_CONTEXT

� WMQ_MDCTX_SET_ALL_CONTEXT

setMQMDMessageContext

Table 1. Property names, descriptions, and types

Page 76 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Parent topic: Reading and writing the message descriptor from a WebSphere MQ classes for JMS application

Related concepts
Mapping WebSphere MQ fields onto JMS fields (incoming messages)
Mapping JMS fields onto WebSphere MQ fields (outgoing messages)

This build: January 26, 2011 11:30:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm41050_

4.5.11.2. Accessing WebSphere MQ Message data from a WebSphere MQ classes for JMS
application

You can access the complete WebSphere® MQ message data including the MQRFH2 header (if present) and any other WebSphere MQ headers (if present)
within a WebSphere MQ classes for JMS application as the body of a JMSBytesMessage.

The function described in this topic is not available for publish/subscribe messaging when you are either connecting to a WebSphere MQ V6 queue
manager, or when the PROVIDERVERSION is "6".

Use the WMQ_MESSAGE_BODY property of a Destination object to indicate whether the JMS application accesses the whole of a WebSphere MQ message
(including the MQRFH2 header, if present) as the body of a JMSBytesMessage.

Sending a message
When sending messages, WMQ_MESSAGE_BODY takes precedence over WMQ_TARGET_CLIENT.

If WMQ_MESSAGE_BODY is set to WMQ_MESSAGE_BODY_JMS, WebSphere MQ classes for JMS automatically generates an MQRFH2 header based on the
settings of the JMS Message properties and header fields.

If WMQ_MESSAGE_BODY is set to WMQ_MESSAGE_BODY_MQ, no additional header is added to the message body

Property Description Java Type Link to full description

JMS_IBM_MQMD_Report Options for report messages Integer Report

JMS_IBM_MQMD_MsgType Message type Integer MsgType

JMS_IBM_MQMD_Expiry Message lifetime Integer Expiry

JMS_IBM_MQMD_Feedback Feedback or reason code Integer Feedback

JMS_IBM_MQMD_Encoding Numeric encoding of message

data

Integer Encoding

JMS_IBM_MQMD_CodedCharSetId Character set identifier of

message data

Integer CodedCharSetId

JMS_IBM_MQMD_Format Format name of message

data

String Format

JMS_IBM_MQMD_Priority 1 Message priority Integer Priority

JMS_IBM_MQMD_Persistence Message persistence Integer Persistence

JMS_IBM_MQMD_MsgId 2 Message identifier Object (byte[])
4

MsgId

JMS_IBM_MQMD_CorrelId 3 Correlation identifier Object (byte[])
4

CorrelId

JMS_IBM_MQMD_BackoutCount Backout counter Integer BackoutCount

JMS_IBM_MQMD_ReplyToQ Name of reply queue String ReplyToQ

JMS_IBM_MQMD_ReplyToQMgr Name of reply queue

manager

String ReplyToQMgr

JMS_IBM_MQMD_UserIdentifier User identifier String UserIdentifier

JMS_IBM_MQMD_AccountingToken Accounting token Object (byte[])
4

AccountingToken

JMS_IBM_MQMD_ApplIdentityData Application data relating to

identity

String ApplIdentityData

JMS_IBM_MQMD_PutApplType Type of application that put

the message

Integer PutApplType

JMS_IBM_MQMD_PutApplName Name of application that put

the message

String PutApplName

JMS_IBM_MQMD_PutDate Date when message was put String PutDate

JMS_IBM_MQMD_PutTime Time when message was put String PutTime

JMS_IBM_MQMD_ApplOriginData Application data relating to

origin

String ApplOriginData

JMS_IBM_MQMD_GroupId Group identifier Object (byte[])
4

GroupId

JMS_IBM_MQMD_MsgSeqNumber Sequence number of logical

message within group

Integer MsgSeqNumber

JMS_IBM_MQMD_Offset Offset of data in physical

message from start of logical

message

Integer Offset

JMS_IBM_MQMD_MsgFlags Message flags Integer MsgFlags

JMS_IBM_MQMD_OriginalLength Length of original message Integer OriginalLength

1. Attention: If you assign a value to JMS_IBM_MQMD_Priority that is not within the range 0-9, this violates the JMS specification.

2. Attention: The JMS specification states that the message ID must be set by the JMS provider and that it must either be unique or null. If

you assign a value to JMS_IBM_MQMD_MsgId, this value is copied to the JMSMessageID. Thus it is not set by the JMS provider and might

not be unique: this violates the JMS specification.

3. Attention: If you assign a value to JMS_IBM_MQMD_CorrelId that starts with the string 'ID:', this violates the JMS specification.

4. Attention: The use of byte array properties on a message violates the JMS specification.

Page 77 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

If WMQ_MESSAGE_BODY is set to WMQ_MESSAGE_BODY_UNSPECIFIED, the default value, WebSphere MQ classes for JMS does or does not generate and
include an MQRFH2 header, depending on the value of WMQ_TARGET_CLIENT.

When you send a JMSBytesMessage, you can use the following properties to override the default format settings for the JMS message body when the
WebSphere MQ message is constructed:

� JMS_IBM_Format or JMS_IBM_MQMD_Format: This property specifies the format of the WebSphere MQ header or application payload that starts the
JMS message body if there is no preceding Websphere MQ header.

� JMS_IBM_Character_Set or JMS_IBM_MQMD_CodedCharSetId: This property specifies the CCSID of the WebSphere MQ header or application payload
that starts the JMS message body if there is no preceding Websphere MQ header.

� JMS_IBM_Encoding or JMS_IBM_MQMD_Encoding: This property specifies the encoding of the WebSphere MQ header or application payload that starts
the JMS message body if there is no preceding Websphere MQ header.

If both are specified, the JMS_IBM_MQMD properties override the corresponding JMS_IBM_ properties.

This example results in a message being put to a queue or topic, with its body containing the application payload without an automatically generated
MQRFH2 header being added.

// Create a ConnectionFactory, connection, session, producer, message

 // ...

 // Create a destination

 // ...

 // Set message body to be MQ

 dest.setIntProperty(WMQConstants.WMQ_MESSAGE_BODY, WMQConstants.WMQ_MESSAGE_

 BODY_MQ);

 // Send the message

Receiving a message

If WMQ_MESSAGE_BODY is set to WMQ_MESSAGE_BODY_JMS, the inbound JMS message type and body are determined by the contents of the MQRFH2
header (if present) or the MQMD (if there is no MQRFH2) in the received Websphere MQ message.

If WMQ_MESSAGE_BODY is set to WMQ_MESSAGE_BODY_MQ, the inbound JMS message type is JMSBytesMessage. The JMS message body is the message
data returned by the underlying MQGET API call and the length of message body is the length returned by the MQGET call. The character set and encoding of
the data in the message body is determined by the CodedCharSetId and Encoding fields of the MQMD. The format of the data in the message body is
determined by the Format field of the MQMD

If WMQ_MESSAGE_BODY is set to WMQ_MESSAGE_BODY_UNSPECIFIED, the default value, WebSphere MQ classes for JMS sets it to
WMQ_MESSAGE_BODY_JMS.

When you receive a JMSBytesMessage, you can decode it by reference to the following properties:

� JMS_IBM_Format or JMS_IBM_MQMD_Format: This property specifies the format of the WebSphere MQ header or application payload that starts the
JMS message body if there is no preceding Websphere MQ header.

� JMS_IBM_Character_Set or JMS_IBM_MQMD_CodedCharSetId: This property specifies the CCSID of the WebSphere MQ header or application payload
that starts the JMS message body if there is no preceding Websphere MQ header.

� JMS_IBM_Encoding or JMS_IBM_MQMD_Encoding: This property specifies the encoding of the WebSphere MQ header or application payload that starts
the JMS message body if there is no preceding Websphere MQ header.

This example results in a received message that is a JMSBytesMessage, irrespective of the content of the received message and of the format field of the
received MQMD.

// Create a ConnectionFactory, connection, session, consumer

 // ...

 // Create a destination

 // ...

 // Set message body to be MQ

 dest.setIntProperty(WMQConstants.WMQ_MESSAGE_BODY, WMQConstants.WMQ_MESSAGE_

 BODY_MQ);

 // Receive the message

Destination property WMQ_MESSAGE_BODY
WMQ_MESSAGE_BODY determines whether a JMS application processes the MQRFH2 of a WebSphere MQ message as part of the message payload
(that is, as part of the JMS message body).

Parent topic: Accessing WebSphere MQ features from a WebSphere MQ classes for JMS application

This build: January 26, 2011 11:30:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm41060_

4.5.11.2.1. Destination property WMQ_MESSAGE_BODY

WMQ_MESSAGE_BODY determines whether a JMS application processes the MQRFH2 of a WebSphere® MQ message as part of the message payload (that
is, as part of the JMS message body).

Table 1. Property names and descriptions

Property Short

form

Description

WMQ_MESSAGE_BODY MBODY Whether a JMS application processes the MQRFH2 of a WebSphere MQ message as part of the

message payload (that is, as part of the JMS message body).

Table 2. Property names, values, and set methods

Property Valid values in administration tool

(defaults in bold)

Valid values in programs Set method

WMQ_MESSAGE_BODY
� UNSPECIFIED

When sending, WebSphere MQ classes for

� WMQ_MESSAGE_

BODY_UNSPECIFIED

setMessageBodyStyle

Page 78 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Parent topic: Accessing WebSphere MQ Message data from a WebSphere MQ classes for JMS application

This build: January 26, 2011 11:30:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm41070_

4.5.11.3. JMS persistent messages

A WebSphere® MQ queue has an attribute called NonPersistentMessageClass. The value of this attribute determines whether nonpersistent messages on

the queue are discarded when the queue manager restarts.

You can set the attribute for a local queue by using the WebSphere MQ Script (MQSC) command, DEFINE QLOCAL, with either of the following parameters:

NPMCLASS(NORMAL)

Nonpersistent messages on the queue are discarded when the queue manager restarts. This is the default value.

NPMCLASS(HIGH)

Nonpersistent messages on the queue are not discarded when the queue manager restarts following a quiesced or immediate shutdown. Nonpersistent
messages might be discarded, however, following a preemptive shutdown or a failure.

This topic describes how WebSphere MQ classes for JMS applications can use this queue attribute to provide better performance for JMS persistent
messages.

The PERSISTENCE property of a Queue or Topic object can have the value HIGH. You can use the WebSphere MQ JMS administration tool to set this value,
or an application can call the Destination.setPersistence() method passing the value WMQConstants.WMQ_PER_NPHIGH as a parameter.

If an application sends a JMS persistent message or a JMS nonpersistent message to a destination whose PERSISTENCE property has the value HIGH, and
the underlying WebSphere MQ queue is set to NPMCLASS(HIGH), the message is put on the queue as a WebSphere MQ nonpersistent message. If the
PERSISTENCE property of the destination does not have the value HIGH, or if the underlying queue is set to NPMCLASS(NORMAL), a JMS persistent message
is put on the queue as a WebSphere MQ persistent message, and a JMS nonpersistent message is put on the queue as a WebSphere MQ nonpersistent
message.

If a JMS persistent message is put on a queue as a WebSphere MQ nonpersistent message, and you want to ensure that the message is not discarded
following a quiesced or immediate shutdown of a queue manager, all queues through which the message might be routed must be set to NPMCLASS(HIGH).
In the publish/subscribe domain, these queues include subscriber queues. As an aid to enforcing this configuration, WebSphere MQ classes for JMS throws
an InvalidDestinationException if an application tries to create a message consumer for a destination whose PERSISTENCE property has the value HIGH and
the underlying WebSphere MQ queue is set to NPMCLASS(NORMAL).

Setting the PERSISTENCE property of a destination to HIGH has no effect on how a message is received from that destination. A message sent as a JMS
persistent message is received as a JMS persistent message, and a message sent as a JMS nonpersistent message is received as a JMS nonpersistent
message.

When an application sends the first message to a destination whose PERSISTENCE property has the value HIGH, or when an application creates the first
message consumer for a destination whose PERSISTENCE property has the value HIGH, WebSphere MQ classes for JMS issues an MQINQ call to determine
whether NPMCLASS(HIGH) is set on the underlying WebSphere MQ queue. The application must therefore have the authority to inquire on the queue. In
addition, WebSphere MQ classes for JMS preserves the result of the MQINQ call until the destination is deleted, and does not issue more MQINQ calls.
Therefore, if you change the NPMCLASS setting on the underlying queue while the application is still using the destination, WebSphere MQ classes for JMS
does not notice the new setting.

By allowing JMS persistent messages to be put on WebSphere MQ queues as WebSphere MQ nonpersistent messages, you are gaining performance at the
expense of some reliability. If you require maximum reliability for JMS persistent messages, do not send the messages to a destination whose PERSISTENCE
property has the value HIGH.

Parent topic: Accessing WebSphere MQ features from a WebSphere MQ classes for JMS application

This build: January 26, 2011 11:29:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25200_

4.5.11.4. Using Secure Sockets Layer (SSL) with WebSphere MQ classes for JMS

WebSphere® MQ classes for JMS applications can use SSL encryption. To do this they require a JSSE provider.

WebSphere MQ classes for JMS connections using TRANSPORT(CLIENT) support Secure Sockets Layer (SSL) encryption. SSL provides communication
encryption, authentication, and message integrity. It is typically used to secure communications between any two peers on the Internet or within an
intranet.

JMS does or does not generate and include

an MQRFH2 header, depending on the value

of WMQ_TARGET_CLIENT.

When receiving, acts as value JMS.

� JMS

When sending, WebSphere MQ classes for

JMS automatically generates an MQRFH2

header and includes it in the WebSphere MQ

message.

When receiving, WebSphere MQ classes for

JMS set the JMS message properties

according to values in the MQRFH2 (if

present); it does not present the MQRFH2 as

part of the JMS message body.

� MQ

When sending, WebSphere MQ classes for

JMS does not generate an MQRFH2.

When receiving, WebSphere MQ classes for

JMS presents the MQRFH2 as part of the JMS

message body.

� WMQ_MESSAGE_BODY_JMS

� WMQ_MESSAGE_BODY_MQ

Page 79 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

WebSphere MQ classes for JMS uses Java Secure Socket Extension (JSSE) to handle SSL encryption, and therefore requires a JSSE provider. JSE v1.4 JVMs
have a JSSE provider built in. Details of how to manage and store certificates can vary from provider to provider. For information about this, see your JSSE
provider's documentation.

This section assumes that your JSSE provider is correctly installed and configured, and that suitable certificates have been installed and made available to
your JSSE provider.

If your WebSphere MQ classes for JMS application uses a client channel definition table to connect to a queue manager, see Using a client channel definition
table with WebSphere MQ classes for JMS.

SSL administrative properties for WebSphere MQ classes for JMS
This section introduces the SSL administrative properties.

SSL CipherSpecs and CipherSuites
CipherSpecs supported by WebSphere MQ and their equivalent CipherSuites.

Parent topic: Accessing WebSphere MQ features from a WebSphere MQ classes for JMS application

This build: January 26, 2011 11:29:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25320_

4.5.11.4.1. SSL administrative properties for WebSphere MQ classes for JMS

This section introduces the SSL administrative properties.

SSLCIPHERSUITE object property
Set SSLCIPHERSUITE to enable SSL encryption on a ConnectionFactory object.

SSLFIPSREQUIRED object property
If you require a connection to use a CipherSuite that is supported by the IBM® Java JSSE FIPS provider (IBMJSSEFIPS), set the SSLFIPSREQUIRED
property of the connection factory to YES.

SSLPEERNAME object property
Use SSLPEERNAME to specify a distinguished name pattern, to ensure that your JMS application connects to the correct queue manager.

SSLCERTSTORES object property
Use SSLCERTSTORES to specify a list of LDAP servers to use for certificate revocation list (CRL) checking.

SSLRESETCOUNT object property
This property represents the total number of bytes sent and received by a connection before the secret key that is used for encryption is renegotiated.

SSLSocketFactory object property
To customize other aspects of the SSL connection for an application, create an SSLSocketFactory and configure JMS to use it.

Making changes to the JSSE keystore or truststore
If you make changes to the keystore or truststore, you must take certain actions for the changes to be picked up.

Parent topic: Using Secure Sockets Layer (SSL) with WebSphere MQ classes for JMS

This build: January 26, 2011 11:29:36

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25330_

4.5.11.4.1.1. SSLCIPHERSUITE object property

Set SSLCIPHERSUITE to enable SSL encryption on a ConnectionFactory object.

To enable SSL encryption on a ConnectionFactory object, use JMSAdmin to set the SSLCIPHERSUITE property to a CipherSuite supported by your JSSE
provider. This must match the CipherSpec set on the target channel. However, CipherSuites are distinct from CipherSpecs and therefore have different
names. SSL CipherSpecs and CipherSuites contains a table mapping the CipherSpecs supported by WebSphere MQ to their equivalent CipherSuites as known
to JSSE. For more information about CipherSpecs and CipherSuites with WebSphere MQ, see WebSphere MQ Security.

For example, to set up a ConnectionFactory object that can be used to create a connection over an SSL enabled MQI channel with a CipherSpec of
RC4_MD5_EXPORT, issue the following command to JMSAdmin:

ALTER CF(my.cf) SSLCIPHERSUITE(SSL_RSA_EXPORT_WITH_RC4_40_MD5)

This can also be set from an application, using the setSSLCipherSuite() method on an MQConnectionFactory object.

For convenience, if a CipherSpec is specified on the SSLCIPHERSUITE property, JMSAdmin attempts to map the CipherSpec to an appropriate CipherSuite
and issues a warning. This attempt to map is not made if the property is specified by an application.

Parent topic: SSL administrative properties for WebSphere MQ classes for JMS

Related reference
SSL CipherSpecs and CipherSuites

Related information
CipherSuites and CipherSpecs

This build: January 26, 2011 11:29:36

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 80 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25340_

4.5.11.4.1.2. SSLFIPSREQUIRED object property

If you require a connection to use a CipherSuite that is supported by the IBM® Java JSSE FIPS provider (IBMJSSEFIPS), set the SSLFIPSREQUIRED property
of the connection factory to YES.

The default value of this property is NO, which means that a connection can use any CipherSuite that is supported by WebSphere® MQ.

If an application uses more than one connection, the value of SSLFIPSREQUIRED that is used when the application creates the first connection determines
the value that is used when the application creates any subsequent connection. This means that the value of the SSLFIPSREQUIRED property of the
connection factory that is used to create a subsequent connection is ignored. You must restart the application if you want to use a different value of
SSLFIPSREQUIRED.

An application can set this property by calling the setSSLFipsRequired() method of a ConnectionFactory object. The property is ignored if no CipherSuite is
set.

Parent topic: SSL administrative properties for WebSphere MQ classes for JMS

This build: January 26, 2011 11:29:36

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25350_

4.5.11.4.1.3. SSLPEERNAME object property

Use SSLPEERNAME to specify a distinguished name pattern, to ensure that your JMS application connects to the correct queue manager.

A JMS application can ensure that it connects to the correct queue manager by specifying a distinguished name (DN) pattern. The connection succeeds only
if the queue manager presents a DN that matches the pattern. For more details of the format of this pattern, see the related topics.

The DN is set using the SSLPEERNAME property of a ConnectionFactory object. For example, the following JMSAdmin command sets a ConnectionFactory
object to expect the queue manager to identify itself with a Common Name beginning with the characters QMGR., and with at least two Organizational Unit

names, the first of which must be IBM® and the second WEBSPHERE:

ALTER CF(my.cf) SSLPEERNAME(CN=QMGR.*, OU=IBM, OU=WEBSPHERE)

Checking is not case sensitive and semicolons can be used in place of commas. SSLPEERNAME can also be set from an application using the
setSSLPeerName() method on an MQConnectionFactory object. If this property is not set, no checking is performed on the Distinguished Name supplied by
the queue manager. This property is ignored if no CipherSuite is set.

Parent topic: SSL administrative properties for WebSphere MQ classes for JMS

Related information
Distinguished Names
Parameter descriptions for DEFINE CHANNEL

This build: January 26, 2011 11:29:36

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25360_

4.5.11.4.1.4. SSLCERTSTORES object property

Use SSLCERTSTORES to specify a list of LDAP servers to use for certificate revocation list (CRL) checking.

It is common to use a certificate revocation list (CRL) to identify certificates that are no longer trusted. CRLs are typically hosted on LDAP servers. JMS
allows an LDAP server to be specified for CRL checking under Java 2 v1.4 or later. The following JMSAdmin example directs JMS to use a CRL hosted on an
LDAP server named crl1.ibm.com:

ALTER CF(my.cf) SSLCRL(ldap://crl1.ibm.com)

Note: To use a CertStore successfully with a CRL hosted on an LDAP server, make sure that your Java Software Development Kit (SDK) is compatible with
the CRL. Some SDKs require that the CRL conforms to RFC 2587, which defines a schema for LDAP v2. Most LDAP v3 servers use RFC 2256 instead.

If your LDAP server is not running on the default port of 389, you can specify the port by appending a colon (:) and the port number to the host name. If the
certificate presented by the queue manager is present in the CRL hosted on crl1.ibm.com, the connection is not completed. To avoid a single point of failure,
JMS allows multiple LDAP servers to be supplied by supplying a list of LDAP servers delimited by the space character. Here is an example:

ALTER CF(my.cf) SSLCRL(ldap://crl1.ibm.com ldap://crl2.ibm.com)

When multiple LDAP servers are specified, JMS tries each one in turn until it finds a server with which it can successfully verify the queue manager's
certificate. Each server must contain identical information.

A string in this format can be supplied by an application on the MQConnectionFactory.setSSLCertStores() method. Alternatively, the application can create
one or more java.security.cert.CertStore objects, place these in a suitable Collection object, and supply this Collection object to the setSSLCertStores()
method. In this way, the application can customize CRL checking. See your JSSE documentation for details on constructing and using CertStore objects.

The certificate presented by the queue manager when a connection is being set up is validated as follows:

1. The first CertStore object in the Collection identified by sslCertStores is used to identify a CRL server.

2. An attempt is made to contact the CRL server.

3. If the attempt is successful, the server is searched for a match for the certificate.

a. If the certificate is found to be revoked, the search process is over and the connection request fails with reason code
MQRC_SSL_CERTIFICATE_REVOKED.

b. If the certificate is not found, the search process is over and the connection is allowed to proceed.

4. If the attempt to contact the server is unsuccessful, the next CertStore object is used to identify a CRL server and the process repeats from step 2.

If this was the last CertStore in the Collection, or if the Collection contains no CertStore objects, the search process has failed and the connection

Page 81 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

request fails with reason code MQRC_SSL_CERT_STORE_ERROR.

The Collection object determines the order in which CertStores are used.

If your application uses setSSLCertStores() to set a Collection of CertStore objects, the MQConnectionFactory can no longer be bound into a JNDI
namespace. Attempting to do so causes an exception. If the sslCertStores property is not set, no revocation checking is performed on the certificate
provided by the queue manager. This property is ignored if no CipherSuite is set.

Parent topic: SSL administrative properties for WebSphere MQ classes for JMS

This build: January 26, 2011 11:29:36

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25370_

4.5.11.4.1.5. SSLRESETCOUNT object property

This property represents the total number of bytes sent and received by a connection before the secret key that is used for encryption is renegotiated.

The number of bytes sent is the number before encryption, and the number of bytes received is the number after decryption. The number of bytes also
includes control information sent and received by WebSphere® MQ classes for JMS.

For example, to configure a ConnectionFactory object that can be used to create a connection over an SSL enabled MQI channel whose secret key is
renegotiated after 4 MB of data have flowed, issue the following command to JMSAdmin:

ALTER CF(my.cf) SSLRESETCOUNT(4194304)

An application can set this property by calling the setSSLResetCount() method of a ConnectionFactory object.

If the value of this property is zero, which is the default value, the secret key is never renegotiated. The property is ignored if no CipherSuite is set.

If you use the version of GSKit supplied with WebSphere MQ with the following Java versions and platforms, you must not set the reset count to a value
other than zero. If you do set the reset count to a value other than zero, a client connection fails when it attempts to renegotiate the secret key.

� an HP or Sun V1.4.2 JDK

� any V1.4.2 JDK when using FIPS mode

� any V5.0 or later JDK

Java 5.0 is included with WebSphere MQ Version 7.0.

If you want to use secret key reset with one of these JDKs on the Windows or UNIX platforms only, you can install GSKit Version 8. Install GSKit v8 on the
queue manager side of the SSL connection to make Java SSL secret key reset work correctly. This is because the GSKit v8 SSL secret key reset behavior
only takes effect at the server side of the channel. You can use GSKit v8 for SSL connections with WebSphere MQ client applications (including WebSphere
MQ classes for JMS applications using bindings mode), but there is no difference in SSL channel behavior if GSKit v8 is installed only on the client.

For more information about the secret key that is used for encryption on an SSL enabled channel, see Resetting SSL secret keys.

Parent topic: SSL administrative properties for WebSphere MQ classes for JMS

This build: January 26, 2011 11:29:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25380_

4.5.11.4.1.6. SSLSocketFactory object property

To customize other aspects of the SSL connection for an application, create an SSLSocketFactory and configure JMS to use it.

You might want to customize other aspects of the SSL connection for an application. For example, you might want to initialize cryptographic hardware or
change the keystore and truststore in use. To do this, the application must first create a javax.net.ssl.SSLSocketFactory object that is customized
accordingly. See your JSSE documentation for information about how to do this, because the customizable features vary from provider to provider. After a
suitable SSLSocketFactory object is obtained, use the MQConnectionFactory.setSSLSocketFactory() method to configure JMS to use the customized
SSLSocketFactory object.

If your application uses the setSSLSocketFactory() method to set a customized SSLSocketFactory object, the MQConnectionFactory object can no longer be
bound into a JNDI namespace. Attempting to do so causes an exception. If this property is not set, the default SSLSocketFactory object is used. See your
JSSE documentation for details of the behavior of the default SSLSocketFactory object. This property is ignored if no CipherSuite is set.

Important: Do not assume that the use of the SSL properties ensures security when a ConnectionFactory object is retrieved from a JNDI namespace that is
not itself secure. Specifically, the standard LDAP implementation of JNDI is not secure. An attacker can imitate the LDAP server, misleading a JMS
application into connecting to the wrong server without noticing. With suitable security arrangements in place, other implementations of JNDI (such as the
fscontext implementation) are secure.

Parent topic: SSL administrative properties for WebSphere MQ classes for JMS

This build: January 26, 2011 11:29:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25390_

4.5.11.4.1.7. Making changes to the JSSE keystore or truststore

If you make changes to the keystore or truststore, you must take certain actions for the changes to be picked up.

If you change the contents of the JSSE keystore or truststore, or change the location of the keystore or truststore file, WebSphere® MQ classes for JMS
applications that are running at the time do not automatically pick up the changes. For the changes to take effect, the following actions must be performed:

� The applications must close all their connections, and destroy any unused connections in connection pools.

Page 82 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

� If your JSSE provider caches information from the keystore and truststore, this information must be refreshed.

After these actions have been performed, the applications can then re-create their connections.

Depending on how you design your applications, and on the function provided by your JSSE provider, it might be possible to perform these actions without
stopping and restarting your applications. However, stopping and restarting the applications might be the simplest solution.

Parent topic: SSL administrative properties for WebSphere MQ classes for JMS

This build: January 26, 2011 11:29:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25400_

4.5.11.4.2. SSL CipherSpecs and CipherSuites

CipherSpecs supported by WebSphere® MQ and their equivalent CipherSuites.

Table 1 lists the CipherSpecs supported by WebSphere MQ and their equivalent CipherSuites. The table also indicates whether a WebSphere MQ classes for
JMS application can connect to a queue manager if a CipherSpec is specified at the server end of the MQI channel and the equivalent CipherSuite is specified
at the client end. For each combination of CipherSpec and CipherSuite, whether the application can connect to the queue manager depends on the value of
the SSLFIPSREQUIRED property of the ConnectionFactory object.

At the server end of an MQI channel, the name of a CipherSpec can be specified as the value of the SSLCIPH parameter on a DEFINE CHANNEL CHLTYPE
(SVRCONN) command. At the client end of an MQI channel, the name of a CipherSuite can be specified in the following ways:

� An application can call the setSSLCipherSuite() method of a ConnectionFactory object.

� Using the WebSphere MQ JMS administration tool, you can set the SSLCIPHERSUITE property of a ConnectionFactory object.

Notes:

1. When using the WebSphere MQ JMS administration tool, SFIPS is the short name of the ConnectionFactory property SSLFIPSREQUIRED.

2. This CipherSpec has no equivalent CipherSuite.

3. This CipherSpec was FIPS 140-2 certified before 19th May 2007.

4. This CipherSpec was FIPS 140-2 certified before 19th May 2007. The name FIPS_WITH_DES_CBC_SHA is historical and reflects the fact that this
CipherSpec was previously FIPS-compliant.

5. This CipherSpec (TLS_RSA_WITH_AES_256_CBC_SHA) cannot be used to secure a connection from the WebSphere MQ Explorer to a queue manager.

Parent topic: Using Secure Sockets Layer (SSL) with WebSphere MQ classes for JMS

This build: January 26, 2011 11:29:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm34740_

4.5.11.5. Using channel exits with WebSphere MQ classes for JMS

This topic describes how to write channel exits in Java, how to assign channel exits, and how to pass user data to channel exits when they are called. The
topic also describes how to use channel exits written in C and C++, and how to assign a sequence of send and receive exits that are run in succession.

Note that only an application that connects to a queue manager in client mode can use channel exits. An application cannot use channel exits if it connects in
bindings mode.

Writing channel exits in Java for WebSphere MQ classes for JMS
You create channel exits by defining Java classes that implement specified interfaces.

Assigning channel exits for WebSphere MQ classes for JMS
A WebSphere MQ classes for JMS application can use channel security, send, and receive exits on the MQI channel that starts when the application
connects to a queue manager. The application can use exits written in Java, C, or C++. The application can also use a sequence of send or receive

Table 1. CipherSpecs supported by WebSphere MQ and their equivalent CipherSuites

CipherSpec Equivalent CipherSuite Connection

possible if

SFIPS1 is

set to NO?

Connection

possible if

SFIPS1 is

set to YES?

NULL_MD5 SSL_RSA_WITH_NULL_MD5 Yes No

NULL_SHA SSL_RSA_WITH_NULL_SHA Yes No

RC4_MD5_EXPORT SSL_RSA_EXPORT_WITH_RC4_40_MD5 Yes No

RC4_MD5_US SSL_RSA_WITH_RC4_128_MD5 Yes No

RC4_SHA_US SSL_RSA_WITH_RC4_128_SHA Yes No

RC2_MD5_EXPORT SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 Yes No

DES_SHA_EXPORT SSL_RSA_WITH_DES_CBC_SHA Yes No

RC4_56_SHA_EXPORT1024 SSL_RSA_EXPORT1024_WITH_RC4_56_SHA No No

DES_SHA_EXPORT1024 SSL_RSA_EXPORT1024_WITH_DES_CBC_SHA No No

TRIPLE_DES_SHA_US SSL_RSA_WITH_3DES_EDE_CBC_SHA Yes No

TLS_RSA_WITH_AES_128_CBC_SHA SSL_RSA_WITH_AES_128_CBC_SHA No Yes

TLS_RSA_WITH_AES_256_CBC_SHA 5 SSL_RSA_WITH_AES_256_CBC_SHA No Yes

AES_SHA_US2

TLS_RSA_WITH_DES_CBC_SHA SSL_RSA_WITH_DES_CBC_SHA No No3

TLS_RSA_WITH_3DES_EDE_CBC_SHA SSL_RSA_WITH_3DES_EDE_CBC_SHA No Yes

FIPS_WITH_DES_CBC_SHA SSL_RSA_FIPS_WITH_DES_CBC_SHA Yes No4

FIPS_WITH_3DES_EDE_CBC_SHA SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA Yes No

Page 83 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

exits that are run in succession.

Specifying the user data to be passed to channel exits when using WebSphere MQ classes for JMS
Up to 32 characters of user data can be passed to a channel exit when it is called.

Parent topic: Accessing WebSphere MQ features from a WebSphere MQ classes for JMS application

This build: January 26, 2011 11:29:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm11170_

4.5.11.5.1. Writing channel exits in Java for WebSphere MQ classes for JMS

You create channel exits by defining Java classes that implement specified interfaces.

Three interfaces are defined in the com.ibm.mq.exits package:

� WMQSendExit, for a send exit

� WMQReceiveExit, for a receive exit

� WMQSecurityExit, for a security exit

The following sample code defines a class that implements all three interfaces:

public class MyMQExits implements WMQSendExit, WMQReceiveExit, WMQSecurityExit {

 // Default constructor

 public MyMQExits(){

 }

 // This method implements the send exit interface

 public ByteBuffer channelSendExit(MQCXP channelExitParms,

 MQCD channelDefinition,

 ByteBuffer agentBuffer)

 {

 // Complete the body of the send exit here

 }

 // This method implements the receive exit interface

 public ByteBuffer channelReceiveExit(MQCXP channelExitParms,

 MQCD channelDefinition,

 ByteBuffer agentBuffer)

 {

 // Complete the body of the receive exit here

 }

 // This method implements the security exit interface

 public ByteBuffer channelSecurityExit(MQCXP channelExitParms,

 MQCD channelDefinition,

 ByteBuffer agentBuffer)

 {

 // Complete the body of the security exit here

 }

}

Each exit receives as parameters an MQCXP object and an MQCD object. These objects represent the MQCXP and MQCD structures defined in the procedural
interface.

When a send exit is called, the agentBuffer parameter contains the data that is about to be sent to the server queue manager. A length parameter is not
required because the expression agentBuffer.limit() provides the length of the data. The send exit returns as its value the data to be sent to the server
queue manager. However, if the send exit is not the last send exit in a sequence of send exits, the data returned is passed instead to the next send exit in
the sequence. A send exit can return a modified version of the data that it receives in the agentBuffer parameter, or it can return the data unchanged. The
simplest possible exit body is therefore:

{ return agentBuffer; }

When a receive exit is called, the agentBuffer parameter contains the data that has been received from the server queue manager. The receive exit returns
as its value the data to be passed to the application by WebSphere MQ classes for JMS. However, if the receive exit is not the last receive exit in a sequence
of receive exits, the data returned is passed instead to the next receive exit in the sequence.

When a security exit is called, the agentBuffer parameter contains the data that has been received in a security flow from the security exit at the server end
of the connection. The security exit returns as its value the data to be sent in a security flow to the server security exit.

Channel exits are called with a buffer that has a backing array. For best performance, the exit should return a buffer with a backing array.

Up to 32 characters of user data can be passed to a channel exit when it is called. The exit accesses the user data by calling the getExitData() method of the
MQCXP object. Although the exit can change the user data by calling the setExitData() method, the user data is refreshed every time the exit is called. Any
changes made to the user data are therefore lost. However, the exit can pass data from one call to the next by using the exit user area of the MQCXP object.
The exit accesses the exit user area by reference by calling the getExitUserArea() method.

Every exit class must have a constructor. The constructor can be either the default constructor, as shown in the previous example, or a constructor with a
string parameter. The constructor is called to create an instance of the exit class for each exit defined in the class. Therefore, in the previous example, an
instance of the MyMQExits class is created for the send exit, another instance is created for the receive exit, and a third instance is created for the security
exit. When a constructor with a string parameter is called, the parameter contains the same user data that is passed to the channel exit for which the
instance is being created. If an exit class has both a default constructor and a single parameter constructor, the single parameter constructor takes
precedence.

Do not close the connection from within a channel exit.

When data is sent to the server end of a connection, SSL encryption is performed after any channel exits are called. Similarly, when data is received from
the server end of a connection, SSL decryption is performed before any channel exits are called.

In versions of WebSphere® MQ classes for JMS earlier than Version 7.0, channel exits were implemented using the interfaces MQSendExit, MQReceiveExit,
and MQSecurityExit. You can still use these interfaces, but the new interfaces are preferred for improved function and performance.

Parent topic: Using channel exits with WebSphere MQ classes for JMS

This build: January 26, 2011 11:29:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 84 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm11171_

4.5.11.5.2. Assigning channel exits for WebSphere MQ classes for JMS

A WebSphere MQ classes for JMS application can use channel security, send, and receive exits on the MQI channel that starts when the application connects
to a queue manager. The application can use exits written in Java, C, or C++. The application can also use a sequence of send or receive exits that are run
in succession.

The SENDEXIT property of an MQConnectionFactory object specifies a send exit, or a sequence of send exits, used by a connection. The value of the
property is a string that comprises one or more items separated by commas. Each item identifies a send exit in one of the following ways:

� The name of a class that implements the WMQSendExit interface (for a send exit written in Java)

� A string in the format libraryName(entryPointName) (for a send exit written in C or C++)

You can set the SENDEXIT property by using the WebSphere MQ JMS administration tool or WebSphere MQ Explorer. Alternatively, an application can set
the property by calling the setSendExit() method.

In a similar way, the RECEXIT property of an MQConnectionFactory object specifies the receive exit, or sequence of receive exits, used by a connection, and
the SECEXIT property specifies the security exit used by a connection. You can set these properties by using the WebSphere MQ JMS administration tool or
WebSphere MQ Explorer. Alternatively, an application can set the properties by calling the setReceiveExit() and setSecurityExit() methods.

Channel exits are loaded by their own class loader. To find a channel exit, the class loader searches the following locations in the specified order. The class
loader loads the first occurrence that it finds.

1. The class path specified by the property com.ibm.mq.cfg.ClientExitPath.JavaExitsClasspath. You can set this property in the WebSphere® MQ client
configuration file, in the WebSphere MQ classes for JMS configuration file, or as a system property on the java command. The value of this property is
treated like a normal Java class path.

2. The class path specified by the property com.ibm.mq.exitClasspath. You can set this property in the WebSphere MQ classes for JMS configuration file
or as a system property on the java command. The value of this property is treated like a normal Java class path.

Note that this property is now deprecated.

3. The WebSphere MQ exits directory, as shown in Table 1. The class loader first searches the directory for class files that are not packaged in Java
archive (JAR) files. If the channel exit is not found, the class loader then searches the JAR files in the directory.

The parent of the class loader is the class loader that is used to load WebSphere MQ classes for JMS. It is therefore possible for the parent class loader to
load a channel exit if it cannot be found in any of the preceding locations. However, in an environment such as an application server, you are not likely to be
able to influence the choice of the parent class loader.

Your application must have the correct security permission to load a channel exit class.

The MQSendExit, MQReceiveExit, and MQSecurityExit interfaces supplied with versions of WebSphere MQ earlier than Version 7.0 are still supported. If you
use channel exits that implement these interfaces, com.ibm.mq.jar must be present in the class path.

For information about how to write channel exits in C or C++, see WebSphere MQ Intercommunication. You must store channel exit programs written in C or
C++ in the directory shown in Table 1.

If your application uses a client channel definition table to connect to a queue manager, see Using a client channel definition table with WebSphere MQ
classes for JMS.

Parent topic: Using channel exits with WebSphere MQ classes for JMS

This build: January 26, 2011 11:29:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm11172_

4.5.11.5.3. Specifying the user data to be passed to channel exits when using WebSphere MQ
classes for JMS

Up to 32 characters of user data can be passed to a channel exit when it is called.

The SENDEXITINIT property of an MQConnectionFactory object specifies the user data that is passed to each send exit when it is called. The value of the
property is a string that comprises one or more items of user data separated by commas. The position of each item of user data within the string determines
which send exit, in a sequence of send exits, the user data is passed to. For example, the first item of user data in the string is passed to the first send exit
in a sequence of send exits.

You can set the SENDEXITINIT property by using the WebSphere MQ JMS administration tool or WebSphere MQ Explorer. Alternatively, an application can
set the property by calling the setSendExitInit() method.

In a similar way, the RECEXITINIT property of a ConnectionFactory object specifies the user data that is passed to each receive exit, and the SECEXITINIT
property specifies the user data passed to a security exit. You can set these properties by using the WebSphere MQ JMS administration tool or WebSphere
MQ Explorer. Alternatively, an application can set the properties by calling the setReceiveExitInit() and setSecurityExitInit() methods.

Note the following rules when specifying user data that is passed to channel exits:

� If the number of items of user data in a string is more than the number of exits in a sequence, the excess items of user data are ignored.

� If the number of items of user data in a string is less than the number of exits in a sequence, each unspecified item of user data is set to an empty
string. Two commas in succession within a string, or a comma at the beginning of a string, also denotes an unspecified item of user data.

If an application uses a client channel definition table to connect to a queue manager, any user data specified in a client connection channel definition is
passed to channel exits when they are called. For more information about using a client channel definition table, see Using a client channel definition table
with WebSphere MQ classes for JMS.

Parent topic: Using channel exits with WebSphere MQ classes for JMS

Table 1. The WebSphere MQ exits directory

Platform Directory

AIX®, HP-UX, Linux, and Solaris /var/mqm/exits (32-bit channel exits)

/var/mqm/exits64 (64-bit channel exits)

Windows install_data_dir\exits

Note: install_data_dir is the directory that you chose for the WebSphere MQ data files during installation. The default directory is C:\Program

Files\IBM\WebSphere MQ.

Page 85 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

This build: January 26, 2011 11:29:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm11173_

4.5.11.6. Using a client channel definition table with WebSphere MQ classes for JMS

A WebSphere® MQ classes for JMS application can use client connection channel definitions that are stored in a client channel definition table (CCDT). You
configure a ConnectionFactory object to use the CCDT. There are some restrictions on its use.

As an alternative to creating a client connection channel definition by setting certain properties of a ConnectionFactory object, a WebSphere MQ classes for
JMS application can use client connection channel definitions that are stored in a client channel definition table. These definitions are created by WebSphere
MQ Script (MQSC) commands or WebSphere MQ Programmable Command Format (PCF) commands. When the application creates a Connection object,
WebSphere MQ classes for JMS searches the client channel definition table for a suitable client connection channel definition, and uses the channel definition
to start an MQI channel. For more information about client channel definition tables and how to construct one, see WebSphere MQ Clients.

To use a client channel definition table, the CCDTURL property of a ConnectionFactory object must be set to a URL object. The URL object encapsulates a
uniform resource locator (URL) that identifies the name and location of the file containing the client channel definition table and specifies how the file can be
accessed. You can set the CCDTURL property by using the WebSphere MQ JMS administration tool, or an application can set the property by creating a URL
object and calling the setCCDTURL() method of the ConnectionFactory object.

For example, if the file ccdt1.tab contains a client channel definition table and is stored on the same system on which the application is running, the
application can set the CCDTURL property in the following way:

java.net.URL chanTab1 = new URL("file:///home/admdata/ccdt1.tab");

factory.setCCDTURL(chanTab1);

As another example, suppose the file ccdt2.tab contains a client channel definition table and is stored on a system that is different to the one on which the
application is running. If the file can be accessed using the FTP protocol, the application can set the CCDTURL property in the following way:

java.net.URL chanTab2 = new URL("ftp://ftp.server/admdata/ccdt2.tab");

factory.setCCDTURL(chanTab2);

In addition to setting the CCDTURL property of the ConnectionFactory object, the QMANAGER property of the same object must be set to one of the
following values:

� The name of a queue manager

� An asterisk (*) followed by the name of a queue manager group

� An asterisk (*)

� An empty string, or a string containing all blank characters

These are the same values that can be used for the QMgrName parameter on an MQCONN call issued by a client application that is using Message Queue

Interface (MQI). For more information about the meaning of these values therefore, see the WebSphere MQ Application Programming Reference and
WebSphere MQ Clients. You can set the QMANAGER property by using the WebSphere MQ JMS administration tool or WebSphere MQ Explorer. Alternatively,
an application can set the property by calling the setQueueManager() method of the ConnectionFactory object.

If an application then creates a Connection object from the ConnectionFactory object, WebSphere MQ classes for JMS accesses the client channel definition
table identified by the CCDTURL property, uses the QMANAGER property to search the table for a suitable client connection channel definition, and then uses
the channel definition to start an MQI channel to a queue manager. The way that WebSphere MQ classes for JMS uses the QMANAGER property to search the
client channel definition table is also as described in the WebSphere MQ Application Programming Reference and WebSphere MQ Clients.

Note that the CCDTURL and CHANNEL properties of a ConnectionFactory object cannot both be set when the application calls the createConnection()
method. If both properties are set, the method throws an exception. The CCDTURL or CHANNEL property is considered to be set if its value is anything other
than null, an empty string, or a string containing all blank characters.

When WebSphere MQ classes for JMS finds a suitable client connection channel definition in the client channel definition table, it uses only the information
extracted from the table to start an MQI channel. Any channel related properties of the ConnectionFactory object are ignored.

In particular, note the following points if you are using Secure Sockets Layer (SSL):

� An MQI channel uses SSL only if the channel definition extracted from the client channel definition table specifies the name of a CipherSpec supported
by WebSphere MQ classes for JMS.

� A client channel definition table also contains information about the location of Lightweight Directory Access Protocol (LDAP) servers that hold
certificate revocation lists (CRLs). WebSphere MQ classes for JMS uses only this information to access LDAP servers that hold CRLs.

� A client channel definition table can also contain the location of an OCSP responder. However, WebSphere MQ classes for JMS cannot use OCSP.

For more information about using SSL with a client channel definition table, see WebSphere MQ Clients.

Note also the following points if you are using channel exits:

� An MQI channel uses only the channel exits and associated user data specified by the channel definition extracted from the client channel definition
table.

� A channel definition extracted from a client channel definition table can specify channel exits that are written in Java. This means, for example, that
the SCYEXIT parameter on the DEFINE CHANNEL command to create a client connection channel definition can specify the name of a class that
implements the WMQSecurityExit interface. Similarly, the SENDEXIT parameter can specify the name of a class that implements the WMQSendExit
interface, and the RCVEXIT parameter can specify the name of a class that implements the WMQReceiveExit interface. For more information about how
to write a channel exit in Java, see Using channel exits with WebSphere MQ classes for JMS.

The use of channel exits written in a language other than Java is also supported. For information about how to specify the SCYEXIT, SENDEXIT, and
RCVEXIT parameters on the DEFINE CHANNEL command for channel exits written in another language, see the WebSphere MQ Script (MQSC)
Command Reference.

Parent topic: Accessing WebSphere MQ features from a WebSphere MQ classes for JMS application

This build: January 26, 2011 11:29:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25030_

4.5.11.7. Automatic client reconnection

Configure your JMS client to reconnect automatically following a network, queue manager, or server failure.

Use the CONNECTIONNAMELIST and CLIENTRECONNECTOPTIONS properties of the MQClientConnectionFactory class to configure a client connection to

automatically reconnect following a connection failure or an administrative request to reconnect client applications after stopping a queue manager.

Page 86 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

The full list of connection names in a ConnectionNameList is only accessible to the set/getConnectionNameList methods that can handle a list of connection
names. Methods such as get/setHostname that do not handle lists of names, access the first name in the list.

Automatically reconnectable client connections only become reconnectable once the connection has been established.

Whether an application continues to work correctly after being reconnected automatically depends on its design. Read the related topics to understand how
to design reconnectable clients. Some existing clients might work correctly without modification following automatic reconnection.

Automatic client reconnect is not supported by WebSphere® MQ classes for Java.

Parent topic: Accessing WebSphere MQ features from a WebSphere MQ classes for JMS application

Related information
Application recovery
Automated client reconnection

This build: January 26, 2011 11:29:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25035_

4.5.11.8. Sharing a TCP/IP connection

Multiple instances of an MQI channel can be made to share a single TCP/IP connection

If a channel is defined with the SHARECNV parameter set to a value greater than 1, then that number of conversations can share a channel instance. To
enable a connection factory to exploit this function, set SHARECONVALLOWED to YES.

For applications that use the WebSphere MQ classes for JMS, the maximum number of conversations allowed on a connection defaults to 10. If more than
10 conversations per channel are required, a client channel definition table (CCDT) can be used. If more than one suitable channel is defined in a client
channel definition table (CCDT), the AFFINITY and CLNTWGHT channel attributes influence which channel definition is used.

See the related topics below for more details of these properties.

Parent topic: Accessing WebSphere MQ features from a WebSphere MQ classes for JMS application

Related reference
Properties of WebSphere MQ classes for JMS objects

Related information
Parameter descriptions for DEFINE CHANNEL
Performance implications of sharing conversations on client-connection channels
Client channel weight (CLNTWGHT)
Connection affinity (AFFINITY)

This build: January 26, 2011 11:30:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm41120_

4.5.11.9. Specifying a range of ports for client connections

Use the LOCALADDRESS property to specify a range of ports that your application can bind to.

When a WebSphere® MQ classes for JMS application attempts to connect to a WebSphere MQ queue manager in client mode, a firewall might allow only
those connections that originate from specified ports or a range of ports. In this situation, you can use the LOCALADDRESS property of a ConnectionFactory,
QueueConnectionFactory, or TopicConnectionFactory object to specify a port, or a range of ports, that the application can bind to.

You can set the LOCALADDRESS property by using the WebSphere MQ JMS administration tool, or by calling the setLocalAddress() method in a JMS
application. Here is an example of setting the property from within an application:

mqConnectionFactory.setLocalAddress("9.20.0.1(2000,3000)");

When the application connects to a queue manager subsequently, the application binds to a local IP address and port number in the range 9.20.0.1(2000) to
9.20.0.1(3000).

In a system with more than one network interface, you can also use the LOCALADDRESS property to specify which network interface must be used for a
connection.

For a real-time connection to a broker, the LOCALADDRESS property is relevant only when multicast is used. In this case, you can use the property to
specify which local network interface must be used for a connection, but the value of the property must not contain a port number, or a range of port
numbers.

Connection errors might occur if you restrict the range of ports. If an error occurs, a JMSException is thrown with an embedded MQException that contains
the WebSphere MQ reason code MQRC_Q_MGR_NOT_AVAILABLE and the following message:

Socket connection attempt refused due to LOCAL_ADDRESS_PROPERTY restrictions

An error might occur if all the ports in the specified range are in use, or if the specified IP address, host name, or port number is not valid (a negative port
number, for example).

Because WebSphere MQ classes for JMS might create connections other than those required by an application, always consider specifying a range of ports.
In general, every session created by an application requires one port and WebSphere MQ classes for JMS might require three or four additional ports. If a
connection error does occur, increase the range of ports.

Connection pooling, which is used by default in WebSphere MQ classes for JMS, might have an effect on the speed at which ports can be reused. As a result,
a connection error might occur while ports are being freed.

Parent topic: Accessing WebSphere MQ features from a WebSphere MQ classes for JMS application

This build: January 26, 2011 11:29:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 87 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25040_

4.5.11.10. Channel compression

Compressing the data that flows on a WebSphere® MQ channel can improve the performance of the channel and reduce network traffic. Using function
supplied with WebSphere MQ, you can compress the data that flows on message channels and MQI channels and, on either type of channel, you can
compress header data and message data independently of each other. By default, no data is compressed on a channel. For a full description of channel
compression, including how it is implemented in WebSphere MQ, see WebSphere MQ Intercommunication, for message channels, and WebSphere MQ
Clients, for MQI channels.

A WebSphere MQ classes for JMS application specifies the techniques that can be used for compressing header or message data on a connection by creating
a java.util.Collection object. Each compression technique is an Integer object in the collection, and the order in which the application adds the compression
techniques to the collection is the order in which the compression techniques are negotiated with the queue manager when the application creates the
connection. The application can then pass the collection to a ConnectionFactory object by calling the setHdrCompList() method, for header data, or the
setMsgCompList() method, for message data. When the application is ready, it can create the connection.

The following code fragments illustrate the approach just described. The first code fragment shows you how to implement header data compression:

Collection headerComp = new Vector();

headerComp.add(new Integer(WMQConstants.WMQ_COMPHDR_SYSTEM));

.

.

.

((MQConnectionFactory) cf).setHdrCompList(headerComp);

.

.

.

connection = cf.createConnection();

The second code fragment shows you how to implement message data compression:

Collection msgComp = new Vector();

msgComp.add(new Integer(WMQConstants.WMQ_COMPMSG_RLE));

msgComp.add(new Integer(WMQConstants.WMQ_COMPMSG_ZLIB_HIGH));

.

.

.

((MQConnectionFactory) cf).setMsgCompList(msgComp);

.

.

.

connection = cf.createConnection();

In the second example, the compression techniques are negotiated in the order RLE, then ZLIB_HIGH, when the connection is created. The compression
technique that is selected cannot be changed during the lifetime of the Connection object. Note that, to use compression on a connection, the
setHdrCompList() and the setMsgCompList() methods must be called before creating the Connection object.
Parent topic: Accessing WebSphere MQ features from a WebSphere MQ classes for JMS application

This build: January 26, 2011 11:29:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25050_

4.5.11.11. Putting messages asynchronously in Websphere MQ classes for JMS

Normally, when an application sends messages to a destination, the application has to wait for the queue manager to confirm that it has processed the
request. You can improve messaging performance in some circumstances by choosing instead to put messages asynchronously. When an application puts a
message asynchronously, the queue manager does not return the success or failure of each call, but you can instead check for errors periodically.

To configure a destination to return control back to the application without determining whether the queue manager has received the message safely, set
the PUTASYNCALLOWED property of the Queue or Topic object and the DefPutResponse attribute of the underlying WebSphere MQ queue or topic.
WebSphere MQ classes for JMS can work in this way only for nonpersistent messages and for persistent messages sent in a transacted session.

For messages sent in a transacted session, the application ultimately determines whether the queue manager has received the messages safely when it calls
commit(). If an application sends persistent messages within a transacted session, and one or more of the messages are not received safely, the transaction
fails to commit and produces an exception. However, if an application sends nonpersistent messages within a transacted session, and one or more of the
messages are not received safely, the transaction commits successfully. The application does not receive any feedback that the nonpersistent messages did
not arrive safely.

For nonpersistent messages sent in a session that is not transacted, the SENDCHECKCOUNT property of the ConnectionFactory object specifies how many
messages are to be sent before WebSphere® MQ classes for JMS checks that the queue manager has received the messages safely. If a check discovers
that one or more messages were not received safely, and the application has registered an exception listener with the connection, Websphere MQ classes for
JMS calls the onException() method of the exception listener to pass a JMS exception to the application. The JMS exception has an error code of
JMSWMQ0028 and the following reason:

At least one asynchronous put message failed or gave a warning.

The JMS Exception also has a linked exception that provides more details. The default value of the SENDCHECKCOUNT property is 0, which means that no
such checks are made.

This optimization is of most benefit to an application that connects to a queue manager in client mode and needs to send a sequence of messages in rapid
succession, but does not require immediate feedback from the queue manager for each message sent. However, an application can still use this optimization
even if it connects to a queue manager in bindings mode, but the expected performance benefit is not as great.

Parent topic: Accessing WebSphere MQ features from a WebSphere MQ classes for JMS application

This build: January 26, 2011 11:30:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm41220_

4.5.11.12. Using read ahead with WebSphere MQ classes for JMS

Page 88 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

A WebSphere® MQ classes for JMS client can be configured to use read ahead. Read ahead allows messages to be sent to a client before an application
requests them.

Using read ahead can improve performance when browsing messages or consuming non persistent messages from a client application. This performance
improvement is available to both MQI and JMS applications. Client applications using MQGET or asynchronous consume will benefit from the performance
improvements when browsing messages or consuming non-persistent messages. For general information about the read ahead facility, see the related topic
below.

In WebSphere MQ classes for JMS, you use the READAHEADALLOWED property of a Queue or Topic object to determine whether message consumers and
queue browsers are allowed to use read ahead on that object, and the READAHEADCLOSEPOLICY to determine what happens to messages in the internal
read ahead buffer when the message consumer is closed.

Parent topic: Accessing WebSphere MQ features from a WebSphere MQ classes for JMS application

Related concepts
Configuration for inbound communication

Related reference
Properties of WebSphere MQ classes for JMS objects

Related information
Improving performance of non-persistent messages

This build: January 26, 2011 11:30:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm41130_

4.5.11.13. Retained publications in WebSphere MQ classes for JMS

A WebSphere® MQ classes for JMS client can be configured to use retained publications.

A publisher can specify that a copy of a publication must be retained so that it can be sent to future subscribers who register an interest in the topic. This is
done in WebSphere MQ classes for JMS by setting the integer property JMS_IBM_RETAIN to the value 1. Constants have been defined for these values in the
com.ibm.msg.client.jms.JmsConstants interface. For example, if you have created a message msg, to set it as a retained publication use the following code:

// set as a retained publication

msg.setIntProperty(JmsConstants.JMS_IBM_RETAIN, JmsConstants.RETAIN_PUBLICATION);

You can now send the message as normal. JMS_IBM_RETAIN can also be queried in a received message. It is therefore possible to query whether a received
message is a retained publication.
Parent topic: Accessing WebSphere MQ features from a WebSphere MQ classes for JMS application

Related information
Retained publications
Subscriptions and retained publications
Class MQTopic
Class MQSubscription
Interface JmsConstants

This build: January 26, 2011 11:30:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm41170_

4.5.12. XA support in WebSphere MQ classes for JMS

JMS supports XA-compliant transactions in bindings mode. In client mode, XA is available only if you use the Extended Transactional Client or within an
application server environment.

If you require XA functionality in an application server environment, you must configure your application appropriately. Refer to your application server's
own documentation for information about how to configure applications to use distributed transactions.

Parent topic: Writing WebSphere MQ classes for JMS applications

This build: January 26, 2011 11:30:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm41160_

4.5.13. Using a real-time connection to a broker of WebSphere Event Broker or WebSphere
Message Broker

A WebSphere® MQ classes for JMS application can use a real-time connection to a broker of WebSphere Event Broker or WebSphere Message Broker for
publish/subscribe messaging. Both the broker and WebSphere MQ classes for JMS must be configured to enable a real-time connection.

When an application uses a real-time connection to a broker of WebSphere Event Broker or WebSphere Message Broker, the application and the broker
exchange messages using WebSphere MQ Real-Time Transport. Depending on the configuration, messages can also be delivered to the application using
WebSphere MQ Multicast Transport.

For information about how an application can connect to a WebSphere MQ queue manager and use WebSphere MQ Enterprise Transport to exchange
messages with a broker of WebSphere Event Broker or WebSphere Message Broker, see the documentation for previous releases of WebSphere MQ classes
for JMS. Note that, in order to use WebSphere MQ Enterprise Transport, an application must connect to a queue manager using a connection factory running
in WebSphere MQ messaging provider migration mode.

Configuring a broker of WebSphere Event Broker or WebSphere Message Broker for a real-time connection

Page 89 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

For a WebSphere MQ classes for JMS application to use a real-time connection to a broker of WebSphere Event Broker or WebSphere Message Broker,
you must configure the broker by creating and deploying a message flow to read messages from the TCP/IP port on which the broker is listening and
publish the messages. Depending on your requirements, you might need to configure the broker in additional ways.

Configuring WebSphere MQ classes for JMS for a real-time connection to a broker of WebSphere Event Broker or WebSphere Message

Broker
For a WebSphere MQ classes for JMS application to use a real-time connection to a broker of WebSphere Event Broker or WebSphere Message Broker,
WebSphere MQ classes for JMS must be configured by setting certain properties of the connection factory. Depending on your requirements,
WebSphere MQ classes for JMS might need to be configured in additional ways.

Parent topic: Writing WebSphere MQ classes for JMS applications

This build: January 26, 2011 11:29:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm34660_

4.5.13.1. Configuring a broker of WebSphere Event Broker or WebSphere Message Broker for a
real-time connection

For a WebSphere® MQ classes for JMS application to use a real-time connection to a broker of WebSphere Event Broker or WebSphere Message Broker, you
must configure the broker by creating and deploying a message flow to read messages from the TCP/IP port on which the broker is listening and publish the
messages. Depending on your requirements, you might need to configure the broker in additional ways.

To configure the broker, you must create and deploy one of the following message flows:

� A message flow that contains a Real-timeOptimizedFlow message processing node

� A message flow that contains a Real-timeInput message processing node and a Publication message processing node

You must configure the Real-timeOptimizedFlow or Real-timeInput node to listen on the TCP/IP port used for real-time connections. By default, the port
number for real-time connections is 1506.

You must also configure the broker if you have any of the following requirements:

� If you want the application to connect to the broker using Secure Sockets Layer (SSL) authentication

� If you want the application to connect to the broker using HTTP tunnelling

� If you want messages to be delivered to a message consumer using multicast

For information about how to configure a broker, see the WebSphere Event Broker Information Center or WebSphere Message Broker Information Center.

Parent topic: Using a real-time connection to a broker of WebSphere Event Broker or WebSphere Message Broker

This build: January 26, 2011 11:29:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm34670_

4.5.13.2. Configuring WebSphere MQ classes for JMS for a real-time connection to a broker of
WebSphere Event Broker or WebSphere Message Broker

For a WebSphere® MQ classes for JMS application to use a real-time connection to a broker of WebSphere Event Broker or WebSphere Message Broker,
WebSphere MQ classes for JMS must be configured by setting certain properties of the connection factory. Depending on your requirements, WebSphere MQ
classes for JMS might need to be configured in additional ways.

To configure WebSphere MQ classes for JMS, the following properties of the connection factory must be set:

� The TRANSPORT property must be set to DIRECT.

However, for an application to connect using HTTP tunnelling, the TRANSPORT property must be set to DIRECTHTTP instead. See Using HTTP
tunnelling.

� The HOSTNAME property must be set to the host name or IP address of the system on which the broker is running.

� The PORT property must be set to the number of the port on which the broker is listening for real-time connections.

An application can set these properties dynamically at run time by using the IBM® JMS extensions or the WebSphere MQ JMS extensions. Alternatively, if
the connection factory is an administered object, an administrator can set these properties by using the WebSphere MQ JMS administration tool or
WebSphere MQ Explorer.

For information about properties, and the methods used by applications to set their values, see Properties of WebSphere MQ classes for JMS objects. For
information about how to use the WebSphere MQ JMS administration tool, see Using the WebSphere MQ JMS administration tool. For information about how
to use WebSphere MQ Explorer, see the help provided with WebSphere MQ Explorer.

If you have any of the following requirements, WebSphere MQ classes for JMS requires additional configuration:

� If you want an application to connect to the broker using Secure Sockets Layer (SSL) authentication

� If you want an application to connect to the broker using HTTP tunnelling

� If you want an application to connect to the broker through a proxy server

� If you want messages to be delivered to a message consumer using multicast

The following sections describe how to configure WebSphere MQ classes for JMS for each of these requirements.

Using Secure Sockets Layer (SSL) authentication

SSL authentication can be used on a real-time connection to a broker. Only authentication is supported for this type of connection. You cannot use SSL to
encrypt and decrypt the message data that flows between the application and the broker or to detect tampering of the data.

Note the difference between this situation and that when an application connects to a queue manager in client mode. In the latter case, you can use the
WebSphere MQ SSL support to encrypt and decrypt the message data that flows between the application and the queue manager and to detect tampering of
the data, as well as to provide authentication.

If you want to protect message data on a real-time connection to a broker, you can use the function provided by the broker instead. You can assign a quality
of protection (QoP) value to each topic whose messages you want to protect. You can therefore select a different level of message protection for each topic.
For more information about the message protection provided by a broker, see the WebSphere Event Broker Information Center or WebSphere Message

Broker Information Center.

Page 90 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

To use SSL authentication on a real-time connection to a broker, the DIRECTAUTH property of the connection factory must be set to CERTIFICATE.

If you want to use SSL for mutual authentication, the Authentication Protocol Type property of the broker must specify the option R for symmetric SSL. If
you want to use SSL only for authenticating the broker, the Authentication Protocol Type property of the broker must specify the option S for asymmetric
SSL. But, in this case, the application must connect to the broker by calling createConnection() with a user ID and password as parameters, as in the
following example:

factory.createConnection("user1", "user1pw");

The broker then uses the user ID and password, instead of SSL, to authenticate the application. For more information about how to configure the broker for
SSL authentication, see the WebSphere Event Broker Information Center or WebSphere Message Broker Information Center.

Notes:

1. The value of the DIRECTAUTH property determines whether SSL authentication is used on a real-time connection to a broker, not the value of the
SSLCIPHERSUITE property.

2. When SSL authentication is used on a real-time connection to a broker, the SSLPEERNAME and SSLCRL properties are used to perform the same
checks as those performed when an application connects to a queue manager in client mode.

3. WebSphere MQ classes for JMS can use the same Java Secure Socket Extension (JSSE) keystore and truststore configuration to provide the SSL
support in either of the following situations:

� When an application uses a real-time connection to a broker

� When an application connects to a queue manager in client mode

Using HTTP tunnelling

A WebSphere MQ classes for JMS application can connect to a broker using HTTP tunnelling, which means that the application connects to the broker using
the HTTP protocol as though connecting to a Web site.

To use HTTP tunnelling on a real-time connection to a broker, the TRANSPORT property of the connection factory must be set to DIRECTHTTP.

HTTP tunnelling cannot be used in conjunction with SSL authentication, connecting through a proxy server, or delivering messages using multicast. The
supported version of the HTTP protocol is 1.0. HTTP version 1.1 is not supported.

Connecting through a proxy server

A WebSphere MQ classes for JMS application can use a real-time connection to a broker by connecting through a proxy server. WebSphere MQ classes for
JMS connects directly to the proxy server and uses the Internet protocol defined in RFC 2817 to ask the proxy server to forward the connection request to
the broker.

To connect to a broker through a proxy server, the following properties of the connection factory must be set:

� The PROXYHOSTNAME property must be set to the host name or IP address of the system on which the proxy server is running.

� The PROXYPORT property must be set to the number of the port on which the proxy server is listening.

If the PROXYHOSTNAME property is not set, or is set to the empty string, WebSphere MQ classes for JMS attempts to connect directly to the broker using
only the HOSTNAME and PORT properties, and does not attempt to connect through a proxy server.

Delivering messages using multicast

Using a real-time connection to a broker, messages can be delivered to a message consumer using multicast.

To enable multicast, the MULTICAST property of the Topic object must be set to the required multicast option. Alternatively, if the MULTICAST property of
the Topic object is set to ASCF, the MULTICAST property of the connection factory must be set to the required multicast option.

WebSphere MQ classes for JMS supports both the Packet Transfer Layer (PTL) and the Pragmatic General Multicast (PGM) multicast protocols, and includes
support for both implementations of the PGM protocol, PGM/IP and PGM UDP encapsulated. However, PGM/IP support is available only on the following
platforms:

� AIX® (32-bit only)

� HP-UX PA-RISC (32-bit only)

� Linux (x86 platform)

� Linux (zSeries® platform, 32-bit only)

� Solaris SPARC (32-bit only)

� Windows (32-bit only)

� z/OS®

Parent topic: Using a real-time connection to a broker of WebSphere Event Broker or WebSphere Message Broker

This build: January 26, 2011 11:29:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm34690_

4.6. WebSphere MQ classes for JMS Application Server Facilities

This topic describes how WebSphere® MQ classes for JMS implements the ConnectionConsumer class and advanced functionality in the Session class. It also
summarizes the function of a server session pool.

WebSphere MQ classes for JMS supports the Application Server Facilities (ASF) that are specified in the Java Message Service Specification, Version 1.1 (see
Sun's Java Web site at http://java.sun.com). This specification identifies three roles within this programming model:

� The JMS provider supplies ConnectionConsumer and advanced Session functionality.

� The application server supplies ServerSessionPool and ServerSession functionality.

� The client application uses the functionality that the JMS provider and application server supply.

The information in this topic does not apply if an application uses a real-time connection to a broker.

ConnectionConsumer

Planning an application with ASF

Page 91 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Error handling

The function of a server session pool
This topic summarizes the function of a server session pool.

Parent topic: WebSphere MQ classes for JMS

This build: January 26, 2011 11:29:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25530_

4.6.1. ConnectionConsumer

The JMS specification enables an application server to integrate closely with a JMS implementation by using the ConnectionConsumer interface. This feature

provides concurrent processing of messages. Typically, an application server creates a pool of threads, and the JMS implementation makes messages
available to these threads. A JMS-aware application server (such as WebSphere® Application Server) can use this feature to provide high-level messaging
functionality, such as message driven beans.

Normal applications do not use the ConnectionConsumer, but expert JMS clients might use it. For such clients, the ConnectionConsumer provides a high-
performance method to deliver messages concurrently to a pool of threads. When a message arrives on a queue or a topic, JMS selects a thread from the
pool and delivers a batch of messages to it. To do this, JMS runs an associated MessageListener's onMessage() method.

You can achieve the same effect by constructing multiple Session and MessageConsumer objects, each with a registered MessageListener. However, the
ConnectionConsumer provides better performance, less use of resources, and greater flexibility. In particular, fewer Session objects are required.

Parent topic: WebSphere MQ classes for JMS Application Server Facilities

This build: January 26, 2011 11:29:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25550_

4.6.2. Planning an application with ASF

This topic tells you how to plan an application including:

General principles for point-to-point messaging

General principles for publish/subscribe messaging
ConnectionConsumers receive messages for a specified Topic. A ConnectionConsumer can be durable or non-durable. You must specify which queue or
queues the ConnectionConsumer uses.

Removing messages from the queue in ASF
When an application uses ConnectionConsumers, JMS might need to remove messages from the queue in a number of situations.

Handling poison messages in ASF
Within the Application Server Facilities, poison message handling is handled slightly differently to elsewhere in WebSphere MQ classes for JMS.

Parent topic: WebSphere MQ classes for JMS Application Server Facilities

This build: January 26, 2011 11:29:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25560_

4.6.2.1. General principles for point-to-point messaging

When an application creates a ConnectionConsumer from a QueueConnection object, it specifies a JMS queue object and a selector string. The
ConnectionConsumer then begins to provide messages to sessions in the associated ServerSessionPool. Messages arrive on the queue, and if they match the
selector, they are delivered to sessions in the associated ServerSessionPool.

In WebSphere® MQ terms, the queue object refers to either a QLOCAL or a QALIAS on the local queue manager. If it is a QALIAS, that QALIAS must refer to
a QLOCAL. The fully-resolved WebSphere MQ QLOCAL is known as the underlying QLOCAL. A ConnectionConsumer is said to be active if it is not closed and
its parent QueueConnection is started.

It is possible for multiple ConnectionConsumers, each with different selectors, to run against the same underlying QLOCAL. To maintain performance,
unwanted messages must not accumulate on the queue. Unwanted messages are those for which no active ConnectionConsumer has a matching selector.
You can set the QueueConnectionFactory so that these unwanted messages are removed from the queue (for details, see Removing messages from the
queue in ASF). You can set this behavior in one of two ways:

� Use the JMS administration tool to set the QueueConnectionFactory to MRET(NO).

� In your program, use:

MQQueueConnectionFactory.setMessageRetention(WMQConstants.WMQ_MRET_NO)

If you do not change this setting, the default is to retain such unwanted messages on the queue.

When you set up the WebSphere MQ queue manager, consider the following points:

� The underlying QLOCAL must be enabled for shared input. To do this, use the following MQSC command:

ALTER QLOCAL(your.qlocal.name) SHARE GET(ENABLED)

� Your queue manager must have an enabled dead-letter queue. If a ConnectionConsumer experiences a problem when it puts a message on the dead-
letter queue, message delivery from the underlying QLOCAL stops. To define a dead-letter queue, use:

Page 92 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

ALTER QMGR DEADQ(your.dead.letter.queue.name)

� The user that runs the ConnectionConsumer must have authority to perform MQOPEN with MQOO_SAVE_ALL_CONTEXT and
MQOO_PASS_ALL_CONTEXT. For details, see the WebSphere MQ documentation for your specific platform.

� If unwanted messages are left on the queue, they degrade the system performance. Therefore, plan your message selectors so that between them,
the ConnectionConsumers will remove all messages from the queue.

For details about MQSC commands, see the WebSphere MQ Script (MQSC) Command Reference.
Parent topic: Planning an application with ASF

This build: January 26, 2011 11:29:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25570_

4.6.2.2. General principles for publish/subscribe messaging

ConnectionConsumers receive messages for a specified Topic. A ConnectionConsumer can be durable or non-durable. You must specify which queue or
queues the ConnectionConsumer uses.

When an application creates a ConnectionConsumer from a TopicConnection object, it specifies a Topic object and a selector string. The
ConnectionConsumer then begins to receive messages that match the selector on that Topic, including any retained publications for the topic subscribed to.

Alternatively, an application can create a durable ConnectionConsumer that is associated with a specific name. This ConnectionConsumer receives messages
that have been published on the Topic since the durable ConnectionConsumer was last active. It receives all such messages that match the selector on the
Topic. However, if the ConnectionConsumer is using read-ahead, it can lose nonpersistent messages that are in the client buffer when it closes.

If WebSphere® MQ classes for JMS is in WebSphere MQ messaging provider migration mode, a separate queue is used for non-durable ConnectionConsumer
subscriptions. The CCSUB configurable option on the TopicConnectionFactory specifies the queue to use. Normally, the CCSUB specifies a single queue for
use by all ConnectionConsumers that use the same TopicConnectionFactory. However, it is possible to make each ConnectionConsumer generate a
temporary queue by specifying a queue name prefix followed by an asterisk (*).

If WebSphere MQ classes for JMS is in WebSphere MQ messaging provider migration mode, the CCDSUB property of the Topic specifies the queue to use for
durable subscriptions. Again, this can be a queue that already exists or a queue name prefix followed by an asterisk (*). If you specify a queue that already
exists, all durable ConnectionConsumers that subscribe to the Topic use this queue. If you specify a queue name prefix followed by an asterisk (*), a queue
is generated the first time that a durable ConnectionConsumer is created with a given name. This queue is reused later when a durable ConnectionConsumer
is created with the same name.

When you set up the WebSphere MQ queue manager, consider the following points:

� Your queue manager must have an enabled dead-letter queue. If a ConnectionConsumer experiences a problem when it puts a message on the dead-
letter queue, message delivery from the underlying QLOCAL stops. To define a dead-letter queue, use:

ALTER QMGR DEADQ(your.dead.letter.queue.name)

� The user that runs the ConnectionConsumer must have authority to perform MQOPEN with MQOO_SAVE_ALL_CONTEXT and
MQOO_PASS_ALL_CONTEXT. For details, see the WebSphere MQ documentation for your platform.

� You can optimize performance for an individual ConnectionConsumer by creating a separate, dedicated, queue for it. This is at the cost of extra
resource usage.

Parent topic: Planning an application with ASF

This build: January 26, 2011 11:29:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25580_

4.6.2.3. Removing messages from the queue in ASF

When an application uses ConnectionConsumers, JMS might need to remove messages from the queue in a number of situations.

These situations are as follows:

Badly formatted message

A message might arrive that JMS cannot parse.

Poison message

A message might reach the backout threshold, but the ConnectionConsumer fails to requeue it on the backout queue.

No interested ConnectionConsumer

For point-to-point messaging, when the QueueConnectionFactory is set so that it does not retain unwanted messages, a message arrives that is unwanted
by any of the ConnectionConsumers.

In these situations, the ConnectionConsumer attempts to remove the message from the queue. The disposition options in the report field of the message's
MQMD set the exact behavior. These options are:

MQRO_DEAD_LETTER_Q

The message is requeued to the queue manager's dead-letter queue. This is the default.

MQRO_DISCARD_MSG

The message is discarded.

The ConnectionConsumer also generates a report message, and this also depends on the report field of the message's MQMD. This message is sent to the
message's ReplyToQ on the ReplyToQmgr. If there is an error while the report message is being sent, the message is sent to the dead-letter queue instead.
The exception report options in the report field of the message's MQMD set details of the report message. These options are:

MQRO_EXCEPTION

A report message is generated that contains the MQMD of the original message. It does not contain any message body data.

MQRO_EXCEPTION_WITH_DATA

A report message is generated that contains the MQMD, any MQ headers, and 100 bytes of body data.

MQRO_EXCEPTION_WITH_FULL_DATA

Page 93 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

A report message is generated that contains all data from the original message.

default

No report message is generated.

When report messages are generated, the following options are honored:

� MQRO_NEW_MSG_ID

� MQRO_PASS_MSG_ID

� MQRO_COPY_MSG_ID_TO_CORREL_ID

� MQRO_PASS_CORREL_ID

If a poison message cannot be requeued, perhaps because the dead-letter queue is full or authorization is wrongly specified, what happens depends on the
persistence of the message. If the message is nonpersistent, the message is discarded and no report message is generated. If the message is persistent,
delivery of messages to all connection consumers listening on that destination stops. Such connection consumers must be closed and the problem resolved
before they can be recreated and message delivery restarted.

It is important to define a dead-letter queue, and to check it regularly to ensure that no problems occur. Particularly, ensure that the dead-letter queue does
not reach its maximum depth, and that its maximum message size is large enough for all messages.

When a message is requeued to the dead-letter queue, it is preceded by a WebSphere® MQ dead-letter header (MQDLH). See the WebSphere MQ
Application Programming Reference for details about the format of the MQDLH. You can identify messages that a ConnectionConsumer has placed on the
dead-letter queue, or report messages that a ConnectionConsumer has generated, by the following fields:

� PutApplType is MQAT_JAVA (0x1C)

� PutApplName is “MQ JMS ConnectionConsumer”

These fields are in the MQDLH of messages on the dead-letter queue, and the MQMD of report messages. The feedback field of the MQMD, and the Reason
field of the MQDLH, contain a code describing the error. For details about these codes, see Error handling. Other fields are as described in the WebSphere
MQ Application Programming Reference.

Parent topic: Planning an application with ASF

This build: January 26, 2011 11:29:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25600_

4.6.2.4. Handling poison messages in ASF

Within the Application Server Facilities, poison message handling is handled slightly differently to elsewhere in WebSphere MQ classes for JMS.

For information about poison message handling in WebSphere MQ classes for JMS, see Handling poison message in WebSphere MQ classes for JMS .

When you use Application Server Facilities (ASF), the ConnectionConsumer, rather than the MessageConsumer, processes poison messages. The
ConnectionConsumer requeues messages according to the BackoutThreshold and BackoutRequeueQName properties of the queue.

When an application uses ConnectionConsumers, the circumstances in which a message is backed out depend on the session that the application server
provides:

� When the session is non-transacted, with AUTO_ACKNOWLEDGE or DUPS_OK_ACKNOWLEDGE, a message is backed out only after a system error, or
if the application terminates unexpectedly.

� When the session is non-transacted with CLIENT_ACKNOWLEDGE, unacknowledged messages can be backed out by the application server calling
Session.recover().

Typically, the client implementation of MessageListener or the application server calls Message.acknowledge(). Message.acknowledge() acknowledges
all messages delivered on the session so far.

� When the session is transacted, unacknowledged messages can be backed out by the application server calling Session.rollback().

� If the application server supplies an XASession, messages are committed or backed out depending on a distributed transaction. The application server
takes responsibility for completing the transaction.

The embedded JMS provider in WebSphere® Application Server, Version 5.0 and Version 5.1 handles poison messages in a different way to that just
described for WebSphere MQ classes for JMS. For information about how the embedded JMS provider handles poison messages, see the relevant WebSphere
Application Server information center.

Parent topic: Planning an application with ASF

This build: January 26, 2011 11:29:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25590_

4.6.3. Error handling

This section covers various aspects of error handling, including Recovering from error conditions and Reason and feedback codes.

Recovering from error conditions

Reason and feedback codes

Parent topic: WebSphere MQ classes for JMS Application Server Facilities

This build: January 26, 2011 11:29:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25610_

Page 94 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

4.6.3.1. Recovering from error conditions

If a ConnectionConsumer experiences a serious error, message delivery to all ConnectionConsumers with an interest in the same QLOCAL stops. Typically,
this occurs if the ConnectionConsumer cannot requeue a message to the dead-letter queue, or it experiences an error when reading messages from the
QLOCAL.

When this occurs, any ExceptionListener that is registered with the affected Connection is notified.

You can use these to identify the cause of the problem. In some cases, the system administrator must intervene to resolve the problem.

There are two ways in which an application can recover from these error conditions:

� Call close() on all affected ConnectionConsumers. The application can create new ConnectionConsumers only after all affected ConnectionConsumers

are closed and any system problems are resolved.

� Call stop() on all affected Connections. Once all Connections are stopped and any system problems are resolved, the application should be able to

start() all Connections successfully.

Parent topic: Error handling

This build: January 26, 2011 11:29:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25620_

4.6.3.2. Reason and feedback codes

To determine the cause of an error, you can use:

� The feedback code in any report messages

� The reason code in the MQDLH of any messages in the dead-letter queue

ConnectionConsumers generate the following reason codes.

MQRC_BACKOUT_THRESHOLD_REACHED (0x93A; 2362)

Cause

The message has reached the Backout Threshold defined on the QLOCAL, but no Backout Queue is defined.

On platforms where you cannot define the Backout Queue, the message has reached the JMS-defined backout threshold of 20.

Action

If this is not wanted, define the Backout Queue for the relevant QLOCAL. Also look for the cause of the multiple backouts.

MQRC_MSG_NOT_MATCHED (0x93B; 2363)

Cause

In point-to-point messaging, there is a message that does not match any of the selectors for the ConnectionConsumers monitoring the queue. To
maintain performance, the message is requeued to the dead-letter queue.

Action

To avoid this situation, ensure that ConnectionConsumers using the queue provide a set of selectors that deal with all messages, or set the
QueueConnectionFactory to retain messages.

Alternatively, investigate the source of the message.

MQRC_JMS_FORMAT_ERROR (0x93C; 2364)

Cause

JMS cannot interpret the message on the queue.

Action

Investigate the origin of the message. JMS usually delivers messages of an unexpected format as a BytesMessage or TextMessage. Occasionally, this
fails if the message is very badly formatted.

Other codes that appear in these fields are caused by a failed attempt to requeue the message to a Backout Queue. In this situation, the code describes the
reason that the requeue failed. To diagnose the cause of these errors, refer to the WebSphere MQ Application Programming Reference.

If the report message cannot be put on the ReplyToQ, it is put on the dead-letter queue. In this situation, the feedback field of the MQMD is filled in as
described above. The reason field in the MQDLH explains why the report message could not be placed on the ReplyToQ.

Parent topic: Error handling

This build: January 26, 2011 11:29:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25630_

4.6.4. The function of a server session pool

This topic summarizes the function of a server session pool.

Figure 1 summarizes the principles of ServerSessionPool and ServerSession functionality.

Figure 1. ServerSessionPool and ServerSession functionality

Page 95 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

1. The ConnectionConsumers get message references from the queue.

2. Each ConnectionConsumer selects specific message references.

3. The ConnectionConsumer buffer holds the selected message references.

4. The ConnectionConsumer requests one or more ServerSessions from the ServerSessionPool.

5. ServerSessions are allocated from the ServerSessionPool.

6. The ConnectionConsumer assigns message references to the ServerSessions and starts the ServerSession threads running.

7. Each ServerSession retrieves its referenced messages from the queue. It passes them to the onMessage method from the MessageListener that is

associated with the JMS Session.

8. After it completes its processing, the ServerSession is returned to the pool.

An application server normally supplies ServerSessionPool and ServerSession functionality.

Parent topic: WebSphere MQ classes for JMS Application Server Facilities

This build: January 26, 2011 11:29:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm25640_

4.7. Using the WebSphere MQ JMS administration tool

The administration tool enables administrators to define the properties of eight types of WebSphere® MQ classes for JMS object and to store them within a
JNDI namespace. Applications can then use JNDI to retrieve these administered objects from the namespace.

The WebSphere MQ classes JMS objects that you can administer by using the tool are:

� MQConnectionFactory

� MQQueueConnectionFactory

Page 96 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

� MQTopicConnectionFactory

� MQQueue

� MQTopic

� MQXAConnectionFactory

� MQXAQueueConnectionFactory

� MQXATopicConnectionFactory

For details about these objects, refer to Administering JMS objects.

The tool also allows administrators to manipulate directory namespace subcontexts within the JNDI. See Manipulating subcontexts.

You can also create and configure JMS administered objects with the WebSphere MQ Explorer.

Invoking the administration tool
The administration tool has a command line interface. You can use this interactively, or use it to start a batch process.

Configuration

Administration commands

Manipulating subcontexts

Administering JMS objects

Parent topic: WebSphere MQ classes for JMS

Related tasks
Using WebSphere MQ Explorer for JMS configuration

This build: January 26, 2011 11:29:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm10790_

4.7.1. Invoking the administration tool

The administration tool has a command line interface. You can use this interactively, or use it to start a batch process.

The interactive mode provides a command prompt where you can enter administration commands. In the batch mode, the command to start the tool
includes the name of a file that contains an administration command script.

Interactive mode

To start the tool in interactive mode, enter the command:

JMSAdmin [-t] [-v] [-cfg config_filename]

where:

-t

Enables trace (default is trace off)

-v

Produces verbose output (default is terse output)

-cfg config_filename

Names an alternative configuration file. If this parameter is omitted, the default configuration file, JMSAdmin.config, is used. (See Configuration)

A command prompt is displayed, which indicates that the tool is ready to accept administration commands. This prompt initially appears as:

InitCtx>

indicating that the current context (that is, the JNDI context to which all naming and directory operations currently refer) is the initial context defined in the
PROVIDER_URL configuration parameter (see Configuration).

As you traverse the directory namespace, the prompt changes to reflect this, so that the prompt always displays the current context.

Batch mode

To start the tool in batch mode, enter the command:

JMSAdmin <test.scp

where test.scp is a script file that contains administration commands (see Administration commands). The last command in the file must be the END

command.

Parent topic: Using the WebSphere MQ JMS administration tool

This build: January 26, 2011 11:29:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm10800_

4.7.2. Configuration

The WebSphere JMS Administration tool uses a configuration file to set the values of certain properties. The configuration file is a plain-text file that consists
of a set of key-value pairs, separated by the equal sign (=). This is shown in the following example:

#Set the service provider

 INITIAL_CONTEXT_FACTORY=com.sun.jndi.ldap.LdapCtxFactory

#Set the initial context

Page 97 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

 PROVIDER_URL=ldap://polaris/o=ibm_us,c=us

#Set the authentication type

 SECURITY_AUTHENTICATION=none

(A # in the first column of the line indicates a comment, or a line that is not used.)

A sample configuration file is supplied with Websphere MQ. The file is called JMSAdmin.config, and is found in the <MQ_JAVA_INSTALL_PATH>/bin directory.

Edit this file to suit the setup of your system.

Configure the administration tool with values for the following properties:

INITIAL_CONTEXT_FACTORY

The service provider that the tool uses. The supported values for this property are as follows:

� com.sun.jndi.ldap.LdapCtxFactory (for LDAP)

� com.sun.jndi.fscontext.RefFSContextFactory (for file system context)

On z/OS®, com.ibm.jndi.LDAPCtxFactory is also supported and provides access to an LDAP server. However, this is incompatible with
com.sun.jndi.ldap.LdapCtxFactory, in that objects created using one InitialContextFactory cannot be read or modified using the other.

You can also use an InitialContextFactory that is not in the list above. See Using an unlisted InitialContextFactory for more details.

PROVIDER_URL

The URL of the session's initial context; the root of all JNDI operations carried out by the tool. Two forms of this property are supported:

� ldap://hostname/contextname

� file:[drive:]/pathname

The format of the LDAP URL can vary, depending on your LDAP provider. See your LDAP documentation for more information.

SECURITY_AUTHENTICATION

Whether JNDI passes security credentials to your service provider. This property is used only when an LDAP service provider is used. This property can
take one of three values:

� none (anonymous authentication)

� simple (simple authentication)

� CRAM-MD5 (CRAM-MD5 authentication mechanism)

If a valid value is not supplied, the property defaults to none. See Security for more details about security with the administration tool.

These properties are set in a configuration file. When you invoke the tool, you can specify this configuration by using the -cfg command-line parameter, as

described in Invoking the administration tool. If you do not specify a configuration file name, the tool attempts to load the default configuration file
(JMSAdmin.config). It looks for this file first in the current directory, and then in the <MQ_JAVA_INSTALL_PATH>/bin directory, where

<MQ_JAVA_INSTALL_PATH> is the path to your WebSphere® MQ classes for JMS installation.

Using an unlisted InitialContextFactory

Security

Parent topic: Using the WebSphere MQ JMS administration tool

This build: January 26, 2011 11:29:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm10810_

4.7.2.1. Using an unlisted InitialContextFactory

You can use the administration tool to connect to JNDI contexts other than those listed in Configuration by using three parameters defined in the JMSAdmin
configuration file.

To use a different InitialContextFactory:

1. Set the INITIAL_CONTEXT_FACTORY property to the required class name.

2. Define the behavior of the InitialContextFactory using the USE_INITIAL_DIR_CONTEXT, NAME_PREFIX and NAME_READABILITY_MARKER properties.

The settings for these properties are described in the sample configuration file comments.

You do not need to define the three properties listed here, if you use one of the supported INITIAL_CONTEXT_FACTORY values. However, you can give them
values to override the system defaults. If you omit one or more of the three InitialContextFactory properties, the administration tool provides suitable
defaults based on the values of the other properties.

Parent topic: Configuration

This build: January 26, 2011 11:29:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm10820_

4.7.2.2. Security

You need to understand the effect of the SECURITY_AUTHENTICATION property described in Configuration.

� If you set this parameter to none, JNDI does not pass any security credentials to the service provider, and anonymous authentication is performed.

� If you set the parameter to either simple or CRAM-MD5, security credentials are passed through JNDI to the underlying service provider. These security

credentials are in the form of a user distinguished name (User DN) and password.

If security credentials are required, you are prompted for these when the tool initializes. Avoid this by setting the PROVIDER_USERDN and
PROVIDER_PASSWORD properties in the JMSAdmin configuration file.

Note: If you do not use these properties, the text typed, including the password, is echoed to the screen. This may have security implications.

The tool does no authentication itself; the task is delegated to the LDAP server. The LDAP server administrator must set up and maintain access privileges to

Page 98 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

different parts of the directory. See your LDAP documentation for more information. If authentication fails, the tool displays an appropriate error message
and terminates.

More detailed information about security and JNDI is in the documentation at Sun's Java web site (http://java.sun.com).

Parent topic: Configuration

This build: January 26, 2011 11:29:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm10830_

4.7.3. Administration commands

When the command prompt is displayed, the tool is ready to accept commands. Administration commands are generally of the following form:

verb [param]*

where verb is one of the administration verbs listed in Table 1. All valid commands consist of at least one (and only one) verb, which appears at the

beginning of the command in either its standard or short form.

The parameters a verb can take depend on the verb. For example, the END verb cannot take any parameters, but the DEFINE verb can take any number of

parameters. Details of the verbs that take at least one parameter are discussed in later sections of this chapter.

Verb names are not case-sensitive.

Usually, to terminate commands, you press the carriage return key. However, you can override this by typing the + symbol directly before the carriage
return. This enables you to enter multiline commands, as shown in the following example:

DEFINE Q(BookingsInputQueue) +

 QMGR(QM.POLARIS.TEST) +

 QUEUE(BOOKINGS.INPUT.QUEUE) +

 PORT(1415) +

 CCSID(437)

Lines beginning with one of the characters *, #, or / are treated as comments, or lines that are ignored.

Parent topic: Using the WebSphere MQ JMS administration tool

This build: January 26, 2011 11:29:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm10840_

4.7.4. Manipulating subcontexts

Use the verbs CHANGE, DEFINE, DISPLAY and DELETE to manipulate directory namespace subcontexts. Their use is described in Table 1.

Parent topic: Using the WebSphere MQ JMS administration tool

This build: January 26, 2011 11:29:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

Table 1. Administration verbs

Verb Short form Description

ALTER ALT Change at least one of the properties of a given administered object

DEFINE DEF Create and store an administered object, or create a new subcontext

DISPLAY DIS Display the properties of one or more stored administered objects, or the contents of the

current context

DELETE DEL Remove one or more administered objects from the namespace, or remove an empty

subcontext

CHANGE CHG Alter the current context, allowing the user to traverse the directory namespace anywhere

below the initial context (pending security clearance)

COPY CP Make a copy of a stored administered object, storing it under an alternative name

MOVE MV Alter the name under which an administered object is stored

END Close the administration tool

Table 1. Syntax and description of commands used to manipulate subcontexts

Command syntax Description

DEFINE CTX(ctxName) Attempts to create a new child subcontext of the current context, having the name ctxName.

Fails if there is a security violation, if the subcontext already exists, or if the name supplied is

not valid.

DISPLAY CTX Displays the contents of the current context. Administered objects are annotated with a,

subcontexts with [D]. The Java type of each object is also displayed.

DELETE CTX(ctxName) Attempts to delete the current context's child context having the name ctxName. Fails if the

context is not found, is non-empty, or if there is a security violation.

CHANGE CTX(ctxName) Alters the current context, so that it now refers to the child context having the name ctxName.

One of two special values of ctxName can be supplied:

=UP

moves to the current context's parent

=INIT

moves directly to the initial context

Fails if the specified context does not exist, or if there is a security violation.

Page 99 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

This topic's URL:

jm10850_

4.7.5. Administering JMS objects

This section describes the eight types of object that the administration tool can handle. It includes details about each of their configurable properties and the
verbs that can manipulate them.

You can also create and configure JMS administered objects with the WebSphere® MQ Explorer.

Object types

Verbs used with JMS objects

Creating objects

Sample error conditions

Parent topic: Using the WebSphere MQ JMS administration tool

Related tasks
Using WebSphere MQ Explorer for JMS configuration

This build: January 26, 2011 11:29:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm10860_

4.7.5.1. Object types

Table 1 shows the eight types of administered objects. The Keyword column shows the strings that you can substitute for TYPE in the commands shown in

Table 1.

Parent topic: Administering JMS objects

This build: January 26, 2011 11:29:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm10870_

4.7.5.2. Verbs used with JMS objects

You can use the verbs ALTER, DEFINE, DISPLAY, DELETE, COPY, and MOVE to manipulate administered objects in the directory namespace. Table 1 summarizes

their use. Substitute TYPE with the keyword that represents the required administered object, as listed in Table 1.

Table 1. The JMS object types that are handled by the administration tool

Object Type Keyword Description

MQConnectionFactory CF The WebSphere® MQ implementation of the JMS

ConnectionFactory interface. This represents a factory

object for creating connections in the both the point-to-

point and publish/subscribe domains.

MQQueueConnectionFactory QCF The WebSphere MQ implementation of the JMS

QueueConnectionFactory interface. This represents a

factory object for creating connections in the point-to-point

domain.

MQTopicConnectionFactory TCF The WebSphere MQ implementation of the JMS

TopicConnectionFactory interface. This represents a factory

object for creating connections in the publish/subscribe

domain.

MQQueue Q The WebSphere MQ implementation of the JMS Queue

interface. This represents a destination for messages in the

point-to-point domain.

MQTopic T The WebSphere MQ implementation of the JMS Topic
interface. This represents a destination for messages in the

publish/subscribe domain.

MQXAConnectionFactory1 XACF The WebSphere MQ implementation of the JMS

XAConnectionFactory interface. This represents a factory

object for creating connections in both the point-to-point

and publish/subscribe domains, and where the connections

use the XA versions of JMS classes.

MQXAQueueConnectionFactory1 XAQCF The WebSphere MQ implementation of the JMS

XAQueueConnectionFactory interface. This represents a

factory object for creating connections in the point-to-point

domain that use the XA versions of JMS classes.

MQXATopicConnectionFactory1 XATCF The WebSphere MQ implementation of the JMS

XATopicConnectionFactory interface. This represents a

factory object for creating connections in the

publish/subscribe domain that use the XA versions of JMS

classes.

Note:

1. These classes are provided for use by vendors of application servers. They are unlikely to be directly useful to application programmers.

Table 1. Syntax and description of commands used to manipulate administered objects

Command syntax Description

Page 100 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Parent topic: Administering JMS objects

This build: January 26, 2011 11:29:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm10880_

4.7.5.3. Creating objects

Objects are created and stored in a JNDI namespace using the following command syntax:

DEFINE TYPE(name) [property]*

That is, the DEFINE verb, followed by a TYPE(name) administered object reference, followed by zero or more properties (see Properties of WebSphere MQ

classes for JMS objects).

LDAP naming considerations

Parent topic: Administering JMS objects

This build: January 26, 2011 11:29:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm10890_

4.7.5.3.1. LDAP naming considerations

To store your objects in an LDAP environment, you must give them names that comply with certain conventions. One of these is that object and subcontext
names must include a prefix, such as cn= (common name), or ou= (organizational unit).

The administration tool simplifies the use of LDAP service providers by allowing you to refer to object and context names without a prefix. If you do not
supply a prefix, the tool automatically adds a default prefix to the name you supply. For LDAP this is cn=.

You can change the default prefix by setting the NAME_PREFIX property in the JMSAdmin configuration file, as described in Using an unlisted
InitialContextFactory.

This is shown in the following example.

InitCtx> DEFINE Q(testQueue)

InitCtx> DISPLAY CTX

 Contents of InitCtx

 a cn=testQueue com.ibm.mq.jms.MQQueue

 1 Object(s)

 0 Context(s)

 1 Binding(s), 1 Administered

Note that, although the object name supplied (testQueue) does not have a prefix, the tool automatically adds one to ensure compliance with the LDAP

naming convention. Likewise, submitting the command DISPLAY Q(testQueue) also causes this prefix to be added.

You might need to configure your LDAP server to store Java objects. For information to assist with this configuration, see the documentation for your LDAP
server.

Parent topic: Creating objects

This build: January 26, 2011 11:29:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm10900_

4.7.5.4. Sample error conditions

ALTER TYPE(name) [property]* Attempts to update the given administered object's properties with the ones

supplied. Fails if there is a security violation, if the specified object cannot be found,

or if the new properties supplied are not valid.

DEFINE TYPE(name) [property]* Attempts to create an administered object of type TYPE with the supplied properties,

and store it under the name name in the current context. Fails if there is a security

violation, if the supplied name is not valid or already exists, or if the properties

supplied are not valid.

DISPLAY TYPE(name) Displays the properties of the administered object of type TYPE, bound under the

name name in the current context. Fails if the object does not exist, or if there is a

security violation.

DELETE TYPE(name) Attempts to remove the administered object of type TYPE, having the name name,

from the current context. Fails if the object does not exist, or if there is a security

violation.

COPY TYPE(nameA)
TYPE(nameB)

Makes a copy of the administered object of type TYPE, having the name nameA,

naming the copy nameB. This all occurs within the scope of the current context. Fails

if the object to be copied does not exist, if an object of name nameB already exists,

or if there is a security violation.

MOVE TYPE(nameA) TYPE(nameB) Moves (renames) the administered object of type TYPE, having the name nameA, to

nameB. This all occurs within the scope of the current context. Fails if the object to

be moved does not exist, if an object of name nameB already exists, or if there is a

security violation.

Page 101 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

The following are examples of the error conditions that might arise when creating an object:

CipherSpec mapped to CipherSuite

InitCtx/cn=Trash> DEFINE QCF(testQCF) SSLCIPHERSUITE(RC4_MD5_US)

 WARNING: Converting CipherSpec RC4_MD5_US to

 CipherSuite SSL_RSA_WITH_RC4_128_MD5

Invalid property for object

InitCtx/cn=Trash> DEFINE QCF(testQCF) PRIORITY(4)

 Unable to create a valid object, please check the parameters supplied

 Invalid property for a QCF: PRI

Invalid type for property value

InitCtx/cn=Trash> DEFINE QCF(testQCF) CCSID(english)

 Unable to create a valid object, please check the parameters supplied

 Invalid value for CCS property: English

Property clash - client/bindings

InitCtx/cn=Trash> DEFINE QCF(testQCF) HOSTNAME(polaris.hursley.ibm.com)

 Unable to create a valid object, please check the parameters supplied

 Invalid property in this context: Client-bindings attribute clash

Property clash - Exit initialization

InitCtx/cn=Trash> DEFINE QCF(testQCF) SECEXITINIT(initStr)

 Unable to create a valid object, please check the parameters supplied

 Invalid property in this context: ExitInit string supplied

 without Exit string

Property value outside valid range

InitCtx/cn=Trash> DEFINE Q(testQ) PRIORITY(12)

 Unable to create a valid object, please check the parameters supplied

 Invalid value for PRI property: 12

Unknown property

InitCtx/cn=Trash> DEFINE QCF(testQCF) PIZZA(ham and mushroom)

 Unable to create a valid object, please check the parameters supplied

 Unknown property: PIZZA

The following are examples of error conditions that might arise on Windows when looking up JNDI administered objects from a JMS application.

1. If you are using the WebSphere® JNDI provider, com.ibm.websphere.naming.WsnInitialContextFactory, you must use a forward slash (/) to access
administered objects defined in sub-contexts; for example, jms/MyQueueName. If you use a backslash (\), an InvalidNameException is thrown.

2. If you are using the Sun JNDI provider, com.sun.jndi.fscontext.RefFSContextFactory, you must use a backslash (\) to access administered objects
defined in sub-contexts; for example, ctx1\\fred. If you use a forward slash (/), a NameNotFoundException is thrown.

Parent topic: Administering JMS objects

This build: January 26, 2011 11:29:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm10950_

4.8. Using WebSphere MQ Explorer for JMS configuration

Use the WebSphere® MQ Explorer graphical user interface to create JMS objects from WebSphere MQ objects, and WebSphere MQ objects from JMS
objects, as well as for administering and monitoring other WebSphere MQ objects.

Before you begin
Before you create and configure JMS administered objects with the WebSphere MQ Explorer, add an initial context to define the root of the JNDI
namespace in which the JMS objects are stored in the naming and directory service. For more information, refer to the WebSphere MQ Explorer user
assistance for JMS administered objects.

About this task
You can perform the following tasks with the WebSphere MQ Explorer, either contextually from an existing object in the WebSphere MQ Explorer, or from
within a create new object wizard. Refer to the WebSphere MQ Explorer help for examples of the WebSphere MQ Explorer user assistance for some typical
tasks.

Procedure

� Create a JMS Connection Factory from any of the following WebSphere MQ objects:

1. A WebSphere MQ queue manager, whether on your local computer or on a remote system.

2. A WebSphere MQ channel

3. A WebSphere MQ listener

� Add a WebSphere MQ queue manager to WebSphere MQ Explorer using a JMS Connection Factory

� Create a JMS queue from a WebSphere MQ queue

� Create a WebSphere MQ queue from a JMS queue

� Create a JMS topic from a WebSphere MQ topic, which can be a WebSphere MQ object or a dynamic topic

� Create a WebSphere MQ topic from a JMS topic

Parent topic: WebSphere MQ classes for JMS

This build: January 26, 2011 11:29:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm35200_

4.9. Properties of WebSphere MQ classes for JMS objects

Page 102 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

All objects in WebSphere® MQ classes for JMS have properties. Different properties apply to different object types. Different properties have different
allowable values, and symbolic property values differ between the administration tool and program code.

WebSphere MQ classes for JMS provides facilities to set and query the properties of objects using the WebSphere MQ JMS administration tool, WebSphere
MQ Explorer, or in an application. Many of the properties are relevant only to a specific subset of the object types.

Table 1 gives a brief description of each property and shows the valid property values for each property used in the administration tool.

Table 2 gives a brief description of each property and shows for each property which object types it applies to. The object types are identified using
keywords; see Object types for an explanation of these.

A property consists of a name-value pair in the format:

PROPERTY_NAME(property_value)

Table 3 lists the name of each property, and the set method that is used to set the value of the property in an application. This table also shows the valid
property values for each property and the mapping between symbolic property values used in the tool and their programmable equivalents.

Property names are not case-sensitive, and are restricted to the set of recognized names shown in these tables.

Numbers refer to notes at the end of each table. See also Property dependencies.

Table 1. Property names, descriptions and values

Property Description Valid values in administration tool (defaults in

bold)

ASYNCEXCEPTION
This property determines whether

WebSphere MQ classes for JMS
informs an ExceptionListener only

when a connection is broken, or when

any exception occurs asynchronously

to a JMS API call. This applies to all

Connections created from this

ConnectionFactory that have an

ExceptionListener registered.

� ALL

Any exception detected asynchronously, outside the

scope of a synchronous API call, and all connection

broken exceptions are sent to the ExceptionListener.

� CONNECTIONBROKEN

Only exceptions indicating a broken connection are

sent to the ExceptionListener. Any other exceptions

occurring during asynchronous processing are not

reported to the ExceptionListener, and hence the
application is not informed of these exceptions.

BROKERCCDURSUBQ1 The name of the queue from which

durable subscription messages are

retrieved for a ConnectionConsumer

� SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE

� Any valid string.

BROKERCCSUBQ1 The name of the queue from which

non-durable subscription messages

are retrieved for a

ConnectionConsumer

� SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE

� Any valid string.

BROKERCONQ1 Broker's control queue name
� SYSTEM.BROKER.CONTROL.QUEUE

� Any string

BROKERDURSUBQ1 The name of the queue from which

durable subscription messages are

retrieved

� SYSTEM.JMS.D.SUBSCRIBER.QUEUE

� Any valid string.

BROKERPUBQ1 The name of the queue where

published messages are sent (the
stream queue)

� SYSTEM.BROKER.DEFAULT.STREAM

� Any string

BROKERPUBQMGR1 The name of the queue manager that
owns the queue where messages

published on the topic are sent

� null

� Any string

BROKERQMGR1 The name of the queue manager on

which the broker is running
� null

� Any string

BROKERSUBQ1 The name of the queue from which

non-durable subscription messages

are retrieved

� SYSTEM.JMS.ND.SUBSCRIBER.QUEUE

� Any valid string.

BROKERVER1 The version of the broker being used
� unspecified - After the broker has been migrated

from V6 to V7, set this property so that RFH2 headers

are no longer used. After migration this property is no

longer relevant.

� V1 - To use a WebSphere MQ Publish/Subscribe

broker, or to use a broker of WebSphere MQ

Integrator, WebSphere Event Broker, WebSphere

Business Integration Event Broker, or WebSphere
Business Integration Message Broker in compatibility

mode. This is the default value if TRANSPORT is set to

BIND or CLIENT.

� V2 - To use a broker of WebSphere MQ Integrator,

WebSphere Event Broker, WebSphere Business

Integration Event Broker, or WebSphere Business

Integration Message Broker in native mode. This is the

default value if TRANSPORT is set to DIRECT or

DIRECTHTTP.

CCDTURL2 A uniform resource locator (URL) that
identifies the name and location of

the file containing the client channel

definition table and specifies how the

file can be accessed

� null

� A uniform resource locator (URL)

CCSID The coded character set ID to be

used for a connection or destination
� 819 - This is the default for a connection factory.

� 1208 - This is the default for a destination.

� Any positive integer

CHANNEL2 The name of the client connection

channel being used
� SYSTEM.DEF.SVRCONN

� Any string

CLEANUP1 Cleanup Level for BROKER or

MIGRATE Subscription Stores
� SAFE - use safe cleanup

� ASPROP - use safe, strong, or no cleanup according to

Page 103 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

a property set on the Java command line

� NONE - use no cleanup

� STRONG - use strong cleanup

CLEANUPINT1 The interval, in milliseconds, between

background executions of the

publish/subscribe cleanup utility

� 3600000

� Any positive integer

CONNECTIONNAMELIST

List of TCP/IP connection names.

The list is tried in order, once per
each reconnection retry attempt.

Comma separated list of HOSTNAME(PORT).

HOSTNAME(PORT) can be either a DNS name or IP address.
PORT defaults to 1414.

CLIENTRECONNECTOPTIONS

Options governing automatic client

reconnection.

� ASDEF - MQCNO_RECONNECT_AS_DEF

� QMGR - MQCNO_RECONNECT_Q_MGR

� RECONNECT - MQCNO_CLIENT_RECONNECT

� DISABLED - MQCNO_CLIENT_DISABLED

See Reconnection options

CLIENTRECONNECTTIMEOUT Time before reconnection retries
cease

Interval in seconds. Default 1800 (30 minutes).

CLIENTID The client identifier for a connection
� null

� Any string

CLONESUPP Whether two or more instances of the

same durable topic subscriber can

run simultaneously

� DISABLED - Only one instance of a durable topic

subscriber can run at a time.

� ENABLED3 - Two or more instances of the same

durable topic subscriber can run simultaneously, but

each instance must run in a separate Java virtual

machine (JVM).

COMPHDR A list of the techniques that can be

used for compressing header data on

a connection

� NONE

� SYSTEM - RLE message header compression is

performed

COMPMSG A list of the techniques that can be

used for compressing message data

on a connection

� NONE

� A list of one or more of the following values separated

by blank characters:

RLE

ZLIBFAST

ZLIBHIGH

CONNOPT Options that control how the

application connects to the queue

manager

� STANDARD - The nature of the binding between the

application and the queue manager depends on the

platform on which the queue manager is running and

how the queue manager is configured.

� SHARED - The application and the local queue manager

agent run in separate units of execution but share

some resources.

� ISOLATED - The application and the local queue

manager agent run in separate units of execution and

share no resources.

� FASTPATH - The application and the local queue

manager agent run in the same unit of execution.

� SERIALQM - The application requests exclusive use of

the connection tag within the scope of the queue

manager.

� SERIALQSG - The application requests exclusive use of

the connection tag within the scope of the queue

sharing group to which the queue manager belongs.

� RESTRICTQM - The application requests shared use of

the connection tag, but there are restrictions on the

shared use of the connection tag within the scope of

the queue manager.

� RESTRICTQSG - The application requests shared use of

the connection tag, but there are restrictions on the

shared use of the connection tag within the scope of

the queue sharing group to which the queue manager

belongs.

CONNTAG A tag that the queue manager

associates with the resources

updated by the application within a

unit of work while the application is

connected to the queue manager

� A byte array of 128 elements, where each

element is 0

� Any string. The value is truncated if it is longer than

128 bytes.

DESCRIPTION A description of the stored object
� null

� Any string

DIRECTAUTH Whether SSL authentication is used

on a real-time connection to a

broker4

� BASIC - No authentication, username authentication,

or password authentication

� CERTIFICATE - Public key certificate authentication

ENCODING How numeric data in the body of a

message is represented when the

message is sent to this destination.

See The ENCODING property

Page 104 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

The property specifies the

representation of binary integers,

packed decimal integers, and floating

point numbers.

EXPIRY The period after which messages at a

destination expire
� APP - Expiry can be defined by the JMS application.9

� UNLIM - No expiry occurs.

� 0 - No expiry occurs

� Any positive integer representing expiry in

milliseconds.

FAILIFQUIESCE Whether calls to certain methods fail

if the queue manager is in a

quiescing state

� YES - Calls to certain methods fail if the queue

manager is in a quiescing state. If an application

detects that the queue manager is quiescing, the

application can complete its immediate task and close

the connection, allowing the queue manager to stop.

� NO - No method call fails because the queue manager

is in a quiescing state. If you specify this value, an

application cannot detect that the queue manager is

quiescing. The application might continue to perform

operations against the queue manager, and therefore

prevent the queue manager from stopping.

HOSTNAME For a connection to a queue manager,

the host name or IP address of the

system on which the queue manager

is running or, for a real-time

connection to a broker, the host

name or IP address of the system on

which the broker is running

� localhost

� Any string

LOCALADDRESS For a connection to a queue manager,

this property specifies either or both
of the following:

� The local network interface to

be used

� The local port, or range of local

ports, to be used

For a real-time connection to a

broker, this property is relevant only

when multicast is used, and specifies

the local network interface to be

used.

� "" (empty string)

� A string in the format [ip-addr][(low-port[,high-port])]

Here are some examples:

192.0.2.0

The channel binds to address 192.0.2.0 locally

192.0.2.0(1000)

The channel binds to address 192.0.2.0 locally and

uses port 1000

192.0.2.0(1000,2000)

The channel binds to address 9.20.4.98 locally and

uses a port in the range 1000 to 2000

(1000)

The channel binds to port 1000 locally

(1000,2000)

The channel binds to a port in the range 1000 to

2000 locally

You can specify a host name instead of an IP address.

For a real-time connection to a broker, this property is

relevant only when multicast is used, and the value of

the property must not contain a port number, or a

range of port numbers. The only valid values of the

property in this case are null, an IP address, or a host

name.

MAPNAMESTYLE Allows compatibility style to be used

for MapMessage element names.
� STANDARD - the standard
com.ibm.jms.JMSMapMessage element naming format

is to be used.

� COMPATIBLE - the older com.ibm.jms.JMSMapMessage
element naming format is to be used. This is needed

only if map messages are being sent to an application

that is using a version of WebSphere MQ classes for

JMS earlier than Version 5.3.

MAXBUFFSIZE The maximum number of received

messages that can be stored in an

internal message buffer while waiting
to be processed by the application.

This property applies only when

TRANSPORT has the value DIRECT or

DIRECTHTTP.

� 1000

� Any positive integer

MSGBATCHSZ1 The maximum number of messages

to be taken from a queue in one

packet when using asynchronous

message delivery

� 10

� Any positive integer

MSGRETENTION Whether the connection consumer

keeps undelivered messages on the

input queue

� Yes - Undelivered messages remain on the input
queue

� No - Undelivered messages are dealt with according to

their disposition options

MSGSELECTION1 Determines whether message

selection is done by the WebSphere

MQ classes for JMS or by the broker.

If TRANSPORT has the value DIRECT,

message selection is always done by

the broker and the value of

MSGSELECTION is ignored. Message
selection by the broker is not

supported when BROKERVER has the

value V1.

� CLIENT - Message selection is done by WebSphere MQ

classes for JMS.

� BROKER - Message selection is done by the broker.

MULTICAST To enable multicast on a real-time

connection to a broker and, if

enabled, to specify the precise way in

which multicast is used to deliver

� DISABLED - Messages are not delivered to a message

consumer using multicast transport. This is the default

value for ConnectionFactory and

TopicConnectionFactory objects.

Page 105 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

messages from the broker to a

message consumer. The property has

no effect on how a message producer

sends messages to a broker.4

� ASCF - Messages are delivered to a message

consumer according to the multicast setting for the

connection factory associated with the message

consumer. The multicast setting for the connection

factory is noted at the time that the message

consumer is created. This value is valid only for Topic
objects, and is the default value for Topic objects.

� ENABLED - If the topic is configured for multicast in

the broker, messages are delivered to a message
consumer using multicast transport. A reliable quality

of service is used if the topic is configured for reliable

multicast.

� RELIABLE - If the topic is configured for reliable
multicast in the broker, messages are delivered to the

message consumer using multicast transport with a

reliable quality of service. If the topic is not configured

for reliable multicast, you cannot create a message

consumer for the topic.

� NOTR - If the topic is configured for multicast in the

broker, messages are delivered to the message

consumer using multicast transport. A reliable quality

of service is not used even if the topic is configured for

reliable multicast.

OPTIMISTICPUBLICATION1 Whether WebSphere MQ classes for

JMS returns control immediately to a

publisher that has just published a

message, or whether it returns

control only after it has completed all

the processing associated with the

call and can report the outcome to

the publisher

� NO - When a publisher publishes a message,

WebSphere MQ classes for JMS does not return control

to the publisher until it has completed all the

processing associated with the call and can report the

outcome to the publisher.

� YES - When a publisher publishes a message,

WebSphere MQ classes for JMS returns control to the

publisher immediately, before it has completed all the

processing associated with the call and can report the
outcome to the publisher. WebSphere MQ classes for

JMS reports the outcome only when the publisher

commits the message.

OUTCOMENOTIFICATION1 Whether WebSphere MQ classes for

JMS returns control immediately to a

subscriber that has just

acknowledged or committed a
message, or whether it returns

control only after it has completed all

the processing associated with the

call and can report the outcome to

the subscriber

� YES - When a subscriber acknowledges or commits a

message, WebSphere MQ classes for JMS does not

return control to the subscriber until it has completed

all the processing associated with the call and can

report the outcome to the subscriber.

� NO5 - When a subscriber acknowledges or commits a

message, WebSphere MQ classes for JMS returns

control to the subscriber immediately, before it has

completed all the processing associated with the call

and can report the outcome to the subscriber.

PERSISTENCE The persistence of messages sent to

a destination
� APP - Persistence is defined by the JMS application.9

� QDEF - Persistence takes the value of the queue
default.

� PERS - Messages are persistent.

� NON - Messages are nonpersistent.

� HIGH - See JMS persistent messages.

POLLINGINT1 If each message listener within a

session has no suitable message on

its queue, this is the maximum

interval, in milliseconds, that elapses

before each message listener tries

again to get a message from its

queue. If it frequently happens that

no suitable message is available for

any of the message listeners in a

session, consider increasing the value

of this property. This property is

relevant only if TRANSPORT has the

value BIND or CLIENT.

� 5000

� Any positive integer

PORT For a connection to a queue manager,

the number of the port on which the
queue manager is listening or, for a

real-time connection to a broker, the

number of the port on which the

broker is listening for real-time

connections

� 1414 - This is the default value if TRANSPORT is set to

CLIENT.

� 1506 - This is the default value if TRANSPORT is set to

DIRECT or DIRECTHTTP.

� Any positive integer

PRIORITY The priority for messages sent to a

destination
� APP - Priority is defined by the JMS application.9

� QDEF - Priority takes the value of the queue default.

� Any integer in the range 0-9.

PROCESSDURATION1 Whether a subscriber guarantees to

process quickly any message it

receives before returning control to

WebSphere MQ classes for JMS

� UNKNOWN - A subscriber can give no guarantee

about how quickly it can process any message it

receives.

� SHORT - A subscriber guarantees to process quickly

any message it receives before returning control to

WebSphere MQ classes for JMS.

PROVIDERVERSION10 The WebSphere MQ messaging

provider has two modes of operation:

WebSphere MQ messaging provider

normal mode and WebSphere MQ

messaging provider migration mode.

The WebSphere MQ messaging

provider normal mode uses all the

features of the WebSphere MQ

Version 7.0 queue managers to

You can set PROVIDERVERSION to three possible values: 7,

6, or unspecified:

7

Uses the WebSphere MQ messaging provider normal mode.

If you set PROVIDERVERSION to 7 only the WebSphere MQ

messaging provider normal mode of operation is available.

If the queue manager that is connected to as a result of

Page 106 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

implement JMS. This mode is used

only to connect to a WebSphere MQ

queue manager and can connect to

WebSphere MQ Version 7.0 queue

managers in either client or bindings

mode. This mode is optimized to use

the new WebSphere MQ Version 7.0

function.

If you are not using WebSphere MQ

Real-Time Transport, then the mode

of operation used is determined

primarily by the PROVIDERVERSION

property of the connection factory.

the other settings in the connection factory is not a Version

7.0 queue manager, the createConnection() method fails

with an exception.

The WebSphere MQ messaging provider normal mode uses

the sharing conversations feature and the number of

conversations that can be shared is controlled by the

SHARECNV() property on the server connection channel. If

this property is set to 0, you cannot use WebSphere MQ

messaging provider normal mode and the createConnection

() method fails with an exception.

6

Uses the WebSphere MQ messaging provider migration

mode.

The WebSphere MQ classes for JMS use the features and

algorithms supplied with WebSphere MQ Version 6.0. If you

want to connect to WebSphere Event Broker or WebSphere

Message Broker using WebSphere MQ Enterprise Transport,

you must use this mode. You can connect to a WebSphere

MQ Version 7.0 queue manager using this mode, but none

of the new features of a Version 7.0 queue manager are

used, for example, read ahead or streaming.

unspecified

This is the default value and the actual text is

"unspecified".

A connection factory that was created with a previous
version of WebSphere MQ classes for JMS in JNDI takes

this value when the connection factory is used with the

new version of WebSphere MQ classes for JMS. The

following algorithm is used to determine which mode of

operation is used. This algorithm is used when the

createConnection() method is called and uses other aspects

of the connection factory to determine if WebSphere MQ

messaging provider normal mode or WebSphere MQ

messaging provider migration mode is required.

� Firstly, an attempt to use WebSphere MQ messaging

provider normal mode is made.

� If the queue manager connected is not WebSphere

MQ Version 7.0, the connection is closed and

WebSphere MQ messaging provider migration mode

is used instead.

� If the SHARECNV() property on the server connection

channel is set to 0, the connection is closed and

WebSphere MQ messaging provider migration mode

is used instead.

� If BROKERVER is set to 1 or the new default

"unspecified" value, WebSphere MQ messaging

provider normal mode continues to be used, and

therefore any publish/subscribe operations use the

new WebSphere MQ V7.0 features.

If WebSphere Event Broker or WebSphere Message

Broker are used in compatibility mode (and you want

to use Version 6.0 publish/subscribe function rather

than the WebSphere MQ Version 7 publish/subscribe

function), set PROVIDERVERSION to 6 ensure
WebSphere MQ messaging provider migration mode

is used.

PROXYHOSTNAME The host name or IP address of the

system on which the proxy server is

running when using a real-time

connection to a broker through a

proxy server4

� null

� The host name of the proxy server

PROXYPORT The number of the port on which the

proxy server is listening when using a

real-time connection to a broker

through a proxy server4

� 443

� The port number of the proxy server

PUBACKINT1 The number of messages published

by a publisher before WebSphere MQ

classes for JMS requests an

acknowledgment from the broker. If

you lower the value of this property,

WebSphere MQ classes for JMS

requests acknowledgments more

often, and therefore the performance

of the publisher decreases. If you

raise the value, WebSphere MQ

classes for JMS takes a longer time to

throw an exception if the broker fails.
This property is relevant only if

TRANSPORT has the value BIND or

CLIENT.

� 25

� Any positive integer

PUTASYNCALLOWED Whether message producers are

allowed to use asynchronous puts to

send messages to this destination

� AS_Q_DEF6 - Determine whether asynchronous puts

are allowed by referring to the queue definition.

� AS_TOPIC_DEF6 - Determine whether asynchronous

puts are allowed by referring to the topic definition.

� AS_DEST6 - Determine whether asynchronous puts

are allowed by referring to the queue or topic

definition.

� NO - Asynchronous puts are not allowed.

Page 107 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

� YES - Asynchronous puts are allowed.

QMANAGER The name of the queue manager to

connect to. But, if your application

uses a client channel definition table

to connect to a queue manager, see

Using a client channel definition table

with WebSphere MQ classes for JMS.

� "" (empty string)

� Any string

QUEUE The underlying name of the queue

representing this destination

Any string

READAHEADALLOWED Whether message consumers and

queue browsers are allowed to use

read ahead to get nonpersistent

messages from this destination into

an internal buffer before receiving

them

� AS_Q_DEF7 - Determine whether read ahead is

allowed by referring to the queue definition.

� AS_TOPIC_DEF7 - Determine whether read ahead is

allowed by referring to the topic definition.

� AS_DEST7 - Determine whether read ahead is allowed

by referring to the queue or topic definition.

� NO - Read ahead is not allowed.

� YES - Read ahead is allowed.

READAHEADCLOSEPOLICY For messages being delivered to an
asynchronous message listener, what

happens to messages in the internal

read ahead buffer when the message

consumer is closed.

� DELIVER_CURRENT - Only the current message

listener invocation completes before returning,

potentially leaving messages in the internal read ahead

buffer, which are then discarded.

� DELIVER_ALL - All messages in the internal read

ahead buffer are delivered to the application's message

listener before returning.

RECEIVEISOLATION1 Whether a subscriber might receive

messages that have not been

committed on the subscriber queue

� COMMITTED - A subscriber receives only those

messages on the subscriber queue that have been

committed.

� UNCOMMITTED8 - A subscriber can receive messages

that have not been committed on the subscriber

queue.

RECEXIT Identifies a channel receive exit, or a

sequence of receive exits to be run in

succession

� null

� A string comprising one or more items separated by

commas, where each item is one of the following:

� The name of a class that implements the

WMQReceiveExit interface (for a channel receive

exit written in Java)

� A string in the format libraryName

(entryPointName) (for a channel receive exit not

written in Java)

RECEXITINIT The user data that is passed to
channel receive exits when they are

called

� null

� A string comprising one or more items of user data

separated by commas.

RESCANINT1 When a message consumer in the

point-to-point domain uses a

message selector to select which

messages it wants to receive,

WebSphere MQ classes for JMS

searches the WebSphere MQ queue

for suitable messages in the

sequence determined by the

MsgDeliverySequence attribute of

the queue. When WebSphere MQ

classes for JMS finds a suitable

message and delivers it to the

consumer, WebSphere MQ classes for

JMS resumes the search for the next

suitable message from its current

position in the queue. WebSphere MQ

classes for JMS continues to search

the queue in this way until it reaches

the end of the queue, or until the
interval of time in milliseconds, as

determined by the value of this

property, has expired. In each case,

WebSphere MQ classes for JMS

returns to the beginning of the queue

to continue its search, and a new

time interval commences.

� 5000

� Any positive integer

SECEXIT Identifies a channel security exit
� null

� The name of a class that implements the

WMQSecurityExit interface (for a channel security exit
written in Java)

� A string in the format libraryName(entryPointName)

(for a channel security exit not written in Java)

SECEXITINIT The user data that is passed to a

channel security exit when it is called
� null

� Any string

SENDCHECKCOUNT The number of send calls to allow

between checking for asynchronous

put errors, within a single non-

transacted JMS session

� 0

� Any positive integer

SENDEXIT Identifies a channel send exit, or a

sequence of send exits to be run in

succession

� null

� A string comprising one or more items separated by

commas, where each item is one of the following:

� The name of a class that implements the

Page 108 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

WMQSendExit interface (for a channel send exit

written in Java)

� A string in the format libraryName

(entryPointName) (for a channel send exit not

written in Java)

SENDEXITINIT The user data that is passed to

channel send exits when they are

called

� null

� A string comprising one or more items of user data

separated by commas

SHARECONVALLOWED Whether a client connection can

share its socket with other top-level

JMS connections from the same
process to the same queue manager,

if the channel definitions match

� NO

� YES

SPARSESUBS1 Controls the message retrieval policy

of a TopicSubscriber object
� NO - Subscriptions receive frequent matching

messages.

� YES - Subscriptions receive infrequent matching

messages. This value requires that the subscription

queue can be opened for browse.

SSLCIPHERSUITE The CipherSuite to use for an SSL

connection
� null

� See SSL properties

SSLCRL CRL servers to check for SSL

certificate revocation
� null

� Space-separated list of LDAP URLs. See SSL properties

SSLFIPSREQUIRED Whether an SSL connection must use

a CipherSuite that is supported by

the IBM® Java JSSE FIPS provider

(IBMJSSEFIPS)

� NO - An SSL connection can use any CipherSuite that

is not supported by the IBM Java JSSE FIPS provider

(IBMJSSEFIPS).

� YES - An SSL connection must use a CipherSuite that

is supported by IBMJSSEFIPS.

SSLPEERNAME For SSL, a distinguished name

skeleton that must match that

provided by the queue manager

� null

� See SSL properties

SSLRESETCOUNT For SSL, the total number bytes sent

and received by a connection before

the secret key that is used for

encryption is renegotiated.

� 0

� Zero, or any positive integer less than or equal to

999 999 999. See SSL properties

STATREFRESHINT1 The interval, in milliseconds, between

refreshes of the long running

transaction that detects when a
subscriber loses its connection to the

queue manager. This property is

relevant only if SUBSTORE has the

value QUEUE.

� 60000

� Any positive integer

SUBSTORE1 Where WebSphere MQ classes for

JMS stores persistent data relating to

active subscriptions

� BROKER - Use the broker-based subscription store to

hold details of subscriptions

� MIGRATE - Transfer subscription information from the

queue-based subscription store to the broker-based

subscription store

� QUEUE - Use the queue-based subscription store to

hold details of subscriptions

SYNCPOINTALLGETS Whether all gets are to be performed

under syncpoint
� No

� Yes

TARGCLIENT Whether the WebSphere MQ RFH2

format is used to exchange

information with target applications

� JMS - The target of the message is a JMS application.

� MQ - The target of the message is a non-JMS

WebSphere MQ application.

TARGCLIENTMATCHING Whether a reply message, sent to the

queue identified by the JMSReplyTo

header field of an incoming message,

has an MQRFH2 header only if the

incoming message has an MQRFH2

header

� YES - If an incoming message does not have an

MQRFH2 header, the TARGCLIENT property of the

Queue object derived from the JMSReplyTo header

field of the message is set to MQ. If the message does

have an MQRFH2 header, the TARGCLIENT property is

set to JMS instead.

� NO - The TARGCLIENT property of the Queue object

derived from the JMSReplyTo header field of an

incoming message is always set to JMS.

TEMPMODEL The name of the model queue from

which JMS temporary queues are

created

� SYSTEM.DEFAULT.MODEL.QUEUE

� Any string

TEMPQPREFIX The prefix that is used to form the

name of a WebSphere MQ dynamic

queue

� "" (empty string) - The prefix used is CSQ.* on

z/OS® and AMQ.* on all other platforms.

� Any string that conforms to the rules for forming the

contents of the DynamicQName field in a WebSphere MQ

object descriptor (structure MQOD), but the last non

blank character must be an asterisk.

TEMPTOPICPREFIX When creating temporary topics, JMS

will generate a topic string of the

form

“TEMP/TEMPTOPICPREFIX/unique_id”,

or if this property is left with the

default value, just “TEMP/unique_id”.

Specifying a non-empty

TEMPTOPICPREFIX allows specific

model queues to be defined for

creating the managed queues for

subscribers to temporary topics
created under this connection.

� "" (empty string)

� Any non-null string consisting only of valid characters

for a WebSphere MQ topic string

Page 109 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

TOPIC The underlying name of the topic

representing this destination

Any string

TRANSPORT The nature of a connection to a

queue manager or broker
� BIND - For a connection to a queue manager in
bindings mode

� CLIENT - For a connection to a queue manager in client

mode

� DIRECT - For a real-time connection to a broker not

using HTTP tunnelling

� DIRECTHTTP - For a real-time connection to a broker

using HTTP tunnelling. Only HTTP 1.0 is supported.

USECONNPOOLING
Whether to use connection pooling.

The property is not used in Version

7 and later. It is retained for

compatibility with earlier releases.

� Yes

� No

WILDCARDFORMAT Which version of wildcard syntax is to

be used
� CHAR_ONLY - Recognizes character wildcards only, as

used in broker version 1

� TOPIC_ONLY - Recognizes topic level wildcards only,

as used in broker version 2

WMQ_MQMD_MESSAGE_CONTEXT11 What level of message context is to

be set by the JMS application. The
application must be running with

appropriate context authority for this

property to take effect

� DEFAULT - The MQOPEN API call and the MQPMO

structure will specify no explicit message context

options

� SET_IDENTITY_CONTEXT - The MQOPEN API call

specifies the message context option

MQOO_SET_IDENTITY_CONTEXT and the MQPMO

structure specifies MQPMO_SET_IDENTITY_CONTEXT.

� SET_ALL_CONTEXT - The MQOPEN API call specifies

the message context option MQOO_SET_ALL_CONTEXT

and the MQPMO structure specifies

MQPMO_SET_ALL_CONTEXT

WMQ_MQMD_READ_ENABLED11 Whether a JMS application can

extract the values of MQMD fields
� NO - When sending messages, the JMS_IBM_MQMD*
properties on a sent message are not updated to

reflect the updated field values in the MQMD.

When receiving messages, none of the

JMS_IBM_MQMD* properties are available on a

received message, even if the sender had set some or

all of them.

� Yes - When sending messages, all of the

JMS_IBM_MQMD* properties on a sent message are

updated to reflect the updated field values in the

MQMD, including those that the sender did not set

explcitly.

When receiving messages, all of the JMS_IBM_MQMD*

properties are available on a received message,
including those that the sender did not set explicitly.

WMQ_MQMD_WRITE_ENABLED11 Whether a JMS application can set

the values of MQMD fields
� NO - All JMS_IBM_MQMD* properties are ignored and

their values are not copied into the underlying MQMD

structure

� YES - JMS_IBM_MQMD* properties are processed.

Their values are copied into the underlying MQMD

structure

�

Note:

1. This property can be used with Version 7.0 of WebSphere MQ classes for JMS but has no effect for an application connected to a Version

7.0 queue manager unless the PROVIDERVERSION property of the connection factory is set to a version number less than 7.

2. The CCDTURL and CHANNEL properties of an object must not both be set at the same time.

3. Running two or more instances of the same durable topic subscriber simultaneously contravenes the Java Message Service Specification,

Version 1.1.

4. See Using a real-time connection to a broker of WebSphere Event Broker or WebSphere Message Broker.

5. If you specify NO, and a message is rolled back after WebSphere MQ classes for JMS has returned control to the subscriber, the
subscriber still retains a copy of the message but is not informed of the rollback. In this situation, a subscriber might receive the same

message more than once.

6. The values PUTASYNCALLOWED_AS_Q_DEF, PUTASYNCALLOWED_AS_TOPIC_DEF, and PUTASYNCALLOWED_AS_DEST are synonymous
and can be used interchangeably.

7. The values READAHEADALLOWED_AS_Q_DEF, READAHEADALLOWED_AS_TOPIC_DEF, and READAHEADALLOWED_AS_DEST are

synonymous and can be used interchangeably.

8. The value UNCOMMITTED has an effect only if PROCESSDURATION has the value SHORT. It has no effect if PROCESSDURATION has the

value UNKNOWN. If you specify UNCOMMITTED, ensure that a subscriber acknowledges or commits each message individually.

9. For those properties with a default value of APP (value is specified by the application), if the application does not specify a value, then the

default value as defined in the JMS specification is used.

10. For more information about PROVIDERVERSION, see Rules for selecting the WebSphere MQ messaging provider mode and When to use

PROVIDERVERSION.

11. For more information about WMQ_MQMD_MESSAGE_CONTEXT, WMQ_MQMD_READ_ENABLED, and WMQ_MQMD_WRITE_ENABLED, see

Reading and writing the message descriptor from a WebSphere MQ classes for JMS application.

Table 2. Property names and applicable object types

Property Short form Object type

CF QCF TCF Q T XACF XAQCF XATCF

ASYNCEXCEPTION AEX Y Y Y Y Y Y

BROKERCCDURSUBQ1 CCDSUB Y

BROKERCCSUBQ1 CCSUB Y Y Y Y

BROKERCONQ1 BCON Y Y Y Y

Page 110 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

BROKERDURSUBQ1 BDSUB Y

BROKERPUBQ1 BPUB Y Y Y Y Y

BROKERPUBQMGR1 BPQM Y

BROKERQMGR1 BQM Y Y Y Y

BROKERSUBQ1 BSUB Y Y Y Y

BROKERVER1 BVER Y2 Y2 Y Y Y

CCDTURL3 CCDT Y Y Y Y Y Y

CCSID CCS Y Y Y Y Y Y Y Y

CHANNEL3 CHAN Y Y Y Y Y Y

CLEANUP1 CL Y Y Y Y

CLEANUPINT1 CLINT Y Y Y Y

CONNECTIONNAMELIST CRHOSTS Y Y Y

CLIENTRECONNECTOPTIONS CROPT Y Y Y

CLIENTRECONNECTTIMEOUT CRT Y Y Y

CLIENTID CID Y2 Y Y2 Y Y Y

CLONESUPP CLS Y Y Y Y Y Y

COMPHDR HC Y Y Y Y

COMPMSG MC Y Y Y Y Y Y

CONNOPT CNOPT Y Y Y Y Y Y

CONNTAG CNTAG Y Y Y Y Y Y

DESCRIPTION DESC Y2 Y Y2 Y Y Y Y Y

DIRECTAUTH DAUTH Y2 Y2

ENCODING ENC Y Y

EXPIRY EXP Y Y

FAILIFQUIESCE FIQ Y Y Y Y Y Y Y Y

HOSTNAME HOST Y2 Y Y2 Y Y Y

LOCALADDRESS LA Y2 Y Y2 Y Y Y

MAPNAMESTYLE MNST Y Y Y Y Y Y

MAXBUFFSIZE MBSZ Y2 Y2

MDMSGCTX MDCTX Y Y

MDREAD MDR Y Y

MDWRITE MDW Y Y

MSGBATCHSZ1 MBS Y Y Y Y Y Y

MSGRETENTION MRET Y Y Y Y

MSGSELECTION1 MSEL Y Y Y Y

MULTICAST MCAST Y2 Y2 Y

OPTIMISTICPUBLICATION1 OPTPUB Y Y

OUTCOMENOTIFICATION1 NOTIFY Y Y

PERSISTENCE PER Y Y

POLLINGINT1 PINT Y Y Y Y Y Y

PORT PORT Y2 Y Y2 Y Y Y

PRIORITY PRI Y Y

PROCESSDURATION1 PROCDUR Y Y

PROVIDERVERSION PVER Y Y Y Y Y Y

PROXYHOSTNAME PHOST Y2 Y2

PROXYPORT PPORT Y2 Y2

PUBACKINT1 PAI Y Y Y Y

PUTASYNCALLOWED PAALD Y Y

QMANAGER QMGR Y Y Y Y Y Y Y

QUEUE QU Y

READAHEADALLOWED RAALD Y Y

READAHEADCLOSEPOLICY RACP Y Y

RECEIVEISOLATION1 RCVISOL Y Y

RECEXIT RCX Y Y Y Y Y Y

RECEXITINIT RCXI Y Y Y Y Y Y

RESCANINT1 RINT Y Y Y Y

SECEXIT SCX Y Y Y Y Y Y

SECEXITINIT SCXI Y Y Y Y Y Y

SENDCHECKCOUNT SCC Y Y Y Y Y Y

SENDEXIT SDX Y Y Y Y Y Y

SENDEXITINIT SDXI Y Y Y Y Y Y

SHARECONVALLOWED SCALD Y Y Y Y Y Y

SPARSESUBS1 SSUBS Y Y

SSLCIPHERSUITE SCPHS Y Y Y Y Y Y

SSLCRL SCRL Y Y Y Y Y Y

SSLFIPSREQUIRED SFIPS Y Y Y Y Y Y

SSLPEERNAME SPEER Y Y Y Y Y Y

SSLRESETCOUNT SRC Y Y Y Y Y Y

STATREFRESHINT1 SRI Y Y Y Y

Page 111 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

SUBSTORE1 SS Y Y Y Y

SYNCPOINTALLGETS SPAG Y Y Y Y Y Y

TARGCLIENT TC Y Y

TARGCLIENTMATCHING TCM Y Y Y Y

TEMPMODEL TM Y Y Y Y

TEMPQPREFIX TQP Y Y Y Y

TEMPTOPICPREFIX TTP Y Y Y Y

TOPIC TOP Y

TRANSPORT TRAN Y2 Y Y2 Y Y Y

USECONNPOOLING UCP Y Y Y Y Y Y

WILDCARDFORMAT WCFMT Y Y Y Y

Note:

1. This property can be used with Version 7.0 of WebSphere MQ classes for JMS but has no effect for an application connected to a Version

7.0 queue manager unless the PROVIDERVERSION property of the connection factory is set to a version number less than 7.

2. Only the BROKERVER, CLIENTID, DESCRIPTION, DIRECTAUTH, HOSTNAME, LOCALADDRESS, MAXBUFFSIZE, MULTICAST, PORT,

PROXYHOSTNAME, PROXYPORT, and TRANSPORT properties are supported for a ConnectionFactory or TopicConnectionFactory object

when using a real-time connection to a broker.

3. The CCDTURL and CHANNEL properties of an object must not both be set at the same time.

Table 3. Property names, set methods and values

Property Set method Valid values in administration tool

(defaults in bold)

Valid values in programs

ASYNCEXCEPTION setAsyncExceptions
� ASYNC_EXCEPTIONS_ALL

Any exception detected asynchronously,

outside the scope of a synchronous API call,

and all connection broken exceptions are

sent to the ExceptionListener.

� ASYNC_EXCEPTIONS_CONNECTIONBROKEN

Only exceptions indicating a broken
connection are sent to the

ExceptionListener. Any other exceptions

occurring during asynchronous processing

are not reported to the ExceptionListener,

and hence the application is not informed of

these exceptions.

BROKERCCDURSUBQ1 setBrokerCCDurSubQueue
� SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE

� Any valid string.

BROKERCCSUBQ1 setBrokerCCSubQueue
� SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE

� Any valid string.

BROKERCONQ1 setBrokerControlQueue
� SYSTEM.BROKER.CONTROL.QUEUE

� Any string

BROKERDURSUBQ1 setBrokerDurSubQueue
� SYSTEM.JMS.D.SUBSCRIBER.QUEUE

� Any valid string.

BROKERPUBQ1 setBrokerPubQueue
� SYSTEM.BROKER.DEFAULT.STREAM

� Any string

BROKERPUBQMGR1 setBrokerPubQueueManager
� null

� Any string

BROKERQMGR1 setBrokerQueueManager
� null

� Any string

BROKERSUBQ1 setBrokerSubQueue
� SYSTEM.JMS.ND.SUBSCRIBER.QUEUE

� Any valid string.

BROKERVER1 setBrokerVersion
� V1 - To use a WebSphere MQ
Publish/Subscribe broker, or to use a broker

of WebSphere MQ Integrator, WebSphere

Event Broker, WebSphere Business

Integration Event Broker, or WebSphere

Business Integration Message Broker in

compatibility mode. This is the default value

if TRANSPORT is set to BIND or CLIENT.

� V2 - To use a broker of WebSphere MQ

Integrator, WebSphere Event Broker,

WebSphere Business Integration Event

Broker, or WebSphere Business Integration

Message Broker in native mode. This is the

default value if TRANSPORT is set to DIRECT

or DIRECTHTTP.

� unspecified - After the broker has been

migrated from V6 to V7, set this property so

that RFH2 headers are no longer used. After

migration this property is no longer relevant.

� WMQConstants.WMQ_BROKER_V1

� WMQConstants.WMQ_BROKER_V2

� WMQConstants.WMQ_BROKER_UNSPECIFIED

CCDTURL2 setCCDTURL
� null

� A uniform resource locator (URL)

CCSID CCSID
� 819 - This is the default for a connection

factory.

� 1208 - This is the default for a destination.

� Any positive integer

Page 112 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

CHANNEL2 setChannel
� SYSTEM.DEF.SVRCONN

� Any string

CLEANUP1 setCleanupLevel
� SAFE - use safe cleanup

� ASPROP - use safe, strong, or no cleanup

according to a property set on the Java

command line

� NONE - use no cleanup

� STRONG - use strong cleanup

� WMQConstants.WMQ_CLEANUP_NONE

� WMQConstants.WMQ_CLEANUP_SAFE

� WMQConstants.WMQ_CLEANUP_STRONG

� WMQConstants.WMQ_CLEANUP_AS_PROPERTY

CLEANUPINT1 setCleanupInterval
� 3600000

� Any positive integer

CONNECTIONNAMELIST

setConnectionNameList

The whole list of names in a

connectionNameList is not

accessible to methods, like

getHostname, that expect a

single name.

Comma separated list of HOSTNAME(PORT).

HOSTNAME(PORT) can be either a DNS name or IP

address.

PORT defaults to 1414.

CLIENTRECONNECTOPTIONS setClientReconnectOptions

� ASDEF - MQCNO_RECONNECT_AS_DEF

� QMGR - MQCNO_RECONNECT_Q_MGR

� RECONNECT - MQCNO_CLIENT_RECONNECT

� DISABLED - MQCNO_CLIENT_DISABLED

� WMQCONSTANTS.WMQ_CLIENT_RECONNECT_AS_DEF

� WMQCONSTANTS.WMQ_CLIENT_RECONNECT_Q_MGR

� WMQCONSTANTS.WMQ_CLIENT_RECONNECT

� WMQCONSTANTS.WMQ_CLIENT_RECONNECT_DISABLED

CLIENTRECONNECTTIMEOUT setClientReconnectTimeout

Interval in seconds. Default 1800 (30 minutes).

CLIENTID setClientId
� null

� Any string

CLONESUPP setCloneSupport
� DISABLED - Only one instance of a durable
topic subscriber can run at a time.

� ENABLED3 - Two or more instances of the

same durable topic subscriber can run

simultaneously, but each instance must run

in a separate Java virtual machine (JVM).

� WMQConstants.WMQ_CLONE_DISABLED

� WMQConstants.WMQ_CLONE_ENABLED

COMPHDR setHdrCompList
� NONE

� SYSTEM - RLE message header compression

is performed

� WMQConstants.WMQ_COMPHDR_NONE

� WMQConstants.WMQ_COMPHDR_SYSTEM

COMPMSG setMsgCompList
� NONE

� A list of one or more of the following values

separated by blank characters:

RLE

ZLIBFAST

ZLIBHIGH

� WMQConstants.WMQ_COMPMSG_NONE

� WMQConstants.WMQ_COMPMSG_RLE

� WMQConstants.WMQ_COMPMSG_ZLIBFAST

� WMQConstants.WMQ_COMPMSG_ZLIBHIGH

CONNOPT4 setMQConnectionOptions
� STANDARD - The nature of the binding

between the application and the queue

manager depends on the platform on which

the queue manager is running and how the

queue manager is configured.

� SHARED - The application and the local

queue manager agent run in separate units

of execution but share some resources.

� ISOLATED - The application and the local

queue manager agent run in separate units

of execution and share no resources.

� FASTPATH - The application and the local

queue manager agent run in the same unit

of execution.

� SERIALQM - The application requests

exclusive use of the connection tag within

the scope of the queue manager.

� SERIALQSG - The application requests

exclusive use of the connection tag within

the scope of the queue sharing group to

which the queue manager belongs.

� RESTRICTQM - The application requests

shared use of the connection tag, but there

are restrictions on the shared use of the

connection tag within the scope of the queue

manager.

� RESTRICTQSG - The application requests

shared use of the connection tag, but there

are restrictions on the shared use of the

connection tag within the scope of the queue

sharing group to which the queue manager

belongs.

� CMQC.MQCNO_STANDARD_BINDING

� CMQC.MQCNO_SHARED_BINDING

� CMQC.MQCNO_ISOLATED_BINDING

� CMQC.MQCNO_FASTPATH_BINDING

� CMQC.MQCNO_SERIALIZE_CONN_TAG_Q_MGR

� CMQC.MQCNO_SERIALIZE_CONN_TAG_QSG

� CMQC.MQCNO_RESTRICT_CONN_TAG_Q_MGR

� CMQC.MQCNO_RESTRICT_CONN_TAG_QSG

CONNTAG5 setConnTag
� A byte array of 128 elements, where

Page 113 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

each element is 0

� Any string. The value is truncated if it is

longer than 128 bytes.

DESCRIPTION setDescription
� null

� Any string

DIRECTAUTH setDirectAuth
� BASIC - No authentication, username

authentication, or password authentication

� CERTIFICATE - Public key certificate

authentication

� WMQConstants.RTT_DIRECT_AUTH_BASIC

� WMQConstants.RTT_DIRECT_AUTH_CERTIFICATE

ENCODING setEncoding See The ENCODING property

EXPIRY setExpiry
� APP - Expiry can be defined by the JMS

application.

� UNLIM - No expiry occurs.

� 0 - No expiry occurs

� Any positive integer representing expiry in

milliseconds.

� WMQConstants.WMQ_EXP_APP

� WMQConstants.WMQ_EXP_UNLIMITED

FAILIFQUIESCE setFailIfQuiesce
� YES - Calls to certain methods fail if the

queue manager is in a quiescing state. If an

application detects that the queue manager

is quiescing, the application can complete its

immediate task and close the connection,

allowing the queue manager to stop.

� NO - No method call fails because the queue

manager is in a quiescing state. If you

specify this value, an application cannot

detect that the queue manager is quiescing.

The application might continue to perform
operations against the queue manager, and

therefore prevent the queue manager from

stopping.

� WMQConstants.WMQ_FIQ_YES

� WMQConstants.WMQ_FIQ_NO

HOSTNAME setHostName
� localhost

� Any string

LOCALADDRESS setLocalAddress
� "" (empty string)

� A string in the format [ip-addr][(low-port

[,high-port])]

Here are some examples:

192.0.2.0

The channel binds to address 192.0.2.0

locally

192.0.2.0(1000)

The channel binds to address 192.0.2.0
locally and uses port 1000

192.0.2.0(1000,2000)

The channel binds to address 192.0.2.0

locally and uses a port in the range 1000

to 2000

(1000)

The channel binds to port 1000 locally

(1000,2000)

The channel binds to a port in the range

1000 to 2000 locally

You can specify a host name instead of an IP

address.

For a real-time connection to a broker, this

property is relevant only when multicast is

used, and the value of the property must

not contain a port number, or a range of

port numbers. The only valid values of the

property in this case are null, an IP address,
or a host name.

MAPNAMESTYLE setMapNameStyle
� STANDARD - the standard

com.ibm.jms.JMSMapMessage element

naming format is to be used.

� COMPATIBLE - the older

com.ibm.jms.JMSMapMessage element

naming format is to be used. This is needed

only if map messages are being sent to an

application that is using a version of

WebSphere MQ classes for JMS earlier than

Version 5.3.

� WMQConstants.WMQ_MAP_NAME_STYLE_STANDARD

� WMQConstants.WMQ_MAP_NAME_STYLE_COMPATIBLE

MAXBUFFSIZE setMaxBufferSize
� 1000

� Any positive integer

MDMSGCTX setMQMDMessageContext
� DEFAULT - The MQOPEN API call and the

MQPMO structure will specify no explicit
message context options

� SET_IDENTITY_CONTEXT - The MQOPEN API

call specifies the message context option

MQOO_SET_IDENTITY_CONTEXT and the
MQPMO structure specifies

MQPMO_SET_IDENTITY_CONTEXT.

� SET_ALL_CONTEXT - The MQOPEN API call
specifies the message context option

� WMQ_MDCTX_DEFAULT

� WMQ_MDCTX_SET_IDENTITY_CONTEXT

� WMQ_MDCTX_SET_ALL_CONTEXT

Page 114 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

MQOO_SET_ALL_CONTEXT and the MQPMO

structure specifies

MQPMO_SET_ALL_CONTEXT

MDREAD setMQMDReadEnabled
� NO - When sending messages, the

JMS_IBM_MQMD* properties on a sent

message are not updated to reflect the

updated field values in the MQMD.

When receiving messages, none of the

JMS_IBM_MQMD* properties are available

on a received message, even if the sender

had set some or all of them.

� Yes - When sending messages, all of the

JMS_IBM_MQMD* properties on a sent

message are updated to reflect the updated

field values in the MQMD, including those

that the sender did not set explcitly.

When receiving messages, all of the

JMS_IBM_MQMD* properties are available

on a received message, including those that

the sender did not set explicitly.

� False

� True

MDWRITE setMQMDWriteEnabled
� NO - All JMS_IBM_MQMD* properties are

ignored and their values are not copied into

the underlying MQMD structure

� YES - JMS_IBM_MQMD* properties are

processed. Their values are copied into the

underlying MQMD structure

�

� False

� True

MSGBATCHSZ1 setMsgBatchSize
� 10

� Any positive integer

MSGRETENTION setMessageRetention
� Yes - Undelivered messages remain on the

input queue

� No - Undelivered messages are dealt with

according to their disposition options

� WMQConstants.WMQ_MRET_YES

� WMQConstants.WMQ_MRET_NO

MSGSELECTION1 setMessageSelection
� CLIENT - Message selection is done by
WebSphere MQ classes for JMS.

� BROKER - Message selection is done by the

broker.

� WMQConstants.WMQ_MSEL_CLIENT

� WMQConstants.WMQ_MSEL_BROKER

MULTICAST setMulticast
� DISABLED - Messages are not delivered to

a message consumer using multicast

transport. This is the default value for

ConnectionFactory and

TopicConnectionFactory objects.

� ASCF - Messages are delivered to a

message consumer according to the

multicast setting for the connection factory

associated with the message consumer. The

multicast setting for the connection factory

is noted at the time that the message

consumer is created. This value is valid only

for Topic objects, and is the default value for

Topic objects.

� ENABLED - If the topic is configured for

multicast in the broker, messages are

delivered to a message consumer using

multicast transport. A reliable quality of

service is used if the topic is configured for
reliable multicast.

� RELIABLE - If the topic is configured for

reliable multicast in the broker, messages

are delivered to the message consumer
using multicast transport with a reliable

quality of service. If the topic is not

configured for reliable multicast, you cannot

create a message consumer for the topic.

� NOTR - If the topic is configured for

multicast in the broker, messages are

delivered to the message consumer using

multicast transport. A reliable quality of

service is not used even if the topic is

configured for reliable multicast.

� WMQConstants.RTT_MULTICAST_DISABLED

� WMQConstants.RTT_MULTICAST_ASCF

� WMQConstants.RTT_MULTICAST_ENABLED

� WMQConstants.RTT_MULTICAST_RELIABLE

� WMQConstants.RTT_MULTICAST_NOT_RELIABLE

OPTIMISTICPUBLICATION1 setOptimisticPublication
� NO - When a publisher publishes a

message, WebSphere MQ classes for JMS

does not return control to the publisher until

it has completed all the processing

associated with the call and can report the
outcome to the publisher.

� YES - When a publisher publishes a

message, WebSphere MQ classes for JMS

returns control to the publisher immediately,
before it has completed all the processing

associated with the call and can report the

outcome to the publisher. WebSphere MQ

classes for JMS reports the outcome only

when the publisher commits the message.

� false

� true

OUTCOMENOTIFICATION1 setOutcomeNotification
� YES - When a subscriber acknowledges or

commits a message, WebSphere MQ classes

for JMS does not return control to the

subscriber until it has completed all the

processing associated with the call and can

� true

� false

Page 115 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

report the outcome to the subscriber.

� NO6 - When a subscriber acknowledges or

commits a message, WebSphere MQ classes

for JMS returns control to the subscriber

immediately, before it has completed all the

processing associated with the call and can
report the outcome to the subscriber.

PERSISTENCE setPersistence
� APP - Persistence is defined by the JMS

application.

� QDEF - Persistence takes the value of the

queue default.

� PERS - Messages are persistent.

� NON - Messages are nonpersistent.

� HIGH - See JMS persistent messages.

� WMQConstants.WMQ_PER_APP

� WMQConstants.WMQ_PER_QDEF

� WMQConstants.WMQ_PER_PER

� WMQConstants.WMQ_PER_NON

� WMQConstants.WMQ_PER_NPHIGH

POLLINGINT1 setPollingInterval
� 5000

� Any positive integer

PORT setPort
� 1414 - This is the default value if

TRANSPORT is set to CLIENT.

� 1506 - This is the default value if

TRANSPORT is set to DIRECT or
DIRECTHTTP.

� Any positive integer

PRIORITY setPriority
� APP - Priority is defined by the JMS

application.

� QDEF - Priority takes the value of the queue
default.

� Any integer in the range 0-9.

� WMQConstants.WMQ_PRI_APP

� WMQConstants.WMQ_PRI_QDEF

PROCESSDURATION1 setProcessDuration
� UNKNOWN - A subscriber can give no

guarantee about how quickly it can process

any message it receives.

� SHORT - A subscriber guarantees to process

quickly any message it receives before

returning control to WebSphere MQ classes

for JMS.

� WMQConstants.WMQ_PROCESSING_UNKNOWN

� WMQConstants.WMQ_PROCESSING_SHORT

PROVIDERVERSION setProviderVersion
� unspecified

� A string in one of the following formats

� V.R.M.F

� V.R.M

� V.R

� V

where V, R, M and F are integer values

greater than or equal to zero.

A value of 7 or greater indicates that this is

intended as a WebSphere MQ Version 7.0

ConnectionFactory for connections to a WebSphere

MQ Version 7.0 queue manager. A value lower

than 7 (for example "6.0.2.0"), indicates that it is

intended for use with queue managers earlier than

Version 7.0. The default value, unspecified, allows

connections to any level of queue manager,

determining the applicable properties and

functionality available based on the queue
manager's capabilities.

PROXYHOSTNAME setProxyHostName
� null

� The host name of the proxy server

PROXYPORT setProxyPort
� 443

� The port number of the proxy server

PUBACKINT1 setPubAckInterval
� 25

� Any positive integer

PUTASYNCALLOWED setPutAsyncAllowed
� AS_Q_DEF7 - Determine whether

asynchronous puts are allowed by referring

to the queue definition.

� AS_TOPIC_DEF7 - Determine whether

asynchronous puts are allowed by referring
to the topic definition.

� AS_DEST7 - Determine whether

asynchronous puts are allowed by referring

to the queue or topic definition.

� NO - Asynchronous puts are not allowed.

� YES - Asynchronous puts are allowed.

� WMQConstants.WMQ_PUT_ASYNC_ALLOWED_AS_Q_DEF

� WMQConstants.WMQ_PUT_ASYNC_ALLOWED_AS_TOPIC_DEF

� WMQConstants.WMQ_PUT_ASYNC_ALLOWED_AS_DEST

� WMQConstants.WMQ_PUT_ASYNC_ALLOWED_DISABLED

� WMQConstants.WMQ_PUT_ASYNC_ALLOWED_ENABLED

QMANAGER setQueueManager
� "" (empty string)

� Any string

QUEUE Any string

READAHEADALLOWED setReadAheadAllowed
� AS_Q_DEF8 - Determine whether read

ahead is allowed by referring to the queue

definition.

� AS_TOPIC_DEF8 - Determine whether read

� WMQConstants.WMQ_READ_AHEAD_ALLOWED_AS_Q_DEF

� WMQConstants.WMQ_READ_AHEAD_ALLOWED_AS_TOPIC_DEF

� WMQConstants.WMQ_READ_AHEAD_ALLOWED_AS_DEST

Page 116 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

ahead is allowed by referring to the topic

definition.

� AS_DEST8 - Determine whether read ahead

is allowed by referring to the queue or topic

definition.

� NO - Read ahead is not allowed.

� YES - Read ahead is allowed.

� WMQConstants.WMQ_READ_AHEAD_ALLOWED_DISABLED

� WMQConstants.WMQ_READ_AHEAD_ALLOWED_ENABLED

READAHEADCLOSEPOLICY setReadAheadClosePolicy
� DELIVER_CURRENT - Only the current

message listener invocation completes

before returning, potentially leaving
messages in the internal read ahead buffer,

which are then discarded.

� DELIVER_ALL - All messages in the

internal read ahead buffer are delivered to
the application's message listener before

returning.

� WMQConstants.WMQ_READ_AHEAD_DELIVERCURRENT

� WMQConstants.WMQ_READ_AHEAD_DELIVERALL

RECEIVEISOLATION1 setReceiveIsolation
� COMMITTED - A subscriber receives only

those messages on the subscriber queue

that have been committed.

� UNCOMMITTED9 - A subscriber can receive

messages that have not been committed on
the subscriber queue.

� WMQConstants.WMQ_RCVISOL_COMMITTED

� WMQConstants.WMQ_RCVISOL_UNCOMMITTED

RECEXIT setReceiveExit
� null

� A string comprising one or more items

separated by commas, where each item is

one of the following:

� The name of a class that implements

the WMQReceiveExit interface (for a
channel receive exit written in Java)

� A string in the format libraryName

(entryPointName) (for a channel
receive exit not written in Java)

RECEXITINIT setReceiveExitInit
� null

� A string comprising one or more items of

user data separated by commas.

RESCANINT1 setRescanInterval
� 5000

� Any positive integer

SECEXIT setSecurityExit
� null

� The name of a class that implements the

WMQSecurityExit interface (for a channel

security exit written in Java)

� A string in the format libraryName
(entryPointName) (for a channel security

exit not written in Java)

SECEXITINIT setSecurityExitInit
� null

� Any string

SENDCHECKCOUNT1 setSendCheckCount
� 0

� Any positive integer

SENDEXIT setSendExit
� null

� A string comprising one or more items

separated by commas, where each item is

one of the following:

� The name of a class that implements

the WMQSendExit interface (for a

channel send exit written in Java)

� A string in the format libraryName

(entryPointName) (for a channel send

exit not written in Java)

SENDEXITINIT setSendExitInit
� null

� A string comprising one or more items of

user data separated by commas

SHARECONVALLOWED setShareConvAllowed
� NO

� YES

� WMQConstants.WMQ_SHARE_CONV_ALLOWED_NO

� WMQConstants.WMQ_SHARE_CONV_ALLOWED_YES

SPARSESUBS1 setSparseSubscriptions
� NO - Subscriptions receive frequent

matching messages.

� YES - Subscriptions receive infrequent

matching messages. This value requires that

the subscription queue can be opened for

browse.

� true

� false

SSLCIPHERSUITE setSSLCipherSuite
� null

� See SSL properties

SSLCRL setSSLCertStores
� null

� Space-separated list of LDAP URLs. See SSL

properties

SSLFIPSREQUIRED setSSLFipsRequired
� NO - An SSL connection can use any

CipherSuite that is not supported by the IBM

� false

Page 117 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Java JSSE FIPS provider (IBMJSSEFIPS).

� YES - An SSL connection must use a

CipherSuite that is supported by

IBMJSSEFIPS.

� true

SSLPEERNAME setSSLPeerName
� null

� See SSL properties

SSLRESETCOUNT setSSLResetCount
� 0

� Zero, or any positive integer less than or

equal to 999 999 999. See SSL properties

STATREFRESHINT1 setStatusRefreshInterval
� 60000

� Any positive integer

SUBSTORE1 setSubscriptionStore
� BROKER - Use the broker-based

subscription store to hold details of

subscriptions

� MIGRATE - Transfer subscription information

from the queue-based subscription store to

the broker-based subscription store

� QUEUE - Use the queue-based subscription

store to hold details of subscriptions

� WMQConstants.WMQ_SUBSTORE_BROKER

� WMQConstants.WMQ_SUBSTORE_MIGRATE

� WMQConstants.WMQ_SUBSTORE_QUEUE

SYNCPOINTALLGETS setSyncpointAllGets
� No

� Yes

TARGCLIENT10 setTargetClient
� JMS - The target of the message is a JMS
application.

� MQ - The target of the message is a non-

JMS WebSphere MQ application.

� WMQConstants.WMQ_CLIENT_JMS_COMPLIANT

� WMQConstants.WMQ_CLIENT_NONJMS_MQ

TARGCLIENTMATCHING setTargClientMatching
� YES - If an incoming message does not

have an MQRFH2 header, the TARGCLIENT

property of the Queue object derived from

the JMSReplyTo header field of the message

is set to MQ. If the message does have an

MQRFH2 header, the TARGCLIENT property

is set to JMS instead.

� NO - The TARGCLIENT property of the

Queue object derived from the JMSReplyTo

header field of an incoming message is

always set to JMS.

� true

� false

TEMPMODEL setTemporaryModel
� SYSTEM.DEFAULT.MODEL.QUEUE

� Any string

TEMPQPREFIX setTempQPrefix
� "" (empty string) - The prefix used is

CSQ.* on z/OS and AMQ.* on all other

platforms.

� Any string that conforms to the rules for

forming the contents of the DynamicQName

field in a WebSphere MQ object descriptor

(structure MQOD), but the last non blank

character must be an asterisk.

TEMPTOPICPREFIX setTempTopicPrefix
� "" (empty string)

� Any non-null string consisting only of valid

characters for a WebSphere MQ topic string

TOPIC Any string

TRANSPORT setTransportType
� BIND - For a connection to a queue

manager in bindings mode

� CLIENT - For a connection to a queue

manager in client mode

� DIRECT - For a real-time connection to a

broker not using HTTP tunnelling

� DIRECTHTTP - For a real-time connection to

a broker using HTTP tunnelling. Only HTTP

1.0 is supported.

� WMQConstants.WMQ_CM_BINDINGS

� WMQConstants.WMQ_CM_CLIENT

� WMQConstants.WMQ_CM_DIRECT_TCPIP

� WMQConstants.WMQ_CM_DIRECT_HTTP

USECONNPOOLING 11 setUseConnectionPooling
� Yes

� No

WILDCARDFORMAT setWildCardFormat
� CHAR_ONLY - Recognizes character

wildcards only, as used in broker version 1

� TOPIC_ONLY - Recognizes topic level

wildcards only, as used in broker version 2

� WMQConstants.WMQ_WILDCARD_CHAR_ONLY

� WMQConstants.WMQ_WILDCARD_TOPIC_ONLY

Note:

1. This property can be used with Version 7.0 of WebSphere MQ classes for JMS but has no effect for an application connected to a Version 7.0 queue manager unless the PROVIDERVERSION

property of the connection factory is set to a version number less than 7.

2. The CCDTURL and CHANNEL properties of an object must not both be set at the same time.

3. Running two or more instances of the same durable topic subscriber simultaneously contravenes the Java Message Service Specification, Version 1.1.

4. The binding options, STANDARD, SHARED, ISOLATED, and FASTPATH, are ignored if the application connects in client mode. The SHARED, ISOLATED, and FASTPATH options are ignored

by a queue manager running on z/OS. The connection tag options, SERIALQM, SERIALQSG, RESTRICTQM, and RESTRICTQSG, are supported only by a queue manager running on z/OS.

For a more detailed explanation of the connection options, see Connecting to a queue manager using the MQCONNX call and MQCNO Options.

5. The CONNTAG property is supported only by a queue manager running on z/OS.

6. If you specify NO, and a message is rolled back after WebSphere MQ classes for JMS has returned control to the subscriber, the subscriber still retains a copy of the message but is not

informed of the rollback. In this situation, a subscriber might receive the same message more than once.

Page 118 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Property dependencies
Some properties have dependencies on each other. This might mean that it is meaningless to supply a property unless another property is set to a
particular value.

The ENCODING property
The ENCODING property comprises three sub-properties, in twelve possible combinations.

SSL properties
Enable Secure Sockets Layer (SSL) encryption using the SSLCIPHERSUITE property. You can then change the characteristics of the SSL encryption
using several other properties.

Rules for selecting the WebSphere MQ messaging provider mode

When to use PROVIDERVERSION

Parent topic: WebSphere MQ classes for JMS

Related concepts
Object types
Using a client channel definition table with WebSphere MQ classes for JMS
JMS persistent messages
Using a real-time connection to a broker of WebSphere Event Broker or WebSphere Message Broker

This build: January 26, 2011 11:29:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm10910_

4.9.1. Property dependencies

Some properties have dependencies on each other. This might mean that it is meaningless to supply a property unless another property is set to a particular
value.

The specific property groups where this can occur are:

� Client properties

� Properties for a real-time connection to a broker

� Exit initialization strings

Client properties

For a connection to a queue manager, the following properties are relevant only if TRANSPORT has the value CLIENT:

� HOSTNAME

� PORT

� CHANNEL

� LOCALADDRESS

� CCDTURL

� CCSID

� COMPHDR

� COMPMSG

� RECEXIT

� RECEXITINIT

� SECEXIT

� SECEXITINIT

� SENDEXIT

� SENDEXITINIT

� SHARECONVALLOWED

� SSLCIPHERSUITE

� SSLCRL

� SSLFIPSREQUIRED

� SSLPEERNAME

� SSLRESETCOUNT

Using the administration tool, you cannot set values for these properties if TRANSPORT has the value BIND.

If TRANSPORT has the value CLIENT, the default value of the BROKERVER property is V1 and the default value of the PORT property is 1414. If you set the
value of BROKERVER or PORT explicitly, a later change to the value of TRANSPORT does not override your choices.

Properties for a real-time connection to a broker

Only the following properties are relevant if TRANSPORT has the value DIRECT or DIRECTHTTP:

7. The values PUTASYNCALLOWED_AS_Q_DEF, PUTASYNCALLOWED_AS_TOPIC_DEF, and PUTASYNCALLOWED_AS_DEST are synonymous and can be used interchangeably.

8. The values READAHEADALLOWED_AS_Q_DEF, READAHEADALLOWED_AS_TOPIC_DEF, and READAHEADALLOWED_AS_DEST are synonymous and can be used interchangeably.

9. The value UNCOMMITTED has an effect only if PROCESSDURATION has the value SHORT. It has no effect if PROCESSDURATION has the value UNKNOWN. If you specify UNCOMMITTED,

ensure that a subscriber acknowledges or commits each message individually.

10. The TARGCLIENT property indicates whether the WebSphere MQ RFH2 format is used to exchange information with target applications.

The MQJMS_CLIENT_JMS_COMPLIANT constant indicates that the RFH2 format is used to send information. Applications that use WebSphere MQ classes for JMS

format. Set the MQJMS_CLIENT_JMS_COMPLIANT constant when you exchange information with a target WebSphere MQ classes for JMS application.

The MQJMS_CLIENT_NONJMS_MQ constant indicates that the RFH2 format is not used to send information. Typically, this value is used for an existing WebSphere MQ application (that is,

one that does not handle RFH2).

11. The USECONNPOOLING property is not used in Version 7 and later. It is retained for compatibility with earlier releases.

Page 119 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

� BROKERVER

� CLIENTID

� DESCRIPTION

� DIRECTAUTH

� HOSTNAME

� LOCALADDRESS

� MAXBUFFSIZE

� MULTICAST (supported only for DIRECT)

� PORT

� PROXYHOSTNAME (supported only for DIRECT)

� PROXYPORT (supported only for DIRECT)

If TRANSPORT has the value DIRECT or DIRECTHTTP, the default value of the BROKERVER property is V2, and the default value of the PORT property is
1506. If you set the value of BROKERVER or PORT explicitly, a later change to the value of TRANSPORT does not override your choices.

Exit initialization strings

Do not set any of the exit initialization strings without supplying the corresponding exit name. The exit initialization properties are:

� RECEXITINIT

� SECEXITINIT

� SENDEXITINIT

For example, specifying RECEXITINIT(myString) without specifying RECEXIT(some.exit.classname) causes an error.

Parent topic: Properties of WebSphere MQ classes for JMS objects

This build: January 26, 2011 11:29:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm10920_

4.9.2. The ENCODING property

The ENCODING property comprises three sub-properties, in twelve possible combinations.

The valid values that the ENCODING property can take are constructed from the three sub-properties:

integer encoding

Either normal or reversed

decimal encoding

Either normal or reversed

floating-point encoding

IEEE normal, IEEE reversed, or z/OS®

The ENCODING property is expressed as a three-character string with the following syntax:

{N|R}{N|R}{N|R|3}

In this string:

� N denotes normal

� R denotes reversed

� 3 denotes z/OS

� The first character represents integer encoding

� The second character represents decimal encoding

� The third character represents floating-point encoding

This provides a set of twelve possible values for the ENCODING property.

There is an additional value, the string NATIVE, which sets appropriate encoding values for the Java platform.

The following examples show valid combinations for ENCODING:

 ENCODING(NNR)

 ENCODING(NATIVE)

 ENCODING(RR3)

Parent topic: Properties of WebSphere MQ classes for JMS objects

This build: January 26, 2011 11:29:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm10930_

4.9.3. SSL properties

Enable Secure Sockets Layer (SSL) encryption using the SSLCIPHERSUITE property. You can then change the characteristics of the SSL encryption using
several other properties.

When you specify TRANSPORT(CLIENT), you can enable Secure Sockets Layer (SSL) encrypted communication using the SSLCIPHERSUITE property. Set this
property to a valid CipherSuite provided by your JSSE provider; it must match the CipherSpec named on the SVRCONN channel named by the CHANNEL
property.

However, CipherSpecs (as specified on the SVRCONN channel) and CipherSuites (as specified on ConnectionFactory objects) use different naming schemes
to represent the same SSL encryption algorithms. If a recognized CipherSpec name is specified on the SSLCIPHERSUITE property, JMSAdmin issues a
warning and maps the CipherSpec to its equivalent CipherSuite. See SSL CipherSpecs and CipherSuites for a list of CipherSpecs recognized by WebSphere

Page 120 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

MQ and JMSAdmin.

If you require a connection to use a CipherSuite that is supported by the IBM® Java JSSE FIPS provider (IBMJSSEFIPS), set the SSLFIPSREQUIRED property
of the connection factory to YES. The default value of this property is NO, which means that a connection can use any supported CipherSuite. The property is
ignored if SSLCIPHERSUITE is not set.

The SSLPEERNAME matches the format of the SSLPEER parameter, which can be set on channel definitions. It is a list of attribute name and value pairs
separated by commas or semicolons. For example:

SSLPEERNAME(CN=QMGR.*, OU=IBM, OU=WEBSPHERE)

The set of names and values makes up a distinguished name. For more details about distinguished names and their use with WebSphere MQ, see
WebSphere MQ Security.

The example given checks the identifying certificate presented by the server at connect-time. For the connection to succeed, the certificate must have a
Common Name beginning QMGR., and must have at least two Organizational Unit names, the first of which is IBM and the second WEBSPHERE. Checking is
not case-sensitive.

If SSLPEERNAME is not set, no such checking is performed. SSLPEERNAME is ignored if SSLCIPHERSUITE is not set.

The SSLCRL property specifies zero or more CRL (Certificate Revocation List) servers. Use of this property requires a JVM at Java 2 v1.4. This is a space-
delimited list of entries of the form:

ldap://hostname:[port]

optionally followed by a single /. If port is omitted, the default LDAP port of 389 is assumed. At connect-time, the SSL certificate presented by the server is

checked against the specified CRL servers. See WebSphere MQ Security for more about CRL security.

If SSLCRL is not set, no such checking is performed. SSLCRL is ignored if SSLCIPHERSUITE is not set.

The SSLRESETCOUNT property represents the total number of bytes sent and received by a connection before the secret key that is used for encryption is
renegotiated. The number of bytes sent is the number before encryption, and the number of bytes received is the number after decryption. The number of
bytes also includes control information sent and received by WebSphere MQ classes for JMS.

For example, to configure a ConnectionFactory object that can be used to create a connection over an SSL enabled MQI channel whose secret key is
renegotiated after 4 MB of data have flowed, issue the following command to JMSAdmin:

ALTER CF(my.cf) SSLRESETCOUNT(4194304)

If the value of SSLRESETCOUNT is zero, which is the default value, the secret key is never renegotiated. The SSLRESETCOUNT property is ignored if
SSLCIPHERSUITE is not set.

If you use the version of GSKit supplied with WebSphere MQ with the following Java versions and platforms, you must not set the reset count to a value
other than zero. If you do set the reset count to a value other than zero, a client connection fails when it attempts to renegotiate the secret key.

� an HP or Sun V1.4.2 JDK

� any V1.4.2 JDK when using FIPS mode

� any V5.0 or later JDK

Java 5.0 is included with WebSphere MQ Version 7.0.

If you want to use secret key reset with one of these JDKs on the Windows or UNIX platforms only, you can install GSKit Version 8. Install GSKit v8 on the
queue manager side of the SSL connection to make Java SSL secret key reset work correctly. This is because the GSKit v8 SSL secret key reset behavior
only takes effect at the server side of the channel. You can use GSKit v8 for SSL connections with WebSphere MQ client applications (including WebSphere
MQ classes for JMS applications using bindings mode), but there is no difference in SSL channel behavior if GSKit v8 is installed only on the client.

For more information about the secret key that is used for encryption on an SSL enabled channel, see Resetting SSL secret keys.

Parent topic: Properties of WebSphere MQ classes for JMS objects

This build: January 26, 2011 11:29:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm10940_

4.9.4. Rules for selecting the WebSphere MQ messaging provider mode

The WebSphere® MQ messaging provider has two modes of operation: WebSphere MQ messaging provider normal mode, and WebSphere MQ messaging
provider migration mode. The WebSphere MQ messaging provider normal mode uses all the features of the WebSphere MQ Version 7.0 queue managers to
implement JMS. This mode is used only to connect to a WebSphere MQ queue manager and can connect to WebSphere MQ Version 7.0 queue managers in
either client or bindings mode. This mode is optimized to use the new WebSphere MQ Version 7.0 function.

If you are not using WebSphere MQ Real-Time Transport, the mode of operation used is determined primarily by the PROVIDERVERSION property of the
connection factory. If you cannot change the connection factory that you are using, you can use the com.ibm.msg.client.wmq.overrideProviderVersion

property to override any setting on the connection factory. This override applies to all connection factories in the JVM but the actual connection factory
objects are not modified. You can set PROVIDERVERSION to three possible values: 7, 6, or unspecified:

PROVIDERVERSION=7

Uses the WebSphere MQ messaging provider normal mode.

If you set PROVIDERVERSION to 7 only the WebSphere MQ messaging provider normal mode of operation is available. If the queue manager specified in
the connection factory settings is not a Version 7.0 queue manager, the createConnection() method fails with an exception.

The WebSphere MQ messaging provider normal mode uses the sharing conversations feature and the number of conversations that can be shared is
controlled by the SHARECNV() property on the server connection channel. If this property is set to 0, you cannot use WebSphere MQ messaging provider
normal mode and the createConnection() method fails with an exception.

PROVIDERVERSION=6

Uses the WebSphere MQ messaging provider migration mode.

The WebSphere MQ classes for JMS use the features and algorithms supplied with WebSphere MQ Version 6.0. If you want to connect to WebSphere Event
Broker or WebSphere Message Broker using WebSphere MQ Enterprise Transport, you must use this mode. You can connect to a WebSphere MQ Version
7.0 queue manager using this mode, but none of the new features of a Version 7.0 queue manager are used, for example, read ahead or streaming. If you
have a WebSphere MQ Version 7.0 client connecting to a WebSphere MQ Version 7.0 queue manager on a distributed platform or a WebSphere MQ Version
7.0.1 queue manager on z/OS®, then the message selection is done by the queue manager rather than on the client system.

PROVIDERVERSION=unspecified

This PROVIDERVERSION property is set to "unspecified" by default.

Page 121 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

A connection factory that was created with a previous version of WebSphere MQ classes for JMS in JNDI takes this value when the connection factory is
used with the new version of WebSphere MQ classes for JMS. The following algorithm is used to determine which mode of operation is used. This algorithm
is used when the createConnection() method is called and uses other aspects of the connection factory to determine if WebSphere MQ messaging provider
normal mode or WebSphere MQ messaging provider migration mode is required.

1. First, an attempt to use WebSphere MQ messaging provider normal mode is made.

2. If the queue manager connected is not WebSphere MQ Version 7.0, the connection is closed and WebSphere MQ messaging provider migration mode
is used instead.

3. If the SHARECNV() property on the server connection channel is set to 0, the connection is closed and WebSphere MQ messaging provider
migration mode is used instead.

4. If BROKERVER is set to V1 or the new default "unspecified" value, WebSphere MQ messaging provider normal mode continues to be used, and
therefore any publish/subscribe operations use the new WebSphere MQ V7.0 features.

If WebSphere Event Broker or WebSphere Message Broker are used in compatibility mode (and you want to use Version 6.0 publish/subscribe
function rather than the WebSphere MQ Version 7 publish/subscribe function), set PROVIDERVERSION to 6, and ensure WebSphere MQ messaging
provider migration mode is used.

5. If BROKERVER is set to V2 the action taken depends on the value of BROKERQMGR:

� The BROKERQMGR is blank:

The BROKERCONQ command queue exists and can be opened for output (that is, MQOPEN for output succeeds).

PSMODE on the queue manager is set to COMPAT or DISABLED

� If BROKERQMGR is non-blank:

The BROKERQMGR has been changed from the default setting.

The connection factory is intended for use with WebSphere Event Broker or WebSphere Message Broker and WebSphere MQ Enterprise
Transport.

You can find further guidance about using PROVIDERVERSION in When to use PROVIDERVERSION

Parent topic: Properties of WebSphere MQ classes for JMS objects

This build: January 26, 2011 11:30:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm41140_

4.9.5. When to use PROVIDERVERSION

There are two scenarios where you cannot use the algorithm described in Rules for selecting the WebSphere® MQ messaging provider mode; consider using
PROVIDERVERSION in these scenarios.

1. If WebSphere Event Broker or WebSphere Message Broker is in compatibility mode, you must specify PROVIDERVERSION for them to work correctly.

2. If you are using WebSphere Application Server Version 6.0.1, WebSphere Application Server Version 6.0.2, or WebSphere Application Server Version
6.1, connection factories are defined using the WebSphere Application Server administrative console.

In WebSphere Application Server the default value of the BROKERVER property on a connection factory is V2. The default BROKERVER property for
connection factories created by using JMSAdmin or WebSphere MQ Explorer is V1. This property is now "unspecified" in WebSphere MQ Version 7.0.

If BROKVERVER is set to V2 (either because it was created by WebSphere Application Server or the connection factory has been used for publish/subscribe
before) and has an existing queue manager that has a BROKECONQ defined (because it has been used for publish/subscribe messaging before), the
WebSphere MQ messaging provider migration mode is used.

However, if you want the application to use peer-to-peer communication and the application is using an existing queue manager that has ever done
publish/subscribe, and has a connection factory with BROKERVER set to 2 (if the connection factory was created in WebSphere Application Server this is the
default), the WebSphere MQ messaging provider migration mode is used. Using WebSphere MQ messaging provider migration mode in this case is
unnecessary; use WebSphere MQ messaging provider normal mode instead. You can use one of the following methods to work around this:

� Set BROKERVER to 1 or unspecified. This is dependent on your application.

� Set PROVIDERVERSION to 7, which is a custom property in WebSphere Application Server Version 6.1. The option to set custom properties in
WebSphere Application Server Version 6.1 and later is not currently documented in the WebSphere Application Server Information Center.

Alternatively, use the client configuration property (see Rules for selecting the WebSphere MQ messaging provider mode for details about how you can
specify this system property for all environments), or modify the queue manager connected so it does not have the BROKERCONQ, or make the queue
unusable.

Parent topic: Properties of WebSphere MQ classes for JMS objects

This build: January 26, 2011 11:30:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

jm41150_

The print function does not support this document type or external site.

5. WebSphere MQ classes for Java

This collection of topics contains the documentation for WebSphere® MQ classes for Java.

Getting started with WebSphere MQ classes for Java
This collection of topics gives an overview of WebSphere MQ classes for Java and their uses.

Installation and configuration of WebSphere MQ classes for Java
This collection of topics describes the directories and files that are created when you install WebSphere MQ classes for Java, and tells you how to
configure WebSphere MQ classes for Java after installation.

Using WebSphere MQ classes for Java
This collection of topics tells you how to configure your system to run the sample applications to verify your WebSphere MQ classes for Java
installation, and how to modify the procedures to run your own applications.

Page 122 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Introduction for programmers
This collection of topics contains general information for programmers.

Writing WebSphere MQ classes for Java applications
This collection of topics provides information to assist with writing Java applications to interact with WebSphere MQ systems.

Environment-dependent behavior
WebSphere MQ classes for Java allow you to create applications that can run against different versions of WebSphere MQ. This collection of topics
describes the behavior of the Java classes dependent on these different versions.

WebSphere MQ classes for Java

Parent topic: Using Java

This build: January 26, 2011 11:28:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja10120_

5.1. Getting started with WebSphere MQ classes for Java

This collection of topics gives an overview of WebSphere® MQ classes for Java and their uses.

What are WebSphere MQ classes for Java?
WebSphere MQ classes for Java allow you to use WebSphere MQ in a Java environment.

Why should I use WebSphere MQ classes for Java?
A Java application can use either WebSphere MQ classes for Java or WebSphere MQ classes for JMS to access WebSphere MQ resources. There are a
number of advantages to using WebSphere MQ classes for Java.

Connection options for WebSphere MQ classes for Java
WebSphere MQ classes for Java can connect in client or bindings mode.

Prerequisites for WebSphere MQ classes for Java
To use WebSphere MQ classes for Java, you need certain other software products.

Parent topic: WebSphere MQ classes for Java

This build: January 26, 2011 11:28:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uj10230_

5.1.1. What are WebSphere MQ classes for Java?

WebSphere® MQ classes for Java allow you to use WebSphere MQ in a Java environment.

WebSphere MQ classes for Java allow a Java application to:

� Connect to WebSphere MQ as a WebSphere MQ client

� Connect directly to a WebSphere MQ queue manager

WebSphere MQ classes for Java encapsulate the Message Queue Interface (MQI), the native WebSphere MQ API.

WebSphere MQ classes for Java use a similar object model to the C++ and .NET interfaces to WebSphere MQ.

Parent topic: Getting started with WebSphere MQ classes for Java

This build: January 26, 2011 11:28:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja10240_

5.1.2. Why should I use WebSphere MQ classes for Java?

A Java application can use either WebSphere® MQ classes for Java or WebSphere MQ classes for JMS to access WebSphere MQ resources. There are a
number of advantages to using WebSphere MQ classes for Java.

If the following points are significant in your installation, consider using Websphere MQ classes for Java:

� WebSphere MQ classes for Java encapsulate the Message Queue Interface (MQI), the native WebSphere MQ API.

� If you are familiar with the use of the MQI in procedural languages, you can transfer this knowledge to the Java environment.

� You can exploit the full range of features of WebSphere MQ, beyond those available through JMS.

� WebSphere MQ classes for Java use a similar object model to the C++ and .NET interfaces to WebSphere MQ. If you are familiar with these interfaces,
you can transfer this knowledge to the Java environment.

Parent topic: Getting started with WebSphere MQ classes for Java

This build: January 26, 2011 11:29:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja35100_

Page 123 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

5.1.3. Connection options for WebSphere MQ classes for Java

WebSphere® MQ classes for Java can connect in client or bindings mode.

Programmable options allow WebSphere MQ classes for Java to connect to WebSphere MQ in either of the following ways:

� As a WebSphere MQ client using Transmission Control Protocol/Internet Protocol (TCP/IP)

� In bindings mode, connecting directly to WebSphere MQ using the Java Native Interface (JNI)

Clients cannot be run on z/OS®, but clients on other platforms can connect to a WebSphere MQ for z/OS queue manager if the Client Attach Facility is
installed.

The following sections describe the client mode and bindings mode connection options in more detail.

Client connection

To connect to a queue manager in client mode, a WebSphere MQ classes for Java application can run on the same system on which the queue manager is
running, or on a different system. In each case, WebSphere MQ classes for Java connects to the queue manager over TCP/IP.

Bindings connection

When used in bindings mode, WebSphere MQ classes for Java uses the Java Native Interface (JNI) to call directly into the existing queue manager API,
rather than communicating through a network. In most environments, connecting in bindings mode provides better performance for WebSphere MQ classes
for Java applications than connecting in client mode, by avoiding the cost of TCP/IP communication.

Parent topic: Getting started with WebSphere MQ classes for Java

This build: January 26, 2011 11:28:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja10260_

5.1.4. Prerequisites for WebSphere MQ classes for Java

To use WebSphere® MQ classes for Java, you need certain other software products.

For the latest information about the prerequisites for WebSphere MQ classes for Java, see the WebSphere MQ README file.

To develop WebSphere MQ classes for Java applications, you need a Java Development Kit (JDK). Details of the JDKs supported with your operating system
can be found on the WebSphere MQ system requirements page at http://www.ibm.com/software/integration/wmq/requirements/.

A suitable JDK is supplied with WebSphere MQ.

To run WebSphere MQ classes for Java applications, you need the following software components:

� A WebSphere MQ queue manager, for applications that connect to a queue manager

� A Java Runtime Environment (JRE), for each system on which you run applications. A suitable JRE is supplied with WebSphere MQ.

� For i5/OS®, QShell, which is option 30 of the operating system

� For z/OS®, UNIX System Services (USS)

If you require SSL connections to use cryptographic modules that have been FIPS 140-2 certified, you need the IBM® Java JSSE FIPS provider
(IBMJSSEFIPS). Every IBM JDK and JRE at Version 1.4.2 or later contains IBMJSSEFIPS.

You can use Internet Protocol Version 6 (IPv6) addresses in your WebSphere MQ classes for Java applications if IPv6 is supported by your Java virtual
machine (JVM) and the TCP/IP implementation on your operating system.

Parent topic: Getting started with WebSphere MQ classes for Java

This build: January 26, 2011 11:28:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja10290_

5.2. Installation and configuration of WebSphere MQ classes for Java

This collection of topics describes the directories and files that are created when you install WebSphere® MQ classes for Java, and tells you how to configure
WebSphere MQ classes for Java after installation.

What is installed for WebSphere MQ classes for Java
The latest version of WebSphere MQ classes for Java is installed with WebSphere MQ. You might need to override default installation options to make
sure this is done.

Running WebSphere MQ classes for Java applications under the Java Security Manager
WebSphere MQ classes for Java can run with the Java Security Manager enabled. To successfully run applications with the Security Manager enabled,
you must configure your JVM with a suitable policy definition file.

Running WebSphere MQ classes for Java applications under CICS Transaction Server
A WebSphere MQ classes for Java application can be run as a transaction under CICS® Transaction Server.

Parent topic: WebSphere MQ classes for Java

This build: January 26, 2011 11:28:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja10300_

Page 124 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

5.2.1. What is installed for WebSphere MQ classes for Java

The latest version of WebSphere® MQ classes for Java is installed with WebSphere MQ. You might need to override default installation options to make sure
this is done.

Refer to the following documents for more information about installing WebSphere MQ:

WebSphere MQ for AIX Quick Beginnings

WebSphere MQ for HP-UX Quick Beginnings

WebSphere MQ for i5/OS Quick Beginnings

WebSphere MQ for Linux Quick Beginnings

WebSphere MQ for Solaris Quick Beginnings

WebSphere MQ for Windows Quick Beginnings

WebSphere MQ for z/OS Program Directory

WebSphere MQ classes for Java are contained in the Java archive (JAR) files, com.ibm.mq.jar, and com.ibm.mq.jmqi.jar.

Support for standard message headers, such as Programmable Command Format (PCF), is contained in the JAR file com.ibm.mq.headers.jar.

Support for Programmable Command Format (PCF) is contained in the JAR file com.ibm.mq.pcf.jar.

The following Java library from Sun Microsystems is distributed with WebSphere MQ classes for Java:

� connector.jar (Version 1.0)

The sample application called Postcard is in the JAR file com.ibm.mq.postcard.jar. For more information about this application, see the Quick Beginnings
information for your operating platform.

The Javadoc tool has been used to generate the HTML pages containing the specifications of the WebSphere MQ classes for Java and WebSphere MQ classes
for JMS APIs. The HTML pages are in the doc subdirectory of the WebSphere MQ classes for JMS installation directory. On UNIX systems and Windows, the
doc subdirectory contains the individual HTML pages but, on i5/OS® and z/OS®, the HTML pages are in a file called wmqjms_javadoc.jar.

When installation is complete, files and samples are installed in the locations shown in Installation directories for WebSphere MQ classes for Java.

After installation, on any platform other than Windows, you must update your environment variables as described in Environment variables relevant to
WebSphere MQ classes for Java.

Installation directories for WebSphere MQ classes for Java
WebSphere MQ classes for Java files are installed in different locations according to platform.

Environment variables relevant to WebSphere MQ classes for Java
Some environment variables must be set. Specimen values for classpath are given.

The WebSphere MQ classes for Java libraries
The location of the WebSphere MQ classes for Java libraries varies according to platform. Specify this location when you start an application.

STEPLIB configuration on z/OS
On z/OS, the STEPLIB used at runtime must contain the WebSphere MQ SCSQAUTH and SCSQANLE libraries.

Parent topic: Installation and configuration of WebSphere MQ classes for Java

This build: January 26, 2011 11:28:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja10310_

5.2.1.1. Installation directories for WebSphere MQ classes for Java

WebSphere® MQ classes for Java files are installed in different locations according to platform.

Table 1 shows where the WebSphere MQ classes for Java files are installed.

Some sample applications, such as the Installation Verification Programs (IVPs), are supplied with WebSphere MQ. Table 2 shows where the sample
applications are installed. The WebSphere MQ classes for Java samples are in a subdirectory called wmqjava.

Table 1. WebSphere MQ classes for Java installation directories

Platform Directory

AIX® /usr/mqm/java/lib

HP-UX, Linux, and Solaris /opt/mqm/java/lib

i5/OS® /QIBM/ProdData/mqm/java/lib

Windows install_dir\java\lib

z/OS® install_dir/mqm/V7R0M0/java/lib

Note: install_dir is the directory in which you installed WebSphere MQ. On Windows, this directory is normally C:\Program

Files\IBM\WebSphere MQ. On z/OS, this directory is likely to be /usr/lpp.

Table 2. Samples directories

Platform Directory

AIX /usr/mqm/samp/wmqjava/

HP-UX, Linux, and Solaris /opt/mqm/samp/wmqjava/

i5/OS /QIBM/ProdData/mqm/java/samples

Windows install_dir\tools\wmqjava\

z/OS install_dir/mqm/V7R0M0/java/samples

Note: install_dir is the directory in which you installed WebSphere MQ. On Windows, this directory is normally C:\Program

Files\IBM\WebSphere MQ. On z/OS, this directory is likely to be /usr/lpp.

Page 125 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Parent topic: What is installed for WebSphere MQ classes for Java

This build: January 26, 2011 11:28:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja10320_

5.2.1.2. Environment variables relevant to WebSphere MQ classes for Java

Some environment variables must be set. Specimen values for classpath are given.

For WebSphere® MQ classes for Java applications to run, their class path must include the appropriate WebSphere MQ classes for Java directory. To run the
sample applications, the class path must also include the appropriate samples directories. This information can be provided in the Java invocation command
or in the CLASSPATH environment variable.

Table 1 shows the appropriate CLASSPATH setting to use on each platform to run WebSphere MQ classes for Java applications, including the sample
applications.

The scripts provided with WebSphere MQ classes for Java use the following environment variables:

MQ_JAVA_DATA_PATH

This environment variable specifies the directory for log and trace output.

MQ_JAVA_INSTALL_PATH

This environment variable specifies the directory where WebSphere MQ classes for Java are installed, as shown in Table 1.

MQ_JAVA_LIB_PATH

This environment variable specifies the directory where the WebSphere MQ classes for Java libraries are stored, as shown in Table 1. Some scripts
supplied with WebSphere MQ classes for Java, such as IVTRun, use this environment variable.

On Windows, all the environment variables are set automatically during installation. On any other platform, you must set them yourself. On a UNIX system,
you can use the script setjmsenv (if you are using a 32-bit JVM) or setjmsenv64 (if you are using a 64-bit JVM) to set the environment variables. On AIX,
these scripts are in the /usr/mqm/java/bin directory and, on HP-UX, Linux, and Solaris, they are in the /opt/mqm/java/bin directory.

On i5/OS, the environment variable QIBM_MULTI_THREADED must be set to Y. You can then run multithreaded applications in the same way that you run

single threaded applications.

Parent topic: What is installed for WebSphere MQ classes for Java

This build: January 26, 2011 11:28:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja10330_

5.2.1.3. The WebSphere MQ classes for Java libraries

The location of the WebSphere® MQ classes for Java libraries varies according to platform. Specify this location when you start an application.

To specify the location of the Java Native Interface (JNI) libraries, start your application using a java command with the following format:

java -Djava.library.path=library_path application_name

where library_path is the path to the WebSphere MQ classes for Java libraries, which include the JNI libraries. Table 1 shows the location of the WebSphere
MQ classes for Java libraries for each platform.

Table 1. CLASSPATH setting to run WebSphere MQ classes for Java applications, including the WebSphere MQ classes for Java sample

applications

Platform CLASSPATH setting

AIX®
CLASSPATH=/usr/mqm/java/lib/com.ibm.mq.jar:

/usr/mqm/samp/wmqjava:

HP-UX, Linux, and Solaris
CLASSPATH=/opt/mqm/java/lib/com.ibm.mq.jar:

/opt/mqm/samp/wmqjava:

i5/OS®
CLASSPATH=/QIBM/ProdData/mqm/java/lib/com.ibm.mq.jar:

/QIBM/ProdData/mqm/java/samples/wmqjava:

Windows
CLASSPATH=install_dir\Java\lib\com.ibm.mq.jar;

install_dir\tools\wmqjava;

z/OS®
CLASSPATH=install_dir/mqm/V7R0M0/java/lib/com.ibm.mq.jar:

install_dir/mqm/V7R0M0/java/samples/wmqjava:

Note: install_dir is the directory in which you installed WebSphere MQ. On Windows, this directory is normally C:\Program

Files\IBM\WebSphere MQ. On z/OS, this directory is likely to be /usr/lpp.

Table 1. The location of the WebSphere MQ classes for Java libraries for each platform

Platform Directory containing the WebSphere MQ classes for Java

libraries

AIX®
/usr/mqm/java/lib (32 bit libraries)

/usr/mqm/java/lib64 (64 bit libraries)

HP-UX

Linux (POWER®, x86-64

and zSeries® s390x platforms)

Solaris (x86-64 and SPARC platforms)

/opt/mqm/java/lib (32 bit libraries)

/opt/mqm/java/lib64 (64 bit libraries)

Linux (x86 platform)
/opt/mqm/java/lib

Windows
install_dir\Java\lib (32 bit libraries)

install_dir\Java\lib64 (64 bit libraries)

Page 126 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Note:

1. On AIX, HP-UX, Linux (Power platform), or Solaris, use either the 32 bit libraries or the 64 bit libraries. Use the 64 bit libraries only if you are running
your application in a 64 bit Java virtual machine (JVM) on a 64 bit platform. Otherwise, use the 32 bit libraries.

2. On Windows, you can use the PATH environment variable to specify the location of the WebSphere MQ classes for Java libraries instead of specifying
their location on the java command.

3. To use WebSphere MQ classes for Java in bindings mode on i5/OS®, ensure that the library QMQMJAVA is in your library list.

4. On z/OS, you can use either a 31 bit or 64 bit Java virtual machine (JVM). You do not have to specify which libraries to use; WebSphere MQ classes
for Java can determine for itself which JNI libraries to load.

Parent topic: What is installed for WebSphere MQ classes for Java

This build: January 26, 2011 11:28:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja10340_

5.2.1.4. STEPLIB configuration on z/OS

On z/OS®, the STEPLIB used at runtime must contain the WebSphere® MQ SCSQAUTH and SCSQANLE libraries.

From UNIX System Services, you can add these using a line in your .profile as shown below, replacing thlqual with the high level data set qualifier that

you chose when installing WebSphere MQ:

export STEPLIB=thlqual.SCSQAUTH:thlqual.SCSQANLE:$STEPLIB

In other environments, you typically need to edit the startup JCL to include SCSQAUTH on the STEPLIB concatenation:

 STEPLIB DD DSN=thlqual.SCSQAUTH,DISP=SHR

 DD DSN=thlqual.SCSQANLE,DISP=SHR

Parent topic: What is installed for WebSphere MQ classes for Java

This build: January 26, 2011 11:28:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja10350_

5.2.2. Running WebSphere MQ classes for Java applications under the Java Security Manager

WebSphere® MQ classes for Java can run with the Java Security Manager enabled. To successfully run applications with the Security Manager enabled, you
must configure your JVM with a suitable policy definition file.

The simplest way to do this is to change the policy file supplied with the JRE. On most systems this file is stored in the path lib/security/java.policy,

relative to your JRE directory. You can edit policy files using your preferred editor or the policytool program supplied with your JRE.

You need to give authority to the com.ibm.mq.jmqi.jar file so that it can:

� Create sockets (in client mode)

� Load the native library (in bindings mode)

� Read various properties from the environment

The system property os.name must be available to the WebSphere MQ classes for Java when running under the Java Security Manager.

Here is an example of a policy file entry that allows WebSphere MQ classes for Java to run successfully under the default security manager. Replace the
string /opt/mqm in this example with the location where WebSphere MQ classes for Java are installed on your system.

grant codeBase "file:/opt/mqm/java/lib/com.ibm.mq.jmqi.jar" {

 //Required

 permission java.util.PropertyPermission "user.name","read";

 permission java.util.PropertyPermission "os.name","read";

 //Required if mqclient.ini/mqs.ini configuration files are used

 permission java.io.FilePermission "/var/mqm/mqclient.ini","read";

 permission java.io.FilePermission "/var/mqm/mqs.ini","read";

 //For the client transport type.

 permission java.net.SocketPermission "*","connect";

 //For the bindings transport type.

 permission java.lang.RuntimePermission "loadLibrary.*";

 //For applications that use CCDT tables (access to the CCDT

AMQCLCHL.TAB)

 permission java.io.FilePermission

"/var/mqm/qmgrs/QMGR/@ipcc/AMQCLCHL.TAB","read";

 //For applications that use User Exits

 permission java.io.FilePermission "/var/mqm/exits/*","read";

 permission java.lang.RuntimePermission "createClassLoader";

 //Required for the z/OS platform

 permission java.util.PropertyPermission

"com.ibm.vm.bitmode","read";

};

grant codeBase

"/opt/mqm/java/lib/com.ibm.mq.commonservices.jar" {

 permission java.util.PropertyPermission "user.dir","read";

 permission java.util.PropertyPermission "line.separator","read";

 //tracing permissions

 permission java.util.logging.LoggingPermission "control";

 permission java.util.PropertyPermission

"com.ibm.mq.commonservices", "read";

 //For access to the trace properties file.

z/OS®
install_dir/mqm/V7R0M0/java/lib

(31 bit and 64 bit libraries)

Note: install_dir is the directory in which you installed WebSphere MQ. On Windows, this directory is normally C:\Program

Files\IBM\WebSphere MQ. On z/OS, this directory is likely to be /usr/lpp.

Page 127 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

 permission java.io.FilePermission

 "/tmp/trace.properties", "read";

 //For access to the trace output files.

 permission java.io.FilePermission "/tmp/*", "read,write";

};

This example of a policy file enables the WebSphere MQ classes for Java to work correctly under the security manager, but you might still need to enable
your own code to run correctly before your applications will work.

The sample code shipped with WebSphere MQ classes for Java has not been specifically enabled for use with the security manager; however the IVT tests
run with the above policy file and the default security manager in place.

Parent topic: Installation and configuration of WebSphere MQ classes for Java

This build: January 26, 2011 11:28:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja10360_

5.2.3. Running WebSphere MQ classes for Java applications under CICS Transaction Server

A WebSphere® MQ classes for Java application can be run as a transaction under CICS® Transaction Server.

To run a WebSphere MQ classes for Java application as a transaction under CICS Transaction Server for z/OS®, perform the following steps:

1. Define the application and transaction to CICS by using the supplied CEDA transaction.

2. Ensure that the WebSphere MQ CICS adapter is installed in your CICS system. (See WebSphere MQ for z/OS System Setup Guide for details.)

3. Ensure that the JVM environment specified in CICS includes the appropriate CLASSPATH and LIBPATH entries.

4. Initiate the transaction by using any of your normal processes.

For more information on running CICS Java transactions, refer to your CICS system documentation.

Parent topic: Installation and configuration of WebSphere MQ classes for Java

This build: January 26, 2011 11:28:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja10370_

5.3. Using WebSphere MQ classes for Java

This collection of topics tells you how to configure your system to run the sample applications to verify your WebSphere® MQ classes for Java installation,
and how to modify the procedures to run your own applications.

The procedures depend on the connection option you want to use. Follow the instructions in the section that is appropriate for your requirements.

Remember to check the WebSphere MQ README file for later or more specific information for your environment.

Before attempting to run any WebSphere MQ classes for Java applications in bindings mode, make sure that you have configured WebSphere MQ as
described in the Quick Beginnings book for your platform or the WebSphere MQ for z/OS System Setup Guide.

Configuring your queue manager to accept client connections
To configure your queue manager to accept incoming connection requests from clients, define a server connection channel and start a listener
program.

Verifying your WebSphere MQ classes for Java installation with the sample application
An installation verification program, MQIVP, is supplied with WebSphere MQ classes for Java. You can use this program to test all the connection
modes of WebSphere MQ classes for Java.

Solving WebSphere MQ classes for Java problems
Initially, run the installation verification program. You might also have to use the trace facility.

Parent topic: WebSphere MQ classes for Java

This build: January 26, 2011 11:28:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja10380_

5.3.1. Configuring your queue manager to accept client connections

To configure your queue manager to accept incoming connection requests from clients, define a server connection channel and start a listener program.

TCP/IP client

1. Define a server connection channel. You can either use the WebSphere® MQ Explorer or the following procedures, depending on your platform:

For i5/OS®:

a. Start your queue manager by using the STRMQM command.

b. Define a sample channel called JAVA.CHANNEL by issuing the following command:

CRTMQMCHL CHLNAME(JAVA.CHANNEL) CHLTYPE(*SVRCN) MQMNAME(QMGRNAME)

 MCAUSERID(SOMEUSERID)

 TEXT('Sample channel for WebSphere MQ classes for Java')

where QMGRNAME is the name of your queue manager, and SOMEUSERID is an i5/OS user ID with appropriate authority to the WebSphere MQ

resources.

Page 128 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

For z/OS®:

Note: You must have the Client Attachment feature installed on your target queue manager in order to connect using TCP/IP.

a. Start your queue manager by using the START QMGR command.

b. Define a sample channel called JAVA.CHANNEL by issuing the following command:

DEF CHL('JAVA.CHANNEL') CHLTYPE(SVRCONN) TRPTYPE(TCP) +

DESCR('Sample channel for WebSphere MQ classes for Java')

For other platforms:

a. Start your queue manager by using the strmqm command.

b. Type the following command to start the runmqsc program:

 runmqsc [QMNAME]

c. Define a sample channel called JAVA.CHANNEL by issuing the following command:

DEF CHL('JAVA.CHANNEL') CHLTYPE(SVRCONN) TRPTYPE(TCP) MCAUSER(' ') +

DESCR('Sample channel for WebSphere MQ classes for Java')

2. Start a listener program with the following commands:

For UNIX and Windows systems:

Issue one of the following commands:

� runmqlsr -t tcp [-m QMNAME] -p nnnn

Note: If you use the default queue manager, you can omit the -m option. If you use the default port, 1414, you can omit the -p option.

� START LISTENER TRPTYPE(TCP) PORT(nnnn)

Replace the string nnnn with your chosen port number.

For i5/OS:

Issue the command:

 STRMQMLSR MQMNAME(QMGRNAME)

where QMGRNAME is the name of your queue manager.

For z/OS:

a. Ensure your channel initiator is started. If not, start it by issuing the START CHINIT command.

b. Start the listener by issuing the command:

START LISTENER TRPTYPE(TCP) PORT(nnnn)

Replace the string nnnn with your chosen port number.

Parent topic: Using WebSphere MQ classes for Java

This build: January 26, 2011 11:28:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja10390_

5.3.2. Verifying your WebSphere MQ classes for Java installation with the sample application

An installation verification program, MQIVP, is supplied with WebSphere® MQ classes for Java. You can use this program to test all the connection modes of
WebSphere MQ classes for Java.

The program prompts for a number of choices and other data to determine which connection mode you want to verify. Use the following procedure to verify
your installation:

1. If you are going to run the program in client mode, configure your queue manager as described in Configuring your queue manager to accept client
connections.

2. The user ID associated with the program when it runs must have authority to access certain resources of the queue manager. Grant the following
authorities to the user ID:

� The authority to connect to the queue manager, and the authority to inquire on the attributes of the queue manager object

� The authority to put messages on the queue SYSTEM.DEFAULT.LOCAL.QUEUE, and the authority to get messages from the queue

For information about how to grant authorities, see the following books:

� WebSphere MQ for i5/OS System Administration Guide, if the queue manager is running on i5/OS®

� WebSphere MQ System Administration Guide, if the queue manager is running on a UNIX system or Windows

� WebSphere MQ for z/OS System Setup Guide, if the queue manager is running on z/OS®

If you are going to run the program in client mode, see also WebSphere MQ Clients.

Perform the remaining steps of this procedure on the system on which you are going to run the program.

3. Make sure that you have updated your CLASSPATH environment variable according to the instructions in Environment variables relevant to WebSphere
MQ classes for Java.

4. At a command prompt, enter:

java -Djava.library.path=library_path MQIVP

where library_path is the path to the WebSphere MQ classes for Java libraries (see The WebSphere MQ classes for Java libraries).

The program tries to:

a. Connect to the queue manager

b. Open the queue SYSTEM.DEFAULT.LOCAL.QUEUE, put a message on the queue, get a message from the queue, and then close the queue

c. Disconnect from the queue manager

d. Return a message if the operations are successful

5. At the prompt marked (§):

� To use a TCP/IP connection, enter a WebSphere MQ server host name.

� To use native connection (bindings mode), leave the field blank. (Do not enter a name.)

Here is an example of the prompts and responses you might see. The actual prompts and your responses depend on your WebSphere MQ network.

Page 129 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Please enter the IP address of the MQ server : ipaddress(§)

Please enter the port to connect to : (1414)(§§)

Please enter the server connection channel name : channelname(§§)

Please enter the queue manager name : qmname

Success: Connected to queue manager.

Success: Opened SYSTEM.DEFAULT.LOCAL.QUEUE

Success: Put a message to SYSTEM.DEFAULT.LOCAL.QUEUE

Success: Got a message from SYSTEM.DEFAULT.LOCAL.QUEUE

Success: Closed SYSTEM.DEFAULT.LOCAL.QUEUE

Success: Disconnected from queue manager

Tests complete -

SUCCESS: This MQ Transport is functioning correctly.

Press Enter to continue ...

Note:

1. On z/OS, leave the field blank at prompt marked (§).

2. If you choose server connection, you do not see the prompts marked (§§).

3. On i5/OS, you can issue the command java MQIVP only from QShell. Alternatively, you can run the application by using the CL command RUNJVA

CLASS(MQIVP).

Parent topic: Using WebSphere MQ classes for Java

This build: January 26, 2011 11:28:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja10410_

5.3.3. Solving WebSphere MQ classes for Java problems

Initially, run the installation verification program. You might also have to use the trace facility.

If a program does not complete successfully, run the installation verification program, and follow the advice given in the diagnostic messages. This program
is described in Verifying your WebSphere MQ classes for Java installation with the sample application.

If the problems continue and you need to contact the IBM® service team, you might be asked to turn on the trace facility. Do this as shown in the following
example.

To trace the MQIVP program, enter the following command:

 java -Djava.library.path=library_path MQIVP -trace

where library_path is the path to the WebSphere MQ classes for Java libraries (see The WebSphere MQ classes for Java libraries).

For more information about how to use trace, see Tracing WebSphere MQ classes for Java programs.

Parent topic: Using WebSphere MQ classes for Java

This build: January 26, 2011 11:28:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja10420_

5.4. Introduction for programmers

This collection of topics contains general information for programmers.

For more detailed information about writing programs, see Writing WebSphere MQ classes for Java applications.

The WebSphere MQ classes for Java interface

What is new in WebSphere MQ Version 7.0?
WebSphere MQ classes for Java, as supplied in WebSphere MQ Version 7.0, contains a number of enhancements compared to previous releases.

Parent topic: WebSphere MQ classes for Java

This build: January 26, 2011 11:28:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja10970_

5.4.1. The WebSphere MQ classes for Java interface

The procedural WebSphere® MQ application programming interface is built around verbs such as those listed below:

 MQBACK, MQBEGIN, MQCLOSE, MQCMIT, MQCONN, MQDISC,

 MQGET, MQINQ, MQOPEN, MQPUT, MQSET, MQSUB, MQSUBRQ

These verbs all take, as a parameter, a handle to the WebSphere MQ object on which they are to operate. Because Java is object-oriented, the Java
programming interface turns this round. Your program consists of a set of WebSphere MQ objects, which you act upon by calling methods on those objects.

When you use the procedural interface, you disconnect from a queue manager by using the call MQDISC(Hconn, CompCode, Reason), where Hconn is a
handle to the queue manager.

In the Java interface, the queue manager is represented by an object of class MQQueueManager. You disconnect from the queue manager by calling the
disconnect() method on that class.

Page 130 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

// declare an object of type queue manager

MQQueueManager queueManager=new MQQueueManager();

...

// do something...

...

// disconnect from the queue manager

queueManager.disconnect();

Parent topic: Introduction for programmers

This build: January 26, 2011 11:28:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja10990_

5.4.2. What is new in WebSphere MQ Version 7.0?

WebSphere® MQ classes for Java, as supplied in WebSphere MQ Version 7.0, contains a number of enhancements compared to previous releases.

The following information summarizes the key enhancements.

Embedded publish/subscribe function
The API is extended to support publish/subscribe applications. For more information, see Publish/subscribe in WebSphere MQ classes for Java.

Read ahead
A WebSphere MQ classes for Java client can be configured to use read ahead. Read ahead allows messages to be sent to a client before an application
requests them. For more information about read ahead, see Improving the performance of nonpersistent messages.

Asynchronous put
In WebSphere MQ Version 7.0, you can choose to put a message to a queue or topic using the MQPUT or MQPUT1 call without the application waiting for the
queue manager to complete the call. In procedural languages, this process is done by using the MQPUT or MQPUT1 call, setting the
MQPMO_ASYNC_REPONSE option. In WebSphere MQ classes for Java, you set MQPMO_ASYNC_RESPONSE in the MQPutMessageOptions parameter passed to
MQDestination.put(). For more information, see Putting messages asynchronously using WebSphere MQ classes for Java

Sharing a communications connection
In WebSphere MQ V7.0, each connection to the queue manager using the same MQI channel can share a single TCP connection. This arrangement means
that fewer network resources are required and the total time taken to create multiple connections to the queue manager is reduced, particularly when using
SSL because the SSL handshake takes place only once at the start of the TCP connection. For more information, see Sharing a TCP/IP connection in
WebSphere MQ classes for Java.

Message properties
WebSphere MQ V7.0 introduces the general availability of message properties, previously only available in WebSphere MQ classes for JMS. You can add new
properties to any message without affecting applications that currently process that message. For more information, see Handling message properties.

Existing applications which rely on the presence of MQRFH2s containing properties must be changed to use the get*Property methods or to specify
CMQC.MQGMO_PROPERTIES_FORCE_MQRFH2 to continue receiving properties in the MQRFH2 format. If the application cannot be changed then the queue
attribute PropertyControl can be changed to the value MQPROP_FORCE_MQRFH2 so that properties are always returned in MQRFH2 form.

WebSphere MQ message headers
Java classes representing various types of message header are provided, with two helper classes to assist with reading and parsing header content. For
more information, see Handling WebSphere MQ message headers.

PCF messages
Java classes are provided to create and parse PCF-structured messages, and to facilitate sending PCF requests and collecting PCF responses. For more
information, see Handling PCF messages.

Channel exits
Three new interfaces are defined. Use these interfaces to define classes to use as channel exits. The old channel exit interfaces are also still supported, but
the new interfaces offer improved functionality and performance. For more information, see Using channel exits in WebSphere MQ classes for Java.

Client configuration files
On all platforms, the WebSphere MQ client configuration file is used to specify the client configuration options. These client configuration options apply to
WebSphere MQ classes for Java applications as well as to applications using procedural languages. For more information, see Client connections.

MQC is replaced by MQConstants

A new package, com.ibm.mq.constants, is supplied with WebSphere MQ Version 7.0. This package contains the class MQConstants, which implements a
number of interfaces. MQConstants contains definitions of all the constants that were in the MQC interface and a number of new constants. The interfaces in
this package closely follow the names of the constants header files used in WebSphere MQ.

For example, the interface CMQC contains a constant MQOO_INPUT_SHARED; this interface corresponds to the header file cmqc.h and the constant

MQOO_INPUT_SHARED.

com.ibm.mq.constants can be used with both WebSphere MQ classes for Java and WebSphere MQ classes for JMS.

MQC is still present, and has the constants it previously had; however, for any new applications, you must use the com.ibm.mq.constants package.

Parent topic: Introduction for programmers

This build: January 26, 2011 11:29:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja35270_

5.5. Writing WebSphere MQ classes for Java applications

This collection of topics provides information to assist with writing Java applications to interact with WebSphere® MQ systems.

To use WebSphere MQ classes for Java to access WebSphere MQ queues, you write Java applications that contain calls that put messages onto, and get
messages from, WebSphere MQ queues. For details of individual classes, see WebSphere MQ classes for Java.

Page 131 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Connection differences
The way you program for WebSphere MQ classes for Java has some dependencies on the connection modes you want to use.

Operations on queue managers
This collection of topics describes how to connect to, and disconnect from, a queue manager using WebSphere MQ classes for Java.

Accessing queues, topics, and processes
To access queues, topics, and processes, use methods of the MQQueueManager class. The MQOD (object descriptor structure) is collapsed into the
parameters of these methods.

Handling messages
Messages are represented by the MQMessage class. You put and get messages using methods of the MQDestination class, which has subclasses of
MQQueue and MQTopic.

Publish/subscribe in WebSphere MQ classes for Java
In WebSphere MQ classes for Java, the topic is represented by the MQTopic class, and you publish to it using the MQTopic.put() methods.

Handling WebSphere MQ message headers
Java classes are provided representing different types of message header. Two helper classes are also provided.

Handling PCF messages
Java classes are provided to create and parse PCF-structured messages, and to facilitate sending PCF requests and collecting PCF responses.

Handling message properties
Function calls to process message handles have no equivalent in WebSphere MQ classes for Java. To set, return, or delete message handle properties,
use methods of the MQMessage class.

Handling errors in WebSphere MQ classes for Java
Handle errors arising from WebSphere MQ classes for Java using Java try and catch blocks.

Getting and setting attribute values in WebSphere MQ classes for Java
getXXX() and setXXX() methods are provided for many common attributes. Others can be accessed using the generic inquire() and set() methods.

Multithreaded programs in Java
The Java runtime environment is inherently multithreaded. WebSphere MQ classes for Java allows a queue manager object to be shared across
multiple threads but ensures that all access to the target queue manager is synchronized.

Using channel exits in WebSphere MQ classes for Java
An overview of how to use channel exits in an application using the WebSphere MQ classes for Java.

Channel compression in WebSphere MQ classes for Java
Compressing the data that flows on a channel can improve the performance of the channel and reduce network traffic. WebSphere MQ classes for Java
use the compression function built into WebSphere MQ.

Sharing a TCP/IP connection in WebSphere MQ classes for Java
Multiple instances of an MQI channel can be made to share a single TCP/IP connection.

Connection pooling in WebSphere MQ classes for Java
WebSphere MQ classes for Java allows spare connections to be pooled for reuse.

JTA/JDBC coordination using WebSphere MQ classes for Java
WebSphere MQ classes for Java supports the MQQueueManager.begin() method, which allows WebSphere MQ to act as a coordinator for a database
which provides a JDBC type 2 or JDBC type 4 compliant driver.

Secure Sockets Layer (SSL) support
WebSphere MQ classes for Java client applications support Secure Sockets Layer (SSL) encryption. You require a JSSE provider to use SSL encryption.

Running WebSphere MQ classes for Java applications
If you write an application (a class that contains a main() method), using either the client or the bindings mode, run your program using the Java
interpreter.

Tracing WebSphere MQ classes for Java programs
WebSphere MQ classes for Java includes a trace facility, which you can use to produce diagnostic messages if you suspect that there might be a
problem with the code.

Parent topic: WebSphere MQ classes for Java

This build: January 26, 2011 11:28:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11000_

5.5.1. Connection differences

The way you program for WebSphere® MQ classes for Java has some dependencies on the connection modes you want to use.

Client connections
When WebSphere MQ classes for Java is used as a client, it is similar to the WebSphere MQ C client, but has a number of differences.

Bindings mode
The bindings mode of WebSphere MQ classes for Java differs from the client mode in three main ways.

Defining which connection to use
The type of connection to use is determined by the setting of variables in the MQEnvironment class.

Parent topic: Writing WebSphere MQ classes for Java applications

This build: January 26, 2011 11:28:47

Page 132 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11010_

5.5.1.1. Client connections

When WebSphere® MQ classes for Java is used as a client, it is similar to the WebSphere MQ C client, but has a number of differences.

If you are programming for WebSphere MQ classes for Java for use as a client, be aware of the following differences:

� It supports only TCP/IP.

� It does not read any WebSphere MQ environment variables at startup.

� Information that would be stored in a channel definition and in environment variables can be stored in a class called Environment. Alternatively, this
information can be passed as parameters when the connection is made.

� Error and exception conditions are written to a log specified in the MQException class. The default error destination is the Java console.

� Only the following attributes in a WebSphere MQ client configuration file are relevant to WebSphere MQ classes for Java. If you specify other
attributes, it has no effect.

� If connecting to a queue manager that requires character data to be converted, then the V7 Java client is now capable of doing the conversion if
queue manager is unable to do so. The client JVM must support the conversion between the CCSID of the client and that of the queue manager.

� Automatic client reconnect is not supported by WebSphere MQ classes for Java.

When used in client mode, WebSphere MQ classes for Java does not support the MQBEGIN call.

Parent topic: Connection differences

Related information
Websphere MQ Clients
WebSphere MQ client configuration file

This build: January 26, 2011 11:28:48

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11020_

5.5.1.2. Bindings mode

The bindings mode of WebSphere® MQ classes for Java differs from the client mode in three main ways.

If you are programming for WebSphere MQ classes for Java for use in bindings mode, be aware of the following differences from client mode:

� The bindings support the MQBEGIN call

� Fast-path bindings into the WebSphere MQ queue manager are supported

� Most of the parameters provided by the MQEnvironment class not relevant to bindings mode and are ignored

Note: WebSphere MQ for i5/OS® and WebSphere MQ for z/OS® do not support the use of MQBEGIN to initiate global units of work that are coordinated by
the queue manager.

Parent topic: Connection differences

This build: January 26, 2011 11:28:48

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11030_

5.5.1.3. Defining which connection to use

The type of connection to use is determined by the setting of variables in the MQEnvironment class.

Two variables are used:

MQEnvironment.properties

The connection type is determined by the value associated with the key name CMQC.TRANSPORT_PROPERTY. Possible values are as follows:

CMQC.TRANSPORT_MQSERIES_BINDINGS

Connect in bindings mode

CMQC.TRANSPORT_MQSERIES_CLIENT

Connect in client mode

Stanza Attribute

ClientExitPath ExitsDefaultPath

ClientExitPath ExitsDefaultPath64

ClientExitPath JavaExitsClasspath

MessageBuffer MaximumSize

MessageBuffer PurgeTime

MessageBuffer UpdatePercentage

TCP ClntRcvBufSize

TCP ClntSndBufSize

TCP Connect_Timeout

TCP KeepAlive

Page 133 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

CMQC.TRANSPORT_MQSERIES

Connection mode is determined by the value of the hostname property

MQEnvironment.hostname

Set the value of this variable as follows:

� For client connections, set this value to the host name of the WebSphere® MQ server to which you want to connect

� For bindings mode, leave this value unset, or set it to null

Parent topic: Connection differences

This build: January 26, 2011 11:28:48

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11040_

5.5.2. Operations on queue managers

This collection of topics describes how to connect to, and disconnect from, a queue manager using WebSphere® MQ classes for Java.

Setting up the WebSphere MQ environment
For an application to connect to a queue manager in client mode, the application must specify the channel name, host name, and port number.

Connecting to a queue manager
Connect to a queue manager by creating a new instance of the MQQueueManager class. Disconnect from a queue manager by calling the disconnect()
method.

Using a client channel definition table with WebSphere MQ classes for Java
A WebSphere MQ classes for Java client application can use client connection channel definitions stored in a client channel definition table.

Specifying a range of ports for client connections
You can specify a port, or a range of ports, that an application can bind to in either of two ways.

Parent topic: Writing WebSphere MQ classes for Java applications

This build: January 26, 2011 11:28:48

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11060_

5.5.2.1. Setting up the WebSphere MQ environment

For an application to connect to a queue manager in client mode, the application must specify the channel name, host name, and port number.

The information in this section is not relevant if your application connects to a queue manager in bindings mode.

You can specify the channel name, host name, and port number in one of two ways; either as fields in the MQEnvironment class or as properties of the
MQQueueManager object.

If you set fields in MQEnvironment, they apply to your whole application, except where they are overridden by a properties Hashtable. To specify the channel
name and host name in MQEnvironment, use the following code:

MQEnvironment.hostname = "host.domain.com";

MQEnvironment.channel = "java.client.channel";

This is equivalent to an MQSERVER environment variable setting of:

"java.client.channel/TCP/host.domain.com".

By default, the Java clients attempt to connect to a WebSphere® MQ listener at port 1414. To specify a different port, use the code:

MQEnvironment.port = nnnn;

If you pass properties to a queue manager object at its creation, they apply only to that queue manager. Create entries in a Hashtable with keys of
hostname, channel, and, optionally, port, and with appropriate values. To use the default port, 1414, you can omit the port entry. Create the
MQQueueManager using a constructor that accepts the properties Hashtable.

Parent topic: Operations on queue managers

This build: January 26, 2011 11:28:51

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11070_

5.5.2.2. Connecting to a queue manager

Connect to a queue manager by creating a new instance of the MQQueueManager class. Disconnect from a queue manager by calling the disconnect()
method.

You are now ready to connect to a queue manager by creating a new instance of the MQQueueManager class:

MQQueueManager queueManager = new MQQueueManager("qMgrName");

To disconnect from a queue manager, call the disconnect() method on the queue manager:

queueManager.disconnect();

If you call the disconnect method, all open queues and processes that you have accessed through that queue manager are closed. However, it is good
programming practice to close these resources explicitly when you finish using them. To do this, use the close() method on the relevant objects.

Page 134 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

The commit() and backout() methods on a queue manager are equivalent to the MQCMIT and MQBACK calls that are used with the procedural interface.

Parent topic: Operations on queue managers

This build: January 26, 2011 11:28:51

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11080_

5.5.2.3. Using a client channel definition table with WebSphere MQ classes for Java

A WebSphere® MQ classes for Java client application can use client connection channel definitions stored in a client channel definition table.

As an alternative to creating a client connection channel definition by setting certain fields and environment properties in the MQEnvironment class or
passing them to an MQQueueManager in a properties Hashtable, a WebSphere MQ classes for Java client application can use client connection channel
definitions that are stored in a client channel definition table. These definitions are created by WebSphere MQ Script (MQSC) commands or WebSphere MQ
Programmable Command Format (PCF) commands, or using the WebSphere MQ Explorer. When the application creates an MQQueueManager object, the
WebSphere MQ classes for Java client searches the client channel definition table for a suitable client connection channel definition, and uses the channel
definition to start an MQI channel. For more information about client channel definition tables and how to construct one, see WebSphere MQ Clients.

To use a client channel definition table, an application must first create a URL object. The URL object encapsulates a uniform resource locator (URL) that
identifies the name and location of the file containing the client channel definition table and specifies how the file can be accessed.

For example, if the file ccdt1.tab contains a client channel definition table and is stored on the same system on which the application is running, the
application can create a URL object in the following way:

java.net.URL chanTab1 = new URL("file:///home/admdata/ccdt1.tab");

As another example, suppose the file ccdt2.tab contains a client channel definition table and is stored on a system that is different to the one on which the
application is running. If the file can be accessed using the FTP protocol, the application can create a URL object in the following way:

java.net.URL chanTab2 = new URL("ftp://ftp.server/admdata/ccdt2.tab");

After the application has created a URL object, the application can create an MQQueueManager object using one of the constructors that takes a URL object
as a parameter. Here is an example:

MQQueueManager mars = new MQQueueManager("MARS", chanTab2);

This statement causes the WebSphere MQ classes for Java client to access the client channel definition table identified by the URL object chanTab2, search
the table for a suitable client connection channel definition, and then use the channel definition to start an MQI channel to the queue manager called MARS.

Note the following points that apply if an application uses a client channel definition table:

� When the application creates an MQQueueManager object using a constructor that takes a URL object as a parameter, no channel name must be set in
the MQEnvironment class, either as a field or as an environment property. If a channel name is set, the WebSphere MQ classes for Java client throws
an MQException. The field or environment property specifying the channel name is considered to be set if its value is anything other than null, an
empty string, or a string containing all blank characters.

� The queueManagerName parameter on the MQQueueManager constructor can have one of the following values:

� The name of a queue manager

� An asterisk (*) followed by the name of a queue manager group

� An asterisk (*)

� Null, an empty string, or a string containing all blank characters

These are the same values that can be used for the QMgrName parameter on an MQCONN call issued by a client application that is using Message Queue

Interface (MQI). For more information about the meaning of these values therefore, see the WebSphere MQ Application Programming Reference and
WebSphere MQ Clients. The way that the WebSphere MQ classes for Java client uses the queueManagerName parameter to search the client channel
definition table is also as described in these books. If your application uses connection pooling, see also Controlling the default connection pool.

� When the WebSphere MQ classes for Java client finds a suitable client connection channel definition in the client channel definition table, it uses only
the information extracted from this channel definition to start an MQI channel. Any channel related fields or environment properties that the
application might have set in the MQEnvironment class are ignored.

In particular, note the following points if you are using Secure Sockets Layer (SSL):

� An MQI channel uses SSL only if the channel definition extracted from the client channel definition table specifies the name of a CipherSpec
supported by the WebSphere MQ classes for Java client.

� A client channel definition table also contains information about the location of Lightweight Directory Access Protocol (LDAP) servers that hold
certificate revocation lists (CRLs). The WebSphere MQ classes for Java client uses only this information to access LDAP servers that hold CRLs.

� A client channel definition table can also contain the location of an OCSP responder. However, WebSphere MQ classes for Java cannot use
OCSP.

For more information about using SSL with a client channel definition table, see WebSphere MQ Clients.

Note also the following points if you are using channel exits:

� An MQI channel uses the channel exits and associated user data specified by the channel definition extracted from the client channel definition
table in preference to channel exits and data specified using other methods.

� A channel definition extracted from a client channel definition table can specify channel exits that are written in Java, C, or C++. For more
information about how to write a channel exit in Java, see Using channel exits in WebSphere MQ classes for Java. For more information about
how to write a channel exit in other languages, see Using channel exits not written in Java with WebSphere MQ classes for Java.

Parent topic: Operations on queue managers

This build: January 26, 2011 11:28:51

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11090_

5.5.2.4. Specifying a range of ports for client connections

You can specify a port, or a range of ports, that an application can bind to in either of two ways.

When a WebSphere® MQ classes for Java application attempts to connect to a WebSphere MQ queue manager in client mode, a firewall might allow only
those connections that originate from specified ports or a range of ports. In this situation, you can specify a port, or a range of ports, that the application
can bind to. You can specify the appropriate port(s) in the following ways:

� You can set the localAddressSetting field in the MQEnvironment class. Here is an example:

Page 135 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

MQEnvironment.localAddressSetting = "9.20.0.1(2000,3000)";

� You can set the environment property CMQC.LOCAL_ADDRESS_PROPERTY. Here is an example:

(MQEnvironment.properties).put(CMQC.LOCAL_ADDRESS_PROPERTY,

 "9.20.0.1(2000,3000)");

� When you can construct the MQQueueManager object, you can pass a properties hashtable containing a LOCAL_ADDRESS_PROPERTY with the value
"9.20.0.1(2000,3000)"

In each of these examples, when the application later connects to a queue manager, the application binds to a local IP address and port number in the range
9.20.0.1(2000) to 9.20.0.1(3000).

In a system with more than one network interface, you can also use the localAddressSetting field, or the environment property
CMQC.LOCAL_ADDRESS_PROPERTY, to specify which network interface must be used for a connection.

Connection errors might occur if you restrict the range of ports. If an error occurs, an MQException is thrown containing the WebSphere MQ reason code
MQRC_Q_MGR_NOT_AVAILABLE and the following message:

Socket connection attempt refused due to LOCAL_ADDRESS_PROPERTY restrictions

An error might occur if all the ports in the specified range are in use, or if the specified IP address, host name, or port number is not valid (a negative port
number, for example).
Parent topic: Operations on queue managers

This build: January 26, 2011 11:28:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11110_

5.5.3. Accessing queues, topics, and processes

To access queues, topics, and processes, use methods of the MQQueueManager class. The MQOD (object descriptor structure) is collapsed into the
parameters of these methods.

Queues

To open a queue you can use the accessQueue method of the MQQueueManager class. For example, on a queue manager called queueManager, use the
following code:

MQQueue queue = queueManager.accessQueue("qName",CMQC.MQOO_OUTPUT);

The accessQueue method returns a new object of class MQQueue.

When you have finished using the queue, use the close() method to close it, as in the following example:

queue.close();

You can also create a queue by using the MQQueue constructor. The parameters are exactly the same as for the accessQueue method, with the addition of a
queue manager parameter. For example:

MQQueue queue = new MQQueue(queueManager,

 "qName");

 CMQC.MQOO_OUTPUT,

 "qMgrName",

 "dynamicQName",

 "altUserID");

 You can specify a number of options when you create queues. For details of these, see Class com.ibm.mq.MQQueue . Constructing a queue object in this
way enables you to write your own subclasses of MQQueue.

Topics

Similarly, you can open a topic using the accessTopic method of the MQQueueManager class. For example, on a queue manager called queueManager, use
the following code to create a subscriber and publisher:

MQTopic subscriber =

 queueManager.accessTopic("TOPICSTRING","TOPICNAME",

 CMQC.MQTOPIC_OPEN_AS_SUBSCRIPTION, CMQC.MQSO_CREATE);

MQTopic publisher =

 queueManager.accessTopic("TOPICSTRING","TOPICNAME",

 CMQC.MQTOPIC_OPEN_AS_PUBLICATION, CMQC.MQOO_OUTPUT);

When you have finished using the topic, use the close() method to close it.

You can also create a topic by using the MQTopic constructor. The parameters are exactly the same as for the accessTopic method, with the addition of a
queue manager parameter. For example:

MQTopic subscriber = new

 MQTopic(queueManager,"TOPICSTRING","TOPICNAME",

 CMQC.MQTOPIC_OPEN_AS_SUBSCRIPTION, CMQC.MQSO_CREATE);

You can specify a number of options when you create topics. For details of these, see Class com.ibm.mq.MQTopic . Constructing a topic object in this way
enables you to write your own subclasses of MQTopic.

A topic must be opened either for publication or for subscription. The MQQueueManager class has eight accessTopic methods and the Topic class has eight
constructors. In each case, four of these have a destination parameter and four have a subscriptionName parameter (including two that have both).
These can only be used to open the topic for subscriptions. The two remaining methods have an openAs parameter, and the topic can be opened for either
publication or subscription depending on the value of the openAs parameter.

To create a topic as a durable subscriber use either an accessTopic method of the MQQueueManager class or an MQTopic constructor that accepts a
subscription name and, in either case, set the CMQC.MQSO_DURABLE option.

Processes

To access a process, use the accessProcess method of the MQQueueManager. For example, on a queue manager called queueManager, use the following
code to create an MQProcess object:

MQProcess process =

 queueManager.accessProcess("PROCESSNAME",

 CMQC.MQOO_FAIL_IF_QUIESCING);

Page 136 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

To access a process, use the accessProcess method of the MQQueueManager.

The accessProcess method returns a new object of class MQProcess.

When you have finished using the process object, use the close() method to close it, as in the following example:

process.close();

You can also create a process by using the MQProcess constructor. The parameters are exactly the same as for the accessProcess method, with the
addition of a queue manager parameter. For example:

 MQProcess process =

 new MQProcess(queueManager,"PROCESSNAME",

 CMQC.MQOO_FAIL_IF_QUIESCING);

Constructing a process object in this way enables you to write your own subclasses of MQProcess.

Parent topic: Writing WebSphere MQ classes for Java applications

Related information
MQProcess
MQQueue
MQQueueManager
MQTopic

This build: January 26, 2011 11:28:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11120_

5.5.4. Handling messages

Messages are represented by the MQMessage class. You put and get messages using methods of the MQDestination class, which has subclasses of MQQueue
and MQTopic.

Put messages onto queues or topics using the put() method of the MQDestination class. You get messages from queues or topics using the get() method of
the MQDestination class. Unlike the procedural interface, where MQPUT and MQGET put and get arrays of bytes, the Java programming language puts and
gets instances of the MQMessage class. The MQMessage class encapsulates the data buffer that contains the actual message data, together with all the
MQMD (message descriptor) parameters and message properties that describe that message.

To build a new message, create a new instance of the MQMessage class, and use the writeXXX methods to put data into the message buffer.

When the new message instance is created, all the MQMD parameters are automatically set to their default values, as defined in the WebSphere MQ
Application Programming Reference. The put() method of MQDestination also takes an instance of the MQPutMessageOptions class as a parameter. This class
represents the MQPMO structure. The following example creates a message and puts it onto a queue:

// Build a new message containing my age followed by my name

MQMessage myMessage = new MQMessage();

myMessage.writeInt(25);

String name = "Charlie Jordan";

myMessage.writeInt(name.length());

myMessage.writeBytes(name);

// Use the default put message options...

MQPutMessageOptions pmo = new MQPutMessageOptions();

// put the message!

queue.put(myMessage,pmo);

The get() method of MQDestination returns a new instance of MQMessage, which represents the message just taken from the queue. It also takes an
instance of the MQGetMessageOptions class as a parameter. This class represents the MQGMO structure.

You do not need to specify a maximum message size, because the get() method automatically adjusts the size of its internal buffer to fit the incoming
message. Use the readXXX methods of the MQMessage class to access the data in the returned message.

The following example shows how to get a message from a queue:

// Get a message from the queue

MQMessage theMessage = new MQMessage();

MQGetMessageOptions gmo = new MQGetMessageOptions();

queue.get(theMessage,gmo); // has default values

// Extract the message data

int age = theMessage.readInt();

int strLen = theMessage.readInt();

byte[] strData = new byte[strLen];

theMessage.readFully(strData,0,strLen);

String name = new String(strData,0);

You can alter the number format that the read and write methods use by setting the encoding member variable.

You can alter the character set to use for reading and writing strings by setting the characterSet member variable.

See MQMessage for more details.

Note: The writeUTF() method of MQMessage automatically encodes the length of the string as well as the Unicode bytes it contains. When your message will
be read by another Java program (using readUTF()), this is the simplest way to send string information.

Improving the performance of nonpersistent messages
To improve performance when browsing messages or consuming nonpersistent messages from a client application, you can use read ahead. Client
applications using MQGET or asynchronous consume will benefit from the performance improvements when browsing messages or consuming
nonpersistent messages.

Putting messages asynchronously using WebSphere MQ classes for Java
To put a message asynchronously, set MQPMO_ASYNC_RESPONSE.

Page 137 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Parent topic: Writing WebSphere MQ classes for Java applications

This build: January 26, 2011 11:28:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11130_

5.5.4.1. Improving the performance of nonpersistent messages

To improve performance when browsing messages or consuming nonpersistent messages from a client application, you can use read ahead. Client
applications using MQGET or asynchronous consume will benefit from the performance improvements when browsing messages or consuming nonpersistent
messages.

For general information about the read ahead facility, see the related topic below.

In WebSphere® MQ classes for Java, you use the CMQC.MQSO_READ_AHEAD and CMQC.MQSO_NO_READ_AHEAD properties of an MQQueue or MQTopic
object to determine whether message consumers and queue browsers are allowed to use read ahead on that object.

Parent topic: Handling messages

Related information
Improving performance of non-persistent messages

This build: January 26, 2011 11:29:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja41020_

5.5.4.2. Putting messages asynchronously using WebSphere MQ classes for Java

To put a message asynchronously, set MQPMO_ASYNC_RESPONSE.

You put messages onto queues or topics using the put() method of the MQDestination class. To put a message asynchronously, that is, allowing the
operation to complete without waiting for a response from the queue manager, you can set MQPMO_ASYNC_RESPONSE in the options field of
MQPutMessageOptions. To determine the success or failure of asynchronous puts, use the MQQueueManager.getAsyncStatus call.

Parent topic: Handling messages

This build: January 26, 2011 11:29:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja41050_

5.5.5. Publish/subscribe in WebSphere MQ classes for Java

In WebSphere MQ classes for Java, the topic is represented by the MQTopic class, and you publish to it using the MQTopic.put() methods.

For general information about WebSphere MQ publish/subscribe, see the Publish⁄Subscribe User's Guide.

Parent topic: Writing WebSphere MQ classes for Java applications

Related concepts
Accessing queues, topics, and processes

Related information
MQTopic

This build: January 26, 2011 11:29:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja41030_

5.5.6. Handling WebSphere MQ message headers

Java classes are provided representing different types of message header. Two helper classes are also provided.

Header objects are described by the MQHeader interface, which provides general-purpose methods for accessing header fields and for reading and writing
message content. Each header type has its own class that implements the MQHeader interface and adds getter and setter methods for individual fields. For
example, the MQRFH2 header type is represented by the MQRFH2 class; the MQDLH header type by the MQDLH class, and so on. The header classes
perform any necessary data conversion automatically, and can read or write data in any specified numeric encoding or character set (CCSID).

Two helper classes, MQHeaderIterator and MQHeaderList, assist with reading and decoding (parsing) the header content in messages:

� The MQHeaderIterator class works like a java.util.Iterator. For as long as there are more headers in the message, the next() method returns true, and
the nextHeader() or next() method returns the next header object.

� The MQHeaderList works like a java.util.List. Like the MQHeaderIterator, it parses header content, but it also allows you to to search for particular
headers, add new headers, remove existing headers, update header fields and then write the header content back to a message. Alternatively, you can
create an empty MQHeaderList, then populate it with header instances and write it to a message once or repeatedly.

The MQHeaderIterator and MQHeaderList classes use the information in the MQHeaderRegistry to know which WebSphere® MQ header classes are
associated with particular message types and formats. The MQHeaderRegistry is configured with knowledge of all current WebSphere MQ formats and
header types and their implementation classes, and you can also register your own header types.

Support is provided for the following commonly used Websphere MQ headers

� MQRFH – Rules and formatting header

Page 138 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

� MQRFH2 – Like MQRFH, used to pass messages to and from a message broker belonging to WebSphere Message Broker. Also used to contain message
properties

� MQCIH – CICS® Bridge

� MQDLH – Dead letter header

� MQIIH – IMS™ information header

� MQRMH – reference message header

� MQSAPH – SAP header

� MQWIH – Work information header

� MQXQH - Transmission Queue header

� MQDH – Distribution header

� MQEPH – Encapsulated PCF header

You can also define classes representing your own headers.

Printing all the headers in a message
In this example, an instance of MQHeaderIterator parses the headers in an MQMessage that has been received from a queue. The MQHeader objects
returned from the nextHeader() method display their structure and contents when their toString method is invoked.

Skipping over the headers in a message
In this example, the skipHeaders() method of MQHeaderIterator positions the message read cursor immediately after the last header.

Finding the reason code in a dead-letter message
In this example, the read method populates the MQDLH object by reading from the message. After the read operation, the message read cursor is
positioned immediately after the MQDLH header content.

Reading and removing the MQDLH from a dead-letter message
In this example, MQDLH is used to remove the header from a dead-letter message.

Printing the content of a message
This example uses MQHeaderList to print out the content of a message, including its headers.

Finding a specific type of header in a message
This example uses the indexOf(String) method of MQHeaderList to find an MQRFH2 header in a message, if one is present.

Analyzing an MQRFH2 header
This example shows how to access a known field value in a named folder, using the MQRFH2 class.

Reading and writing byte streams other than MQMessage objects
These examples use the header classes to parse and manipulate WebSphere MQ header content when the data source is not an MQMessage object.

Creating classes for new header types
You can create Java classes for header types not supplied with WebSphere MQ classes for Java.

Parent topic: Writing WebSphere MQ classes for Java applications

This build: January 26, 2011 11:29:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja35120_

5.5.6.1. Printing all the headers in a message

In this example, an instance of MQHeaderIterator parses the headers in an MQMessage that has been received from a queue. The MQHeader objects
returned from the nextHeader() method display their structure and contents when their toString method is invoked.

import com.ibm.mq.MQMessage;

import com.ibm.mq.headers.MQHeader;

import com.ibm.mq.headers.MQHeaderIterator;

...

MQMessage message = ... // Message received from a queue.

MQHeaderIterator it = new MQHeaderIterator (message);

while (it.hasNext ())

{

 MQHeader header = it.nextHeader ();

 System.out.println ("Header type " + header.type () + ": " + header);

}

Parent topic: Handling WebSphere MQ message headers

This build: January 26, 2011 11:29:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja35130_

5.5.6.2. Skipping over the headers in a message

In this example, the skipHeaders() method of MQHeaderIterator positions the message read cursor immediately after the last header.

import com.ibm.mq.MQMessage;

import com.ibm.mq.headers.MQHeaderIterator;

...

MQMessage message = ... // Message received from a queue.

MQHeaderIterator it = new MQHeaderIterator (message);

it.skipHeaders ();

Page 139 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Parent topic: Handling WebSphere MQ message headers

This build: January 26, 2011 11:29:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja35140_

5.5.6.3. Finding the reason code in a dead-letter message

In this example, the read method populates the MQDLH object by reading from the message. After the read operation, the message read cursor is positioned
immediately after the MQDLH header content.

Messages on the queue manager's dead-letter queue are prefixed with a dead-letter header (MQDLH). To decide how to handle these messages - for
example, to determine whether to retry or discard them - a dead-letter handling application must look at the reason code contained in the MQDLH.

import com.ibm.mq.MQMessage;

import com.ibm.mq.headers.MQDLH;

...

MQMessage message = ... // Message received from the dead-letter queue.

MQDLH dlh = new MQDLH ();

dlh.read (message);

System.out.println ("Reason: " + dlh.getReason ());

All header classes also provide a convenience constructor to initialize themselves directly from the message in a single step. So the code in this example
could be simplified as follows:

import com.ibm.mq.MQMessage;

import com.ibm.mq.headers.MQDLH;

...

MQMessage message = ... // Message received from the dead-letter queue.

MQDLH dlh = new MQDLH (message);

System.out.println ("Reason: " + dlh.getReason ());

Parent topic: Handling WebSphere MQ message headers

This build: January 26, 2011 11:29:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja35150_

5.5.6.4. Reading and removing the MQDLH from a dead-letter message

In this example, MQDLH is used to remove the header from a dead-letter message.

A dead-letter handling application will typically resubmit messages that have been rejected if their reason code indicates a transient error. Before
resubmitting the message, it must remove the MQDLH header.

This example performs the following steps (see the comments in the example code):

1. The MQHeaderList reads the entire message, and each header encountered in the message becomes an item in the list.

2. Dead-letter messages contain an MQDLH as their first header, so this can be found in the first item of the header list. The MQDLH has already been
populated from the message when the MQHeaderList is built, so there is no need to invoke its read method.

3. The reason code is extracted using the getReason() method provided by the MQDLH class.

4. The reason code has been inspected, and indicates that it is appropriate to resubmit the message. The MQDLH is removed using the MQHeaderList
remove() method.

5. The MQHeaderList writes its remaining content to a new message object. The new message now contains everything in the original message except
the MQDLH and can be written to a queue. The true argument to the constructor and to the write method indicates that the message body is to be
held within the MQHeaderList, and written out again.

6. The format field in the message descriptor of the new message now contains the value that was previously in the MQDLH format field. The message
data matches the numeric encoding and CCSID set in the message descriptor.

import com.ibm.mq.MQMessage;

import com.ibm.mq.headers.MQDLH;

import com.ibm.mq.headers.MQHeaderList;

...

MQMessage message = ... // Message received from the dead-letter queue.

MQHeaderList list = new MQHeaderList (message, true); // Step 1.

MQDLH dlh = (MQDLH) list.get (0); // Step 2.

int reason = dlh.getReason (); // Step 3.

...

list.remove (dlh); // Step 4.

MQMessage newMessage = new MQMessage ();

list.write (newMessage, true); // Step 5.

newMessage.format = list.getFormat (); // Step 6.

Parent topic: Handling WebSphere MQ message headers

This build: January 26, 2011 11:29:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja35160_

5.5.6.5. Printing the content of a message

This example uses MQHeaderList to print out the content of a message, including its headers.

Page 140 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

The output contains a view of all the header contents as well as the body of the message. The MQHeaderList class decodes all the headers in one go,
whereas the MQHeaderIterator steps through them one at a time under application control. You might use this technique to provide a simple debugging tool
when writing Websphere MQ applications.

import com.ibm.mq.MQMessage;

import com.ibm.mq.headers.MQHeaderList;

...

MQMessage message = ... // Message received from a queue.

System.out.println (new MQHeaderList (message, true));

This example also prints out the message descriptor fields, using the MQMD class. The copyFrom() method of the com.ibm.mq.headers.MQMD class
populates the header object from the message descriptor fields of the MQMessage rather than by reading the message body.

import com.ibm.mq.MQMessage;

import com.ibm.mq.headers.MQMD;

import com.ibm.mq.headers.MQHeaderList;

...

MQMessage message = ...

MQMD md = new MQMD ();

...

md.copyFrom (message);

System.out.println (md + "\n" + new MQHeaderList (message, true));

Parent topic: Handling WebSphere MQ message headers

This build: January 26, 2011 11:29:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja35170_

5.5.6.6. Finding a specific type of header in a message

This example uses the indexOf(String) method of MQHeaderList to find an MQRFH2 header in a message, if one is present.

import com.ibm.mq.MQMessage;

import com.ibm.mq.headers.MQHeaderList;

import com.ibm.mq.headers.MQRFH2;

...

MQMessage message = ...

MQHeaderList list = new MQHeaderList (message);

int index = list.indexOf ("MQRFH2");

if (index >= 0)

{

 MQRFH2 rfh = (MQRFH2) list.get (index);

 ...

}

Parent topic: Handling WebSphere MQ message headers

This build: January 26, 2011 11:29:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja35180_

5.5.6.7. Analyzing an MQRFH2 header

This example shows how to access a known field value in a named folder, using the MQRFH2 class.

The MQRFH2 class provides a number of ways to access not only the fields in the fixed part of the structure, but also the XML-encoded folder contents that
are carried within the NameValueData field. This example shows how to access a known field value in a named folder - in this instance, the Rto field in the
jms folder, which represents the reply queue name in an MQ JMS message.

MQRFH2 rfh = ...

String value = rfh.getStringFieldValue ("jms", "Rto");

To discover the contents of an MQRFH2 (as opposed to requesting specific fields directly), you can use the getFolders method to return a list of
MQRFH2.Element, which represents the structure of a folder that could contain fields and other folders. Setting a field or folder to null removes it from the
MQRFH2. When you manipulate the NameValueData folder contents in this way, the StrucLength field is automatically updated accordingly.

Parent topic: Handling WebSphere MQ message headers

This build: January 26, 2011 11:29:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja35190_

5.5.6.8. Reading and writing byte streams other than MQMessage objects

These examples use the header classes to parse and manipulate WebSphere® MQ header content when the data source is not an MQMessage object.

You can use the header classes to parse and manipulate WebSphere MQ header content even when the data source is something other than an MQMessage
object. The MQHeader interface implemented by every header class provides the methods int read (java.io.DataInput message, int encoding, int

characterSet) and int write (java.io.DataOutput message, int encoding, int characterSet). The com.ibm.mq.MQMessage class implements the

java.io.DataInput and java.io.DataOutput interfaces. This means that you can use the two MQHeader methods above to read and write MQMessage content,
overriding the encoding and CCSID specified in the message descriptor. This is useful for messages that contain a chain of headers in different encodings.

You can also obtain DataInput and DataOutput objects from other data streams, for example file or socket streams, or byte arrays carried in JMS messages.

Page 141 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

The java.io.DataInputStream and java.io.DataOutputStream classes implement DataInput and DataOutput respectively. This example reads WebSphere MQ
header content from a byte array:

import java.io.*;

import com.ibm.mq.headers.*;

...

byte [] bytes = ...

DataInput in = new DataInputStream (new ByteArrayInputStream (bytes));

MQHeaderIterator it = new MQHeaderIterator (in, CMQC.MQENC_NATIVE,

 CMQC.MQCCSI_DEFAULT);

The line starting MQHeaderIterator could be replaced with

MQDLH dlh = new MQDLH (in, CMQC.MQENC_NATIVE, CMQC.MQCCSI_DEFAULT);

// or any other header type

This example writes to a byte array using a DataOutputStream:

MQHeader header = ... // Could be any header type

ByteArrayOutputStream out = new ByteArrayOutputStream ();

header.write (new DataOutputStream (out), CMQC.MQENC_NATIVE, CMQC.MQCCSI_DEFAULT);

byte [] bytes = out.toByteArray ();

When you work with streams in this way, be careful to use the correct values for the encoding and characterSet arguments. When reading headers, specify
the encoding and CCSID with which the byte content was originally written. When writing headers, specify the encoding and CCSID that you want to
produce. The data conversion is performed automatically by the header classes.

Parent topic: Handling WebSphere MQ message headers

This build: January 26, 2011 11:29:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja35210_

5.5.6.9. Creating classes for new header types

You can create Java classes for header types not supplied with WebSphere® MQ classes for Java.

To add a Java class representing a new header type that you can use in the same way as any header class supplied with WebSphere MQ classes for Java,
you create a class that implements the MQHeader interface. The simplest approach is to extend the com.ibm.mq.headers.impl.Header class. This example
produces a fully-functional class representing the MQTM header structure. You do not have to add individual getter and setter methods for each field, but it
is a useful convenience for users of the header class. The generic getValue and setValue methods that take a string for the field name will work for all fields
defined in the header type. The inherited read, write and size methods will enable instances of the new header type to be read and written and will calculate
the header size correctly based upon its field definition. The type definition is created just once, however many instances of this header class are created. To
make the new header definition available for decoding using the MQHeaderIterator or MQHeaderList classes, you would register it using the
MQHeaderRegistry. Note however that the MQTM header class is in fact already provided in this package and registered in the default registry.

import com.ibm.mq.headers.impl.Header;

import com.ibm.mq.headers.impl.HeaderField;

import com.ibm.mq.headers.CMQC;

public class MQTM extends Header {

 final static HeaderType TYPE = new HeaderType ("MQTM");

 final static HeaderField StrucId = TYPE.addMQChar ("StrucId", CMQC.MQTM_STRUC_ID);

 final static HeaderField Version = TYPE.addMQLong ("Version", CMQC.MQTM_VERSION_1);

 final static HeaderField QName = TYPE.addMQChar ("QName", CMQC.MQ_Q_NAME_LENGTH);

 final static HeaderField ProcessName = TYPE.addMQChar ("ProcessName",

 CMQC.MQ_PROCESS_NAME_LENGTH);

 final static HeaderField TriggerData = TYPE.addMQChar ("TriggerData",

 CMQC.MQ_TRIGGER_DATA_LENGTH);

 final static HeaderField ApplType = TYPE.addMQLong ("ApplType");

 final static HeaderField ApplId = TYPE.addMQChar ("ApplId", 256);

 final static HeaderField EnvData = TYPE.addMQChar ("EnvData", 128);

 final static HeaderField UserData = TYPE.addMQChar ("UserData", 128);

 protected MQTM (HeaderType type){

 super (type);

 }

 public String getStrucId () {

 return getStringValue (StrucId);

 }

 public int getVersion () {

 return getIntValue (Version);

 }

 public String getQName () {

 return getStringValue (QName);

 }

 public void setQName (String value) {

 setStringValue (QName, value);

 }

 // ...Add convenience getters and setters for remaining fields in the same way.

}

Parent topic: Handling WebSphere MQ message headers

This build: January 26, 2011 11:29:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja35220_

5.5.7. Handling PCF messages

Java classes are provided to create and parse PCF-structured messages, and to facilitate sending PCF requests and collecting PCF responses.

Classes PCFMessage & MQCFGR represent arrays of PCF parameter structures. They provide convenience methods for adding and retrieving PCF parameters.

Page 142 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

PCF parameter structures are represented by the classes MQCFH, MQCFIN, MQCFIN64, MQCFST, MQCFBS, MQCFIL, MQCFIL64 MQCFSL, and MQCFGR. These
share basic operational interfaces:

� Methods to read and write message content: read (), write (), and size ()

� Methods to manipulate parameters: getValue (), setValue (), getParameter () and others

� The enumerator method .nextParameter (), which parses PCF content in an MQMessage

The PCF filter parameter is used in inquire commands to provide a filter function. It in encapsulated in the following classes:

� MQCFIF – integer filter

� MQCFSF – string filter

� MQCFBF – byte filter

Two agent classes, PCFAgent and PCFMessageAgent are provided to manage the connection to a Queue Manager, the command server queue, and an
associated response queue. PCFMessageAgent extends PCFAgent and should normally be used in preference to it. The PCFMessageAgent class converts the
received MQMessages and passes them back to the caller as a PCFMessage array. PCFAgent returns an array of MQMessages, which you have to parse
before use.

Parent topic: Writing WebSphere MQ classes for Java applications

This build: January 26, 2011 11:29:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja35230_

5.5.8. Handling message properties

Function calls to process message handles have no equivalent in WebSphere MQ classes for Java. To set, return, or delete message handle properties, use
methods of the MQMessage class.

For general information about message properties, see Property names.

In WebSphere MQ classes for Java access to messages is through the MQMessage class. Message handles are therefore not provided in the Java
environment and there is no equivalent to the WebSphere MQ function calls MQCRTMH, MQDLTMH, MQMHBUF, and MQBUFMH

To set message handle properties in the procedural interface, you use the call MQSETMP. In WebSphere MQ classes for Java, use the appropriate method of
the MQMessage class:

� setBooleanProperty

� setByteProperty

� setBytesProperty

� setShortProperty

� setIntProperty

� setInt2Property

� setInt4Property

� setInt8Property

� setLongProperty

� setFloatProperty

� setDoubleProperty

� setStringProperty

� setObjectProperty

These are sometimes referred to collectively as the set*property methods.

To return the value of message handle properties in the procedural interface, you use the call MQINQMP. In WebSphere MQ classes for Java, use the
appropriate method of the MQMessage class:

� getBooleanProperty

� getByteProperty

� getBytesProperty

� getShortProperty

� getIntProperty

� getInt2Property

� getInt4Property

� getInt8Property

� getLongProperty

� getFloatProperty

� getDoubleProperty

� getStringProperty

� getObjectProperty

These are sometimes referred to collectively as the get*property methods.

To delete the value of message handle properties in the procedural interface, you use the call MQDLTMP. In WebSphere MQ classes for Java, use the
deleteProperty method of the MQMessage class.

Parent topic: Writing WebSphere MQ classes for Java applications

Related information
MQQueue
MQSETMP – Set message handle property
MQINQMP – Inquire message property
MQDLTMP – Delete message property

This build: January 26, 2011 11:29:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 143 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja41080_

5.5.9. Handling errors in WebSphere MQ classes for Java

Handle errors arising from WebSphere® MQ classes for Java using Java try and catch blocks.

Methods in the Java interface do not return a completion code and reason code. Instead, they throw an exception whenever the completion code and reason
code resulting from a WebSphere MQ call are not both zero. This simplifies the program logic so that you do not have to check the return codes after each
call to WebSphere MQ. You can decide at which points in your program you want to deal with the possibility of failure. At these points, you can surround
your code with try and catch blocks, as in the following example:

try {

 myQueue.put(messageA,putMessageOptionsA);

 myQueue.put(messageB,putMessageOptionsB);

}

catch (MQException ex) {

 // This block of code is only executed if one of

 // the two put methods gave rise to a non-zero

 // completion code or reason code.

 System.out.println("An error occurred during the put operation:" +

 "CC = " + ex.completionCode +

 "RC = " + ex.reasonCode);

 System.out.println("Cause exception:" + ex.getCause());

}

The WebSphere MQ call reason codes reported back in Java exceptions are documented in Reason codes for z/OS® and Reason codes for all other
platforms.

Exceptions that are thrown while a WebSphere MQ classes for Java application is running are also written to the log. However, an application can call the
MQException.logExclude() method to prevent exceptions associated with a specific reason code from being logged. You might want to do this in situations
where you expect many exceptions associated with a specific reason code to be thrown, and you do not want the log to be filled with these exceptions. For
example, if your application attempts to get a message from a queue each time it iterates around a loop and, for most of these attempts, you expect no
suitable message to be on the queue, you might want to prevent exceptions associated with the reason code MQRC_NO_MSG_AVAILABLE from being
logged. If an application has previously prevented exceptions associated with a specific reason code from being logged, it can allow these exceptions to be
logged again by calling the method MQException.logInclude().

Sometimes the reason code does not convey all details associated with the error. For each exception that is thrown, an application should check the linked
exception. The linked exception itself might have another linked exception, and so the linked exceptions form a chain leading back to the original underlying
problem. A linked exception is implemented by using the chained exception mechanism of the java.lang.Throwable class, and an application obtains a linked
exception by calling the Throwable.getCause() method. From an exception that is an instance of MQException, MQException.getCause() retrieves the
underlying instance of com.ibm.mq.jmqi.JmqiException, and getCause from this exception retrieves the underlying java.lang.Exception that caused the
error.

Parent topic: Writing WebSphere MQ classes for Java applications

This build: January 26, 2011 11:28:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11140_

5.5.10. Getting and setting attribute values in WebSphere MQ classes for Java

getXXX() and setXXX() methods are provided for many common attributes. Others can be accessed using the generic inquire() and set() methods.

For many of the common attributes, the classes MQManagedObject, MQDestination, MQQueue, MQTopic, MQProcess, and MQQueueManager contain getXXX
() and setXXX() methods. These methods allow you to get and set their attribute values. Note that for MQDestination, MQQueue, and MQTopic, the methods
work only if you specify the appropriate inquire and set flags when you open the object.

For less common attributes, the MQQueueManager, MQDestination, MQQueue, MQTopic,, and MQProcess classes all inherit from a class called
MQManagedObject. This class defines the inquire() and set() interfaces.

When you create a new queue manager object by using the new operator, it is automatically opened for inquire. When you use the accessProcess() method
to access a process object, that object is automatically opened for inquire. When you use the accessQueue() method to access a queue object, that object is
not automatically opened for either inquire or set operations. This is because adding these options automatically can cause problems with some types of
remote queues. To use the inquire, set, getXXX, and setXXX methods on a queue, you must specify the appropriate inquire and set flags in the openOptions
parameter of the accessQueue() method. The same is true for destination and topic objects.

The inquire and set methods take three parameters:

� selectors array

� intAttrs array

� charAttrs array

You do not need the SelectorCount, IntAttrCount, and CharAttrLength parameters that are found in MQINQ, because the length of an array in Java is always
known. The following example shows how to make an inquiry on a queue:

// inquire on a queue

final static int MQIA_DEF_PRIORITY = 6;

final static int MQCA_Q_DESC = 2013;

final static int MQ_Q_DESC_LENGTH = 64;

int[] selectors = new int[2];

int[] intAttrs = new int[1];

byte[] charAttrs = new byte[MQ_Q_DESC_LENGTH]

selectors[0] = MQIA_DEF_PRIORITY;

selectors[1] = MQCA_Q_DESC;

queue.inquire(selectors,intAttrs,charAttrs);

System.out.println("Default Priority = " + intAttrs[0]);

System.out.println("Description : " + new String(charAttrs,0));

Parent topic: Writing WebSphere MQ classes for Java applications

Page 144 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

This build: January 26, 2011 11:28:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11150_

5.5.11. Multithreaded programs in Java

The Java runtime environment is inherently multithreaded. WebSphere® MQ classes for Java allows a queue manager object to be shared across multiple
threads but ensures that all access to the target queue manager is synchronized.

Multithreaded programs are hard to avoid in Java. Consider a simple program that connects to a queue manager and opens a queue at startup. The program
displays a single button on the screen. When a user clicks that button, the program fetches a message from the queue.

The Java runtime environment is inherently multithreaded. Therefore, your application initialization occurs in one thread, and the code that executes in
response to the button press executes in a separate thread (the user interface thread).

With the C based WebSphere MQ client, this would cause a problem, because there are limitations to the sharing of handles across multiple threads.
WebSphere MQ classes for Java relaxes this constraint, allowing a queue manager object (and its associated queue, topic and process objects) to be shared
across multiple threads.

The implementation of WebSphere MQ classes for Java ensures that, for a given connection (MQQueueManager object instance), all access to the target
WebSphere MQ queue manager is synchronized. A thread that wants to issue a call to a queue manager is blocked until all other calls in progress for that
connection are complete. If you require simultaneous access to the same queue manager from multiple threads within your program, create a new
MQQueueManager object for each thread that requires concurrent access. (This is equivalent to issuing a separate MQCONN call for each thread.)

Parent topic: Writing WebSphere MQ classes for Java applications

This build: January 26, 2011 11:28:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11160_

5.5.12. Using channel exits in WebSphere MQ classes for Java

An overview of how to use channel exits in an application using the WebSphere® MQ classes for Java.

The following topics describe how to write a channel exit in Java, how to assign it, and how to pass data to it. They then describe how to use channel exits
written in C and how to use a sequence of channel exits.

Your application must have the correct security permission to load the channel exit class.

Creating a channel exit in WebSphere MQ classes for Java
You can provide your own channel exits by defining a Java class that implements an appropriate interface.

Assigning a channel exit in WebSphere MQ classes for Java
You can assign a channel exit using WebSphere MQ classes for Java.

Passing data to channel exits in WebSphere MQ classes for Java
You can pass data to channel exits and return data from channel exits to your application.

Using channel exits not written in Java with WebSphere MQ classes for Java
How to use channel exit programs written in C from a Java application.

Using a sequence of channel send or receive exits in WebSphere MQ classes for Java
A WebSphere MQ classes for Java application can use a sequence of channel send or receive exits that are run in succession.

Parent topic: Writing WebSphere MQ classes for Java applications

This build: January 26, 2011 11:28:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11170_

5.5.12.1. Creating a channel exit in WebSphere MQ classes for Java

You can provide your own channel exits by defining a Java class that implements an appropriate interface.

To implement an exit, you define a new Java class that implements the appropriate interface. Three exit interfaces are defined in the com.ibm.mq.exits
package:

� WMQSendExit

� WMQReceiveExit

� WMQSecurityExit

Note: Channel exits are supported for client connections only; they are not supported for bindings connections.

Any SSL encryption defined for a connection is performed after send and security exits have been invoked. Similarly, decryption is performed before receive
and security exits are invoked.

The following sample defines a class that implements all three interfaces:

public class MyMQExits implements WMQSendExit, WMQReceiveExit, WMQSecurityExit {

 // Default constructor

 public MyMQExits(){

 }

 // This method comes from the send exit interface

 public ByteBuffer channelSendExit(MQCXP channelExitParms,

Page 145 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

 MQCD channelDefinition,

 ByteBuffer agentBuffer)

 {

 // Fill in the body of the send exit here

 }

 // This method comes from the receive exit interface

 public ByteBuffer channelReceiveExit(MQCXP channelExitParms,

 MQCD channelDefinition,

 ByteBuffer agentBuffer)

 {

 // Fill in the body of the receive exit here

 }

 // This method comes from the security exit interface

 public ByteBuffer channelSecurityExit(MQCXP channelExitParms,

 MQCD channelDefinition,

 ByteBuffer agentBuffer)

 {

 // Fill in the body of the security exit here

 }

}

Each exit is passed an MQCXP object and an MQCD object. These objects represent the MQCXP and MQCD structures defined in the procedural interface.

Any exit class you write must have a constructor. This can be either the default constructor or one that takes a string argument. If it takes a string then the
user data will be passed into the exit class when it is created. If the exit class contains both a default constructor and a single argument constructor, the
single argument constructor has priority.

For the send and security exits, your exit code must return the data that you want to send to the server. For a receive exit, your exit code must return the
modified data that you want WebSphere® MQ to interpret.

The simplest possible exit body is:

{ return agentBuffer; }

Do not close the queue manager from within a channel exit.

Using existing channel exit classes

In versions of WebSphere MQ earlier than 7.0, you would implement these exits using the interfaces MQSendExit, MQReceiveExit, and MQSecurityExit, as in
the following example. This method remains valid, but the new method is preferred for improved functionality and performance.

public class MyMQExits implements MQSendExit, MQReceiveExit, MQSecurityExit {

 // Default constructor

 public MyMQExits(){

 }

 // This method comes from the send exit

 public byte[] sendExit(MQChannelExit channelExitParms,

 MQChannelDefinition channelDefParms,

 byte agentBuffer[])

 {

 // Fill in the body of the send exit here

 }

 // This method comes from the receive exit

 public byte[] receiveExit(MQChannelExit channelExitParms,

 MQChannelDefinition channelDefParms,

 byte agentBuffer[])

 {

 // Fill in the body of the receive exit here

 }

 // This method comes from the security exit

 public byte[] securityExit(MQChannelExit channelExitParms,

 MQChannelDefinition channelDefParms,

 byte agentBuffer[])

 {

 // Fill in the body of the security exit here

 }

}

Parent topic: Using channel exits in WebSphere MQ classes for Java

This build: January 26, 2011 11:28:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11171_

5.5.12.2. Assigning a channel exit in WebSphere MQ classes for Java

You can assign a channel exit using WebSphere® MQ classes for Java.

There is no direct equivalent to the WebSphere MQ channel in WebSphere MQ classes for Java. Channel exits are assigned to an MQQueueManager. For
example, having defined a class that implements the WMQSecurityExit interface, an application can use the security exit in one of four ways:

� By assigning an instance of the class to the MQEnvironment.channelSecurityExit field before creating an MQQueueManager object

� By setting the MQEnvironment.channelSecurityExit field to a string representing the security exit class before creating an MQQueueManager object

� By creating a key/value pair in the properties hashtable passed to MQQueueManager with a key of CMQC.SECURITY_EXIT_PROPERTY

� Using a client channel definition table (CCDT)

Any exit assigned by setting the MQEnvironment.channelSecurityExit field to a string, creating a key/value pair in the properties hashtable, or using a CCDT,
must be written with a default constructor. An exit assigned as an instance of a class does not need a default constructor, depending on the application.

An application can use a send or a receive exit in a similar way. For example, the following code fragment shows you how to use the security, send, and
receive exits that are implemented in the class MyMQExits, which was defined previously, using MQEnvironment:

 MyMQExits myexits = new MyMQExits();

 MQEnvironment.channelSecurityExit = myexits;

 MQEnvironment.channelSendExit = myexits;

 MQEnvironment.channelReceiveExit = myexits;

 :

 MQQueueManager jupiter = new MQQueueManager("JUPITER");

Page 146 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

If more than one method is used to assign a channel exit, the order of precedence is as follows:

1. If the URL of a CCDT is passed to the MQQueueManager, the contents of the CCDT determine the channel exits to be used and any exit definitions in
MQEnvironment or the properties hashtable are ignored.

2. If no CCDT URL is passed, exit definitions from MQEnvironment and the hashtable are merged

� If the same exit type is defined in both MQEnvironment and the hashtable, the definition in the hashtable is used.

� If equivalent old and new types of exit are specified (for example the sendExit field, which can only be used for the type of exit used in versions
of WebSphere MQ earlier than Version 7.0, and the channelSendExit field, which can be used for any send exit), the new exit (channelSendExit)
is used rather than the old exit.

If you have declared a channel exit as a string, you must enable WebSphere MQ to locate the channel exit program. You can do so in various ways,
depending on the environment in which the application is running and on how the channel exit programs are packaged.

� For an application that is running in an application server, you must store the files in the directory shown in Table 1 or packaged in JAR files referenced
by exitClasspath.

� For an application that is not running in an application server, the following rules apply:

� If your channel exit classes are packaged in separate JAR files, these JAR files must be included in the exitClasspath.

� If your channel exit classes are not packaged in JAR files, the class files can be stored in the directory shown in Table 1 or in any directory in the
JVM system Classpath or exitClasspath.

The exitClasspath property can be specified in four ways. In order of priority, these ways are as follows:

1. The system property com.ibm.mq.exitClasspath (usually defined on the command line using the -D option)

2. The exitPath stanza of the mqclient.ini file

3. A hashtable entry with the key CMQC.EXIT_CLASSPATH_PROPERTY

4. The MQEnvironment variable exitClasspath

Separate multiple paths using the java.io.File.pathSeparator character.

Parent topic: Using channel exits in WebSphere MQ classes for Java

This build: January 26, 2011 11:28:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11172_

5.5.12.3. Passing data to channel exits in WebSphere MQ classes for Java

You can pass data to channel exits and return data from channel exits to your application.

The agentBuffer parameter

For a send exit, the agentBuffer parameter contains the data that is about to be sent. For a receive exit or a security exit, the agentBuffer parameter
contains the data that has just been received. You do not need a length parameter, because the expression agentBuffer.limit() indicates the length of the
array.

For the send and security exits, your exit code must return the data that you want to send to the server. For a receive exit, your exit code must return the
modified data that you want WebSphere® MQ to interpret.

The simplest possible exit body is:

{ return agentBuffer; }

Channel exits are called with a buffer that has a backing array. For best performance, the exit should return a buffer with a backing array.

User data

If an application connects to a queue manager by setting channelSecurityExit, channelSendExit, or channelReceiveExit, 32 bytes of user data can be passed
to the appropriate channel exit class when it is called, using the channelSecurityExitUserData, channelSendExitUserData, or channelReceiveExitUserData
fields. This user data is available to the channel exit class but is refreshed each time the exit is called. Any changes made to the user data in the channel exit
will therefore be lost. If you want to make persistent changes to data in a channel exit, use the MQCXP exitUserArea. Data in this field is maintained
between invocations of the exit.

If the application sets securityExit, sendExit, or receiveExit, no user data can be passed to these channel exit classes.

If an application uses a client channel definition table to connect to a queue manager, any user data specified in a client connection channel definition is
passed to channel exit classes when they are called. For more information about using a client channel definition table, see Using a client channel definition
table with WebSphere MQ classes for Java.

Parent topic: Using channel exits in WebSphere MQ classes for Java

This build: January 26, 2011 11:28:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11173_

5.5.12.4. Using channel exits not written in Java with WebSphere MQ classes for Java

How to use channel exit programs written in C from a Java application.

Table 1. The directory for channel exit programs

Platform Directory

AIX®, HP-UX, Linux, and Solaris /var/mqm/exits (32-bit channel exit programs) /var/mqm/exits64 (64-bit channel

exit programs)

Windows install_data_dir\exits

Note: install_data_dir is the directory that you chose for the WebSphere MQ data files during installation. The default directory is C:\Program

Files\IBM\WebSphere MQ.

Page 147 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

In WebSphere® MQ Version 7.0, you can specify the name of a channel exit program written in C as a String passed to the channelSecurityExit,
channelSendExit, or channelReceiveExit fields in the MQEnvironment object or properties Hashtable.

Specify the exit program name in the format library(function) and ensure that the location of the exit program is included in the path environment

variable.

For information about how to write a channel exit in C, see Channel-exit programs.

Using external exit classes

In versions of WebSphere MQ earlier than Version 7.0, three classes were provided to enable you to use channel exits written in languages other than Java:

� MQExternalSecurityExit, which implements the MQSecurityExit interface

� MQExternalSendExit, which implements the MQSendExit interface

� MQExternalReceiveExit, which implements the MQReceiveExit interface

The use of these classes remains valid but the new method is preferred.

To use a security exit that is not written in Java, an application first had to create an MQExternalSecurityExit object. The application specified, as parameters
on the MQExternalSecurityExit constructor, the name of the library containing the security exit, the name of the entry point for the security exit, and the
user data to be passed to the security exit when it was called. Channel exit programs that are not written in Java were stored in the directory shown in Table
1.

Parent topic: Using channel exits in WebSphere MQ classes for Java

This build: January 26, 2011 11:28:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11180_

5.5.12.5. Using a sequence of channel send or receive exits in WebSphere MQ classes for Java

A WebSphere® MQ classes for Java application can use a sequence of channel send or receive exits that are run in succession.

To use a sequence of send exits, an application can create either a List or a String containing the send exits. If a List is used, each element of the List can be
any of the following:

� An instance of a user defined class that implements the WMQSendExit interface

� An instance of a user defined class that implements the MQSendExit interface (for a send exit written in Java)

� An instance of the MQExternalSendExit class (for a send exit not written in Java)

� An instance of the MQSendExitChain class

� An instance of the String class

A List cannot contain another List.

The application can use a sequence of receive exits in a similar manner.

If a String is used, it must consist of one or more comma-separated exit definitions, each of which can be the name of a Java class, or a C program in the
format library(function).

The application then assigns the List or String object to the MQEnvironment.channelSendExit field before creating an MQQueueManager object.

The context of information passed to exits is solely within the domain of the exits. For example, if a Java exit and a C exit are chained, the presence of the
Java exit has no effect on the C exit.

Using exit chain classes

In versions of WebSphere MQ earlier than Version 7.0, two classes were provided to allow sequences of exits:

� MQSendExitChain, which implements the MQSendExit interface

� MQReceiveExitChain, which implements the MQReceiveExit interface

The use of these classes remains valid but the new method is preferred. Using the WebSphere MQ Classes for Java interfaces means that your application
still has a dependency on com.ibm.mq.jar If the new set of interfaces in the com.ibm.mq.exits package are used there is no dependency on

com.ibm.mq.jar.

To use a sequence of send exits, an application created a list of objects, where each object was one of the following:

� An instance of a user defined class that implements the MQSendExit interface (for a send exit written in Java)

� An instance of the MQExternalSendExit class (for a send exit not written in Java)

� An instance of the MQSendExitChain class

The application created an MQSendExitChain object by passing this list of objects as a parameter on the constructor. The application would then have
assigned the MQSendExitChain object to the MQEnvironment.sendExit field before creating an MQQueueManager object.

Parent topic: Using channel exits in WebSphere MQ classes for Java

This build: January 26, 2011 11:28:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11190_

5.5.13. Channel compression in WebSphere MQ classes for Java

Compressing the data that flows on a channel can improve the performance of the channel and reduce network traffic. WebSphere® MQ classes for Java use
the compression function built into WebSphere MQ.

Using function supplied with WebSphere MQ, you can compress the data that flows on message channels and MQI channels and, on either type of channel,
you can compress header data and message data independently of each other. By default, no data is compressed on a channel. For a full description of
channel compression, including how it is implemented in WebSphere MQ, see Data compression (COMPMSG) and Header compression (COMPHDR).

A WebSphere MQ classes for Java application specifies the techniques that can be used for compressing header or message data on a client connection by

Page 148 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

creating a java.util.Collection object. Each compression technique is an Integer object in the collection, and the order in which the application adds the
compression techniques to the collection is the order in which the compression techniques are negotiated with the queue manager when the client
connection starts. The application can then assign the collection to the hdrCompList field, for header data, or the msgCompList field, for message data, in
the MQEnvironment class. When the application is ready, it can start the client connection by creating an MQQueueManager object.

The following code fragments illustrate the approach described. The first code fragment shows you how to implement header data compression:

Collection headerComp = new Vector();

headerComp.add(new Integer(CMQXC.MQCOMPRESS_SYSTEM));

:

MQEnvironment.hdrCompList = headerComp;

:

MQQueueManager qMgr = new MQQueueManager(QM);

The second code fragment shows you how to implement message data compression:

Collection msgComp = new Vector();

msgComp.add(new Integer(CMQXC.MQCOMPRESS_RLE));

msgComp.add(new Integer(CMQXC.MQCOMPRESS_ZLIBHIGH));

:

MQEnvironment.msgCompList = msgComp;

:

MQQueueManager qMgr = new MQQueueManager(QM);

In the second example, the compression techniques are negotiated in the order RLE, then ZLIBHIGH, when the client connection starts. The compression
technique that is selected cannot be changed during the lifetime of the MQQueueManager object.

The compression techniques for header and message data that are supported by both the client and the queue manager on a client connection are passed to
a channel exit as collections in the hdrCompList and msgCompList fields of an MQChannelDefinition object. The actual techniques that are currently being
used for compressing header and message data on a client connection are passed to a channel exit in the CurHdrCompression and CurMsgCompression fields
of an MQChannelExit object.

If compression is used on a client connection, the data is compressed before any channel send exits are processed and extracted after any channel receive
exits are processed. The data passed to send and receive exits is therefore in a compressed state.

For more information about specifying compression techniques, and about which compression techniques are available, see Class
com.ibm.mq.MQEnvironment and Interface com.ibm.mq.MQC .

Parent topic: Writing WebSphere MQ classes for Java applications

This build: January 26, 2011 11:28:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11200_

5.5.14. Sharing a TCP/IP connection in WebSphere MQ classes for Java

Multiple instances of an MQI channel can be made to share a single TCP/IP connection.

If a channel is defined with the SHARECNV (SharingConversations) parameter set to a value greater than 1, then that number of conversations can share a
channel instance. If more than one suitable channel is defined in a client channel definition table (CCDT), the AFFINITY and CLNTWGHT channel attributes
influence which channel definition is used. See the related topics below for more details of these properties.

In WebSphere MQ classes for Java, you use the MQEnvironment.sharingConversations variable to control the number of conversations that can share a
single TCP/IP connection.

Parent topic: Writing WebSphere MQ classes for Java applications

Related information
Parameter descriptions for DEFINE CHANNEL
Client channel weight (CLNTWGHT)
Connection affinity (AFFINITY)
SharingConversations (MQLONG)
Implications of sharing conversations
Performance implications of sharing conversations on client-connection channels

This build: January 26, 2011 11:29:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja41060_

5.5.15. Connection pooling in WebSphere MQ classes for Java

WebSphere® MQ classes for Java allows spare connections to be pooled for reuse.

WebSphere MQ classes for Java provides additional support for applications that deal with multiple connections to WebSphere MQ queue managers. When a
connection is no longer required, instead of destroying it, it can be pooled and later reused. This can provide a substantial performance enhancement for
applications and middleware that connect serially to arbitrary queue managers.

WebSphere MQ provides a default connection pool. Applications can activate or deactivate this connection pool by registering and deregistering tokens
through the MQEnvironment class. If the pool is active when WebSphere MQ classes for Java constructs an MQQueueManager object, it searches this default
pool and reuses any suitable connection. When an MQQueueManager.disconnect() call occurs, the underlying connection is returned to the pool.

Alternatively, applications can construct an MQSimpleConnectionManager connection pool for a particular use. Then, the application can either specify that
pool during construction of an MQQueueManager object, or pass that pool to MQEnvironment for use as the default connection pool.

To prevent connections from using too much resource, you can limit the total number of connections that an MQSimpleConnectionManager object can
handle, and you can limit the size of the connection pool. Setting limits is useful if there are conflicting demands for connections within a JVM.

By default, the getMaxConnections() method returns the value zero, which means that there is no limit to the number of connections that the
MQSimpleConnectionManager object can handle. You can set a limit by using the setMaxConnections() method. If you set a limit and the limit is reached, a
request for a further connection might cause an MQException to be thrown, with a reason code of MQRC_MAX_CONNS_LIMIT_REACHED.

Page 149 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Controlling the default connection pool
This example shows how to use the default connection pool.

The default connection pool and multiple components
This example shows how to add or remove MQPoolTokens from a static set of registered MQPoolToken objects.

Supplying a different connection pool
This example shows how to use the class com.ibm.mq.MQSimpleConnectionManager to supply a different connection pool.

Supplying your own ConnectionManager
WebSphere MQ classes for Java provides a partial implementation of the JEE Connector Architecture, allowing implementations of
javax.resource.spi.ConnectionManager to be used.

Parent topic: Writing WebSphere MQ classes for Java applications

This build: January 26, 2011 11:28:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11210_

5.5.15.1. Controlling the default connection pool

This example shows how to use the default connection pool.

Consider the following example application, MQApp1:

import com.ibm.mq.*;

public class MQApp1

{

 public static void main(String[] args) throws MQException

 {

 for (int i=0; i<args.length; i++) {

 MQQueueManager qmgr=new MQQueueManager(args[i]);

 :

 : (do something with qmgr)

 :

 qmgr.disconnect();

 }

 }

}

MQApp1 takes a list of local queue managers from the command line, connects to each in turn, and performs some operation. However, when the command
line lists the same queue manager many times, it is more efficient to connect only once, and to reuse that connection many times.

WebSphere® MQ classes for Java provides a default connection pool that you can use to do this. To enable the pool, use one of the
MQEnvironment.addConnectionPoolToken() methods. To disable the pool, use MQEnvironment.removeConnectionPoolToken().

The following example application, MQApp2, is functionally identical to MQApp1, but connects only once to each queue manager.

import com.ibm.mq.*;

public class MQApp2

{

 public static void main(String[] args) throws MQException

 {

 MQPoolToken token=MQEnvironment.addConnectionPoolToken();

 for (int i=0; i<args.length; i++) {

 MQQueueManager qmgr=new MQQueueManager(args[i]);

 :

 : (do something with qmgr)

 :

 qmgr.disconnect();

 }

 MQEnvironment.removeConnectionPoolToken(token);

 }

}

The first bold line activates the default connection pool by registering an MQPoolToken object with MQEnvironment.

The MQQueueManager constructor now searches this pool for an appropriate connection and only creates a connection to the queue manager if it cannot find
an existing one. The qmgr.disconnect() call returns the connection to the pool for later reuse. These API calls are the same as the sample application
MQApp1.

The second highlighted line deactivates the default connection pool, which destroys any queue manager connections stored in the pool. This is important
because otherwise the application would terminate with a number of live queue manager connections in the pool. This situation could cause errors that
would appear in the queue manager logs.

If an application uses a client channel definition table to connect to a queue manager, the MQQueueManager constructor first searches the table for a
suitable client connection channel definition. If one is found, the constructor searches the default connection pool for a connection that can be used for the
channel. If the constructor cannot find a suitable connection in the pool, it then searches the client channel definition table for the next suitable client
connection channel definition, and proceeds as described previously. If the constructor completes its search of the client channel definition table and fails to
find any suitable connection in the pool, the constructor starts a second search of the table. During this search, the constructor tries to create a new
connection for each suitable client connection channel definition in turn, and uses the first connection that it manages to create.

The default connection pool stores a maximum of ten unused connections, and keeps unused connections active for a maximum of five minutes. The
application can alter this (for details, see Supplying a different connection pool).

Instead of using MQEnvironment to supply an MQPoolToken, the application can construct its own:

 MQPoolToken token=new MQPoolToken();

 MQEnvironment.addConnectionPoolToken(token);

Some applications or middleware vendors provide subclasses of MQPoolToken in order to pass information to a custom connection pool. They can be

Page 150 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

constructed and passed to addConnectionPoolToken() in this way so that extra information can be passed to the connection pool.

Parent topic: Connection pooling in WebSphere MQ classes for Java

This build: January 26, 2011 11:28:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11220_

5.5.15.2. The default connection pool and multiple components

This example shows how to add or remove MQPoolTokens from a static set of registered MQPoolToken objects.

MQEnvironment holds a static set of registered MQPoolToken objects. To add or remove MQPoolTokens from this set, use the following methods:

� MQEnvironment.addConnectionPoolToken()

� MQEnvironment.removeConnectionPoolToken()

An application might consist of many components that exist independently and perform work using a queue manager. In such an application, each
component should add an MQPoolToken to the MQEnvironment set for its lifetime.

For example, the example application MQApp3 creates ten threads and starts each one. Each thread registers its own MQPoolToken, waits for a length of
time, then connects to the queue manager. After the thread disconnects, it removes its own MQPoolToken.

The default connection pool remains active while there is at least one token in the set of MQPoolTokens, so it will remain active for the duration of this
application. The application does not need to keep a master object in overall control of the threads.

import com.ibm.mq.*;

public class MQApp3

{

 public static void main(String[] args)

 {

 for (int i=0; i<10; i++) {

 MQApp3_Thread thread=new MQApp3_Thread(i*60000);

 thread.start();

 }

 }

}

class MQApp3_Thread extends Thread

{

 long time;

 public MQApp3_Thread(long time)

 {

 this.time=time;

 }

 public synchronized void run()

 {

 MQPoolToken token=MQEnvironment.addConnectionPoolToken();

 try {

 wait(time);

 MQQueueManager qmgr=new MQQueueManager("my.qmgr.1");

 :

 : (do something with qmgr)

 :

 qmgr.disconnect();

 }

 catch (MQException mqe) {System.err.println("Error occurred!");}

 catch (InterruptedException ie) {}

 MQEnvironment.removeConnectionPoolToken(token);

 }

}

Parent topic: Connection pooling in WebSphere MQ classes for Java

This build: January 26, 2011 11:28:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11230_

5.5.15.3. Supplying a different connection pool

This example shows how to use the class com.ibm.mq.MQSimpleConnectionManager to supply a different connection pool.

This class provides basic facilities for connection pooling, and applications can use this class to customize the behavior of the pool.

Once it is instantiated, an MQSimpleConnectionManager can be specified on the MQQueueManager constructor. The MQSimpleConnectionManager then
manages the connection that underlies the constructed MQQueueManager. If the MQSimpleConnectionManager contains a suitable pooled connection, that
connection is reused and returned to the MQSimpleConnectionManager after an MQQueueManager.disconnect() call.

The following code fragment demonstrates this behavior:

 MQSimpleConnectionManager myConnMan=new MQSimpleConnectionManager();

 myConnMan.setActive(MQSimpleConnectionManager.MODE_ACTIVE);

 MQQueueManager qmgr=new MQQueueManager("my.qmgr.1", myConnMan);

 :

 : (do something with qmgr)

 :

 qmgr.disconnect();

 MQQueueManager qmgr2=new MQQueueManager("my.qmgr.1", myConnMan);

 :

Page 151 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

 : (do something with qmgr2)

 :

 qmgr2.disconnect();

 myConnMan.setActive(MQSimpleConnectionManager.MODE_INACTIVE);

The connection that is forged during the first MQQueueManager constructor is stored in myConnMan after the qmgr.disconnect() call. The connection is then
reused during the second call to the MQQueueManager constructor.

The second line enables the MQSimpleConnectionManager. The last line disables MQSimpleConnectionManager, destroying any connections held in the pool.
An MQSimpleConnectionManager is, by default, in MODE_AUTO, which is described later in this section.

An MQSimpleConnectionManager allocates connections on a most-recently-used basis, and destroys connections on a least-recently-used basis. By default, a
connection is destroyed if it has not been used for five minutes, or if there are more than ten unused connections in the pool. You can alter these values by
calling MQSimpleConnectionManager.setTimeout().

You can also set up an MQSimpleConnectionManager for use as the default connection pool, to be used when no Connection Manager is supplied on the
MQQueueManager constructor.

The following application demonstrates this:

import com.ibm.mq.*;

public class MQApp4

{

 public static void main(String []args)

 {

 MQSimpleConnectionManager myConnMan=new MQSimpleConnectionManager();

 myConnMan.setActive(MQSimpleConnectionManager.MODE_AUTO);

 myConnMan.setTimeout(3600000);

 myConnMan.setMaxConnections(75);

 myConnMan.setMaxUnusedConnections(50);

 MQEnvironment.setDefaultConnectionManager(myConnMan);

 MQApp3.main(args);

 }

}

The bold lines create and configure an MQSimpleConnectionManager object. The configuration does the following:

� Ends connections that are not used for an hour

� Limits the number of connections managed by myConnMan to 75

� Limits the number of unused connections in the pool to 50

� Sets MODE_AUTO, which is the default. This means that the pool is active only if it is the default connection manager, and there is at least one token
in the set of MQPoolTokens held by MQEnvironment.

The new MQSimpleConnectionManager is then set as the default connection manager.

In the last line, the application calls MQApp3.main(). This runs a number of threads, where each thread uses WebSphere® MQ independently. These threads
use myConnMan when they forge connections.

Parent topic: Connection pooling in WebSphere MQ classes for Java

This build: January 26, 2011 11:28:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11240_

5.5.15.4. Supplying your own ConnectionManager

WebSphere® MQ classes for Java provides a partial implementation of the JEE Connector Architecture, allowing implementations of
javax.resource.spi.ConnectionManager to be used.

Applications and middleware providers can provide alternative implementations of connection pools. WebSphere MQ classes for Java provides a partial
implementation of the JEE Connector Architecture. Implementations of javax.resource.spi.ConnectionManager can either be used as the default
Connection Manager or be specified on the MQQueueManager constructor.

WebSphere MQ classes for Java complies with the Connection Management contract of the JEE Connector Architecture. Read this section in conjunction with
the Connection Management contract of the JEE Connector Architecture (refer to Sun's Web site at http://java.sun.com).

The ConnectionManager interface defines only one method:

package javax.resource.spi;

public interface ConnectionManager {

 Object allocateConnection(ManagedConnectionFactory mcf,

 ConnectionRequestInfo cxRequestInfo);

}

The MQQueueManager constructor calls allocateConnection on the appropriate ConnectionManager. It passes appropriate implementations of
ManagedConnectionFactory and ConnectionRequestInfo as parameters to describe the connection required.

The ConnectionManager searches its pool for a javax.resource.spi.ManagedConnection object that has been created with identical
ManagedConnectionFactory and ConnectionRequestInfo objects. If the ConnectionManager finds any suitable ManagedConnection objects, it creates a
java.util.Set that contains the candidate ManagedConnections. Then, the ConnectionManager calls the following:

ManagedConnection mc=mcf.matchManagedConnections(connectionSet, subject,

cxRequestInfo);

The WebSphere MQ implementation of ManagedConnectionFactory ignores the subject parameter. This method selects and returns a suitable
ManagedConnection from the set, or returns null if it does not find a suitable ManagedConnection. If there is not a suitable ManagedConnection in the pool,
the ConnectionManager can create one by using:

ManagedConnection mc=mcf.createManagedConnection(subject, cxRequestInfo);

Again, the subject parameter is ignored. This method connects to a WebSphere MQ queue manager and returns an implementation of
javax.resource.spi.ManagedConnection that represents the newly-forged connection. Once the ConnectionManager has obtained a ManagedConnection
(either from the pool or freshly created), it creates a connection handle using:

Object handle=mc.getConnection(subject, cxRequestInfo);

This connection handle can be returned from allocateConnection().

Page 152 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

A ConnectionManager must register an interest in the ManagedConnection through:

mc.addConnectionEventListener()

The ConnectionEventListener is notified if a severe error occurs on the connection, or when MQQueueManager.disconnect() is called. When
MQQueueManager.disconnect() is called, the ConnectionEventListener can do either of the following:

� Reset the ManagedConnection using the mc.cleanup() call, then return the ManagedConnection to the pool

� Destroy the ManagedConnection using the mc.destroy() call

If the ConnectionManager is the default ConnectionManager, it can also register an interest in the state of the MQEnvironment-managed set of
MQPoolTokens. To do so, first construct an MQPoolServices object, then register an MQPoolServicesEventListener object with the MQPoolServices object:

MQPoolServices mqps=new MQPoolServices();

mqps.addMQPoolServicesEventListener(listener);

The listener is notified when an MQPoolToken is added or removed from the set, or when the default ConnectionManager changes. The MQPoolServices
object also provides a way to query the current size of the set of MQPoolTokens.

Parent topic: Connection pooling in WebSphere MQ classes for Java

This build: January 26, 2011 11:28:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11250_

5.5.16. JTA/JDBC coordination using WebSphere MQ classes for Java

WebSphere® MQ classes for Java supports the MQQueueManager.begin() method, which allows WebSphere MQ to act as a coordinator for a database which
provides a JDBC type 2 or JDBC type 4 compliant driver.

Currently this support is available on AIX®, HP-UX, Solaris, and Windows with DB2® or Oracle databases.

Configuring JTA/JDBC coordination
In order to use the XA-JTA support, you must use the special JTA switch library. The method for using this library varies depending on whether you are
using Windows or one of the other platforms.

Using JTA/JDBC coordination
Code your API calls as in the supplied example.

Known problems and limitations with JTA/JDBC coordination
There are certain problems and limitations of JTA/JDBC support, some depending on the database management system in use.

Parent topic: Writing WebSphere MQ classes for Java applications

This build: January 26, 2011 11:28:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11260_

5.5.16.1. Configuring JTA/JDBC coordination

In order to use the XA-JTA support, you must use the special JTA switch library. The method for using this library varies depending on whether you are using
Windows or one of the other platforms.

Configuring JTA/JDBC coordination on Windows
The XA library is supplied as a DLL with a name of the format jdbcxxx.dll.

Configuring JTA/JDBC coordination on platforms other than Windows
Object files are supplied. Link the appropriate one using the supplied makefile, and declare it to the queue manager using the configuration file.

Parent topic: JTA/JDBC coordination using WebSphere MQ classes for Java

This build: January 26, 2011 11:28:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11270_

5.5.16.1.1. Configuring JTA/JDBC coordination on Windows

The XA library is supplied as a DLL with a name of the format jdbcxxx.dll.

On Windows systems, the XA library is supplied as a complete DLL. The name of this DLL is jdbcxxx.dll where xxx indicates the database for which the

switch library has been compiled. This library is in the java\lib\jdbc or java\lib64\jdbc directory of your WebSphere® MQ classes for Java installation.

You must declare the XA library, also described as the switch load file, to the queue manager. Use the WebSphere MQ Explorer. Specify the details of the
switch load file in the queue manager properties panel, under XA resource manager. You must only give the name of the library. For example:

For a DB2® database set the SwitchFile field to: dbcdb2

For an Oracle database set the SwitchFile field to: jdbcora

Parent topic: Configuring JTA/JDBC coordination

This build: January 26, 2011 11:28:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 153 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11280_

5.5.16.1.2. Configuring JTA/JDBC coordination on platforms other than Windows

Object files are supplied. Link the appropriate one using the supplied makefile, and declare it to the queue manager using the configuration file.

For each database management system, WebSphere® MQ provides two object files. You must link one object file to create a 32-bit switch library, and link
the other object file to create a 64-bit switch library. For DB2®, the name of each object file is jdbcdb2.o and, for Oracle, the name of each object file is
jdbcora.o.

You must link each object file using the appropriate makefile supplied with WebSphere MQ. A switch library requires other libraries, which might be stored in
different locations on different systems. However, a switch library cannot use the library path environment variable to locate these libraries because the
switch library is loaded by the queue manager, which runs in a setuid environment. The supplied makefile therefore ensures that a switch library contains
the fully qualified path names of these libraries.

To create a switch library, enter a make command with the following format. To create a 32-bit switch library, enter the command in the /java/lib/jdbc
directory of your WebSphere MQ installation. To create a 64-bit switch library, enter the command in the /java/lib64/jdbc directory.

make DBMS

where DBMS is the database management system for which you are creating the switch library. The valid values are db2 for DB2 and oracle for Oracle.

Here is an example of a make command:

make db2

Note the following points:

� To run 32-bit applications, you must create both a 32-bit and a 64-bit switch library for each database management system that you are using. To run
64-bit applications, you need create only a 64-bit switch library. For DB2, the name of each switch library is jdbcdb2 and, for Oracle, the name of each
switch library is jdbcora. The makefiles ensure that 32-bit and 64-bit switch libraries are stored in different WebSphere MQ directories. A 32-bit switch
library is stored in the /java/lib/jdbc directory, and a 64-bit switch library is stored in the /java/lib64/jdbc directory.

� Because you can install Oracle anywhere on a system, the makefiles use the ORACLE_HOME environment variable to locate where Oracle is installed.

After you have created the switch libraries for DB2, Oracle, or both, you must declare them to your queue manager. If the queue manager configuration file
(qm.ini) already contains XAResourceManger stanzas for DB2 or Oracle databases, you must replace the SwitchFile entry in each stanza by one of the
following:

For a DB2 database

SwitchFile=jdbcdb2

For an Oracle database

SwitchFile=jdbcora

Do not specify the fully qualified path name of either the 32-bit or 64-bit switch library. Specify only the name of the library.

If the queue manager configuration file does not already contain XAResourceManager stanzas for DB2 or Oracle databases, or if you want to add additional
XAResourceManager stanzas, see the WebSphere MQ System Administration Guide for information about how to construct an XAResourceManager stanza.
However, each SwitchFile entry in a new XAResourceManger stanza must be exactly as described previously for a DB2 or Oracle database. You must also
include the entry ThreadOfControl=PROCESS.

After you have updated the queue manager configuration file, and made sure that all appropriate database environment variables have been set, you can
restart the queue manager.

Parent topic: Configuring JTA/JDBC coordination

This build: January 26, 2011 11:28:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11290_

5.5.16.2. Using JTA/JDBC coordination

Code your API calls as in the supplied example.

The basic sequence of API calls for a user application is:

 qMgr = new MQQueueManager("QM1")

 Connection con = qMgr.getJDBCConnection(xads);

 qMgr.begin()

 < Perform MQ and DB operations to be grouped in a unit of work >

 qMgr.commit() or qMgr.backout();

 con.close()

 qMgr.disconnect()

xads in the getJDBCConnection call is a database-specific implementation of the XADataSource interface, which defines the details of the database to

connect to. See the documentation for your database to determine how to create an appropriate XADataSource object to pass into getJDBCConnection.

You must also update your class path with the appropriate database-specific jar files for performing JDBC work.

If you must connect to multiple databases, you must call getJDBCConnection several times to perform the transaction across several different connections.

There are two forms of the getJDBCConnection, reflecting the two forms of XADataSource.getXAConnection:

 public java.sql.Connection getJDBCConnection(javax.sql.XADataSource xads)

 throws MQException, SQLException, Exception

 public java.sql.Connection getJDBCConnection(XADataSource dataSource,

 String userid, String password)

 throws MQException, SQLException, Exception

These methods declare Exception in their throws clauses to avoid problems with the JVM verifier for customers who are not using the JTA functions. The
actual exception thrown is javax.transaction.xa.XAException, which requires the jta.jar file to be added to the class path for programs that did not previously
require it.

To use the JTA/JDBC support, you must include the following statement in your application:

Page 154 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

MQEnvironment.properties.put(CMQC.THREAD_AFFINITY_PROPERTY, new Boolean(true));

Parent topic: JTA/JDBC coordination using WebSphere MQ classes for Java

This build: January 26, 2011 11:28:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11300_

5.5.16.3. Known problems and limitations with JTA/JDBC coordination

There are certain problems and limitations of JTA/JDBC support, some depending on the database management system in use.

Because this support makes calls to JDBC drivers, the implementation of those JDBC drivers can have significant impact on the system behavior. In
particular, tested JDBC drivers behave differently when the database is shut down while an application is running. Always avoid abruptly shutting down a
database while there are applications holding open connections to it.

Multiple XAResourceManager stanzas

The use of more than one XAResourceManager stanza in a queue manager configuration file, qm.ini, is not supported. Any XAResourceManager stanza
other than the first is ignored.

DB2®

Sometimes DB2 returns a SQL0805N error. This problem can be resolved with the following CLP command:

DB2 bind @db2cli.lst blocking all grant public

Refer to the DB2 documentation for more information.

The XAResourceManager stanza must be configured to use ThreadOfControl=PROCESS. For DB2 version 8.1 and higher this does not match the default
thread of control setting for DB2, so toc=p must be specified in the XA Open String. An example XAResourceManager stanza for DB2 with JTA/JDBC
coordination is as follows:

XAResourceManager:

 Name=jdbcdb2

 SwitchFile=jdbcdb2

 XAOpenString=uid=userid,db=dbalias,pwd=password,toc=p

 ThreadOfControl=PROCESS

This does not prevent the Java applications that use JTA/JDBC coordination from being multithreaded themselves.

Oracle

Calling the JDBC Connection.close() method after MQQueueManager.disconnect() generates an SQLException. Either call Connection.close() before
MQQueueManager.disconnect(), or omit the call to Connection.close().

Parent topic: JTA/JDBC coordination using WebSphere MQ classes for Java

This build: January 26, 2011 11:28:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uj11310_

5.5.17. Secure Sockets Layer (SSL) support

WebSphere® MQ classes for Java client applications support Secure Sockets Layer (SSL) encryption. You require a JSSE provider to use SSL encryption.

WebSphere MQ classes for Java client applications using TRANSPORT(CLIENT) support Secure Sockets Layer (SSL) encryption. SSL provides communication
encryption, authentication, and message integrity. It is typically used to secure communications between any two peers on the Internet or within an
intranet.

WebSphere MQ classes for Java uses Java Secure Socket Extension (JSSE) to handle SSL encryption, and so requires a JSSE provider. JSE v1.4 JVMs have a
JSSE provider built in. Details of how to manage and store certificates can vary from provider to provider. For information about this, refer to your JSSE
provider's documentation.

This section assumes that your JSSE provider is correctly installed and configured, and that suitable certificates have been installed and made available to
your JSSE provider.

If your WebSphere MQ classes for Java client application uses a client channel definition table to connect to a queue manager, see Using a client channel
definition table with WebSphere MQ classes for Java.

Enabling SSL in WebSphere MQ classes for Java
To enable SSL, you must specify a CipherSuite. There are two ways of specifying a CipherSuite.

Using the distinguished name of the queue manager
The queue manager identifies itself using an SSL certificate, which contains a Distinguished Name (DN). A WebSphere MQ classes for Java client
application can use this DN to ensure that it is communicating with the correct queue manager.

Using certificate revocation lists
Specify the certificate revocation lists to use through the java.security.cert.CertStore class. WebSphere MQ classes for Java checks certificates against
the specified CRL.

Renegotiating the secret key used for encryption
A WebSphere MQ classes for Java client application can control when the secret key that is used for encryption on a client connection is renegotiated,
in terms of the total number of bytes sent and received.

Supplying a customized SSLSocketFactory
If you use a customized JSSE Socket Factory, set the MQEnvironment.sslSocketFactory to the customized factory object. Details vary between different
JSSE implementations.

Making changes to the JSSE keystore or truststore
If you change the JSSE keystore or truststore, you must perform certain actions for the changes to take effect.

Error handling when using SSL

Page 155 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

A number of reason codes can be issued by WebSphere MQ classes for Java when connecting to a queue manager using SSL.

SSL CipherSpecs and CipherSuites
Whether a WebSphere MQ classes for Java application can establish a connection to a queue manager depends on the CipherSpec specified at the
server end of the MQI channel and the CipherSuite specified at the client end.

Parent topic: Writing WebSphere MQ classes for Java applications

This build: January 26, 2011 11:28:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11320_

5.5.17.1. Enabling SSL in WebSphere MQ classes for Java

To enable SSL, you must specify a CipherSuite. There are two ways of specifying a CipherSuite.

SSL is supported only for client connections. To enable SSL, you must specify the CipherSuite to use when communicating with the queue manager, and this
CipherSuite must match the CipherSpec set on the target channel. Additionally, the named CipherSuite must be supported by your JSSE provider. However,
CipherSuites are distinct from CipherSpecs and so have different names. SSL CipherSpecs and CipherSuites contains a table mapping the CipherSpecs
supported by WebSphere MQ to their equivalent CipherSuites as known to JSSE.

To enable SSL, specify the CipherSuite using the sslCipherSuite static member variable of MQEnvironment. The following example attaches to a SVRCONN
channel named SECURE.SVRCONN.CHANNEL, which has been set up to require SSL with a CipherSpec of RC4_MD5_EXPORT:

MQEnvironment.hostname = "your_hostname";

MQEnvironment.channel = "SECURE.SVRCONN.CHANNEL";

MQEnvironment.sslCipherSuite = "SSL_RSA_EXPORT_WITH_RC4_40_MD5";

MQQueueManager qmgr = new MQQueueManager("your_Q_manager");

Although the channel has a CipherSpec of RC4_MD5_EXPORT, the Java application must specify a CipherSuite of SSL_RSA_EXPORT_WITH_RC4_40_MD5.
For more information about CipherSpecs and CipherSuites, see WebSphere MQ Security. See SSL CipherSpecs and CipherSuites for a list of mappings
between CipherSpecs and CipherSuites.

An application can also specify a CipherSuite by setting the environment property CMQC.SSL_CIPHER_SUITE_PROPERTY.

If you require a client connection to use a CipherSuite that is supported by the IBM® Java JSSE FIPS provider (IBMJSSEFIPS), an application can set the
sslFipsRequired field in the MQEnvironment class to true. Alternatively, the application can set the environment property

CMQC.SSL_FIPS_REQUIRED_PROPERTY. The default value is false, which means that a client connection can use any CipherSuite that is supported by

WebSphere MQ.

If an application uses more than one client connection, the value of the sslFipsRequired field that is used when the application creates the first client
connection determines the value that is used when the application creates any subsequent client connection. When the application creates a subsequent
client connection, the value of the sslFipsRequired field is therefore ignored. You must restart the application if you want to use a different value for the
sslFipsRequired field.

To connect successfully using SSL, the JSSE truststore must be set up with certificate authority root certificates from which the certificate presented by the
queue manager can be authenticated. Similarly, if SSLClientAuth on the SVRCONN channel has been set to MQSSL_CLIENT_AUTH_REQUIRED, the JSSE
keystore must contain an identifying certificate that is trusted by the queue manager.

Parent topic: Secure Sockets Layer (SSL) support

This build: January 26, 2011 11:28:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11330_

5.5.17.2. Using the distinguished name of the queue manager

The queue manager identifies itself using an SSL certificate, which contains a Distinguished Name (DN). A WebSphere® MQ classes for Java client
application can use this DN to ensure that it is communicating with the correct queue manager.

A DN pattern is specified using the sslPeerName variable of MQEnvironment. For example, setting:

 MQEnvironment.sslPeerName = "CN=QMGR.*, OU=IBM, OU=WEBSPHERE";

means that the connection succeeds only if the queue manager presents a certificate with a Common Name beginning QMGR., and at least two
Organizational Unit names, the first of which must be IBM® and the second WEBSPHERE.

If sslPeerName is set, connections succeed only if it is set to a valid pattern and the queue manager presents a matching certificate.

An application can also specify the distinguished name of the queue manager by setting the environment property CMQC.SSL_PEER_NAME_PROPERTY. For
more information about distinguished names, see WebSphere MQ Security.

Parent topic: Secure Sockets Layer (SSL) support

This build: January 26, 2011 11:28:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11340_

5.5.17.3. Using certificate revocation lists

Specify the certificate revocation lists to use through the java.security.cert.CertStore class. WebSphere® MQ classes for Java checks certificates against the
specified CRL.

A certificate revocation list (CRL) is a set of certificates that have been revoked, either by the issuing certificate authority or by the local organization. CRLs
are typically hosted on LDAP servers. With Java 2 v1.4, a CRL server can be specified at connect-time and the certificate presented by the queue manager is
checked against the CRL before the connection is allowed. For more information about certificate revocation lists and WebSphere MQ, see WebSphere MQ
Security.

Page 156 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Note: To use a CertStore successfully with a CRL hosted on an LDAP server, make sure that your Java Software Development Kit (SDK) is compatible with
the CRL. Some SDKs require that the CRL conforms to RFC 2587, which defines a schema for LDAP v2. Most LDAP v3 servers use RFC 2256 instead.

The CRLs to use are specified through the java.security.cert.CertStore class. See documentation on this class for full details of how to obtain instances of
CertStore. To create a CertStore based on an LDAP server, first create an LDAPCertStoreParameters instance, initialized with the server and port settings to
use. For example:

import java.security.cert.*;

CertStoreParameters csp = new LDAPCertStoreParameters("crl_server", 389);

Having created a CertStoreParameters instance, use the static constructor on CertStore to create a CertStore of type LDAP:

CertStore cs = CertStore.getInstance("LDAP", csp);

Other CertStore types (for example, Collection) are also supported. Commonly there are several CRL servers set up with identical CRL information to give
redundancy. When you have a CertStore object for each of these CRL servers, place them all in a suitable Collection. The following example shows the
CertStore objects placed in an ArrayList:

import java.util.ArrayList;

Collection crls = new ArrayList();

crls.add(cs);

This Collection can be set into the MQEnvironment static variable, sslCertStores, before connecting to enable CRL checking:

MQEnvironment.sslCertStores = crls;

The certificate presented by the queue manager when a connection is being set up is validated as follows:

1. The first CertStore object in the Collection identified by sslCertStores is used to identify a CRL server.

2. An attempt is made to contact the CRL server.

3. If the attempt is successful, the server is searched for a match for the certificate.

a. If the certificate is found to be revoked, the search process is over and the connection request fails with reason code
MQRC_SSL_CERTIFICATE_REVOKED.

b. If the certificate is not found, the search process is over and the connection is allowed to proceed.

4. If the attempt to contact the server is unsuccessful, the next CertStore object is used to identify a CRL server and the process repeats from step 2.

If this CertStore was the last in the Collection, or if the Collection contains no CertStore objects, the search process has failed, and the connection
request fails with reason code MQRC_SSL_CERT_STORE_ERROR.

The Collection object determines the order in which CertStores are used.

The Collection of CertStores can also be set using the CMQC.SSL_CERT_STORE_PROPERTY. As a convenience, this property also allows a single CertStore to
be specified without being a member of a Collection.

If sslCertStores is set to null, no CRL checking is performed. This property is ignored if sslCipherSuite is not set.

Parent topic: Secure Sockets Layer (SSL) support

This build: January 26, 2011 11:28:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11350_

5.5.17.4. Renegotiating the secret key used for encryption

A WebSphere® MQ classes for Java client application can control when the secret key that is used for encryption on a client connection is renegotiated, in
terms of the total number of bytes sent and received.

The application can control when the secret key is renegotiated in either of the following ways:

� By setting the sslResetCount field in the MQEnvironment class.

� By setting the environment property CMQC.SSL_RESET_COUNT_PROPERTY in a hashtable object. The application then assigns the hashtable to the
properties field in the MQEnvironment class, or passes the hashtable to an MQQueueManager object on its constructor.

If the application uses more than one of these ways, the usual precedence rules apply. See Class com.ibm.mq.MQEnvironment for the precedence rules.

The value of the sslResetCount field or environment property CMQC.SSL_RESET_COUNT_PROPERTY represents the total number of bytes sent and received
by the WebSphere MQ classes for Java client code before the secret key is renegotiated. The number of bytes sent is the number before encryption, and the
number of bytes received is the number after decryption. The number of bytes also includes control information sent and received by the WebSphere MQ
classes for Java client.

If the reset count is zero, which is the default value, the secret key is never renegotiated. The reset count is ignored if no CipherSuite is specified.

If you use the version of GSKit supplied with WebSphere MQ with the following Java versions and platforms, you must not set the reset count to a value
other than zero. If you do set the reset count to a value other than zero, a client connection fails when it attempts to renegotiate the secret key.

� an HP or Sun V1.4.2 JDK

� any V1.4.2 JDK when using FIPS mode

� any V5.0 or later JDK

Java 5.0 is included with WebSphere MQ Version 7.0.

 If you want to use secret key reset with one of these JDKs on the Windows or UNIX platforms, you can install GSKit Version 8. Install GSKit v8 on the
queue manager side of the SSL connection to make Java SSL secret key reset work correctly. This is because the GSKit v8 SSL secret key reset behavior
only takes effect at the server side of the channel. You can use GSKit v8 for SSL connections with WebSphere MQ client applications (including WebSphere
MQ classes for Java applications using bindings mode), but there is no difference in SSL channel behavior if GSKit v8 is installed only on the client.

For more information about the secret key that is used for encryption on an SSL enabled channel, see Resetting SSL secret keys.

Parent topic: Secure Sockets Layer (SSL) support

This build: January 26, 2011 11:28:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11360_

Page 157 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

5.5.17.5. Supplying a customized SSLSocketFactory

If you use a customized JSSE Socket Factory, set the MQEnvironment.sslSocketFactory to the customized factory object. Details vary between different JSSE
implementations.

Different JSSE implementations can provide different features. For example, a specialized JSSE implementation might allow configuration of a particular
model of encryption hardware. Additionally, some JSSE providers allow customization of keystores and truststores by program, or allow the choice of identity
certificate from the keystore to be altered. In JSSE, all these customizations are abstracted into a factory class, javax.net.ssl.SSLSocketFactory.

See your JSSE documentation for details of how to create a customized SSLSocketFactory implementation. The details vary from provider to provider, but a
typical sequence of steps might be:

1. Create an SSLContext object using a static method on SSLContext

2. Initialize this SSLContext with appropriate KeyManager and TrustManager implementations (created from their own factory classes)

3. Create an SSLSocketFactory from the SSLContext

When you have an SSLSocketFactory object, set the MQEnvironment.sslSocketFactory to the customized factory object. For example:

javax.net.ssl.SSLSocketFactory sf = sslContext.getSocketFactory();

MQEnvironment.sslSocketFactory = sf;

WebSphere® MQ classes for Java then use this SSLSocketFactory to connect to the WebSphere MQ queue manager. This property can also be set using the
CMQC.SSL_SOCKET_FACTORY_PROPERTY. If sslSocketFactory is set to null, the default SSLSocketFactory of the JVM is used. This property is ignored if
sslCipherSuite is not set.

 When you use custom SSLSocketFactories, consider the effect of TCP/IP connection sharing. If connection sharing is possible then a new socket is not
requested of the SSLSocketFactory supplied, even if the socket produced would be different in some way in the context of a subsequent connection request.
For example, if a different client certificate is to be presented on a subsequent connection, then connection sharing must not be allowed.

Parent topic: Secure Sockets Layer (SSL) support

Related concepts
Sharing a TCP/IP connection in WebSphere MQ classes for Java

This build: January 26, 2011 11:28:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11370_

5.5.17.6. Making changes to the JSSE keystore or truststore

If you change the JSSE keystore or truststore, you must perform certain actions for the changes to take effect.

If you change the contents of the JSSE keystore or truststore, or change the location of the keystore or truststore file, WebSphere® MQ classes for Java
applications that are running at the time do not automatically pick up the changes. For the changes to take effect, the following actions must be performed:

� The applications must close all their connections, and destroy any unused connections in connection pools.

� If your JSSE provider caches information from the keystore and truststore, this information must be refreshed.

After these actions have been performed, the applications can then recreate their connections.

Depending on how you design your applications, and on the function provided by your JSSE provider, it might be possible to perform these actions without
stopping and restarting your applications. However, stopping and restarting the applications might be the simplest solution.

Parent topic: Secure Sockets Layer (SSL) support

This build: January 26, 2011 11:28:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11380_

5.5.17.7. Error handling when using SSL

A number of reason codes can be issued by WebSphere® MQ classes for Java when connecting to a queue manager using SSL.

These are explained in the following list:

MQRC_SSL_NOT_ALLOWED

The sslCipherSuite property was set, but bindings connect was used. Only client connect supports SSL.

MQRC_JSSE_ERROR

The JSSE provider reported an error that could not be handled by WebSphere MQ. This could be caused by a configuration problem with JSSE, or because
the certificate presented by the queue manager could not be validated. The exception produced by JSSE can be retrieved using the getCause() method on
MQException.

MQRC_SSL_INITIALIZATION_ERROR

An MQCONN or MQCONNX call was issued with SSL configuration options specified, but an error occurred during the initialization of the SSL environment.

MQRC_SSL_PEER_NAME_MISMATCH

The DN pattern specified in the sslPeerName property did not match the DN presented by the queue manager.

MQRC_SSL_PEER_NAME_ERROR

The DN pattern specified in the sslPeerName property was not valid.

MQRC_UNSUPPORTED_CIPHER_SUITE

The CipherSuite named in sslCipherSuite was not recognized by the JSSE provider. A full list of CipherSuites supported by the JSSE provider can be
obtained by a program using the SSLSocketFactory.getSupportedCipherSuites() method. A list of CipherSuites that can be used to communicate with
WebSphere MQ can be found in SSL CipherSpecs and CipherSuites.

MQRC_SSL_CERTIFICATE_REVOKED

The certificate presented by the queue manager was found in a CRL specified with the sslCertStores property. Update the queue manager to use trusted
certificates.

MQRC_SSL_CERT_STORE_ERROR

Page 158 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

None of the supplied CertStores could be searched for the certificate presented by the queue manager. The MQException.getCause() method returns the
error that occurred while searching the first CertStore attempted. If the causal exception is NoSuchElementException, ClassCastException, or
NullPointerException, check that the Collection specified on the sslCertStores property contains at least one valid CertStore object.

Parent topic: Secure Sockets Layer (SSL) support

This build: January 26, 2011 11:28:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11390_

5.5.17.8. SSL CipherSpecs and CipherSuites

Whether a WebSphere® MQ classes for Java application can establish a connection to a queue manager depends on the CipherSpec specified at the server
end of the MQI channel and the CipherSuite specified at the client end.

The following table lists the CipherSpecs supported by WebSphere MQ and their equivalent CipherSuites. The table also indicates whether a WebSphere MQ
classes for Java application can establish a connection to a queue manager if a CipherSpec is specified at the server end of the MQI channel and the
equivalent CipherSuite is specified at the client end.

For each combination of CipherSpec and CipherSuite, whether a WebSphere MQ classes for Java application can connect to a queue manager depends on the
value of the sslFipsRequired field in the MQEnvironment class, or on the value of the environment property CMQC.SSL_FIPS_REQUIRED_PROPERTY.

At the server end of an MQI channel, the name of a CipherSpec can be specified as the value of the SSLCIPH parameter on a DEFINE CHANNEL CHLTYPE
(SVRCONN) command. At the client end of an MQI channel, a WebSphere MQ classes for Java application can set the sslCipherSuite field in the
MQEnvironment class, or set the environment property CMQC.SSL_CIPHER_SUITE_PROPERTY.

Notes:

1. In a WebSphere MQ classes for Java application, indicate that only FIPS-certified algorithms are to be used by setting the sslFipsRequired field in the
MQEnvironment class to true and indicate that non-FIPS-certified algorithms can also be used by setting the sslFipsRequired field to false.

Alternatively, set the environment property CMQC.SSL_FIPS_REQUIRED_PROPERTY.

2. This CipherSpec has no equivalent CipherSuite.

3. This CipherSpec was FIPS 140-2 certified before 19th May 2007.

4. This CipherSpec was FIPS 140-2 certified before 19th May 2007. The name FIPS_WITH_DES_CBC_SHA is historical and reflects the fact that this
CipherSpec was previously FIPS-compliant.

5. This CipherSpec (TLS_RSA_WITH_AES_256_CBC_SHA) cannot be used to secure a connection from the WebSphere MQ Explorer to a queue manager.

Parent topic: Secure Sockets Layer (SSL) support

This build: January 26, 2011 11:29:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja34740_

5.5.18. Running WebSphere MQ classes for Java applications

If you write an application (a class that contains a main() method), using either the client or the bindings mode, run your program using the Java
interpreter.

Use the command:

java -Djava.library.path=library_path MyClass

where library_path is the path to the WebSphere® MQ classes for Java libraries (see The WebSphere MQ classes for Java libraries).
Parent topic: Writing WebSphere MQ classes for Java applications

This build: January 26, 2011 11:28:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Table 1. CipherSpecs supported by WebSphere MQ and their equivalent CipherSuites

CipherSpec Equivalent CipherSuite Connection

possible if

FIPS is not

required?1

Connection

possible if

FIPS is

required?1

NULL_MD5 SSL_RSA_WITH_NULL_MD5 Yes No

NULL_SHA SSL_RSA_WITH_NULL_SHA Yes No

RC4_MD5_EXPORT SSL_RSA_EXPORT_WITH_RC4_40_MD5 Yes No

RC4_MD5_US SSL_RSA_WITH_RC4_128_MD5 Yes No

RC4_SHA_US SSL_RSA_WITH_RC4_128_SHA Yes No

RC2_MD5_EXPORT SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 Yes No

DES_SHA_EXPORT SSL_RSA_WITH_DES_CBC_SHA Yes No

RC4_56_SHA_EXPORT1024 SSL_RSA_EXPORT1024_WITH_RC4_56_SHA No No

DES_SHA_EXPORT1024 SSL_RSA_EXPORT1024_WITH_DES_CBC_SHA No No

TRIPLE_DES_SHA_US SSL_RSA_WITH_3DES_EDE_CBC_SHA Yes No

TLS_RSA_WITH_AES_128_CBC_SHA SSL_RSA_WITH_AES_128_CBC_SHA No Yes

TLS_RSA_WITH_AES_256_CBC_SHA 5 SSL_RSA_WITH_AES_256_CBC_SHA No Yes

AES_SHA_US2

TLS_RSA_WITH_DES_CBC_SHA SSL_RSA_WITH_DES_CBC_SHA No No3

TLS_RSA_WITH_3DES_EDE_CBC_SHA SSL_RSA_WITH_3DES_EDE_CBC_SHA No Yes

FIPS_WITH_DES_CBC_SHA SSL_RSA_FIPS_WITH_DES_CBC_SHA Yes No4

FIPS_WITH_3DES_EDE_CBC_SHA SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA Yes No

Page 159 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11400_

5.5.19. Tracing WebSphere MQ classes for Java programs

WebSphere® MQ classes for Java includes a trace facility, which you can use to produce diagnostic messages if you suspect that there might be a problem
with the code.

You normally need to use this facility only at the request of IBM® service.

Before collecting a trace, you need to configure the system to collect WebSphere MQ Java Diagnostics, as described in the WebSphere MQ System
Administration Guide.

When you have created a WebSphere MQ Common Services properties file for your application to use, you can control the WebSphere MQ classes for Java
trace within your application by using the enableTracing and disableTracing methods of the MQEnvironment class. For example:

MQEnvironment.enableTracing(int); // start trace

 ... // these commands will be traced

MQEnvironment.disableTracing(); // turn tracing off again

where int is an integer. The value of the integer is ignored.

You can also invoke trace using MQEnvironment.enableTracing(int, OutputStream); but the OutputStream argument is also ignored.

All tracing configuration is controlled using Websphere MQ common services as described in Java diagnostics.

Parent topic: Writing WebSphere MQ classes for Java applications

This build: January 26, 2011 11:28:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11410_

5.6. Environment-dependent behavior

WebSphere® MQ classes for Java allow you to create applications that can run against different versions of WebSphere MQ. This collection of topics
describes the behavior of the Java classes dependent on these different versions.

WebSphere MQ classes for Java provides a core of classes, which provide consistent function and behavior in all the environments. Features outside this core
depend on the capability of the queue manager to which the application is connected.

Except where noted here, the behavior exhibited is as described in the Application Programming Reference appropriate to the queue manager.

Core classes in WebSphere MQ classes for Java
WebSphere MQ classes for Java contains a core set of classes, which can be used in all environments.

Restrictions and variations for core classes
The core classes generally behave consistently across all environments, even if the equivalent MQI calls normally have environment differences. The
behavior is as if a Windows or UNIX WebSphere MQ queue manager is used, except for the following minor restrictions and variations.

Features outside the core
WebSphere MQ classes for Java contain certain functions that are specifically designed to use API extensions that are not supported by all queue
managers. This collection of topics describes how they behave when using a queue manager that does not support them.

Restrictions under CICS Transaction Server
In the CICS® Transaction Server for z/OS® environment, only the main (first) thread is allowed to issue CICS or WebSphere MQ calls.

Running WebSphere MQ classes for Java applications within Java EE
There are certain restrictions and design considerations that must be taken into account before using WebSphere MQ classes for Java in JEE

Parent topic: WebSphere MQ classes for Java

This build: January 26, 2011 11:29:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11420_

5.6.1. Core classes in WebSphere MQ classes for Java

WebSphere® MQ classes for Java contains a core set of classes, which can be used in all environments.

The following set of classes are considered core classes, and can be used in all environments with only the minor variations listed in Restrictions and
variations for core classes.

� MQEnvironment

� MQException

� MQGetMessageOptions

Excluding:

� MatchOptions

� GroupStatus

� SegmentStatus

� Segmentation

� MQManagedObject

Excluding:

� inquire()

Page 160 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

� set()

� MQMessage

Excluding:

� groupId

� messageFlags

� messageSequenceNumber

� offset

� originalLength

� MQPoolServices

� MQPoolServicesEvent

� MQPoolServicesEventListener

� MQPoolToken

� MQPutMessageOptions

Excluding:

� knownDestCount

� unknownDestCount

� invalidDestCount

� recordFields

� MQProcess

� MQQueue

� MQQueueManager

Excluding:

� begin()

� accessDistributionList()

� MQSimpleConnectionManager

� MQTopic

� MQC

Note:

1. Some constants are not included in the core (see Restrictions and variations for core classes for details); do not use them in completely portable
programs.

2. Some platforms do not support all connection modes. On these platforms, you can use only the core classes and options that relate to the supported
modes. (See Connection options for WebSphere MQ classes for Java.)

Parent topic: Environment-dependent behavior

This build: January 26, 2011 11:29:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11430_

5.6.2. Restrictions and variations for core classes

The core classes generally behave consistently across all environments, even if the equivalent MQI calls normally have environment differences. The
behavior is as if a Windows or UNIX WebSphere® MQ queue manager is used, except for the following minor restrictions and variations.

MQGMO_* values
Certain MQGMO_* values are not supported by all queue managers.

MQPMRF_* values
These are used only when putting messages to a distribution list, and are supported only by queue managers supporting distribution lists. For
example, z/OS® queue managers do not support distribution lists.

MQPMO_* values
Certain MQPMO_* values are not supported by all queue managers

MQCNO_* values
Certain MQCNO_* values are not supported.

MQRO_* values
Certain report options are ignored by some queue managers.

Miscellaneous differences with z/OS
WebSphere MQ for z/OS behaves differently from WebSphere MQ on other platforms in some areas.

Parent topic: Environment-dependent behavior

This build: January 26, 2011 11:29:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11440_

5.6.2.1. MQGMO_* values

Certain MQGMO_* values are not supported by all queue managers.

Use of the following MQGMO_* values might result in an MQException being thrown from an MQQueue.get():

Page 161 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

MQGMO_SYNCPOINT_IF_PERSISTENT

MQGMO_MARK_SKIP_BACKOUT

MQGMO_BROWSE_MSG_UNDER_CURSOR

MQGMO_LOCK

MQGMO_UNLOCK

MQGMO_LOGICAL_ORDER

MQGMO_COMPLETE_MESSAGE

MQGMO_ALL_MSGS_AVAILABLE

MQGMO_ALL_SEGMENTS_AVAILABLE

MQGMO_UNMARKED_BROWSE_MSG

MQGMO_MARK_BROWSE_HANDLE

MQGMO_MARK_BROWSE_CO_OP

MQGMO_UNMARK_BROWSE_HANDLE

MQGMO_UNMARK_BROWSE_CO_OP

Additionally, MQGMO_SET_SIGNAL is not supported when used from Java.
Parent topic: Restrictions and variations for core classes

This build: January 26, 2011 11:29:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11450_

5.6.2.2. MQPMRF_* values

These are used only when putting messages to a distribution list, and are supported only by queue managers supporting distribution lists. For example,
z/OS® queue managers do not support distribution lists.

Parent topic: Restrictions and variations for core classes

This build: January 26, 2011 11:29:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11460_

5.6.2.3. MQPMO_* values

Certain MQPMO_* values are not supported by all queue managers

Use of the following MQPMO_* values might result in an MQException being thrown from an MQQueue.put() or an MQQueueManager.put():

MQPMO_LOGICAL_ORDER

MQPMO_NEW_CORREL_ID

MQPMO_NEW_MESSAGE_ID

MQPMO_RESOLVE_LOCAL_Q

Parent topic: Restrictions and variations for core classes

This build: January 26, 2011 11:29:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11470_

5.6.2.4. MQCNO_* values

Certain MQCNO_* values are not supported.

� Automatic client reconnect is not supported by the WebSphere MQ classes for Java. Whatever value MQCNO_RECONNECT_* you set, the connection

continues to behave as if you set MQCNO_RECONNECT_DISABLED.

� MQCNO_FASTPATH is ignored on queue managers that do not support MQCNO_FASTPATH. It is also ignored by client connections.

Parent topic: Restrictions and variations for core classes

This build: January 26, 2011 11:29:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11480_

5.6.2.5. MQRO_* values

Certain report options are ignored by some queue managers.

The following report options can be set but are ignored by some queue managers. This can affect applications connected to a queue manager that honors
the report options when the report message is generated by a remote queue manager that does not. Avoid relying on these options if there is a possibility
that a queue manager involved does not support them.

MQRO_EXCEPTION_WITH_FULL_DATA

MQRO_EXPIRATION_WITH_FULL_DATA

MQRO_COA_WITH_FULL_DATA

MQRO_COD_WITH_FULL_DATA

Page 162 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

MQRO_DISCARD_MSG

MQRO_PASS_DISCARD_AND_EXPIRY

Parent topic: Restrictions and variations for core classes

This build: January 26, 2011 11:29:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11490_

5.6.2.6. Miscellaneous differences with z/OS

WebSphere® MQ for z/OS® behaves differently from WebSphere MQ on other platforms in some areas.

Message priority

When a message is put with a priority greater than MaxPriority, a z/OS queue manager rejects the put with MQCC_FAILED and MQRC_PRIORITY_ERROR.
Other platforms complete the put with MQCC_WARNING and MQRC_PRIORITY_EXCEEDS_MAXIMUM, and treat the message as if it were put with
MaxPriority.

BackoutCount

A z/OS queue manager returns a maximum BackoutCount of 255, even if the message has been backed out more than 255 times.

Default dynamic queue prefix

When connected to a z/OS queue manager using a bindings connection, the default dynamic queue prefix is CSQ.*. Otherwise, the default dynamic queue
prefix is AMQ.*.

MQQueueManager constructor

Client connect is not supported on z/OS. Attempting to connect with client options results in an MQException with MQCC_FAILED and
MQRC_ENVIRONMENT_ERROR. The MQQueueManager constructor might also fail with MQRC_CHAR_CONVERSION_ERROR (if it fails to initialize conversion
between the IBM-1047 and ISO8859-1 code pages), or MQRC_UCS2_CONVERSION_ERROR (if it fails to initialize conversion between the queue manager's
code page and Unicode). If your application fails with one of these reason codes, ensure that the National Language Resources component of Language
Environment® is installed, and ensure that the correct conversion tables are available.

Conversion tables for Unicode are installed as part of the z/OS C/C++ optional feature. See the z/OS C/C++ Programming Guide, SC09-4765, for more
information about enabling UCS-2 conversions.

Parent topic: Restrictions and variations for core classes

This build: January 26, 2011 11:29:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11500_

5.6.3. Features outside the core

WebSphere® MQ classes for Java contain certain functions that are specifically designed to use API extensions that are not supported by all queue
managers. This collection of topics describes how they behave when using a queue manager that does not support them.

MQQueueManager constructor option
Some of the MQQueueManager constructors include an optional integer argument. Some values of this argument are not accepted on all platforms.

MQQueueManager.begin() method
This method can be used only against a WebSphere MQ queue manager on UNIX or Windows systems in bindings mode. Otherwise, it fails with
MQRC_ENVIRONMENT_ERROR.

MQGetMessageOptions fields
Some queue managers do not support the Version 2 MQGMO structure, so you must set some fields to their default values.

Distribution lists
Not all queue managers allow you to open an MQDistributionList.

MQPutMessageOptions fields
If a queue manager does not support distribution lists, certain MQPMO fields are treated differently.

MQMD fields
Certain MQMD fields concerned with message segmentation should be left at their default value when using a queue manager that does not support
segmentation.

Parent topic: Environment-dependent behavior

This build: January 26, 2011 11:29:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11510_

5.6.3.1. MQQueueManager constructor option

Some of the MQQueueManager constructors include an optional integer argument. Some values of this argument are not accepted on all platforms.

Where an MQQueueManager constructor include an optional integer argument, it maps onto the MQCNO options field of the MQI, and is used to switch
between normal and fast path connection. This extended form of the constructor is accepted in all environments, if the only options used are
MQCNO_STANDARD_BINDING or MQCNO_FASTPATH_BINDING. Any other options cause the constructor to fail with MQRC_OPTIONS_ERROR. The fast path
option CMQC.MQCNO_FASTPATH_BINDING is honored only with a bindings connection to a queue manager that supports it. In other environments, it is
ignored.

Parent topic: Features outside the core

Page 163 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

This build: January 26, 2011 11:29:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11520_

5.6.3.2. MQQueueManager.begin() method

This method can be used only against a WebSphere® MQ queue manager on UNIX or Windows systems in bindings mode. Otherwise, it fails with
MQRC_ENVIRONMENT_ERROR.

See JTA/JDBC coordination using WebSphere MQ classes for Java for more details.

Parent topic: Features outside the core

This build: January 26, 2011 11:29:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11530_

5.6.3.3. MQGetMessageOptions fields

Some queue managers do not support the Version 2 MQGMO structure, so you must set some fields to their default values.

When using a queue manager that does not support the Version 2 MQGMO structure, leave the following fields set to their default values:

GroupStatus

SegmentStatus

Segmentation

Also, the MatchOptions field supports only MQMO_MATCH_MSG_ID and MQMO_MATCH_CORREL_ID. If you put unsupported values into these fields, the
subsequent MQDestination.get() fails with MQRC_GMO_ERROR. If the queue manager does not support the Version 2 MQGMO structure, these fields are not
updated after a successful MQDestination.get().

Parent topic: Features outside the core

This build: January 26, 2011 11:29:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11540_

5.6.3.4. Distribution lists

Not all queue managers allow you to open an MQDistributionList.

The following classes are used to create distribution lists:

MQDistributionList

MQDistributionListItem

MQMessageTracker

You can create and populate MQDistributionLists and MQDistributionListItems in any environment, but not all queue managers allow you to open an
MQDistributionList. In particular, z/OS® queue managers do not support distribution lists. Attempting to open an MQDistributionList when using such a
queue manager results in MQRC_OD_ERROR.

Parent topic: Features outside the core

This build: January 26, 2011 11:29:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11550_

5.6.3.5. MQPutMessageOptions fields

If a queue manager does not support distribution lists, certain MQPMO fields are treated differently.

Four fields in the MQPMO are rendered as the following member variables in the MQPutMessageOptions class:

knownDestCount

unknownDestCount

invalidDestCount

recordFields

These fields are primarily intended for use with distribution lists. However, a queue manager that supports distribution lists also fills in the DestCount fields
after an MQPUT to a single queue. For example, if the queue resolves to a local queue, knownDestCount is set to 1 and the other two count fields are set to
0.

If the queue manager does not support distribution lists, these values are simulated as follows:

� If the put() succeeds, unknownDestCount is set to 1, and the others are set to 0.

� If the put() fails, invalidDestCount is set to 1, and the others are set to 0.

The recordFields variable is used with distribution lists. A value can be written into recordFields at any time, regardless of the environment. It is ignored if
the MQPutMessageOptions object is used on a subsequent MQDestination.put() or MQQueueManager.put(), rather than MQDistributionList.put().

Parent topic: Features outside the core

Page 164 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

This build: January 26, 2011 11:29:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11560_

5.6.3.6. MQMD fields

Certain MQMD fields concerned with message segmentation should be left at their default value when using a queue manager that does not support
segmentation.

The following MQMD fields are largely concerned with message segmentation:

GroupId

MsgSeqNumber

Offset

MsgFlags

OriginalLength

If an application sets any of these MQMD fields to values other than their defaults, and then does a put() or get() on a queue manager that does not support
these, the put() or get() raises an MQException with MQRC_MD_ERROR. A successful put() or get() with such a queue manager always leaves the MQMD
fields set to their default values. Do not send a grouped or segmented message to a Java application that runs against a queue manager that does not
support message grouping and segmentation.

If a Java application attempts to get() a message from a queue manager that does not support these fields, and the physical message to be retrieved is part
of a group of segmented messages (that is, it has non-default values for the MQMD fields), it is retrieved without error. However, the MQMD fields in the
MQMessage are not updated, the MQMessage format property is set to MQFMT_MD_EXTENSION, and the true message data is prefixed with an MQMDE
structure that contains the values for the new fields.

Parent topic: Features outside the core

This build: January 26, 2011 11:29:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11570_

5.6.4. Restrictions under CICS Transaction Server

In the CICS® Transaction Server for z/OS® environment, only the main (first) thread is allowed to issue CICS or WebSphere® MQ calls.

It is therefore not possible to share MQQueueManager or MQQueue objects between threads in this environment, or to create a new MQQueueManager on a
child thread.

Miscellaneous differences with z/OS identifies some restrictions and variations that apply to the WebSphere MQ classes for Java when running against a z/OS
queue manager. Additionally, when running under CICS, the transaction control methods on MQQueueManager are not supported. Instead of issuing
MQQueueManager.commit() or MQQueueManager.backout(), applications use the JCICS task synchronization methods, Task.commit() and Task.rollback().
The Task class is supplied by JCICS in the com.ibm.cics.server package.

Parent topic: Environment-dependent behavior

This build: January 26, 2011 11:29:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja11580_

5.6.5. Running WebSphere MQ classes for Java applications within Java EE

There are certain restrictions and design considerations that must be taken into account before using WebSphere® MQ classes for Java in JEE

WebSphere MQ classes for Java has restrictions when used within a JEE environment. There are also additional considerations that should be taken into
account when designing, implementing and managing a WebSphere MQ classes for Java application that runs inside a JEE environment. These restrictions
and considerations are outlined in the following sections.

JTA transactions restrictions
The only supported transaction manager for applications using WebSphere MQ classes for Java is WebSphere MQ itself. Although an application under JTA
control can make use WebSphere MQ classes for Java, any work performed through these classes will not be controlled by the JTA units of work. They will
instead form local units of work separate from those managed by the application server through the JTA interfaces. In particular, any rollback of the JTA
transaction will not result in a rollback of any sent or received messages. This restriction applies to application or bean managed transactions and to
container managed transactions, and all JEE containers. To perform messaging work directly with WebSphere MQ inside application server-coordinated
transactions, WebSphere MQ classes for JMS must be used instead.

Thread creation

WebSphere MQ classes for Java spawns threads internally for various operations. For example, when running in BINDINGS mode to make calls directly on a
local queue manager, the calls are made on a 'worker' thread created internally by WebSphere MQ classes for Java. Other threads can be spawned
internally, for example to clear unused connections from a connection pool or to remove subscriptions for terminated publish/subscribe applications.

Some JEE applications (for instance those running in EJB and Web containers) must not spawn new threads; instead all work must be performed on the main
application threads managed by the application server. When applications use WebSphere MQ classes for Java, the application server might not be able to
distinguish between application code and the WebSphere MQ classes for Java code, so the threads described above will cause the application to be non-
compliant with the container specification. WebSphere MQ classes for JMS does not break these JEE specifications and so should be used instead.

Security restrictions

Security policies implemented by an application server might prevent certain operations that are undertaken by the WebSphere MQ classes for Java API,
such as creating and operating new threads of control (as described in the preceding sections).

Page 165 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

For example, application servers typically run with Java Security disabled by default, and allow it to be enabled through some application server-specific
configuration (some application servers also allow more detailed configuration of the policies used within Java Security). When Java Security is enabled,
WebSphere MQ classes for Java might break the Java Security policy threading rules defined for the application server, and the API might not be able to
create all the threads that it needs in order to function. To prevent problems with thread management, the use of WebSphere MQ classes for Java is not
supported in environments where Java Security is enabled.

Application isolation considerations
An intended benefit of running applications within a JEE environment is application isolation. The design and implementation of WebSphere MQ classes for
Java predate the JEE environment, and WebSphere MQ classes for Java can be used in a manner which does not support the concept of application isolation.
Specific examples of considerations in this area include:

� The use of static (JVM process-wide) settings within the MQEnvironment class, such as:

� the userid and password to be used for connection identification and authentication

� the host name, port and channel used for client connections

� SSL configuration for secured client connections

Modifying any of the MQEnvironment properties for the benefit of one application also affect other applications making use of the same properties.
When running in a multi-application environment such as JEE, each application should use its own distinct configuration through the creation of
MQQueueManager objects with a specific set of properties, rather than defaulting to the properties configured in the process-wide MQEnvironment
class.

� The MQEnvironment class introduces a number of static methods which act globally on all applications using WebSphere MQ classes for Java within the
same JVM process, and there is no way to override this behavior for particular applications. Examples include:

� configuring SSL properties, such as the location of the key store

� configuring client channel exits

� enabling or disabling diagnostic tracing

� managing the default connection pool used to optimize the use of connections to queue managers

Invoking such methods affects all applications running in the same JEE environment.

� Connection pooling is enabled to optimize the process of making multiple connections to the same queue manager. The default connection pool
manager is process-wide, and shared by multiple applications. Changes to connection pool configuration, such as replacing the default connection
manager for one application using the MQEnvironment.setDefaultConnectionManager() method therefore affects other applications running in the same
JEE application server.

� SSL is configured for applications using WebSphere MQ classes for Java using the MQEnvironment class and MQQueueManager object properties, and
is not integrated with the managed security configuration of the application server itself. You must ensure that you configure WebSphere MQ classes
for Java approriately to provide your required level of security, and not use the application server configuration.

Parent topic: Environment-dependent behavior

This build: January 26, 2011 11:29:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ja35260_

The print function does not support this document type or external site.

Page 166 of 166Using Java

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzaw.doc/uj1012...

