
Queue Manager Clusters

Contents

1. Getting started with queue manager clusters
1.1. Concepts and terminology

1.1.1. Concepts
1.1.1.1. Comparison with distributed queuing

1.1.1.2. Overview of cluster components
1.1.2. Terminology
1.1.3. Benefits
1.1.4. Things to consider

1.1.5. Summary of concepts
1.2. Using clusters to ease system administration

1.2.1. How can I use clusters?
1.2.1.1. Can I use clusters and queue-sharing groups?

1.2.2. How does the system administrator benefit?

1.2.2.1. Definitions to set up a network using distributed queuing
1.2.2.2. Definitions to set up a network using clusters

1.2.3. What about my applications?
1.2.4. How do I set up a cluster?

1.2.4.1. Establishing communication in a cluster
1.2.4.1.1. Channel initiator
1.2.4.1.2. Channel listener

1.3. First tasks
1.3.1. Task 1: Setting up a new cluster

1.3.2. Task 2a: Adding a new queue manager to a cluster
1.3.3. Task 2b: Adding a new queue manager to a cluster — using DHCP

2. Using queue manager clusters
2.1. How queue manager clusters work

2.1.1. Components of a cluster
2.1.1.1. Queue managers and repositories
2.1.1.2. Queues
2.1.1.3. Cluster transmission queue
2.1.1.4. Cluster channels

2.1.1.5. Auto-definition of remote queues
2.1.1.6. Auto-definition of channels

2.1.2. What makes clustering work?
2.1.3. Using aliases and remote-queue definitions with clusters

2.1.3.1. Queue-manager aliases
2.1.3.2. Reply-to queue aliases
2.1.3.3. Queue aliases
2.1.3.4. Examples of using aliases within clusters

2.1.3.4.1. Putting from a queue manager outside a cluster

2.1.3.4.2. Replying to a queue manager outside the cluster
2.1.3.4.3. Putting from a queue manager outside the cluster - alternative techniques

2.1.3.4.3.1. Using a queue manager alias
2.1.3.4.3.2. Using a clustered queue as a queue manager alias

2.1.3.4.4. Putting to a queue manager outside the cluster
2.1.3.4.5. Replying from a queue manager outside the cluster
2.1.3.4.6. Putting across clusters

2.2. Using clusters for workload management

2.2.1. More than one instance of a queue
2.2.2. Workload balancing

2.2.2.1. The cluster workload management algorithm
2.2.2.2. Cluster workload user exit
2.2.2.3. Writing and compiling cluster workload exit programs

2.2.2.3.1. WebSphere MQ for z/OS
2.2.2.3.2. Platforms other than z/OS

2.2.2.4. Sample cluster workload exit
2.2.3. Programming considerations

2.2.3.1. Reviewing applications for message affinities
2.2.3.1.1. Handling message affinities

2.2.4. MQI and clusters
2.2.4.1. MQOPEN

2.2.4.1.1. Resolved queue manager name

2.2.4.2. MQPUT and MQPUT1
2.2.4.3. MQINQ
2.2.4.4. MQSET

2.2.5. Return codes

2.3. Using WebSphere MQ commands with clusters
2.3.1. MQSC command attributes

2.3.1.1. Queue-manager definition commands
2.3.1.2. Channel definition commands
2.3.1.3. Queue definition commands

2.3.2. WebSphere MQ commands for work with clusters
2.3.2.1. DISPLAY CLUSQMGR
2.3.2.2. SUSPEND QMGR and RESUME QMGR
2.3.2.3. REFRESH CLUSTER

2.3.2.4. RESET CLUSTER
2.3.2.5. CLUSTER commands on z/OS

2.4. Managing WebSphere MQ clusters
2.4.1. Designing clusters

2.4.1.1. Selecting queue managers to hold full repositories

2.4.1.2. Organizing a cluster

Page 1 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

2.4.1.3. Naming Convention
2.4.1.4. Overlapping clusters

2.4.1.4.1. Defining classes of service
2.4.1.5. Objects

2.4.2. Cluster-administration considerations
2.4.2.1. Maintaining a queue manager
2.4.2.2. Refreshing a queue manager

2.4.2.3. Recovering a queue manager
2.4.2.4. Maintaining the cluster transmission queue
2.4.2.5. What happens when a queue manager fails?
2.4.2.6. What happens when a repository fails?

2.4.2.7. What happens if I put-disable a cluster queue?
2.4.2.8. How long do the queue manager repositories retain information?
2.4.2.9. Cluster channels
2.4.2.10. Online monitoring

2.5. Keeping clusters secure

2.5.1. Stopping unauthorized queue managers sending messages to your queue manager
2.5.2. Stopping unauthorized queue managers putting messages on your queues
2.5.3. Authorizing putting messages on remote cluster queues
2.5.4. Preventing queue managers joining a cluster

2.5.4.1. Using security exits on cluster channels
2.5.5. Forcing unwanted queue managers to leave a cluster
2.5.6. Using SSL

2.5.6.1. Upgrading clustered queue managers and channels to use SSL
2.5.6.2. Disabling SSL on clustered queue managers and channels

2.6. Advanced tasks
2.6.1. Task 3: Adding a new queue manager that hosts a queue
2.6.2. Task 4: Removing a cluster queue from a queue manager
2.6.3. Task 5: Moving a full repository to another queue manager

2.6.4. Task 6: Converting an existing network into a cluster
2.6.5. Task 7: Adding a new, interconnected cluster
2.6.6. Task 8: Removing a cluster network
2.6.7. Task 9: Adding new queue managers that host a shared queue

2.6.8. Task 10: Removing a queue manager from a cluster
2.7. Advanced workload balancing tasks

2.7.1. Task 11: Adding a queue manager that hosts a queue locally
2.7.2. Task 12: Using two networks in a cluster
2.7.3. Task 13: Using a primary and a secondary network in a cluster

2.7.4. Task 14: Adding a queue to act as a backup
2.7.5. Task 15: Restricting the number of channels used
2.7.6. Task 16: Adding a more powerful queue manager that hosts a queue

3. Reference information

3.1. Cluster workload exit call and data structures
3.1.1. MQ_CLUSTER_WORKLOAD_EXIT - Cluster workload exit

3.1.1.1. Syntax
3.1.1.2. Parameters
3.1.1.3. Usage notes

3.1.1.4. C invocation
3.1.1.5. System/390 assembler invocation

3.1.2. MQWXP - Cluster workload exit parameter structure
3.1.2.1. Fields

3.1.2.2. C declaration
3.1.2.3. System/390 assembler declaration

3.1.3. MQWDR - Cluster workload destination-record structure
3.1.3.1. Fields
3.1.3.2. C declaration

3.1.3.3. System/390 assembler declaration
3.1.4. MQWQR - Cluster workload queue-record structure

3.1.4.1. Fields
3.1.4.2. C declaration

3.1.4.3. System/390 assembler declaration
3.1.5. MQWCR - Cluster workload cluster-record structure

3.1.5.1. Fields
3.1.5.2. C declaration
3.1.5.3. System/390 assembler declaration

3.1.6. MQXCLWLN - Navigate cluster workload records
3.1.6.1. MQXCLWLN - Navigate Cluster workload records

3.1.6.1.1. Syntax
3.1.6.1.2. Parameters

3.1.6.1.3. Usage notes
3.1.6.1.4. C invocation
3.1.6.1.5. System/390 assembler declaration

3.2. Workload balancing attributes
3.2.1. Queue attributes for workload balancing

3.2.1.1. CLWLPRTY queue attribute
3.2.1.2. CLWLRANK queue attribute
3.2.1.3. CLWLUSEQ queue attribute

3.2.2. Queue manager attributes for workload balancing

3.2.2.1. CLWLUSEQ queue manager attribute
3.2.2.2. CLWLMRUC queue manager attribute

3.2.3. Channel attributes for workload balancing
3.2.3.1. CLWLPRTY channel attribute

3.2.3.2. CLWLRANK channel attribute
3.2.3.3. CLWLWGHT channel attribute
3.2.3.4. NETPRTY channel attribute

4. Troubleshooting
4.1. Troubleshooting

Page 2 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

4.1.1. Symptom — A cluster sender channel is in retry state.
4.1.2. Symptom — DISPLAY CLUSQMGR shows CLUSQMGR names starting SYSTEM.TEMP.

4.1.3. Symptom — Applications get rc=2035 MQRC_NOT_AUTHORIZED when trying to open a queue in the cluster.
4.1.4. Symptom — Applications get rc=2085 MQRC_UNKNOWN_OBJECT_NAME when trying to open a queue in the cluster.
4.1.5. Symptom — Applications get rc= 2189 MQRC_CLUSTER_RESOLUTION_ERROR when trying to open a queue in the cluster.
4.1.6. Symptom — Messages are not appearing on the destination queues.
4.1.7. Return code=2082 MQRC_UNKNOWN_ALIAS_BASE_Q opening a queue in the cluster

4.1.8. Messages put to a cluster alias queue go to SYSTEM.DEAD.LETTER.QUEUE
4.1.9. Symptom — A queue manager does not appear to have up to date information about queues and channels in the cluster.
4.1.10. Symptom — No changes in the cluster are being reflected in the local queue manager.
4.1.11. Symptom — DISPLAY CLUSQMGR, shows a queue manager twice.

4.1.12. Symptom — RESET CLUSTER and REFRESH CLUSTER commands were issued, but the queue manager would not rejoin the
cluster.
4.1.13. Resolving Problems

4.1.13.1. Problem 1 — Out of date information in a restored cluster.
4.1.13.2. Problem 2 — cluster DEMO force removed by mistake.

4.1.13.3. Problem 3 — Possible repository messages deleted.
4.1.13.4. Problem 4 — 2 full repositories moved at the same time.
4.1.13.5. Problem 5 — Unknown state of a cluster.

Queue Manager Clusters

Notices

Getting started with queue manager clusters

Using queue manager clusters

Reference information

Troubleshooting

This build: January 26, 2011 11:13:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10120_

1. Getting started with queue manager clusters

Concepts and terminology

Using clusters to ease system administration

First tasks
The first tasks show you how to set up a new cluster and add a new queue manager to it, with and without using DHCP.

Parent topic: Queue Manager Clusters

This build: January 26, 2011 11:13:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10220_

1.1. Concepts and terminology

This chapter introduces the concepts of queue manager clusters and explains some of the terminology. For the benefit of customers
familiar with traditional distributed-queuing techniques, it compares the use of clusters with the use of distributed queuing. If you are not
familiar with distributed queuing, you should skip the sections that are not of interest to you.

Concepts

Terminology

Benefits

Things to consider

Summary of concepts

Parent topic: Getting started with queue manager clusters

Page 3 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

This build: January 26, 2011 11:13:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10230_

1.1.1. Concepts

Businesses are increasingly becoming aware of the advantages of establishing an intranet or of connecting processors to a LAN. You might
also have connected some z/OS® processors to form a sysplex, or some AIX® processors in the form of an SP2. Processors linked in

these ways benefit from support from each other and have access to a far wider range of programs and data.

In the same way, WebSphere® MQ queue managers can be connected to form a cluster. This facility is available to queue managers on all
platforms.

You can connect the queue managers using any of the communications protocols that are available on your platform. That is, TCP or
LU 6.2 on any platform, NetBIOS or SPX on Windows. Connections on more than one protocol can exist within a cluster. Of course, if you
try to make a connection to a queue manager using a protocol that it does not support, the channel will not become active.

Comparison with distributed queuing

Overview of cluster components

Parent topic: Concepts and terminology

This build: January 26, 2011 11:13:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10240_

1.1.1.1. Comparison with distributed queuing

If you do not use clusters, your queue managers are independent and communicate using distributed queuing. If one queue manager

needs to send messages to another it must have defined:

� A transmission queue

� A channel to the remote queue manager

Figure 1 shows the components required for distributed queuing.

Figure 1. Distributed queuing

If you group queue managers in a cluster, the queue managers can make the queues that they host available to every other queue
manager in the cluster. Any queue manager can send a message to any other queue manager in the same cluster without explicit channel
definitions, remote-queue definitions, or transmission queues for each destination. Every queue manager in a cluster has a single
transmission queue from which it can transmit messages to any other queue manager in the cluster. Each queue manager in a cluster

needs to define only:

� One cluster-receiver channel on which to receive messages

� One cluster-sender channel with which it introduces itself and learns about the cluster

Parent topic: Concepts

This build: January 26, 2011 11:13:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10250_

1.1.1.2. Overview of cluster components

Figure 1 shows the components of a cluster called CLUSTER.

� In this cluster there are three queue managers, QM1, QM2, and QM3.

Page 4 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

� QM1 and QM2 host repositories of information about the queue managers in the cluster. They are referred to as full repository queue
managers. (The repositories are represented in the diagram by the shaded cylinders.)

� QM2 and QM3 host some queues that are accessible to any other queue manager in the cluster. These are called cluster queues.
(The cluster queues are represented in the diagram by the shaded queues.)

As with distributed queuing, an application uses the MQPUT call to put a message on a cluster queue at any queue manager. An
application uses the MQGET call to retrieve messages from a cluster queue on the local queue manager.

� Each queue manager has a definition for the receiving end of a channel called TO.qmgr on which it can receive messages. This is a
cluster-receiver channel. A cluster-receiver channel is similar to a receiver channel used in distributed queuing, but in addition to
carrying messages this channel can also carry information about the cluster.

� Each queue manager also has a definition for the sending end of a channel, which connects to the cluster-receiver channel of one of
the full repository queue managers. This is a cluster-sender channel. In Figure 1, QM1 and QM3 have cluster-sender channels

connecting to TO.QM2. QM2 has a cluster-sender channel connecting to TO.QM1. A cluster-sender channel is similar to a sender
channel used in distributed queuing, but in addition to carrying messages this channel can also carry information about the cluster.

Once both the cluster-receiver end and the cluster-sender end of a channel have been defined, the channel starts automatically.

Figure 1. A cluster of queue managers

Parent topic: Concepts

This build: January 26, 2011 11:13:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10260_

1.1.2. Terminology

Before proceeding to the next chapter it is useful to understand the following terminology:

Cluster

A cluster is a network of queue managers that are logically associated in some way. The queue managers in a cluster may be physically
remote. For example, they might represent the branches of an international chain store and be physically located in different countries.

Each cluster within an enterprise should have a unique name.

Cluster queue manager

A cluster queue manager is a queue manager that is a member of a cluster. A queue manager may be a member of more than one
cluster. (See Overlapping clusters.) Each cluster queue manager must have a name that is unique throughout all the clusters of which it
is a member.

A cluster queue manager can host queues, which it advertises to the other queue managers in the cluster. A cluster queue manager
does not have to host or advertise any queues. It can just feed messages into the cluster and receive only responses that are directed
explicitly to it, and not to advertised queues.

In WebSphere® MQ for z/OS®, a cluster queue manager can be a member of a queue-sharing group. In this case, it shares its queue
definitions with other queue managers in the same queue-sharing group. For more information about queue-sharing groups see the
WebSphere MQ for z/OS Concepts and Planning Guide.

Cluster queue managers are autonomous. They have full control over queues and channels that they define. Their definitions cannot be
modified by other queue managers (other than queue managers in the same queue-sharing group).

When you make or alter a definition on a cluster queue manager, the information is sent to the full repository queue manager and the

repositories in the cluster are updated accordingly.

Cluster queue

A cluster queue is a queue that is hosted by a cluster queue manager and made available to other queue managers in the cluster. The

Page 5 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

cluster queue manager makes a local queue definition for the queue, specifying the name of the cluster where the queue is to be found.
This definition has the effect of showing the other queue managers in the cluster that the queue is there. The other queue managers in

the cluster can put messages to a cluster queue without needing a corresponding remote-queue definition. A cluster queue can be
advertised in more than one cluster.

A cluster queue can be a queue that is shared by members of a queue-sharing group in WebSphere MQ for z/OS.

Repository

A repository is a collection of information about the queue managers that are members of a cluster. This information includes queue
manager names, their locations, their channels, which queues they host, and so on. The information is stored in the form of messages
on a queue called SYSTEM.CLUSTER.REPOSITORY.QUEUE. (This queue is one of the default objects created when you start a

WebSphere MQ queue manager, except on WebSphere MQ for z/OS where it is defined as part of queue manager customization.)
Typically, two queue managers in a cluster hold a full repository. The remaining queue managers all hold a partial repository.

Repository queue manager

A repository queue manager is a cluster queue manager that holds a full repository. To ensure availability, set up two or more full
repository queue managers in each cluster. The full repository queue managers receive information sent by the other queue managers
in the cluster and update their repositories accordingly. The full repository queue managers send messages to each other to be sure that

they are both kept up to date with new information about the cluster.

Full repository and partial repository

A queue manager that hosts a complete set of information about every queue manager in the cluster is referred to as having a full
repository for the cluster.

The other queue managers in the cluster inquire about the information in the full repositories and build up their own subsets of this
information in partial repositories. A queue manager’s partial repository contains information about only those queue managers with
which the queue manager needs to exchange messages. The queue managers request updates to the information they need, so that if it
changes, the full repository queue manager will send them the new information. For much of the time a queue manager’s partial
repository has all the information it needs to perform within the cluster. When a queue manager needs some additional information, it

makes inquiries of the full repository and updates its partial repository. The queue managers use a queue called
SYSTEM.CLUSTER.COMMAND.QUEUE to request and receive updates to the repositories. This queue is one of the default objects, except
on WebSphere MQ for z/OS where it is defined as part of queue manager customization.

Cluster-receiver channel

A cluster-receiver (CLUSRCVR) channel definition defines the receiving end of a channel on which a cluster queue manager can receive
messages from other queue managers in the cluster. A cluster-receiver channel can also carry information about the cluster—
information destined for the repository. By defining the cluster-receiver channel, the queue manager shows to the other cluster queue
managers that it is available to receive messages. You need at least one cluster-receiver channel for each cluster queue manager.

Cluster-sender channel

A cluster-sender (CLUSSDR) channel definition defines the sending end of a channel on which a cluster queue manager can send cluster
information to one of the full repositories. The cluster-sender channel is used to notify the repository of any changes to the queue
manager’s status, for example the addition or removal of a queue. It is also used to transmit messages.

The full repository queue managers themselves have cluster-sender channels that point to each other. They use them to communicate
cluster status changes to each other.

It is of little importance which full repository a queue manager’s CLUSSDR channel definition points to. Once the initial contact has been

made, further cluster queue manager objects are defined automatically as necessary so that the queue manager can send cluster
information to every full repository, and messages to every queue manager.

Cluster transmission queue

Each cluster queue manager has a cluster transmission queue called SYSTEM.CLUSTER.TRANSMIT.QUEUE. The cluster transmission

queue transmits all messages from the queue manager to any other queue manager that is in the same cluster. This queue is one of the
default cluster transmission queues, except on WebSphere MQ for z/OS where it is defined as part of queue manager customization.

Binding

You can create a cluster in which more than one queue manager hosts an instance of the same cluster queue. This is discussed in More
than one instance of a queue. If you do this, make sure that a sequence of messages are all sent to the same instance of the queue.

You can bind a series of messages to a particular queue by using the MQOO_BIND_ON_OPEN option on the MQOPEN call (see MQOPEN
and clusters).

Parent topic: Concepts and terminology

This build: January 26, 2011 11:13:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10270_

1.1.3. Benefits

There are two reasons for using clusters:

1. Reduced system administration.

As soon as you start to establish even a small cluster you will benefit from simplified system administration. Establishing a network
of queue managers in a cluster involves fewer definitions than establishing a network that is to use distributed queuing. With fewer

definitions to make, you can set up or change your network more quickly and easily, and reduce the risk of making an error in your
definitions.

2. Increased availability and workload balancing.

Simple clusters give you easier system administration. Moving to more complicated clusters, offers improved scalability of the
number of instances of a queue you can define, providing greater availability. Because you can define instances of the same queue
on more than one queue manager, the workload can be distributed throughout the queue managers in a cluster.

Page 6 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

These two objectives are discussed in detail in Using clusters to ease system administration and Using clusters for workload management.

Parent topic: Concepts and terminology

This build: January 26, 2011 11:13:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10280_

1.1.4. Things to consider

Consider the following before starting to use clusters:

� The WebSphere® MQ Explorer cannot directly administer WebSphere MQ for z/OS® queue managers at versions earlier than
Version 6.0.

� To get the most out of clusters, all the queue managers in the network must be on a platform that supports clusters. Until all your
systems are on platforms that support clusters, you might have queue managers outside a cluster that cannot access your cluster
queues without extra manual definitions.

� If you merge two clusters with the same name, you cannot separate them again. Therefore it is advisable to give all clusters a
unique name.

� If a message arrives at a queue manager but there is no queue there to receive it, the message is put on the dead-letter queue as

usual. (If there is no dead-letter queue, the channel fails and retries, as described in the WebSphere MQ Intercommunication book.)

� The integrity of persistent messages is maintained. Messages are not duplicated or lost as a result of using clusters.

� Using clusters reduces system administration. Clusters make it easy to connect larger networks with many more queue managers
than you would be able to contemplate using distributed queuing. However, as with distributed queuing, there is a risk that you may
consume excessive network resources if you attempt to enable communication between every queue manager in a cluster.

� If you use the WebSphere MQ Explorer, which presents the queue managers in a tree structure, the view for large clusters may be

cumbersome.

� The Explorer GUI can administer a cluster with repository queue managers on WebSphere MQ for z/OS Version 6 or later, without
the need for nominating an additional repository on a separate system. For earlier versions of WebSphere MQ on z/OS, the
WebSphere MQ Explorer cannot administer a cluster with repository queue managers. You must therefore nominate an additional

repository on a system that the WebSphere MQ Explorer can administer.

� The purpose of distribution lists, which are supported on WebSphere MQ for AIX®, i5/OS®, HP-UX, Solaris, Linux, and Windows is
to use a single MQPUT command to send the same message to multiple destinations. You can use distribution lists in conjunction
with queue manager clusters. However, in a clustering environment all the messages are expanded at MQPUT time and so the
advantage, in terms of network traffic, is not so great as in a non-clustering environment. The advantage of distribution lists, from

the administrator's point of view, is that the numerous channels and transmission queues do not need to be defined manually.

� If you are going to use clusters to balance your workload, examine your applications to see whether they require messages to be
processed by a particular queue manager or in a particular sequence. Such applications are said to have message affinities. You
might need to modify your applications before you can use them in complex clusters.

� If you use the MQOO_BIND_ON_OPEN option on an MQOPEN call to force messages to be sent to a specific destination, and the
destination queue manager is not available, the messages are not delivered. Messages are not routed to another queue manager

because of the risk of duplication.

� If a queue manager is to host a cluster's repository, you need to know its host name or IP address. You have to specify this
information in the CONNAME parameter when you make the CLUSSDR definition on other queue managers joining the cluster. If you
were to use DHCP, the IP address would be subject to change because DHCP can allocate a new IP address each time you restart a
system. Therefore, it would not be possible to specify the IP address in the CLUSSDR definitions. Even if all your CLUSSDR

definitions specified the host name rather than the IP address, the definitions would still not be reliable. This is because DHCP does
not necessarily update the DNS directory entry for the host with the new address.

Note: Unless you have installed software that guarantees to keep your DNS directory up-to-date, do not nominate queue managers
as full repositories if they are on systems that use DHCP.

� Do not use generic names, for example VTAM® generic resources or Dynamic Domain Name Server (DDNS) generic names as the
connection names for your channels. If you do, your channels might connect to a different queue manager than expected.

� You can only GET from a local cluster queue, but you can PUT to any queue in a cluster. If you open a queue to use the MQGET
command, the queue manager will only use the local queue.

Parent topic: Concepts and terminology

This build: January 26, 2011 11:13:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10290_

1.1.5. Summary of concepts

If you are familiar with WebSphere® MQ and distributed queuing, think of a cluster as a network of queue managers maintained by a

conscientious systems administrator. Whenever you create a receiver channel or define a queue, the systems administrator automatically
creates corresponding sender channels and remote-queue definitions on the other queue managers.

You do not need to make transmission queue definitions because WebSphere MQ provides a transmission queue on each queue manager.

This single transmission queue can be used to carry messages to any other queue manager.

All the queue managers that join a cluster agree to work in this way. They send out information about themselves and about the queues
they host, and they receive information about the other members of the cluster.

Page 7 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

This information is stored in repositories. Most queue managers retain only the information that they need, that is, information about

queues and queue managers with which they need to communicate. Some queue managers retain a full repository of all the information
about all queue managers in the cluster.

A cluster-receiver channel is a communication channel similar to a receiver channel. When you define a cluster-receiver channel, not only

is the object created on your queue manager, but also information about the channel and the queue manager that owns it is stored in the
repositories. The definition of a cluster-receiver channel is a queue manager’s initial introduction to a cluster. Once it has been defined,
other queue managers can automatically make corresponding definitions for the cluster-sender end of the channel as needed.

A cluster-sender channel is a communication channel similar to a sender channel. You need a cluster-sender channel only if you want to
communicate with another cluster queue manager. When another cluster queue manager wants to communicate with you, your cluster-
sender channel is created automatically by reference to the appropriate cluster-receiver channel definition. However, each queue manager
must have one manually defined cluster-sender channel, through which it makes its initial contact with the cluster.

Queue managers on platforms that support clusters do not have to be part of a cluster. You can continue to use distributed queuing
techniques as well as, or instead of, using clusters.

Parent topic: Concepts and terminology

This build: January 26, 2011 11:13:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10300_

1.2. Using clusters to ease system administration

This chapter describes how you can use clusters to simplify system administration in your environment. It is intended for users who have
not used clusters before and who want to learn how they might benefit from setting up and using a simple cluster. This chapter covers:

� How can I use clusters?

� How does the system administrator benefit?

� What about my applications?

� How do I set up a cluster?

For information about how to set up a more complex cluster that benefits from workload management, refer to Using clusters for workload

management.

How can I use clusters?

How does the system administrator benefit?

What about my applications?

How do I set up a cluster?

Parent topic: Getting started with queue manager clusters

This build: January 26, 2011 11:13:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10310_

1.2.1. How can I use clusters?

Typically a cluster contains queue managers that are logically related in some way and need to share some data or applications. For
example you might have one queue manager for each department in your company, managing data and applications specific to that
department. You could group all these queue managers into a cluster so that they all feed into the PAYROLL application. Or you might
have one queue manager for each branch of your chain store, managing the stock levels and other information for that branch. If you
group these queue managers into a cluster, they can all access the same set of SALES and PURCHASES applications, which are held

centrally, perhaps on the head-office queue manager.

Once a cluster has been set up, the queue managers within it can communicate with each other without extra channel definitions or
remote-queue definitions.

You can convert an existing network of queue managers into a cluster or you can establish a cluster as part of setting up a new network.

A WebSphere® MQ client can connect to a queue manager that is part of a cluster, just as it can connect to any other queue manager.

See the WebSphere MQ Clients book for more information about clients.

Can I use clusters and queue-sharing groups?

Parent topic: Using clusters to ease system administration

This build: January 26, 2011 11:13:47

Page 8 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10320_

1.2.1.1. Can I use clusters and queue-sharing groups?

On WebSphere® MQ for z/OS® you can group queue managers into queue-sharing groups. A queue manager in a queue-sharing group
can define a local queue that is to be shared by up to 32 queue managers. For more information about queue-sharing groups see the
WebSphere MQ for z/OS Concepts and Planning Guide.

Shared queues can also be cluster queues. Furthermore, the queue managers in a queue-sharing group can also be in one or more
clusters. See Task 9: Adding new queue managers that host a shared queue for an example task showing how to use clusters in
combination with queue-sharing groups.

Parent topic: How can I use clusters?

This build: January 26, 2011 11:13:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10330_

1.2.2. How does the system administrator benefit?

Using clusters leads to easier administration of a network. Look at Figure 1, which shows four queue managers each with two queues. Let

us consider how many definitions are needed to connect these queue managers using distributed queuing. Then we will see how many
definitions are needed to set up the same network as a cluster.

Figure 1. A network of four queue managers

Definitions to set up a network using distributed queuing

Definitions to set up a network using clusters

Parent topic: Using clusters to ease system administration

This build: January 26, 2011 11:13:48

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10340_

1.2.2.1. Definitions to set up a network using distributed queuing

To set up the network shown in Figure 1 using distributed queuing, you might have the following definitions:

Table 1. Definitions for distributed queuing

Description Number per
queue

manager

Total number

A sender-channel definition for a channel on which to send messages to every other

queue manager

3 12

A receiver-channel definition for a channel on which to receive messages from

every other queue manager

3 12

A transmission-queue definition for a transmission queue to every other queue

manager

3 12

A local-queue definition for each local queue 2 8

A remote-queue definition for each remote queue to which this queue manager
wants to put messages

6 24

Page 9 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

While you might reduce this number of definitions by, for example, using generic receiver-channel definitions, the maximum number of
definitions could be as many as 17 on each queue manager, which is a total of 68 for this network.

Parent topic: How does the system administrator benefit?

This build: January 26, 2011 11:13:48

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10350_

1.2.2.2. Definitions to set up a network using clusters

When using clusters, you need:

� Just one CLUSSDR and one CLUSRCVR definition at each queue manager

� No separately defined transmission queues

� No remote-queue definitions

To set up the network shown in Figure 1 using clusters you need the following definitions:

To set up this cluster of queue managers (with two full repositories), you would need 4 definitions on each queue manager — a total of 16
definitions all together. You would also need to alter the queue-manager definitions for two of the queue managers, to make them full
repository queue managers for the cluster.

The CLUSSDR and CLUSRCVR channel definitions need be made only once. When the cluster is in place you can add or remove queue
managers (other than the repository queue managers) without any disruption to the other queue managers.

Clearly, this amounts to a significant reduction in the number of definitions required to set up a network containing a large number of

queue managers.

With fewer definitions to make there is less risk of error:

� Object names will always match, for example the channel name in a sender-receiver pair.

� The transmission queue name specified in a channel definition will always match the correct transmission queue definition or the
transmission queue name specified in a remote queue definition.

� A QREMOTE definition will always point to the correct queue at the remote queue manager.

Furthermore, once a cluster is set up, you can move cluster queues from one queue manager to another within the cluster without having
to do any system management work on any other queue manager. There is no chance of forgetting to delete or modify channel, remote-

queue, or transmission-queue definitions. You can add new queue managers to a cluster without any disruption to the existing network.

Parent topic: How does the system administrator benefit?

This build: January 26, 2011 11:13:50

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10360_

1.2.3. What about my applications?

You need not alter any of your applications if you are going to set up a simple WebSphere® MQ cluster. The applications name the target
queue on the MQOPEN call as usual and need not be concerned about the location of the queue manager.

However, if you set up a cluster in which there are multiple definitions for the same queue, as described in Using clusters for workload

management, you must review your applications and modify them as necessary.

Parent topic: Using clusters to ease system administration

This build: January 26, 2011 11:13:50

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10370_

Table 1. Definitions for clustering

Description Number per
queue

manager

Total number

A cluster-sender channel definition for a channel on which to send messages to a

repository queue manager

1 4

A cluster-receiver channel definition for a channel on which to receive messages

from other queue managers in the cluster

1 4

A local-queue definition for each local queue 2 8

Page 10 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

1.2.4. How do I set up a cluster?

After installing the product, you have to create queue managers. Any queue manager you create is capable of working in a cluster.

Having decided that you want to create a cluster of queue managers, you need to consider which queue managers in the cluster are to
hold the full repositories of cluster information. You can choose any number of queue managers for this purpose but the recommended
number is two. See Selecting queue managers to hold full repositories for more information.

The smallest possible cluster contains only two queue managers. In this case both queue managers contain full repositories. You need
only a small number of definitions to set this up, and yet there is a high degree of autonomy at each queue manager.

Figure 1 shows a cluster of two queue managers. You can set up a cluster like this using WebSphere® MQ Script commands (MQSC), or
any other type of administration command or utility that is available on your platform. See Using WebSphere MQ commands with clusters
for more information.

Figure 1. A small cluster of two queue managers

Setting up a cluster like this is described in Task 1: Setting up a new cluster.

Establishing communication in a cluster

Parent topic: Using clusters to ease system administration

This build: January 26, 2011 11:13:51

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10380_

1.2.4.1. Establishing communication in a cluster

To establish communication between queue managers in a cluster, configure a link using one of the supported communication protocols.

The supported protocols are TCP or LU 6.2 on any platform, and NetBIOS or SPX on Windows systems. Configuring communication links is
described in detail in WebSphere MQ Intercommunication. As part of this configuration, you also need channel initiators and channel
listeners just as you do with distributed queuing.

Channel initiator

Channel listener

Parent topic: How do I set up a cluster?

This build: January 26, 2011 11:13:51

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10390_

1.2.4.1.1. Channel initiator

All cluster queue managers need a channel initiator to monitor the system-defined initiation queue SYSTEM.CHANNEL.INITQ. This is the

Page 11 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

initiation queue for all transmission queues including the cluster transmission queue.

WebSphere® MQ for z/OS®

There is one channel initiator for each queue manager and it runs as a separate address space. You start it using the MQSC START
CHINIT command, which you issue as part of your queue manager startup.

Platforms other than z/OS

When you start a queue manager, a channel initiator is automatically started if the queue manager attribute SCHINIT is set to QMGR.
Otherwise it can be started using the MQSC START CHINIT command or the runmqchi control command.

Parent topic: Establishing communication in a cluster

This build: January 26, 2011 11:13:51

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10400_

1.2.4.1.2. Channel listener

Run a channel listener program on each queue manager. A channel listener program ‘listens’ for incoming network requests and starts the

appropriate receiver channel when it is needed.

The implementation of channel listeners is platform specific, however there are some common features. On all WebSphere® MQ
platforms, the listener may be started using the MQSC command START LISTENER. On WebSphere MQ for i5/OS®, Windows systems and

UNIX systems, you can make the listener start automatically with the queue manager by setting the CONTROL attribute of the LISTENER
object to QMGR or STARTONLY. Platform-specific details follow:

WebSphere MQ for z/OS®

Use the channel listener program provided by WebSphere MQ. To start a WebSphere MQ channel listener, use the MQSC command
START LISTENER, which you issue as part of your channel initiator startup. For example:

START LISTENER PORT(1414) TRPTYPE(TCP)

or

START LISTENER LUNAME(LONDON.LUNAME) TRPTYPE(LU62)

As well as a listener for each queue manager, members of a queue-sharing group can make use of a shared listener. Do not use shared
listeners in conjunction with clusters. Specifically, do not make the CONNAME of the queue manager's CLUSRCVR channel the address of
the queue sharing group's shared listener. If you do, queue managers might receive messages for queues for which they do not have a

definition.

WebSphere MQ for i5/OS

Use the channel listener program provided by WebSphere MQ. To start a WebSphere MQ channel listener use the CL command
STRMQMLSR. For example:

STRMQMLSR MQMNAME(QM1) PORT(1414)

WebSphere MQ for Windows

Use either the channel listener program provided by WebSphere MQ, or the facilities provided by the operating system.

To start the WebSphere MQ channel listener use the RUNMQLSR command. For example:

RUNMQLSR -t tcp -p 1414 -m QM1

WebSphere MQ on UNIX systems

Use either the channel listener program provided by WebSphere MQ, or the facilities provided by the operating system (for example,
inetd for TCP communications).

To start the WebSphere MQ channel listener use the runmqlsr command. For example:

runmqlsr -t tcp -p 1414 -m QM1

To use inetd to start channels, configure two files:

1. Edit the file /etc/services. (To do this you must be logged in as a superuser or root.) If you do not have the following line in that

file, add it as shown:

 MQSeries 1414/tcp # Websphere MQ channel listener

where 1414 is the port number required by WebSphere MQ. You can change this, but it must match the port number specified at

the sending end.

2. Edit the file /etc/inetd.conf. If you do not have the following line in that file, add it as shown:

For AIX®:

 MQSeries stream tcp nowait mqm /usr/mqm/bin/amqcrsta amqcrsta

 -m queue.manager.name

For Compaq Tru64 UNIX , HP-UX, Solaris and Linux:

 MQSeries stream tcp nowait mqm /opt/mqm/bin/amqcrsta amqcrsta

 -m queue.manager.name

The updates become active after inetd has reread the configuration files. Issue the following commands from the root user ID:

On AIX:

 refresh -s inetd

On HP-UX:

Page 12 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

 inetd -c

On Solaris or Linux:

1. Find the process ID of the inetd with the command:

ps -ef | grep inetd

2. Run the appropriate command, as follows:

� For Solaris 9 and Linux:

kill -1 inetd processid

� For Solaris 10:

inetconv

Parent topic: Establishing communication in a cluster

This build: January 26, 2011 11:13:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10410_

1.3. First tasks

The first tasks show you how to set up a new cluster and add a new queue manager to it, with and without using DHCP.

Much of the information you need for these tasks is elsewhere in the WebSphere® MQ library. This chapter points to that information and
provides specific information about working with clusters.

Note:

1. Throughout the examples in this chapter, Advanced tasks and Advanced workload balancing tasks, the queue managers have
illustrative names such as LONDON and NEWYORK. Don't forget that on WebSphere MQ for z/OS®, queue-manager names are
limited to 4 characters.

2. The names of the queue managers imply that each queue manager is on a separate machine. You could just as easily set up these
examples with all the queue managers on the same machine.

3. The examples in these chapters show WebSphere MQ Script Commands (MQSC) as they would be entered by the system

administrator at the command console. For information about other ways of entering commands, refer to Using WebSphere MQ
commands with clusters.

Task 1: Setting up a new cluster

Task 2a: Adding a new queue manager to a cluster

Task 2b: Adding a new queue manager to a cluster — using DHCP

Parent topic: Getting started with queue manager clusters

This build: January 26, 2011 11:13:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10420_

1.3.1. Task 1: Setting up a new cluster

Scenario:

� You are setting up a new WebSphere® MQ network for a chain store. The store has two branches, one in London and one in New
York. The data and applications for each store are hosted by systems running separate queue managers. The two queue managers
are called LONDON and NEWYORK.

� The inventory application runs on the system in New York, connected to queue manager NEWYORK. The application is driven by the

arrival of messages on the INVENTQ queue, hosted by NEWYORK.

� The two queue managers, LONDON and NEWYORK, are to be linked in a cluster called INVENTORY so that they can both put
messages to the INVENTQ.

� Examples given using either TCP/IP or LU 6.2.

Figure 1 shows what this cluster looks like.

Note: You can also use one of the wizards supplied with WebSphere MQ Explorer to create a new cluster similar to the one created by this
task. Right-click the Queue Manager Clusters folder, then click New > Queue Manager Cluster, and follow the instructions given in the

wizard.

Procedure

Follow these steps to set up a cluster.

1. Decide on the organization of the cluster and its name

Page 13 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

You have decided to link the two queue managers, LONDON and NEWYORK, into a cluster. A cluster with only two queue managers offers

only marginal benefit over a network that is to use distributed queuing, but is a good way to start and provides scope for future
expansion. When you open new branches of your store, you will be able to add the new queue managers to the cluster easily and without
any disruption to the existing network. Task 2a: Adding a new queue manager to a cluster describes how to do this.

For the time being the only application you are running is the inventory application. The cluster name is INVENTORY.

2. Determine which queue managers should hold full repositories

In any cluster you need to nominate at least one queue manager, or preferably two, to hold full repositories. See Selecting queue
managers to hold full repositories for more information. In this example there are only two queue managers, LONDON and NEWYORK,
both of which hold full repositories.

Note:

1. You can perform the remaining steps in any order.

2. As you proceed through the steps, warning messages might be written to the queue-manager log or the z/OS® system console if
you have yet to make some expected definitions.

Examples of the responses to the commands are shown in a box

like this after each step in this task.

These examples show the responses returned by WebSphere MQ for AIX.

The responses vary on other platforms.

3. Before proceeding with these steps, make sure that the queue managers are started.

3. Alter the queue-manager definitions to add repository definitions

On each queue manager that is to hold a full repository, you need to alter the queue-manager definition, using the ALTER QMGR
command and specifying the REPOS attribute:

ALTER QMGR REPOS(INVENTORY)

 1 : ALTER QMGR REPOS(INVENTORY)

AMQ8005: Websphere MQ queue manager changed.

If you enter

1. C:\..runmqsc LONDON

2. ALTER QMGR REPOS(INVENTORY) (as shown above)

LONDON will be changed to a full repository.

Note: If you just runmqsc and enter the ALTER QMGR command, the local queue manager will be changed.

4. Define the CLUSRCVR channels

On every queue manager in a cluster you need to define a cluster-receiver channel on which the queue manager can receive messages.
This definition defines the queue manager's connection name and the CLUSTER keyword shows the queue manager's availability to receive
messages from other queue managers in the cluster. The queue manager's connection name is stored in the repositories, where other
queue managers can refer to it.

Choose one of the following examples

4a. Using transport protocol TCP/IP

On the LONDON queue manager, define:

DEFINE CHANNEL(TO.LONDON) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)

CONNAME(LONDON.CHSTORE.COM) CLUSTER(INVENTORY)

DESCR('TCP Cluster-receiver channel for queue manager LONDON')

 1 : DEFINE CHANNEL(TO.LONDON) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)

 CONNAME(LONDON.CHSTORE.COM) CLUSTER(INVENTORY)

 DESCR('TCP Cluster-receiver channel for queue manager LONDON')

AMQ8014: Websphere MQ channel created.

07/09/98 12:56:35 No repositories for cluster 'INVENTORY'

In this example the channel name is TO.LONDON, and the connection name (CONNAME) is the network address of the machine the queue
manager resides on, which is LONDON.CHSTORE.COM. The network address can be entered as an alphanumeric DNS hostname, or an IP

address in either in IPv4 dotted decimal form (for example 9.20.9.30) or IPv6 hexadecimal form (for example
fe80:43e4:0204:acff:fe97:2c34:fde0:3485). Do not allow the CONNAME to specify a generic name. The port number is not specified, so
the default port (1414) is used.

On the NEWYORK queue manager, define:

DEFINE CHANNEL(TO.NEWYORK) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)

CONNAME(NEWYORK.CHSTORE.COM) CLUSTER(INVENTORY)

DESCR('TCP Cluster-receiver channel for queue manager NEWYORK')

Note: If the channel listener is using the default port, typically 1414, and the cluster does not include a queue manager on z/OS, you

can omit the CONNAME:

DEFINE CHANNEL(TO.NEWYORK) CHLTYPE(CLUSRCVR) TRPTYPE(TCP) CLUSTER(INVENTORY)

DESCR('TCP Cluster-receiver channel for queue manager NEWYORK')

4b. Using transport protocol LU 6.2

Page 14 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

On the LONDON queue manager, define:

DEFINE CHANNEL(TO.LONDON) CHLTYPE(CLUSRCVR) TRPTYPE(LU62)

CONNAME(LONDON.LUNAME) CLUSTER(INVENTORY)

MODENAME('#INTER') TPNAME('MQSERIES')

DESCR('LU62 Cluster-receiver channel for queue manager LONDON')

 1 : DEFINE CHANNEL(TO.LONDON) CHLTYPE(CLUSRCVR) TRPTYPE(LU62)

 CONNAME(LONDON.LUNAME) CLUSTER(INVENTORY)

 MODENAME('#INTER') TPNAME('MQSERIES')

 DESCR('LU62 Cluster-receiver channel for queue manager LONDON')

AMQ8014: Websphere MQ channel created.

07/09/98 12:56:35 No repositories for cluster 'INVENTORY'

In this example the channel name is TO.LONDON, and the connection name (CONNAME) specifies the LU name of the queue manager,
which is LONDON.LUNAME. Do not allow the CONNAME to specify a generic LU name.

On the NEWYORK queue manager, define:

DEFINE CHANNEL(TO.NEWYORK) CHLTYPE(CLUSRCVR) TRPTYPE(LU62)

CONNAME(NEWYORK.LUNAME) CLUSTER(INVENTORY)

MODENAME('#INTER') TPNAME('MQSERIES')

DESCR('LU62 Cluster-receiver channel for queue manager NEWYORK')

5. Define the CLUSSDR channels

On every queue manager in a cluster you need to define one cluster-sender channel on which the queue manager can send messages to

one of the full repository queue managers. In this case there are only two queue managers, both of which hold full repositories. They
must each have a CLUSSDR definition that points to the CLUSRCVR channel defined at the other queue manager. Note that the channel
names given on the CLUSSDR definitions must match those on the corresponding CLUSRCVR definitions.

Choose one of the following examples.

5a. Using transport protocol TCP/IP

On the LONDON queue manager, define:

DEFINE CHANNEL(TO.NEWYORK) CHLTYPE(CLUSSDR) TRPTYPE(TCP)

CONNAME(NEWYORK.CHSTORE.COM) CLUSTER(INVENTORY)

DESCR('TCP Cluster-sender channel from LONDON to repository at NEWYORK')

 1 : DEFINE CHANNEL(TO.NEWYORK) CHLTYPE(CLUSSDR) TRPTYPE(TCP)

 CONNAME(NEWYORK.CHSTORE.COM) CLUSTER(INVENTORY)

 DESCR('TCP Cluster-sender channel from LONDON to repository at NEWYORK')

AMQ8014: Websphere MQ channel created.

07/09/98 13:00:18 Channel program started.

On the NEWYORK queue manager, define:

DEFINE CHANNEL(TO.LONDON) CHLTYPE(CLUSSDR) TRPTYPE(TCP)

CONNAME(LONDON.CHSTORE.COM) CLUSTER(INVENTORY)

DESCR('TCP Cluster-sender channel from NEWYORK to repository at LONDON')

Using transport protocol LU 6.2

On the LONDON queue manager, either define:

DEFINE CHANNEL(TO.NEWYORK) CHLTYPE(CLUSSDR) TRPTYPE(LU62)

CONNAME(NEWYORK.LUNAME) CLUSTER(INVENTORY)

MODENAME('#INTER') TPNAME('MQSERIES')

DESCR('LU62 Cluster-sender channel from LONDON to repository at NEWYORK')

or

DEFINE CHANNEL(TO.NEWYORK) CHLTYPE(CLUSSDR) TRPTYPE(LU62)

CONNAME(CPIC) CLUSTER(INVENTORY)

DESCR('LU62 Cluster-sender channel from LONDON to repository at NEWYORK')

 1 : DEFINE CHANNEL(TO.NEWYORK) CHLTYPE(CLUSSDR) TRPTYPE(LU62)

 CONNAME(NEWYORK.LUNAME) CLUSTER(INVENTORY)

 MODENAME('#INTER') TPNAME('MQSERIES')

 DESCR('LU62 Cluster-sender channel from LONDON to repository at NEWYORK')

AMQ8014: Websphere MQ channel created.

07/09/98 13:00:18 Channel program started.

or

 2 : DEFINE CHANNEL(TO.NEWYORK) CHLTYPE(CLUSSDR) TRPTYPE(LU62)

 CONNAME(CPIC) CLUSTER(INVENTORY)

 DESCR('LU62 Cluster-sender channel from LONDON to repository at NEWYORK')

AMQ8014: Websphere MQ channel created.

07/09/98 13:00:18 Channel program started.

On the NEWYORK queue manager, define:

DEFINE CHANNEL(TO.LONDON) CHLTYPE(CLUSSDR) TRPTYPE(LU62)

CONNAME(LONDON.LUNAME) CLUSTER(INVENTORY)

DESCR('LU62 Cluster-sender channel from NEWYORK to repository at LONDON')

Once a queue manager has definitions for both a cluster-receiver channel and a cluster-sender channel in the same cluster, the cluster-
sender channel is started.

Page 15 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

6. Define the cluster queue INVENTQ

Define the INVENTQ queue on the NEWYORK queue manager, specifying the CLUSTER keyword.

DEFINE QLOCAL(INVENTQ) CLUSTER(INVENTORY)

 1 : DEFINE QLOCAL(INVENTQ) CLUSTER(INVENTORY)

AMQ8006: Websphere MQ queue created.

The CLUSTER keyword causes the queue to be advertised to the cluster. As soon as the queue is defined it becomes available to the other
queue managers in the cluster. They can send messages to it without having to make a remote-queue definition for it.

Now that you have completed all the definitions, if you have not already done so start the channel initiator on WebSphere MQ for z/OS

and, on all platforms, start a listener program on each queue manager. The listener program listens for incoming network requests and
starts the cluster-receiver channel when it is needed. See Establishing communication in a cluster for more information.

The cluster set up by this task looks like this:

Figure 1. The INVENTORY cluster with two queue managers

Clearly, this is a very small cluster. However, it is useful as a proof of concept. The important thing to understand about this cluster is the
scope it offers for future enhancement.

If you are converting an existing network into a cluster like this, in step 6, you need to alter the existing queue definition. You also need

to delete the remote queue definition at LONDON for the INVENTQ queue. See Task 6: Converting an existing network into a cluster for an
example of this.

7. Verify and test the cluster

Issue some DISPLAY commands to verify the cluster that you have set up. The responses you see should be similar to those shown in the
examples that follow.

From the NEWYORK queue manager, issue the command:

dis clusqmgr(*)

 1 : dis clusqmgr(*)

AMQ8441: Display Cluster Queue Manager details.

 CLUSQMGR(NEWYORK) CLUSTER(INVENTORY)

 CHANNEL(TO.NEWYORK)

AMQ8441: Display Cluster Queue Manager details.

 CLUSQMGR(LONDON) CLUSTER(INVENTORY)

 CHANNEL(TO.LONDON)

Now issue the corresponding DISPLAY CHANNEL STATUS command:

dis chstatus(*)

 1 : dis chstatus(*)

AMQ8417: Display Channel Status details.

 CHANNEL(TO.NEWYORK) XMITQ()

 CONNAME(9.20.40.24) CURRENT

 CHLTYPE(CLUSRCVR) STATUS(RUNNING)

 RQMNAME(LONDON)

AMQ8417: Display Channel Status details.

 CHANNEL(TO.LONDON) XMITQ(SYSTEM.CLUSTER.TRANSMIT.QUEUE)

 CONNAME(9.20.51.25) CURRENT

 CHLTYPE(CLUSSDR) STATUS(RUNNING)

 RQMNAME(LONDON)

Page 16 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

For more details on troubleshooting see Troubleshooting.

Because the INVENTQ queue has been advertised to the cluster there is no need for remote-queue definitions. Applications running on
NEWYORK and applications running on LONDON can put messages to the INVENTQ queue. They can receive responses to their messages
by providing a reply-to queue and specifying its name when they put messages.

Note: The definition for the local queue LONDON_reply does not need the CLUSTER attribute. NEWYORK replies to this queue by explicitly
specifying the queue manager name. Another way of doing is to use a temporary dynamic queue. See the WebSphere MQ Application
Programming Guide for more information.

If you are converting an existing network into a cluster like this, in step 7, you need to alter the existing queue definition. You also need

to delete the remote queue definition at LONDON for the INVENTQ queue. See Task 6: Converting an existing network into a cluster for an
example of this.

7a. Using the sample program

Test your setup by sending some messages between the two queue managers, using amqsput. In the following example LONDON puts a
message to the INVENTQ at NEWYORK:

1. On LONDON issue the command:

� amqsput INVENTQ LONDON

2. Type some messages

3. On NEW YORK issue the command:

� amqsget INVENTQ NEWYORK

4. You should now see the messages you entered on LONDON

7b. Using your own programs

Test your setup by sending some messages between the two queue managers. In the following example LONDON puts a message to the
INVENTQ at NEWYORK and receives a reply on its queue LONDON_reply.

1. Define a local queue called LONDON_reply

2. Set the MQOPEN options to MQOO_OUTPUT

3. Issue the MQOPEN call to open the queue INVENTQ

4. Set the ReplyToQ name in the message descriptor to LONDON_reply

5. Issue the MQPUT call to put the message

6. Commit the message

On NEWYORK:

1. Set the MQOPEN options to MQOO_BROWSE

2. Issue the MQOPEN call to open the queue INVENTQ

3. Issue the MQGET call to get the message from INVENTQ

4. Retrieve the ReplyToQ name from the message descriptor

5. Put the ReplyToQ name in the ObjectName field of the object descriptor

6. Set the MQOPEN options to MQOO_OUTPUT

7. Issue the MQOPEN call to open LONDON_reply at queue manager LONDON

8. Issue the MQPUT call to put the message to LONDON_reply

On LONDON:

1. Set the MQOPEN options to MQOO_BROWSE

2. Issue the MQOPEN call to open the queue LONDON_reply

3. Issue the MQGET call to get the message from LONDON_reply

Parent topic: First tasks

This build: January 26, 2011 11:13:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10430_

1.3.2. Task 2a: Adding a new queue manager to a cluster

Scenario:

� The INVENTORY cluster has been set up as described in Task 1: Setting up a new cluster. It contains two queue managers, LONDON
and NEWYORK, which both hold full repositories.

� A new branch of the chain store is being set up in Paris and you want to add a queue manager called PARIS to the cluster.

� Queue manager PARIS will send inventory updates to the application running on the system in New York by putting messages on the
INVENTQ queue.

� Network connectivity exists between all three systems.

� The network protocol is TCP.

Page 17 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

Procedure

Follow these steps to add a new queue manager to a cluster.

1. Determine which full repository PARIS should refer to first

Every queue manager in a cluster must refer to one or other of the full repositories in order to gather information about the cluster and so

build up its own partial repository. Choose either of the repositories, because as soon as a new queue manager is added to the cluster it
immediately learns about the other repository as well. Information about changes to a queue manager is sent directly to two repositories.
In this example we choose to link PARIS to the queue manager LONDON, purely for geographical reasons.

Note: Perform the remaining steps in any order, after queue manager PARIS is started.

2. Define a CLUSRCVR channel on queue manager PARIS

Every queue manager in a cluster needs to define a cluster-receiver channel on which it can receive messages. On PARIS, define:

DEFINE CHANNEL(TO.PARIS) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)

CONNAME(PARIS.CHSTORE.COM) CLUSTER(INVENTORY)

DESCR('Cluster-receiver channel for queue manager PARIS')

This advertises the queue manager’s availability to receive messages from other queue managers in the cluster INVENTORY. There is no
need to make definitions on other queue managers for a sending end to the cluster-receiver channel TO.PARIS. These will be made

automatically when needed.

3. Define a CLUSSDR channel on queue manager PARIS

Every queue manager in a cluster needs to define one cluster-sender channel on which it can send messages to its initial full repository.
On PARIS, make the following definition for a channel called TO.LONDON to the queue manager whose network address is
LONDON.CHSTORE.COM.

DEFINE CHANNEL(TO.LONDON) CHLTYPE(CLUSSDR) TRPTYPE(TCP)

CONNAME(LONDON.CHSTORE.COM) CLUSTER(INVENTORY)

DESCR('Cluster-sender channel from PARIS to repository at LONDON')

Now that you have completed all the definitions, if you have not already done so, start the channel initiator on WebSphere® MQ for

z/OS® and, on all platforms, start a listener program on queue manager PARIS. The listener program listens for incoming network
requests and starts the cluster-receiver channel when it is needed. See Establishing communication in a cluster for more information.

The cluster set up by this task looks like this:

Figure 1. The INVENTORY cluster with three queue managers

By making only two definitions, a CLUSRCVR definition and a CLUSSDR definition, we have added the queue manager PARIS to the
cluster.

Now the PARIS queue manager learns, from the full repository at LONDON, that the INVENTQ queue is hosted by queue manager

NEWYORK. When an application hosted by the system in Paris tries to put messages to the INVENTQ, PARIS automatically defines a
cluster-sender channel to connect to the cluster-receiver channel TO.NEWYORK. The application can receive responses when its queue-
manager name is specified as the target queue manager and a reply-to queue is provided.

4. Issue the REFRESH CLUSTER command

If you are adding a queue manager to a cluster that has previously been removed from the same cluster, you must issue the REFRESH
CLUSTER command on the queue manager you are adding. This completes the task of adding the queue manager.

REFRESH CLUSTER(INVENTORY) REPOS(YES)

Parent topic: First tasks

This build: January 26, 2011 11:13:53

Page 18 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10580_

1.3.3. Task 2b: Adding a new queue manager to a cluster — using DHCP

The following example makes use of the following:

� the ability to omit the CONNAME value on a CLUSRCVR definition.

� the ability to use +QMNAME+ on a CLUSSDR definition.

Neither of these are possible on z/OS®.

Scenario:

� The INVENTORY cluster has been set up as described in Task 1: Setting up a new cluster. It contains two queue managers, LONDON
and NEWYORK, which both hold full repositories.

� A new branch of the chain store is being set up in Paris and you want to add a queue manager called PARIS to the cluster.

� Queue manager PARIS will send inventory updates to the application running on the system in New York by putting messages on the
INVENTQ queue.

� Network connectivity exists between all three systems.

� The network protocol is TCP.

� The PARIS queue manager system uses DHCP, which means that the IP addresses may change on system restart.

� The channels between the PARIS and LONDON systems are named according to a defined naming convention, which involves the

queue manager name of the full repository queue manager on LONDON.

� Administrators of the PARIS queue manager have no information about the name of the queue manager on the LONDON repository,
or the name of the queue manager on the LONDON repository is subject to change.

Procedure

Follow these steps to add a new queue manager to a cluster — using DHCP.

1. Determine which full repository PARIS should refer to first

Every queue manager in a cluster must refer to one or other of the full repositories in order to gather information about the cluster and so

build up its own partial repository. Choose either of the repositories, because as soon as a new queue manager is added to the cluster it
immediately learns about the other repository as well. Information about changes to a queue manager is sent directly to two repositories.
In this example we choose to link PARIS to the queue manager LONDON, purely for geographical reasons.

Note: Perform the remaining steps in any order, after queue manager PARIS is started.

2. Define a CLUSRCVR channel on queue manager PARIS

Every queue manager in a cluster needs to define a cluster-receiver channel on which it can receive messages. On PARIS, define:

DEFINE CHANNEL(TO.PARIS) CHLTYPE(CLUSRCVR)

TRPTYPE(TCP) CLUSTER(INVENTORY)

DESCR('Cluster-receiver channel for queue manager PARIS')

This advertises the queue manager's availability to receive messages from other queue managers in the cluster INVENTORY. There is no
need to specify the CONNAME, you can request WebSphere® MQ to find out the connection name from the system either by omitting

CONNAME, or by specifying CONNAME(' '). WebSphere MQ generates the CONNAME value using the current IP address of the system.

There is no need to make definitions on other queue managers for a sending end to the cluster-receiver channel TO.PARIS. These will be
made automatically when needed.

3. Define a CLUSSDR channel on queue manager PARIS

Every queue manager in a cluster needs to define one cluster-sender channel on which it can send messages to its initial full repository.
On PARIS, make the following definition for a channel called TO.+QMNAME+ to the queue manager whose network address is

LONDON.CHSTORE.COM.

DEFINE CHANNEL(TO.+QMNAME+) CHLTYPE(CLUSSDR) TRPTYPE(TCP)

CONNAME(LONDON.CHSTORE.COM) CLUSTER(INVENTORY)

DESCR('Cluster-sender channel from PARIS to repository at LONDON')

The cluster set up by this task is the same as for Task 2a: Adding a new queue manager to a cluster:

Figure 1. The INVENTORY cluster with three queue managers

Page 19 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

By making only two definitions, a CLUSRCVR definition and a CLUSSDR definition, we have added the queue manager PARIS to the
cluster.

On the PARIS queue manager, the CLUSSDR containing the string +QMNAME+ starts. On the LONDON system WebSphere MQ resolves
the +QMNAME+ to the queue manager name (LONDON). WebSphere MQ then matches the definition for a channel called TO.LONDON to
the corresponding CLUSRCVR definition.

WebSphere MQ sends back the resolved channel name to the PARIS queue manager. At PARIS, the CLUSSDR channel definition for the
channel called TO.+QMNAME+ is replaced by an internally-generated CLUSSDR definition for TO.LONDON. This definition contains the
resolved channel name, but otherwise is the same as the +QMNAME+ definition that you made. The cluster repositories are also brought
up-to-date with the channel definition with the newly-resolved channel name.

Note:

1. The channel created with the +QMNAME+ name becomes inactive immediately. It is never used to transmit data.

2. Channel exits may see the channel name change between one invocation and the next.

Now the PARIS queue manager learns, from the repository at LONDON, that the INVENTQ queue is hosted by queue manager NEWYORK.
When an application hosted by the system in Paris tries to put messages to the INVENTQ, PARIS automatically defines a cluster-sender
channel to connect to the cluster-receiver channel TO.NEWYORK. The application can receive responses when its queue-manager name is
specified as the target queue manager and a reply-to queue is provided.

4. Issue the REFRESH CLUSTER command

If you are adding a queue manager to a cluster that has previously been removed from the same cluster, you must issue the REFRESH

CLUSTER command on the queue manager you are adding. This completes the task of adding the queue manager.

 REFRESH CLUSTER(INVENTORY) REPOS(YES)

Parent topic: First tasks

This build: January 26, 2011 11:13:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10630_

2. Using queue manager clusters

How queue manager clusters work

Using clusters for workload management

Using WebSphere MQ commands with clusters

Managing WebSphere MQ clusters

Keeping clusters secure

Advanced tasks
The advanced tasks show you how to modify a simple cluster in various ways, and how to convert an existing network into a cluster.

Advanced workload balancing tasks
The workload balancing tasks demonstrate how to use the workload management parameters to control the distribution of messages

Page 20 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

around clusters.

Parent topic: Queue Manager Clusters

This build: January 26, 2011 11:13:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10680_

2.1. How queue manager clusters work

This chapter provides more detailed information about clusters and how they work. It discusses:

� Components of a cluster

� What makes clustering work?

� Using aliases and remote-queue definitions with clusters

Components of a cluster

What makes clustering work?

Using aliases and remote-queue definitions with clusters

Parent topic: Using queue manager clusters

This build: January 26, 2011 11:13:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10690_

2.1.1. Components of a cluster

Let us now consider how the components of a cluster work together and look at some more of the components and features of
WebSphere® MQ clusters.

Queue managers and repositories

Queues

Cluster transmission queue

Cluster channels
You must define cluster-receiver and cluster-sender channels for queue managers in your cluster. Special considerations apply to full

repositories.

Auto-definition of remote queues

Auto-definition of channels

Parent topic: How queue manager clusters work

This build: January 26, 2011 11:13:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10700_

2.1.1.1. Queue managers and repositories

Every cluster has at least one (preferably two) queue managers holding full repositories of information about the queue managers,
queues, and channels in a cluster. These repositories also contain requests from the other queue managers in the cluster for updates to
the information.

The other queue managers each hold a partial repository, containing information about the subset of queues and queue managers with
which they need to communicate. The queue managers build up their partial repositories by making inquiries when they first need to
access another queue or queue manager, and by requesting that thereafter they be notified of any new information concerning that queue

or queue manager.

Each queue manager stores its repository information in messages on a queue called SYSTEM.CLUSTER.REPOSITORY.QUEUE. The queue
managers exchange repository information in messages on a queue called SYSTEM.CLUSTER.COMMAND.QUEUE.

Each queue manager that joins a cluster defines a cluster-sender (CLUSSDR) channel to one of the repositories. When it does this, it
immediately learns which other queue managers in the cluster hold full repositories. From then on the queue manager can request

Page 21 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

information from any of the repositories. When the queue manager sends out any information about itself, for example when it creates a
new queue definition, this information is sent to the chosen repository and also to one other repository (if there is one).

A full repository is updated when the queue manager hosting it receives new information from one of the queue managers that is linked to
it. The new information is also sent to another repository, to reduce the risk of it being delayed if a repository queue manager is out of
service. Because all the information is sent twice, the repositories have to discard duplicates. Each item of information carries a sequence

number, which the repositories use to identify duplicates. All repositories are kept in step with each other by exchanging messages.

Parent topic: Components of a cluster

This build: January 26, 2011 11:13:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10710_

2.1.1.2. Queues

A queue manager that hosts cluster queues must advertise its queues to the cluster. It does this using the DEFINE QLOCAL command with
the CLUSTER option, for example:

DEFINE QLOCAL(Q1) CLUSTER(SALES)

Once a queue has been advertised, any queue manager in the cluster can put messages to it. To put a message, the queue manager has
to find out, from the full repositories, where the queue is hosted. Then it adds some routing information to the message and puts the

message on its cluster transmission queue.

Parent topic: Components of a cluster

This build: January 26, 2011 11:13:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10720_

2.1.1.3. Cluster transmission queue

Each cluster queue manager has a cluster transmission queue called SYSTEM.CLUSTER.TRANSMIT.QUEUE. A definition for this queue (and
others required for clustering) is created by default on every queue manager except on z/OS® where it can be defined using the supplied
sample CSQ4INSX.

A queue manager that is part of a cluster can send messages on the cluster transmission queue to any other queue manager that is in the
same cluster.

Note: Applications must not write directly to the cluster transmission queue. They write to named queues that resolve to the cluster
transmission queue. Similarly, you must not specify the cluster transmission queue as a named transmission queue in a remote queue
definition, or specify it as the queue manager's default transmission queue.

Queue managers can also communicate with other queue managers that are not part of a cluster. To do this, a queue manager must

define channels and a transmission queue to the other queue manager, in the same way as in a distributed-queuing environment.

During name resolution, the cluster transmission queue takes precedence over the default transmission queue. When a queue manager
that is not part of a cluster puts a message to a remote queue, the default action, if there is no transmission queue with the same name

as the destination queue manager, is to use the default transmission queue. When the sending queue manager is part of a cluster, the
default action, if there is no transmission queue with the same name as the destination queue manager, is to use
SYSTEM.CLUSTER.TRANSMIT.QUEUE, except when the destination queue is not part of the cluster. In short, if the normal resolution takes
place, the normal transmission queue is used if the queue is resolved using the full repository, SYSTEM.CLUSTER.TRANSMIT.QUEUE is

used.

Parent topic: Components of a cluster

This build: January 26, 2011 11:13:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10730_

2.1.1.4. Cluster channels

You must define cluster-receiver and cluster-sender channels for queue managers in your cluster. Special considerations apply to full

repositories.

WebSphere MQ Intercommunication describes how message channels are used in distributed queuing. Within clusters, messages are
distributed between cluster queue managers on a special type of channel for which you need cluster-receiver channel definitions and

cluster-sender channel definitions.

A cluster-receiver channel definition defines a channel on which a queue manager can receive messages. A queue manager’s CLUSRCVR
definition enables other queue managers to auto-define their corresponding CLUSSDR channel definitions to that queue manager. First

each queue manager must manually define a cluster-sender channel. This definition enables the queue manager to make its initial contact
with the cluster. It names the full repository queue manager to which the queue manager preferentially chooses to send cluster

Page 22 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

information.

The CLUSSDR definitions made on the full repository queue managers are special. All the updates exchanged by the full repositories flow
exclusively on these channels. The administrator controls the network of full repositories explicitly. The administrator must define a
CLUSSDR channel from every full repository queue manager to every other full repository queue manager in the cluster .The administrator
must make the CLUSSDR definitions on full repository queue managers manually and not leave them to be auto-defined.

Parent topic: Components of a cluster

This build: January 26, 2011 11:13:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10740_

2.1.1.5. Auto-definition of remote queues

A queue manager in a cluster does not need a remote-queue definition for remote queues in the cluster. The cluster queue manager finds

the location of a remote queue from the full repository. It adds routing information to the message and puts it on the cluster transmission
queue. WebSphere® MQ automatically creates a definition equivalent to a remote-queue definition so that the message can be sent.

You cannot alter or delete an automatically created remote-queue definition. However, by using the DISPLAY QUEUE runmqsc command

with the CLUSINFO attribute, you can view all of the local queues on a queue manager as well as all of the cluster queues, including those

on remote queue managers. For example:

DISPLAY QUEUE(*) CLUSINFO

See the WebSphere MQ Script (MQSC) Command Reference book for more information about the DISPLAY QUEUE command.

Parent topic: Components of a cluster

This build: January 26, 2011 11:13:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10750_

2.1.1.6. Auto-definition of channels

When you use distributed queuing, a queue manager must have a definition for a sender channel before it can send a message to a
remote destination.

When a queue manager has joined a cluster by making its initial CLUSSDR and CLUSRCVR definitions, it does not need to make any other

definitions for channels to other queue managers in the cluster. WebSphere® MQ automatically makes cluster-sender channel definitions
when they are needed. When both the cluster-sender end and the cluster-receiver end of a channel are defined, the channel is started. An
auto-defined channel remains active until it is no longer needed and is shut down using the normal disconnect-interval rules.

Auto-defined cluster-sender channels take their attributes from those specified in the corresponding cluster-receiver channel definition on
the receiving queue manager. Even if there is a manually-defined cluster-sender channel, its attributes are automatically modified to
ensure that they match those on the corresponding cluster-receiver definition. Always be aware of this, suppose, for example that you
define a CLUSRCVR without specifying a port number in the CONNAME parameter, and manually define a CLUSSDR that does specify a

port number. When the auto-defined CLUSSDR replaces the manually defined one, the port number (taken from the CLUSRCVR) becomes
blank. The default port number is used and the channel fails.

You cannot modify an auto-defined cluster-sender definition.

You cannot see automatically-defined channels using the DISPLAY CHANNEL command. To see the auto-defined channels use the
command DISPLAY CLUSQMGR(qmname). You can also use the command DISPLAY CHSTATUS(channelname) to display the status of the
auto-defined CLUSSDR channel corresponding to the CLUSRCVR channel definition you created. For more information about these

commands, see the WebSphere MQ Script (MQSC) Command Reference book.

You can enable the WebSphere MQ channel auto-definition exit if you want to write a user exit program to customize a cluster-sender
channel or cluster-receiver channel. You might, for example, do this in a cluster environment to:

� Tailor communications definitions, that is, SNA LU6.2 names

� Add or remove other exits, for example, security exits

� Change the names of channel exits. The format of exit names is different on different platforms. For example, on z/OS® the format
of the SCYEXIT (security exit name) parameter is SCYEXIT('SECEXIT'), whereas on Windows it is SCYEXIT('drive:/path/library
(secexit)'). If there is no channel auto-definition exit, the z/OS queue manager derives the exit name as follows:

Exit names on platforms other than z/OS are of the general form path/library(function). If function is present, up to eight chars of
that are used. Otherwise, library, truncated to eight chars is used. For example:

� "/var/mqm/exits/myExit.so(MsgExit)" converts to "MSGEXIT"

� "/var/mqm/exits/myExit" converts to "MYEXIT"

� "/var/mqm/exits/myExit.so(ExitLongName)" converts to "EXITLONG"

See WebSphere MQ Intercommunication for information about the channel auto-definition exit and how to use it.

To enable an outbound (TCP) channel to use a particular IP address, port or port range, use the channel attribute LOCLADDR. This is

useful if you have more than one network card and you want a channel to use a specific one for outbound communications.

Page 23 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

If you want to specify a virtual IP address (or a port range) on CLUSSDR channels, use the IP address from the LOCLADDR on a manually

defined CLUSSDR, and the port range from the CLUSRCVR.

If a cluster needs to use LOCLADDR to get the outbound communication channels to bind to a specific IP address, you must write a
Channel Auto-Definition Exit in order to force the LOCLADDR value into any of their automatically defined CLUSSDR channels, and you

must specify it in the manually defined CLUSSDR channel.

Do not put an IP address in the LOCLADDR field of a CLUSRCVR channel, unless all queue managers are on the same machine. This is
because any queue manager that attempts to connect to a queue manager with an IP address in the LOCLADDR field of its CLUSRCVR will

have these values propagated to their auto-defined CLUSSDR channels.

You can put a port number or port range in the LOCLADDR of a CLUSRCVR channel, if you want all the queue managers in a cluster to use
a specific port or range of ports, for all their outbound communications

Auto-defined cluster sender channel definitions are not real channel objects and on platforms other than z/OS, the OAM (object authority
manager) is not aware of their existence. If you try to issue start, stop, ping, reset, or resolve commands on auto-defined cluster sender
channels, the OAM checks to see whether you are authorized to perform the same action on the cluster receiver channel for the cluster.

On z/OS, you can secure a cluster-sender channel in the same way as any other channel.

If the cluster needs to use PROPCTL to remove application headers such as RFH2 from messages going from a WebSphere MQ Version 7

queue manager to a queue manager on an earlier level of WebSphere MQ, you must write a Channel Auto-Definition Exit that forces
PROPCTL to a value of NONE. The exit is necessary because cluster-sender channels have their definition based on the corresponding
cluster-receiver channels. As the earlier level cluster-receiver channel does not have a PROPCTL attribute, the attribute is set to COMPAT
by the auto cluster-sender channel. The attribute is set to COMPAT regardless of what is set on the manual cluster-sender channel.

Parent topic: Components of a cluster

This build: January 26, 2011 11:13:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10760_

2.1.2. What makes clustering work?

Defining a cluster-sender channel has the effect of introducing a queue manager to one of the full repository queue managers. The full

repository queue manager updates the information in its full repository accordingly. Then it automatically creates a cluster-sender channel
back to the queue manager, and sends the queue manager information about the cluster. Thus a queue manager learns about a cluster
and a cluster learns about a queue manager.

Look again at Figure 1. Suppose that queue manager QM1 wants to send some messages to the queues at QM2. It knows what queues
are available at QM2, because QM2 has defined a cluster-sender channel to it and so introduced itself. QM1 has defined a cluster-sender
channel to QM2, on which it can send messages.

QM3 has introduced itself to QM2. Because QM1 also holds a full repository, QM2 has passed on all the information about QM3 to QM1.
Therefore, QM1 knows what queues are available at QM3, and what cluster-receiver channel QM3 has defined. If QM1 wants to send some
messages to queues at QM3, it automatically creates a cluster-sender channel connecting to the cluster-receiver channel at QM3.

Figure 1 shows the same cluster, with the two cluster-sender channels that have been created automatically. (These are represented by
the two dashed lines that join with the cluster-receiver channel TO.QM3.) It also shows the cluster transmission queue,
SYSTEM.CLUSTER.TRANSMIT.QUEUE, which QM1 uses to send its messages. All queue managers in the cluster have a cluster
transmission queue, from which they can send messages to any other queue manager in the same cluster.

Figure 1. A cluster of queue managers, showing auto-defined channels

Page 24 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

The auto-definition of cluster-sender channels—defined automatically when needed—is crucial to the function and efficiency of clusters.

However, so that you can see only what you need to define to make clusters work, the diagrams throughout this book show only channels
(or the receiving ends of channels) for which you make manual definitions.

Parent topic: How queue manager clusters work

This build: January 26, 2011 11:13:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10770_

2.1.3. Using aliases and remote-queue definitions with clusters

There are three types of alias; queue-manager aliases, reply-to queue aliases, and queue aliases. These apply in a clustered environment
just as well as in a distributed-queuing environment. This section describes how to use aliases with clusters. When reading this section,
you might need to refer to the WebSphere MQ Application Programming Guide.

Queue-manager aliases

Reply-to queue aliases

Queue aliases

Examples of using aliases within clusters

Parent topic: How queue manager clusters work

This build: January 26, 2011 11:13:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10780_

2.1.3.1. Queue-manager aliases

The concept of queue-manager aliasing is described in detail in the WebSphere MQ Intercommunication book.

Queue-manager aliases, which are created using a remote-queue definition with a blank RNAME, have four uses:

Remapping the queue-manager name when sending messages

A queue-manager alias can be used to remap the queue-manager name specified in an MQOPEN call to another queue-manager. This

can be a cluster queue manager. For example, a queue manager might have the queue-manager alias definition:

DEFINE QREMOTE(YORK) RNAME(' ') RQMNAME(CLUSQM)

This defines YORK as a queue-manager name that can be used as an alias for the queue manager called CLUSQM. When an application
on the queue manager that made this definition puts a message to queue manager YORK, the local queue manager resolves the name
to CLUSQM. If the local queue manager is not called CLUSQM, it puts the message on the cluster transmission queue to be moved to

CLUSQM, and changes the transmission header to say CLUSQM instead of YORK.

Note: This does not mean that all queue managers in the cluster resolve the name YORK to CLUSQM. The definition applies only on the
queue manager that makes it. To advertise the alias to the whole cluster, you need to add the CLUSTER attribute to the remote-queue

definition. Then messages from other queue managers that were destined for YORK are sent to the queue manager with the alias
definition and the alias is resolved.

Altering or specifying the transmission queue when sending messages

This method of aliasing can be used to join a cluster to a non-cluster system. For example, for queue managers in the cluster ITALY to
communicate with the queue manager called PALERMO, which is outside the cluster, one of the queue managers in the cluster must act
as a gateway. From this queue manager, issue the command:

DEFINE QREMOTE(ROME) RNAME(' ') RQMNAME(PALERMO) XMITQ(X) CLUSTER(ITALY)

This is a queue-manager alias definition, which defines and advertises ROME as a queue manager over which messages from any queue
manager in the cluster ITALY can multi-hop to reach their destination at PALERMO. Any message put to a queue opened with the queue-
manager name set to ROME in the open handle, is sent to the gateway queue manager, where the queue manager alias definition was
made. Once there, it is put on the transmission queue X and moved by conventional, non-cluster channels to the queue manager

PALERMO.

The choice of the name ROME in this example is not significant. The values for QREMOTE and RQMNAME could both be the same.

Determining the destination when receiving messages

When a queue manager receives a message, it looks in the transmission header to see the name of the destination queue and queue
manager. If it has a queue-manager alias definition with the same name as the queue manager referenced, it substitutes the RQMNAME
from its definition for the queue manager name in the transmission header.

There are two reasons for using a queue-manager alias in this way:

� To direct messages to another queue manager

Page 25 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

� To alter the queue manager name to be the same as the local queue manager

Using a queue manager as a gateway into the cluster.

This enables workload balancing for messages coming from outside the cluster.

Suppose you have a queue called EDINBURGH on more than one queue manager in the cluster, and you want the clustering mechanism

to balance the workload for messages coming to that queue from outside the cluster.

A queue manager from outside the cluster needs a transmit queue and sender channel to one queue manager in the cluster, which is
called a gateway queue manager. To take advantage of the default workload balancing mechanism, one of the following must apply:

� The gateway queue manager must not contain an instance of the EDINBURGH queue.

� The gateway queue manager specifies CLWLUSEQ(ANY) on ALTER QMGR.

� The EDINBURGH queue on the gateway queue manager specifies CLWLUSEQ(ANY).

For an example of this see Putting from a queue manager outside the cluster - alternative techniques

Parent topic: Using aliases and remote-queue definitions with clusters

This build: January 26, 2011 11:13:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10790_

2.1.3.2. Reply-to queue aliases

A reply-to queue alias definition is used to specify alternative names for reply information. Reply-to queue alias definitions can be used in
conjunction with clusters just the same as in a distributed queuing environment. For example:

� Queue manager VENICE sends a message to queue manager PISA using the MQPUT call and specifying the following in the message
descriptor:

ReplyToQ=‘QUEUE’

ReplyToQMgr=‘’

� So that replies sent to QUEUE can be received on OTHERQ at PISA, create a reply-to queue alias definition on VENICE:

DEFINE QREMOTE(QUEUE) RNAME(OTHERQ) RQMNAME(PISA)

This form of remote-queue definition creates a reply-to alias. This alias is effective only on the system on which it was created.

RQMNAME and QREMOTE can specify the same names, even if RQMNAME is itself a cluster queue manager.

See the WebSphere MQ Intercommunication book for more information.

Parent topic: Using aliases and remote-queue definitions with clusters

This build: January 26, 2011 11:13:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10800_

2.1.3.3. Queue aliases

A QALIAS definition is used to create an ALIAS by which a queue is to be known. You might do this if, for example, you want to start using
a different queue but you do not want to change your applications. You might also do this if for some reason you do not want your
applications to know the real name of the queue to which they are putting messages, or because you have a naming convention that

differs from the one where the queue is defined. Another reason might be security; your applications might not be authorized to access
the queue by its real name but only by its alias.

You create a QALIAS definition on a queue manager using the DEFINE QALIAS command. For example, the command:

DEFINE QALIAS(PUBLIC) TARGQ(LOCAL) CLUSTER(C)

advertises a queue called PUBLIC to the queue managers in cluster C. PUBLIC is an alias that resolves to the queue called LOCAL.
Messages sent to PUBLIC are routed to the queue called LOCAL.

You can also use a queue alias definition to resolve a queue name to a cluster queue. For example the command:

DEFINE QALIAS(PRIVATE) TARGQ(PUBLIC)

enables a queue manager to use the name PRIVATE to access a queue advertised elsewhere in the cluster by the name PUBLIC. Because
this definition does not include the CLUSTER attribute it applies only to the queue manager that makes it.
Parent topic: Using aliases and remote-queue definitions with clusters

This build: January 26, 2011 11:13:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10810_

2.1.3.4. Examples of using aliases within clusters

Page 26 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

Figure 1 and Figure 1 show a queue manager called QM3 that is outside the cluster called DEMO. (QM3 could be a queue manager on a

WebSphere® MQ product that does not support clusters.) QM3 hosts a queue called Q3, which is defined as follows:

DEFINE QLOCAL(Q3)

Inside the cluster are two queue managers called QM1 and QM2. QM2 hosts a cluster queue called Q2, which is defined as follows:

DEFINE QLOCAL(Q2) CLUSTER(DEMO)

To communicate with a queue manager outside the cluster, one or more queue managers inside the cluster must act as a gateway. The
gateway in this example is QM1.

Putting from a queue manager outside a cluster
When putting from a queue manager outside the cluster, consider how you refer to queues and queue managers inside the cluster to

hide as much of the inner details of the cluster as possible.

Replying to a queue manager outside the cluster

Putting from a queue manager outside the cluster - alternative techniques

Putting to a queue manager outside the cluster

Replying from a queue manager outside the cluster

Putting across clusters

Parent topic: Using aliases and remote-queue definitions with clusters

This build: January 26, 2011 11:13:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10820_

2.1.3.4.1. Putting from a queue manager outside a cluster

When putting from a queue manager outside the cluster, consider how you refer to queues and queue managers inside the cluster to hide

as much of the inner details of the cluster as possible.

Figure 1. Putting from a queue manager outside the cluster

Consider how the queue manager that is outside the cluster puts a message to the queue Q2 at QM2, that is inside the cluster.

Page 27 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

The queue manager outside the cluster (QM3 in Figure 1) must have a QREMOTE definition for each queue in the cluster that it wants to

put messages to. For example:

DEFINE QREMOTE(Q2) RNAME(Q2) RQMNAME(QM2) XMITQ(QM1)

 You can see this remote queue on QM3 in Figure 1.

Because QM3 is not part of a cluster, it must communicate using distributed queuing techniques. Therefore, it must also have a sender
channel and a transmission queue to QM1. QM1 needs a corresponding receiver channel. The channels and transmission queues are not
shown explicitly in Figure 1, but we do need to consider the remote queue manager name and the transmission queue name in the
QREMOTE definition carefully. The QREMOTE definition is simple and correct, but it is not wholly satisfactory,

1. It explicitly names the queue manager that is hosting Q2. This is normally to be avoided - do not make the names of queue
managers inside the cluster explicit outside the cluster. Resolving references to queues outside the cluster removes the flexibility to
do workload balancing and to change the queue manager hosting Q2 from within the cluster. The alternative is to replace RQMNAME
with a queue manager alias provided by the cluster administrator. Putting from a queue manager outside the cluster - alternative

techniques describes using queue manager aliases in two different ways to decouple a queue manager outside a cluster from the
management of queue managers inside a cluster.

2. The best practice for naming transmission queues is to give them the name of the target queue manager. In this case the target is a
cluster not a queue manager. If you follow the normal convention and label the transmission queue with the name of the queue
manager to which the sender channel attaches, do you follow an alternative naming scheme, such as using the cluster name as the

name of the transmission queue? In the case of queue managers connecting into the cluster it is a matter of convention. The
reverse is not the case. There are significant implications to following the normal transmission queue naming conventions when
naming the transmission queue used to send responses back from QM1 to QM3. The implications are explained in Replying to a
queue manager outside the cluster.

In this simple example, when an application at QM3 issues an MQPUT call to put a message to Q2, the QREMOTE definition causes the

message to be routed to Q2 at QM2 using the sender channel that is getting messages from the QM1 transmission queue.
Parent topic: Examples of using aliases within clusters

This build: January 26, 2011 11:13:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10830_

2.1.3.4.2. Replying to a queue manager outside the cluster

To form a return path for replies to a queue manager outside the cluster, the gateway (QM1) advertises a queue-manager alias for the

queue manager that is outside the cluster (QM3). It advertises QM3 to the queue managers inside the cluster by adding the cluster
attribute to a queue-manager alias definition for QM3. (Remember that a queue-manager alias definition is like a remote queue definition,
but with a blank RNAME, also that you cannot advertise transmission queues to the cluster) For example:

DEFINE QREMOTE(QM3) RNAME(' ') RQMNAME(QM3) CLUSTER(DEMO)

Again, because QM3 is not part of a cluster, it must communicate using distributed queuing techniques. Therefore, QM1 must also have a
sender channel and a transmission queue to QM3. QM3 needs a corresponding receiver channel. The channels and transmission queues

are not shown explicitly in Figure 1. However we must consider the choice of name for the transmission queue used to forward replies
back from QM1 to QM3. Implicit in the QREMOTE definition, by the omission of the XMITQ attribute, is the name of the transmission queue
is QM3. But this is the same name as we expect to advertise to the rest of the cluster using the queue manager alias. WebSphere MQ
does not allow you to give both the transmission queue and the queue manager alias the same name. The implication is we must create a

transmission queue to forward messages to QM3 with a different name to the queue manager alias and provide this name in the
QREMOTE definition.

DEFINE QREMOTE(QM3) RNAME(' ') RQMNAME(QM3) CLUSTER(DEMO) XMITQ(QM3.XMIT)

The new queue manager alias couples the new transmission queue called QM3.XMIT with the QM3 queue manager alias. It is a simple and

correct solution but not wholly satisfactory. It has broken the naming convention for transmission queues that they are given the same
name as the target queue manager. Are there any alternative solutions that preserve the transmission queue naming convention?

The problem arises because the requester defaulted to passing QM3 as the reply-to queue manager name in the request message that is

sent from QM3. The server on QM2 uses this reply-to information to address QM3 in its replies. In so doing, it requires QM1 to advertise
QM3 as the queue manager alias to return reply messages to and prevents QM1 from using QM3 as the name of the transmission queue.
Instead of defaulting to providing QM3 as the reply to queue manger name, applications on QM3 need to pass a reply-to queue manager
alias to QM1 for reply messages. The gateway queue manager QM1 then advertises the queue manager alias for replies to QM3 rather
than QM3 itself, avoliding the conflict with the name of the transmission queue.

Only two changes are required. Firstly, the QREMOTE at QM1 now advertises our queue manager alias QM3.ALIAS to the rest of the
cluster, coupling it to the name of the real queue manager QM3. QM3 is again the name of the transmission queue to send reply queues
back to QM3.

DEFINE QREMOTE(QM3.ALIAS) RNAME(' ') RQMNAME(QM3) CLUSTER(DEMO)

Secondly, the client application must provide QM3.ALIAS as the name of the reply-to queue manager when it constructs the request
message. It can do this in one of two ways. It can either code "QM3.ALIAS" in the reply-to queue manager name field constructed by

MQPUT in the MQMD (which it it will need to do if it is using a dynamic queue for replies), or it can use a reply-to queue alias (Q3.ALIAS)
rather than a reply-to queue when providing the reply-to queue name. This example shows how to construct the reply-to alias at QM3.

DEFINE QREMOTE(Q3.ALIAS) RNAME(Q3) RQMNAME(QM3.ALIAS)

Note: You cannot demonstrate the use of reply-to queue aliases with AMQSREQ0. It opens the reply-to queue using the queue name
provided in parameter 3 (or the default SYSTEM.SAMPLE.REPLY). It needs another parameter containing the reply-to queue alias to
provide the reply-to queue manager alias for MQPUT.

When the application (app2) on QM2 issues an MQPUT call to send a reply to Q3 at QM3.ALIAS, the reply is sent to the gateway (QM1),
that uses the QM3.ALIAS queue-manager alias to resolve the destination queue manager name.

Note: You can define more than one route out of a cluster.

Parent topic: Examples of using aliases within clusters

Page 28 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

This build: January 26, 2011 11:13:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10840_

2.1.3.4.3. Putting from a queue manager outside the cluster - alternative techniques

There are other ways of putting from a queue manager outside a cluster.

Using a queue manager alias

Using a clustered queue as a queue manager alias

Parent topic: Examples of using aliases within clusters

This build: January 26, 2011 11:13:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10850_

2.1.3.4.3.1. Using a queue manager alias

In the example (see Figure 1) define a queue manager alias on the gateway queue manager QM1 called DEMO,

DEFINE QREMOTE(DEMO) RNAME(' ') RQMNAME(' ')

The QREMOTE definition on QM1 makes the the queue manager alias DEMO known to the gateway queue manager. This lets QM3, the
queue manager outside the cluster, use the queue manager alias DEMO to send messages to cluster queues on DEMO, rather than having
to use an actual queue manager name.

If you adopt the convention of using the cluster name to name the transmission queue connecting to a cluster, then the remote queue
definition for Q2 becomes,

DEFINE QREMOTE(Q2) RNAME(Q2) RQMNAME(DEMO)

Messages destined for Q2 on DEMO are placed on the DEMO transmission queue, and from there transferred by the sender channel to the

gateway queue manager, QM1, and thence routed to any queue manager in the cluster that hosts the cluster queue Q2.
Parent topic: Putting from a queue manager outside the cluster - alternative techniques

This build: January 26, 2011 11:13:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10860_

2.1.3.4.3.2. Using a clustered queue as a queue manager alias

Figure 1. Putting from a queue manager outside the cluster

In this scenario, the queue manager outside the cluster (QM3 in Figure 1) needs to put messages to the queue Q2, which occurs on two

queue managers within cluster DEMO, and to exploit workload balancing. A queue named Q2 occurs on the queue managers QM2 and
QM4 but not on the gateway queue manager QM1.

Page 29 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

Because QM3 is not part of a cluster, it must communicate using distributed queuing techniques. Therefore, it must also have a sender

channel and a transmission queue to QM1. QM1 needs a corresponding receiver channel. The channels and transmission queues are not
shown explicitly in Figure 1.

QM3 has a QREMOTE definition for each queue in the cluster that it wants to put messages to. For example:

DEFINE QREMOTE(Q2) RNAME(Q2) RQMNAME(Q3) XMITQ(QM1)

QM2 and QM4 each have a local queue called Q2, defined as follows:

DEFEINE QLOCAL(Q2) DEFBIND(NOTFIXED)

and a cluster queue manager alias, Q3, defined as follows:

DEFINE QREMOTE(Q3) RNAME(' ') RQMNAME(' ') CLUSTER(DEMO) DEFBIND(NOTFIXED)

QM1, the gateway queue manager, has no special definitions.

When an application at QM3 issues an MQPUT call to put a message to Q2, the QREMOTE definition causes the message to be routed
through the gateway queue manager QM1. QM1 uses workload balancing to distribute messages targeted to Q2 between the queues

called Q2 on the two queue managers, QM2 and QM4, which have cluster queue manager aliases for Q3.

Parent topic: Putting from a queue manager outside the cluster - alternative techniques

This build: January 26, 2011 11:13:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10870_

2.1.3.4.4. Putting to a queue manager outside the cluster

Figure 1. Putting to a queue manager outside the cluster

Now let us consider how to put a message from QM2, which is inside the cluster, to the queue Q3 at QM3, which is outside the cluster.

The gateway, in this example QM1, has a QREMOTE definition that advertises the remote queue (Q3) to the cluster:

DEFINE QREMOTE(Q3) RNAME(Q3) RQMNAME(QM3) CLUSTER(DEMO)

It also has a sender channel and a transmission queue to the queue manager that is outside the cluster. QM3 has a corresponding
receiver channel. These are not shown in Figure 1.

To put a message, an application on QM2 issues an MQPUT call specifying the target queue name (Q3) and specifying the name of the
queue to which replies are to be sent (Q2). The message is sent to QM1, which uses its remote-queue definition to resolve the queue
name to Q3 at QM3.

Page 30 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

Note: You may define more than one route out of a cluster.

Parent topic: Examples of using aliases within clusters

This build: January 26, 2011 11:13:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10880_

2.1.3.4.5. Replying from a queue manager outside the cluster

So that QM3 can send replies to the queue managers inside the cluster, it must have a queue-manager alias for each queue manager in

the cluster with which it needs to communicate. This queue-manager alias must specify the name of the gateway through which messages
are to be routed, that is, the name of the transmission queue to the gateway queue manager. In this example, QM3 needs a queue
manager alias definition for QM2:

DEFINE QREMOTE(QM2) RNAME(' ') RQMNAME(QM2) XMITQ(QM1)

QM3 also needs a sender channel and transmission queue to QM1 and QM1 needs a corresponding receiver channel.

The application (app3) on QM3 can then send replies to QM2, by issuing an MQPUT call and specifying the queue name (Q2) and the
queue manager name (QM2).

Parent topic: Examples of using aliases within clusters

This build: January 26, 2011 11:13:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10890_

2.1.3.4.6. Putting across clusters

Instead of grouping all your queue managers together in one big cluster, you can have many smaller clusters with one or more queue

managers in each acting as a bridge. The advantage of this is that you can restrict the visibility of queue and queue-manager names
across the clusters. (See Overlapping clusters.) You can use aliases to change the names of queues and queue managers to avoid name
conflicts or to comply with local naming conventions.

Figure 1. Bridging across clusters

Figure 1 shows two clusters with a bridge between them. (There could be more than one bridge.) QM1 has defined a cluster queue Q1, as

follows:

DEFINE QLOCAL(Q1) CLUSTER(CORNISH)

QM3 has defined a cluster queue Q3, as follows:

DEFINE QLOCAL(Q3) CLUSTER(WINDSOR)

QM2 has created a namelist called CORNISHWINDSOR, containing the names of both clusters:

DEFINE NAMELIST(CORNISHWINDSOR)

 DESCR('CornishWindsor namelist')

 NAMES(CORNISH, WINDSOR)

QM2 has also defined a cluster queue Q2, as follows:

DEFINE QLOCAL(Q2) CLUSNL(CORNISHWINDSOR)

QM2 is a member of both clusters and is the bridge between them. For each queue that you want to make visible across the bridge, you

Page 31 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

need a QALIAS definition on the bridge. For example in Figure 1, on QM2, you need:

DEFINE QALIAS(MYQ3) TARGQ(Q3) CLUSTER(CORNISH) DEFBIND(NOTFIXED)

This means that an application connected to a queue manager in CORNISH (for example QM1), can put a message to a queue, which it

refers to as MYQ3, and this message is routed to Q3 at QM3.

When you open a queue you need to set DEFBIND to either (NOTFIXED) or (QDEF) because if it is left as the default (OPEN) the queue
manager will resolve the alias definition to the bridge queue manager that hosts it, and the bridge will not forward the message on.

For each queue manager that you want to make visible, you need a queue-manager alias definition. For example on QM2 you need:

DEFINE QREMOTE(QM1) RNAME(' ') RQMNAME(QM1) CLUSTER(WINDSOR)

This means that an application connected to any queue manager in WINDSOR (for example QM3), can put a message to any queue on

QM1, by naming QM1 explicitly on the MQOPEN call.

Parent topic: Examples of using aliases within clusters

This build: January 26, 2011 11:13:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10900_

2.2. Using clusters for workload management

This chapter describes the advanced method of using WebSphere® MQ clusters. It describes how you can set up a cluster that has more
than one definition for the same queue, and can therefore benefit from increased availability and workload balancing in your network. This
chapter discusses workload management and the implications of using clusters in this way.

For related information, see Advanced workload balancing tasks.

More than one instance of a queue

Workload balancing

Programming considerations

MQI and clusters

Return codes

Parent topic: Using queue manager clusters

This build: January 26, 2011 11:13:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10910_

2.2.1. More than one instance of a queue

As well as setting up clusters to reduce system administration (as described in Using clusters to ease system administration), you can

create clusters in which more than one queue manager hosts an instance of the same queue.

You can organize your cluster such that the queue managers in it are clones of each other, able to run the same applications and have
local definitions of the same queues. For example, in a z/OS® parallel sysplex the cloned applications might access and update data in a

shared DB2® database or a shared Virtual Storage Access Method (VSAM) database. Because you can have several instances of an
application each receiving messages and running independently of each other, the workload can be spread between your queue
managers.

The advantages of using clusters in this way are:

� Increased availability of your queues and applications

� Faster throughput of messages

� More even distribution of workload in your network

Any one of the queue managers that hosts an instance of a particular queue can handle messages destined for that queue. This means
that applications need not explicitly name the queue manager when sending messages. A workload management algorithm determines
which queue manager should handle the message.

Figure 1 shows a cluster in which there is more than one definition for the queue Q3. When an application at QM1 puts a message to Q3,
it does not necessarily know which instance of Q3 will process its message.

Note: When an application on QM2 or an application on QM4 puts a message to Q3, the local instance of the queue is used by default,
although this depends on how the cluster workload 'use queue' attributes have been set.

If a local queue within the cluster becomes unavailable while a message is in transit, the message is forwarded to another instance of the
queue (but only if the queue was opened (MQOPEN) with the BIND_NOT_FIXED open option). If there are no other instances of the queue

available, the message is placed on the dead letter queue. If a remote queue or an alias queue within the cluster becomes unavailable

Page 32 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

while a message is in transit, the message is placed on the dead letter queue.

Figure 1. A cluster with multiple instances of the same queue

If the destination queue manager goes out of service while there is still a message on the transmission queue for it, the system attempts

to reroute the message. However, in so doing it does not affect the integrity of the message by running the risk of losing it or by creating
a duplicate. If a queue manager fails and leaves a message in doubt, that message is not rerouted.

One factor that can prevent the reallocation of messages by rerouting is whether messages have been assigned to a fixed queue manager

or channel with BIND_ON_OPEN. In this situation messages are never reallocated to another channel. Another factor to consider is the
fact that message reallocation is only driven when a cluster channel is actually failing — the reallocation process is not driven if the
channel has already failed.

On WMQ for z/OS the channel will not completely stop until the message reallocation process is complete. Stopping the channel with
mode(FORCE) or mode(TERMINATE) will interrupt the process - this may mean that some BIND_NOT_FIXED messages have already been
reallocated to another channel or may be out of order.

Note:

1. Before setting up a cluster that has multiple instances of the same queue, ensure that your messages do not have dependencies on
each other, for example needing to be processed in a specific sequence or by the same queue manager. See Programming
considerations.

2. Make the definitions for different instances of the same queue identical. Otherwise you will get different results from different

MQINQ calls.

Task 3: Adding a new queue manager that hosts a queue shows how to set up a cluster with more than one instance of a queue.

In WebSphere® MQ for z/OS, queue managers that are in queue-sharing groups can host cluster queues as shared queues. These cluster

queues are therefore available to all other queue managers in the same queue-sharing group. For example, in Figure 1 either or both of
the queue managers QM2 and QM4 can be a shared-queue manager. Each has a definition for the queue Q3. If a message is put to the
shared queue Q3, on the shared-queue manager QM4, any of the queue managers in the same queue-sharing group can read the
message. Because each queue-sharing group can contain up to 32 queue managers, each with access to the same data, this significantly
increases the throughput of your messages.

Parent topic: Using clusters for workload management

This build: January 26, 2011 11:13:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10920_

2.2.2. Workload balancing

When a cluster contains more than one instance of the same queue, WebSphere® MQ uses an algorithm (the cluster workload

management algorithm) to determine the best queue manager to route a message to. Suitable destinations are chosen, based on the
availability of the queue manager and queue, and a number of cluster workload-specific attributes associated with queue managers,
queues and channels. For more information, see The cluster workload management algorithm.

The cluster workload management algorithm

Cluster workload user exit

Writing and compiling cluster workload exit programs

Page 33 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

Sample cluster workload exit

Parent topic: Using clusters for workload management

This build: January 26, 2011 11:13:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10930_

2.2.2.1. The cluster workload management algorithm

This section lists the workload management algorithm used when determining the final destination for messages being put onto cluster
queues. These rules are influenced by the settings applied to the following attributes for queues, queue managers and channels:

For more information, see Workload balancing attributes.

The algorithm is:

1. If a queue name is specified, queues that are not PUT enabled are eliminated as possible destinations. Remote instances of queues that
do not share a cluster with the local queue manager are then eliminated. Next, remote CLUSRCVR channels that are not in the same

cluster as the queue are eliminated.

2. If a queue manager name is specified, queue manager aliases that are not PUT enabled are eliminated. Remote CLUSRCVR channels
that are not in the same cluster as the local queue manager are then eliminated.

3. If the result above contains the local instance of the queue, and the use-queue attribute of the queue is set to local (CLWLUSEQ
(LOCAL)), or the use-queue attribute of the queue is set to queue manager (CLWLUSEQ(QMGR)) and the use-queue attribute of the queue
manager is set to local (CLWLUSEQ(LOCAL)), the queue is chosen; otherwise a local queue is chosen if the message was not put locally

(that is, the message was received over a cluster channel). User exits are able to detect this using the MQWXP.Flags flag
MQWXP_PUT_BY_CLUSTER_CHL and MQWQR.QFlags flag MQQF_CLWL_USEQ_ANY not set.

4. If the message is a cluster PCF message, any queue manager to which a publication or subscription has already been sent is

eliminated.

4a. All channels to queue managers or queue manager alias with a rank (CLWLRANK) less than the maximum rank of all remaining
channels or queue manager aliases are eliminated.

4b. All queues (not queue manager aliases) with a rank (CLWLRANK) less than the maximum rank of all remaining queues are eliminated.

5. If only remote instances of a queue remain, resumed queue managers are chosen in preference to suspended ones.

6. If more than one remote instance of a queue remains, all channels that are inactive (MQCHS_INACTIVE) or running
(MQCHS_RUNNING) are included.

7. If no remote instance of a queue remains, all channels that are in binding, initializing, starting or stopping state (MQCHS_BINDING,
MQCHS_INITIALIZING, MQCHS_STARTING, or MQCHS_STOPPING) are included.

8. If no remote instance of a queue remains, all channels in retrying state (MQCHS_RETRYING) are included.

9. If no remote instance of a queue remains, all channels in requesting, paused or stopped state (MQCHS_REQUESTING, MQCHS_PAUSED
and MQCHS_STOPPED) are included.

10. If more than one remote instance of a queue remains and the message is a cluster PCF message, locally defined CLUSSDR channels
are chosen.

11. If more than one remote instance of a queue remains to any queue manager, channels with the highest NETPRTY value for each
queue manager are chosen.

11a. If a queue manager is being chosen: all remaining channels and queue manager aliases other than those with the highest priority

(CLWLPRTY) are eliminated. If any queue manager aliases remain, channels to the queue manager are kept.

11b. If a queue is being chosen: all queues other than those with the highest priority (CLWLPRTY) are eliminated, and channels are kept.

11c. All channels except a number of channels with the highest values in MQWDR.DestSeqNumber are eliminated until the number of
remaining channels is no greater than the maximum allowed number of most-recently-used channels (CLWLMRUC).

12. If more than one remote instance of a queue remains, the least recently used channel is chosen (that is, the one with the lowest value

in MQWDR.DestSeqFactor). If there is more than one with the lowest value, one of those with the lowest value in MQWDR.DestSeqNumber
is chosen. The destination sequence factor of the choice is increased by the queue manager, by approximately 1000/(Channel weight)
(CLWLWGHT). The destination sequence factors of all destinations are reset to zero if the cluster workload attributes of available
destinations are altered (CLUSRCVR), or if new cluster destinations become available. Modifications to workload attributes of manually-

Table 1. Attributes for cluster workload management

Queues Queue managers Channels

� CLWLPRTY

� CLWLRANK

� CLWLUSEQ

� CLWLUSEQ

� CLWLMRUC

� CLWLPRTY

� CLWLRANK

� CLWLWGHT

� NETPRTY

Page 34 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

defined CLUSSDR channels do not reset the Destination Sequence Factor.

Note that the distribution of user messages is not always exact, because administration and maintenance of the cluster causes messages
to flow across channels. This can result in an apparent uneven distribution of user messages which can take some time to stabilize.
Because of this, no reliance should be made on the exact distribution of messages during workload balancing.

Parent topic: Workload balancing

This build: January 26, 2011 11:13:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10940_

2.2.2.2. Cluster workload user exit

In most cases the workload management algorithm will be sufficient for your needs. However, so that you can provide your own user-exit
program to tailor workload management, WebSphere® MQ includes a user exit, the cluster workload exit.

If you have some particular information about your network or messages that you could use to influence workload balancing, you might
decide to write a cluster workload exit program or use one supplied by a third party. For example, you might know which are the high-
capacity channels or the cheap network routes, or you might decide that you want to route messages depending upon their content.

The cluster workload exit is called when a cluster queue is opened using the MQOPEN or MQPUT1 call, and when a message is put to a
queue using the MQPUT call. The target queue manager selected at MQOPEN time is fixed if MQOO_BIND_ON_OPEN is specified (see
MQOPEN and clusters). In this case, even if the target queue manager fails, the exit is not run again. In cases where the target queue

manager is not fixed, if the target queue manager chosen at the time of an MQPUT call is unavailable, or fails while the message is still on
the transmission queue, the exit is called again to select a new target queue manager.

You name cluster workload exits in the queue manager definition by specifying the cluster workload exit attribute on the ALTER QMGR

command. For example:

ALTER QMGR CLWLEXIT(myexit)

On platforms other than z/OS®, the queue manager will load the new cluster workload exit the next time the queue manager is started.

If the queue manager definition does not contain a cluster workload exit program name, the cluster workload exit is not called.

Cluster workload exits are called with an exit parameter structure (MQWXP), a message definition structure (MQMD), a message length
parameter, and a copy of the message (or part of the message). See Cluster workload exit call and data structures for reference
information about the cluster workload exit and the associated data structures.

On non-z/OS platforms, when using CLWLMode=FAST, each operating system process loads its own copy of the exit, and different
connections to the queue manager can cause different copies of the exit to be invoked. When the exit is run in the default safe mode
CLWLMode=SAFE, a single copy of the exit runs in its own separate process. For more information on how to set CLWLMode see the

WebSphere MQ System Administration Guide.

Parent topic: Workload balancing

This build: January 26, 2011 11:13:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10950_

2.2.2.3. Writing and compiling cluster workload exit programs

The following guidance applies specifically to cluster workload exit programs. Read it in conjunction with the general application-
programming guidance given in the WebSphere MQ Application Programming Guide.

WebSphere MQ for z/OS

Platforms other than z/OS

Parent topic: Workload balancing

This build: January 26, 2011 11:13:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10960_

2.2.2.3.1. WebSphere MQ for z/OS

Cluster workload exits are invoked as if by a z/OS® LINK in:

� Non-authorized problem program state

� Primary address space control mode

Page 35 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

� Non-cross-memory mode

� Non-access register mode

� 31-bit addressing mode

� Storage key 8

� Program Key Mask 8

� TCB key 8

Put the link-edited modules in the data set specified by the CSQXLIB DD statement of the queue manager address space procedure. The
names of the load modules are specified as the workload exit names in the queue-manager definition.

When writing workload exits for WebSphere® MQ for z/OS, the following rules apply:

� You must write exits in assembler or C. If you use C, it must conform to the C systems programming environment for system exits,
described in the z/OS C/C++ Programming Guide, SC09-4765.

� If using the MQXCLWLN call, link-edit with CSQMFCLW (supplied in thlqual.SCSQLOAD).

� Exits are loaded from the non-authorized libraries defined by a CSQXLIB DD statement. Providing CSQXLIB has DISP=SHR, exits can

be updated while the queue manager is running, with the new version used in the next MQCONN thread the queue manager starts.

� Exits must be reentrant, and capable of running anywhere in virtual storage.

� Exits must reset the environment on return to that at entry.

� Exits must free any storage obtained, or ensure that it will be freed by a subsequent exit invocation.

� No MQI calls are allowed.

� Exits must not use any system services that could cause a wait, because this would severely degrade the performance of the queue
manager. In general, therefore, avoid SVCs, PCs, and I/O.

� Exits must not issue ESTAEs or SPIEs, apart from within any subtasks they attach.

Note that there are no absolute restrictions on what you can do in an exit. However, most SVCs involve waits, so avoid them, except for
the following:

� GETMAIN/FREEMAIN

� LOAD/DELETE

Do not use ESTAEs and ESPIEs because their error handling might interfere with the error handling performed by WebSphere MQ. This
means that WebSphere MQ might not be able to recover from an error, or that your exit program might not receive all the error

information.

The system parameter EXITLIM, which is described in the WebSphere MQ for z/OS System Setup Guide , limits the amount of time an exit
may run for. The default value for EXITLIM is 30 seconds. If you see the return code MQRC_CLUSTER_EXIT_ERROR (2266 X'8DA') your

exit may be looping. If you think the exit needs more than 30 seconds to complete, increase the value of EXITLIM.

Parent topic: Writing and compiling cluster workload exit programs

This build: January 26, 2011 11:13:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10970_

2.2.2.3.2. Platforms other than z/OS®

Cluster workload exits must not use MQI calls. In other respects, the rules for writing and compiling cluster workload exit programs are
similar to the rules that apply to channel exit programs. These are described in detail in the WebSphere MQ Intercommunication book.

For information about building your application, see the WebSphere MQ Application Programming Guide and the WebSphere MQ

Intercommunication book. However you need to resolve the MQXCLWLN function by linking with the mqutl library on Windows NT or the
libmqutl library on the UNIX platforms.

Parent topic: Writing and compiling cluster workload exit programs

This build: January 26, 2011 11:13:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10980_

2.2.2.4. Sample cluster workload exit

WebSphere® MQ includes a sample cluster workload exit program. You can copy this sample and use it as a basis for your own programs.

WebSphere MQ for z/OS®

The sample cluster workload exit program is supplied in Assembler and in C. The Assembler version is called CSQ4BAF1 and can be
found in the library thlqual.SCSQASMS. The C version is called CSQ4BCF1 and can be found in the library thlqual.SCSQC37S.

(thlqual is the target library high-level qualifier for WebSphere MQ data sets in your installation.)

On platforms other than z/OS

The sample cluster workload exit program is supplied in C and is called amqswlm0.c. It can be found in:

Page 36 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

This sample exit routes all messages to a particular queue manager, unless that queue manager becomes unavailable. It reacts to the

failure of the queue manager by routing messages to another queue manager.

You indicate which queue manager you want messages to be sent to by supplying the name of its cluster-receiver channel in the
CLWLDATA attribute on the queue-manager definition. For example:

ALTER QMGR CLWLDATA('TO.myqmgr')

To enable the exit, supply its full path and name in the CLWLEXIT attribute:

On UNIX systems:

ALTER QMGR CLWLEXIT('path/amqswlm(clwlFunction)')

On Windows:

ALTER QMGR CLWLEXIT('path\amqswlm(clwlFunction)')

On z/OS:

ALTER QMGR CLWLEXIT(CSQ4BxF1)

where x is either ‘A’ or ‘C’, depending on the programming language of the version you are using.

On i5/OS:

Enter the MQSC command:

ALTER QMGR CLWLEXIT('AMQSWLM library ')

(both the program name and the library name occupy 10 characters and are blank-padded to the right if necessary). Alternatively, use the
CL command:

CHGMQM MQMNAME(qmgrname) CLWLEXIT('library/AMQSWLM')

Now, instead of using the supplied workload management algorithm, WebSphere MQ calls this exit to route all messages to your chosen
queue manager.

Parent topic: Workload balancing

This build: January 26, 2011 11:13:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc10990_

2.2.3. Programming considerations

Applications can open a queue using the MQOPEN call. Applications use the MQPUT call to put messages onto an open queue. Applications

can put a single message onto a queue that is not already open, using the MQPUT1 call.

If you set up clusters that do not have multiple instances of the same queue, there are no specific application programming
considerations. However, to benefit from the workload management aspects of clustering, you might need to modify your applications. If

you set up a network in which there are multiple definitions of the same queue, review your applications for message affinities as
described in Reviewing applications for message affinities.

Also, be aware of the following:

1. If an application opens a target queue so that it can read messages from it or set its attributes, the MQOPEN call operates only on
the local version of the queue.

2. If an application opens a target queue so that it can write messages to it, the MQOPEN call chooses between all available instances
of the queue when at least one of the following is true:

� A local version of the target queue does not exist.

� The queue manager specifies CLWLUSEQ(ANY) on ALTER QMGR.

� The queue on the queue manager specifies CLWLUSEQ(ANY).

Reviewing applications for message affinities

Parent topic: Using clusters for workload management

This build: January 26, 2011 11:13:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11000_

Table 1. Sample cluster workload exit program location (not z/OS)

AIX® /usr/mqm/samp

HP-UX, Sun Solaris /opt/mqm/samp

Windows C:\Program Files\Websphere MQ\Tools\c\Samples

(Where C is the drive on which you have installed the product.)

i5/OS® The qmqm library

Page 37 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

2.2.3.1. Reviewing applications for message affinities

Before starting to use clusters with multiple definitions of the same queue, examine your applications to see whether there are any that
have message affinities, that is, they exchange related messages. With clusters, a message can be routed to any queue manager that

hosts a copy of the correct queue, affecting the logic of applications with message affinities.

Suppose for example, you have two applications that rely on a series of messages flowing between them in the form of questions and
answers. It might be important that all the questions are sent to the same queue manager and that all the answers are sent back to the

other queue manager. In this situation, it is important that the workload management routine does not send the messages to any queue
manager that just happens to host a copy of the correct queue.

Similarly, you might have applications that require messages to be processed in sequence, for example a file transfer application or

database replication application that sends batches of messages that must be retrieved in sequence.

Note: The use of segmented messages can also cause an affinity problem.

Handling message affinities

Parent topic: Programming considerations

This build: January 26, 2011 11:13:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11010_

2.2.3.1.1. Handling message affinities

If you have applications with message affinities, try, to remove the affinities before starting to use clusters.

Removing message affinities improves the availability of applications. If an application that has message affinities sends a batch of

messages to a queue manager and the queue manager fails after receiving only part of the batch, the sending queue manager must wait
for it to recover before it can send any more messages.

Removing messages affinities also improves the scalability of applications. A batch of messages with affinities can lock resources at the

destination queue manager while waiting for subsequent messages. These resources may remain locked for long periods of time,
preventing other applications from doing their work.

Furthermore, message affinities prevent the cluster workload management routines from making the best choice of queue manager.

To remove affinities, consider the following possibilities:

� Carrying state information in the messages

� Maintaining state information in nonvolatile storage accessible to any queue manager, for example in a DB2® database

� Replicating read-only data so that it is accessible to more than one queue manager

If it is not appropriate to modify your applications to remove message affinities, there are a number of other possible solutions to the
problem. For example, you can:

Name a specific destination on the MQOPEN call

One solution is to specify the remote-queue name and the queue manager name on each MQOPEN call. If you do this, all messages put
to the queue using that object handle go to the same queue manager, which might be the local queue manager.

The disadvantages to this technique are:

� No workload balancing is carried out. This prevents you from taking advantage of the benefits of cluster workload balancing.

� If the target queue manager is remote and there is more than one channel to it, the messages might take different routes and the
sequence of messages is still not preserved.

� If your queue manager has a definition for a transmission queue with the same name as the destination queue manager,

messages go on that transmission queue rather than on the cluster transmission queue.

Return the queue-manager name in the reply-to queue manager field

A variation on the first solution is to allow the queue manager that receives the first message in a batch to return its name in its
response. It does this using the ReplyToQMgr field of the message descriptor. The queue manager at the sending end can then extract
this queue manager name and specify it on all subsequent messages.

The advantage of this method over the previous one is that some workload balancing is carried out to deliver the first message.

The disadvantage of this method is that the first queue manager must wait for a response to its first message and must be prepared to

find and use the ReplyToQMgr information before sending subsequent messages. As with the previous method, if there is more than one
route to the queue manager, the sequence of the messages might not be preserved.

Use the MQOO_BIND_ON_OPEN option on the MQOPEN call

Another solution is to force all your messages to be put to the same destination, do this using the MQOO_BIND_ON_OPEN option on the

MQOPEN call. By opening a queue and specifying MQOO_BIND_ON_OPEN, you force all messages that are sent to this queue to be sent
to the same instance of the queue. MQOO_BIND_ON_OPEN binds all messages to the same queue manager and also to the same route.
For example, if there is an IP route and a NetBIOS route to the same destination, one of these will be selected when the queue is
opened and this selection will be honored for all messages put to the same queue using the object handle obtained.

By specifying MQOO_BIND_ON_OPEN you force all messages to be routed to the same destination. Therefore applications with message
affinities are not disrupted. If the destination is not available, the messages remain on the transmission queue until it becomes available

Page 38 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

again.

MQOO_BIND_ON_OPEN also applies when the queue manager name is specified in the object descriptor when you open a queue. There
might be more than one route to the named queue manager (for example, there might be multiple network paths or another queue
manager might have defined an alias). If you specify MQOO_BIND_ON_OPEN, a route is selected when the queue is opened.

Note: This is the recommended technique. However, it does not work in a multi-hop configuration in which a queue manager advertises
an alias for a cluster queue. Nor does it help in situations in which applications use different queues on the same queue manager for
different groups of messages.

An alternative to specifying MQOO_BIND_ON_OPEN on the MQOPEN call, is to modify your queue definitions. On your queue definitions,
specify DEFBIND(OPEN), and allow the MQOO_BIND option on the MQOPEN call to default to MQOO_BIND_AS_Q_DEF. See Queue

definition commands for more information about using the DEFBIND attribute in queue definitions.

Use the cluster workload exit

Instead of modifying your applications you can circumvent the message affinities problem by writing a cluster workload exit program.
This would not be easy and is not a recommended solution. This program would have to be designed to recognize the affinity by

inspecting the content of messages. Having recognized the affinity, the program would have to force the workload management utility
to route all related messages to the same queue manager.

Parent topic: Reviewing applications for message affinities

This build: January 26, 2011 11:13:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11020_

2.2.4. MQI and clusters

The following WebSphere® MQ application programming interface (API) calls have options to help use clusters:

� MQOPEN

� MQPUT and MQPUT1

� MQINQ

� MQSET

The options on these calls that relate specifically to clustering are described here. This information should be read in conjunction with the
WebSphere MQ Application Programming Reference book, which describes each call in full.

The remainder of this chapter contains general-use programming interface information.

MQOPEN and clusters
The queue to which a message is put to, or read from, when a cluster queue is opened, depends on the MQOPEN call.

MQPUT and MQPUT1

MQINQ

MQSET

Parent topic: Using clusters for workload management

This build: January 26, 2011 11:13:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11030_

2.2.4.1. MQOPEN and clusters

The queue to which a message is put to, or read from, when a cluster queue is opened, depends on the MQOPEN call.

Selecting the target queue

If you do not provide a queue manager name in the object descriptor, MQOD, the queue manager selects the queue manager to send the

message to. If you do provide a queue manager name in the object descriptor, then messages are always sent to the queue manager you
have selected.

If the queue manager is selecting the target queue manager, the selection depends on the binding options, MQOO_BIND_* and if a local

queue exists. If there is a local instance of the queue, it is always opened in preference to a remote instance, unless the CLWLUSEQ

attribute is set to ANY. Otherwise, the selection depends on the binding options.

If the queue manager is selecting the target queue manager, it does so in a "round-robin" fashion, using the workload management
algorithm; see Workload balancing.

MQOO_BIND_ON_OPEN

Page 39 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

The MQOO_BIND_ON_OPEN option on the MQOPEN call specifies that the target queue manager is to be fixed. Use the MQOO_BIND_ON_OPEN

option if there are multiple instances of the same queue within a cluster. All messages put to the queue specifying the object handle
returned from the MQOPEN call are directed to the same queue manager.

� Use the MQOO_BIND_ON_OPEN option if messages have affinities. For example, if a batch of messages is all to be processed by the

same queue manager, specify MQOO_BIND_ON_OPEN when you open the queue. WebSphere® MQ fixes the queue manager and the

route to be taken by all messages put to that queue.

� If MQOO_BIND_ON_OPEN option is specified, the queue must be reopened for a new instance of the queue to be selected.

MQOO_BIND_NOT_FIXED

The MQOO_BIND_NOT_FIXED option on the MQOPEN call specifies that the target queue manage is not fixed. Messages written to the queue

specifying the object handle returned from the MQOPEN call are routed to a queue manager at MQPUT time on a message-by-message

basis. Use the MQOO_BIND_NOT_FIXED option if you do not want to force all your messages to be written to the same destination.

� Do not specify MQOO_BIND_NOT_FIXED and MQMF_SEGMENTATION_ALLOWED at the same time. If you do, the segments of your

message might be delivered to different queue managers, scattered throughout the cluster.

MQOO_BIND_AS_Q_DEF

If you do not specify either MQOO_BIND_ON_OPEN or MQOO_BIND_NOT_FIXED, the default option is MQOO_BIND_AS_Q_DEF. Using

MQOO_BIND_AS_Q_DEF causes the binding that is used for the queue handle to be taken from the DefBind queue attribute.

Relevance of MQOPEN options

The MQOPEN options MQOO_BROWSE, MQOO_INPUT_*, or MQOO_SET require a local instance of the cluster queue for MQOPEN to succeed.

The MQOPEN options MQOO_OUTPUT, MQOO_BIND_*, or MQOO_INQUIRE do not require a local instance of the cluster queue to succeed.

Resolved queue manager name

Parent topic: MQI and clusters

This build: January 26, 2011 11:13:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11040_

2.2.4.1.1. Resolved queue manager name

When a queue manager name is resolved at MQOPEN time, the resolved name is returned to the application. If the application tries to use
this name on a subsequent MQOPEN call, it might find that it is not authorized to access the name.

Parent topic: MQOPEN and clusters

This build: January 26, 2011 11:13:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11050_

2.2.4.2. MQPUT and MQPUT1

If MQOO_BIND_NOT_FIXED is specified on an MQOPEN call, each subsequent MQPUT call invokes the workload management routine to
determine which queue manager to send the message to. The destination and route to be taken are selected on a message-by-message

basis. The destination and route might change after the message has been put if conditions in the network change. The MQPUT1 call
always operates as though MQOO_BIND_NOT_FIXED were in effect, that is, it always invokes the workload management routine.

When the workload management routine has selected a queue manager, the local queue manager completes the put operation. If the

target queue manager is a member of the same cluster as the local queue manager, the local queue manager puts the message on the
cluster transmission queue, SYSTEM.CLUSTER.TRANSMIT.QUEUE, for transmission to the destination. If the target queue manager is
outside the cluster, and the local queue manager has a transmission queue with the same name as the target queue manager, it puts the
message on that transmission queue.

If MQOO_BIND_ON_OPEN is specified on the MQOPEN call, MQPUT calls do not invoke the workload management routine because the
destination and route have already been selected.

Parent topic: MQI and clusters

This build: January 26, 2011 11:13:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11060_

2.2.4.3. MQINQ

Page 40 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

Before you can inquire on a queue, you must open it using the MQOPEN call and specifying MQOO_INQUIRE.

If you have clusters in which there are multiple instances of the same queue, the attributes that can be inquired depend on whether there
is a local instance of the cluster queue, and on how the queue is opened.

If, on the MQOPEN call, in addition to specifying MQOO_INQUIRE, you also specify one of the options MQOO_BROWSE, MQOO_INPUT_*,
or MQOO_SET, there must be a local instance of the cluster queue for the open to succeed. In this case you can inquire on all the
attributes that are valid for local queues.

If, on the MQOPEN call, you specify only MQOO_INQUIRE, or MQOO_INQUIRE and MQOO_OUTPUT (but specify none of the options
MQOO_BROWSE, MQOO_INPUT_*, or MQOO_SET, which always cause the local instance of a cluster queue to be selected), the instance
opened is either:

� The instance on the local queue manager, if there is one, or

� An instance elsewhere in the cluster, if there is no local queue-manager instance

If the queue that is opened is not a local queue, only the attributes listed below can be inquired. The QType attribute has the value
MQQT_CLUSTER in this case.

� DefBind

� DefPersistence

� DefPriority

� InhibitPut

� QDesc

� QName

� QType

To inquire on the DefBind attribute of a cluster queue, use the MQINQ call with the selector MQIA_DEF_BIND. The value returned is either
MQBND_BIND_ON_OPEN or MQBND_BIND_NOT_FIXED. To inquire on the CLUSTER and CLUSNL attributes of the local instance of a
queue, use the MQINQ call with the selector MQCA_CLUSTER_NAME or the selector MQCA_CLUSTER_NAMELIST respectively.

Note: If you open a cluster queue with no fixed binding (that is, specifying MQOO_BIND_NOT_FIXED on the MQOPEN call, or specifying
MQOO_BIND_AS_Q_DEF when the DefBind attribute of the queue has the value MQBND_BIND_NOT_FIXED), successive MQINQ calls
might inquire different instances of the cluster queue.

Parent topic: MQI and clusters

This build: January 26, 2011 11:13:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11070_

2.2.4.4. MQSET

If you open a cluster queue to set its attributes (specifying the MQOO_SET option), there must be a local instance of the cluster queue for
the open to succeed. You cannot use the MQSET call to set the attributes of a queue elsewhere in the cluster. However, if you open an
alias queue or a remote queue defined with the cluster attribute, you can use the MQSET call to set attributes of the alias queue or remote
queue even if the target queue or remote queue it resolves to is a cluster queue.

Parent topic: MQI and clusters

This build: January 26, 2011 11:13:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11080_

2.2.5. Return codes

These are the return codes specific to clusters.

MQRC_CLUSTER_EXIT_ERROR (2266 X'8DA')

Occurs when an MQOPEN, MQPUT, or MQPUT1 call is issued to open a cluster queue or put a message on it, and the cluster workload
exit defined by the queue-manager’s ClusterWorkloadExit attribute fails unexpectedly or does not respond in time.

On WebSphere® MQ for z/OS® a message is written to the system log giving more information about this error.

Subsequent MQOPEN, MQPUT, and MQPUT1 calls for this queue handle are processed as though the ClusterWorkloadExit attribute were

blank.

MQRC_CLUSTER_EXIT_LOAD_ERROR (2267 X'8DB')

On z/OS, if the cluster workload exit cannot be loaded, a message is written to the system log and processing continues as though the
ClusterWorkloadExit attribute is blank.

On platforms other than z/OS, when an MQCONN or MQCONNX call is issued to connect to a queue manager, but the call fails because

the cluster workload exit defined by the queue-manager’s ClusterWorkloadExit attribute cannot be loaded.

Page 41 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

MQRC_CLUSTER_PUT_INHIBITED (2268 X'8DC')

Occurs when an MQOPEN call with the MQOO_OUTPUT and MQOO_BIND_ON_OPEN options in effect is issued for a cluster queue, but all
the instances of the queue in the cluster are currently put-inhibited, that is, all the queue instances have the InhibitPut attribute set to
MQQA_PUT_INHIBITED. Because there are no queue instances available to receive messages, the MQOPEN call fails.

This reason code occurs only when both of the following are true:

� There is no local instance of the queue. (If there is a local instance, the MQOPEN call succeeds, even if the local instance is put-
inhibited.)

� There is no cluster workload exit for the queue, or there is a cluster workload exit but it does not choose a queue instance. (If the
cluster workload exit chooses a queue instance, the MQOPEN call succeeds, even if that instance is put-inhibited.)

If the MQOO_BIND_NOT_FIXED option is specified on the MQOPEN call, the call can succeed even if all the queues in the cluster are put-

inhibited. However, a subsequent MQPUT call may fail if all the queues are still put-inhibited at the time of that call.

MQRC_CLUSTER_RESOLUTION_ERROR (2189 X'88D')

Occurs when an MQOPEN, MQPUT, or MQPUT1 call is issued to open a cluster queue or put a message on it, and the queue definition
cannot be resolved correctly because a response is required from the full repository queue manager but none is available.

Also occurs when an MQOPEN, MQPUT , MQPUT1 or MQSUB call is issued for a topic object specifying PUBSCOPE(ALL) or SUBSCOPE
(ALL), and the cluster topic definition cannot be resolved correctly because a response is required from the full repository queue
manager but none is available.

MQRC_CLUSTER_RESOURCE_ERROR (2269 X'8DD')

Occurs when an MQOPEN, MQPUT, or MQPUT1 call is issued for a cluster queue, but an error occurs while trying to use a resource

required for clustering.

MQRC_NO_DESTINATIONS_AVAILABLE (2270 X'8DE')

Occurs when an MQPUT or MQPUT1 call is issued to put a message on a cluster queue, but at the time of the call there are no longer
any instances of the queue in the cluster. The PUT fails and the message is not sent.

This situation can occur when MQOO_BIND_NOT_FIXED is specified on the MQOPEN call that opens the queue, or MQPUT1 is used to put
the message.

MQRC_STOPPED_BY_CLUSTER_EXIT (2188 X'88C')

Occurs when an MQOPEN, MQPUT, or MQPUT1 call is issued to open or put a message on a cluster queue, but the cluster workload exit
rejects the call.

Parent topic: Using clusters for workload management

This build: January 26, 2011 11:13:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11090_

2.3. Using WebSphere MQ commands with clusters

This chapter gives an overview of all the WebSphere® MQ Script commands (MQSC), attributes, and parameters that apply to the use of
clusters. Read this information in conjunction with the WebSphere Script (MQSC) Command Reference which provides details about all the
MQSC commands, their syntax, attributes, and parameters.

Note that the attributes used in commands shown in the WebSphere MQ Script (MQSC) Command Reference book differ from the full-
length attribute names shown in the WebSphere MQ Application Programming Reference book. See Table 1 and Table 2 for some
examples.

For each MQSC command described here, there is an equivalent Programmable Command Format (PCF) command. For details about PCF
commands, refer to the WebSphere MQ Programmable Command Formats and Administration Interface book.

Throughout this book, MQSC commands are shown as they would be entered by the system administrator at the command console.
Remember that you do not have to issue the commands in this way. There are a number of other methods, depending on your platform.
For example:

� On WebSphere MQ for i5/OS® you run MQSC commands interactively from option 26 of WRKMQM. You can also use CL commands
or you can store MQSC commands in a file and use the STRMQMMQSC CL command. See the WebSphere MQ for i5/OS System
Administration Guide for more information.

� On z/OS® you can use the COMMAND function of the CSQUTIL utility, the operations and control panels or you can use the z/OS
console. These are described in the WebSphere MQ for z/OS System Administration Guide.

� On all other platforms you can store the commands in a file and use runmqsc, as described in the WebSphere MQ System
Administration Guide.

For a complete description of the different methods of issuing MQSC commands, refer to the WebSphere MQ Script (MQSC) Command
Reference book.

The Explorer GUI can administer a cluster with repository queue managers on WebSphere MQ for z/OS Version 6 or later, without the

need for nominating an additional repository on a separate system. For earlier versions of WebSphere MQ for z/OS, the WebSphere MQ
Explorer cannot administer a cluster with repository queue managers. You must therefore nominate an additional repository on a system
that the WebSphere MQ Explorer can administer.

On WebSphere MQ for Windows you can also use WebSphere MQ Explorer to work with clusters. For example you can view cluster queues
and inquire about the status of cluster-sender and cluster-receiver channels. WebSphere MQ Explorer includes two wizards, which you can

Page 42 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

use to guide you through the following tasks:

� Create a new cluster

� Join an independent queue manager to a cluster

See the WebSphere MQ System Administration Guide for more information about using WebSphere MQ Explorer.

MQSC command attributes

WebSphere MQ commands for work with clusters

Parent topic: Using queue manager clusters

This build: January 26, 2011 11:13:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11100_

2.3.1. MQSC command attributes

A number of MQSC commands have cluster attributes. These are introduced here, under the following headings:

� Queue-manager definition commands

� Channel definition commands

� Queue definition commands

In the command, a cluster name, specified using the CLUSTER attribute, can be up to 48 characters long. Cluster names must conform to
the rules described in the WebSphere® MQ Script (MQSC) Command Reference.

A list of cluster names, specified using the CLUSNL attribute, can contain up to 256 names. To create a cluster namelist, use the DEFINE
NAMELIST command described in the WebSphere MQ Script (MQSC) Command Reference.

Queue-manager definition commands

Channel definition commands

Queue definition commands

Parent topic: Using WebSphere MQ commands with clusters

This build: January 26, 2011 11:14:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11110_

2.3.1.1. Queue-manager definition commands

To specify that a queue manager holds a full repository for a cluster, use the ALTER QMGR command specifying the attribute REPOS
(clustername). To specify a list of several cluster names, define a cluster namelist and then use the attribute REPOSNL(namelist) on the

ALTER QMGR command:

DEFINE NAMELIST(CLUSTERLIST)

 DESCR('List of clusters whose repositories I host')

 NAMES(CLUS1, CLUS2, CLUS3)

ALTER QMGR REPOSNL(CLUSTERLIST)

Use the CLWLEXIT(name) attribute to specify the name of a user exit to be called when a message is put to a cluster queue. Use the
CLWLDATA(data) attribute to specify data to be passed to the cluster workload user exit. Use the CLWLLEN(length) attribute to specify the
maximum amount of message data to be passed to the cluster workload user exit.

To specify the maximum number of outbound cluster channels, use the CLWLMRUC queue manager attribute. CLWLMRUC is a local queue
manager attribute that is not propagated around the cluster. It is made available to cluster workload exits and the cluster workload
algorithm that chooses the destination for messages.

To specify the behavior of a put when the target queue has both a local instance and at least one remote cluster instance, use the
CLWLUSEQ attribute. If the put originates from a cluster channel, this attribute does not apply. If you specify ANY, both the local queue
and the remote queues are possible targets of the put. If you specify LOCAL, the local queue is the only target of the put. It is possible to
specify CLWLUSEQ as both a queue attribute and a queue manager attribute. See Queue definition commands for more details.

The attributes on the ALTER QMGR command also apply to the DISPLAY QMGR command.

For full details of the attributes and syntax of the ALTER QMGR command and the DISPLAY QMGR command, refer to the WebSphere MQ
Script (MQSC) Command Reference book.

The equivalent PCFs are MQCMD_CHANGE_Q_MGR and MQCMD_INQUIRE_Q_MGR. These are described in the WebSphere MQ

Programmable Command Formats and Administration Interface book.

Page 43 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

Parent topic: MQSC command attributes

This build: January 26, 2011 11:14:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11120_

2.3.1.2. Channel definition commands

The DEFINE CHANNEL, ALTER CHANNEL, and DISPLAY CHANNEL commands have two specific CHLTYPE parameters for clusters:
CLUSRCVR and CLUSSDR. To define a cluster-receiver channel you use the DEFINE CHANNEL command, specifying CHLTYPE(CLUSRCVR).
Many of the other attributes needed on a cluster-receiver channel definition are the same as those that apply to a receiver channel or a
sender channel definition. To define a cluster-sender channel you use the DEFINE CHANNEL command, specifying CHLTYPE(CLUSSDR),

and many of the same attributes as you use to define a sender channel.

It is no longer necessary to specify the full repository queue manager's name when you define a cluster-sender channel. So long as you
know the naming convention used for channels in your cluster you can make a CLUSSDR definition using the +QMNAME+ construction

(+QMNAME+ is not supported on z/OS®). After connection WebSphere® MQ changes the name of the channel and substitutes the correct
full repository queue manager name in place of +QMNAME+. The resulting channel name is truncated to 20 characters.

Clearly this works only if your convention for naming channels includes the name of the queue manager. For example, if you have a full

repository queue manager called QM1 with a cluster-receiver channel called TO.QM1.ALPHA, another queue manager can define a cluster-
sender channel to this queue manager, but specify the channel name as TO.+QMNAME+.ALPHA.

If you use the same naming convention for all your channels, be aware that only one +QMNAME+ definition can exist at one time.

The attributes on the DEFINE CHANNEL and ALTER CHANNEL commands that are specific to cluster channels are:

� CLUSTER

� CLUSNL

� NETPRTY (cluster-receivers only)

� CLWLPRTY

� CLWLRANK

� CLWLWGHT

Use the CLUSTER attribute to specify the name of the cluster with which this channel is associated. Alternatively, use the CLUSNL attribute
to specify a namelist of cluster names.

Use the NETPRTY attribute to specify a network priority for the channel. This helps the workload management routines. If there is more
than one possible route to a destination, the workload management routine selects the one with the highest priority.

Use the CLWLPRTY parameter to apply a priority factor to channels to the same destination for workload management purposes. This
parameter specifies the priority of the channel for the purposes of cluster workload distribution. The value must be in the range zero
through 9, where zero is the lowest priority and 9 is the highest.

Use the CLWLRANK parameter to apply a ranking factor to a channel for workload management purposes. This parameter specifies the
rank of a channel for the purposes of cluster workload distribution. The value must be in the range zero through 9, where zero is the
lowest rank and 9 is the highest.

Use the CLWLWGHT parameter to apply a weighting factor to a channel for workload management purposes. This parameter weights the
channel so that the proportion of messages sent down that channel can be controlled. The cluster workload algorithm uses the channel's
weight attribute to bias the destination choice so that more messages can be sent over a particular channel. By default all channel weight
attributes are the same default value. The weight attribute allows you to allocate a channel on a powerful UNIX machine a larger weight

than another channel on small desktop PC. This means the cluster workload algorithm selects the UNIX machine more frequently than the
PC as the destination for messages.

These attributes on the DEFINE CHANNEL command and ALTER CHANNEL command also apply to the DISPLAY CHANNEL command.

The CONNAME specified on a cluster-receiver channel definition is used throughout the cluster to identify the network address of the
queue manager. Take care to select a value for the CONNAME parameter that resolves throughout your WebSphere MQ cluster. Do not
use a generic name. Remember that the value specified on the cluster-receiver channel takes precedence over any value specified in a

corresponding cluster-sender channel.

The following paragraphs discuss the facility to omit the CONNAME value on a CLUSRCVR definition. This is not possible on z/OS.

When the network protocol you are using is TCP/IP it is not necessary to specify the network address of your queue manager when you
define a cluster-receiver channel. You can issue the DEFINE CHANNEL command without supplying a value for CONNAME. WebSphere MQ
generates a CONNAME for you, assuming the default port and using the current IP address of the system. The generated CONNAME is
always in the dotted-decimal (IPv4) or hexadecimal (IPv6) form, rather than in the form of an alphanumeric DNS host name.

This facility is useful when you have machines using Dynamic Host Configuration Protocol (DHCP). With WebSphere MQ if you do not
supply a value for the CONNAME on a CLUSRCVR channel, you do not need to make any changes to your definitions if DHCP allocates you
a new IP address.

If you specify a blank for the CONNAME on the CLUSRCVR definition, WebSphere MQ generates a CONNAME from the IP address of the
system. Only the generated CONNAME is stored in the repositories. Other queue managers in the cluster do not know that the CONNAME
was originally blank.

If you issue the DISPLAY CLUSQMGR command you will see the generated CONNAME. However, if you issue the DISPLAY CHANNEL
command from the local queue manager, you will see that the CONNAME is blank.

Page 44 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

If the queue manager is stopped and restarted with a different IP address, because of DHCP, WebSphere MQ regenerates the CONNAME

and updates the repositories accordingly.

Note: Auto-defined cluster-sender channels take their attributes from those specified in the corresponding cluster-receiver channel
definition on the receiving queue manager. Even if there is a manually-defined cluster-sender channel, its attributes are automatically

modified to ensure that they match those on the corresponding cluster-receiver definition. Beware that you can, for example, define a
CLUSRCVR without specifying a port number in the CONNAME parameter, while manually defining a CLUSSDR that does specify a port
number. When the auto-defined CLUSSDR replaces the manually defined one, the port number (taken from the CLUSRCVR) becomes
blank. The default port number would be used and the channel would fail.

Note that the DISPLAY CHANNEL command does not display auto-defined channels. However, you can use the DISPLAY CLUSQMGR
command, introduced in DISPLAY CLUSQMGR , to examine the attributes of auto-defined cluster-sender channels.

Use the DISPLAY CHSTATUS command to display the status of a cluster-sender or cluster-receiver channel. This command gives the
status of both manually defined channels and auto-defined channels.

For full details of the attributes and syntax of the DEFINE CHANNEL, ALTER CHANNEL, DISPLAY CHANNEL, and DISPLAY CHSTATUS
commands, refer to the WebSphere MQ Script (MQSC) Command Reference book.

The equivalent PCFs are MQCMD_CHANGE_CHANNEL, MQCMD_COPY_CHANNEL, MQCMD_CREATE_CHANNEL, and
MQCMD_INQUIRE_CHANNEL. For information about these PCFs, refer to the WebSphere MQ Programmable Command Formats and
Administration Interface book.

Parent topic: MQSC command attributes

This build: January 26, 2011 11:14:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11130_

2.3.1.3. Queue definition commands

The cluster attributes on the DEFINE QLOCAL, DEFINE QREMOTE, and DEFINE QALIAS commands, and the three equivalent ALTER
commands, are:

CLUSTER

To specify the name of the cluster to which the queue belongs.

CLUSNL

To specify a namelist of cluster names.

DEFBIND

To specify the binding to be used when an application specifies MQOO_BIND_AS_Q_DEF on the OPEN call. The default for this attribute

is DEFBIND(OPEN), which binds the queue handle to a specific instance of the cluster queue when the queue is opened. The alternative
is to specify DEFBIND(NOTFIXED) so that the queue handle is not bound to any particular instance of the cluster queue. When you
specify DEFBIND on a queue definition, the queue is defined with one of the attributes, MQBND_BIND_ON_OPEN or
MQBND_BIND_NOT_FIXED.

We recommend that you set the DEFBIND attribute to the same value on all instances of the same cluster queue.

Use the CLWLRANK parameter to apply a ranking factor to a queue for workload management purposes (this parameter is not supported

on model queues). The cluster workload algorithm selects a destination queue with the highest rank. By default rank for all queues is set
to zero. When the final destination is a queue manager on a different cluster, you can set the rank of any intermediate gateway queue
managers (at the intersection of neighboring clusters), so that the cluster workload algorithm correctly selects a destination queue
manager nearer the final destination. The same logic applies to alias queues. The rank selection is made before the channel status is
checked, and therefore even non-accessible queue managers are available for selection. This has the effect of allowing a message to be

routed through a network, rather than having it select between two possible destinations (as the priority would). So, if a channel is not
started to the place where the rank has indicated, the message is not routed to the next highest rank, but waits until a channel is
available to that destination (the message is held on the transmit queue).

Use the CLWLPRTY parameter to apply a priority factor to a queue for workload management purposes. The cluster workload algorithm
selects a destination queue with the highest priority. By default priority for all queues is set to zero. If there are two possible destination
queues, you can use this attribute to make one destination failover to the other destination. The priority selection is made after the
channel status is checked. All messages are sent to the queue with the highest priority unless the status of the channel to that destination

is not as favorable as the status of channels to other destinations. This means that only the most accessible destinations are available for
selection. This has the effect of prioritizing between multiple destinations that are all available.

Use the CLWLUSEQ parameter to specify the behavior of an MQPUT operation for a queue. This parameter specifies the behavior of an

MQPUT operation when the target queue has a local instance and at least one remote cluster instance (except where the MQPUT originates
from a cluster channel). This parameter is only valid for local queues. Possible values are: QMGR (the behavior is as specified by the
CLWLUSEQ parameter of the queue manager definition), ANY (the queue manager treats the local queue as another instance of the
cluster queue, for the purposes of workload distribution), LOCAL (the local queue is the only target of the MQPUT operation).

The attributes on the DEFINE QLOCAL, DEFINE QREMOTE, and DEFINE QALIAS commands also apply to the DISPLAY QUEUE command.
To display information about cluster queues, specify a queue type of QCLUSTER or the keyword CLUSINFO on the DISPLAY QUEUE
command, or use the command DISPLAY QCLUSTER.

The DISPLAY QUEUE or DISPLAY QCLUSTER command returns the name of the queue manager that hosts the queue (or the names of all
queue managers if there is more than one instance of the queue). It also returns the system name for each queue manager that hosts the
queue, the queue type represented, and the date and time at which the definition became available to the local queue manager. This
information is returned using the CLUSQMGR, QMID, CLUSQT, CLUSDATE, and CLUSTIME attributes respectively.

Page 45 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

The system name for the queue manager (QMID), is a unique, system-generated name for the queue manager.

You can define a cluster queue that is also a shared queue. For example on z/OS® you can define:

DEFINE QLOCAL(MYQUEUE) CLUSTER(MYCLUSTER) QSGDISP(SHARED) CFSTRUCT(STRUCTURE)

For full details of the parameters and syntax of the QUEUE definition commands, refer to the WebSphere MQ Script (MQSC) Command
Reference book.

The equivalent PCFs are MQCMD_CHANGE_Q, MQCMD_COPY_Q, MQCMD_CREATE_Q, and MQCMD_INQUIRE_Q. For information about
these PCFs, refer to the WebSphere MQ Programmable Command Formats and Administration Interface book.

Parent topic: MQSC command attributes

This build: January 26, 2011 11:14:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11140_

2.3.2. WebSphere MQ commands for work with clusters

This section introduces MQSC commands that apply specifically to work with WebSphere® MQ clusters:

� DISPLAY CLUSQMGR

� SUSPEND QMGR

� RESUME QMGR

� REFRESH CLUSTER

� RESET CLUSTER

The PCF equivalents to these commands are:

� MQCMD_INQUIRE_CLUSTER_Q_MGR

� MQCMD_SUSPEND_Q_MGR_CLUSTER

� MQCMD_RESUME_Q_MGR_CLUSTER

� MQCMD_REFRESH_CLUSTER

� MQCMD_RESET_CLUSTER

These are described in the WebSphere MQ Programmable Command Formats and Administration Interface book.

DISPLAY CLUSQMGR

SUSPEND QMGR and RESUME QMGR

REFRESH CLUSTER
Issue the REFRESH CLUSTER command from a queue manager to discard all locally held information about a cluster. You are
unlikely to need to use this command, except in exceptional circumstances.

RESET CLUSTER

CLUSTER commands on z/OS

Parent topic: Using WebSphere MQ commands with clusters

This build: January 26, 2011 11:14:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11150_

2.3.2.1. DISPLAY CLUSQMGR

Use the DISPLAY CLUSQMGR command to display cluster information about queue managers in a cluster. If you issue this command from

a queue manager with a full repository, the information returned pertains to every queue manager in the cluster. If you issue this
command from a queue manager that does not have a full repository, the information returned pertains only to the queue managers in
which it has an interest. That is, every queue manager to which it has tried to send a message and every queue manager that holds a full
repository.

The information includes most channel attributes that apply to cluster-sender and cluster-receiver channels, and also:

DEFTYPE How the queue manager was defined. DEFTYPE can be one of the following:

CLUSSDR

Defined explicitly as a cluster-sender channel

CLUSSDRA

Page 46 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

Parent topic: WebSphere MQ commands for work with clusters

This build: January 26, 2011 11:14:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11160_

2.3.2.2. SUSPEND QMGR and RESUME QMGR

Use the SUSPEND QMGR command and RESUME QMGR command to remove a queue manager from a cluster temporarily, for example for
maintenance, and then to reinstate it. Use of these commands is discussed in Maintaining a queue manager.

Parent topic: WebSphere MQ commands for work with clusters

This build: January 26, 2011 11:14:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11170_

2.3.2.3. REFRESH CLUSTER

Issue the REFRESH CLUSTER command from a queue manager to discard all locally held information about a cluster. You are unlikely to

need to use this command, except in exceptional circumstances.

There are two forms of this command using the REPOS parameter.

Using REFRESH CLUSTER(clustername) REPOS(NO) provides the default behavior. The queue manager will retain knowledge of all cluster
queue manager and cluster queues marked as locally defined and all cluster queue managers that are marked as full repositories. In
addition, if the queue manager is a full repository for the cluster it will also retain knowledge of the other cluster queue managers in the
cluster. Everything else will be removed from the local copy of the repository and rebuilt from the other full repositories in the cluster.

Cluster channels will not be stopped if REPOS(NO) is used; a full repository will use its CLUSSDR channels to inform the rest of the cluster
that it has completed its refresh.

Using REFRESH CLUSTER(clustername) REPOS(YES) specifies that in addition to the default behavior, objects representing full repository

cluster queue managers are also refreshed. This option may not be used if the queue manager is itself a full repository. If it is a full
repository, you must first alter it so that it is not a full repository for the cluster in question. The full repository location will be recovered
from the manually defined CLUSSDR definitions. After the refresh with REPOS(YES) has been issued the queue manager can be altered so
that it is once again a full repository, if required.

You can issue REFRESH CLUSTER(*). This refreshes the queue manager in all of the clusters it is a member of. If used with REPOS(YES)
this has the additional effect of forcing the queue manager to restart its search for full repositories from the information in the local
CLUSSDR definitions, even if the CLUSSDR connects the queue manager to several clusters.

See the related topics for more information about using this command.

Parent topic: WebSphere MQ commands for work with clusters

Related information

Syntax of REFRESH CLUSTER
Usage notes for REFRESH CLUSTER

This build: January 26, 2011 11:14:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11180_

2.3.2.4. RESET CLUSTER

Defined by auto-definition as a cluster-sender channel

CLUSSDRB

Defined as a cluster-sender channel, both explicitly and by auto-definition

CLUSRCVR

Defined as a cluster-receiver channel

QMTYPE Whether it holds a full repository or only a partial repository.

CLUSDATE The date at which the definition became available to the local queue manager.

CLUSTIME The time at which the definition became available to the local queue manager.

STATUS The current status of the cluster-sender channel for this queue manager.

SUSPEND Whether the queue manager is suspended.

CLUSTER What clusters the queue manager is in.

CHANNEL The cluster-receiver channel name for the queue manager.

Page 47 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

You are unlikely to need to use this command, except in exceptional circumstances. Use the RESET CLUSTER command to forcibly remove
a queue manager from a cluster. You can do this from a full repository queue manager by issuing either the command:

RESET CLUSTER(clustername) QMNAME(qmname) ACTION(FORCEREMOVE) QUEUES(NO)

or the command:

RESET CLUSTER(clustername) QMID(qmid) ACTION(FORCEREMOVE) QUEUES(NO)

You cannot specify both QMNAME and QMID.

Specifying QUEUES(NO) on a RESET CLUSTER command is the default. Specifying QUEUES(YES) means that reference to cluster queue or
queues owned by the queue manager being force removed are removed from the cluster in addition to the cluster queue manager itself.
The cluster queues are removed even if the cluster queue manager is not visible in the cluster, perhaps because it was previously force
removed without the QUEUES option.

You might use the RESET CLUSTER command if, for example, a queue manager has been deleted but still has cluster-receiver channels
defined to the cluster. Instead of waiting for WebSphere® MQ to remove these definitions (which it does automatically) you can issue the
RESET CLUSTER command to tidy up sooner. All other queue managers in the cluster are then informed that the queue manager is no
longer available.

In an emergency where a queue manager is temporarily damaged, you might want to inform the rest of the cluster before the other
queue managers try to send it messages. RESET CLUSTER can be used to remove the damaged queue manager. Later when the damaged
queue manager is working again, you can use the REFRESH CLUSTER command to reverse the effect of RESET CLUSTER and put it back in

the cluster again.

Using the RESET CLUSTER command is the only way to delete auto-defined cluster-sender channels. You are unlikely to need this
command in normal circumstances, but your IBM® Support Center might advise you to issue the command to tidy up the cluster

information held by cluster queue managers. Do not use this command as a short cut to removing a queue manager from a cluster. The
correct way to do this is described in Task 10: Removing a queue manager from a cluster.

You can issue the RESET CLUSTER command only from full repository queue managers.

If you use QMNAME, and there is more than one queue manager in the cluster with that name, the command is not actioned. Use QMID
instead of QMNAME to ensure the RESET CLUSTER command is actioned.

Because repositories retain information for only 90 days, after that time a queue manager that was forcibly removed can reconnect to a
cluster. It does this automatically (unless it has been deleted). If you want to prevent a queue manager from rejoining a cluster, you need
to take appropriate security measures. See Preventing queue managers joining a cluster.

All cluster commands (except DISPLAY CLUSQMGR) work asynchronously. Commands that change object attributes involving clustering
will update the object and send a request to the repository processor . Commands for working with clusters will be checked for syntax,
and a request will be sent to the repository processor.

The requests sent to the repository processor are processed asynchronously, along with cluster requests received from other members of
the cluster. In some cases, processing may take a considerable time if they have to be propagated around the whole cluster to determine
if they are successful or not.

Parent topic: WebSphere MQ commands for work with clusters

This build: January 26, 2011 11:14:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11190_

2.3.2.5. CLUSTER commands on z/OS

For both REFRESH CLUSTER and RESET CLUSTER, message CSQM130I is sent to the command issuer indicating that a request has been
sent. This message is followed by message CSQ9022I to indicate that the command has completed successfully, in that a request has

been sent. It does not indicate that the cluster request has been completed successfully.

Any errors are reported to the z/OS® console on the system where the channel initiator is running, they are not sent to the command
issuer.

This is in contrast to CHANNEL commands, where a message indicating that the command has been accepted is issued immediately, and
then at some later time, when the command has been completed, a message indicating either normal or abnormal completion is sent to
the command issuer.

Parent topic: WebSphere MQ commands for work with clusters

This build: January 26, 2011 11:14:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11200_

2.4. Managing WebSphere® MQ clusters

This chapter provides information for the system administrator, including:

� Designing clusters

Page 48 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

� Cluster-administration considerations

Designing clusters

Cluster-administration considerations

Parent topic: Using queue manager clusters

This build: January 26, 2011 11:14:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11210_

2.4.1. Designing clusters

This chapter will look at how to design a new cluster.

Selecting queue managers to hold full repositories

Organizing a cluster

Naming Convention

Overlapping clusters

Objects
You need the following objects when using WebSphere® MQ clusters. They are included in the set of default objects defined when
you create a queue manager, except on z/OS®. On z/OS they can be found in the customization samples.

Parent topic: Managing WebSphere MQ clusters

This build: January 26, 2011 11:14:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11220_

2.4.1.1. Selecting queue managers to hold full repositories

In each cluster you must select at least one, preferably two, or possibly more of the queue managers to hold full repositories. A cluster

can work quite adequately with only one full repository but using two improves availability. You interconnect the full repository queue
managers by defining cluster-sender channels between them.

Figure 1. A typical 2-repository topology

Figure 1 shows a typical 2-full repository topology. This is the topology used in the cluster shown in Figure 1.

� The most important consideration is that the queue managers chosen to hold full repositories need to be reliable and well managed.
For example, it would be far better to choose queue managers on a stable z/OS® system than queue managers on a portable
personal computer that is frequently disconnected from the network.

� You should also consider the planned outages of the systems hosting your full repositories, and ensure that they do not have
coinciding outages.

� You might also consider the location of the queue managers and choose ones that are in a central position geographically or perhaps
ones that are located on the same system as a number of other queue managers in the cluster.

� Another consideration might be whether a queue manager already holds the full repositories for other clusters. Having made the
decision once, and made the necessary definitions to set up a queue manager as a full repository for one cluster, you might well

choose to rely on the same queue manager to hold the full repositories for other clusters of which it is a member.

When a queue manager sends out information about itself or requests information about another queue manager, the information or
request is sent to two full repositories. A full repository named on a CLUSSDR definition handles the request whenever possible, but if the

chosen full repository is not available another full repository is used. When the first full repository becomes available again it collects the
latest new and changed information from the others so that they keep in step.

If all of the full repository queue managers go out of service at the same time, queue managers continue to work using the information

they have in their partial repositories. The repositories are limited to using the information that they have. New information and requests
for updates cannot be processed. When the full repository queue managers reconnect to the network, messages are exchanged to bring
all repositories (both full and partial) back up-to-date.

Page 49 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

The full repositories republish the publications they receive through the manually-defined CLUSSDR channels, which must point to other

full repositories in the cluster. You must make sure that a publication received by any full repository ultimately reaches all of the other full
repositories. This is done by manually defining CLUSSDR channels between the full repositories. Having more interconnection of full
repositories will make the cluster more robust.

Having only two full repositories is sufficient for all but very exceptional circumstances

If a cluster has more than two full repositories, they should be connected so that if one of the full repository queue managers is
unavailable, the remaining full repositories are able to continue to reach one another. The following example topologies show acceptable

full repository topologies.

Figure 2. A hub and spoke arrangement of full repositories

Figure 3. A complex full repository topology

Parent topic: Designing clusters

This build: January 26, 2011 11:14:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11230_

2.4.1.2. Organizing a cluster

Having selected the queue managers to hold full repositories, you need to decide which queue managers should link to which full
repository. The CLUSSDR channel definition links a queue manager to a full repository from which it finds out about the other full
repositories in the cluster. From then on, the queue manager sends messages to any two full repositories, but it always tries to use the
one to which it has a CLUSSDR channel definition first. It is not significant which full repository you choose. However, you should consider
the topology of your configuration, and perhaps the physical or geographical location of the queue managers as shown in Figure 1 through

Figure 3.

Queue managers on WebSphere® MQ z/OS® Version 6.0 or later support PCF commands, so the MQ Explorer can use them to query
information about the cluster (in just the same way as with distributed queue managers). However z/OS queue managers up to

WebSphere MQ v5.3.1 do not support PCF commands so the MQ Explorer cannot use them to query information about the cluster. For this

Page 50 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

reason the MQ Explorer does not allow you to select WebSphere MQ v5.3.1 z/OS queue managers at the source of the information about a
cluster.

Because all cluster information is sent to two full repositories, there might be situations in which you want to make a second CLUSSDR
channel definition. You might do this in a cluster that has a large number of full repositories, spread over a wide area, to control which full
repositories your information is sent to.

Parent topic: Designing clusters

This build: January 26, 2011 11:14:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11240_

2.4.1.3. Naming Convention

When setting up a new cluster, consider a naming convention for the queue managers. Every queue manager must have a different name,

but it might help you to remember which queue managers are grouped where if you give them a set of similar names.

Every cluster-receiver channel must also have a unique name. One possibility is to use the queue-manager name preceded by the
preposition TO. For example TO.QM1, TO.QM2, and so on. If you have more than one channel to the same queue manager, each with

different priorities or using different protocols you might extend this convention to use names such as TO.QM1.S1, TO.QM1.N3, and

TO.QM1.T4. A1 might be the first SNA channel, N3 might be the NetBIOS channel with a network priority of 3, and so on.

The find qualifier might describe the class of service the channel provides. See Defining classes of service for more details.

Remember that all cluster-sender channels have the same name as their corresponding cluster-receiver channel.

Do not use generic connection names on your cluster-receiver definitions. In WebSphere® MQ for z/OS® you can define VTAM® generic
resources or Dynamic Domain Name Server (DDNS) generic names, but do not do this if you are using clusters. If you define a CLUSRCVR

with a generic CONNAME there is no guarantee that your CLUSSDR channels will point to the queue managers you intend. Your initial
CLUSSDR might end up pointing to any queue manager in the queue-sharing group, not necessarily one that hosts a full repository.
Furthermore, if a channel goes to retry status, it might reconnect to a different queue manager with the same generic name and the flow
of your messages will be disrupted.

Parent topic: Designing clusters

This build: January 26, 2011 11:14:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11250_

2.4.1.4. Overlapping clusters

You can create clusters that overlap, as described in Putting across clusters. There are a number of reasons you might do this, for

example:

� To allow different organizations to have their own administration.

� To allow independent applications to be administered separately.

� To create classes of service.

In Figure 1 the queue manager QM2 is a member of both the clusters illustrated. When a queue manager is a member of more than one
cluster, you can take advantage of namelists to reduce the number of definitions you need. A namelist can contain a list of names, for
example, cluster names. You can create a namelist naming the clusters, and then specify this namelist on the ALTER QMGR command for
QM2 to make it a full repository queue manager for both clusters. See Task 7: Adding a new, interconnected cluster for some examples of

how to use namelists.

If you have more than one cluster in your network, you must give them different names. If two clusters with the same name are
ever merged, it will not be possible to separate them again. It is also a good idea to give the clusters and channels different names

so that they are more easily distinguished when you look at the output from DISPLAY commands. Queue manager names must be unique
within a cluster for it to work correctly.

Defining classes of service

Parent topic: Designing clusters

This build: January 26, 2011 11:14:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11260_

2.4.1.4.1. Defining classes of service

Imagine a university that has a queue manager for each member of staff and each student. Messages between members of staff are to

Page 51 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

travel on channels with a high priority and high bandwidth. Messages between students are to travel on cheaper, slower channels. You can
set up this network using traditional distributed queuing techniques. WebSphere® MQ knows which channels to use by looking at the

destination queue name and queue manager name.

To clearly differentiate between the staff and students, you could group their queue managers into two clusters as shown in Figure 1.
WebSphere MQ will move messages to the meetings queue in the staff cluster only over channels that are defined in that cluster.

Messages for the gossip queue in the students cluster go over channels defined in that cluster and receive the appropriate class of service.

Figure 1. Classes of service

Parent topic: Overlapping clusters

This build: January 26, 2011 11:14:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11270_

2.4.1.5. Objects

You need the following objects when using WebSphere® MQ clusters. They are included in the set of default objects defined when you
create a queue manager, except on z/OS®. On z/OS they can be found in the customization samples.

You can alter the default channel definitions in the same way as any other channel definition, using MQSC or PCF commands.

Do not alter the default queue definitions, except for SYSTEM.CLUSTER.HISTORY.QUEUE.

SYSTEM.CLUSTER.COMMAND.QUEUE

Each queue manager in a cluster has a local queue called SYSTEM.CLUSTER.COMMAND.QUEUE. This queue is used to carry messages to the

full repository. The queue manager uses this queue to send any new or changed information about itself to the full repository queue

manager and to send any requests for information about other queue managers. This queue is normally empty.

SYSTEM.CLUSTER.HISTORY.QUEUE

 Each queue manager in a cluster has a local queue called SYSTEM.CLUSTER.HISTORY.QUEUE. This queue is used to store the history of

cluster state information for service purposes.

In the default object settings SYSTEM.CLUSTER.HISTORY.QUEUE is set to PUT(ENABLED). To suppress history collection change the setting

to PUT(DISABLED).

SYSTEM.CLUSTER.REPOSITORY.QUEUE

Each queue manager in a cluster has a local queue called SYSTEM.CLUSTER.REPOSITORY.QUEUE. This queue is used to store all the full

repository information. This queue is not normally empty.

SYSTEM.CLUSTER.TRANSMIT.QUEUE

Each queue manager has a definition for a local queue called SYSTEM.CLUSTER.TRANSMIT.QUEUE. This is the transmission queue for all

messages to all queues and queue managers that are within clusters.

SYSTEM.DEF.CLUSRCVR

Each cluster has a default CLUSRCVR channel definition called SYSTEM.DEF.CLUSRCVR. This is used to supply default values for any

attributes that you do not specify when you create a cluster-receiver channel on a queue manager in the cluster.

SYSTEM.DEF.CLUSSDR

Each cluster has a default CLUSSDR channel definition called SYSTEM.DEF.CLUSSDR. This is used to supply default values for any

attributes that you do not specify when you create a cluster-sender channel on a queue manager in the cluster.

Parent topic: Designing clusters

This build: January 26, 2011 11:14:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11280_

Page 52 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

2.4.2. Cluster-administration considerations

Let us now look at some considerations affecting the system administrator.

Maintaining a queue manager

Refreshing a queue manager

Recovering a queue manager

Maintaining the cluster transmission queue

What happens when a queue manager fails?

What happens when a repository fails?

What happens if I put-disable a cluster queue?

How long do the queue manager repositories retain information?

Cluster channels

Online monitoring

Parent topic: Managing WebSphere MQ clusters

This build: January 26, 2011 11:14:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11290_

2.4.2.1. Maintaining a queue manager

From time to time, you might need to perform maintenance on a queue manager that is part of a cluster. For example, you might need to
take backups of the data in its queues, or apply fixes to the software. If the queue manager hosts any queues, its activities must be
suspended. When the maintenance is complete, its activities can be resumed.

To suspend a queue manager, issue the SUSPEND QMGR command, for example:

SUSPEND QMGR CLUSTER(SALES)

This sends a notification to the queue managers in the cluster SALES advising them that this queue manager has been suspended. The
purpose of the SUSPEND QMGR command is only to advise other queue managers to avoid sending messages to this queue manager if
possible. It does not mean that the queue manager is disabled. While the queue manager is suspended the workload management

routines avoid sending messages to it, other than messages that have to be handled by that queue manager. Messages that have to be
handled by that queue manager include messages sent by the local queue manager.

WebSphere® MQ uses a workload balancing algorithm to determine which destinations are suitable, rather than selecting the local queue

manager whenever possible. For more information about the workload management algorithm, see Using clusters for workload
management.

When the maintenance is complete the queue manager can resume its position in the cluster. It should issue the command RESUME

QMGR, for example:

RESUME QMGR CLUSTER(SALES)

This notifies to the full repositories that the queue manager is available again. The full repository queue managers disseminate this
information to other queue managers that have requested updates to information concerning this queue manager.

You can enforce the suspension of a queue manager by using the FORCE option on the SUSPEND QMGR command, for example:

SUSPEND QMGR CLUSTER(SALES) MODE(FORCE)

This forcibly stops all inbound channels from other queue managers in the cluster. If you do not specify MODE(FORCE), the default MODE
(QUIESCE) applies.

Parent topic: Cluster-administration considerations

This build: January 26, 2011 11:14:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11300_

2.4.2.2. Refreshing a queue manager

A queue manager can make a fresh start in a cluster. This is unlikely to be necessary in normal circumstances but you might be asked to

do this by your IBM® Support Center. You can issue the REFRESH CLUSTER command from a queue manager to remove all cluster
queue-manager objects and all cluster queue objects relating to queue managers other than the local one, from the local full repository.

Page 53 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

The command also removes any auto-defined channels that do not have messages on the cluster transmission queue and that are not
attached to a full repository queue manager. Effectively, the REFRESH CLUSTER command allows a queue manager to be cold started with

respect to its full repository content. (WebSphere® MQ ensures that no data is lost from your queues.)

Parent topic: Cluster-administration considerations

This build: January 26, 2011 11:14:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11310_

2.4.2.3. Recovering a queue manager

To recover a queue manager in a cluster, restore the queue manager from a linear log. (See the WebSphere MQ System Administration
Guide for details)

If you have to restore from a point-in-time backup, issue the REFRESH CLUSTER command on the restored queue manager for all clusters

in which the queue manager participates.

There is no need to issue the REFRESH CLUSTER command on any other queue manager.

Parent topic: Cluster-administration considerations

This build: January 26, 2011 11:14:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11320_

2.4.2.4. Maintaining the cluster transmission queue

The availability and performance of the cluster transmission queue are essential to the performance of clusters. Make sure that it does not
become full, and take care not to accidentally issue an ALTER command to set it either get-disabled or put-disabled. Also make sure that

the medium the cluster transmission queue is stored on (for example z/OS® page sets) does not become full. For performance reasons,
on z/OS set the INDXTYPE of the cluster transmission queue to CORRELID.

Parent topic: Cluster-administration considerations

This build: January 26, 2011 11:14:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11330_

2.4.2.5. What happens when a queue manager fails?

If a message-batch is sent to a particular queue manager and that queue manager becomes unavailable this is what happens:

� With the exception of non-persistent messages on a fast channel (which might be lost) the undelivered batch of messages is backed

out to the cluster transmission queue on the sending queue manager.

� If the backed-out batch of messages is not in doubt and the messages are not bound to the particular queue manager, the
workload management routine is called. The workload management routine selects a suitable alternative queue manager and
the messages are sent there.

� Messages that have already been delivered to the queue manager, or are in doubt, or have no suitable alternative, wait until

the original queue manager becomes available again.

The restart can be automated using Automatic Restart Management (ARM) on z/OS®, HACMP™ on AIX®, or any other restart mechanism
available on your platform.

Parent topic: Cluster-administration considerations

This build: January 26, 2011 11:14:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11340_

2.4.2.6. What happens when a repository fails?

Cluster information is carried to repositories (whether full or partial) on a local queue called SYSTEM.CLUSTER.COMMAND.QUEUE. If this

queue fills up, perhaps because the queue manager has stopped working, the cluster-information messages are routed to the dead-letter
queue. If you observe that this is happening, from the messages on your queue-manager log or z/OS® system console, you need to run
an application to retrieve the messages from the dead-letter queue and reroute them to the correct destination.

If errors occur on a repository queue manager, messages tell you what error has occurred and how long the queue manager will wait

Page 54 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

before trying to restart. On WebSphere® MQ for z/OS the SYSTEM.CLUSTER.COMMAND.QUEUE is get-disabled. When you have identified
and resolved the error, get-enable the SYSTEM.CLUSTER.COMMAND.QUEUE so that the queue manager can restart successfully.

In the unlikely event of a queue manager’s repository running out of storage, storage allocation errors appear on your queue-manager log
or z/OS system console. If this happens, stop and then restart the queue manager. When the queue manager is restarted, more storage is
automatically allocated to hold all the repository information.

Parent topic: Cluster-administration considerations

This build: January 26, 2011 11:14:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11350_

2.4.2.7. What happens if I put-disable a cluster queue?

When a cluster queue is put-disabled, this situation is reflected in the repository of each queue manager that is interested in that queue.

The workload management algorithm tries to send messages to destinations that are put-enabled. If there are no put-enabled
destinations and no local instance of a queue, an MQOPEN call that specified MQOO_BIND_ON_OPEN returns a return code of
MQRC_CLUSTER_PUT_INHIBITED to the application. If MQOO_BIND_NOT_FIXED is specified, or there is a local instance of the queue, an
MQOPEN call succeeds but subsequent MQPUT calls fail with return code MQRC_PUT_INHIBITED.

You can write a user exit program to modify the workload management routines so that messages can be routed to a destination that is
put-disabled. If a message arrives at a destination that is put-disabled (because it was in flight at the time the queue became disabled or
because a workload exit chose the destination explicitly), the workload management routine at the queue manager can choose another
appropriate destination if there is one, or place the message on the dead-letter queue, or if there is no dead-letter queue, return the

message to the originator.

Parent topic: Cluster-administration considerations

This build: January 26, 2011 11:14:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11360_

2.4.2.8. How long do the queue manager repositories retain information?

When a queue manager sends out some information about itself, for example to advertise the creation of a new queue, the full and partial
repository queue managers store the information for 30 days. To prevent this information from expiring, queue managers automatically
resend all information about themselves after 27 days. If a partial repository sends a new request for information part way through the 30
day lifetime, the expiry time remains the original 30 days. When information expires, it is not immediately removed from the repository.

Instead it is held for a grace period of 60 days. If no update is received within the grace period, the information is removed. The grace
period allows for the fact that a queue manager may have been temporarily out of service at the expiry date. If a queue manager
becomes disconnected from a cluster for more than 90 days, it stops being part of the cluster. However, if it reconnects to the network it
will become part of the cluster again. Full repositories do not use information that has expired to satisfy new requests from other queue

managers.

Similarly, when a queue manager sends a request for up-to-date information from a full repository, the request lasts for 30 days. After 27
days WebSphere® MQ checks the request. If it has been referenced during the 27 days, it is remade automatically. If not, it is left to

expire and is remade by the queue manager if it is needed again. This prevents a build up of requests for information from dormant queue
managers.

Parent topic: Cluster-administration considerations

This build: January 26, 2011 11:14:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11370_

2.4.2.9. Cluster channels

Although using clusters relieves you of the need to define channels (because WebSphere® MQ defines them for you), the same channel
technology used in distributed queuing is used for communication between queue managers in a cluster. To understand about cluster
channels, you need to be familiar with matters such as:

� How channels operate

� How to find their status

� How to use channel exits

These topics are all discussed in the WebSphere MQ Intercommunication book and the advice given there is generally applicable to cluster

channels, but you might want to give some special consideration to the following:

1. When you are defining cluster-sender channels and cluster-receiver channels choose a value for HBINT or KAINT that will detect a
network or queue manager failure in a useful amount of time but not burden the network with too many heartbeat or keep alive
flows. Choosing a short time, for example, less than about 10 seconds, will give false failures if your network sometimes slows down

and introduces delays of this length.

Page 55 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

2. Set the BATCHHB value if you want to reduce the window for causing a marooned message because it has got "in doubt" on a failed
channel. This is more likely to occur if the message traffic along the channel is sporadic with long periods of time between bursts of
messages, and during which a network failure is likely. This is sometimes a situation that is artificially induced when testing fail over
of cluster queue managers, and may not be relevant on the production systems.

3. If the cluster-sender end of a channel fails and subsequently tries to restart before the heartbeat or keep alive has detected the

failure, the restart is rejected if the cluster-receiver end of the channel has remained active. To avoid this, you can arrange for the
cluster-receiver channel to be terminated and restarted, when a cluster-sender channel attempts to restart.

On WebSphere MQ for z/OS®

Control this using the ADOPTMCA and ADOPTCHK parameters on ALTER QMGR. See the WebSphere MQ Script (MQSC) Command
Reference for more information.

On platforms other than z/OS

Control this using the AdoptNewMCA, AdoptNewMCATimeout, and AdoptNewMCACheck attributes in the qm.ini file or the Windows
NT Registry. See the WebSphere MQ System Administration Guide Guide for more information.

Parent topic: Cluster-administration considerations

This build: January 26, 2011 11:14:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11380_

2.4.2.10. Online monitoring

You can view current monitoring and status data for a channel or queue using the DISPLAY CHSTATUS and the DISPLAY QSTATUS

commands, which support online monitoring. The monitoring information can be used to help gauge the performance and health of the
system. Monitoring is controlled by queue manager, queue and channel attributes. Monitoring of auto-defined cluster-sender channels is
possible with the MONACLS queue manager attribute.

For information about measuring system effectiveness, see the WebSphere® MQ System Administration Guide.

For information about the DISPLAY commands, see the WebSphere MQ Script (MQSC) Command Reference.

For information about online monitoring, see the WebSphere MQ Event Monitoring book.

Parent topic: Cluster-administration considerations

This build: January 26, 2011 11:14:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11390_

2.5. Keeping clusters secure

This chapter discusses the following security considerations:

� Stopping unauthorized queue managers sending messages to your queue manager

� Stopping unauthorized queue managers putting messages on your queues

� Authorizing putting messages on remote cluster queues

� Preventing queue managers joining a cluster

� Forcing unwanted queue managers to leave a cluster

� Using SSL

Stopping unauthorized queue managers sending messages to your queue manager

Stopping unauthorized queue managers putting messages on your queues

Authorizing putting messages on remote cluster queues
On z/OS set up authorization to a cluster queue using RACF. On other platforms, authorize access to cluster queues on each of the
queue managers in the cluster.

Preventing queue managers joining a cluster

Forcing unwanted queue managers to leave a cluster

Using SSL

Parent topic: Using queue manager clusters

This build: January 26, 2011 11:14:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11400_

Page 56 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

2.5.1. Stopping unauthorized queue managers sending messages to your queue
manager

To prevent selected queue managers from sending messages to your queue manager, define a channel security exit program on the
CLUSRCVR channel definition. Write a program that authenticates queue managers trying to send messages on your cluster-receiver

channel and denies them access if they are not authorized. Channel security exit programs are called at MCA initiation and termination.
See the WebSphere MQ Intercommunication book for more information.

Clustering has no effect on the way security exits work. You can restrict access to a queue manager in the same way as you would in a

distributed queuing environment.

Parent topic: Keeping clusters secure

This build: January 26, 2011 11:14:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11410_

2.5.2. Stopping unauthorized queue managers putting messages on your queues

To prevent certain queue managers from putting messages on a queue, use the security facilities available on your platform. For example:

� RACF or other external security managers on WebSphere® MQ for z/OS®

� The Object Authority Manager (OAM) on WebSphere MQ for i5/OS®, WebSphere MQ on UNIX systems, and WebSphere MQ for
Windows, and on WebSphere MQ for HP NonStop Server v5.3 Compaq Tru64 UNIX, V5.1, WebSphere MQ for HP NonStop Server

v5.3 Compaq OpenVMS Alpha, Version 5.1, and MQSeries® for Compaq NonStop Kernel, V5.1

In addition, you can use the PUT authority (PUTAUT) attribute on the CLUSRCVR channel definition. The PUTAUT attribute allows you to
specify what user IDs are to be used to establish authority to put a message to a queue. The options on the PUTAUT attribute are:

DEF

Use the default user ID. On z/OS this might involve using both the user ID received from the network and that derived from MCAUSER.

CTX

Use the user ID in the context information associated with the message. On z/OS this might involve using either the user ID received
from the network, or that derived from MCAUSER, or both. Use this option if the link is trusted and authenticated.

ONLYMCA (z/OS only)

As for DEF, but any user ID received from the network will not be used. Use this option if the link is not trusted and you want to allow
only a specific set of actions on it, which are defined for the MCAUSER.

ALTMCA (z/OS only)

As for CTX, but any user ID received from the network will not be used.

For more information about using the PUTAUT attribute on a channel definition, see the WebSphere MQ Intercommunication book or see
the WebSphere MQ Script (MQSC) Command Reference book.

Parent topic: Keeping clusters secure

This build: January 26, 2011 11:14:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11420_

2.5.3. Authorizing putting messages on remote cluster queues

On z/OS® set up authorization to a cluster queue using RACF®. On other platforms, authorize access to cluster queues on each of the
queue managers in the cluster.

About this task

The commands you use to manage authorization are different on WebSphere® MQ for z/OS from other platforms.

WebSphere MQ for z/OS

Use RACF to control whether your queue manager puts messages to a remote queue. With RACF, you can set up permissions for a
named queue regardless of whether that queue exists on your system.

Platforms other than z/OS

On these platforms, you cannot control access to individual queues that do not exist on your queue manager. You can give an
application put access to all queues in the cluster, subject to channel and local security settings at the remote queue manager, by giving

+put access to the cluster transmission queue. This technique has the disadvantage that any application with this access can put to any

queue in the cluster, which is probably undesirable. To control access to individual queues use aliases at the queue manager local to the
putting application that resolve to queues in the cluster. Give them the appropriate authority for access, instead of the cluster

transmission queue.

Procedure

� For z/OS, issue the following commands:

Page 57 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

RDEFINE MQQUEUE QMgrName.QUEUE.ObjectProfile UACC(NONE)

PERMIT QMgrName.QUEUE.ObjectProfile CLASS(MQADMIN) ID(GroupName) ACCESS(UPDATE)

� On platforms other than z/OS, to give control access to all the queues in a cluster, issue the following commands:

� For UNIX and Windows systems, issue the following commands:

setmqaut -m QMgrName -t qmgr -g GroupName +connect +inq

setmqaut -m QMgrName -n SYSTEM.CLUSTER.TRANSMIT.QUEUE -t queue -g GroupName +put

� For i5/OS®, issue the following commands:

GRTMQMAUT OBJ('QMgrName') OBJTYPE(*MQM) USER(GroupName) AUT(*CONNECT *INQ)

GRTMQMAUT OBJ(SYSTEM.CLUSTER.TRANSMIT.QUEUE) OBJTYPE(*Q) USER(GroupName) AUT(*PUT) MQMNAME('QMgrName')

� On platforms other than z/OS, to give access to individual queues in the cluster, issue the following commands:

1. Define an alias queue on your local queue manager, naming the cluster queue as the base queue.

DEFINE QALIAS(AliasName) TARGET(BaseQueue)

2. Give the group authority to connect to its local queue manager, and to open the alias queue for put. For UNIX and Windows
systems, issue the following commands:

setmqaut -m QMgrName -t qmgr -g GroupName +connect

setmqaut -m QMgrName -t queue -n AliasName -g GroupName -all +put

For i5/OS, issue the following commands:

GRTMQMAUT OBJ('QMgrName') OBJTYPE(*MQM) USER(GroupName) AUT(*CONNECT)

GRTMQMAUT OBJ('AliasName') OBJTYPE(*Q) USER(GroupName) AUT(*PUT) MQMNAME('QMgrName')

The user can put messages only to the specified cluster queue, and no other cluster queues.

The variable names have the following meanings:

QMgrName

The name of the queue manager. On z/OS, this value can also be the name of a queue-sharing group.

ObjectProfile

The name of the queue or generic profile for which to change authorizations. This is the local name of the remote queue or the
name of the transmission queue, as appropriate.

GroupName

The name of the group to be granted access.

AliasName

Local name of the queue.

BaseQueue

The name of the queue being aliased.

What to do next

If you specify a reply-to queue when you put a message on a cluster queue, the consuming application must have authority to send
the reply. If you trust the application, grant it +put authority to SYSTEM.CLUSTER.TRANSMIT.QUEUE. Otherwise, create a reply-to

queue alias and grant +put authority to that.

Parent topic: Keeping clusters secure

This build: January 26, 2011 11:14:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11430_

2.5.4. Preventing queue managers joining a cluster

If you want to ensure that only certain authorized queue managers attempt to join a cluster, you must either use a security exit program
on the cluster-receiver channel, or write an exit program to prevent unauthorized queue managers from writing to
SYSTEM.CLUSTER.COMMAND.QUEUE. Do not restrict access to SYSTEM.CLUSTER.COMMAND.QUEUE such that no queue manager can

write to it, or you would prevent any queue manager from joining the cluster.

It is difficult to stop a queue manager that is a member of a cluster from defining a queue. Therefore, there is a danger that a rogue
queue manager can join a cluster, learn what queues are in it, define its own instance of one of those queues, and so receive messages

that it must not be authorized to receive.

To prevent a queue manager receiving messages, you can write:

� A channel exit program on each cluster-sender channel, which uses the connection name to determine the suitability of the
destination queue manager to be sent the messages.

� A cluster workload exit program, which uses the destination records to determine the suitability of the destination queue and queue
manager to be sent the messages

� A channel auto-definition exit program, which uses the connection name to determine the suitability of defining channels to the
destination queue manager

Using security exits on cluster channels

Parent topic: Keeping clusters secure

This build: January 26, 2011 11:14:07

Page 58 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11440_

2.5.4.1. Using security exits on cluster channels

When a cluster-sender channel is first started, it uses attributes defined manually by a system administrator. When the channel is stopped
and restarted, it picks up the attributes from the corresponding cluster-receiver channel definition. The original cluster-sender channel
definition is overwritten with the new attributes, including the SecurityExit attribute. Note the following:

1. You must define a security exit on both the cluster-sender end and the cluster-receiver end of a channel, in order for it to be
effective. Even though the security exit name is sent over from the cluster-receiver definition, the initial connection must be made
with a security-exit handshake.

2. In addition to the normal security-message handshake, the security exit must validate the PartnerName in the MQCXP structure. The
exit must allow the channel to start only if the partner queue manager is authorized.

3. Design the security exit on the cluster-receiver definition to be receiver initiated. If you design it as sender initiated, an unauthorized
queue manager without a security exit can join the cluster because no security checks are performed. Not until the channel is
stopped and restarted can the SCYEXIT name be sent over from the cluster-receiver definition and full security checks made. Refer
to the WebSphere MQ Intercommunication book for information about sender-initiated and receiver-initiated security exits.

4. To view the cluster-sender channel definition that is currently in use, use the command:

DISPLAY CLUSQMGR(queue manager) ALL

This displays the attributes that have been sent across from the cluster-receiver definition. To view the original definition, use the
command:

DISPLAY CHANNEL(channel name) ALL

5. If the queue managers are on different platforms, you might need to define a channel auto-definition exit (CHADEXIT) on the
cluster-sender queue manager to set the SecurityExit attribute to an appropriate format for the target platform. For details of this,
see Auto-definition of channels.

6. On z/OS® the security-exit load module must be in the data set specified in the CSQXLIB DD statement of the channel-initiator
address-space procedure. On Windows the security-exit and channel auto-definition exit DLLs must be in the path specified in the

SCYEXIT attribute of the channel definition or the CHADEXIT attribute of the queue manager definition respectively, or in the
Registry.

Parent topic: Preventing queue managers joining a cluster

This build: January 26, 2011 11:14:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11450_

2.5.5. Forcing unwanted queue managers to leave a cluster

You can force an unwanted queue manager to leave a cluster. You might need to do this to tidy up, if for example, a queue manager is
deleted but its cluster-receiver channels are still defined to the cluster.

Only full repository queue managers are authorized to eject a queue manager from a cluster. For example, to eject the queue manager

OSLO from the cluster NORWAY, the full repository queue manager issues the command:

RESET CLUSTER(NORWAY) QMNAME(OSLO) ACTION(FORCEREMOVE)

or

RESET CLUSTER(NORWAY) QMID(qmid) ACTION(FORCEREMOVE)

The queue manager that is force removed does not change, it believes it is still in the cluster. All other queue managers will believe it has
gone.

For more information on RESET CLUSTER see RESET CLUSTER.

Parent topic: Keeping clusters secure

This build: January 26, 2011 11:14:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11460_

2.5.6. Using SSL

This topic is discussed in the WebSphere® MQ Security book. The advice there is generally applicable to cluster channels, but you might

want to give some special consideration to the following:

Note: SSL is available on the WebSphere MQ products only.

In a WebSphere MQ cluster a particular CLUSRCVR channel definition is frequently propagated to many other queue managers where it is
transformed into an auto-defined CLUSSDR. Subsequently the auto-defined CLUSSDR is used to start a channel to the CLUSRCVR. If the

CLUSRCVR is configured for SSL connectivity the following considerations apply:

Page 59 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

� All queue managers that want to communicate with this CLUSRCVR must have access to SSL support. This SSL provision must
support the CipherSpec for the channel.

� The different queue managers to which the auto-defined CLUSSDRs have been propagated will each have a different distinguished
name associated. If distinguished name peer checking is to be used on the CLUSRCVR it must be set up so all of the distinguished
names that can be received are successfully matched.

For example, let us assume that all of the queue managers that will host CLUSSDRs which will connect to a particular CLUSRCVR,

have certificates associated. Let us also assume that the distinguished names in all of these certificates define the country as UK,
organization as IBM®, the organization unit as WebSphere MQ Development, and all have common names in the form DEVT.QMxxx,
where xxx is numeric.

In this case an SSLPEER value of C=UK, O=IBM, OU=WebSphere MQ Development, CN=DEVT.QM* on the CLUSRCVR will allow all the

required CLUSSDRs to connect successfully, but will prevent unwanted CLUSSDRs from connecting.

� If custom CipherSpec strings are used, be aware that the custom string formats are not allowed on all platforms. An example of this
is that the CipherSpec string RC4_SHA_US has a value of 05 on i5/OS® but is not a valid specification on UNIX or Windows. So if
custom SSLCIPH parameters are used on a CLUSRCVR, all resulting auto-defined CLUSSDRs should reside on platforms on which the
underlying SSL support implements this CipherSpec and on which it can be specified with the custom value. If you cannot select a

value for the SSLCIPH parameter that will be understood throughout your cluster you will need a channel auto definition exit to
change it into something the platforms being used will understand. Use the textual CipherSpec strings where possible (for example
RC4_MD5_US).

An SSLCRLNL parameter applies to an individual queue manager and is not propagated to other queue managers within a cluster.

Upgrading clustered queue managers and channels to use SSL

Disabling SSL on clustered queue managers and channels

Parent topic: Keeping clusters secure

This build: January 26, 2011 11:14:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11470_

2.5.6.1. Upgrading clustered queue managers and channels to use SSL

1. The first step is to upgrade all queue managers in the cluster to V5.3 or higher, if they are not already at these levels, and to
distribute the certificates and keys so that SSL works from each of them.

2. You then switch the CLUSRCVR channels to SSL in any order you like (the changes flow in the opposite direction over channels
which are not changed to SSL). Make sure that you do not change the reverse path until the changes for the current channel have

been distributed throughout the cluster. In other words, change one CLUSRCVR at a time, and allow the changes to flow through the
cluster before changing the next.

3. When the CLUSRCVR changes are complete, you should change all manual CLUSSDR channels to SSL. This does not have any effect
on the operation of the cluster, unless you use the REFRESH CLUSTER command with the REPOS(YES) option.

Parent topic: Using SSL

This build: January 26, 2011 11:14:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11480_

2.5.6.2. Disabling SSL on clustered queue managers and channels

If you want to disable SSL in your cluster, follow these steps:

1. Set the value of the SSLCIPH parameter to ' ' (an empty string in single quotes), or *NONE on i5/OS®.

2. Run the RESET CLUSTER command (RSTMQMCL CLUSTER on i5/OS) against each queue manager pointing to the other queue
managers in the cluster. That is, if you have two queue managers in your cluster, run the RSTMQMCL command four times in total,
twice for each queue manager.

The RESET CLUSTER command replaces the auto-defined cluster send channels with the newer version. For example:

On QM1:

RESET CLUSTER(clustername) QMNAME(QM1) ACTION(FORCEREMOVE)QUEUES(NO)

RESET CLUSTER(clustername) QMNAME(QM2) ACTION(FORCEREMOVE)QUEUES(NO)

On QM2:

RESET CLUSTER(clustername) QMNAME(QM2) ACTION(FORCEREMOVE)QUEUES(NO)

RESET CLUSTER(clustername) QMNAME(QM1) ACTION(FORCEREMOVE)QUEUES(NO)

On i5/OS, the equivalent command is:

RSTMQMCL CLUSTER(CLUSTER.NAME) QMNAME(QM1)ACTION(*FRCRMV) MQMNAME(QM1)

QUEUES(*NO)

RSTMQMCL CLUSTER(CLUSTER.NAME) QMNAME(QM2)ACTION(*FRCRMV) MQMNAME(QM1)

QUEUES(*NO)

RSTMQMCL CLUSTER(CLUSTER.NAME) QMNAME(QM1)ACTION(*FRCRMV) MQMNAME(QM2)

QUEUES(*NO)

RSTMQMCL CLUSTER(CLUSTER.NAME) QMNAME(QM2)ACTION(*FRCRMV) MQMNAME(QM2)

QUEUES(*NO)

Page 60 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

3. Run the REFRESH CLUSTER command (RFRMQMCL CLUSTER on i5/OS) to reinstate the queue managers into the cluster. For
example:

On QM1:

REFRESH CLUSTER(clustername) REPOS(NO)

On QM2:

REFRESH CLUSTER(clustername) REPOS(NO)

On i5/OS, the equivalent command is:

RFRMQMCL CLUSTER(CLUSTER.NAME) MQMNAME(QM1) REPOS(*NO)

RFRMQMCL CLUSTER(CLUSTER.NAME) MQMNAME(QM2) REPOS(*NO)

Parent topic: Using SSL

This build: January 26, 2011 11:14:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc13390_

2.6. Advanced tasks

The advanced tasks show you how to modify a simple cluster in various ways, and how to convert an existing network into a cluster.

You can perform these tasks, and the two described in Task 1: Setting up a new cluster and Task 2a: Adding a new queue manager to
a cluster , without stopping your existing cluster queue managers or disrupting your existing network in any way.

Much of the information you need to achieve these tasks is documented elsewhere in the WebSphere® MQ library. This chapter gives
pointers to that information and fills in details relating specifically to work with clusters.

Note:

1. Throughout the examples in this chapter and First tasks, the queue managers have illustrative names such as LONDON and

NEWYORK. Don't forget that on WebSphere MQ for z/OS®, queue-manager names are limited to 4 characters.

2. The names of the queue managers imply that each queue manager is on a separate machine. You could just as easily set up these
examples with all the queue managers on the same machine.

3. The examples in these chapters show WebSphere MQ Script Commands (MQSC) as they would be entered by the system
administrator at the command console. For information about other ways of entering commands, refer to Using WebSphere MQ

commands with clusters.

Task 3: Adding a new queue manager that hosts a queue

Task 4: Removing a cluster queue from a queue manager

Task 5: Moving a full repository to another queue manager

Task 6: Converting an existing network into a cluster

Task 7: Adding a new, interconnected cluster

Task 8: Removing a cluster network

Task 9: Adding new queue managers that host a shared queue

Task 10: Removing a queue manager from a cluster

Parent topic: Using queue manager clusters

This build: January 26, 2011 11:14:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11490_

2.6.1. Task 3: Adding a new queue manager that hosts a queue

Note: For changes to a cluster to be propagated throughout the cluster, at least one full repository must always be available. Ensure that
your repositories are available before starting this task.

Scenario:

� The INVENTORY cluster has been set up as described in Task 2a: Adding a new queue manager to a cluster. It contains three queue
managers; LONDON and NEWYORK both hold full repositories, PARIS holds a partial repository. The inventory application runs on

the system in New York, connected to the NEWYORK queue manager. The application is driven by the arrival of messages on the
INVENTQ queue.

� A new store is being set up in Toronto. To provide additional capacity you want to run the inventory application on the system in
Toronto as well as New York.

� Network connectivity exists between all four systems.

Page 61 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

� The network protocol is TCP.

Note: The queue manager TORONTO contains only a partial repository. If you want to add a full-repository queue manager to a cluster,
refer to Task 5: Moving a full repository to another queue manager.

Procedure

Follow these steps to add a new queue manager that hosts a queue.

1. Determine which full repository TORONTO should refer to first

Every queue manager in a cluster must refer to one or other of the full repositories to gather information about the cluster and so build up

its own partial repository. It is of no particular significance which repository you choose. In this example we choose NEWYORK. Once the
new queue manager has joined the cluster it will communicate with both of the repositories.

2. Define the CLUSRCVR channel

Every queue manager in a cluster needs to define a cluster-receiver channel on which it can receive messages. On TORONTO, define:

DEFINE CHANNEL(TO.TORONTO) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)

CONNAME(TORONTO.CHSTORE.COM) CLUSTER(INVENTORY)

DESCR('Cluster-receiver channel for TORONTO')

This advertises the queue manager's availability to receive messages from other queue managers in the cluster, INVENTORY.

3. Define a CLUSSDR channel on queue manager TORONTO

Every queue manager in a cluster needs to define one cluster-sender channel on which it can send messages to its first full repository. In
this case we have chosen NEWYORK, so TORONTO needs the following definition:

DEFINE CHANNEL(TO.NEWYORK) CHLTYPE(CLUSSDR) TRPTYPE(TCP)

CONNAME(NEWYORK.CHSTORE.COM) CLUSTER(INVENTORY)

DESCR('Cluster-sender channel from TORONTO to repository at NEWYORK')

4. Issue the REFRESH CLUSTER command

If you are adding a queue manager to a cluster that has previously been removed from the same cluster, you must issue the REFRESH
CLUSTER command on the queue manager you are adding. This completes the task of adding the queue manager.

 REFRESH CLUSTER(INVENTORY) REPOS(YES)

5. Review the inventory application for message affinities

Before proceeding, ensure that the inventory application does not have any dependencies on the sequence of processing of messages. See
Reviewing applications for message affinities for more information.

6. Install the inventory application on the system in Toronto

See the WebSphere MQ Application Programming Guide for information about how to do this.

7. Define the cluster queue INVENTQ

The INVENTQ queue, which is already hosted by the NEWYORK queue manager, is also to be hosted by TORONTO. Define it on the
TORONTO queue manager as follows:

DEFINE QLOCAL(INVENTQ) CLUSTER(INVENTORY)

Now that you have completed all the definitions, if you have not already done so you should start the channel initiator on WebSphere®

MQ for z/OS® and, on all platforms, start a listener program on queue manager TORONTO. The listener program listens for incoming
network requests and starts the cluster-receiver channel when it is needed. See Establishing communication in a cluster for more
information.

The cluster set up by this task looks like this:

Figure 1. The INVENTORY cluster with four queue managers

Page 62 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

The INVENTQ queue and the inventory application are now hosted on two queue managers in the cluster. This increases their availability,
speeds up throughput of messages, and allows the workload to be distributed between the two queue managers. Messages put to

INVENTQ by either TORONTO or NEWYORK are handled by the instance on the local queue manager whenever possible. Messages put by
LONDON or PARIS are routed alternately to TORONTO or NEWYORK, so that the workload is balanced.

This modification to the cluster was accomplished without you having to make any alterations to the queue managers NEWYORK,
LONDON, and PARIS. The full repositories in these queue managers are updated automatically with the information they need to be able

to send messages to INVENTQ at TORONTO.

Assuming that the inventory application is designed appropriately and that there is sufficient processing capacity on the systems in New
York and Toronto, the inventory application will continue to function if either the NEWYORK or the TORONTO queue manager becomes

unavailable.

As you can see from the result of this task, you can have the same application running on more than one queue manager. You can use the
facility to allow even distribution of your workload, or you may decide to control the distribution yourself by using a data partitioning

technique.

For example, suppose that you decide to add a customer-account query and update application running in LONDON and NEWYORK.
Account information can only be held in one place, but you could arrange for half the records, for example for account numbers 00000 to

49999, to be held in LONDON, and the other half, in the range 50000 to 99999, to be held in NEWYORK. Write a cluster workload exit
program to examine the account field in all messages, and route the messages to the appropriate queue manager.

Parent topic: Advanced tasks

This build: January 26, 2011 11:14:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11500_

2.6.2. Task 4: Removing a cluster queue from a queue manager

Note: For changes to a cluster to be propagated throughout the cluster, at least one full repository must always be available. Ensure that
your repositories are available before starting this task.

Scenario:

� The INVENTORY cluster has been set up as described in Task 3: Adding a new queue manager that hosts a queue. It contains four
queue managers. LONDON and NEWYORK both hold full repositories. PARIS and TORONTO hold partial repositories. The inventory
application runs on the systems in New York and Toronto and is driven by the arrival of messages on the INVENTQ queue.

� Because of reduced workload, you no longer want to run the inventory application in Toronto. You want to disable the INVENTQ
queue hosted by the queue manager TORONTO, and have TORONTO feed messages to the INVENTQ queue in NEWYORK.

� Network connectivity exists between all four systems.

� The network protocol is TCP.

Procedure

Follow these steps to move a full repository to another queue manager.

1. Indicate that the queue is no longer available

To remove a queue from a cluster, remove the cluster name from the local queue definition. Do this from queue manager TORONTO,
using the ALTER QLOCAL command and specifying a blank cluster name, like this:

ALTER QLOCAL(INVENTQ) CLUSTER(' ')

Page 63 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

2. Check that the queue is no longer available

On a full repository queue manager, either LONDON or NEWYORK , check that the queue is no longer hosted by queue manager TORONTO
by issuing the following command:

DIS QCLUSTER (INVENTQ)

You should see only the queue hosted by NEWYORK.

3. Disable the queue

Disable the INVENTQ queue at TORONTO so that no further messages can be written to it:

ALTER QLOCAL(INVENTQ) PUT(DISABLED)

Now messages in transit to this queue using MQOO_BIND_ON_OPEN will go to the dead-letter queue. You need to stop all applications
from putting messages explicitly to the queue on this queue manager.

4. Monitor the queue until it is empty

Monitor the queue using the DISPLAY QUEUE command and specifying the attributes IPPROCS, OPPROCS, and CURDEPTH, or use the
WRKMQMQSTS command on i5/OS®. When the number of input processes, the number of output processes, and the current depth of the

queue are all zero, you can be sure that the queue is empty.

5. Monitor the channel to ensure there are no in-doubt messages

To be sure that there are no in-doubt messages on the channel TO.TORONTO, monitor the cluster-sender channel called TO.TORONTO on
each of the other queue managers. To do this, issue the DISPLAY CHSTATUS command specifying the INDOUBT parameter from each
queue manager:

DISPLAY CHSTATUS(TO.TORONTO) INDOUBT

If there are any in-doubt messages, you must resolve them before proceeding. For example, you might try issuing the RESOLVE channel

command or stopping and restarting the channel.

6. Delete the local queue

When you are satisfied that there are no more messages to be delivered to the inventory application at TORONTO, you can delete the
queue:

DELETE QLOCAL(INVENTQ)

The cluster set up by this task is similar to that set up by the previous task, except that the INVENTQ queue is no longer available at

queue manager TORONTO.

When you take the queue out of service (step 1), the TORONTO queue manager sends a message to the two full repository queue
managers notifying them of the change in status. The full repository queue managers pass on this information to other queue managers in

the cluster that have requested updates to information concerning the INVENTQ.

Now when a queue manager has a message to put on the INVENTQ queue, its updated partial repository indicates that the INVENTQ
queue is available only at the NEWYORK queue manager, and so the message is sent there.

You can now remove the inventory application from the system in Toronto, to avoid duplication and save space on the system.

In this task description there is only one queue to remove and only one cluster to remove it from.

Suppose that there were many queues referring to a namelist containing many cluster names. For example, the TORONTO queue manager
might host not only the INVENTQ, but also the PAYROLLQ, SALESQ, and PURCHASESQ. TORONTO makes these queues available in all the

appropriate clusters, INVENTORY, PAYROLL, SALES, and PURCHASES. To do this, TORONTO defines a namelist of the cluster names:

DEFINE NAMELIST(TOROLIST)

 DESCR('List of clusters TORONTO is in')

 NAMES(INVENTORY, PAYROLL, SALES, PURCHASES)

and specifies this namelist on each queue definition, like this:

DEFINE QLOCAL(INVENTQ) CLUSNL(TOROLIST)

DEFINE QLOCAL(PAYROLLQ) CLUSNL(TOROLIST)

DEFINE QLOCAL(SALESQ) CLUSNL(TOROLIST)

DEFINE QLOCAL(PURCHASESQ) CLUSNL(TOROLIST)

Now suppose that you want to remove all those queues from the SALES cluster, because the SALES operation is to be taken over by the
PURCHASES operation. All you need to do is alter the TOROLIST namelist to remove the name of the SALES cluster from it.

If you want to remove a single queue from one of the clusters in the namelist, create a new namelist, containing the remaining list of
cluster names, and then alter the queue definition to use the new namelist. To remove the PAYROLLQ from the INVENTORY cluster:

1. Create a new namelist:

DEFINE NAMELIST(TOROSHORTLIST)

 DESCR('List of clusters TORONTO is in other than INVENTORY')

 NAMES(PAYROLL, SALES, PURCHASES)

2. Alter the PAYROLLQ queue definition:

ALTER QLOCAL(PAYROLLQ) CLUSNL(TOROSHORTLIST)

Parent topic: Advanced tasks

This build: January 26, 2011 11:14:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 64 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11580_

2.6.3. Task 5: Moving a full repository to another queue manager

Note: For changes to a cluster to be propagated throughout the cluster, at least one full repository must always be available. Ensure that
your repositories are available before starting this task.

Scenario:

� The INVENTORY cluster has been set up as described in Task 3: Adding a new queue manager that hosts a queue and modified as
described in Task 4: Removing a cluster queue from a queue manager and Task 10: Removing a queue manager from a cluster.

� For business reasons you now want to remove the full repository from queue manager LONDON, and replace it with a full repository
at queue manager PARIS. The NEWYORK queue manager is to continue holding a full repository.

Procedure

Follow these steps to move a full repository to another queue manager.

1. Alter PARIS to make it a full repository queue manager

On PARIS, issue the following command:

ALTER QMGR REPOS(INVENTORY)

2. Add a CLUSSDR channel on PARIS

PARIS currently has a cluster-sender channel pointing to LONDON. Now that LONDON is no longer to hold a full repository for the cluster,
PARIS must have a new cluster-sender channel that points to NEWYORK, where the other full repository is held.

DEFINE CHANNEL(TO.NEWYORK) CHLTYPE(CLUSSDR) TRPTYPE(TCP)

CONNAME(NEWYORK.CHSTORE.COM) CLUSTER(INVENTORY)

DESCR('Cluster-sender channel from PARIS to repository at NEWYORK')

3. Define a CLUSSDR channel on NEWYORK that points to PARIS

Currently NEWYORK has a cluster-sender channel pointing to LONDON. Now that the other full repository has moved to PARIS, you need

to add a new cluster-sender channel at NEWYORK that points to PARIS.

DEFINE CHANNEL(TO.PARIS) CHLTYPE(CLUSSDR) TRPTYPE(TCP)

CONNAME(PARIS.CHSTORE.COM) CLUSTER(INVENTORY)

DESCR('Cluster-sender channel from NEWYORK to repository at PARIS')

When you do this, the PARIS queue manager immediately learns all about the cluster from NEWYORK and builds up its own full repository.

4. Check that queue manager PARIS now has a full repository

Check that queue manager PARIS has built its own full repository from the full repository on queue manager NEWYORK. Do this by issuing
the following commands:

DIS QCLUSTER(*) CLUSTER (INVENTORY)

DIS CLUSQMGR(*) CLUSTER (INVENTORY)

Check that these commands show details of the same resources in this cluster as on NEWYORK.

Note: If queue manager NEWYORK is not available, this building of information cannot complete. Do not move on to the next step in this
task until this is complete.

5. Alter the queue-manager definition on LONDON

Finally alter the queue manager at LONDON so that it no longer holds a full repository for the cluster. On LONDON, issue the command:

ALTER QMGR REPOS(' ')

The queue manager no longer receives any cluster information. After 30 days the information that is stored in its full repository expires.

The queue manager LONDON now builds up its own partial repository.

6. Remove or change any outstanding definitions

When you are sure that the new arrangement of your cluster is working as expected, remove or change manually defined CLUSSDR
definitions that are no longer correct.

� On the PARIS queue manager, you must stop and delete the cluster-sender channel to LONDON, and then issue the start channel

command so that the cluster can use the automatic channels again:

STOP CHANNEL(TO.LONDON)

DELETE CHANNEL(TO.LONDON)

START CHANNEL(TO.LONDON)

� On the NEWYORK queue manager, you must stop and delete the cluster-sender channel to LONDON, and then issue the start
channel command so that the cluster can use the automatic channels again:

STOP CHANNEL(TO.LONDON)

DELETE CHANNEL(TO.LONDON)

START CHANNEL(TO.LONDON)

� Replace all other cluster-sender channels in the cluster that point to LONDON with channels that point to either NEWYORK or PARIS.
In this small example, there are no others. To check whether there are any others that you have forgotten, issue the DISPLAY

CHANNEL command from each queue manager, specifying TYPE(CLUSSDR). For example:

DISPLAY CHANNEL(*) TYPE(CLUSSDR)

Page 65 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

It is important that you perform this task as soon as possible after moving the full repository from LONDON to PARIS. In the time before

you perform this task, queue managers that have manually defined CLUSSDR channels named TO.LONDON might send requests for

information using this channel.

After LONDON has ceased to be a full repository, if it receives such requests it will write error messages to its queue manager error log.
The following examples show which error messages might be seen on LONDON:

� AMQ9428: Unexpected publication of a cluster queue object received

� AMQ9432: Query received by a non-repository queue manager

The queue manager LONDON does not respond to the requests for information because it is no longer a full repository. The queue
managers requesting information from LONDON must rely on NEWYORK for cluster information until their manually defined CLUSSDR
definitions are corrected to point to PARIS. This situation must not be tolerated as a valid configuration in the long term.

The cluster set up by this task looks like this:

Figure 1. The INVENTORY cluster with the full repository moved to PARIS

Parent topic: Advanced tasks

This build: January 26, 2011 11:14:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11660_

2.6.4. Task 6: Converting an existing network into a cluster

Task 1: Setting up a new cluster through Task 5: Moving a full repository to another queue manager set up and then extend a new
cluster. The next two tasks explore a different approach: that of converting an existing network of queue managers into a cluster.

Note: For changes to a cluster to be propagated throughout the cluster, at least one full repository must always be available. Ensure that
your repositories are available before starting this task.

Scenario:

� A WebSphere® MQ network is already in place, connecting the nationwide branches of a chain store. It has a hub and spoke
structure: all the queue managers are connected to one central queue manager. The central queue manager is on the system on
which the inventory application runs. The application is driven by the arrival of messages on the INVENTQ queue, for which each
queue manager has a remote-queue definition.

This network is illustrated in Figure 1.

Figure 1. A hub and spoke network

Page 66 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

� To ease administration you are going to convert this network into a cluster and create another queue manager at the central site to
share the workload.

� Both the central queue managers are to host full repositories and be accessible to the inventory application.

� The inventory application is to be driven by the arrival of messages on the INVENTQ queue hosted by either of the central queue
managers.

� The inventory application is to be the only application running in parallel and accessible by more than one queue manager. All other
applications will continue to run as before.

� All the branches have network connectivity to the two central queue managers.

� The network protocol is TCP.

Procedure

Follow these steps to convert an existing network into a cluster.

1. Review the inventory application for message affinities

Before proceeding ensure that the application can handle message affinities. See Reviewing applications for message affinities for more
information.

2. Alter the two central queue managers to make them full repository queue managers

The two queue managers CHICAGO and CHICAGO2 are at the hub of this network. You have decided to concentrate all activity associated
with the chainstore cluster on to those two queue managers. As well as the inventory application and the definitions for the INVENTQ
queue, you want these queue managers to host the two full repositories for the cluster. At each of the two queue managers, issue the

following command:

ALTER QMGR REPOS(CHAINSTORE)

3. Define a CLUSRCVR channel on each queue manager

At each queue manager in the cluster, define a cluster-receiver channel and a cluster-sender channel. It does not matter which of these
you define first.

Make a CLUSRCVR definition to advertise each queue manager, its network address, and so on, to the cluster. For example, on queue
manager ATLANTA:

DEFINE CHANNEL(TO.ATLANTA) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)

CONNAME(ATLANTA.CHSTORE.COM) CLUSTER(CHAINSTORE)

DESCR('Cluster-receiver channel')

4. Define a CLUSSDR channel on each queue manager

Make a CLUSSDR definition at each queue manager to link that queue manager to one or other of the full repository queue managers. For
example, you might link ATLANTA to CHICAGO2:

DEFINE CHANNEL(TO.CHICAGO2) CHLTYPE(CLUSSDR) TRPTYPE(TCP)

CONNAME(CHICAGO2.CHSTORE.COM) CLUSTER(CHAINSTORE)

DESCR('Cluster-sender channel to repository queue manager')

5. Install the inventory application on CHICAGO2

You already have the inventory application on queue manager CHICAGO. Now you need to make a copy of this application on queue
manager CHICAGO2. Refer to the WebSphere MQ Application Programming Guide and install the inventory application on CHICAGO2.

6. Define the INVENTQ queue on the central queue managers

On CHICAGO, modify the local queue definition for the queue INVENTQ to make the queue available to the cluster. Issue the command:

ALTER QLOCAL(INVENTQ) CLUSTER(CHAINSTORE)

Page 67 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

On CHICAGO2, make a definition for the same queue:

DEFINE QLOCAL(INVENTQ) CLUSTER(CHAINSTORE)

(On z/OS® you can use the MAKEDEF option of the COMMAND function of CSQUTIL to make an exact copy on CHICAGO2 of the INVENTQ
on CHICAGO. See the WebSphere MQ for z/OS System Administration Guide for details.)

When you make these definitions, a message is sent to the full repositories at CHICAGO and CHICAGO2 and the information in them is

updated. From then on, when a queue manager wants to put a message to the INVENTQ, it will find out from the full repositories that
there is a choice of destinations for messages sent to that queue.

7. Check that the cluster changes have been propagated

Check that the definitions you created with the previous step have been propagated though the cluster by issuing the following command
on a full repository queue manager:

DIS QCLUSTER(INVENTQ)

8. Delete all remote-queue definitions for the INVENTQ

Now that you have linked all your queue managers together in the CHAINSTORE cluster, and have defined the INVENTQ to the cluster, the

queue managers no longer need remote-queue definitions for the INVENTQ. At every queue manager, issue the command:

DELETE QREMOTE(INVENTQ)

Until you do this, the remote-queue definitions will continue to be used and you will not get the benefit of using clusters.

9. Implement the cluster workload exit (optional step)

Because there is more than one destination for messages sent to the INVENTQ, the workload management algorithm will determine which
destination each message will be sent to.

If you want to implement your own workload management routine, write a cluster workload exit program. See Workload balancing for
more information.

Now that you have completed all the definitions, if you have not already done so, start the channel initiator on WebSphere MQ for z/OS
and, on all platforms, start a listener program on each queue manager. The listener program listens for incoming network requests and
starts the cluster-receiver channel when it is needed. See Establishing communication in a cluster for more information.

The cluster set up by this task looks like this:

Figure 2. A cluster with a hub and spokes

Remember that this diagram shows only the channels that you have to define manually. Cluster-sender channels are defined automatically
when needed so that ultimately all queue managers can receive cluster information from the two full repository queue managers and also

messages from the two applications.

Once again, this is a very small example, little more than a proof of concept. In your enterprise it is unlikely that you will have a cluster of
this size with only one queue.

You can easily add more queues to the cluster environment by adding the CLUSTER parameter to your queue definitions, and then

Page 68 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

removing all corresponding remote-queue definitions from the other queue managers.

Parent topic: Advanced tasks

This build: January 26, 2011 11:14:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11740_

2.6.5. Task 7: Adding a new, interconnected cluster

Note:

1. For changes to a cluster to be propagated throughout the cluster, at least one full repository must always be available. Ensure that
your repositories are available before starting this task.

2. Before starting this task the system administrators of the two clusters must check for queue-name clashes and be sure that they
understand the consequences. You might need to rename a queue, or perhaps set up queue aliases before you can proceed.

Scenario:

� A WebSphere® MQ cluster has been set up as described in Task 6: Converting an existing network into a cluster.

� A new cluster called MAILORDER is to be implemented. This cluster will comprise four of the queue managers that are in the
CHAINSTORE cluster; CHICAGO, CHIGACO2, SEATTLE, and ATLANTA, and two additional queue managers; HARTFORD and OMAHA.
The MAILORDER application will run on the system at Omaha, connected to queue manager OMAHA. It will be driven by the other
queue managers in the cluster putting messages on the MORDERQ queue.

� The full repositories for the MAILORDER cluster will be maintained on the two queue managers CHICAGO and CHICAGO2.

� The network protocol is TCP.

Procedure

Follow these steps to add a new, interconnected cluster.

1. Create a namelist of the cluster names

The full repository queue managers at CHICAGO and CHICAGO2 are now going to hold the full repositories for both of the clusters
CHAINSTORE and MAILORDER. First, create a namelist containing the names of the clusters. Define the namelist on CHICAGO and

CHICAGO2, as follows:

DEFINE NAMELIST(CHAINMAIL)

 DESCR('List of cluster names')

 NAMES(CHAINSTORE, MAILORDER)

2. Alter the two queue-manager definitions

Now alter the two queue-manager definitions at CHICAGO and CHICAGO2. Currently these definitions show that the queue managers hold
full repositories for the cluster CHAINSTORE. Change that definition to show that the queue managers hold full repositories for all clusters
listed in the CHAINMAIL namelist. To do this, at both CHICAGO and CHICAGO2, specify:

ALTER QMGR REPOS(' ') REPOSNL(CHAINMAIL)

3. Alter the CLUSRCVR channels on CHICAGO and CHICAGO2

The CLUSRCVR channel definitions at CHICAGO and CHICAGO2 show that the channels are available in the cluster CHAINSTORE. You need
to change this to show that the channels are available to all clusters listed in the CHAINMAIL namelist. To do this, at CHICAGO, enter the

command:

ALTER CHANNEL(TO.CHICAGO) CHLTYPE(CLUSRCVR)

 CLUSTER(' ') CLUSNL(CHAINMAIL)

At CHICAGO2, enter the command:

ALTER CHANNEL(TO.CHICAGO2) CHLTYPE(CLUSRCVR)

 CLUSTER(' ') CLUSNL(CHAINMAIL)

4. Alter the CLUSSDR channels on CHICAGO and CHICAGO2

Change the two CLUSSDR channel definitions to add the namelist. At CHICAGO, enter the command:

ALTER CHANNEL(TO.CHICAGO2) CHLTYPE(CLUSSDR)

 CLUSTER(' ') CLUSNL(CHAINMAIL)

At CHICAGO2, enter the command:

ALTER CHANNEL(TO.CHICAGO) CHLTYPE(CLUSSDR)

 CLUSTER(' ') CLUSNL(CHAINMAIL)

5. Create a namelist on SEATTLE and ATLANTA

Because SEATTLE and ATLANTA are going to be members of more than one cluster, you must create a namelist containing the names of
the clusters. Define the namelist on SEATTLE and ATLANTA, as follows:

DEFINE NAMELIST(CHAINMAIL)

 DESCR('List of cluster names')

 NAMES(CHAINSTORE, MAILORDER)

6. Alter the CLUSRCVR channels on SEATTLE and ATLANTA

Page 69 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

The CLUSRCVR channel definitions at SEATTLE and ATLANTA show that the channels are available in the cluster CHAINSTORE. Change

this to show that the channels are available to all clusters listed in the CHAINMAIL namelist. To do this, at SEATTLE, enter the command:

ALTER CHANNEL(TO.SEATTLE) CHLTYPE(CLUSRCVR)

 CLUSTER(' ') CLUSNL(CHAINMAIL)

At ATLANTA, enter the command:

ALTER CHANNEL(TO.ATLANTA) CHLTYPE(CLUSRCVR)

 CLUSTER(' ') CLUSNL(CHAINMAIL)

7. Alter the CLUSSDR channels on SEATTLE and ATLANTA

Change the two CLUSSDR channel definitions to add the namelist. At SEATTLE, enter the command:

ALTER CHANNEL(TO.CHICAGO) CHLTYPE(CLUSSDR)

 CLUSTER(' ') CLUSNL(CHAINMAIL)

At ATLANTA, enter the command:

ALTER CHANNEL(TO.CHICAGO2) CHLTYPE(CLUSSDR)

 CLUSTER(' ') CLUSNL(CHAINMAIL)

8. Define CLUSRCVR and CLUSSDR channels on HARTFORD and OMAHA

On the two new queue managers HARTFORD and OMAHA, define cluster-receiver and cluster-sender channels. It doesn't matter in which

sequence you do this. At HARTFORD, enter:

DEFINE CHANNEL(TO.HARTFORD) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)

CONNAME(HARTFORD.CHSTORE.COM) CLUSTER(MAILORDER)

DESCR('Cluster-receiver channel for HARTFORD')

DEFINE CHANNEL(TO.CHICAGO) CHLTYPE(CLUSSDR) TRPTYPE(TCP)

CONNAME(CHICAGO.CHSTORE.COM) CLUSTER(MAILORDER)

DESCR('Cluster-sender channel from HARTFORD to repository at CHICAGO')

At OMAHA, enter:

DEFINE CHANNEL(TO.OMAHA) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)

CONNAME(OMAHA.CHSTORE.COM) CLUSTER(MAILORDER)

DESCR('Cluster-receiver channel for OMAHA')

DEFINE CHANNEL(TO.CHICAGO) CHLTYPE(CLUSSDR) TRPTYPE(TCP)

CONNAME(CHICAGO.CHSTORE.COM) CLUSTER(MAILORDER)

DESCR('Cluster-sender channel from OMAHA to repository at CHICAGO')

9. Define the MORDERQ queue on OMAHA

The final step to complete this task is to define the queue MORDERQ on the queue manager OMAHA. To do this, enter:

DEFINE QLOCAL(MORDERQ) CLUSTER(MAILORDER)

10. Check that the cluster changes have been propagated

Check that the definitions you created with the previous steps have been propagated though the cluster by issuing the following
commands on a full repository queue manager:

DIS QCLUSTER(MORDERQ)

DIS CLUSQMGR

The cluster set up by this task is shown in Figure 1.

Now we have two overlapping clusters. The full repositories for both clusters are held at CHICAGO and CHICAGO2. The mailorder
application that runs on OMAHA is independent of the inventory application that runs at CHICAGO. However, some of the queue managers
that are in the CHAINSTORE cluster are also in the MAILORDER cluster, and so they can send messages to either application. Before
carrying out this task to overlap two clusters, be aware of the possibility of queue-name clashes. Suppose that on NEWYORK in cluster
CHAINSTORE and on OMAHA in cluster MAILORDER, there is a queue called ACCOUNTQ. If you overlap the clusters and then an

application on a queue manager that is a member of both clusters, for example SEATTLE, puts a message to the queue ACCOUNTQ, the
message can go to either instance of the ACCOUNTQ.

Figure 1. Interconnected clusters

Page 70 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

Suppose you decide to merge the MAILORDER cluster with the CHAINSTORE cluster to form one large cluster called CHAINSTORE.

To merge the MAILORDER cluster with the CHAINSTORE cluster, such that CHICAGO and CHICAGO2 hold the full repositories:

� Alter the queue manager definitions for CHICAGO and CHICAGO2, removing the REPOSNL attribute, which specifies the namelist

(CHAINMAIL), and replacing it with a REPOS attribute specifying the cluster name (CHAINSTORE). For example:

ALTER QMGR(CHICAGO) REPOSNL(' ') REPOS(CHAINSTORE)

� On each queue manager in the MAILORDER cluster, alter all the channel definitions and queue definitions to change the value of the
CLUSTER attribute from MAILORDER to CHAINSTORE. For example, at HARTFORD, enter:

ALTER CHANNEL(TO.HARTFORD) CLUSTER(CHAINSTORE)

At OMAHA enter:

ALTER QLOCAL(MORDERQ) CLUSTER(CHAINSTORE)

� Alter all definitions that specify the cluster namelist CHAINMAIL, that is, the CLUSRCVR and CLUSSDR channel definitions at

CHICAGO, CHICAGO2, SEATTLE, and ATLANTA, to specify instead the cluster CHAINSTORE.

From this example, you can see the advantage of using namelists. Instead of altering the queue manager definitions for CHICAGO and
CHICAGO2 you can just alter the value of the namelist CHAINMAIL. Similarly, instead of altering the CLUSRCVR and CLUSSDR channel

definitions at CHICAGO, CHICAGO2, SEATTLE, and ATLANTA, you can achieve the required result by altering the namelist.

Parent topic: Advanced tasks

This build: January 26, 2011 11:14:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11850_

2.6.6. Task 8: Removing a cluster network

Page 71 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

Note: For changes to a cluster to be propagated throughout the cluster, at least one full repository must always be available. Ensure that
your repositories are available before starting this task.

Scenario:

� A WebSphere® MQ cluster has been set up as described in Task 6: Converting an existing network into a cluster.

� This cluster is now to be removed from the system. The network of queue managers is to continue functioning as it did before the
cluster was implemented.

Procedure

Follow these steps to remove a cluster network.

1. Remove cluster queues from the cluster

On both CHICAGO and CHICAGO2, modify the local queue definition for the queue INVENTQ to remove the queue from the cluster. To do

this, issue the command:

ALTER QLOCAL(INVENTQ) CLUSTER(' ')

When you do this, the information in the full repositories is updated and propagated throughout the cluster. Active applications using
MQOO_BIND_NOT_FIXED, and applications using MQOO_BIND_AS_Q_DEF where the queue has been defined with DEFBIND(NOTFIXED),
fail on the next attempted MQPUT or MQPUT1 call. The reason code MQRC_UNKNOWN_OBJECT_NAME is returned.

You do not have to perform Step 1 first, but if you don’t, perform it instead after Step 4.

2. Stop all applications that have access to cluster queues

Stop all applications that have access to cluster queues. If you do not, some cluster information might remain on the local queue manager
when you refresh the cluster in Step 5. This information is removed when all applications have stopped and the cluster channels have

disconnected.

3. Remove the repository attribute from the full repository queue managers

On both CHICAGO and CHICAGO2, modify the queue manager definitions to remove the repository attribute. To do this issue the
command:

ALTER QMGR REPOS(' ')

The queue managers inform the other queue managers in the cluster that they no longer hold the full repositories. When the other queue

managers receive this information, you will see a message indicating that the full repository has ended, and one or more messages
indicating that there are no longer any repositories available for the cluster CHAINSTORE.

4. Remove cluster channels

On CHICAGO remove the cluster channels:

ALTER CHANNEL(TO.CHICAGO2) CHLTYPE(CLUSSDR) CLUSTER(' ')

ALTER CHANNEL(TO.CHICAGO) CHLTYPE(CLUSRCVR) CLUSTER(' ')

Note: It is important to issue the ALTER CHANNEL commands in the correct sequence, as shown in the above example (CLUSSDR

command first, then CLUSRCVR command). Do not issue the CLUSRCVR command first, then the CLUSSDR command; this creates
indoubt channels that have a STOPPED status, you will then need to issue a START CHL command to recover the stopped channels (for
example START CHL(TO.CHICAGO).

You will see messages indicating that there are no repositories for the cluster CHAINSTORE.

If you did not remove the cluster queues as described in Step 1, you should do so now.

5. Stop cluster channels

On CHICAGO stop the cluster channels with the following commands:

STOP CHANNEL(TO.CHICAGO2)

STOP CHANNEL(TO.CHICAGO)

6. Issue the REFRESH CLUSTER command

Attention: Do not attempt this step before the cluster channels have stopped.

On CHICAGO remove the cluster information held in the queue manager’s full repository with the command:

REFRESH CLUSTER(CHAINSTORE) REPOS(YES)

All cluster information about the cluster CHAINSTORE is now removed from the queue manager. If cluster channels are still active,

information regarding these channels remains in the queue manager’s partial repository until the channel is stopped.

7. Repeat Steps 4, 5, and 6 for each queue manager in the cluster

Remove all definitions for cluster channels and cluster queues from each queue manager, stop the cluster channels, and issue the
REFRESH CLUSTER command.

8. Replace the remote-queue definitions for the INVENTQ

So that the network can continue to function, replace the remote queue definition for the INVENTQ at every queue manager.

9. Tidy up the cluster

Delete any queue or channel definitions no longer required.

Page 72 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

Parent topic: Advanced tasks

This build: January 26, 2011 11:14:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc11970_

2.6.7. Task 9: Adding new queue managers that host a shared queue

Note:

1. For changes to a cluster to be propagated throughout the cluster, at least one full repository must always be available. Ensure that
your repositories are available before starting this task.

2. Queue-sharing groups are supported only on WebSphere® MQ for z/OS®. This task is not applicable to other platforms.

Scenario:

� The INVENTORY cluster has been set up as described in Task 1: Setting up a new cluster. It contains two queue managers, LONDON
and NEWYORK.

� You want to add a queue-sharing group to this cluster. The group, QSGPOLO, comprises three queue managers, POLO1, POLO2, and
POLO3. They share an instance of the INVENTQ queue, which is to be defined by POLO1.

Procedure

Follow these steps to add new queue managers that host a shared queue.

1. Determine which full repository the queue managers will refer to first

Every member of a cluster must refer to one or other of the full repositories to gather information about the cluster and so build up its
own partial repository. It is of no particular significance which full repository you choose. In this example we choose NEWYORK. Once the
queue-sharing group has joined the cluster, it will communicate with both of the full repositories.

2. Define the CLUSRCVR channels

Every queue manager in a cluster needs to define a cluster-receiver channel on which it can receive messages. On POLO1, POLO2, and

POLO3, define:

DEFINE CHANNEL(TO.POLOn) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)

CONNAME(POLOn.CHSTORE.COM) CLUSTER(INVENTORY)

DESCR('Cluster-receiver channel for sharing queue manager')

This advertises each queue manager’s availability to receive messages from other queue managers in the cluster INVENTORY.

3. Define a CLUSSDR channel for the queue-sharing group

Every member of a cluster needs to define one cluster-sender channel on which it can send messages to its first full repository. In this
case we have chosen NEWYORK. One of the queue managers in the queue-sharing group needs the following group definition in order to

ensure every queue manager has a cluster-sender channel definition:

DEFINE CHANNEL(TO.NEWYORK) CHLTYPE(CLUSSDR) TRPTYPE(TCP)

CONNAME(NEWYORK.CHSTORE.COM) CLUSTER(INVENTORY) QSGDISP(GROUP)

DESCR('Cluster-sender channel to repository at NEWYORK')

4. Define the shared queue

Define the queue INVENTQ on POLO1 as follows:

DEFINE QLOCAL(INVENTQ) CLUSTER(INVENTORY) QSGDISP(SHARED) CFSTRUCT(STRUCTURE)

Now that you have completed all the definitions, if you have not already done so, start the channel initiator and a listener program on the
new queue manager. The listener program listens for incoming network requests and starts the cluster-receiver channel when it is

needed. See Establishing communication in a cluster for more information.

The cluster set up by this task looks like this:

Figure 1. Cluster and queue-sharing group

Page 73 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

Now messages put on the INVENTQ queue by LONDON are routed alternately around the four queue managers advertised as hosting the
queue.

One of the benefits of having members of a queue-sharing group hosting a cluster queue is that, if the queue manager that made the

queue definition (in this case POLO1) becomes unavailable after receiving a message on the shared queue, and is unable to reply, any
other member of the queue-sharing group can reply instead.

Note: Also refer to the chapter on Intra-group queuing in the WebSphere MQ Intercommunication for details of configuring clustering with

intra-group queuing.

Parent topic: Advanced tasks

This build: January 26, 2011 11:14:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12070_

2.6.8. Task 10: Removing a queue manager from a cluster

Note: For changes to a cluster to be propagated throughout the cluster, at least one full repository must always be available. Ensure that
your repositories are available before starting this task.

Scenario:

� The INVENTORY cluster has been set up as described in Task 3: Adding a new queue manager that hosts a queue and modified as
described in Task 4: Removing a cluster queue from a queue manager.

� For business reasons you no longer want to carry out any inventory work at Toronto and so you want to remove the TORONTO
queue manager from the cluster.

Procedure

Perform the following tasks at the TORONTO queue manager:

1. Modify the full repository queue manager REPOS and REPOSNL attributes

If your queue manager is a full repository queue manager, before you can remove it from a cluster, perform the additional step of altering
the queue manager definition to set the REPOS and REPOSNL attributes to blank. This sends a notification to other queue managers
advising them that they must stop sending cluster information to this queue manager.

2. Check that the REPOS and REPOSNL changes have been propagated

Check that the changes you made in the previous step have been propagated around the cluster by issuing the following command on a

remaining full repository:

DIS CLUSQMGR(TORONTO) QMTYPE

and check that it shows that the queue manager is no longer a full repository. The output should match the following:

AMQ8441: Display Cluster Queue Manager details.

Page 74 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

 CLUSQMGR(TORONTO) CLUSTER(INVENTORY)

 CHANNEL(TO.TORONTO) QMTYPE(NORMAL)

3. Suspend queue manager TORONTO

Issue the SUSPEND QMGR command to suspend availability of the queue manager to the INVENTORY cluster:

SUSPEND QMGR CLUSTER(INVENTORY)

When you issue this command, other queue managers are advised that they should refrain from sending messages to TORONTO.

4. Check that queue manager TORONTO has been suspended

Check that TORONTO has been suspended before moving on to the next step by issuing the following command on a full repository:

DIS CLUSQMGR(TORONTO) SUSPEND

and check that it shows that the queue manager is suspended. The output should match the following:

AMQ8441: Display Cluster Queue Manager details.

 CLUSQMGR(TORONTO) CLUSTER(INVENTORY)

 CHANNEL(TO.TORONTO) SUSPEND(YES)

5. Remove the CLUSRCVR channel definition

Remove the CLUSRCVR definition from the cluster by issuing the following command on the TORONTO queue manager:

ALTER CHANNEL(TO.TORONTO) CHLTYPE(CLUSRCVR) CLUSTER(' ')

This command causes the full repository queue managers to remove all information about the channel TO.TORONTO from their full

repositories, so that queue managers will no longer try to send messages to that channel.

At this point, no new active channels based on this receiver definition will be created in the cluster. However, remote auto-defined sender
channels may still be connected, and be displayed using DISPLAY CHSTATUS or DISPLAY CLUSQMGR.

6. Stop the CLUSRCVR channel at TORONTO

Note: Before performing this step, ensure that any bound messages have arrived on TORONTO, otherwise these messages will become
stuck on the sending queue manager's cluster transmit queue.

Issue the STOP CHANNEL command to stop the cluster-receiver channel:

STOP CHANNEL(TO.TORONTO)

When the channel is stopped, no more messages can be sent to TORONTO.

Later, to tidy up, you will probably want to delete the channel:

DELETE CHANNEL(TO.TORONTO)

On platforms other than z/OS, when the DELETE CHANNEL has been processed, you can verify the removal from the cluster by issuing the
DISPLAY CLUSQMGR(TORONTO command from a full repository. When the channel has become inactive, you will receive a message similar

to the message below:

AMQ8147: WebSphere MQ object TORONTO not found

On WebSphere MQ for z/OS, the queue manager may still appear in the DISPLAY CLUSQMGR output after the channel becomes inactive.

Note: At this point the TORONTO queue manager is no longer a valid destination in the cluster, but there may be messages bound to
TORONTO (messages put using BIND_ON_OPEN) still being sent from other queue managers in the cluster.

7. Delete the CLUSSDR channel definition

Note: Do not attempt this step before completing all previous steps in this task.

The CLUSSDR channel definition points to the full repository at queue manager NEWYORK. Stop this channel as follows:

STOP CHANNEL(TO.NEWYORK)

and then delete it:

DELETE CHANNEL(TO.NEWYORK)

Note: If the queue manager was a full repository, you might want to remove the CLUSSDR channel definitions from all the other queue

managers in the same cluster. On each of the other queue managers, run the commands:

ALTER CHANNEL(TO.TORONTO) CHLTYPE(CLUSSDR) CLUSTER(' ')

STOP CHANNEL(TO.TORONTO)

DELETE CHANNEL(TO.TORONTO)

8. Issue the REFRESH CLUSTER command

Issue the REFRESH CLUSTER command on TORONTO queue manager to remove any auto-defined cluster channels:

REFRESH CLUSTER(INVENTORY) REPOS(YES)

Note: In this scenario, you know that you no longer want to carry out any inventory work at Toronto and so you know that you can
remove the TORONTO queue manager from the cluster permanently. If you might want to reintroduce the TORONTO queue manager to
the cluster within 30 days, issue the REFRESH CLUSTER command without the REPOS(YES) parameter:

REFRESH CLUSTER(INVENTORY)

The cluster set up by this task looks like this:

Figure 1. The INVENTORY cluster, with TORONTO outside the cluster

Page 75 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

The queue manager TORONTO is no longer part of the cluster. However, it can still function as an independent queue manager.

This modification to the cluster was accomplished without you having to make any alterations to the queue managers NEWYORK,
LONDON, and PARIS.

Queue sharing groups behavior: On z/OS®, if the queue manager you remove from a cluster has queues that belong to a queue
sharing group, it can still process messages put to the shared queues as normal.

For example, suppose a cluster consists of the following 4 queue managers:

� POLO1 (full repository)

� POLO2 (full repository)

� POLO3 (partial repository)

� POLO4 (partial repository)

In this cluster, the cluster queues belong to a queue sharing group:

The cluster set up by this task looks like this:

Figure 2. Queue sharing group

Page 76 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

In this cluster, you process a number of messages to completion as a benchmark. Then, to take one of the queue managers holding a
partial repository out of the cluster, you perform the following steps:

1. Suspend the queue manager

2. Alter the CLUSRCVR channels to have CLUSTER(' ')

3. Stop and delete the CLUSRCVR channels

4. Stop and delete the CLUSSDR channels

When you reprocess the same messages as a test, the queue manager that was removed from the cluster is still able to process messages
put to the shared queues.

If you add this queue manager back into the same cluster, you must issue the REFRESH CLUSTER command on the queue manager you
are adding, after you have defined the cluster sender and cluster receiver channels.

Parent topic: Advanced tasks

This build: January 26, 2011 11:14:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12130_

2.7. Advanced workload balancing tasks

The workload balancing tasks demonstrate how to use the workload management parameters to control the distribution of messages

around clusters.

When messages are distributed within clusters and intersecting clusters, it is important to be able to control their destinations in order to
maintain effective workload balancing. Control the distribution of messages across a cluster with the workload management attributes

described here, to provide greater flexibility and control when dealing with complex topologies, and specialized business requirements.

For more information, see Workload balancing attributes.

Task 11: Adding a queue manager that hosts a queue locally

Task 12: Using two networks in a cluster

Task 13: Using a primary and a secondary network in a cluster

Task 14: Adding a queue to act as a backup

Task 15: Restricting the number of channels used

Task 16: Adding a more powerful queue manager that hosts a queue

Parent topic: Using queue manager clusters

Page 77 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

This build: January 26, 2011 11:14:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12230_

2.7.1. Task 11: Adding a queue manager that hosts a queue locally

Note: For changes to a cluster to be propagated throughout the cluster, at least one full repository must always be available. Ensure that

your repositories are available before starting this task.

Scenario:

� The INVENTORY cluster has been set up as described in Task 2a: Adding a new queue manager to a cluster. It contains three queue
managers; LONDON and NEWYORK both hold full repositories, PARIS holds a partial repository. The inventory application runs on
the system in New York, connected to the NEWYORK queue manager. The application is driven by the arrival of messages on the

INVENTQ queue.

� We want to add an instance of INVENTQ to provide additional capacity to run the inventory application system in Paris as well as
New York.

Procedure

Follow these steps to add a queue manager that hosts a queue locally.

1. Alter the PARIS queue manager

In order for the application in Paris to be able to equally use the INVENTQ in Paris and the one in New York, we must inform the queue
manager. On PARIS issue the following command:

ALTER QMGR CLWLUSEQ(ANY)

2. Review the inventory application for message affinities

Before proceeding, ensure that the inventory application does not have any dependencies on the sequence of processing of messages. See
“Reviewing applications for message affinities” for more information.

3. Install the inventory application on the system in Paris

See the WebSphere® MQ Application Programming Guide for information on how to do this.

4. Define the cluster queue INVENTQ

The INVENTQ queue which is already hosted by the NEWYORK queue manager is also to be hosted by PARIS. Define it on the PARIS

queue manager as follows:

DEFINE QLOCAL(INVENTQ) CLUSTER(INVENTORY)

Now that you have completed all the definitions, make sure you have started the channel initiator on WebSphere MQ for z/OS®, and, on
all platforms, start a listener on queue manager PARIS. The listener listens for incoming network requests and starts the cluster-receiver
channel when it is needed. See “Establishing communication in a cluster” for more information.

The cluster set up by this task looks like this:

Figure 1. The INVENTORY cluster, with three queue managers

The INVENTQ queue and the inventory application are now hosted on two queue managers in the cluster. This increases their availability,
speeds up throughput of messages, and allows the workload to be distributed between the two queue managers. Messages put to
INVENTQ by any of the queue managers LONDON, NEWYORK, PARIS are routed alternately to PARIS or NEWYORK, so that the workload is
balanced.

The modification to this cluster was accomplished without you having to make any alterations to the queue managers NEWYORK or
LONDON. The full repositories in these queue managers are updated automatically with the information they need to be able to send
messages to INVENTQ at PARIS.

Parent topic: Advanced workload balancing tasks

Page 78 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

This build: January 26, 2011 11:14:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12240_

2.7.2. Task 12: Using two networks in a cluster

Note: For changes to a cluster to be propagated throughout the cluster, at least one full repository must always be available. Ensure that
your repositories are available before starting this task.

Scenario:

� The INVENTORY cluster has been set up as described in “Adding a queue manager to a cluster”. It contains three queue managers;
LONDON and NEWYORK both hold full repositories, PARIS holds a partial repository. The inventory application runs on the system in
New York, connected to the NEWYORK queue manager. The application is driven by the arrival of messages on the INVENTQ queue.

� A new store is being added in EDINBURGH where there are two different networks. Both need to be available for use to

communicate with the queue manager in Edinburgh.

Procedure

Follow these steps to use two networks in a cluster.

1. Determine which full repository EDINBURGH should refer to first

Every queue manager in a cluster must refer to one or other of the full repositories to gather information about the cluster and so build up
its own partial repository. It is of no particular significance which repository you choose. In this example we choose NEWYORK. Once the

new queue manager has joined the cluster it will communicate with both of the repositories.

2. Define the CLUSRCVR channels

Every queue manager in a cluster needs to define a cluster-receiver on which it can receive messages. This queue manager needs to be
able to communicate on each network.

DEFINE CHANNEL(TO.EDINBURGH.NETA) CHLTYPE(CLUSRCVR) TRPTYPE(TCP) CONNAME('EDINBURGH.NETA.CMSTORE.COM') CLUSTER

(INVENTORY) DESCR('Cluster-receiver channel using network A for EDINBURGH')

DEFINE CHANNEL(TO.EDINBURGH.NETB) CHLTYPE(CLUSRCVR) TRPTYPE(TCP) CONNAME('EDINBURGH.NETB.CMSTORE.COM') CLUSTER

(INVENTORY) DESCR('Cluster-receiver channel using network Bfor EDINBURGH')

3. Define a CLUSSDR channel on queue manager EDINBURGH

Every queue manager in a cluster needs to define one cluster-sender channel on which it can send messages to its first full repository. In
this case we have chosen NEWYORK, so EDINBURGH needs the following definition:

DEFINE CHANNEL(TO.NEWYORK) CHLTYPE(CLUSSDR) TRPTYPE(TCP) CONNAME(NEWYORK.CHSTORE.COM) CLUSTER(INVENTORY) DESCR

('Cluster-sender channel from EDINBURGH to repository at NEWYORK')

Now that you have completed all the definitions, if you have not already done so, start the channel initiator on WebSphere® MQ for
z/OS®, and, on all platforms, start a listener program on queue manager PARIS. The listener program listens for incoming network
requests and starts the cluster-receiver channel when it is needed. See “Establishing communication in a cluster” for more information.

The cluster set up by this task looks like this:

Figure 1. The INVENTORY cluster, with three queue managers

By making only three definitions, we have added the queue manager EDINBURGH to the cluster with two different network routes

available to it.

Parent topic: Advanced workload balancing tasks

This build: January 26, 2011 11:14:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12300_

Page 79 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

2.7.3. Task 13: Using a primary and a secondary network in a cluster

Note: For changes to a cluster to be propagated throughout the cluster, at least one full repository must always be available. Ensure that
your repositories are available before starting this task.

Scenario:

� The INVENTORY cluster has been set up as described in Task 12: Using two networks in a cluster. It contains four queue managers;
LONDON and NEWYORK both hold full repositories; PARIS and EDINBURGH hold partial repositories. The inventory application runs
on the system in New York, connected to the queue manager NEWYORK. The EDINBURGH queue manager has two different

networks that it can communicate on.

� You want to make one of the networks the primary network, and another of the networks the backup network, for use when there is
a problem with the primary network.

� Use the NETPRTY attribute to do this as shown in the following procedure.

Procedure

Follow these steps to use a primary and a secondary network in a cluster.

1. Alter the existing CLUSRCVR channels on EDINBURGH

To indicate that the network A channel is the primary channel, and the network B channel is the secondary channel, use the following
commands:

ALTER CHANNEL(TO.EDINBURGH.NETA) CHLTYPE(CLUSRCVR) NETPRTY(2) DESCR('Main cluster-receiver channel for EDINBURGH')

ALTER CHANNEL(TO.EDINBURGH.NETB) CHLTYPE(CLUSRCVR) NETPRTY(1) DESCR('Backup cluster-receiver channel for EDINBURGH')

By changing the channel definitions to use different network priorities, you have now defined to the cluster that you have a primary
network and a secondary network. The queue managers in the cluster that use these channels will automatically discover this change and
will use the primary network whenever it is available, and will failover to use the secondary network when the primary network is not

available.

Parent topic: Advanced workload balancing tasks

This build: January 26, 2011 11:14:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12350_

2.7.4. Task 14: Adding a queue to act as a backup

Note: For changes to a cluster to be propagated throughout the cluster, at least one full repository must always be available. Ensure that
your repositories are available before starting this task.

Scenario:

� The INVENTORY cluster has been set up as described in Task 2a: Adding a new queue manager to a cluster. It contains three queue
managers; LONDON and NEWYORK both hold full repositories, PARIS holds a partial repository. The inventory application runs on

the system in New York, connected to the NEWYORK queue manager. The application is driven by the arrival of messages on the
INVENTQ queue.

� A new store is being set up in Chicago to provide a backup for the inventory system that now runs in New York. The Chicago system
will only be used when there is a problem with the New York system.

Procedure

Follow these steps to add a queue to act as a backup.

1. Determine which full repository CHICAGO should refer to first

Every queue manager in a cluster must refer to one or other of the full repositories to gather information about the cluster and so build up
its own partial repository. It is of no particular significance which repository you choose for any particular queue manager. In this example
we choose NEWYORK. Once the new queue manager has joined the cluster it will communicate with both of the repositories.

2. Define the CLUSRCVR channel

Every queue manager in a cluster needs to define a cluster-receiver on which it can receive messages. On CHICAGO define:

DEFINE CHANNEL(TO.CHICAGO) CHLTYPE(CLUSRCVR) TRPTYPE(TCP) CONNAME(CHICAGO.CMSTORE.COM) CLUSTER(INVENTORY) DESCR

('Cluster-receiver channel for CHICAGO')

3. Define a CLUSSDR channel on queue manager CHICAGO

Every queue manager in a cluster needs to define one cluster-sender channel on which it can send messages to its first full repository. In
this case we have chosen NEWYORK, so CHICAGO needs the following definition:

DEFINE CHANNEL(TO.NEWYORK) CHLTYPE(CLUSSDR) TRPTYPE(TCP) CONNAME(NEWYORK.CHSTORE.COM) CLUSTER(INVENTORY) DESCR

('Cluster-sender channel from CHICAGO to repository at NEWYORK')

4. Alter the existing cluster queue INVENTQ

Page 80 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

The INVENTQ which is already hosted by the NEWYORK queue manager is the main instance of the queue.

ALTER QLOCAL(INVENTQ) CLWLPRTY(2)

5. Review the inventory application for message affinities

Before proceeding, ensure that the inventory application does not have any dependencies on the sequence of processing of messages. See
Reviewing applications for message affinities for more information.

6. Install the inventory application on the system in CHICAGO

See the WebSphere MQ Application Programming Guide for information about how to do this.

7. Define the backup cluster queue INVENTQ

The INVENTQ which is already hosted by the NEWYORK queue manager, is also to be hosted as a backup by CHICAGO. Define it on the
CHICAGO queue manager as follows:

DEFINE QLOCAL(INVENTQ) CLUSTER(INVENTORY) CLWLPRTY(1)

Now that you have completed all the definitions, if you have not already done so, you should start the channel initiator on WebSphere®

MQ for z/OS® and, on all platforms, start a listener program on queue manager CHICAGO. The listener program listens for incoming
network requests and starts the cluster-receiver channel when it is needed. See “Establishing communication in a cluster” for more
information.

The cluster set up by this task looks like this:

Figure 1. The INVENTORY cluster, with four queue managers

The INVENTQ and the inventory application are now hosted on two queue managers in the cluster. This provides a backup and a main
queue. Messages put to INVENTQ are routed to NEWYORK unless it is unavailable when they are sent instead to CHICAGO.

Note:

The availability of a remote queue manager is based on the status of the channel to that queue manager. When channels start, their state
changes several times, with some of the states being less preferential to the cluster workload management algorithm. In practice this

means that lower priority (backup) destinations can be chosen while the channels to higher priority (primary) destinations are starting.

If you need to ensure that no messages go to a backup destination, do not use CLWLPRTY. Consider using separate queues, or CLWLRANK
with a manual switch over from the primary to backup.

For the full cluster workload management algorithm see The cluster workload management algorithm.

Parent topic: Advanced workload balancing tasks

This build: January 26, 2011 11:14:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12380_

2.7.5. Task 15: Restricting the number of channels used

Note: For changes to a cluster to be propagated throughout the cluster, at least one full repository must always be available. Ensure that
your repositories are available before starting this task.

Scenario:

� A price check application is to be installed on various queue managers, but to keep the number of channels being used to a low
number, we will restrict the number of active channels each server runs. The application is driven by the arrival of messages on the
PRICEQ queue.

� We have four server queue managers to host the price check application and two query queue managers which will send messages
to the PRICEQ to query a price. We will have separate queue managers as our full repository queue managers.

Page 81 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

Procedure

Follow these steps to restrict the number of channels used.

1. Choose 2 full repositories

Choose 2 queue managers to be the full repositories for your price check cluster. We will choose REPOS1 and REPOS2 as each of these 2

queue managers. Now issue the following command:

ALTER QMGR REPOS(PRICECHECK)

2. Define a CLUSRCVR channel on each queue manager

At each queue manager in the cluster, define a cluster-receiver channel and a cluster-sender channel. It does not matter which of these

you define first.

DEFINE CHANNEL(TO.SERVE1) CHLTYPE(CLUSRCVR) TRPTYPE(TCP) CONNAME(SERVER1.COM) CLUSTER(PRICECHECK) DESCR('Cluster-

receiver channel')

3. Define a CLUSSDR channel on each queue manager

Make a CLUSSDR definition at each queue manager to link that queue manager to one or other of the full repository queue managers.

DEFINE CHANNEL(TO.REPOS1) CHLTYPE(CLUSSDR) TRPTYPE(TCP) CONNAME(REPOS1.COM) CLUSTER(PRICECHECK) DESCR('Cluster-

sender channel to repository queue manager')

4. Install the price check application

See the WebSphere MQ Application Programming Guide for information about how to do this.

5. Define the PRICEQ queue on all the server queue managers

Issue the following command on each:

DEFINE QLOCAL(PRICEQ) CLUSTER(PRICECHECK)

6. Restrict the number of channels used by queries

On the query queue managers we restrict the number of active channels used, by issuing the following commands on each:

ALTER QMGR CLWLMRUC(2)

Now that you have completed all the definitions, if you have not already done so, you should start the channel initiator on WebSphere®
MQ for z/OS® and, on all platforms, start a listener program. The listener program listens for incoming network requests and starts the
cluster-receiver channel when it is needed. See “Establishing communication in a cluster” for more information.

The cluster set up by this task looks like this:

Figure 1. The PRICECHECK cluster, with four server queue managers, two repositories and two query queue managers

Although there are four instances of the PRICEQ queue available in the PRICECHECK cluster, each querying queue manager only makes
use of two of them. For example the QUERY1 queue manager only has active channels to the SERVER1 and SERVER2 queue managers. IF
SERVER1 became unavailable, the QUERY1 queue manager would then begin to use another queue manager, for example SERVER3.

Parent topic: Advanced workload balancing tasks

Page 82 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

This build: January 26, 2011 11:14:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12470_

2.7.6. Task 16: Adding a more powerful queue manager that hosts a queue

Note: For changes to a cluster to be propagated throughout the cluster, at least one full repository must always be available. Ensure that

your repositories are available before starting this task.

Scenario:

� The INVENTORY cluster has been set up as described in Task 2a: Adding a new queue manager to a cluster. It contains three queue
managers: LONDON and NEWYORK both hold full repositories, PARIS holds a partial repository and puts messages from INVENTQ.
The inventory application runs on the system in New York connected to the NEWYORK queue manager. The application is driven by

the arrival of messages on the INVENTQ queue.

� A new store is being set up in Los Angeles. To provide additional capacity, you want to run the inventory system in Los Angeles as
well as New York and are capable of processing twice as many messages as New York.

Procedure

Follow these steps to add a more powerful queue manager that hosts a queue.

1. Determine which full repository LOSANGELES should refer to first

Every queue manager in a cluster must refer to one or other of the full repositories to gather information about the cluster and so build up
its own partial repository. It is of no particular significance which repository you choose. In this example we choose NEWYORK. Once the
new queue manager has joined the cluster it will communicate with both of the repositories.

2. Define the CLUSRCVR channel

Every queue manager in a cluster needs to define a cluster-receiver channel on which it can receive message. This is also where we
indicate that LOSANGELES can process twice as many messages as NEWYORK. On LOSANGELES define:

DEFINE CHANNEL(TO.LOSANGELES) CHLTYPE(CLUSRCVR) TRPTYPE(TCP) CONNAME(LOSANGELES.CHSTORE.COM) CLUSTER(INVENTORY)

DESCR('Cluster-receiver channel for LOSANGELES') CLWLWGHT(2)

3. Define a CLUSSDR channel on queue manager LOSANGELES

Every queue manager in a cluster needs to define one cluster-sender channel on which it can send messages to its first full repository. In
this case we have chosen NEWYORK, so LOSANGELES needs the following definition:

DEFINE CHANNEL(TO.NEWYORK) CHLTYPE(CLUSSDR) TRPTYPE(TCP)

CONNAME(NEWYORK.CHSTORE.COM) CLUSTER(INVENTORY)

DESCR('Cluster-sender channel from LOSANGELES to repository at NEWYORK')

4. Alter the CLUSRCVR channel on queue manager NEWYORK

To ensure that the Los Angeles queue manager gets twice as many of the inventory messages as New York, we need to alter the definition
of the cluster-receiver channel:

ALTER CHANNEL(TO.NEWYORK) CHLTYPE(CLUSRCVR) CLWLWGHT(1)

5. Review the inventory application for message affinities

Before proceeding, ensure that the inventory application does not have any dependencies on the sequence of processing of messages. See

Reviewing applications for message affinities for more information.

6. Install the inventory application on the system in Los Angeles

See the WebSphere MQ Application Programming Guide for information about how to do this.

7. Define the cluster queue INVENTQ

The INVENTQ queue, which is already hosted by the NEWYORK queue manager, is also to be hosted by LOSANGELES. Define it on the
LOSANGELES queue manager as follows:

DEFINE QLOCAL(INVENTQ) CLUSTER(INVENTORY)

Now that you have completed all the definitions, if you have not already done so you should start the channel initiator and, on all

platforms, start a listener program on queue manager LOSANGELES. The listener program listens for incoming network requests and
starts the cluster-receiver channel when it is needed. See Establishing communication in a cluster for more information.

The cluster set up by this task looks like this:

Figure 1. The INVENTORY cluster with four queue managers

Page 83 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

The INVENTQ and inventory application are now hosted on two queue managers in the cluster. This increases their availability, speeds up
throughput of messages, and allows the workload to be distributed between the two queue managers. Messages put to INVENTQ by either
LOSANGELES or NEWYORK are handled by the instance on the local queue manager whenever possible. Messages put by LONDON or
PARIS are routed to LOSANGELES or NEWYORK, with twice as many messages being sent to LOSANGELES.

This modification to the cluster was accomplished without you having to make any alterations to the queue managers LONDON and PARIS.
The repositories in these queue managers are updated automatically with the information they need to be able to send messages to
INVENTQ at LOSANGELES.

Parent topic: Advanced workload balancing tasks

This build: January 26, 2011 11:14:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12550_

3. Reference information

Cluster workload exit call and data structures

Workload balancing attributes

Parent topic: Queue Manager Clusters

This build: January 26, 2011 11:14:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12640_

3.1. Cluster workload exit call and data structures

This chapter provides reference information for the cluster workload exit and the data structures it uses. This is general-use programming
interface information.

You can write cluster workload exits in the following programming languages:

� C

� System/390® assembler (WebSphere® MQ for z/OS®)

The call is described in:

� MQ_CLUSTER_WORKLOAD_EXIT - Cluster workload exit

The structure data types used by the exit are described in:

� MQWXP - Cluster workload exit parameter structure

� MQWDR - Cluster workload destination-record structure

� MQWQR - Cluster workload queue-record structure

� MQWCR - Cluster workload cluster-record structure

� MQXCLWLN - Navigate cluster workload records

Throughout the following topics queue-manager attributes and queue attributes are shown in full, as defined in the WebSphere MQ

Application Programming Reference book. The equivalent names that are used in the MQSC commands described in the WebSphere MQ
Script (MQSC) Command Reference book are shown in Table 1 and Table 2.

Table 1. Queue-manager attributes

Full name Name used in MQSC

ClusterWorkloadData CLWLDATA

ClusterWorkloadExit CLWLEXIT

ClusterWorkloadLength CLWLLEN

Page 84 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

MQ_CLUSTER_WORKLOAD_EXIT - Cluster workload exit

MQWXP - Cluster workload exit parameter structure

MQWDR - Cluster workload destination-record structure

MQWQR - Cluster workload queue-record structure

MQWCR - Cluster workload cluster-record structure

MQXCLWLN - Navigate cluster workload records

Parent topic: Reference information

This build: January 26, 2011 11:14:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12650_

3.1.1. MQ_CLUSTER_WORKLOAD_EXIT - Cluster workload exit

This call definition describes the parameters that are passed to the cluster workload exit called by the queue manager.

Note: No entry point called MQ_CLUSTER_WORKLOAD_EXIT is actually provided by the queue manager. This is because the name of the
cluster workload exit is defined by the ClusterWorkloadExit queue-manager attribute.

This exit is supported in the following environments: AIX®, Compaq Tru64 UNIX, HP OpenVMS, Compaq NonStop Kernel, HP-UX, Linux,

z/OS®, i5/OS®, Solaris, and Windows.

Syntax

Parameters

Usage notes

C invocation
MQ_CLUSTER_WORKLOAD_EXIT function call - C language invocation.

System/390 assembler invocation

Parent topic: Cluster workload exit call and data structures

This build: January 26, 2011 11:14:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12660_

3.1.1.1. Syntax

MQ_CLUSTER_WORKLOAD_EXIT (ExitParms)

Parent topic: MQ_CLUSTER_WORKLOAD_EXIT - Cluster workload exit

This build: January 26, 2011 11:14:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12670_

3.1.1.2. Parameters

Table 2. Queue attributes

Full name Name used in MQSC

DefBind DEFBIND

DefPersistence DEFPSIST

DefPriority DEFPRTY

InhibitPut PUT

QDesc DESCR

Page 85 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

The MQ_CLUSTER_WORKLOAD_EXIT call has the following parameters.

ExitParms (MQWXP) – input/output

Exit parameter block.

This structure contains information relating to the invocation of the exit. The exit sets information in this structure to indicate how the
workload should be managed.

Parent topic: MQ_CLUSTER_WORKLOAD_EXIT - Cluster workload exit

This build: January 26, 2011 11:14:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12680_

3.1.1.3. Usage notes

1. The function performed by the cluster workload exit is defined by the provider of the exit. The exit, however, must conform to the
rules defined in the associated control block MQWXP.

2. No entry point called MQ_CLUSTER_WORKLOAD_EXIT is actually provided by the queue manager. However, a typedef is provided
for the name MQ_CLUSTER_WORKLOAD_EXIT in the C programming language, and this can be used to declare the user-written

exit, to ensure that the parameters are correct.

Parent topic: MQ_CLUSTER_WORKLOAD_EXIT - Cluster workload exit

This build: January 26, 2011 11:14:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12690_

3.1.1.4. C invocation

MQ_CLUSTER_WORKLOAD_EXIT function call - C language invocation.

MQ_CLUSTER_WORKLOAD_EXIT (&ExitParms);

Replace MQ_CLUSTER_WORKLOAD_EXIT with the name of your cluster workload exit function.

Declare the MQ_CLUSTER_WORKLOAD_EXIT parameters as follows:

MQWXP ExitParms; /* Exit parameter block */

Parent topic: MQ_CLUSTER_WORKLOAD_EXIT - Cluster workload exit

This build: January 26, 2011 11:14:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12700_

3.1.1.5. System/390® assembler invocation

 CALL EXITNAME,(EXITPARMS)

Declare the parameters as follows:

EXITPARMS CMQWXPA Exit parameter block

Parent topic: MQ_CLUSTER_WORKLOAD_EXIT - Cluster workload exit

This build: January 26, 2011 11:14:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12710_

3.1.2. MQWXP - Cluster workload exit parameter structure

The following table summarizes the fields in the structure.

Table 1. Fields in MQWXP

Field Description Page

StrucId Structure identifier StrucId

Page 86 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

The MQWXP structure describes the information that is passed to the cluster workload exit.

This structure is supported in the following environments: AIX®, Compaq Tru64 UNIX, HP OpenVMS, Compaq NonStop Kernel, HP-UX,

Linux, z/OS®, i5/OS®, Solaris, and Windows.

Additionally, the MQWXP1, MQWXP2 and MQWXP3 structures are available for backwards compatibility.

Fields

C declaration

System/390 assembler declaration

Parent topic: Cluster workload exit call and data structures

This build: January 26, 2011 11:14:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12720_

3.1.2.1. Fields

StrucId (MQCHAR4)

Structure identifier.

The value is:

MQWXP_STRUC_ID

Identifier for cluster workload exit parameter structure.

For the C programming language, the constant MQWXP_STRUC_ID_ARRAY is also defined; this has the same value as
MQWXP_STRUC_ID, but is an array of characters instead of a string.

This is an input field to the exit.

Version (MQLONG)

Structure version number.

Possible values are:

MQWXP_VERSION_1

Version-1 cluster workload exit parameter structure.

This version is supported in all environments.

MQWXP_VERSION_2

Version-2 cluster workload exit parameter structure.

Version Structure version number Version

ExitId Type of exit ExitId

ExitReason Reason for invoking exit ExitReason

ExitResponse Response from exit ExitResponse

ExitResponse2 Secondary response from exit ExitResponse2

Feedback Feedback code Feedback

Flags Flags values. These bit flags are used to indicate

information about the message being put

Flags

ExitUserArea Exit user area ExitUserArea

ExitData Exit data ExitData

MsgDescPtr Address of message descriptor (MQMD) MsgDescPtr

MsgBufferPtr Address of buffer containing some or all of the message
data

MsgBufferPtr

MsgBufferLength Length of buffer containing message data MsgBufferLength

MsgLength Length of complete message MsgLength

QName Name of queue QName

QMgrName Name of local queue manager QMgrName

DestinationCount Number of possible destinations DestinationCount

DestinationChosen Destination chosen DestinationChosen

DestinationArrayPtr Address of an array of pointers to destination records

(MQWDR)

DestinationArrayPtr

QArrayPtr Address of an array of pointers to queue records (MQWQR) QArrayPtr

CacheContext Context information CacheContext

CacheType Type of cluster cache CacheType

CLWLMRUChannels Maximum number of allowed active outbound cluster

channels

CLWLMRUChannels

Page 87 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

This version is supported in the following environments: AIX®, HP-UX, Linux, i5/OS®, Solaris and Windows NT.

The following constant specifies the version number of the current version:

MQWXP_CURRENT_VERSION

Current version of cluster workload exit parameter structure.

This is an input field to the exit.

ExitId (MQLONG)

Type of exit.

This indicates the type of exit being called. The value is:

MQXT_CLUSTER_WORKLOAD_EXIT

Cluster workload exit.

This type of exit is supported in the following environments: AIX, Compaq Tru64 UNIX, HP OpenVMS, Compaq NonStop Kernel, HP-
UX, Linux, z/OS®, i5/OS, Solaris, and Windows.

This is an input field to the exit.

ExitReason (MQLONG)

Reason for invoking exit.

This indicates the reason why the exit is being called. Possible values are:

MQXR_INIT

Exit initialization.

This indicates that the exit is being invoked for the first time. It allows the exit to acquire and initialize any resources that it may need
(for example: main storage).

MQXR_TERM

Exit termination.

This indicates that the exit is about to be terminated. The exit should free any resources that it may have acquired since it was
initialized (for example: main storage).

MQXR_CLWL_OPEN

Called from MQOPEN processing.

MQXR_CLWL_PUT

Called from MQPUT or MQPUT1 processing.

MQXR_CLWL_MOVE

Called from MCA when the channel state has changed.

MQXR_CLWL_REPOS

Called from MQPUT or MQPUT1 processing for a repository-manager PCF message.

MQXR_CLWL_REPOS_MOVE

Called from MCA for a repository-manager PCF message when the channel state has changed.

This is an input field to the exit.

ExitResponse (MQLONG)

Response from exit.

This is set by the exit to indicate whether processing of the message should continue. It must be one of the following:

MQXCC_OK

Continue normally.

This indicates that processing of the message should continue normally. DestinationChosen identifies the destination to which the

message should be sent.

MQXCC_SUPPRESS_FUNCTION

Suppress function.

This indicates that processing of the message should be discontinued:

� For MQXR_CLWL_OPEN, MQXR_CLWL_PUT, and MQXR_CLWL_REPOS invocations, the MQOPEN, MQPUT, or MQPUT1 call fails
with completion code MQCC_FAILED and reason code MQRC_STOPPED_BY_CLUSTER_EXIT.

� For MQXR_CLWL_MOVE and MQXR_CLWL_REPOS_MOVE invocations, the message is placed on the dead-letter queue.

MQXCC_SUPPRESS_EXIT

Suppress exit.

This indicates that processing of the current message is to continue normally, and that the exit is not invoked again until termination

of the queue manager. The queue manager processes subsequent messages as if the ClusterWorkloadExit queue-manager attribute

were blank. DestinationChosen identifies the destination to which the current message should be sent.

If any other value is returned by the exit, the queue manager processes the message as if MQXCC_SUPPRESS_FUNCTION had been
specified.

This is an output field from the exit.

Page 88 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

ExitResponse2 (MQLONG)

Secondary response from exit.

This is set to zero on entry to the exit. It can be set by the exit to provide further information to the queue manager.

When ExitReason has the value MQXR_INIT, the exit can set one of the following values in ExitResponse2:

MQXR2_STATIC_CACHE

Exit requires a static cluster cache.

If the exit returns this value, the exit need not use the MQXCLWLN call to navigate the chains of records in the cluster cache, but the

cache must be static.

If the exit returns this value and the cluster cache is dynamic, the exit cannot navigate correctly through the records in the cache. In
this situation, the queue manager processes the return from the MQXR_INIT call as though the exit had returned

MQXCC_SUPPRESS_EXIT in the ExitResponse field.

MQXR2_DYNAMIC_CACHE

Exit can operate with either a static or dynamic cache.

If the exit returns this value, the exit must use the MQXCLWLN call to navigate the chains of records in the cluster cache.

If the exit sets neither value, MQXR2_STATIC_CACHE is assumed.

This is an input/output field to the exit.

Feedback (MQLONG)

Reserved.

This is a reserved field. The value is zero.

Flags (MQLONG)

Flags values. These bit flags are used to indicate information about the message being put.

The value is:

MQWXP_PUT_BY_CLUSTER_CHL

The message originates from a cluster channel, rather than locally or from a non-cluster channel (that is, it has come from another
cluster queue manager).

Reserved (MQLONG)

Reserved.

This is a reserved field. The value is zero.

ExitUserArea (MQBYTE16)

Exit user area.

This is a field that is available for the exit to use. It is initialized to MQXUA_NONE (binary zero) before the first invocation of the exit.
Any changes made to this field by the exit are preserved across the invocations of the exit that occur between the MQCONN call and the
matching MQDISC call. The field is reset to MQXUA_NONE when the MQDISC call occurs. The first invocation of the exit is indicated by
the ExitReason field having the value MQXR_INIT.

The following value is defined:

MQXUA_NONE

No user information.

The value is binary zero for the length of the field.

For the C programming language, the constant MQXUA_NONE_ARRAY is also defined; this has the same value as MQXUA_NONE, but
is an array of characters instead of a string.

The length of this field is given by MQ_EXIT_USER_AREA_LENGTH. This is an input/output field to the exit.

ExitData (MQCHAR32)

Exit data.

This is set on input to the exit routine to the value of the ClusterWorkloadData queue-manager attribute. If no value has been defined

for that attribute, this field is all blanks.

The length of this field is given by MQ_EXIT_DATA_LENGTH. This is an input field to the exit.

MsgDescPtr (PMQMD)

Address of message descriptor.

This is the address of a copy of the message descriptor (MQMD) for the message being processed. Any changes made to the message
descriptor by the exit are ignored by the queue manager.

No message descriptor is passed to the exit if ExitReason has one of the following values:

� MQXR_INIT

Page 89 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

� MQXR_TERM

� MQXR_CLWL_OPEN

In these cases, MsgDescPtr is the null pointer.

This is an input field to the exit.

MsgBufferPtr (PMQVOID)

Address of buffer containing some or all of the message data.

This is the address of a buffer containing a copy of the first MsgBufferLength bytes of the message data. Any changes made to the

message data by the exit are ignored by the queue manager.

No message data is passed to the exit when:

� MsgDescPtr is the null pointer.

� The message has no data.

� The ClusterWorkloadLength queue-manager attribute is zero.

In these cases, MsgBufferPtr is the null pointer.

This is an input field to the exit.

MsgBufferLength (MQLONG)

Length of buffer containing message data.

This is the length of the message data passed to the exit. This length is controlled by the ClusterWorkloadLength queue-manager

attribute, and may be less than the length of the complete message (see MsgLength).

This is an input field to the exit.

MsgLength (MQLONG)

Length of complete message.

The length of the message data passed to the exit (MsgBufferLength) might be less than the length of the complete message.

MsgLength is zero if ExitReason is MQXR_INIT, MQXR_TERM, or MQXR_CLWL_OPEN.

This is an input field to the exit.

QName (MQCHAR48)

Queue name.

This is the name of the destination queue; this queue is a cluster queue.

The length of this field is given by MQ_Q_NAME_LENGTH. This is an input field to the exit.

QMgrName (MQCHAR48)

Name of local queue manager.

This is the name of the queue manager that has invoked the cluster workload exit.

The length of this field is given by MQ_Q_MGR_NAME_LENGTH. This is an input field to the exit.

DestinationCount (MQLONG)

Number of possible destinations.

This specifies the number of destination records (MQWDR) that describe instances of the destination queue. There is one MQWDR
structure for each possible route to each instance of the queue. The MQWDR structures are addressed by an array of pointers (see
DestinationArrayPtr).

This is an input field to the exit.

DestinationChosen (MQLONG)

Destination chosen.

This is the number of the MQWDR structure that identifies the route and queue instance to which the message should be sent. The value

is in the range 1 through DestinationCount.

On input to the exit, DestinationChosen indicates the route and queue instance that the queue manager has selected. The exit can

accept this choice, or choose a different route and queue instance. However, the value returned by the exit must be in the range 1
through DestinationCount. If any other value is returned, the queue manager uses the value of DestinationChosen on input to the

exit.

This is an input/output field to the exit.

DestinationArrayPtr (PPMQWDR)

Address of an array of pointers to destination records.

This is the address of an array of pointers to destination records (MQWDR). There are DestinationCount destination records.

This is an input field to the exit.

QArrayPtr (PPMQWQR)

Page 90 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

Address of an array of pointers to queue records.

This is the address of an array of pointers to queue records (MQWQR). If queue records are available, there are DestinationCount of

them. If no queue records are available, QArrayPtr is the null pointer.

Note: QArrayPtr can be the null pointer even when DestinationCount is greater than zero.

This is an input field to the exit.

Context (MQPTR)

Context information.

This field is reserved for use by the queue manager. The exit must not alter the value of this field.

This is an input field to the exit.

CacheType (MQLONG)

Type of cluster cache.

This is the type of the cluster cache. It is one of the following:

MQCLCT_STATIC

Cache is static.

If the cache has this type, the size of the cache is fixed, and cannot grow as the queue manager operates. The MQXCLWLN call need
not be used to navigate the records in this type of cache.

MQCLCT_DYNAMIC

Cache is dynamic.

If the cache has this type, the size of the cache can increase in order to accommodate the varying cluster information. The

MQXCLWLN call must be used to navigate the records in this type of cache.

CLWLMRUChannels (MQLONG)

Number of allowed active outbound cluster channels.

This specifies the maximum number of active outbound cluster channels, to be considered for use by the cluster workload choice
algorithm. This is a value between 1 and 999 999 999.

Parent topic: MQWXP - Cluster workload exit parameter structure

This build: January 26, 2011 11:14:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12730_

3.1.2.2. C declaration

typedef struct tagMQWXP {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG ExitId; /* Type of exit */

 MQLONG ExitReason; /* Reason for invoking exit */

 MQLONG ExitResponse; /* Response from exit */

 MQLONG ExitResponse2; /* Reserved */

 MQLONG Feedback; /* Reserved */

 MQLONG Flags; /* Flags */

 MQBYTE16 ExitUserArea; /* Exit user area */

 MQCHAR32 ExitData; /* Exit data */

 PMQMD MsgDescPtr; /* Address of message descriptor */

 PMQVOID MsgBufferPtr; /* Address of buffer containing some

 or all of the message data */

 MQLONG MsgBufferLength; /* Length of buffer containing message

 data */

 MQLONG MsgLength; /* Length of complete message */

 MQCHAR48 QName; /* Queue name */

 MQCHAR48 QMgrName; /* Name of local queue manager */

 MQLONG DestinationCount; /* Number of possible destinations */

 MQLONG DestinationChosen; /* Destination chosen */

 PPMQWDR DestinationArrayPtr; /* Address of an array of pointers to

 destination records */

 PPMQWQR QArrayPtr; /* Address of an array of pointers to

 queue records */

 /* version 2 */

 MQPTR CacheContext; /* Context information */

 MQLONG CacheType; /* Type of cluster cache */

 /* version 3 */

 MQLONG CLWLMRUChannnels; /* Maximum number of most recently

 used cluster channels */

} MQWXP;

/* versioned structures */

Page 91 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

Parent topic: MQWXP - Cluster workload exit parameter structure

This build: January 26, 2011 11:14:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12740_

3.1.2.3. System/390® assembler declaration

MQWXP DSECT

MQWXP_STRUCID DS CL4 Structure identifier

MQWXP_VERSION DS F Structure version number

MQWXP_EXITID DS F Type of exit

MQWXP_EXITREASON DS F Reason for invoking exit

MQWXP_EXITRESPONSE DS F Response from exit

MQWXP_EXITRESPONSE2 DS F Reserved

MQWXP_FEEDBACK DS F Reserved

MQWXP_RESERVED DS F Reserved

MQWXP_EXITUSERAREA DS XL16 Exit user area

MQWXP_EXITDATA DS CL32 Exit data

MQWXP_MSGDESCPTR DS F Address of message

* descriptor

MQWXP_MSGBUFFERPTR DS F Address of buffer containing

* some or all of the message

* data

MQWXP_MSGBUFFERLENGTH DS F Length of buffer containing

* message data

MQWXP_MSGLENGTH DS F Length of complete message

MQWXP_QNAME DS CL48 Queue name

MQWXP_QMGRNAME DS CL48 Name of local queue manager

MQWXP_DESTINATIONCOUNT DS F Number of possible

* destinations

MQWXP_DESTINATIONCHOSEN DS F Destination chosen

MQWXP_DESTINATIONARRAYPTR DS F Address of an array of

* pointers to destination

* records

MQWXP_QARRAYPTR DS F Address of an array of

* pointers to queue records

MQWXP_CACHECONTEXT DS F Context information

MQWXP_CACHETYPE DS F Type of cluster cache

MQWXP_CLWLMRUCHANNELS DS F Number of most recently used

* channels for workload balancing

MQWXP_LENGTH EQU *-MQWXP Length of structure

 ORG MQWXP

MQWXP_AREA DS CL(MQWXP_LENGTH)

Parent topic: MQWXP - Cluster workload exit parameter structure

This build: January 26, 2011 11:14:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12750_

3.1.3. MQWDR - Cluster workload destination-record structure

The following table summarizes the fields in the structure.

The MQWDR structure contains information relating to one of the possible destinations for the message. There is one MQWDR structure for
each instance of the destination queue.

This structure is supported in the following environments: AIX®, Compaq Tru64 UNIX, HP OpenVMS, Compaq NonStop Kernel, HP-UX,
Linux, z/OS®, i5/OS®, Solaris, and Windows.

Table 1. Fields in MQWDR

Field Description Page

StrucId Structure identifier StrucId

Version Structure version number Version

StrucLength Length of MQWDR structure StrucLength

QMgrFlags Queue-manager flags QMgrFlags

QMgrIdentifier Queue-manager identifier QMgrIdentifier

QMgrName Queue-manager name QMgrName

ClusterRecOffset Logical offset of first cluster record (MQWCR) ClusterRecOffset

ChannelState Channel state ChannelState

ChannelDefOffset Logical offset of channel-definition structure (MQCD) ChannelDefOffset

DestSeqFactor Channel destination sequence factor for weighting DestSeqFactor

DestSeqNumber Channel destination sequence number DestSeqNumber

Page 92 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

Additionally, the MQWDR1 and MQWDR2 structures are available for backwards compatibility.

Fields

C declaration

System/390 assembler declaration

Parent topic: Cluster workload exit call and data structures

This build: January 26, 2011 11:14:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12760_

3.1.3.1. Fields

StrucId (MQCHAR4)

Structure identifier.

The value is:

MQWDR_STRUC_ID

Identifier for cluster workload destination record.

For the C programming language, the constant MQWDR_STRUC_ID_ARRAY is also defined; this has the same value as
MQWDR_STRUC_ID, but is an array of characters instead of a string.

This is an input field to the exit.

Version (MQLONG)

Structure version number.

The value is:

MQWDR_VERSION_1

Version-1 cluster workload destination record.

MQWDR_VERSION_2

Version-2 cluster workload destination record.

The following constant specifies the version number of the current version:

MQWDR_CURRENT_VERSION

Current version of cluster workload destination record.

This is an input field to the exit.

StrucLength (MQLONG)

Length of MQWDR structure.

The value is:

MQWDR_LENGTH_1

Length of version-1 cluster workload destination record.

MQWDR_LENGTH_2

Length of version-2 cluster workload destination record.

The following constant specifies the length of the current version:

MQWDR_CURRENT_LENGTH

Length of current version of cluster workload destination record.

This is an input field to the exit.

QMgrFlags (MQLONG)

Queue-manager flags

These are bit flags that indicate various properties of the queue manager that hosts the instance of the destination queue described by
this MQWDR structure. The following flags are defined:

MQQMF_REPOSITORY_Q_MGR

Destination is a full repository queue manager.

MQQMF_CLUSSDR_USER_DEFINED

Cluster sender channel was defined manually.

MQQMF_CLUSSDR_AUTO_DEFINED

Cluster sender channel was defined automatically.

MQQMF_AVAILABLE

Destination queue manager is available to receive messages.

Page 93 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

Note: Other flags in the field might be set by the queue manager for internal purposes.

This is an input field to the exit.

QMgrIdentifier (MQCHAR48)

Queue-manager identifier.

This is a string that acts as a unique identifier for the queue manager. It is generated by the queue manager.

The length of this field is given by MQ_Q_MGR_IDENTIFIER_LENGTH. This is an input field to the exit.

QMgrName (MQCHAR48)

Queue-manager name.

This is the name of the queue manager that hosts the instance of the destination queue described by this MQWDR structure. This can be
the name of the local queue manager.

The length of this field is given by MQ_Q_MGR_NAME_LENGTH. This is an input field to the exit.

ClusterRecOffset (MQLONG)

Logical offset of first cluster record.

This is the logical offset of the first MQWCR structure that belongs to this MQWDR structure. For static caches, this is the offset of the
first MQWCR structure that belongs to the MQWDR structure. The offset is measured in bytes from the start of the MQWDR structure.

For dynamic caches, the logical offset CANNOT be used in pointer arithmetic. To obtain the address of the next record, the MQXCLWLN
call must be used.

This is an input field to the exit.

ChannelState (MQLONG)

Channel state.

This indicates the state of the channel that links the local queue manager to the queue manager identified by this MQWDR structure.
The following values are possible:

MQCHS_INACTIVE

Channel is not active.

MQCHS_BINDING

Channel is negotiating with the partner.

MQCHS_STARTING

Channel is waiting to become active.

MQCHS_RUNNING

Channel is transferring or waiting for messages.

MQCHS_STOPPING

Channel is stopping.

MQCHS_RETRYING

Channel is reattempting to establish connection.

MQCHS_STOPPED

Channel has stopped.

MQCHS_REQUESTING

Requester channel is requesting connection.

MQCHS_PAUSED

Channel has paused.

MQCHS_INITIALIZING

Channel is initializing.

This is an input field to the exit.

ChannelDefOffset (MQLONG)

Logical offset of channel definition structure.

This is the logical offset of the channel definition (MQCD) for the channel that links the local queue manager to the queue manager
identified by this MQWDR structure (similar to ClusterRecOffset). The logical offset CANNOT be used in pointer arithmetic. To obtain the
address of the next record, the MQXCLWLN call must be used.

This is an input field to the exit.

DestSeqFactor (MQINT64)

Destination sequence factor.

This is the destination sequence factor that allows a choice of the channel based on weight. This the value used before the Queue
Manager changes it. The workload manager increases this value in a way that ensures messages are distributed down channels

according to their weight.

This is an input field to the exit.

DestSeqNumber (MQLONG)

Page 94 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

Cluster channel destination.

This value is the value before the queue manager changes. The WLM increases this value every time a message is put down that
channel. Workload exits can use this value to decide which channel to put a message down.

This is an input field to the exit.

Parent topic: MQWDR - Cluster workload destination-record structure

This build: January 26, 2011 11:14:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12770_

3.1.3.2. C declaration

typedef struct tagMQWDR {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG StrucLength; /* Length of MQWDR structure */

 MQLONG QMgrFlags; /* Queue-manager flags */

 MQCHAR48 QMgrIdentifier; /* Queue-manager identifier */

 MQCHAR48 QMgrName; /* Queue-manager name */

 MQLONG ClusterRecOffset; /* Offset of first cluster record */

 MQLONG ChannelState; /* Channel state */

 MQLONG ChannelDefOffset; /* Offset of channel definition

 structure */

 /* version 2 */

 MQLONG DestSeqNumber; /* Cluster channel destination sequence number */

 MQINT64 DestSeqFactor; /* Cluster channel factor sequence number */

} MQWDR;

/* versioned structures */

Parent topic: MQWDR - Cluster workload destination-record structure

This build: January 26, 2011 11:14:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12780_

3.1.3.3. System/390® assembler declaration

MQWDR DSECT

MQWDR_STRUCID DS CL4 Structure identifier

MQWDR_VERSION DS F Structure version number

MQWDR_STRUCLENGTH DS F Length of MQWDR structure

MQWDR_QMGRFLAGS DS F Queue-manager flags

MQWDR_QMGRIDENTIFIER DS CL48 Queue-manager identifier

MQWDR_QMGRNAME DS CL48 Queue-manager name

MQWDR_CLUSTERRECOFFSET DS F Offset of first cluster

* record

MQWDR_CHANNELSTATE DS F Channel state

MQWDR_CHANNELDEFOFFSET DS F Offset of channel definition

* structure

MQWDR_LENGTH EQU *-MQWDR Length of structure

 ORG MQWDR

MQWDR_AREA DS CL(MQWDR_LENGTH)

Parent topic: MQWDR - Cluster workload destination-record structure

This build: January 26, 2011 11:14:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12790_

3.1.4. MQWQR - Cluster workload queue-record structure

The following table summarizes the fields in the structure.

Table 1. Fields in MQWQR

Field Description Page

StrucId Structure identifier StrucId

Version Structure version number Version

StrucLength Length of MQWQR structure StrucLength

QFlags Queue flags QFlags

Page 95 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

The MQWQR structure contains information relating to one of the possible destinations for the message. There is one MQWQR structure for
each instance of the destination queue.

This structure is supported in the following environments: AIX®, Compaq Tru64 UNIX, HP OpenVMS, Compaq NonStop Kernel, HP-UX,
Linux, z/OS®, i5/OS®, Solaris, and Windows.

Additionally, the MQWQR1 and MQWQR2 structures are available for backwards compatibility.

Fields

C declaration

System/390 assembler declaration

Parent topic: Cluster workload exit call and data structures

This build: January 26, 2011 11:14:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12800_

3.1.4.1. Fields

StrucId (MQCHAR4)

Structure identifier.

The value is:

MQWQR_STRUC_ID

Identifier for cluster workload queue record.

For the C programming language, the constant MQWQR_STRUC_ID_ARRAY is also defined; this has the same value as
MQWQR_STRUC_ID, but is an array of characters instead of a string.

This is an input field to the exit.

Version (MQLONG)

Structure version number.

The value is:

MQWQR_VERSION_1

Version-1 cluster workload queue record.

MQWQR_VERSION_2

Version-2 cluster workload queue record.

MQWQR_VERSION_3

Version-3 cluster workload queue record.

The following constant specifies the version number of the current version:

MQWQR_CURRENT_VERSION

Current version of cluster workload queue record.

This is an input field to the exit.

StrucLength (MQLONG)

Length of MQWQR structure.

The value is:

MQWQR_LENGTH_1

Length of version-1 cluster workload queue record.

QName Queue name QName

QMgrIdentifier Queue-manager identifier QMgrIdentifier

ClusterRecOffset Offset of first cluster record (MQWCR) ClusterRecOffset

QType Queue type QType

QDesc Queue description QDesc

DefBind Default binding DefBind

DefPersistence Default message persistence DefPersistence

DefPriority Default message priority DefPriority

InhibitPut Whether put operations on the queue are allowed InhibitPut

CWLQueuePriority A value between 0 and 9 representing the priority of the queue CLWLQueuePriority

CLWLQueueRank A value between 0 and 9 representing the rank of the queue CLWLQueueRank

DefPutResponse Default put response DefPutResponse

Page 96 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

MQWQR_LENGTH_2

Length of version-2 cluster workload queue record.

MQWQR_LENGTH_3

Length of version-3 cluster workload queue record.

The following constant specifies the length of the current version:

MQWQR_CURRENT_LENGTH

Length of current version of cluster workload queue record.

This is an input field to the exit.

QFlags (MQLONG)

Queue flags.

These are bit flags that indicate various properties of the queue. The following flags are defined:

MQQF_LOCAL_Q

Destination is a local queue.

MQQF_CLWL_USEQ_ANY

Allow use of local and remote queues in puts.

MQQF_CLWL_USEQ_LOCAL

Only allow local queue puts.

Note: Other flags in the field might be set by the queue manager for internal purposes.

This is an input field to the exit.

QName (MQCHAR48)

Queue name.

The length of this field is given by MQ_Q_NAME_LENGTH. This is an input field to the exit.

QMgrIdentifier (MQCHAR48)

Queue-manager identifier.

This is a string that acts as a unique identifier for the queue manager that hosts the instance of the queue described by this MQWQR
structure. The identifier is generated by the queue manager.

The length of this field is given by MQ_Q_MGR_IDENTIFIER_LENGTH. This is an input field to the exit.

ClusterRecOffset (MQLONG)

Logical offset of first cluster record.

This is the logical offset of the first MQWCR structure that belongs to this MQWQR structure. For static caches, this is the offset of the
first MQWCR structure that belongs to the MQWQR structure. The offset is measured in bytes from the start of the MQWQR structure.

For dynamic caches, the logical offset CANNOT be used in pointer arithmetic. To obtain the address of the next record, the MQXCLWLN
call must be used.

This is an input field to the exit.

QType (MQLONG)

Queue type.

The following values are possible:

MQCQT_LOCAL_Q

Local queue.

MQCQT_ALIAS_Q

Alias queue.

MQCQT_REMOTE_Q

Remote queue.

MQCQT_Q_MGR_ALIAS

Queue-manager alias.

This is an input field to the exit.

QDesc (MQCHAR64)

Queue description.

This is the value of the QDesc queue attribute as defined on the queue manager that hosts the instance of the destination queue

described by this MQWQR structure.

The length of this field is given by MQ_Q_DESC_LENGTH. This is an input field to the exit.

DefBind (MQLONG)

Default binding.

This is the value of the DefBind queue attribute as defined on the queue manager that hosts the instance of the destination queue

described by this MQWQR structure. The following values are possible:

Page 97 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

MQBND_BIND_ON_OPEN

Binding fixed by MQOPEN call.

MQBND_BIND_NOT_FIXED

Binding not fixed.

This is an input field to the exit.

DefPersistence (MQLONG)

Default message persistence.

This is the value of the DefPersistence queue attribute as defined on the queue manager that hosts the instance of the destination

queue described by this MQWQR structure. The following values are possible:

MQPER_PERSISTENT

Message is persistent.

MQPER_NOT_PERSISTENT

Message is not persistent.

This is an input field to the exit.

DefPriority (MQLONG)

Default message priority.

This is the value of the DefPriority queue attribute as defined on the queue manager that hosts the instance of the destination queue

described by this MQWQR structure. Priorities are in the range zero (lowest) through MaxPriority (highest), where MaxPriority is the

queue-manager attribute of the queue manager that hosts this instance of the destination queue.

This is an input field to the exit.

InhibitPut (MQLONG)

Whether put operations on the queue are allowed.

This is the value of the InhibitPut queue attribute as defined on the queue manager that hosts the instance of the destination queue

described by this MQWQR structure. The following values are possible:

MQQA_PUT_INHIBITED

Put operations are inhibited.

MQQA_PUT_ALLOWED

Put operations are allowed.

This is an input field to the exit.

CLWLQueuePriority (MQLONG)

Queue priority. This is the value of the CLWLQueuePriority parameter as defined on the queue manager that hosts the instance of the
destination queue described by this MQWQR structure.

This is an input field to the exit.

CLWLQueueRank (MQLONG)

Queue rank. This is the value of the CLWLQueueRank parameter as defined on the queue manager that hosts the instance of the

destination queue described by this MQWQR structure.

This is an input field to the exit.

DefPutResponse(MQLONG)

Default put response. This field reflects the DEFPRESP attribute for a queue. This is the value of the DefPutResponse queue attribute as
defined on the queue manager that hosts the instance of the destination queue described by this MQWQR structure. The following
values are possible:

MQPRT_SYNC_RESPONSE

Synchronous response to MQPUT or MQPUT1 calls.

MQPRT_ASYNC_RESPONSE

Asynchronous response to MQPUT or MQPUT1 calls.

This is an input field to the exit.

Parent topic: MQWQR - Cluster workload queue-record structure

This build: January 26, 2011 11:14:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12810_

3.1.4.2. C declaration

typedef struct tagMQWQR {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG StrucLength; /* Length of MQWQR structure */

Page 98 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

 MQLONG QFlags; /* Queue flags */

 MQCHAR48 QName; /* Queue name */

 MQCHAR48 QMgrIdentifier; /* Queue-manager identifier */

 MQLONG ClusterRecOffset; /* Offset of first cluster record */

 MQLONG QType; /* Queue type */

 MQCHAR64 QDesc; /* Queue description */

 MQLONG DefBind; /* Default binding */

 MQLONG DefPersistence; /* Default message persistence */

 MQLONG DefPriority; /* Default message priority */

 MQLONG InhibitPut; /* Whether put operations on the queue

 are allowed */

 /* version 2 */

 MQLONG CLWLQueuePriority; /* Queue priority */

 MQLONG CLWLQueueRank; /* Queue rank */

 /* version 3 */

 MQLONG DefPutResponse; /* Default put response */} MQWQR;

/* versioned structures */

Parent topic: MQWQR - Cluster workload queue-record structure

This build: January 26, 2011 11:14:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12820_

3.1.4.3. System/390® assembler declaration

MQWQR DSECT

MQWQR_STRUCID DS CL4 Structure identifier

MQWQR_VERSION DS F Structure version number

MQWQR_STRUCLENGTH DS F Length of MQWQR structure

MQWQR_QFLAGS DS F Queue flags

MQWQR_QNAME DS CL48 Queue name

MQWQR_QMGRIDENTIFIER DS CL48 Queue-manager identifier

MQWQR_CLUSTERRECOFFSET DS F Offset of first cluster

* record

MQWQR_QTYPE DS F Queue type

MQWQR_QDESC DS CL64 Queue description

MQWQR_DEFBIND DS F Default binding

MQWQR_DEFPERSISTENCE DS F Default message persistence

MQWQR_DEFPRIORITY DS F Default message priority

MQWQR_INHIBITPUT DS F Whether put operations on

* the queue are allowed

MQWQR_DEFPUTRESPONSE DS F Default put response

MQWQR_LENGTH EQU *-MQWQR Length of structure

 ORG MQWQR

MQWQR_AREA DS CL(MQWQR_LENGTH)

Parent topic: MQWQR - Cluster workload queue-record structure

This build: January 26, 2011 11:14:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12830_

3.1.5. MQWCR - Cluster workload cluster-record structure

The following table summarizes the fields in the structure.

The MQWCR structure contains information relating to a cluster to which an instance of the destination queue belongs. There is one
MQWCR for each such cluster.

This structure is supported in the following environments: AIX®, Compaq Tru64 UNIX, HP OpenVMS, Compaq NonStop Kernel, HP-UX,
Linux, z/OS®, i5/OS®, Solaris, and Windows.

Fields

C declaration

System/390 assembler declaration

Table 1. Fields in MQWCR

Field Description Page

ClusterName Name of cluster ClusterName

ClusterRecOffset Offset of next cluster record (MQWCR) ClusterRecOffset

ClusterFlags Cluster flags ClusterFlags

Page 99 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

Parent topic: Cluster workload exit call and data structures

This build: January 26, 2011 11:14:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12840_

3.1.5.1. Fields

ClusterName (MQCHAR48)

Cluster name.

This is the name of a cluster to which the instance of the destination queue that owns this MQWCR structure belongs. The destination
queue instance is described by an MQWDR structure.

The length of this field is given by MQ_CLUSTER_NAME_LENGTH. This is an input field to the exit.

ClusterRecOffset (MQLONG)

Logical offset of next cluster record.

This is the offset of the next MQWCR structure. If there are no more MQWCR structures, ClusterRecOffset is zero. The offset is

measured in bytes from the start of the MQWCR structure.

This is an input field to the exit.

ClusterFlags (MQLONG)

Cluster flags.

These are bit flags that indicate various properties of the queue manager identified by this MQWCR structure. The following flags are

defined:

MQQMF_REPOSITORY_Q_MGR

Destination is a full repository queue manager.

MQQMF_CLUSSDR_USER_DEFINED

Cluster sender channel was defined manually.

MQQMF_CLUSSDR_AUTO_DEFINED

Cluster sender channel was defined automatically.

MQQMF_AVAILABLE

Destination queue manager is available to receive messages.

Note: Other flags in the field might be set by the queue manager for internal purposes.

This is an input field to the exit.

Parent topic: MQWCR - Cluster workload cluster-record structure

This build: January 26, 2011 11:14:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12850_

3.1.5.2. C declaration

typedef struct tagMQWCR {

 MQCHAR48 ClusterName; /* Cluster name */

 MQLONG ClusterRecOffset; /* Offset of next cluster record */

 MQLONG ClusterFlags; /* Cluster flags */

} MQWCR;

Parent topic: MQWCR - Cluster workload cluster-record structure

This build: January 26, 2011 11:14:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12860_

3.1.5.3. System/390® assembler declaration

MQWCR DSECT

MQWCR_CLUSTERNAME DS CL48 Cluster name

MQWCR_CLUSTERRECOFFSET DS F Offset of next cluster

* record

MQWCR_CLUSTERFLAGS DS F Cluster flags

MQWCR_LENGTH EQU *-MQWCR Length of structure

Page 100 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

 ORG MQWCR

MQWCR_AREA DS CL(MQWCR_LENGTH)

Parent topic: MQWCR - Cluster workload cluster-record structure

This build: January 26, 2011 11:14:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12870_

3.1.6. MQXCLWLN - Navigate cluster workload records

MQXCLWLN - Navigate Cluster workload records

Parent topic: Cluster workload exit call and data structures

This build: January 26, 2011 11:14:20

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12880_

3.1.6.1. MQXCLWLN - Navigate Cluster workload records

The MQXCLWLN call is used to navigate through the chains of MQWDR, MQWQR, and MQWCR records stored in the cluster cache. The

cluster cache is an area of main storage used to store information relating to the cluster.

If the cluster cache is static, it has a fixed size. If you set it to dynamic, the cluster cache can expand as required, To set the type of
cluster cache to STATIC or DYNAMIC, use:

� The system parameter ClusterCacheType on platforms other than z/OS®

� The CLCACHE parameter in the CSQ6SYSP macro on z/OS.

For related information, see the WebSphere® MQ System Setup Guide.

Syntax

Parameters

Usage notes

C invocation

System/390 assembler declaration

Parent topic: MQXCLWLN - Navigate cluster workload records

This build: January 26, 2011 11:14:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12890_

3.1.6.1.1. Syntax

MQXCLWLN (ExitParms, CurrentRecord, NextOffset, NextRecord, Compcode, Reason)

Parent topic: MQXCLWLN - Navigate Cluster workload records

This build: January 26, 2011 11:14:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12900_

3.1.6.1.2. Parameters

The MQ_CLUSTER_WORKLOAD_EXIT call has the following parameters.

ExitParms (MQWXP) – input/output

Exit parameter block.

Page 101 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

This structure contains information relating to the invocation of the exit. The exit sets information in this structure to indicate how the

workload should be managed.

CurrentRecord (MQPTR) – input

Address of current record.

This structure contains information relating to the address of the record currently being examined by the exit. The record must be one
of the following types:

� Cluster workload destination record (MQWDR)

� Cluster workload queue record (MQWQR)

� Cluster workload cluster record (MQWCR)

NextOffset (MQLONG) – input

Offset of next record.

This structure contains information relating to the offset of the next record or structure. NextOffset is the value of the appropriate

offset field in the current record, and must be one of the following fields:

� ChannelDefOffset field in MQWDR

� ClusterRecOffset field in MQWDR

� ClusterRecOffset field in MQWQR

� ClusterRecOffset field in MQWCR

NextRecord (MQPTR) – output

Address of next record or structure.

This structure contains information relating to the address of the next record or structure. If CurrentRecord is the address of an
MQWDR, and NextOffset is the value of the ChannelDefOffset field, NextRecord is the address of the channel definition structure
(MQCD).

If there is no next record or structure, the queue manager sets NextRecord to the null pointer, and the call returns completion code
MQCC_WARNING and reason code MQRC_NO_RECORD_AVAILABLE.

CompCode (MQLONG) – output

Completion code.

It is one of the following:

MQCC_OK

Successful completion.

MQCC_WARNING

Warning (partial completion).

MQCC_FAILED

Call failed.

Reason (MQLONG) – output

Reason code qualifying CompCode

If CompCode is MQCC_OK:

MQRC_NONE

(0, X'000) No reason to report.

If CompCode is MQCC_WARNING:

MQRC_NO_RECORD_AVAILABLE

(2359, X'0937') No record available. An MQXCLWLN call was issued from a cluster workload exit to obtain the address of the next
record in the chain, but the current record is the last record in the chain. Corrective action: None.

If CompCode is MQCC_FAILED:

MQRC_CURRENT_RECORD_ERROR

(2357, X'0935') Current-record parameter not valid. An MQXCLWLN call was issued from a cluster workload exit to obtain the address
of the next record in the chain, but the address specified by the CurrentRecord parameter is not the address of a valid record.
CurrentRecord must be the address of a destination record (MQWDR), queue record (MQWQR), or cluster record (MQWCR) residing

within the cluster cache. Corrective action: Ensure that the cluster workload exit passes the address of a valid record residing in the
cluster cache.

MQRC_ENVIRONMENT_ERROR

(2012, X'07DC') Call not valid in environment. An MQXCLWLN call was issued, but not from a cluster workload exit.

MQRC_NEXT_OFFSET_ERROR

(2358, X'0936') Next-offset parameter not valid. An MQXCLWLN call was issued from a cluster workload exit to obtain the address of
the next record in the chain, but the offset specified by the NextOffset parameter is not valid. NextOffset must be the value of one of

the following fields:

� ChannelDefOffset field in MQWDR

� ClusterRecOffset" field in MQWDR

� ClusterRecOffset" field in MQWQR

Page 102 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

� ClusterRecOffset" field in MQWCR

Corrective action: Ensure that the value specified for the NextOffset parameter is the value of one of the fields listed above.

MQRC_NEXT_RECORD_ERROR

(2361, X'0939') NextRecord parameter not valid.

MQRC_WXP_ERROR

(2356, X'0934') Workload exit parameter structure not valid. An MQXCLWLN call was issued from a cluster workload exit to obtain the
address of the next record in the chain, but the workload exit parameter structure ExitParms is not valid, for one of the following

reasons:

� The parameter pointer is not valid. (It is not always possible to detect parameter pointers that are not valid; if not detected,
unpredictable results occur.)

� The StrucId field is not MQWXP_STRUC_ID.

� The Version field is not MQWXP_VERSION_2.

� The Context field does not contain the value passed to the exit by the queue manager.

Corrective action: Ensure that the parameter specified for ExitParms is the MQWXP structure that was passed to the exit when the exit
was invoked.

For more information on these reason codes, see the WebSphere MQ Application Programming Reference manual.

Parent topic: MQXCLWLN - Navigate Cluster workload records

This build: January 26, 2011 11:14:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12910_

3.1.6.1.3. Usage notes

If the cluster cache is dynamic, the MQXCLWLN call must be used to navigate through the records; the exit will terminate abnormally if

simple pointer-and-offset arithmetic is used to navigate through the records. If the cluster cache is static, MQXCLWLN need not be used to
navigate through the records. However, it is recommended that MQXCLWLN be used even when the cache is static, as this allows
migration to a dynamic cache without needing to change the workload exit.

For more information on dynamic and static cluster caches see CacheType.

Parent topic: MQXCLWLN - Navigate Cluster workload records

This build: January 26, 2011 11:14:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12920_

3.1.6.1.4. C invocation

MQXCLWLN (&ExitParms, CurrentRecord, NextOffset, &NextRecord, &CompCode, &Reason) ;

Declare the parameters as follows:

typedef struct tagMQXCLWLN {

 MQWXP ExitParms; /* Exit parameter block */

 MQPTR CurrentRecord; /* Address of current record*/

 MQLONG NextOffset; /* Offset of next record */

 MQPTR NextRecord; /* Address of next record or structure */

 MQLONG CompCode; /* Completion code */

 MQLONG Reason; /* Reason code qualifying CompCode */

Parent topic: MQXCLWLN - Navigate Cluster workload records

This build: January 26, 2011 11:14:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12930_

3.1.6.1.5. System/390® assembler declaration

CALL MQXCLWLN,(CLWLEXITPARMS,CURRENTRECORD,NEXTOFFSET,NEXTRECORD,COMPCODE,REASON)

Declare the parameters as follows:

CLWLEXITPARMS CMQWXPA, Cluster workload exit parameter block

CURRENTRECORD CMQWDRA, Current record

NEXTOFFSET DS F Next offset

NEXTRECORD DS F Next record

COMPCODE DS F Completion code

REASON DS F Reason code qualifying COMPCODE

Page 103 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

Parent topic: MQXCLWLN - Navigate Cluster workload records

This build: January 26, 2011 11:14:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12940_

3.2. Workload balancing attributes

This chapter provides reference information about the following queue, queue manager, channel and network attributes that are available
for workload balancing:

� CLWLPRTY queue attribute

� CLWLRANK queue attribute

� CLWLUSEQ queue attribute

� CLWLUSEQ queue manager attribute

� CLWLMRUC queue manager attribute

� CLWLPRTY channel attribute

� CLWLRANK channel attribute

� CLWLWGHT channel attribute

� NETPRTY channel attribute

For more information about using these attributes, see Advanced workload balancing tasks.

Queue attributes for workload balancing

Queue manager attributes for workload balancing

Channel attributes for workload balancing

Parent topic: Reference information

This build: January 26, 2011 11:14:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12950_

3.2.1. Queue attributes for workload balancing

CLWLPRTY queue attribute

CLWLRANK queue attribute
The CLWLRANK queue attribute specifies the rank of a local, remote, or alias queue for cluster workload distribution. The value must

be in the range 0-9, where 0 is the lowest rank and 9 is the highest.

CLWLUSEQ queue attribute

Parent topic: Workload balancing attributes

This build: January 26, 2011 11:14:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12960_

3.2.1.1. CLWLPRTY queue attribute

This queue attribute specifies the priority of the queue for the purposes of cluster workload distribution. This parameter is valid only for
local, remote, and alias queues. The value must be in the range zero through 9 where zero is the lowest priority and 9 is the highest.

Use this attribute to ensure that WebSphere® MQ selects some destination queue managers in preference to others with a lower priority.

WebSphere MQ selects the destinations with the highest priority before selecting destinations with the lowest cluster destination sequence
number (or the most recently used one). Where there are two possible destinations, you can use this attribute to allow one queue
manager to act as a failover, if the other queue manager becomes unavailable. In this situation, messages go to the highest priority
queue manager until it becomes unavailable, they then go to the next priority queue manager. WebSphere MQ obtains the priority of

queue managers after checking channel status. This means that only accessible queue managers are available for selection, and it allows
WebSphere MQ to prioritize, where multiple destinations are available.

Note:

Page 104 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

The availability of a remote queue manager is based on the status of the channel to that queue manager. When channels start, their state

changes several times, with some of the states being less preferential to the cluster workload management algorithm. In practice this
means that lower priority (backup) destinations can be chosen while the channels to higher priority (primary) destinations are starting.

If you need to ensure that no messages go to a backup destination, do not use CLWLPRTY. Consider using separate queues, or CLWLRANK

with a manual switch over from the primary to backup.

For the full cluster workload management algorithm see The cluster workload management algorithm.

Parent topic: Queue attributes for workload balancing

This build: January 26, 2011 11:14:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12970_

3.2.1.2. CLWLRANK queue attribute

The CLWLRANK queue attribute specifies the rank of a local, remote, or alias queue for cluster workload distribution. The value must be in

the range 0-9, where 0 is the lowest rank and 9 is the highest.

Use the CLWLRANK queue attribute if you want control over the final destination for messages sent to a queue manager in another cluster.

When you set CLWLRANK, messages take a specified route through the interconnected clusters towards a higher ranked destination.

For example, you might have defined two identically configured gateway queue managers to improve the availability of a gateway.
Suppose you have defined cluster alias queues at the gateways for a local queue defined in the cluster. If the local queue becomes

unavailable, you intend the message to be held at one of the gateways pending the queue becoming available again. To hold the queue at
a gateway, you must define the local queue with a higher rank than the cluster alias queues at the gateway.

If you define the local queue with the same rank as the queue aliases and the local queue is unavailable, the message travels between the

gateways. On finding the local queue unavailable, the first gateway queue manager routes the message to the other gateway. The other
gateway tries to deliver the message to the target local queue again. If the local queue is still unavailable, it routes the message back to
the first gateway. The message keeps being moved back and forth between the gateways until the target local queue became available
again. By giving the local queue a higher rank, even if the queue is unavailable, the message is not rerouted to a destination of lower

rank.

WebSphere® MQ obtains the rank of queues before checking channel status. Obtaining the rank before checking channel status means
that even non-accessible queues are available for selection. It allows messages to be routed through the network even if the final

destination is unavailable.

If you used the priority attribute WebSphere MQ selects between available destinations. If a channel is not available to the destination
with the highest rank, the message is held on the transmission queue. It is released when the channel becomes available. The message

does not get sent to the next available destination in the rank order.

Parent topic: Queue attributes for workload balancing

This build: January 26, 2011 11:14:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12980_

3.2.1.3. CLWLUSEQ queue attribute

This queue attribute specifies the behavior of an MQPUT operation when the target queue has a local instance and at least one remote
cluster instance (except where the MQPUT originates from a cluster channel). This parameter is valid only for local queues. If you specify
QMGR, the behavior is as specified by the CLWLUSEQ parameter of the queue manager definition. If you specify ANY, the queue manager
treats the local queue as another instance of the cluster queue for the purposes of workload distribution. If you specify LOCAL, the local

queue is the only target of the MQPUT operation.

Parent topic: Queue attributes for workload balancing

This build: January 26, 2011 11:14:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc12990_

3.2.2. Queue manager attributes for workload balancing

CLWLUSEQ queue manager attribute

CLWLMRUC queue manager attribute

Page 105 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

Parent topic: Workload balancing attributes

This build: January 26, 2011 11:14:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc13000_

3.2.2.1. CLWLUSEQ queue manager attribute

This queue manager attribute specifies the behavior of an MQPUT operation when the target queue has a local instance and at least one
remote cluster instance (except where the MQPUT originates from a cluster channel), for queues whose CLWLUSEQ parameter has a value
of QMGR. If you specify LOCAL, the local queue is the only target for MQPUTs. This is the queue manager's initial default value. If you
specify ANY, the queue manager treats the local queue as another instance of the cluster queue for the purposes of workload distribution.

This attribute allows WebSphere® MQ to put messages on to remotely defined queues as well as local queue instances. In this case,
'remote' means other queue managers within the cluster which also have a definition of the cluster queue. If remote instances of cluster
queues can be used, there is a need to prevent WebSphere MQ from repeatedly choosing a remote instance of a cluster queue. To ensure

this, WebSphere MQ applies the following rules to restrict the number of remote hops to one:

� If a message arrives over a cluster channel, it must be put to a local instance of a cluster queue.

� If put locally or over a non-cluster channel, messages can be put to a local or remote cluster queue instance.

Parent topic: Queue manager attributes for workload balancing

This build: January 26, 2011 11:14:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc13010_

3.2.2.2. CLWLMRUC queue manager attribute

The number of most recently chosen channels that the cluster workload management algorithm uses to restrict the number of active
outbound cluster channels. See the cluster workload management algorithm for further details.

The value must be in the range 1 through 999 999 999. The initial default value is 999 999 999.

Parent topic: Queue manager attributes for workload balancing

This build: January 26, 2011 11:14:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc13020_

3.2.3. Channel attributes for workload balancing

CLWLPRTY channel attribute

CLWLRANK channel attribute

CLWLWGHT channel attribute

NETPRTY channel attribute

Parent topic: Workload balancing attributes

This build: January 26, 2011 11:14:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc13030_

3.2.3.1. CLWLPRTY channel attribute

To apply a priority factor to a channel for the purposes of cluster workload distribution use the CLWLPRTY attribute. The value must be in
the range zero through 9 where zero is the lowest priority and 9 is the highest. This parameter is valid only for channels with a channel
type (CHLTYPE) of CLUSSDR or CLUSRCVR.

Use this attribute to ensure that WebSphere® MQ selects some destination queue managers in preference to others with a lower priority.
WebSphere MQ selects the destinations with the highest priority before selecting destinations with the lowest cluster destination sequence
number (or the most recently used one). Where there are two possible destinations, you can use this attribute to allow one queue
manager to act as a failover, if the other queue manager becomes unavailable. In this situation, messages go to the highest priority

queue manager until it becomes unavailable, they then go to the next priority queue manager. WebSphere MQ obtains the priority of

Page 106 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

queue managers after checking channel status. This means that only accessible queue managers are available for selection, and it allows
WebSphere MQ to prioritize, where multiple destinations are available.

Note:

The availability of a remote queue manager is based on the status of the channel to that queue manager. When channels start, their state

changes several times, with some of the states being less preferential to the cluster workload management algorithm. In practice this
means that lower priority (backup) destinations can be chosen while the channels to higher priority (primary) destinations are starting.

If you need to ensure that no messages go to a backup destination, do not use CLWLPRTY. Consider using separate queues, or CLWLRANK

with a manual switch over from the primary to backup.

For the full cluster workload management algorithm see The cluster workload management algorithm.

Parent topic: Channel attributes for workload balancing

This build: January 26, 2011 11:14:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc13040_

3.2.3.2. CLWLRANK channel attribute

To apply a ranking factor to a channel for workload management purposes use the CLWLRANK attribute. The value must be in the range
zero through 9 where zero is the lowest rank and 9 is the highest. This parameter is valid only for channels with a channel type (CHLTYPE)

of CLUSSDR or CLUSRCVR.

Use this attribute if you want more specific control over the final destination for messages sent to a queue manager in another cluster. Do
this by setting the rank of the 'gateway' queue managers at the intersection of the clusters. When you do this, messages take a specified

route through the interconnected clusters towards a preferred destination. For example, if messages arrive at a 'gateway' queue manager
that can send them to either of two queue managers ranked 1 and 2, they are automatically sent to the queue manager with the highest
rank, in this case the queue manager ranked 2. WebSphere® MQ obtains the rank of queue managers before checking channel status.
This means that even non-accessible queue managers are available for selection, and allows messages to be routed through the network.

If you used the priority attribute WebSphere MQ would have to select between one of two possible destinations. If a channel is not
available to the destination indicated by the rank, the message does not get sent to the next destination in the rank order, instead the
message is held on the xmit queue until, a channel becomes available.

Parent topic: Channel attributes for workload balancing

This build: January 26, 2011 11:14:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc13050_

3.2.3.3. CLWLWGHT channel attribute

To apply a weight to a channel for workload management purposes use the CLWLWGHT attribute, so that the proportion of messages sent
down the channel can be controlled. The value must be in the range 1 through 99 where 1 is the lowest rank and 99 is the highest. This
parameter is valid only for channels with a channel type (CHLTYPE) of CLUSSDR or CLUSRCVR.

Use this attribute to ensure that machines with more processing power are sent more messages. The higher the channel weight, the more
messages are sent over that channel.

Parent topic: Channel attributes for workload balancing

This build: January 26, 2011 11:14:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc13060_

3.2.3.4. NETPRTY channel attribute

To apply a network priority to a channel for workload management purposes use the NETPRTY attribute. This attribute specifies the

priority for the network connection. Use this attribute to make one network the primary network, and another network the backup
network that can be used when there is a problem with the primary network. Clustering chooses the path with the highest priority if there
are multiple paths available. The value must be in the range zero through 9; zero is the lowest priority.

Parent topic: Channel attributes for workload balancing

This build: January 26, 2011 11:14:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 107 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc13070_

4. Troubleshooting

Troubleshooting

Parent topic: Queue Manager Clusters

This build: January 26, 2011 11:14:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc13080_

4.1. Troubleshooting

Note: The 'display route information' command may be useful in diagnosing workload balancing problems. For more information, see the
WebSphere® MQ Event Monitoring book and the WebSphere MQ Script (MQSC) Command Reference.

The following list shows symptoms and their causes:

Symptom — A cluster sender channel is in retry state.

Symptom — DISPLAY CLUSQMGR shows CLUSQMGR names starting SYSTEM.TEMP.

Symptom — Applications get rc=2035 MQRC_NOT_AUTHORIZED when trying to open a queue in the cluster.

Applications get rc=2035 MQRC_NOT_AUTHORIZED when trying to open a queue in the cluster.

Symptom — Applications get rc=2085 MQRC_UNKNOWN_OBJECT_NAME when trying to open a queue in the cluster.

Symptom — Applications get rc= 2189 MQRC_CLUSTER_RESOLUTION_ERROR when trying to open a queue in the

cluster.

Symptom — Messages are not appearing on the destination queues.

Return code=2082 MQRC_UNKNOWN_ALIAS_BASE_Q opening a queue in the cluster
Applications get rc=2082 MQRC_UNKNOWN_ALIAS_BASE_Q when trying to open a queue in the cluster.

Messages put to a cluster alias queue go to SYSTEM.DEAD.LETTER.QUEUE
A cluster alias queue resolves to a local queue that does not exist.

Symptom — A queue manager does not appear to have up to date information about queues and channels in the
cluster.

Symptom — No changes in the cluster are being reflected in the local queue manager.

Symptom — DISPLAY CLUSQMGR, shows a queue manager twice.

Symptom — RESET CLUSTER and REFRESH CLUSTER commands were issued, but the queue manager would not rejoin
the cluster.

Resolving Problems

Parent topic: Troubleshooting

This build: January 26, 2011 11:14:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc13090_

4.1.1. Symptom — A cluster sender channel is in retry state.

A cluster sender channel is in retry state.

1 : display chs(*)

AMQ8417: Display Channel Status details.

CHANNEL(TO.QM2) XMITQ(SYSTEM.CLUSTER.TRANSMIT.QUEUE)

CONNAME(computer.ibm.com(1414))

CURRENT CHLTYPE(CLUSSDR)

Page 108 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

STATUS(RETRYING)

Cause

Either the remote queue manager is not available or there is an incorrect parameter in either the local manually defined cluster sender
channel definition or the remote cluster receiver definition.

First check whether the problem is the availability of the remote queue manager. Are there any error messages? Is the queue manager
active? Is the queue manager's listener running? Is the queue manager's channel able to start?

If the remote queue manager is available there could be a problem with a channel definition. Check the definition type of the cluster
queue manager for the channel in retry state. For example:

1 : dis clusqmgr(*) deftype where(channel eq TO.QM2) AMQ8441: Display Cluster

 Queue Manager details. CLUSQMGR(QM2) CHANNEL(TO.QM2) CLUSTER(DEMO)

 DEFTYPE(CLUSSDRA)

If the definition type is CLUSSDR the channel is using the local manual cluster sender definition. Alter any incorrect parameters in the local
manual cluster sender definition and restart the channel.

If the definition type is either CLUSSDRA or CLUSSDRB the channel is using an auto-defined cluster sender channel based on the definition
of a remote cluster receiver channel. Alter any incorrect parameters in the remote cluster receiver definition. For example, the conname
may be incorrect.

1 : alter chl(to.qm2) chltype(clusrcvr) conname('newhost(1414)') AMQ8016:

WebSphere MQ channel changed.

Changes to the remote cluster receiver definition will be propagated out to any cluster queue managers that are interested and the
corresponding auto-defined channels will be updated accordingly. You can check that the updates have been propagated correctly by

checking the changed parameter. For example:

1 : dis clusqmgr(qm2) conname AMQ8441: Display Cluster Queue Manager details.

CLUSQMGR(QM2) CHANNEL(TO.QM2) CLUSTER(CLUSDEMO) CONNAME(newhost(1414))

If the auto-defined definition is now correct, restart the channel.

Parent topic: Troubleshooting

This build: January 26, 2011 11:14:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc13100_

4.1.2. Symptom — DISPLAY CLUSQMGR shows CLUSQMGR names starting
SYSTEM.TEMP.

DISPLAY CLUSQMGR shows CLUSQMGR names starting SYSTEM.TEMP.

1 : display clusqmgr(*)

AMQ8441: Display Cluster Queue Manager details.

CLUSQMGR(QM1) CLUSTER(DEMO)

CHANNEL(TO.QM1)

AMQ8441: Display Cluster Queue Manager details.

CLUSQMGR(SYSTEM.TEMPUUID.computer.hursley.ibm.com(1414))

CLUSTER(DEMO) CHANNEL(TO.QM2)

Cause

This queue manager has not received any information from the full repository queue manager that the manually defined CLUSSDR
channel points to. The manually defined CLUSSDR channel should be in running state. Check that the CLUSRCVR definition is also
correct, especially its conname and cluster parameters. Alter the channel definition. It might take some time for the remote queue
managers to complete a retry cycle and restart their channels with the corrected definition.

Parent topic: Troubleshooting

This build: January 26, 2011 11:14:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc13120_

4.1.3. Symptom — Applications get rc=2035 MQRC_NOT_AUTHORIZED when trying
to open a queue in the cluster.

Page 109 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

Applications get rc=2035 MQRC_NOT_AUTHORIZED when trying to open a queue in the cluster.

Cause
If your application gets MQRC_NOT_AUTHORIZED when trying to open a queue in a cluster, but the authorization for that queue is
correct, it is likely that the application is not authorized to put to the cluster transmission queue.

Parent topic: Troubleshooting

Related tasks
Authorizing putting messages on remote cluster queues

This build: January 26, 2011 11:14:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc13430_

4.1.4. Symptom — Applications get rc=2085 MQRC_UNKNOWN_OBJECT_NAME
when trying to open a queue in the cluster.

Applications get rc=2085 MQRC_UNKNOWN_OBJECT_NAME when trying to open a queue in the cluster.

Cause

The queue manager where the object exists or this queue manager may not have successfully entered the cluster. Make sure that they
can each display all of the full repositories in the cluster. Also make sure that the CLUSSDR channels to the full repositories are not in

retry state.

1 : display clusqmgr(*) qmtype status

AMQ8441: Display Cluster Queue Manager details.

CLUSQMGR(QM1) CLUSTER(DEMO)

CHANNEL(TO.QM1) QMTYPE(NORMAL)

AMQ8441: Display Cluster Queue Manager details.

CLUSQMGR(QM2) CLUSTER(DEMO)

CHANNEL(TO.QM2) QMTYPE(REPOS)

STATUS(RUNNING)

AMQ8441: Display Cluster Queue Manager details.

CLUSQMGR(QM3) CLUSTER(DEMO)

CHANNEL(TO.QM3) QMTYPE(REPOS)

STATUS(RUNNING)

If the queue is correctly in the cluster check that you have used appropriate open options. You cannot GET from a remote cluster queue

so make sure that the open options are for output only.

Parent topic: Troubleshooting

This build: January 26, 2011 11:14:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc13140_

4.1.5. Symptom — Applications get rc= 2189
MQRC_CLUSTER_RESOLUTION_ERROR when trying to open a queue in the cluster.

Applications get rc= 2189 MQRC_CLUSTER_RESOLUTION_ERROR when trying to open a queue in the cluster.

Cause

The queue is being opened for the first time and the queue manager cannot make contact with any full repositories. Make sure that the
CLUSSDR channels to the full repositories are not in retry state.

1 : display clusqmgr(*) qmtype status

AMQ8441: Display Cluster Queue Manager details.

CLUSQMGR(QM1) CLUSTER(DEMO)

Page 110 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

CHANNEL(TO.QM1) QMTYPE(NORMAL)

AMQ8441: Display Cluster Queue Manager details.

CLUSQMGR(QM2) CLUSTER(DEMO)

CHANNEL(TO.QM2) QMTYPE(REPOS)

STATUS(RUNNING)

AMQ8441: Display Cluster Queue Manager details.

CLUSQMGR(QM3) CLUSTER(DEMO)

CHANNEL(TO.QM3) QMTYPE(REPOS)

STATUS(RUNNING)

If the queue is correctly in the cluster check that you have used appropriate open options. You cannot GET from a remote cluster queue

so make sure that the open options are for output only.

Parent topic: Troubleshooting

This build: January 26, 2011 11:14:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc13160_

4.1.6. Symptom — Messages are not appearing on the destination queues.

Messages are not appearing on the destination queues.

Cause

The messages may be stuck at their origin queue manager. Make sure that the SYSTEM.CLUSTER.TRANSMIT.QUEUE is empty and also
that the channel to the destination queue manager is running.

1 : display ql(SYSTEM.CLUSTER.TRANSMIT.QUEUE) curdepth

AMQ8409: Display Queue details.

QUEUE(SYSTEM.CLUSTER.TRANSMIT.QUEUE) CURDEPTH(0)

2 : display chs(TO.QM2)

AMQ8417: Display Channel Status details.

CHANNEL(TO.QM2) XMITQ(SYSTEM.CLUSTER.TRANSMIT.QUEUE)

CONNAME(comfrey.hursley.ibm.com(1415))

CURRENT CHLTYPE(CLUSSDR)

STATUS(RUNNING)

Parent topic: Troubleshooting

This build: January 26, 2011 11:14:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc13180_

4.1.7. Return code=2082 MQRC_UNKNOWN_ALIAS_BASE_Q opening a queue in the
cluster

Applications get rc=2082 MQRC_UNKNOWN_ALIAS_BASE_Q when trying to open a queue in the cluster.

Problem

An MQOPEN or MQPUT1 call was issued specifying an alias queue as the target, but the BaseQName in the alias queue attributes is not

recognized as a queue name.

This reason code can also occur when BaseQName is the name of a cluster queue that cannot be resolved successfully.

MQRC_UNKNOWN_ALIAS_BASE_Q might indicate that the application is specifying the ObjectQmgrName of the queue manager that it is
connecting to, and the queue manager that is hosting the alias queue. This means that the queue manager looks for the alias target
queue on the specified queue manager and fails because the alias target queue is not on the local queue manager.

Page 111 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

Solution

The ObjectQmgrName parameter is typically left blank so that the clustering decides which queue manager to route to.

Parent topic: Troubleshooting

This build: January 26, 2011 11:14:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc13440_

4.1.8. Messages put to a cluster alias queue go to SYSTEM.DEAD.LETTER.QUEUE

A cluster alias queue resolves to a local queue that does not exist.

Symptom

Messages put to an alias queue go to SYSTEM.DEAD.LETTER.QUEUE with reason MQRC_UNKNOWN_ALIAS_BASE_Q.

Cause

A message is routed to a queue manager where a clustered alias queue is defined. A local target queue is not defined on that queue

manager. Because the message was put with the MQOO_BIND_ON_OPEN open option, the queue manager cannot requeue the message.

When MQOO_BIND_ON_OPEN is used, the cluster queue alias is firmly bound. The resolved name is the name of the target queue and any

queue manager on which the cluster queue alias is defined. The queue manager name is placed in the transmission queue header. If the
target queue does not exist on the queue manager to which the message is sent, the message is put on the dead letter queue. The
destination is not recomputed, because the transmission header contains the name of the target queue manager resolved by
MQOO_BIND_ON_OPEN. If the alias queue had been opened with MQOO_BIND_NOT_FIXED, then the transmission queue header would contain

a blank queue manager name, and the destination would be recomputed. In which case, if the local queue is defined elsewhere in the
cluster, the message would be sent there.

Solution

1. Change all alias queue definitions to specify DEFBIND(NOTFIXED).

2. Use MQOO_BIND_NOT_FIXED as an open option when the queue is opened.

3. If you specify MQOO_BIND_ON_OPEN, ensure that a cluster alias that resolves to a local queue defined on the same queue manager as

the alias.

Parent topic: Troubleshooting

This build: January 26, 2011 11:14:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc13200_

4.1.9. Symptom — A queue manager does not appear to have up to date information
about queues and channels in the cluster.

A queue manager does not appear to have up to date information about queues and channels in the cluster. DISPLAY
QCLUSTER and DISPLAY CLUSQMGR show objects which are out of date.

Cause

Check that the queue manager where the object exists and this queue manager are still connected to the cluster. Make sure that they
can each display all of the full repositories in the cluster. Also make sure that the CLUSSDR channels to the full repositories are not in
retry state, as above.

Next make sure that the full repositories have enough CLUSSDR channels defined to correctly connect them together. The updates to
the cluster only flow between the full repositories over manually defined CLUSSDR channels. After the cluster has formed these will
show as DEFTYPE(CLUSSDRB) channels because they are both manual and automatic channels. There must be enough of these to form
a complete network among all of the full repositories.

1 : dis clusqmgr(SYSTEM.CLUSTER.TRANSMIT.QUEUE) curdepth

AMQ8441: Display Cluster Queue Manager details.

CLUSQMGR(QM1) CLUSTER(DEMO)

CHANNEL(TO.QM1) DEFTYPE(CLUSSDRA)

QMTYPE(NORMAL) STATUS(RUNNING)

AMQ8441: Display Cluster Queue Manager details.

CLUSQMGR(QM2) CLUSTER(DEMO)

Page 112 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

CHANNEL(TO.QM2) DEFTYPE(CLUSRCVR)

QMTYPE(REPOS)

AMQ8441: Display Cluster Queue Manager details.

CLUSQMGR(QM3) CLUSTER(DEMO)

CHANNEL(TO.QM3) DEFTYPE(CLUSSDRB)

QMTYPE(REPOS) STATUS(RUNNING)

AMQ8441: Display Cluster Queue Manager details.

CLUSQMGR(QM4) CLUSTER(DEMO)

CHANNEL(TO.QM4) DEFTYPE(CLUSSDRA)

QMTYPE(NORMAL) STATUS(RUNNING)

Parent topic: Troubleshooting

This build: January 26, 2011 11:14:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc13220_

4.1.10. Symptom — No changes in the cluster are being reflected in the local queue
manager.

No changes in the cluster are being reflected in the local queue manager.

Cause

The repository manager process in not processing repository commands. Check that the SYSTEM.CLUSTER.COMMAND.QUEUE is empty.

1 : display ql(SYSTEM.CLUSTER.COMMAND.QUEUE) curdepth

AMQ8409: Display Queue details.

QUEUE(SYSTEM.CLUSTER.COMMAND.QUEUE) CURDEPTH(0)

Next check that the channel initiator is running on z/OS®. Then check that there are no error messages in the error logs indicating the
queue manager has a temporary resource shortage.

Parent topic: Troubleshooting

This build: January 26, 2011 11:14:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc13240_

4.1.11. Symptom — DISPLAY CLUSQMGR, shows a queue manager twice.

DISPLAY CLUSQMGR, shows a queue manager twice.

1 : display clusqmgr(QM1) qmid

AMQ8441: Display Cluster Queue Manager details.

CLUSQMGR(QM1) CLUSTER(DEMO)

CHANNEL(TO.QM1) QMID(QM1_2002-03-04_11.07.01)

AMQ8441: Display Cluster Queue Manager details.

CLUSQMGR(QM1) CLUSTER(DEMO)

CHANNEL(TO.QM1) QMID(QM1_2002-03-04_11.04.19)

Cause

The queue manager may have been deleted and then recreated and redefined, or it may have been cold started on z/OS®, without first
following the procedure in Task 5 "Removing a Queue Manager from a cluster". The cluster will function correctly with the older version

of the queue manager being ignored, until it ages out of the cluster completely after about 90 days. To remove all trace of the queue
manager immediately use the RESET CLUSTER command from a full repository queue manager, to remove the older unwanted queue
manager and its queues from the cluster.

Page 113 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

2 : reset cluster(DEMO) qmid('QM1_2002-03-04_11.04.19') action(FORCEREMOVE) queues(yes)

AMQ8559: RESET CLUSTER accepted.

Parent topic: Troubleshooting

This build: January 26, 2011 11:14:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc13260_

4.1.12. Symptom — RESET CLUSTER and REFRESH CLUSTER commands were
issued, but the queue manager would not rejoin the cluster.

RESET CLUSTER and REFRESH CLUSTER commands were issued, but the queue manager would not rejoin the cluster.

Cause

A side effect of the RESET and REFRESH commands may be that a channel is stopped, in order that the correct version of the channel
runs when the command is completed. Check that the channels between the problem queue manager and the full repositories are
running and use the START CHANNEL command if necessary.

Parent topic: Troubleshooting

This build: January 26, 2011 11:14:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc13280_

4.1.13. Resolving Problems

The following problems can all be resolved using the REFRESH CLUSTER command. It is unlikely that you will need to use this command
during normal circumstances. Use it only if you want your queue manager to make a fresh start in a cluster. Issue the REFRESH CLUSTER
command from a queue manager to discard all locally held information about a cluster. For example you might use it if you think your full

repository is not up-to-date, perhaps because you have accidentally restored an out-of-date backup. The format of the command is:

REFRESH CLUSTER(clustername) REPOS(YES/NO)

The queue manager from which you issue this command loses all the information in its full repository concerning the named cluster. It
also loses any auto-defined channels that are not in doubt and which are not attached to a full repository queue manager.

The queue manager has to make a cold-start in that cluster. It must reissue all information about itself and renew its requests for updates
to other information that it is interested in. (It does this automatically.)

Here are some procedures for recovering clusters.

Problem 1 — Out of date information in a restored cluster.

Problem 2 — cluster DEMO force removed by mistake.

Problem 3 — Possible repository messages deleted.

Problem 4 — 2 full repositories moved at the same time.

Problem 5 — Unknown state of a cluster.

Parent topic: Troubleshooting

This build: January 26, 2011 11:14:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc13300_

4.1.13.1. Problem 1 — Out of date information in a restored cluster.

An image backup of QM1, a partial repository in CLUSTER DEMO has been restored and the cluster information it contains is
out of date.

On QM1, issue the command REFRESH CLUSTER(DEMO)

QM1 will remove all information it has about the cluster DEMO, except that relating to the cluster queue managers which are the full
repositories in the cluster. Assuming that this information is still correct, QM1 will contact the full repositories. QM1 will then inform

them about itself and its queues and recover the information for queues and queue managers that exist elsewhere in the cluster as they
are opened.

Page 114 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

Parent topic: Resolving Problems

This build: January 26, 2011 11:14:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc13310_

4.1.13.2. Problem 2 — cluster DEMO force removed by mistake.

RESET CLUSTER(DEMO) QMNAME(QM1) ACTION(FORCEREMOVE) was issued on a full repository in cluster DEMO by mistake

On QM1, issue the command REFRESH CLUSTER(DEMO)

See solution to problem Problem 1 — Out of date information in a restored cluster.

Parent topic: Resolving Problems

This build: January 26, 2011 11:14:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc13320_

4.1.13.3. Problem 3 — Possible repository messages deleted.

Messages destined for QM1 were removed from the SYSTEM.CLUSTER.TRANSMIT.QUEUE in other queue managers and they
might have been repository messages

On QM1, issue the command REFRESH CLUSTER(DEMO)

See solution to problem Problem 1 — Out of date information in a restored cluster.

Parent topic: Resolving Problems

This build: January 26, 2011 11:14:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc13330_

4.1.13.4. Problem 4 — 2 full repositories moved at the same time.

Cluster DEMO contains two full repositories, QM1 and QM2. They were both moved to a new location on the network at the
same time.

Alter the CONNAME in the CLUSRCVR's and CLUSSDR's to specify the new network addresses.

Alter one of the queue managers (QM1 or QM2) so it is no longer a full repository for any cluster.

On the altered queue manager, issue the command REFRESH CLUSTER(*) REPOS(YES).

Alter the queue manager so it is acting as a full repository.

This problem could have been avoided if, after moving one of the queue managers (for example QM2) to its new network address it was
allowed to start its CLUSRCVR, altered with the new address. Having informed the rest of the cluster and the other full repository queue
manager (QM1) of the new address of QM2. The other queue manager (QM1) can then be moved to its new network address, restarted
and its CLUSRCVR modified to show its new network address. The manually defined CLUSSDR channels should also be modified for the

sake of clarity, even though at this stage they are not needed for the correct operation of the cluster.

This procedure forces QM2 to reuse the information from the correct CLUSSDR to re-establish contact with QM1 and then rebuild its
knowledge of the cluster. Additionally, having once again made contact with QM1 it will be given its own correct network address based

on the CONNAME in its CLUSRCVR definition.

Parent topic: Resolving Problems

This build: January 26, 2011 11:14:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc13340_

4.1.13.5. Problem 5 — Unknown state of a cluster.

The state of the cluster is unknown and it is required to completely reset all of the systems in it.

For all full repository queue managers, follow these steps:

Page 115 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

1. Alter queue managers that are full repositories so they are no longer full repositories.

2. Resolve any in doubt CLUSSDR channels.

3. Wait for the CLUSSDR channels to become inactive.

4. Stop the CLUSRCVR channels.

5. When all of the CLUSRCVR channels on all of the full repository systems are stopped, issue the command REFRESH CLUSTER
(DEMO) REPOS(YES)

6. Alter the queue managers so they are full repositories.

7. Start the CLUSRCVR channels to re-enable them for communication.

Carry out the following steps on the other partial repository queue managers:

1. Resolve any in doubt CLUSSDR channels.

2. Make sure all CLUSSDR channels on the queue manager are stopped or inactive.

3. Issue the command REFRESH CLUSTER(DEMO) REPOS(YES).

Note:

Under normal conditions the full repositories will exchange information about the queues and queue managers in the cluster. If one full
repository is refreshed, the cluster information is recovered from the other. To stop this happening all of the CLUSRCVR channels to full
repositories are stopped and the CLUSSDR's should be inactive. When you REFRESH the full repository systems, none of them are able
to communicate, so will start from the same cleared state.

As you REFRESH the partial repository systems they rejoin the cluster and rebuild it to the complete set of queue managers and queues.

Parent topic: Resolving Problems

This build: January 26, 2011 11:14:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

qc13350_

Page 116 of 116Queue Manager Clusters

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzah.doc/qc1012...

